APPENDIX A

A. <u>Related literature on continuous casting</u>

As explained in the text, these references are shown only for the sake of completeness, as this dissertation is part of an ongoing continuous casting CFD modelling exercise at the University of Pretoria in collaboration with THRIP partners¹ from the industry.

Firstly, the Tundish references diagram is shown to show the resemblances to the classification of typical literature.

A.1 <u>Tundish diagram</u>

¹ THRIP: Technology and Human Resources for Industry Programme of South Africa; a partnership programme funded by the Department of Trade and Industry (DTI) and managed by the National Research Foundation (NRF)

Industry THRIP partners to University of Pretoria, Department Mechanical and Aeronautical Engineering, cfd-labs : Columbus Stainless (main partner), LTM technologies and Foseco

Diagram A.1: Tundish classification of literature

A.2 <u>Tundish (T), Inclusions (I) and Ladle (L) references</u>

T: Tundish

- R. D. Morales, J. deJ Barreto, S. Lopez-Ramirez and J. Palafox-Ramos, Melt Flow Control in a multistrand tundish using a turbulence inhibitor, *Metall. Trans. B.*, 31B (2000), 1505.
- 2) D. Y. Sheng and L. Jonsson, Two-Fluid Simulation on the Mixed Convection Flow Pattern in a Nonisothermal Water Model of Continuous Casting Tundish, *Metall. Trans. B.*, 31B (2000), 867.
- 3) S. Lopez-Ramirez, J. deJ Barreto, J. Palafox-Ramos, R. D. Morales and D. Zacharias, Modeling Study of the Influence of Turbulence Inhibitors on the

Molten Steel Flow, Tracer Dispersion, and Inclusion Trajectories in Tundishes, *Metall. Trans. B.*, 32B (2001), 615.

- 4) L. Zhang, S. Taniguchi and K. Cai, Fluid Flow and Inclusion Removal in Continuous Casting Tundish, *Metall. Trans. B.*, 31B (2000), 253.
- 5) M.A. Schueren, J. Schade and R. J. Komanecky, Quality and Productivity Improvements with a Revised Tundish Flow System at AK Steel's Middletown Works, unknown. 2001 and 2002 ISS award winner.
- 6) Craig, K.J., de Kock, D.J., Makgata, K.W. & de Wet, G.J. Design Optimization of a Single-Strand Continuous Caster Tundish Using RTD Data, *ISIJ International*, Vol.41, No.10, pp.1194-1200, 2001.
- 7) De Kock, D.J., Craig, K.J. & Pretorius, C.A., Mathematical Maximisation of the Minimum Residence Time for a Two-Strand Continuous Caster, accepted, *Ironmaking and Steelmaking*, Dec. 2002.
- 8) De Kock, D.J., Craig, K.J. & Pretorius, C.A., Mathematical Maximisation of the Minimum Residence Time for a Two-Strand Continuous Caster, 4th European Continuous Casting Conference, 14-16 October 2002, Birmingham, UK.
- 9) S. Joo, J.W. Han and R.I.L. Guthrie, Inclusion Behavior and Heat_transfer Phenomena in Steelmaking Tundish Operations: Part III. Applications – Computational Approach to Tundish Design, *Metall. Trans. B.*, 24B (1993), 779.
- 10) C. Damle and Y. Sahai, Modeling of Grade Change Operations During Continuous Casting of Steel – Mixing in the Tundish, Transactions of the ISS, June 1995, 49.
- 11) P.K. Jha and S.K. Dash, Effect of Outlet Positions and Various Turbulence Models on Mixing in a Single and Multi Strand Tundish, *International Journal of Numerical Methods for Heat and Fluid Flow*, 12(5) (2002), 560.
- 12) S. Joo and R.I.L. Guthrie, Inclusion Behavior and Heat_transfer Phenomena in Steelmaking Tundish Operations: Part I. Aqueous Modelling, *Metall. Trans. B.*, 24B (1993), 755.
- 13) Y. Sahai and T. Emi, Melt Flow Characterization in Continuous Casting Tundishes, *ISIJ International*, 36(6) (1996), 667.
- 14) Y. Sahai and R.Ahuja, Fluid Flow and Mixing of Melt in Steelmaking Tundishes, *Ironmaking and Steelmaking*, 13(5) (1986), 241.
- 15) D.Y. Sheng, C.S. Kim, J.K. Yoon and T.C. Hsiao, Water Model Study on Convection Pattern of Molten Steel Flow in Continuous Casting Tundish, *ISIJ International*, 38(8) (1998), 843.
- 16) A.K. Sinha and A. Vassilicos, Physical Modelling of Thermal Effects on Steel Flow and Mixing in Tundish, *Ironmaking and Steelmaking*, 25(5) (1998), 387.
- 17) R. D. Morales, S Lopez-Ramirez, J. Palafox-Ramos and D. Zacharias, Numerical and Modeling Analysis of Fluid Flow and Heat Transfer of Liquid Steel in a Tundish with Different Flow Control Devices, *ISIJ International*, 39(5) (1999), 455.
- 18) D. Y. Sheng and L. Jonsson, Investigation of Transient Fluid Flow and Heat Transfer in a Continuous Casting Tundish by Numerical Analysis Verified with Nonisothermal Water Model Experiments, *Metall. Trans. B.*, 30B (1999), 979.
- 19) M.L. Lowry and Y. Sahai, Thermal Effects on the Flow of Liquid Steel in Continuous Casting Tundishes, Transactions of the ISS, March 1992, 81.
- 20) R.W. Crowley, G.D. Lawson and B.R. Jardine, Cleanliness Improvements Using a Turbulence-Suppressing Tundish Impact Pad, 1995 Steelmaking Conference Proceedings, 629.

- 21) H. Tanaka, R. Nishihara, I. Kitagawa and R. Tsujina, Quantitative Analysis of Contamination of Molten Steel in Tundish, *ISIJ International*, 33(12) (1993), 1238.
- 22) S. Joo, J.W. Han and R.I.L. Guthrie, Inclusion Behavior and Heat_transfer Phenomena in Steelmaking Tundish Operations: Part II. Mathematical Model fo Liquid Steel in Tundishes, *Metall. Trans. B.*, 24B (1993), 767.
- 23) Y. Miki and B.G. Thomas. Modeling of Inclusion Removal in a Tundish, *Metall. Trans. B.*, 30B (1999), 639.

I: Inclusions and Steel Cleanliness

- 1) L. Shang and B.G. Thomas, Alumina Inclusion Behavior during Steel Deoxidation, 7th European Electric Steelmaking Conference, Venice, Italy, May 26-29, 2002.
- 2) L. Zhang and B.G. Thomas, State of the Art in Evaluation and Control of Steel Cleanliness, *ISIJ International*, 43(3) (2003), 271.
- L. Zhang, W. Pluschkell, B.G. Thomas, Nucleation and Growth of Alumina Inclusions during Steel Deoxidation, 85th Steelmaking Conference, (Mar. 10-13, 2002, Nachville, TN), Vol.85, ISS, Warrendale, PA, 2002, 463.

L: Ladle

- 1) L. Zhang, Mathematical Simulation of Fluid Flow in Gas-Stirred Liquid Systems, *Modelling Simul. Mater. Sci. Eng.*, 8 (2000), 463.
- 2) B. Barber, G. Watson and L. Bowden, Optimum Ladle Design for Heat Retention during Continuous Casting, *Ironmaking and Steelmaking*, 21(2) (1994), 150.

APPENDIX B

B. <u>Detail drawings of bottom tank (2.5mm sheets)</u>

The basic dimensions of the rectangular bottom tank are:

The bottom tank is designed from 2.5mm stainless steel, and consists of 7 pieces of sheet metal welded together using a TIG welding process.

7 pieces of sheet metal:

- belly or base
- top with holes
- side (left)
- side (right with exit hole)
- support and baffle (right)
- support and baffle (identical for middle and left)

The detail drawings (extracted from Solid Edge [60]) are shown in Figures B.1 to B.6. It is interesting to note that the tank sheets are drawn in the folded position using Solid Edge, but can be automatically unfolded using Solid Edge to generate drawings of the flat sheets. The folded open sections are preferred by the laser cutting industry for obvious reasons. Additional stainless steel sections needed to be welded onto the top section after the tank has been welded together. The function of these protruding sections is to facilitate sealing of the wide and narrow mould walls during operation of the water model.

Figure B.1: Detail folded open drawing extracted from Solid Edge: Belly or base

Figure B.2: Detail folded open drawing extracted from Solid Edge: Top

Figure B.3: Detail folded open drawing extracted from Solid Edge: Side, left

Figure B.4: Detail folded open drawing extracted from Solid Edge: Side, right

Figure B.5: Detail folded open drawing extracted from Solid Edge: Support and baffle, right

Figure B.6: Detail folded open drawing extracted from Solid Edge: Support and baffle, middle and left

APPENDIX C

C. Chosen steel sections for frame / structure and accompanying drawings

C.1 Chosen steel sections for frame/structure

The frame was designed to accommodate the following loads:

- mass of the water inside the perspex mould ٠
- mass of the (full with water) top cylindrical tank •
- forces due to the water pressure ($\approx \rho g h$) inside the perspex mould ٠

Member description	Subjected to:	Steel section		
Legs (x4)	Axial load (as a column	Angle section, 50 x 50 (cross		
	member), as well as bending	sectional) x 6 mm (thickness)		
	from the opposing bolt			
	forces)			
Feet (x2)	Bending at bolted sections	Angle section, 50 x 50 x 6		
		mm		
Separator (horizontal)	Bending due to opposing bolt	Square tubing section, 75 x		
sections (x4)	forces and possible frame	75 x 3 mm		
	movement			
Hanging members (x4)	Bending due to opposing bolt	Square tubing, 75 x 75 x 3		
	forces.	mm		
Perspex supporting beams	Bending due to hydrostatic	Angle section, 30 x 30 x 3		
(x4 for both sides)	pressure	mm		
Supporting beams for	Axial and compressive loads	Angle section, 30 x 30 x 3		
torsional stability (x8)		mm		
Support for bottom tank (x2)	Bending due to weight of	Angle section, 50 x 50 x 6		
	filled perspex mould and	mm		
	filled bottom tank			
Support for top tank (x2)	Bending due to weight of top	Angle section, 50 x 50 x 6		
	tank and mass of supply pipe	mm		
Diagonal struts for stiffness	Axial and compressive loads	Angle section, 50 x 50 x 6		
		mm		

Table C.1: Steel sections for water model frame

All the sections were chosen to exhibit a Safety Factor of at least 2 during the maximum loaded cases.

