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Chapter 5

Implementation

This chapter provides a technical deseription of the implementation of two
scenarios, one using two distributed Responsive Workbenches and the other
one using a distributed Responsive Workbeneh and a CAVE. The first section
deseribes the setup with respeet to the hardware configuration used, introdue-
ing the rendering and interaction equipment, The sccond seetion talks about
the software configuration describing the audio/video conferencing as well as
rendering and distribution.  Code fraginents show the application program-
ming briefly and flow charts are used to represent the combination of different
techniques, operations, data and equipment.

5.1 Hardware Configuration

Most projection-based VEs and CVEs show almost the same hardware config-
uration. In the frst place there is a computer that processes data and renders
it to the sereen as well as a tracking device that measures the position and
orientation of the user’s viewpoint, This tracking data is read by the rendering
machine in order to determine the correet perspective view onto the virtual
scene fronmn the user's viewpoint. The hardware configuration implemented in
this thesis includes input devices for interaction, computers for renclering and
distribution and computers for video and audio streaming. Additionally it
includes equipment like shutter glasses, infra-red cmitters, cameras as well as
microphones and headphones.

5.1.1 RWDB-RWB configuration

For the distributed RWB-RWDB sctup the hardware configuration shown in
Figure 5.1 is used [47, 51]. For the rendering two SGI ONYX workstations are
used with at least one Infinite Reality (IR2) graphics pipe each. The reason is
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Figure 5.1: Schematic of the implemented setup with two Collaborative Re:on-
sive Workbenches.

that the SGI pipe architecture consists of two channels that can cach reder
a sterco image of a typical resolution of 1280x1024 pixels at either 96 F or
120 Hz sterco. Additionally a minimum of four MIPS R10000 processorare
needed. Obviously, a lower cost hardware can be used both for rende 1
for the audio/video communication. The availability of the particular esip-
ment and its high })(‘l‘fol‘lll;\ll('(‘ provide an easy choice.

For the tracking of the user’s head and input devices the Fastrak trackingys-
tem from Polhemus is used. Therefore a Polhemus sensor is attached to thleft
carpicce of the Crystal Eyes shutter glasses. For interacting within the Viual
Environment a Polhemus us and an own custom-made three buttonool
are provided. The tracking sensors are attached to the input device to as
the computer needs to know where the user holds the input devices and pnts
them to. The sensors’ position and orientation are measured electronical by
a receiver attached to the front side of the Responsive Workbench. Thrigh
calibration and transformation the co-ordinate system of the tracking syem
is matched with the world co-ordinate system of the CVE.

For communicating with the remote partner wireless microphones and lad-
phones are used. The video and the audio conferencing is handled by tw02
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workstations. The decision for using these type of computers was mainly influ-
enced by the availability of the O2 MVP video cards. These special video cards
are equipped with a special motion jpeg encoding chip. The video streams are
grabbed directly from the infra-red video camera. The infra-red cameras are
necessary since the light in the laboratory is dimmed in order to perceive the
rendered images with high contrast and brightness. After the video is received
by the O2 workstation the stream is transferred to the DIVO video boards of
each ONYX workstation. The same O2 that manages the video conferencing
also manages the audio connection. The audio stream is grabbed from the
wireless microphones and then send to the other O2 where the headphones
are plugged in. The reason for using headphones is to avoid acoustic feedback
loops which disturb the communication between the remote partners. As soon
as more than one user is working at the same site more headphones or normal
speakers have to be taken in order to provide the other person(s) with audio
perception too.

5.1.2 RWB-CAVE configuration

Site A Site B
100 Mbps Fast Ethernet

i Onyx2 02
—> m .ﬁ PR Audio Stream
— Video Stream

02 Onyx 2
DA —  DataStream

—> Rendering

Figure 5.2: Schematic of the implemented setup with one Responsive Workbench
and the GMD's cave-like CyberStage.

The hardware configuration for the distributed RWB-CAVE setup is sim-
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ilar to the described RWB-RWDB setup. Again two SGI ONYX workstations
are used. The same computer is used for driving the RWB as in the other
sctup. For rendering four stercoscopic images (cight images in total) on the
four walls of the CAVE, an ONYX workstation with at least two graphics pipes
is needed. In the used configuration two or four Infinite Reality (IR2) graphics
pipes arc used. Each machine needs at least four MIPS R10000 processors.
The performer application, drawing and culling processes are cach running on
one processor and the process running on the forth processor is importing the
tracking data to the scene graph. As the application needs video conferencing
facilitics and tracking of two input devices in addition to the tracking of the
viewpoint and the rendering, six MIPS R12000 processors are used to ensure
a rendering frame rate of approximately 30// 2,