C.2 Detail hand drawings of frame

Figures C.1 to C.3 depict the front, side and top view of the assembled frame respectively.

Figure C.4 shows more detail of the four (identical) hanging sections.

Figure C.1: Water model frame, front view: Detail hand drawing

University of Pretoria etd – De Wet, G J (2005)

Appendix C

Figure C.2: Water model frame, side view: Detail hand drawing

Figure C.3: Water model frame, top view and detail: Detail hand drawing

Figure C.4: Water model frame: detail of hanging sections: Detail hand drawing

APPENDIX D

D. <u>Aluminium 40% scaled SEN: hand drawings for manufacture</u>

Some detail drawings for the Aluminium SEN are presented in Figures D.1 to D.3 below, and the following information will be presented:

- Assembly drawing: full section
- Assembly drawing: side view
- Auxiliary sections and views

Figure D.4 is the detail drawing of the mandrel required to manufacture all three parts of the SEN. The mandrel is the positive geometry of the inside of the SEN, and will be manufactured from copper to be used during the spark erosion technique.

Figure D.5 is a dimensional assembly drawing of the 40% scaled stopper and SEN upper part.

Appendix D

Figure D.1: Aluminium SEN: Assembly drawing: full section

University of Pretoria etd – De Wet, G J (2005)

Figure D.2: Aluminium SEN: Assembly drawing: side view

3 HULPSNITTE EN -MANSIATE

AANSIG L-L :

Figure D.3: Aluminium SEN: Auxiliary sections and views

Figure D.5: Assembly drawing of 40%-scaled stopper and SEN upper part

APPENDIX E

E. <u>Water model construction</u>

E.1 <u>Construction process</u>

The construction of the water model comprised of the following processes (in that particular order):

- Identify and order all loose parts and material
 - Steel for the frame
 - Bolts and nuts
 - o Perspex
 - Pipes, elbows, T-sections, gate valves, reducers, pipe clips, plumber's tape, nipples (male to male BSP pipe sections), and all other small items to insignificant to mention
- Outsource of top tank, bottom tank and Aluminium SEN manufacturing
 - Prepare design drawings for manufacturing of top tank, bottom tank and SEN
 - Requesting quotations, placing the orders and co-ordinating payment of companies
 - Establish completion dates
 - Ensure that outsourced manufacturing quality is sufficient and ensure integration of outsourced components into final water model product
- Frame construction
 - Mark-off using specially designed die for accurate, repeatable marking on angled sections for holes
 - Drill of holes
 - Construction of frame
 - Preliminary fitment of perspex mould to establish position of holes in the hanging beams
 - Manufacturing of extra long bolts, using threaded rods and nuts
 - Paint for aesthetic purposes and to prevent rust

- Perspex mould construction •
 - Prepare drawings for perspex sheet sizes and information for 0 narrow wall cuts
 - Establish a seal mechanism between the narrow walls and wide 0 walls, as well as between the perspex mould and the bottom tank
 - Manufacture narrow walls by bonding 3 perspex sheets (cut to size) together
- Pipes, T-pieces, valves, etc.
 - o Take into account all distances of pipes and T-pieces to ensure location of water model remains in the desired position
 - Ensure all connections are leak-free 0
- Pump installation •
 - The installation of the pump was postponed until high speed tests 0 are desired

E.2 Construction Gantt-chart

Refer to the following page(s) for the Gantt-chart of the construction process of the water model.

Appendix E

			f1	2002, Ha	lf 2	2003, Ha	lf 1	2003, Ha	lf 2	2004, Ha	lf 1	2004, Hal	f 2	2005, Ha
ID	Task Name	Duration	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1
1	Concept design	2 wks		1										
2	Detail design	4 wks												
3	Construction	302 days?							l					
4	Identify all material and loose parts	20 days												
5	Steel for frame	1 wk		Ĺ.										
6	Bolts and nuts	2 days		IL.										
7	Perspex	3 days		II È I										
8	Pipes, elbows, T-sections, gate valves, reducers, pipe clips, plumber's tape, nipples (male to male BSP pipe sections), and all other small items to insignificant to mention	2 wks		Ĩ										
9	Outsourcing of top tank, bottom tank and Aluminium SEN	156 days												
10	Prepare design drawings for manufacturing of top tank, bottom tank and SEN [Sept-Okt]	4 wks												
11	Request quotations	1 wk		l lí										
12	Place orders	1 wk		l É	<u>L</u>									
13	Coordinating payments	4 wks		Î										
14	Ensure quality of outsourced components	1 wk			ľ									
15	Receive Aluminium SEN	1 day			-	Н								
16	Receive top and bottom tank	1 day				L L								
17	Frame design and construction	253 days												
18	Design and manufacture special mark-off die	2 wks		l E										
19	Mark-off	1 wk			_									
20	Cut correct lengths and drill holes	2 wks				<u> </u>								
21	Construction of frame	2 days				I T								
22	Preliminary fitment of perspex sheets	2 days					Ť	<u> </u>						
23	Paint for esthetic purposes and to prevent rust	4 days						Ĭ						
24	Perspex mould construction	5 days?						Ū.						
25	Prepare drawings for perspex sheet sizes and mould walls	2 days						ĥ						
26	Fit bottom, top tanks	1 day?						L L						
27	Establish seal mechanism	1 day						h						
<u> </u>														
	Task	Mil	estone	•			External 1	Fasks						
Project: Date: 20	.Watermodel_Gantt Split	Su	mmary				External N	Vilestone	•					
	Progress	Pro	oject Sum	imary			Deadline		Ϋ́					
				Page 1										

Appendix E

ID Task Name Duration Otr 3 Otr 4 Otr 1 Otr 2 Otr 3 Otr 4 Otr 1 Otr 2 Otr 3 Otr 4 Otr 1 Otr 2 Otr 3 Otr 4 Otr 1 Otr 3 Otr 3 Otr 4 Otr 1 Otr 3 Otr 4 Otr 1 Otr 3 Otr 3 Otr 4 Otr 1 Otr 3 Otr 3 Otr 4 Otr 1 Otr 3 Otr 4				f 1	2002, Half 2	2003, Ha	lf 1	2003, Half 2	2004, Half 1	2004, Half 2	2005, Ha
28 Maturature narrow walls give 1 aly 29 Pipes, Trulees, Vives etc. 5 days 30 Measure pole lengths and wale lengths: location of 3 days 31 Ensure connections are leak-true 2 days 32 Pupp installation 0 days 33 Cancelled 0 days 34 Commissioning 45 sept 6 days 35 Leak-test 1 day 36 Water model test: 2003 (10 - 14 Nov) 5 days 37 Water model test: 757mm (full-scale); Old SEN 25 days 38 Water model test: 1575mm (full-scale); Old SEN 25 days 41 New carbon perspex sheet 120 days 42 Indafi fkow model 120 days 43 Steengthen rolda columns 120 days 44 Alumina SEN mest new design 120 days 45 Water model lest: 1250mm (full-scale); OldNew 5 days 44 Alumina SEN mest new design 10 days 45 Water model lest: 1250mm (full-scale); OldNew 5 days 46 Water model lest: 1250mm (full-scale); OldNew 5 days 47	ID	Task Name	Duration	Qtr 2	Qtr 3 Qtr 4	Qtr 1	Qtr 2	Qtr 3 Qtr 4	Qtr 1 Qtr 2	Qtr 3 Qtr 4	Qtr 1
29 Pipes, Typices, valves etc. 5 days 30 Masare ppie implicit and valve inergitas: location of 3 days 31 Estuarcoonnetications are leak-free 2 days 32 Pump installation 0 days 33 Connetised 0 days 34 Estuarcoonnetications 0 days 35 Leak-test 1 day 36 Presimany water model test 1 day 37 Water model test: 175mm (full-scale); New SEN 2 5 days 38 Water model test: 175mm (full-scale); New SEN 2 5 days 39 Water model test: 175mm (full-scale); New SEN 2 5 days 40 Water model test: 175mm (full-scale); New SEN 2 5 days 41 New carbon persons bet 1 20 days 42 Install few meter 120 days 43 Stronghon critical columns 120 days 44 Auminum SEN insert new design 120 days 44 Water model test: 1250mm (full-scale); OdNew 5 days 44 Water model test: 1250mm (full-scale); OdNew 5 days 47 Water model test: 1250mm (full-scale); OdNew 5 days 48 Split Split Summary 49 Prejects: Tumary External Tasks 5041/200	28	Manufacture narrow walls: glue	1 day								
30 Measure pipe lengths and valve lengths: location of 3 days 31 Ensure connectors are lear-free 2 days 32 Pupp installation 0 days 33 Cancelled 0 days 34 Commissioning 24 Sept 6 days 35 Leak-test 1 day 36 Cancelled 0 days 37 Water model test: 2030 (0 - 14 Nev) 5 days 38 Water model test: 2030 (0 - 14 Nev) 5 days 39 Water model test: 2030 (0 - 14 Nev) 5 days 39 Water model test: 2030 (0 - 14 Nev) 5 days 39 Water model test: 2030 (0 - 14 Nev) 5 days 41 Nev carbon perspex sheet 120 days 42 Install forw mder 120 days 44 Auminum SEN meer thew design 120 days 44 Water model test: 000mm (full-scale); OK/New 5 days 44 Water model test: 000mm (full-scale); OK/New 5 days 47 Water model test: 000mm (full-scale); OK/New 5 days 48 Split Simmary External Tacks External Milestone Deadlin	29	Pipes, T-pieces, valves etc.	5 days								
31 Ensure connections are leak-free 2 days 32 Pump installation 0 days 33 Cancelled 0 days 34 Commissioning 24 Sept 6 days 35 Leak-kest 1 day 36 Proliminary water model test: 1 day 37 Water model test: 10 Sop 38 Water model test: 10 Sop 39 Water model test: 10 Sop 39 Water model test: 10 days 41 New carbon perspex sheet 120 days 42 Install flow meter 120 days 43 Strengthen ortical columns 120 days 44 Auminium SEN insort new design 120 days 45 Water model test: 120 days 46 Water model test: 10 days 47 Water model test: 10 days 48 Strengthen ortical columns 5 days 49 Water model test: 10 days 40 Water model test: 10 days 41 New concloses: 5 days 42 W	30	Measure pipe lengths and valve lengths: location of water model 12 September ope dag	3 days					h h			
32 Pump installation 0 days 33 Cancelled 0 days 34 Commissioning 24 Sept 6 days 35 Leak-lest 1 day 36 Project Water model test: 1076mm (full-scale); Old New 5 days 39 Water model test: 2003 (10 - 14 Nov) 5 days 30 Water model test:: 1076mm (full-scale); Old SEN 2.5 days 40 Water model test:: 1076mm (full-scale); Old SEN 2.5 days 41 New carbon perspex sheet 120 days 42 Install four meter 120 days 43 Strengthen rule test:: 2004 10 days 44 Aluminm SEK install row meter 120 days 45 Water model test:: 000mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 48 Project: Watermodel Lest: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 48 Project: Watermodel Lest: 1250mm (full-scale); Old/New 5 days 49 Project	31	Ensure connections are leak-free	2 days					L L			
33 Cancelled 0 days 34 Commissioning 24 Sept 6 days 35 Leak-ket 1 day 36 Preliminary water model test 1 day 37 Water model test: 1050mm (full-scale); Old SEN 2.5 days 38 Water model test: 1576mm (full-scale); Old SEN 2.5 days 39 Water model test: 1576mm (full-scale); Old SEN 2.5 days 40 Water model test: 1576mm (full-scale); Old SEN 2.5 days 41 New carbon perspex sheet 120 days 42 Install flow meter 120 days 43 Strengthen critical columns 120 days 44 Aluminium SEN insert: new design 120 days 44 Aluminium SEN insert: new design 120 days 47 Water model test: 1260mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 98 Summary Frequencial Task 97 Frequencial Columnary Frequencial Columnary 98 Summary Project Summary Deadline 98 Project Summary Page 2	32	Pump installation	0 days]				0 9/09			
34 Commissioning 24 Sept 6 days 35 Leak-test 1 day 36 Preliminary water model test 1 day 37 Water model tests: 2003 (10 - 14 Nov) 5 days 38 Water model test: 1575mm (full-scale): ON SEN 2.5 days 39 Water model test: 1575mm (full-scale): New SEN 2.5 days 40 Water model test: 1575mm (full-scale): ON SEN 2.5 days 41 New carbop arpszyse sheet 1 20 days 42 Install flow meter 1 20 days 43 Strengthen artical columns 1 20 days 44 Atminum SEN Insert: new design 1 20 days 44 Atminum SEN Insert: new design 1 20 days 45 Water model test: 1250mm (full-scale): Old/New 5 days 47 Water model test: 1250mm (full-scale): Old/New 5 days	33	Cancelled	0 days	1				• 09/09			
35 Leak-test 1 day 36 Preliminary water model test 1 day 37 Water model test: 175mm (tull-scale); Old SEN 2.5 days 39 Water model test: 1757mm (tull-scale); Old SEN 2.5 days 39 Water model test: 1757mm (tull-scale); Old SEN 2.5 days 40 Water model test: 1757mm (tull-scale); Old Auss 120 days 41 New Carbon perspex sheet 120 days 42 install flow meter 120 days 43 Strengthen critical columns 120 days 44 Auminium SEN insert: new design 120 days 45 Water model test: 1060mm (tull-scale); Old/New 5 days 46 Water model test: 1250mm (tull-scale); Old/New 5 days	34	Commissioning 24 Sept	6 days	1							
36 Prelemany water model test: 1 day 37 Water model test: 203 (10 - 14 Nov) 5 days 38 Water model test: 1575mm (full-scale); Old SEN 2.5 days 39 Water model test: 557mm (full-scale); New SEN 2.5 days 40 Water model test: 120 days 42 Install flow meter 120 days 43 Strengthen critical columns 120 days 44 Autinum SEN meter - new design 120 days 45 Water model test: 00 days 46 Water model test: 100 days 47 Water model test: 120 mm (full-scale); Old/New 5 days 47 Water model test: 100 days 48 Split 10 days 49 Water model test: 100 days 40 Project: Water model test: 120 mm (full-scale); Old/New 5 days 1 10 days 47 Water model test: 100 days 48 Split Summary Project: Watermodel, Gantt Split Project: Watermodel, Gantt Split Project Summary Project Summary Project Summary Project Summary	35	Leak-test	1 day	1							
37 Water model test: 2003 (10 - 14 Nov) 5 days 38 Water model test: 1575mm (full-scale); Old SEN 2.5 days 39 Water model test: 1575mm (full-scale); New SEN 2.5 days 40 Water model test: 1575mm (full-scale); Old SEN 120 days 41 New carbon perspex sheet 120 days 42 Install flow meter 120 days 43 Strengthen critical columns 120 days 44 Aluminium SEN insert: new design 120 days 46 Water model test: 1060mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 48 Auminium Scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days Project: Watermodel_Gantt Split Summary External Tasks Project: Watermodel_Gantt Split Summary Project Summary External Tasks Project Summary Project Summary Project Summary Daedline Project Summary	36	Preliminary water model test	1 day								
38 Water model lest: 1575mm (full-scale): Old SEN 2.5 days 39 Water model upst def (Martus Botha) 120 days 40 Water model upst def (Martus Botha) 120 days 41 New carbon perspex sheet 120 days 42 Install flow meler 120 days 43 Strengthen ortical columns 120 days 44 Aluminum SEN Insert: new design 120 days 45 Water model test: 2004 10 days 46 Water model test: 1060mm (full-scale): Old/New 5 days 47 Water model test: 1250mm (full-scale): Old/New 5 days	37	Water model tests: 2003 (10 - 14 Nov)	5 days					Ŭ			
39 Water model test: 1575mm (full-scale); New SEN 2.5 days 40 Water model (Marius Botha) 120 days 41 New carbon perspex sheet 120 days 42 Install flow meter 120 days 43 Strengthen ortical columns 120 days 44 Aluminium SEN insert: new design 120 days 45 Water model test: 2004 10 days 46 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 48 Water model test: 1250mm (full-scale); Old/New 5 days 49 Water model test: 1250mm (full-scale); Old/New 5 days 40 Water model test: 1250mm (full-scale); Old/New 5 days 41 Burges Summary External Tasks Project: Watermodel_Gantt Spit Summary Project Summary Progress Project Summary Project Summary Daedline	38	Water model test: 1575mm (full-scale); Old SEN	2.5 days					ĥ			
40 Water model upgrade (Marius Botha) 120 days 41 New carbon perspex sheet 120 days 42 Install flow meter 120 days 43 Strengthen critical columns 120 days 44 Aluminium SEN insert. new design 120 days 45 Water model tests: 2004 10 days 46 Water model tests: 1060mm (full-scale); Old/New 5 days 47 Water model test: 1020mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days Every constrained and test: 1250mm (full-scale); Old/New 5 days Project: Water model Cantt Task Split Summary Project: Watermodel_Gantt Split Progress Project Summary Project Summary Project Summary Page 2 Page 2	39	Water model test: 1575mm (full-scale); New SEN	2.5 days					Ĭ			
41 New carbon perspex sheet 120 days 42 Install flow meter 120 days 43 Strengthen critical columns 120 days 44 Aluminium SEN insert. new design 120 days 45 Water model test: 2004 10 days 46 Water model test: 0060mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 200mm (full-scale); Old/New 5 days Froject: Watermodel_Gantt Task Milestone Split Summary Project Summary External Tasks Project: Watermodel_Gantt Split Summary Project Summary Project Summary Project Summary Deadline Project Summary	40	Water model upgrade (Marius Botha)	120 days	1							
42 Install flow meter 120 days 43 Strengthen critical columns 120 days 44 Atuminium SEN insert: new design 120 days 45 Water model test: 2004 10 days 46 Water model test: 1060mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days Froject: Watermodel_Gantt Task Milestone Split Summary External Tasks Project: Watermodel_Gantt Split Summary Project Summary Project Summary Deadline	41	New carbon perspex sheet	120 days								
43 Strengthen critical columns 120 days 44 Atuminium SEN insert new design 120 days 45 Water model tests: 2004 100 days 46 Water model tests: 1060mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days Froject: Watermodel_Gantt Task Milestone Split Summary External Tasks Progress Project Summary Deadline Page 2 Page 2	42	Install flow meter	120 days						•		
44 Aluminium SEN insert: new design 120 days 45 Water model tests: 2004 10 days 46 Water model test: 1060mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 48 Milestone External Tasks Project: Watermodel_Gantt Split Summary Progress Project Summary Deadline Progress Project Summary Deadline	43	Strengthen critical columns	120 days	1							
45 Water model tests: 2004 10 days 46 Water model test: 1060mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days Froject: Watermodel_Gantt Task Milestone Project: Watermodel_Gantt Summary External Tasks Project: Watermodel_Gantt Progress Summary Project Summary Project Summary Deadline	44	Aluminium SEN insert: new design	120 days	1					•		
46 Water model test: 1060mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 47 Water model test: 1250mm (full-scale); Old/New 5 days 48 Water model test: 1250mm (full-scale); Old/New 5 days 49 Water model test: 1250mm (full-scale); Old/New 5 days 49 Water model test: 1250mm (full-scale); Old/New 5 days 40 Water model test: 1250mm (full-scale); Old/New 5 days 41 Water model test: 1250mm (full-scale); Old/New 5 days 42 Task External Tasks 5 Split Summary External Milestone 45 Progress Project Summary Deadline 46 Page 2 Page 2 Page 2	45	Water model tests: 2004	10 days								
47 Water model test: 1250mm (full-scale); Old/New 5 days Froject: Watermodel_Gantt Task Split Milestone Project: Watermodel_Gantt Summary Project: Watermodel_Gantt Summary Project: Watermodel_Gantt Progress	46	Water model test: 1060mm (full-scale); Old/New	5 days	1						L L	
Project: Watermodel_Gantt Task Date: 2004/12/07 Milestone Project: Watermodel_Gantt Split Project: Watermodel_Gantt Summary Project: Summary Deadline	47	Water model test: 1250mm (full-scale); Old/New	5 days	1						T I	
Task Milestone External Tasks Date: 2004/12/07 Split Summary External Milestone Progress Project Summary Deadline											
Project: Watermodel_Gantt Date: 2004/12/07 Split Summary External Milestone Progress Project Summary Deadline		Task	Mi	lestone	•		External ⁻	Tasks			
Progress Project Summary Deadline Project Summary Page 2	Project:	Watermodel_Gantt Split	Su	mmarv	Ť		External	Vilestone 📥			
Page 2	Date: 2	Progress	Pr	oject Sum	mary	-	Deadline	Ţ			
					Page 2						

APPENDIX F

F. <u>Water model Results</u>

F.1 <u>General</u>

Two widths will be tested for both SEN designs, each at two different flow speeds (equivalent to casting speeds) and two different submergence depths:

- Widths: 1060mm and 1250mm
- Submergence depths: 80mm and 150mm
- Water model flow rates satisfying Fr-similarity for a casting speed of 1.0 m/min
 - \circ 1060mm width: 1.28 m³/h
 - \circ 1250mm width: 1.52 m³/h

F.2 <u>Visualisation methods</u>

Although the flow field is assumed to be steady (does not change with passing time), a dye injected into the top of the SEN will highlight the steady flow patterns. However, as the jet mixes with the water in the mould cavity, the jet becomes less visible until the entire mould cavity is the same colour. The double barrel and upward swirling of the jets can also be visualised.