As the video representation of the remote partner in the CAVE is offered with-
out camera background additional video hardware is necessary (see Figure 5.3).
Therefore special hardware chroma keyers are used for segmentation in order to
determine the regions in the video images where the participant appears. The
video streas sent and received by the O2 workstations are transferred to an
Ultimate hardware keying deviee, After the remote partner has heen cut out
of the swrroundings through filling the subtracted regions with transparency
values the remaining video streaw is transforred to the DIVO video boards of
the ONYX workstation. For a clean aud precise chroma keving homogencous
lighting is essential. This is contradictory to the light in the laboratories which
is dimmed for perceiving the rendered images with high contrast ancd bright-
ness.  Additionally, the infra-red cameoeras produce black/white fmages only.
However, if the user is wearing bright clothes and the keying color is black it
is possible to subtract the user from its background. Especially helpful is the
desigu of a ring which consists of five to ten infra-red LIEDs, This ring attached
around the infra-red camera makes it possible to illwminate the user directly
as the user is supposed to look into the camora. When using infra-red light
it should be ensured that the frequency does not disturh the infra-red driven
shuttering of the sterco glasses,

5.2 Software Configuration

The software used for the iinplementation of the CVIE is mainly Avango. The
basic concepts of Avango are deseribed already in section 1.3.3,

Several attempts to offer toolkits for distributed VE application development
have been made recently (eg. VR Juggler [5], DIVE [24], WTK 34, 85!). These
toolkits provide various degrees of support for network based communication
between the distributed processes that form an application. However, using
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Figure 5.3: The video streams sent and received by the O2 workstations are
transferred to an Ultimate hardware keying device. After the remote partner has
been cut of out the surroundings through filling the subtracted regions with trans-
parency values the remaining video stream is transferred to the DIVO video boards
of the ONYX workstation.

these facilities often requires significant effort from the programmer. Normally,
only parts of the application state are shared between the distributed processes
such as transformation matrices which describe object positions. Sometimes
explicit specification of communication endpoints for shared object attributes
is necessary. The resulting database duplication problem, ensuring that all
processes work on consistent copies of the shared database, is left as a chal-
lenge to the application programmer. This can be a tedious and error prone
task especially when additional processes join an already running distributed
application. Avango provides programmers with the concept of a shared scene
graph, accessible from all processes forming a distributed application.

The software that handles the audio/video conferencing, however, is designed
to run independently from Avango. Before implementing conferencing soft-
ware, already existing audio/video conferencing toolkits were considered for
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integration. The requirement of having PAL or at least NTSC sized video
resolution at 20-30 fps is the reason why toolkits like Mircosoft's netmecting,
public domain MBone tools or the well known public domain Vice and Rat
tools cannot be integrated in the CVE. These toolkits are designed for low
bandwidth connections such as modem, ISDN or DSL links, transferring icon-
sized video conference images. Although some tools like the H263 encoding
algorithm from Telenor are able to compress and send 4CIF (704x576 Pixels)
sized video streams, but the frame rate drops to almost 0.5-1.0 fps. The de-
veloped audio/video conferencing software within this thesis is able to send
PAL video streamms over the network at 25fps and to integrate them into a
CVE in real-time. Therefore the software handles bi-directional audio/video
connections.

The first part of the following secetion describes the Avango field interface
atd how scene graphs are distributed. Additionally it provides code fraguents
to give an idea about the programming effort for implementing CVE applica-
tions.

The second part deals with the software that enables the audio 'video confer-
encing in mono and sterco, In addition, modifications are deseribed which are
necessary for integrating sterco video textures into a VE using Avango.

5.2.1 Distributed Scene Graphs with Avango

Avango combines the familiar programming model of existing stand-alone
toolkits with built-in support for data distribution that is alimost transpar-
ent to the application developer [96]. The Avango framework is based on
Performer to achieve the maximum possible performance for VE and CVE
applications.  Performer provides a C4++ scene graph APL which allows for
flexible representation of complex geometry [87. 88. 89]. Advanced rendering
tasks like culling. level-of-detail switching and communication with the graph-
ics hardware are all handled by Performer. Whenever the underlving hardware
allows, Performer utilizes multiple processors and multiple graphics pipelines.
The toolkit also provides a colleetion of geometry loaders for the most popular
as well as some uncommon file formats.