In order to illustrate the three-dimensional flow field, the results will be shown as a series of 4 "snapshots", exactly as the water model test would unfold before an observer.

F.3 <u>Results</u>

The water model results of the experiments (listed in Table F.1) will be presented in Figures F.1 to F15. All tests were performed for casting speeds of 1.0m/min and 1.1 m/min (satisfying Fr-similarity). However, the results for the two different flow rates were almost identical (as shown in Figures F.1 and F.2). Consequently, only the results of the 1.0 m/min casting speed tests are displayed in this Appendix.

Figure	SEN	Mould	Submergence	Q _{model} ¹	V _{cast}
F.	design	Width	depth	(Fr-	(full-scale)
		(full-scale)	(full-scale)	similarity)	[m/min]
		[mm]	[mm]	[m ³ /h]	
1	Old	1060	150	1.42	1.1
2	Old	1060	150	1.28	1.0
3	New	1060	150	1.28	1.0
4	Old	1060	80	1.28	1.0
5	New	1060	80	1.28	1.0
6	Old	1250	150	1.52	1.0
7	New	1250	150	1.52	1.0
8	Old	1250	80	1.52	1.0
9	New	1250	80	1.52	1.0

Table F.1: List of water model experiments and reference Figure number

¹ Refer to Chapter 3 for derivation of **eq 3-7** used to calculate the flow rate of the model, satisfying Fr-similarity.

Figure F.1: Old SEN (1060mm width, 150mm submergence depth, 1.1 m/min full-scale cast speed) snapshots

Old SEN, 1060 mm width, 150mm submergence depth, 1.0 m/min full-scale cast speed

Figure F.2: Old SEN (1060mm width, 150mm submergence depth, 1.0 m/min full-scale cast speed) snapshots

Figure F.3: New SEN (1060mm width, 150mm submergence depth, 1.0 m/min full-scale cast speed) snapshots

Figure F.4: Old SEN (1060mm width, 80mm submergence depth, 1.0 m/min full-scale cast speed) snapshots

Figure F.5: New SEN (1060mm width, 80mm submergence depth, 1.0 m/min full-scale cast speed) snapshots

Figure F.6: Old SEN (1250mm width, 150mm submergence depth, 1.0 m/min full-scale cast speed) snapshots

New SEN, 1250 mm width, 150mm submergence depth, 1.0 m/min full-scale cast speed

Figure F.7: New SEN (1250mm width, 150mm submergence depth, 1.0 m/min full-scale cast speed) snapshots

Figure F.8: Old SEN (1250mm width, 80mm submergence depth, 1.0 m/min full-scale cast speed)

snapshots

 New SEN, 1250 mm width, 80mm submergence depth, 1.0 m/min full-scale cast speed

 Image: Constraint of the second second

Figure F.9: New SEN (1250mm width, 80mm submergence depth, 1.0 m/min full-scale cast speed) snapshots

APPENDIX G

G. <u>Columbus Stainless base case SEN design: drawings</u>

G.1 Base case SEN design: general

Although the base case SEN design (also referred to as the Old SEN) is described in the main text, the basic parameters and description will be repeated for the sake of completeness.

Typical old SEN parameters:

- SEN total length: 1100 mm
- Shape: morphs from circular cross section (top) to a rectangular cross section (bottom)
- Design type: Bifurcated ports without a well
- Port height: 70 mm
- Port width: 45 mm
- Port radii: 35mm (all radii on ports)
- Port angle: 15 ° upwards
- Typical submergence depths: 80 mm 200mm (defined from the top of the port to the meniscus surface)

G.2 Base case SEN: drawings (copyright)

Refer to Figure G.1 below for the drawings of the old SEN of Columbus Stainless, Middelburg, South Africa. University of Pretoria etd – De Wet, G J (2005)

APPENDICES

Appendix G

Figure G.1: Old SEN Columbus Stainless: Official Drawings (copyright Vesuvius)

APPENDIX H

H. <u>Columbus Stainless new SEN design: drawings</u>

H.1 <u>New SEN design: general</u>

As the new SEN design is mostly used for comparisons in an effort to optimise the CFD model for later optimisation, the details of this design will only be presented in this Appendix.

Columbus Stainless made use on this design type a few months after this study commenced with their old SEN design as the original base case. The main difference between the new SEN and the previous SEN (base case for Chapter 4) is that a well (40mm depth) is made provision for, at the cost of smaller port heights (only 60mm instead of 70mm). The angle of both bifurcated nozzle ports remain at an angle of 15° upwards.

The rest of the SEN design is identical to the old SEN, as can be verified by comparing the drawings of the new design (Figure H.1 below) with that of the old base case SEN (Figure G.1 in Appendix G).

The effect of the perceived small changes (well added and port height reduced) made to the old SEN is quite extensive, as pointed out in the main text and as depicted in Appendix F (water model experiments). This fact collaborates with a main assumption that justifies this study: small, inexpensive changes on the SEN can influence the flow pattern in the mould and resultant desired steel quality. The challenge is to quantify these changes (to design variables) in an effort to find an optimum (or optima) design(s).

H.2 Base case SEN: drawings (copyright)

Refer to Figure H.1 below for the drawings of the new¹ SEN of Columbus Stainless, Middelburg, South Africa.

¹ This is the SEN currently (2003) in use at Columbus Stainless, Middelburg, South Africa.

University of Pretoria etd – De Wet, G J (2005)

Appendix H

Figure H.1: New SEN Columbus Stainless: Official Drawings (copyright Vesuvius)

APPENDIX I

I. <u>Comparison: meniscus boundary condition: Free surface vs.</u> <u>slip wall (zero-shear stress wall)</u>

The comparison between the slip wall and free surface were conducted to ensure that the flow (of the steel or water) inside the mould is similar, irrespective of the type of boundary condition selected. The comparison in this Appendix is based on the base case (old SEN) and the new SEN.

The Volume of Fluid (VOF) method in FLUENT is used to evaluate a typical twophase flow. The physical volume above the meniscus (or the free surface between the two phases) must be sufficiently large to ensure that a free atmosphere is simulated (refer to Figures I.1 and I.2)

The details of the comparisons are presented in Table I.1.

Table I.1: Details of comparison between the two boundary condition options (slip wall vs. free

Figure I.	SEN design	Mould Width [mm]	Submergence depth	Q _{model} ¹ (Fr-similarity)	v _{cast} (full-scale)
			(full-scale) [mm]	[m ³ /h]	[m/min]
1	Old	1575	200	1.72	1.0
2	New	1575	200	1.72	1.0

surface)

¹ Refer to Chapter 3 for derivation of **[eq 3-7]** used to calculate the flow rate of the model, satisfying Fr-similarity.

Figure I.1: 2D CFD-model meniscus boundary condition comparison: base case (**Old SEN**) (comparing velocity contours of magnitude)

Figure I.2: CFD-model (2D) meniscus boundary condition comparison: base case (New SEN) (comparing velocity contours of magnitude)

Discussion:

As can be observed in the figures above, the difference between the flow patterns in the 2D CFD models using the different boundary conditions for the meniscus is remarkably negligible. The choice between a slip wall and free surface boundary condition is also assumed to have negligible influence on 3D CFD modelling.

The CFD models in both Figures I.1 and I.2 above are momentum-only models, and subsequently imitate the physical water model experiments (water as fluid, no temperature effects). When temperature effects have to be included in the CFD models (as have been later in Chapter 4 and throughout Chapter 5), a heat extraction flux has to be included in the boundary condition of the meniscus surface. Using a slip (or rather zero-shear stress) wall, a heat extraction heat flux can easily be added to this wall as a boundary condition. Currently, using the VOF-method, it is very difficult to obtain the same result, as a heat flux need to be specified on top of the air layer (refer to Figures I.1 and I.2). Subsequently, the exact heat flux over the free surface (interface between phase 1 and phase 2) cannot be determined exactly.

However, as mentioned in the main text, when meniscus behaviour becomes important for exact meniscus layer simulation, the free surface VOF-method necessarily needs to be employed.

Nevertheless, for the purposes of this study (including optimisation in Chapter 5), the meniscus boundary condition will be a zero-shear stress wall. The heat flux through the meniscus slip wall will be added when necessary (when plant conditions and circumstances are modelled using the energy equation in FLUENT).

APPENDIX J

J. <u>GAMBIT script file (for automatic geometry and mesh</u> <u>rendering)</u>

J.1 <u>General</u>

In order for one to later edit the GAMBIT script file, it is customary to make notes in the script file, which must obviously be ignored by the GAMBIT interpreter. Thus, all text in a line following a forward slash or "/", are notes and will be ignored.

Exceptions and parameterisation:

The script file (below in section J.2) may seem excessively long for creating a mere 2D geometry and mesh.

The reason for this is that certain exceptions may occur whenever the port angle varies from positive to negative (for example):

- different equations might be necessary
- different reference points or vertices are necessary to compute next vertex positions

Categories in typical GAMBIT script file

The typical GAMBIT script file usually contains the following tasks in this specific order (exactly the same order in which a "manual" geometry and mesh would have been generated using GAMBIT's GUI):

- 1. List all parameters (and dependent¹ variables)
- 2. Build model
 - 2.1 Create outline of geometry based on given parameters

¹ Dependent variables are variables that need to be defined as their values are determined by the chosen parameters or design variables.

2.2 Divide geometry into mesh-able areas and name areas (or volumes with a 3D model)

- 3. Mesh the geometry
- 4. Define and name all boundary surfaces

Refer to section J.2 on the following page for the GAMBIT script file used to generate 2D SEN and mould models (half models due to symmetry assumption).