Fields and Fieldcontainers

The efficient implemoentation of a generie seripting and streaming interface
for heterogenous objects requires additional mete information about object
attributes and their types, and a way to access those attributes without know-
ing the exact type of the containing ohject. The C++ programming language
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doces not treat classes as first class objects, so that this information is not easily
available on a language level. Performer uses a member function API to access
the state attributes of an object. A symmetric pair of get and set functions
exists for each attribute. Sctting one attribute may change another attribute
of that object as a side effect. However, no abstract information about the
nwmber of attributes, their type, and their value can be obtained from an ob-
ject via the Performer APIL. To overcome this problem Avango introduces the
notion of fields as containers for object state attributes to Performer objects.
Fields encapsulate basic data types and provide a generic interface for script-

template<class T> class fpSingleField : public fpField {

public:
virtual fpType getTypeld() const;
virtual void setValue(const T& value);
virtual const T& getValue() const;
virtual void setSchemeValue (Scheme value);
virtual Scheme  getSchemeValue() const;

+

template<class T> ostream& operator<<(ostream& stream,
const fpSingleField<T>& field);

template<class T> istream& operator>>(istream& stream,
fpSingleField<T>& field);

Figure 5.4: DPart of the fpSingleField interface. fpSingleField is a template
class and is used to instantiate single value ficlds on basic data types.

ing and streaming. They are implemented as public class member funetions
and are thus inherited by derived classos. They are directly accessible by client
classes and are Avango’s premier interface to objeet state attributes. There
exist four different types of fields.  Single-ficlds contain one basic data type
value, whereas multi-ficlds contain a vector of values. A multi field can con-
tain an arbitrary number of values. To bridge the Performer method based API
to the Avango field oriented APL adaptor ficlds are used. Thev will forward
getValue() and setValue () requests to the appropriate get and set functions
of the Performer APIL This ensures that Performer related state information
is correctly updated according to field value changes, and possible side effects
are properly evaluated.

The implementation of fields makes use of C++ tamplates which allow to pa-
rameterize the fpField class with the required data type. As an example for
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the ficld class API, part of the template class definition for the single field is
shown in Figure 5.4. The getTypeId() method provides access to the run-time
type information for a field. The returned type identifier is used for run-time
type checking and to provide type information for field values which are writ-
ten to streams.

Access to the field value is provided by the getValue () and setValue() meth-
ods. Alternatively, a scheme representation of the field values can be provided
or obtained via the getSchemeValue() and setSchemeValue() methods. For
cach field class a pair of stream operators exist which allow serialization of
the field value into a stream, and the reconstruction of the field value from a
stream.

Avango provides a fieldcontainer interface which represents the state of an ob-
jeet as a collection of fields. A fieldcontainer can be queried for its munber of
ficlds, and any of the ficlds themselves. Relevant parts of the fieldcontainer
interface are shown in Figure 5.5. This, together with the generice seripting and

class fpFieldContainer {

public:
int getNumFields () ;
fpFieldPtrVeck getFields();
friend ostream& operator<<(ostream& stream,
fpLink<fpFieldContainer> fc);
friend istream& operator>>(istream& stream,
fpLink<fpFieldContainer> fc¢);

protected:
virtual void notify(fpField& field);
virtual void evaluate();

};

Figure 5.5: fpFieldContainer cucapsilates the state information of an object
and represents it as a collection of fields.

streaming interface of fields, allows to provide complete seripting and stream-
ing functionality at the fieldeontainer level without knowing the exact tvpe of
the wnderlying object. This extents, at no extra cost, to all classes further
derived from fpFieldContainer.

Fieldconnections

Much like SGI's Open Inventor Toolkit, Avango introduces the concept of field-
conneetions [102]. Ficlds of compatible type can be connected in a wav that
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whenever the value of the sowrce field changes, it is iminediately forwarded to
the destination field. Using ficldconnections, a data-flow graph can be con-
structed which is conceptually orthogonal to the scene graph. Avango utilizes
this mechanism to specify additional relationships between nodes which can-
not be expressed in terms of the standard scene graph. This allows for the
casy implementation of interactive behaviour and the import of real world
data into the scene graph. The evaluation of the data-flow graph is performed
once per rendering frame. Ficldeonnections forward value changes inunedi-
ately, so that there is no propagation delay for cascaded connection paths
in the graph (sce Figure 1.9). Loops are detected and properly resolved. A
fieldcontainer can implement side effeets on field changes by overloading the
notify() and evaluate() member functions, Whenever a ficld is set to a
new value, the notify () method is called on the fieldcontainer with a refer-
cnce to the changed field as an argument. The fieldceontainer can do whatever
is necessary to achiove the desived effect, including the manipulation of other
ficlds. After all notifications for all ficlds on all ficldcontainers have been made
for one frame, the evaluate () method is called on cach fieldeontainer which
had at least oue of its ficlds notified. This allows the ficldeontainer to perform
actions which depend on more than one updated field value for cach frame.