J.2 GAMBIT script file

The script file was used to create the geometry and mesh for 2D half models, similar to Figure 5.1 (Chapter 5).

/ Journal File for GAMBIT 2.0.4 :paramsen2d2.jou - vanaf paramsen2d1.jou / Nuwe leer vir 2d parametrisering /1 Spesifisering en Beskrywing van veranderlikes / 11 Parameters (wat verander kan word) / \$x1 = hoek van SENpoort met horisontaal in grade / \$x3 = wydte van gietstuk in mm / \$x4 = hoogte van poort in die middelsnit van poort (LW vir eers reeds h2d)(loodreg op poort) / \$x6 = lengte van gietstuk in mm / \$x7 = meniskusposisie tov bo-punt van die poort (dus ondergedompelde diepte) in mm [\$x7 = 120 mm vir base case]/ x8 = diepte van versinking (LW: indien x8 = 0, dan verskil program later...) / \$x9 = radius van poort - LW word eers later in aanmerking geneem / \$x20 = h3d (loodreg) in mm (\$x4 of h2d word later... dan hiervanaf bereken) / \$x21 = wydte van poort in mm (\$x4 of h2d word later... dan hiervanaf bereken) x1 = 15x3 = 1575/ \$x4 x6 = 3000x7 = 120x8 = 0\$x9 = 35x20 = 70x21 = 45/ 12 Berekening van h2d of x4/ Laat \$x40 die area wees onder sirel vanaf 0 tot halfwydte van die poort / \$x41 = halfwydte / Laat \$x42 die gem hoogte wees / dan is hlaer = radius - hgem / en dus h2d = h3d - 2*hlaer / inisialiseer eers x40 = 0x41 = 0 $x_{42} = 0$ x41 = x21/2\$x40 = ((\$x9*\$x9)/2)*((DEG2RAD*(asin(\$x41/\$x9))+(\$x41/(\$x9*\$x9))*(sqrt((\$x9*\$x9)-(\$x41*\$x41)))) - 0) x42 = x40/(x41-0)x4 = x20 - 2*(x9 - x42)/ 13 Veranderlikes om bewerkings te verrig (word in GAMBIT bereken) / \$x2 = meniskusafstand (y) vanaf globale oorsprong (funksie van x1 en x4 en x8) word self bereken / \$x5 = poortas afstand van onderkant van SEN af in mm (funksie van x1, x4 en x8) word self bereken LW: indien x8>0, is die poortas nie meer relevant nie: bereken direk dy(A1-A2) = x5 / \$x10 = veranderlike gebruik om pt A1 te skep / \$x11 = veranderlike gebruik om pt A2 te skep / \$x12 = veranderlike gebruik om pt A3 te skep

Appendix J

D. APPENDICES

/ \$x13 = veranderlike gebruik om pt A4 te skep / x14 = veranderlike gebruik om pt A5 te skep (as x8 > 0) / \$x15, 16 = veranderlike gebruik om E1 en E2 te bereken / x30 = veranderlike gebruik om koordinate aan te dui en klein berekeninkies te voltooi / \$x50, 51, 52 = veranderlikes gebruik om F1, F3 en F4 te bereken / 13 Inisialiseer alle berekeningsveranderlikes [is dit nodig?] \$x10 = 0x11 = 0x12 = 0\$x13 = 0\$x14 = 0\$x15 = 0\$x16 = 0x30 = 0/2 Begin van modelbou / 21 Vaste punte (irrelevant van veranderlikes) vertex create "C1" coordinates 0 0 0 vertex create "C2" coordinates 0 395 0 vertex create "C3" coordinates 0 435 0 vertex create "C4" coordinates 55 435 0 vertex create "C5" coordinates 35 395 0 vertex create "C6" coordinates 34 0 0 vertex create "C7" coordinates 0 -530 0 vertex create "C8" coordinates 32.5 -530 0 vertex cmove "C5" multiple 1 offset 50 0 0 vertex modify "vertex.9" label "T1" edge create "C45" center2points "T1" "C5" "C4" minarc arc vertex delete "T1" vertex create "C9" coordinates 0 -665 0 vertex create "C10" coordinates 48.5 -665 0 edge create "C34" straight "C3" "C4" edge create "C23" straight "C3" "C2" edge create "C12" straight "C1" "C2" edge create "C56" straight "C5" "C6" edge create "C68" straight "C6" "C8" edge create "C78" straight "C8" "C7" edge create "C17" straight "C1" "C7" edge create "C16" straight "C1" "C6" edge create "C25" straight "C2" "C5" / Van hier af sal die joernaalleer verskil / AFDELING 1 / Geen insinking: dus x8 = 0 - onthou else aan die einde en endif aan heel einde IF COND (\$x8 .EQ. 0) / 22 Skep van poortpunte A1 tot A4 en verbinding van pte / \$x5 = poortas van onder af in mm - word vervolgens bereken / As hoek 0 is, maak effense positiewe hoek anders faal jou-leer IF COND (\$x1 .EQ. 0) x1 = 0.1ENDIF / As hoek positief is, IF COND (\$x1 .GT. 0) \$x5 = 17.00446417 + (0.5*\$x4)/(cos(\$x1)) / As hoek negatief is ELSE x5 = 17.00446417 + (0.5*\$x4) / (cos(\$x1)) + 48.5*tan(-\$x1)ENDIF $x10 = x5 - (0.5 + x4) / (\cos(x1))$ vertex cmove "C9" multiple 1 offset 0 \$x10 0

D. APPENDICES

Appendix J

vertex modify "vertex.11" label "A1" $x11 = 48.5 \tan(x1)$ vertex cmove "A1" multiple 1 offset 48.5 \$x11 0 vertex modify "vertex.12" label "A2" x12 = x4/(cos(x1))vertex cmove "A2" multiple 1 offset 0 \$x12 0 vertex modify "vertex.13" label "A3" $x13 = 16 \tan(x1)$ vertex cmove "A3" multiple 1 offset -16 -\$x13 0 vertex modify "vertex.14" label "A4" / LW: as x1 positief is, sal x13 positief wees: moet dus afgetrek word en vice versa /verbind nou die punte edge create "A1C7" straight "A1" "C7" edge create "C8A4" straight "C8" "A4" edge create "A43" straight "A4" "A3" edge create "A32" straight "A3" "A2" / edge create "A21" straight "A2" "A1" edge create "A2C10" straight "A2" "C10" edge create "C109" straight "C10" "C9" / 23 Skep van punte B1 tot B4 / Berekening van meniskushoogte tov oorsprong afhangend of die hoek x1 positief of negatief is IF COND (\$x1 .GT. 0) $x^2 = 17.00446417 + x^4/\cos(x^1) + 48.5\tan(x^1) + x^7 - 665$ ELSE x2 = 17.00446417 + x4/cos(x1) + x7 - 665ENDIF vertex create "B1" coordinates 48.745265 \$x2 0 x30 = 0.5 x3vertex create "B2" coordinates \$x30 \$x2 0 vertex create "B3" coordinates \$x30 -900 0 vertex create "B4" coordinates 0 -900 0 / 24 Skep van punt D3 vertex create "D3" coordinates 0 -765 0 / 25 Skep van punte E1 tot E4 /\$x15 is die globale y-waarde van pt E1 x15 = x2 - 700vertex create "E1" coordinates 0 \$x15 0 vertex create "E2" coordinates \$x30 \$x15 0 x16 = x15 - (x6 - 700)vertex create "E3" coordinates \$x30 \$x16 0 vertex create "E4" coordinates 0 \$x16 0 / 26 Skep van punte F1 tot F4 vertex create "F1" coordinates \$x30 -765 0 vertex create "F2" coordinates \$x30 -665 0 /\$x50 is x-afstand van pt A2,A3 na pt F3,F4 x50 = x30 - 48.5vertex cmove "A2" multiple 1 offset \$x50 0 0 vertex modify "vertex.28" label "F3" vertex cmove "A3" multiple 1 offset \$x50 0 0 vertex modify "vertex.29" label "F4" / 27 Skep pt G1 vir ekstra blok in SENpoortvlak $x13 = 16 \tan(x1)$ vertex cmove "A2" multiple 1 offset -16 -\$x13 0 vertex modify "vertex.30" label "G1" / 27 Verbind pte A, B D en E edge create "A3B1" straight "A3" "B1" edge create "B12" straight "B1" "B2" edge create "B2F4" straight "B2" "F4" edge create "A3F4" straight "A3" "F4"

```
D. APPENDICES
```

Appendix J

edge create "F43" straight "F4" "F3" edge create "A2F3" straight "A2" "F3" edge create "F32" straight "F3" "F2" edge create "C10F2" straight "C10" "F2" edge create "F21" straight "F2" "F1" edge create "D3F1" straight "D3" "F1" edge create "F1B3" straight "F1" "B3" edge create "B34" straight "B3" "B4" edge create "B4D3" straight "B4" "D3" edge create "D3C9" straight "D3" "C9" edge create "B3E2" straight "B3" "E2" edge create "B4E1" straight "B4" "E1" edge create "E12" straight "E1" "E2" edge create "E23" straight "E2" "E3" edge create "E34" straight "E3" "E4" edge create "E14" straight "E1" "E4" edge create "A4G1" straight "A4" "G1" edge create "A1G1" straight "A1" "G1" edge create "G1A2" straight "G1" "A2" /3 Skep van vlakke face create "tuit" wireframe "C34" "C45" "C25" "C23" face create "rgtskag" wireframe "C25" "C56" "C16" "C12" face create "morfdeel" wireframe "C16" "C68" "C78" "C17" face create "SENpoortLK" wireframe "C78" "C8A4" "A4G1" "A1G1" "A1C7" face create "SENpoortRK" wireframe "A43" "A32" "G1A2" "A4G1" face create "jetvol1" wireframe "A3B1" "B12" "B2F4" "A3F4' face create "jetvol2" wireframe "A3F4" "F43" "A2F3" "A32" face create "jetvol3" wireframe "F32" "C10F2" "A2C10" "A2F3" face create "gietstuk1" wireframe "C10F2" "F21" "D3F1" "D3C9" "C109" face create "gietstuk2" wireframe "D3F1" "F1B3" "B34" "B4D3" face create "gietstuk3" wireframe "B34" "B3E2" "E12" "B4E1" face create "ondergietstuk" wireframe "E12" "E23" "E34" "E14" /4 Meshing solver select "FLUENT 5/6" / 41 Pas vorm-funksie toe op meshvol sfunction create source edges "A32" startsize 4 growthrate 1.1 distance 150 \backslash sizelimit 10 attachfaces "meshvol" fixed / 42 Mesh alles behalwe ondergietstuk in onderstaande spesifieke volgorde face mesh "SENpoortRK" map size 5 /maak "A3F4" in size 15 inkremente /maak "A3B1" "C10A2" en "D3C9" in size 5 inkremente face mesh "jetvolume2" submap size 15 face mesh "jetvolume1" submap size 15 face mesh "jetvolume3" submap size 15 /maak "D3F1" in size 15 inkremente face mesh "gietstuk2" submap size 15 face mesh "gietstuk1" submap size 15 face mesh "gietstuk3" submap size 15 face mesh "rgtskag" map size 5 face mesh "morfdeel" map size 5 face mesh "tuit" map size 5 face mesh "SENpoortLK" map size 5 / 43 Mesh nou ondergietstuk met uitrekfunksie edge picklink "E23" edge mesh "E23" firstlength ratio1 15 size 25 edge picklink "E14" edge mesh "E14" firstlength ratio1 15 size 25 face mesh "ondergietstuk" map size 15

```
D. APPENDICES
```