Nodes

Fieldcontainer adaptions exist for all Performer node classes (pfGroup, p£DCS,
pfLOD, cte.) andmost of the Performer object classes (pfGeoState. pfMaterial,
pfTexture, cte.). By convention the Avango nodes exchange the Performer
pf prefix with the £p prefix. The Avango scene graph is built out of nodes
as shown in Figure 1.9. The possibility to mix Avango nodes with Performer
nodes in the scene graph can he conveniently used to define new nodes with
interesting functionality. The £pFile node, for example, is derived from the
adaption node £pbCS. It inherits the interface of £pDCS which consist of a
Children and a Matrix fickl. The fpFile node adds a URL ficld of type
string. With an overloaded notify () method, £pFile reacts to changes of
the URL field by retrieving a geometry from the specificd URL and adding it to
its list of children. Thus, fpFile imports the geometry into the scene graph,
and can be scen as an opaque handle to it. Subsequent changes to URL will
result in replacement of the old geometry with the newly specified geometry:.

Sensors

Sensors represent Avango's interface to the real world (sce Figure 1.9). They
are doerived from the fpFieldContainer class but not from any Performer
node, and thus cannot be inserted into the scene graph. Sensors encapsulate
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the code necessary to access input devices of various kinds. The data gener-
ated by a device are mapped to the fields of the sensor. Whenever a device
generates new data values, the ficlds of the corresponding sensor are updated
accordingly.

Ficldconnections from sensor fields to node ficlds in the scene graph are used
to incorporate device data into an application. The fpTrackerSensor class
provides an interface to six degree of freedom trackers like the Polhemus Fas-
trak devices (see Figure 5.6). Avango utilizes a device dacmon process which

class fpTrackerSensor : public fpDeviceSensor{

public:
fpSingleField<string> Station; // inherited
fpSingleField<fpMatrix> Transform;
fpSingleField<bool> Button;

¥

Figure 5.6: The Avango sensor classes map data values from external devices
to ficlds.

handles the direcet interaction with the devices via serial line or network con-
nections. The dacmon updates the device data values into a shared memory
scgment, where the fpDeviceSensor classes can aceess them. A station nance
is used to identify the desired device data in the shared maomory seginent, and
cvery fpDeviceSensor class spocifics this identifier in its Station ficld. Af-
tor connecting to the device dacmon, the fpTrackerSensor class provides the
current position and orientation information from the seleeted tracking device
represented in form of a matrix in its Transform field. By connecting the
Matrix ficld of a £pDCS node to the Transform ficld, the subtree rooted by the
fpDCS node will move according to the tracker movement reported from the
sclected station.

Scripting

The development of Virtual Environment applications often follows a highly
iterative approach. Many VE toolkits and frameworks do not account for this
situation as changes and reconfigurations require recoding in ¢ or C+— and
recompilation of parts or even the whole application. An interpreted scripting
language which has a binding to all relevant high-level object interfaces in a
framework can greatly reduce the burden on the application programmer and
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; instantiate a fpFile node and attach it as child to the
; scene-root node

define geom (make-instance-by-name "fpFile"))

-> (-> scene-root ’Children) ’add-1value geom)

N N e e

;3 load a geometry from the following path
(=> (-> geom ’Filename) ’set-value "./graphics/iv/jaw_bone.iv")

;3 instantiate a Drag Tool Node and activate it
(define drag-tool (make-instance-by-name "fpDragTool"))
(-> (-> drag-tool ’TimeIn) ’connect-from (-> time-sensor ’Time))

;; instantiate a dragger - a special matrix dragger
(define geom-dragger (make-instance-by-name "fpMatrixDragger"))

;3 assign the dragger to the geometry
(-> (-> geom ’Dragger) ’add-ivalue geom-dragger)

;3 connect the dragger’s matrix with the geometry’s matrix
(-> (-> geom ’Matrix) ’connect-from (-> geom-dragger ’Matrix))

Figure 5.7: A fpFile node is instantiated and loads an Inventor file from the path
specified in the "Filename ficld. By making the file node a child of the scene-root the
associated geomctry gets rendered. After instantiating a DragTool and configuring
it, the DragTool checks for interseetions between the input device representation go-
ometry and all other geometry in the scene. If an intersection with geom is dotected,
a special mechanism looks for an instance of a dragger being assigned to geom. In
this case the matrix field connection between geom and geom-dragger is exeentod
and the jaw bone geometry follows the movements of the input device,

will significautly shorten the development eyele. No recompilation is neces-
sary and modifications can be applied to ruuning applications.  As already
deseribed in seetion 1.3.3 Avango features a complete language binding to the
interpreted language Scheme. It uses the ELK Schemne implementation which
is a small and clegant Scheme interpreter and is especially suited to serve as an
extension language for C and C-+-+ programs. The Avango scheme binding is
based on the field and fieldeontainer API's of the Avango objects. For all basic
data types that are used to instantiate field classes a scheme representation
with all necessary access functions exists. The basic data types are passed by
value to and from the Scheme interpreter and can be handled like any other
built-in Scheme type.

Avango objects such as nodes and sensors are handled by reference. This is



University of Pretoria etd — Goebbels, G P J (2001)

102 CHAPTER 5. IMPLEMENTATION

implemented by providing a binding for the £pLink class. fpLink values are
again passed by value to the Scheme interpreter so that references to Avango
objects are properly reference counted. Scheme uses a garbage collector to
reclaim memory from objects which can no longer be accessed by the inter-
preter. When an £fpLink value is garbage collected, the reference count on the
associated Avango object is decremented accordingly.

Avango objects can be created from Scheme by providing the nawme of the
desired object class as an argument to the (make-instance-by-name class)
function. The object is instantiated, aud a reference is handed bhack in the
form of a £pLink valuc,

A set of access functions allows access to the fieldcontainer and the field in-
terfaces of Avango objects. Figure 5.7 shows an example seript which instan-
tiates an £pFile node and connects it to an instance of a fpMatrixDragger.
A fpMatrixDragger contains the position and orientation of the input de-
vice. With a field connection between this dragger and a geometry the latter
one follows the movements of the input device. Because ELK Scheme is an
interpreted language, every Avango application can provide a command-line
interface, where Scheme commands can be entered at run-time. Al Avango
objects which are defined by a scheme seript can be aceessed and manipulated
while the application is running,

The Avango scripting interface suggests a two phased approach for the appli-
cation development. Complex and performance eritical functionality is imple-
mented in C4+ hy subelassing and extending already existing Avango classes.
The application itself is then a collection of Scheme seripts which instantiate
the desired Avango objects, set their field values and define relationships be-
tween them through field connections. The seripts can be written and tested
while the application is running. This leads to very short turnaround times
in the development cycle and provides a very powerful environment for rapid
application prototyping.

Distribution

As already described Avango objects are fieldcontainers that encapsulate the
objoect state in a set of fields. The streaming interface of the field and ficldcon-
tainer classes allow for a very clegant implementation of the distributed object
semantics, '

Distributed object ereation in Avango is a two stage process. First a local
object is ereated which is then, in a second step, migrated to the desived dis-
tribution group (sce Figure 5.8).  The migration involves the announcement
of a new object to the distribution group and the disscmination of the current
object state to all group members. For this the streaming interface of the
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Figure 5.8: lllustration of a scene graph distribution using Avango. The six steps
show how the scene graph is copied to a remote site and field values are updated.
The last two steps illustrate how the participants who where joining the group at
a later time are able to interact on the received data and propagate changes back
to the first user.
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ficldcontainer is used to serialize the object state into a network data buffer
which is then sent to all group members. The group members will reverse this
process and create a copy of the object from the serialized state information.
The newly created distributed object will now exist as a local copy in cach of
the participating processcs.

In Avango object state is accessible in terms of object field values. Whenever a
ficld value on a distributed object is locally changed the new value is streamed
to a network buffer and sent to all members of the distribution group in order
to keep the distributed copies of that object synchronized.

The parent child relationship between objects in the scene graph is repre-
sented by a multi-field of reference values on the parent node. Because all
field values including fpLink<> types are streamable, the distribution scheme
deseribed above will not only distribute and synchronize singular objects but
it is possible to distribute parent child relationships between these objects too.
Additionally, it replicates a complete scene graph to all processes in the same
distribution group.