Appendix J

/5 RVW vir FLUENT

```
physics create "SENinlaat" btype "VELOCITY INLET" edge "C34"
physics create "gietstuk uitlaat" btype "PRESSURE OUTLET" edge "E34"
physics create "SENmuur_buite" btype "WALL" edge "C45" "C56" "C68"
physics create "SENmuur_binne" btype "WALL" edge "A3B1" "A2C10" "C109"
physics create "SENpoortmuur_binne" btype "WALL" edge "C8A4" "A43" "G1A2" "A1G1"
physics create "gietstukmuur_nou" btype "WALL" edge "B2F4" "F43" "F32" "F21" "F1B3"
"B3E2"
physics create "ondermould nou" btype "WALL" edge "E23"
physics create "simmetrie_nou" btype "SYMMETRY" edge "C23" "C12" \
"C17" "A1C7" "D3C9" "B4D3" "B4E1" "E14"
physics create "meniskusvlak" btype "WALL" edge "B12"
physics create "meshvolvlak1" btype "INTERIOR" edge "A3F4"
physics create "meshvolvlak2" btype "INTERIOR" edge "A2F3"
physics create "binnemould_vlak" btype "INTERIOR" edge "B34"
physics create "ondermould vlak" btype "INTERIOR" edge "E12"
physics create "SENpoortuitlaat" btype "INTERIOR" edge "A32"
physics create "ondertuit_vlak" btype "INTERIOR" edge "C25"
physics create "onderrgtskag_vlak" btype "INTERIOR" edge "C16"
physics create "ondermorfdeel_vlak" btype "INTERIOR" edge "C78"
11/11
/AFDELING 2
/ Insinking vind wel plaas: Dus x8 > 0
/ Optimering randvoorwaardes
/ LW: As x1 > 0 deg; moet x8 > 32.5*tan(x1)
             As x1 < 0 deg; moet x8 > 16*tan(-x1)
ELSE
/ 22 Skep van poortpunte A1 tot A6 en verbinding van pte
/ x5 = dy van A1 na A2 in mm - word vervolgens bereken
/ As hoek 0 is, maak effense positiewe hoek anders faal jou-leer
IF COND ($x1 .EQ. 0)
x1 = 0.1
ENDIF
x5 = 15 + x8 + 16 \tan(x1)
vertex cmove "C9" multiple 1 offset 0 15 0
vertex modify "vertex.11" label "A1"
vertex cmove "C10" multiple 1 offset 0 $x5 0
vertex modify "vertex.12" label "A2"
\frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} 
vertex cmove "A2" multiple 1 offset 0 $x12 0
vertex modify "vertex.13" label "A3"
x13 = 16 \tan(x1)
vertex cmove "A3" multiple 1 offset -16 -$x13 0
vertex modify "vertex.14" label "A4"
/ LW: as x1 positief is, sal x13 positief wees: moet dus afgetrek word en vice versa
vertex cmove "A1" multiple 1 offset 32.5 0 0
vertex modify "vertex.15" label "A5"
vertex cmove "A5" multiple 1 offset 0 $x8 0
vertex modify "vertex.16" label "A6"
/verbind nou die punte
edge create "A1C7" straight "A1" "C7"
edge create "C8A4" straight "C8" "A4"
edge create "A43" straight "A4" "A3"
edge create "A32" straight "A3" "A2"
edge create "A26" straight "A2" "A6"
edge create "A65" straight "A6" "A5"
edge create "A51" straight "A5" "A1"
edge create "A46" straight "A4" "A6"
edge create "A2C10" straight "A2" "C10"
edge create "C109" straight "C10" "C9"
```

D. APPENDICES

Appendix J

/ 23 Skep van punte B1 tot B4

/ Berekening van meniskushoogte tov oorsprong ongeag of die hoek x1 positief of negatief is $x^2 = 15 + x^8 + 16 \tan(x^1) + x^4/\cos(x^1) + x^7 - 665$ vertex create "B1" coordinates 48.745265 \$x2 0 x30 = 0.5 x3vertex create "B2" coordinates \$x30 \$x2 0 vertex create "B3" coordinates \$x30 -900 0 vertex create "B4" coordinates 0 -900 0 / 24 Skep van punte D3 vertex create "D3" coordinates 0 -765 0 / 25 Skep van punte E1 tot E4 / \$x15 is die globale y-waarde van pt E1 x15 = x2 - 700vertex create "E1" coordinates 0 \$x15 0 vertex create "E2" coordinates \$x30 \$x15 0 x16 = x15 - (x6 - 700)vertex create "E3" coordinates \$x30 \$x16 0 vertex create "E4" coordinates 0 \$x16 0 / 26 Skep van punte F1 tot F4 vertex create "F1" coordinates \$x30 -765 0 vertex create "F2" coordinates \$x30 -665 0 /\$x50 is x-afstand van pt A2,A3 na pt F3,F4 x50 = x30 - 48.5vertex cmove "A2" multiple 1 offset \$x50 0 0 vertex modify "vertex.30" label "F3" vertex cmove "A3" multiple 1 offset \$x50 0 0 vertex modify "vertex.31" label "F4" / 27 Verbind pte A, B D en E edge create "A3B1" straight "A3" "B1" edge create "B12" straight "B1" "B2" edge create "B2F4" straight "B2" "F4" edge create "A3F4" straight "A3" "F4" edge create "F43" straight "F4" "F3" edge create "A2F3" straight "A2" "F3" edge create "F32" straight "F3" "F2" edge create "C10F2" straight "C10" "F2" edge create "F21" straight "F2" "F1" edge create "D3F1" straight "D3" "F1" edge create "F1B3" straight "F1" "B3" edge create "B34" straight "B3" "B4" edge create "B4D3" straight "B4" "D3" edge create "D3C9" straight "D3" "C9" edge create "B3E2" straight "B3" "E2" edge create "B4E1" straight "B4" "E1" edge create "E12" straight "E1" "E2" edge create "E23" straight "E2" "E3" edge create "E34" straight "E3" "E4" edge create "E14" straight "E1" "E4" /3 Skep van vlakke face create "tuit" wireframe "C34" "C45" "C25" "C23" face create "rgtskag" wireframe "C25" "C56" "C16" "C12"
face create "morfdeel" wireframe "C16" "C68" "C78" "C17" face create "SENpoortLK" wireframe "C78" "C8A4" "A46" "A65" "A51" "A1C7" face create "SENpoortRK" wireframe "A43" "A32" "A26" "A46" face create "jetvol1" wireframe "A3B1" "B12" "B2F4" "A3F4"

Appendix J

D. APPENDICES

face create "jetvol2" wireframe "A3F4" "F43" "A2F3" "A32" face create "jetvol3" wireframe "F32" "C10F2" "A2C10" "A2F3" face create "gietstuk1" wireframe "C10F2" "F21" "D3F1" "D3C9" "C109" face create "gietstuk2" wireframe "D3F1" "F1B3" "B34" "B4D3" face create "gietstuk3" wireframe "B34" "B3E2" "E12" "B4E1" face create "ondergietstuk" wireframe "E12" "E23" "E34" "E14" /4 Meshing solver select "FLUENT 5/6" face mesh "SENpoortRK" map size 5 /maak "A3F4" in size 15 inkremente /maak "A3B1" "C10A2" en "D3C9" in size 5 inkremente face mesh "jetvolume2" submap size 15 face mesh "jetvolume1" submap size 15 face mesh "jetvolume1" submap size 15 face mesh "jetvolume3" submap size 15 /maak "D3F1" in size 15 inkremente face mesh "gietstuk2" submap size 15 face mesh "gietstuk1" submap size 15 face mesh "gietstuk3" submap size 15 face mesh "rgtskag" map size 5 face mesh "morfdeel" map size 5 face mesh "tuit" map size 5 face mesh "SENpoortLK" map size 5 / 43 Mesh nou ondergietstuk met uitrekfunksie edge picklink "E23" edge mesh "E23" firstlength ratio1 15 size 25 edge modify "E41" backward edge picklink "E41" edge mesh "E41" firstlength ratio1 15 size 25 face mesh "ondergietstuk" map size 15 /5 RVW vir FLUENT physics create "SENinlaat" btype "VELOCITY INLET" edge "C34" physics create "gietstuk uitlaat" btype "PRESSURE OUTLET" edge "E34" physics create "SENmuur_buite" btype "WALL" edge "C45" "C56" "C68" physics create "SENmuur_binne" btype "WALL" edge "A3B1" "A2C10" "C109" physics create "SENpoortmuur_binne" btype "WALL" edge "C8A4" "A43" "A26" "A65" "A51" physics create "gietstukmuur_nou" btype "WALL" edge "B23" "B3E2" physics create "ondermould_nou" btype "WALL" edge "E23" physics create "simmetrie_nou" btype "SYMMETRY" edge "C23" "C12" \ "C17" "A1C7" "D3C9" "B4D3" "B4E1" "E41" physics create "meniskusvlak" btype "WALL" edge "B1D1" "D1B2" physics create "meshvolvlak1" btype "INTERIOR" edge "D12" physics create "meshvolvlak2" btype "INTERIOR" edge "D23" physics create "binnemould_vlak" btype "INTERIOR" edge "B34" physics create "ondermould_vlak" btype "INTERIOR" edge "E12" physics create "SENpoortuitlaat" btype "INTERIOR" edge "A32" physics create "ondertuit vlak" btype "INTERIOR" edge "C25" physics create "onderrgtskag_vlak" btype "INTERIOR" edge "C16" physics create "ondermorfdeel_vlak" btype "INTERIOR" edge "C78" ENDIF / einde van groot IF-stellling, nl die x8 > 0 of x8 = 0

APPENDIX K

K. FLUENT script file (for set-up and run)

K.1 <u>General</u>

Unlike the GAMBIT script files, the FLUENT commands are more explanatory; consequently less notes need to be made by the user. However, notes can be made by inserting an exclamation mark or "!" in the beginning of the line – the line will be ignored.

As explained in Chapter 5, the Optimiser (LS-OPT) acts as coordinator for the optimisation process. Consequently, all values indicated between double greater than – smaller than signs ("<<value>>") are controlled by LS-OPT. The first example in the FLUENT script file in section K.2, is <<inlaatsnelheid>>, which is the inlet velocity specified by LS-OPT, as the inlet velocity is computed from the cast speed in the LS-OPT com-file (refer to Appendix L).

Tasks to be performed by typical FLUENT script file:

The FLUENT script file is used to perform the following tasks (in that specific order):

- 1. Set-up
 - Import mesh file from GAMBIT
 - Test mesh file for integrity
 - Define models
 - energy model on/off
 - turbulence model and accompanying settings
 - Define materials and material properties
 - Define operating conditions
 - Define all boundary conditions (and insert values)
 - Inlet: velocity inlet

- Meniscus: zero shear stress wall
- Outlet: pressure outlet
- Mould walls
- Symmetry faces
- Define and set-up monitors
 - E.g.: Maximum velocity magnitude on meniscus: record for each iteration. Specify files to write measurements to, etc.
- Initialise solution
- Ensure correct discretisation settings for momentum, pressure and energy
- 2. Run (solution procedure)
 - Set residual monitors and convergence criteria
 - Ensure discretisation schemes for pressure, momentum and turbulence model (k and ε in this case) is correct
 - Run procedure:
 - Set number of iterations
 - After each set of iterations, apply grid adaption to eradicate mass imbalances and ensure correct y⁺ settings (refer to Chapter 4, section 4.4.3, for details)
 - Switch from first order discretisation to second order when sufficient initial convergence has been achieved
 - Adjust under- and over-relaxation factors according to predetermined solution procedure

Refer to section K.2 on the following page for the FLUENT script file, which performs the functions described above.

Appendix K

K.2 <u>FLUENT script file</u>

!echo Gestadigde toestand: Opstelling - slegs momentum met moving walls: weergawe 2002-12-05 !echo LW Wees in regte directory: LW: vir pressure oulet, nie outflow: !echo LW vir LSOPT met impakpt-grens asook turb meniskus uitvoer en k e meniskus uitvoer vir check !echo Modifikasies Ken Craig !echo Sit energievergelyking by met temperatuurrandwaardes en meniskus temp en snelheid monitor !echo Verhoog iterasies vir konvergensie van maks TKE !echo Skryf meniskus temperatuur uit vir onttrekking van minimum waarde deur cat !echo Skryf meniskus snelheid uit vir onttrekking van maksimum, negatief, waarde deur cat file/read-case 2dsen mesh.msh !echo 1 Grid grid/check grid/scale 0.001 0.001 define/models/energy yes no no no yes define/units temperature c !echo 2 Definieer modelle define/models/viscous/ke-realizable yes !echo 3 Definieer materiaal define/materials/copy/fluid water-liquid define/materials/change-create water-liquid steel yes constant 6975 yes constant 817.3 yes constant 30 yes constant 0.0064 yes 55.8 no no no no yes define/boundary-conditions/fluid fluid yes steel no no yes 0 0 no no no !echo 4 Definieer bedryfstoestande define/operating-conditions/gravity yes 0 -9.81 !echo 5 Definieer RVW - onthou simmetrie bly dieselfde !echo Fluent version 6.1 needs backflow direction specification method define/boundary-conditions/velocity-inlet seninlaat no no yes yes no <<inlaatsnelheid>> no <<inlaattemperatuur>> no no no yes 10 0.115 define/boundary-conditions/pressure-outlet gietstuk uitlaat no 0 no <<<uitlaattemperatuur>> no yes no no no yes 10 <<Dhidroulies>> define/boundary-conditions/wall meniskusvlak 0 no 0 no yes heat-flux no <<hittevloedopmeniskus>> no yes shear-bc-spec-shear 0 0.5 no 0 no 0 define/boundary-conditions/wall ondermould_nou 0 no 0 no yes temperature no <<wandtemperatuur>> yes motion-bc-moving no no <<SIgietspoed>> 0 -1 no 0 0.5 define/boundary-conditions/wall gietstukmuur nou 0 no 0 no yes temperature no <<wandtemperatuur>> yes motion-bc-moving no no <<SIgietspoed>> 0 -1 no 0 0.5 define/boundary-conditions/wall senpoortmuur binne 0 no 0 no no 0 no no 0 0.5 define/boundary-conditions/wall senmuur_buite 0 no 0 no no 0 0.5 define/boundary-conditions/wall senmuur binne 0 no 0 no no 0 no no 0 0.5 !echo 5b Verander temperatuur eenhede terug na K sodat temp monitor werk define/units temperature k !echo 6 Monitering solve/monitors/residual plot yes print yes check-convergence yes yes yes yes yes q a a solve/monitors/surface/set-monitor ypluskant y-plus gietstukmuur nou yes 1 yes yes ypluskant.out "Vertex Average" solve/monitors/surface/set-monitor max_ke_men turb-kinetic-energy meniskusvlak yes 2 yes yes turb_ke_men.out "Facet Maximum" !echo 6a Sit minimum temperatuur monitor in solve/monitors/surface/set-monitor min temp men temperature meniskusvlak yes 3 yes yes tempmin men.out "Facet Minimum" !echo 6b Sit maksimum snelheids monitor in solve/monitors/surface/set-monitor max vel men velocity-magnitude meniskusvlak yes 4 yes yes velmax_men.out "Facet Maximum" !echo 7 Inisialiseer solve/initialize/compute-defaults/all-zones solve/initialize/initialize-flow !echo 8 Leer-hantering file/auto-save/case-frequency 2000 file/auto-save/data-frequency 2000 file/auto-save/root-name 2dsentoets.gz !echo 9 Kry druk d-s reg, nl PRESTO! solve/set/ds/p 14 !echo 10 Konvergensie metode volg nou !echo Gestadigde toestand: Slegs momentum - Konvergensiemetodiek: weergawe 2002-10-26 !echo 2D -geval

APPENDICES

Appendix K

!echo 1st Order: LW: Probeer eers 1ste orde konvergeer !echo 3 Stel kgensie kontinuiteit vir 5ordes 0.00001 solve/monitors/residual/convergence-crit 0.00001 0.001 0.001 0.000001 0.001 0.001 !echo 1 Itereer solve/iter 500 !echo 5 2de Orde en p=PRESTO! solve/set/ds/p 14 solve/set/ds/mom 1 solve/set/ds/k 1 solve/set/ds/e 1 solve/set/ds/temperature 1 !echo 6 Itereer solve/iter 1500 !echo 7 Aanpas y+ en mi adapt/aty+ 50 200 0 0 yes adapt/miir no mass-imbalance -0.00001 0.00001 !echo adapt only in jet region y=-1m adapt/mark-inout-rectangle yes no -100 100 -1 100 adapt/change-register adapt/combine-register 0 1 adapt/atr 0 0 yes !echo 8 Itereer solve/iter 1000 !echo 9 Relax mom=0.4, k,e=0.7 solve/set/ur/mom 0.4 solve/set/ur/k 0.7 solve/set/ur/e 0.7 !echo 10 Itereer solve/iter 2000 !echo 13 Save einde file/write-c-d einde_run_2dsen_temp.gz !echo 14 Skryf uit fluent export men TKE.txt file/export/ascii fluent_export_men_TKE.txt meniskusvlak no yes turb-kinetic-energy q no !echo 14a Skryf uit fluent_export_men_temp.txt file/export/ascii fluent_export_men_temp.txt meniskusvlak no yes temperature q yes !echo 14b Skryf ui fluent_export_men_velmag.txt file/export/ascii fluent_export_men_velmag.txt meniskusvlak no yes velocity-magnitude q no q q !echo 14c Skryf uit impakpt.txt file/export/ascii impakpt.txt gietstukmuur nou no yes y-coordinate wall-shear q yes q exit yes

APPENDIX L

L. <u>LS-OPT com-file (for coordinating design optimisation</u> process)

L.1 <u>General</u>

The function of the LS-OPT com-file is explained in detail in Chapter 5, section 5.1.

Briefly, the com-file contains all information necessary for the entire optimisation process, including design variables, dependent variables, objective and constraint functions, as well as information to edit the GAMBIT and FLUENT script files (examples of these in Appendices J and K respectively) for automated optimisation.

Tasks of the LS-OPT script file:

The LS-OPT script file coordinates the optimisation process, and this function is best described using a diagram. The diagram from Chapter 5 section 5.1 is repeated here for the sake of completeness:

Figure L.1: Diagram depicting the tasks (including coordinating tasks) performed by LS-OPT during the design optimisation process

Refer to section L.2 for the LS-OPT com-file, which was used in the 2D design optimisation exercise presented in Chapter 5, section 5.5.