Figure 5.8 illustrates all steps of the process when distributing a scene graph
using Avango. In a first step the first participant loads up an Avango scene
represented by the scene graph including nodes, sensors and serviees, After a
remot e participant joins the distribution group using local sensors and serviees
(step two), the scene graph is copied according to the hierarchical order of the
nodes (step three). Instep four the fickds of the local scene graph nodes are
copiad into the corresponding fields of the remote scene graph nodes which
turns the remote scene graph into an identical copy. Now the remote sensors
are conuected to the nodes which allows interaction at the remote side as well
(step five). As soon as these interactions change the state of the own nodes,
represented by their field values, these changes are propagated back to the first
participant again (step six). Step six occurs every time one participant in the
distribution group interacts in the Virtual Environment coursing changes of
the scene graph state,

Being able to distribute the entire scene graph with all parent-child relation-
ships hetween the objeets is a key feature on the way towards a simplified
development of distributed applications.  However, it is not sufficient when
considering the case of a distribution group with two member processes A
and /3. Both processes have already created several distributed objocts in that
group. Now a third process ¢ joius the group. From now on all three processes
will be notified of future objeet ereations and manipulations, but process ¢
will not know of the objects that A and /3 already created before it joined.
Avango overcomes this problem by performing an atomic state transfer to
every joining member. When a new process joins an alrecady populated dis-
tribution group, one of the older group members takes the responsibility to
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transfer the current state of the distribution group to the new member. This
involves sending all objects, currently distributed in the group. with all their
ficld values to the newcomer. After the state transfor the new member will
have the proper set of object copies for this distribution group. To prevent
consistency problems, the state transfer is performed as one atomic action by
suspending all other communication while performing it.

The ability to replicate the entire scene graph paired with the state transfer
to joining members effectively solves the duplicate database problem. New
members can join an existing distribution group at any time and will imme-
diately receive their local copy of the scene graph constructed so far in the
distribution group. Furthermore, the application programmer does not need
to be concerned with distribution details. The user can take the scene graph
for granted on a per process level and can concentrate on the semantics of
the distributed application.  Figure 5.9 shows a brief scheme code example
distributing a simple jaw bone geometry.

join the distribution group with the help of
string "codeword"
efine dist-group-node (av-join "codeword"))

,\-.,.
[ DU

;5 instantiate a file node to load the geometry
(define geom (make-instance~by-name "fpFile"))

;; load the geometry (-> (-> geom ’Filename) ’set-value
"http://viswiz.gmd.de/"gernot/graphics/iv/jaw_bone.iv")

;3 distribute the geometry
(-> dist-group-node ’distribute-object geom)

;3 after distribution add geom to the distribution group node
(-> (-> dist-group-node ’Children) ’add-lvalue geom)

Figure 5.9: The call of the av-join conunand creates a distributed session.
This session can be joined hy using the "codcword”. The instance of fpFile
and thus the geometry can now bhe distributed applying 'distribute-object. Join-
ing Avango applications can access the geometry over the URL specified in the
"Filename field sinee all fields are copied after the whole scene graph has been
replicated. geom is attached as child to the distribution group node after being
distributed.
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5.2.2 Audio/Video Conferencing

The audio/video conferencing runs independently from Avango and thus in-
dependently from the scene graph distribution. In addition the video software
sends and receives its streams independently from the audio source. However,
the audio as well as the video setup show almost the same configuration. The
flow chart in Figure 5.10 shows the single procedure steps of server and client.
On the server site the frames are grabbed from the camera which is plugged

VideoOut (Divo board)

Figure 5.10: The figure shows the work flow of the video server and client. On
the server side the frames are grabbed, encoded and then sent to the client side
where the stream becomes decoded. The same sequence is used for the audio
connection that runs independently from the video.

into the Videoln port of the video card. Then the grabbed frames are encoded.
After encoding, the reduced frames are packed into buffers and sent over the
network to the client site that is already waiting. There the buffers are received
and decoded. The inflated frames are then available at the VideoOut port of
the O2 video card again.

The video setup decides about the next procedure. As shown in Figure 5.3 the
video stream can cither be chroma keyed or not.

Finally the video stream is transferred to the DIVO video board of the ONYX
workstation. There the video is integrated and rendered in the CVE making
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use of the Avango scene graph. Therefore the video frames are handled like
a toxture which can be mapped to a polygon representing the virtual video
screen, Special video configurations in Avango download video frames from
the video hardware continuously into the texture memory.

For sending and recciving the video and audio streaims SGI O2 workstations
arc used in a way as shown in Figures 5.1 and 5.2. The decision for using these
type of machines was mainly influenced by the availability of the O2 MVP
video cards. These special video cards are equipped with a special motion
jpeg encoding chip. The cards in general as well as the compressor chip in
particular can be configured using SGI's Digital Media Development Environ-
ment (DMdev) library [86].

The audio/video conferencing software is developed on the basis of this DMdev
library. This software haudles the following different parts, namely: network
communication, video patly, video node, image compressor, image parameters,
encoding and sending of the images. As the receiving unit works equivalent
to the sending unit it is sufficient to focus on the latter. The program flow
chart in Figure 5.11 shows the different initialization steps.  The first step is
to configure the network and the communication. Therefore three parameters
are hmportant: the protocol, the port and the host name of the receiving unit.
Then the video path is configured which creates a link with the connected
camera. For doing so the API functions of the VL (SGI's Video Library) are
wsed. The VL allows also to configure video paths to more than only one
conneeted camera. The video path consists of two nodes, the source and the
target node. The source node is the camera and the target node is the memory
segment to store the image, Later in the process the frames are grabbed from
this memory for cncoding.

The attributes of the video nodes that need to be set are image format. image
size (PAL), voom factor, color space cte..

The selection of the image encoder and its configuration needs as to he done
according to the encoding requirements. The following encoders are available:

e Apple Qui('kTimp Aunimation - 'rle’
e Cinepark - ‘evid’

e Intel Video- 'TV32'

e H.2061 - 'h201

o JPEG - jpeg’

e MPEGI-Video - 'mpeg’
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network communication

video path
source and target node

video node
attributes

[

Initialization
image encoder

image parameters
source and target node

DMbufferpool

|

Permanent Program Flow

send

i

Figure 5.11: Program flow chart for the sending unit. The first block represents
the initialization of the video board. The second block shows the permanent flow
consisting of frame grabbing, encoding and sending.

The hardware encoder can use the jpeg standard. According to the require-
ments for the video conferencing the motion jpeg encoder is chosen. The
parameters for this encoder type are set. The source and the target node are
the uncompressed and compressed image respectively.

In the last step DMbufferpools are created. These pools are used to transport
images on the video board. These pools are allocated in system memory to
which all IO devices have a very fast access. Two DMbufferpools are created.
One for the transport of the images from camera to memory (vid-to-mem) and
one for transporting it to the image encoder. This last buffer is used again
for writing the encoded image back into the same memory segment (mem-to-
mem). With this the initialization phase is complete.

Then the permanent program loop is entered. This loop consists of the follow-
ing three steps, grab a frame, encode and send. More precisely, every time a
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new image is created at the memory target node an event is released. If this
event (VLTransferComplete) occurs, the image frame is read into the DM-
buffer and passed over (dimICSend()) to the encoder. dmICReceive() reads
the compressed frame from the encoder again into the second DMbufferpool.
Finally the call of dmNetSend() sends the compressed frame to the decoding
client.

Since the video communication mainly occurs between the camera, the hard-
ware encoder and the system'’s memory, the system CPU is mostly spared.
Transfer and frame rate measurcments showed a CPU load of less than 10%
on a SGI 02 workstation with a MIPS R10000 processor. The separately
handled audio connection adds another 5-7% to this CPU usage. These mea-
surements are made having a video frame rate at the client side hetween 20-25
fps. The bandwidth necessary to ensure this transfer rate has to be at least 500
kbps. Similar results can be achieved using PCs with common video boards.
VL- and DMdev-like digital media libraries are also available for PC hardware.
The concept, however, remains the same,

Stereo-Video Conferencing

The sterco video conferencing is especially challenging because of two things:
e grabbing. encoding and transferring two synchronized images
o integrated rendering of synclironized sterco textures in Avango

When transferring two synchronized images, that correspond to cach other, it
has to be cusured that both images arrive completely at the other site. One im-
age only s of no use. Due to this requirement the fast UDP protocol cannot be
considered as it offers no confirmation mechanism. The TCP protocol instead
is an acceptable option. An optimal solution for the sterco video conferencing
is to send the images together at onee and not after cach other, Additionally
this implies that both images, the one for the left and the one for the right eye,
should be grabbed together as a mixed image from the camera. Here mixed
means that both images share the 576 lines (ficlds) of the PAL sizod images.
How this could look like is shown in Figure 5.12.

It is possible to configure the video nodes in a way that only the odd ficlds are
grabbed from the right camera image and the even fields of the left camera
image. Then both images, having half size only, can be merged. This merging
can cither be done so that the upper part of the image is of the right camera
and the lower part of the left camera or they hoth are merged alternating like
shown in the right hand side of part of Figure 5.12. Merging half-images of
hoth cameras has the advantage that the amount of data is the same as when
using mono video conferencing. It is evident that extra CPU time needs to be
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Figure 5.12: The video server can be configured to grab the even fields of the
right and the odd fields of the left camera. Then both fields are assembled together
in one image which will again be encoded and sent to the client. With this trick it
is possible to keep a high frame rate even sending stereo images over the network.

spend to copy the half-images into the same DMbuffer on server and client site.
Additionally it ensures a PAL sized mutual image which can be compressed
by the video hardware which is optimized for PAL sized images only. As soon
as the image resolution decreases, the encoding needs to be done by software
which would result in a decreasing frame rate.

After the stereo images are received by the client site and are decoded and
splitted again they have to be texture mapped and rendered in the CVE. This
integration into Avango is quite challenging as the draw traverser does not
know anything about the synchronized images which arrive at the DIVO video
hardware of the ONYX workstation (see Figure 5.3). For solving this problem
a mechanism is created which knows about the synchronized video images and
decides which one of them is rendered when. As already said video images
are handled like textures which are permanently downloaded from the video
hardware into the ONYX texture memory. Thus the geometry onto which
these textures are mapped has to be added and removed to and from the
scene graph according to the framerate. For doing this a fpDrawEyes node
is implemented which offers two special methods, a pre_draw_callback() and a
post_draw_callback() (see Figure 5.13).

According to the frame count the pre_draw_callback() switches the geometry
invisible through overriding the geometries material properties. This hap-
pens before the draw traverser renders the scene. After the rendering the
post_draw_callback() switches the geometries visibility again through disabling
the material override mode. When the draw traverser arrives again at the be-
ginning of the next frame the pre_draw_callback() is not going to be executed as
the Performer function pfGetFrameCount() increases the currentFrameCount
by one only every second frame, as one frame consists of two images to be
rendered (left and right eye).

Figure 5.14 shows the corresponding scene graph created by an Avango scheme
script. The whole scheme script is shown in Appendix B.

Both fpLoadFile nodes (they are similar to the fpFile nodes) lay on top of
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int fpDrawEyes::pre_draw_callback(pfTraverser* trav)
{

long int currentFrameCount = pfGetFrameCount();

if (( _whichEye && currentFrameCount == _oldFrameCount) ||
(!_whichEye && currentFrameCount != _oldFrameCount) )

{
pfOverride (PFSTATE_TRANSPARENCY, PF_ON);
pfOverride (PFSTATE_FRONTMTL, PF_ON);
pfOverride (PFSTATE_BACKMTL, PF_ON);
}

_0ldFrameCount = currentFrameCount;

return PFTRAV_CONT;

int fpDrawEyes::post_draw_callback(pfTraverser* trav)

{
pfOverride (PFSTATE_TRANSPARENCY, PF_QOFF);
pfOverride (PFSTATE_FRONTMTL, PF_OFF) ;
pfOverride (PFSTATE_BACKMTL, PF_OFF);
pfPopState () ;

return PFTRAV_CONT;

Figure 5.13: Implementation  of  fpDrawEyes”  pre.draw_callback() and
post_draw_callback(). The pro_draw._callback() switches the geometry invisible be-
fore the rendering whereas the post_draw_callback() switches the geomotry visible
again after the rendering,

cach other since they have the same matrix transform and share the same
parent node. Due to the switching of the fpDrawEyes nodes only one of them
is going to be visible at a time. In the real implementation they are a little
bit tilted to cach other according to the user’s eye position. This ensures that
cach oye's view direction stands orthogonal to the screen with the texture of
the corresponding camera.

5.3 Conclusions

This chapter deseribed the CVE implementation details with respect to the
used hardware and the software configuration, The hardware configuration
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Figure 5.14: Scene graph showing the fpDrawEyes node. This node is responsible
for switching between the two overlaying video textures.

is explained for a distributed setup using two Responsive Workbenches, and
for a distributed setup using a Responsive Workbeneh and GMD's cave-like
CyboerStage. These two configurations inelude input devices for interaction,
computers for rendering and distribution, and computers for video and audio
streaming.  Additionally it includes equipment like shutter glasses, infra-red
cmitters, cameras as well as microphounes and headphones. This equipment
can be used for any combination of display systems, including even more than
two.

The software section desceribed the Avango software framework which is wsed
for rendering and distribution. Thoereby Avango's field interface is introduced
as well as the importance of field connections.  Additionally it is explained
how comfortable distribution mechanisms make use of this field interface in
order to handle the database duplication problem.  The remainder of this
chapter describes the video conferencing software with respeet to its mono
and sterco video conferencing capabilitics. A solution for sending synchronized
stereo video frames is introduced as well as a solution for the integration and
rendering of the synchronized stereo images in the CVE.
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