L.2 LS-OPT com-file

```
"2D SEN optimering"
Author "Gideon Jacobus de Wet"
$ Created on Mon Nov 11 12:36:43 2002
solvers 1
responses 2
$ NO HISTORIES ARE DEFINED
Ś
$ DESIGN VARIABLES
Ś
variables 4
 Variable 'hoek' 15
  Lower bound variable 'hoek' -25
  Upper bound variable 'hoek' 25
 Variable 'onderdompeling' 120
  Lower bound variable 'onderdompeling' 50
Upper bound variable 'onderdompeling' 250
 Variable 'versinkingsdiepte' 0.1
  Lower bound variable 'versinkingsdiepte' 0.1
  Upper bound variable 'versinkingsdiepte' 50
 Variable 'poorthoogte3D' 70
  Lower bound variable 'poorthoogte3D' 30
Upper bound variable 'poorthoogte3D' 80
$
$ CONSTANTS
$
```

```
APPENDICES
```

Appendix L

```
constants 3
Constant 'wydte' 1575
Constant 'gietspoed' 1000
Constant 'pi' 3.14159
$
$ DEPENDENT VARIABLES
Ś
dependent 3
Dependent 'inlaatsnelheid'
{(0.2*(wydte/1000)*(gietspoed/1000/60))/((pi/4)*0.115*0.115)}
Dependent 'Dhidroulies' {(4*0.2*wydte/1000)/(2*((wydte/1000)+0.2))}
Dependent 'SIgietspoed' {(gietspoed/1000/60)}
$$$$$$$$$$$$$$$$$$$$$$$$$
       SOLVER "fluent"
Ś
$$$$$$$$$$$$$$$$$$$$$$$
Ś
$ DEFINITION OF SOLVER "fluent"
 solver own 'fluent'
  solver command "/scratch/gideon/OPTIMERING1/fluent_script"
 solver input file "fluent.jou"
 prepro own
 prepro command "gambit -inp"
 prepro input file "/scratch/gideon/OPTIMERING1/gambitgen.jou"
  order linear
  experiment design dopt
  number experiments 8
  basis experiment 3toK
  concurrent jobs 1
$
$ RESPONSES FOR SOLVER "fluent"
$
 response 'turb_k_meniskus' 1 0 "cat maxwaarde.txt"
$
$ RESPONSE EXPRESSIONS FOR SOLVER "fluent"
Ś
response 'geometrie grens' {versinkingsdiepte + poorthoogte3D - 113}
$
$ OBJECTIVE FUNCTIONS
$
 objectives 1
objective 'turb k meniskus' 1
$
$ CONSTRAINT DEFINITIONS
$
constraints 1
 move
 constraint 'geometrie grens'
 strict
 upper bound constraint 'geometrie grens' 0
$
$ JOB INFO
$
iterate param design 0.001
iterate param objective 0.001
iterate param stoppingtype and
iterate 10
STOP
```

APPENDIX M

M. <u>GAMBIT script file for 3D Old SEN design (for automatic</u> <u>geometry and mesh rendering)</u>

M.1 <u>General</u>

In order for one to later edit the GAMBIT script file, it is customary to make notes in the script file, which must obviously be ignored by the GAMBIT interpreter. Thus, all text in a line following a forward slash or "/", are notes and will be ignored.

Exceptions and parameterisation:

The script file (below in section M.2) may seem excessively long for creating a 3D geometry and mesh of a SEN and mould.

The reason for this is that certain exceptions may occur whenever the port angle vary from positive to negative (for example):

- different equations might be necessary
- different reference points are necessary to compute next positions

Categories in typical GAMBIT script file

The typical GAMBIT script file usually contains the following tasks in this specific order (exactly the same order in which a "manual" geometry and mesh would have been performed using GAMBIT's GUI):

- 1. List all parameters (and dependent¹ variables)
- 2. Build model

2.1 Create outline of geometry based on given parameters

2.2 Divide geometry into mesh-able areas and name areas (or volumes with a 3D model)

¹ Dependent variables are variables that need to be defined as their values are determined by the chosen parameters or design variables.

- 3. Mesh the geometry
- 4. Define and name all boundary surfaces

Refer to section M.2 on the following page for the GAMBIT script file used to generate 3D SEN (of the old type without a well) and mould models (quarter model due to assumption of symmetry). As mentioned in the main text, this GAMBIT script file (also known as a journal file) firstly creates a full model using elementary volumes, after which it is divided into quarters. Only the one quarter is kept to be exported as the mesh file for FLUENT.

Appendix M

M.2 GAMBIT journal file for 3D SEN and mould (Old SEN design)

```
/ Journal File for GAMBIT 2.0.4 :meiparamsen3.jou
/ Weergawe 2002-05-09, 21:30
/ Verbetering op vorige teks-leer, nl aprilparamsen2.jou , en ...
/ Journal File for GAMBIT 1.3.2: senkwartjetvolfyn.jou
/ Hierdie jou-leer maak ekstra volume om gietstuk-RVW in ag te kan neem
/ 1 Spesifisering van veranderlikes
/ $x1 = hoek van SENpoort met horisontaal in grade
/ $x2 = meniskusafstand vanaf onderpunt van SEN (funksie van x1 en x4) - word self
bereken
/ $x3 = wydte van gietstuk in mm
/ $x4 = afstand waarmee poort vergroot word in mm
/ $x5 = poortas afstand van onderkant van SEN af in mm (funksie van x1) - word self
bereken
/ $x6 = lengte van gietstuk in mm
/ $x7 = afwyking van die normale meniskusposisie (dus ondergedompelde diepte) in mm
       [$x7 > 0 : dieper; daarteenoor as $x7 < 0 : vlakker]
x1 = 15
x_3 = 1575
x4 = 0
x6 = 3000
\$x7 = 0
/ 2 Begin van modelbou
volume create height 395 radius1 34 radius3 35 offset 0 0 197.5 zaxis frustum
vertex create coordinates 0 0 305
coordinate create cartesian oldsystem "c_sys.1" offset 0 0 305 axis1 "x" \
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation
coordinate activate "c_sys.1"
volume create height 305 radius1 51.5 radius3 61 offset 0 0 152.5 zaxis frustum
coordinate activate "c sys.2"
volume create height 9\overline{0} radius1 61 radius3 69.5 offset 0 0 45 zaxis frustum
coordinate create cartesian oldsystem "c sys.2" offset 0 0 90 axis1 "x" \backslash
 angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation
vertex create coordinates 85 0 0
vertex create coordinates 69.5 0 40
vertex create coordinates 0 0 40
edge create radius 50 startangle -90 endangle 0 center "vertex.8" zxplane arc
edge create straight "vertex.10" "vertex.9"
edge split "edge.7" parameter 0.590333 connected edge delete "edge.9" "edge.8" lowertopology
vertex create coordinates 69.5 0 40
edge create straight "vertex.14" "vertex.13"
edge create straight "vertex.14" "vertex.6"
edge create straight "vertex.6" "vertex.1"
face create wireframe "edge.7" "edge.8" "edge.9" "edge.10" real
vertex delete "vertex.8"
volume create revolve "face.10" dangle 360 vector 0 0 1 origin 0 0 0 draft 0 \
 extended
coordinate activate "c sys.1"
volume create height 5\overline{30} radiusl 32.5 radiusl 34 offset 0 0 -265 zaxis frustum
volume create height 530 radius1 48.2 radius3 51.5 offset 0 0 -265 zaxis frustum
volume create height 530 sides 4 radius1 31.81980515 radius2 70 radius3 \
 48.08326112 offset 0 0 -265 zaxis pyramid
volume intersect volumes "volume.7" "volume.5"
volume create height 530 sides 4 radius1 54.44722215 radius2 85 radius3 \
72.83199846 offset 0 0 -265 zaxis pyramid volume intersect volumes "volume.8" "volume.6"
/ File closed at Mon Nov 12 11:48:36 2001, 9.47 cpu second(s), 3141768 maximum memory.
coordinate delete "c sys.3" "c sys.2"
vertex delete "vertex.3"
volume create translate "face.39" vector 0 0 -135
volume create translate "face.29" vector 0 0 -70
coordinate create cartesian oldsystem "c_sys.1" offset 0 0 -665 axis1 "x" \backslash
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation
/ Hoek word hier verander
/ $x5 = poortas (voor verlenging) van onder af in mm - word vervolgens bereken
```

```
APPENDICES
```

Appendix M

/ As hoek 0 is, maak effense positiewe hoek anders faal jou-leer

IF COND (\$x1 .EQ. 0) x1 = 0.1ENDIF / As hoek positief is, gebruik eerste vergelyking; andersins tweede een IF COND (\$x1 .GT. 0) x5 = 17.00446417 + 35/(cos(x1))/ As hoek negatief is ELSE x5 = 17.00446417 + 35/(cos(x1)) + 48.5*tan(-x1)ENDIF coordinate create cartesian oldsystem "c sys.2" offset 0 0 \$x5 $\$ axis1 "x" angle1 \$x1 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation volume create height 100 radius1 35 radius3 35 offset 0 50 0 yaxis frustum volume create height 100 sides 4 radius1 70 radius2 31.81980515 radius3 70 \ offset 0 50 0 yaxis pyramid volume intersect volumes "volume.12" "volume.11" volume create translate "face.62" vector 0 -30 -4.82965e-11 volume unite volumes "volume.12" "volume.13" coordinate create cartesian oldsystem "c_sys.3" offset 0 -40 0 axis1 "x" \backslash angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation volume create width 100 depth 150 height 100 offset 50 75 -50 brick volume create width 100 depth 150 height 100 offset -50 75 -50 brick volume unite volumes "volume.14" "volume.13" volume intersect volumes "volume.14" "volume.12" keeporiginals volume delete "volume.14" lowertopology volume subtract "volume.12" volumes "volume.15" keeptool / Poort word hier vergroot / As poort met 0 vergroot word, maak dit 0.1 anders faal jou-leer IF COND (\$x4 .EQ. 0) x4 = 0.1ENDIF volume move "volume.12" offset 0 0 \$x4 volume create translate "face.92" vector 0 7.451e-12 \$x4 volume unite volumes "volume.12" "volume.16" "volume.15" coordinate activate "c_sys.2" volume create width 100 depth 100 height 200 offset -50 -50 100 brick volume create width 100 depth 100 height 200 offset 50 -50 100 brick volume unite volumes "volume.13" "volume.14" volume subtract "volume.12" volumes "volume.13" volume copy "volume.12" to "volume.13" volume reflect "volume.13" vector 0 1 0 origin 0 0 0 volume unite volumes "volume.12" "volume.13" volume intersect volumes "volume.12" "volume.9" keeporiginals volume unite volumes "volume.13" "volume.10" volume delete "volume.12" lowertopology volume subtract "volume.9" volumes "volume.13" keeptool coordinate delete "c_sys.3" "c_sys.4" face create wireframe "edge.12" real volume create stitch "face.148" "face.11" "face.1" real volume create stitch "face.1" "face.3" "face.2" real / \$x2 = meniskus z-posisie t.o.v. onderkant van SEN in mm / \$x3 = wydte van gietstuk / Berekening van meniskushoogte verskil afhangend of die hoek x1 positief of negatief is IF COND (\$x1 .GT. 0) \$x2 = 17.00446417 + 70/cos(\$x1) + \$x4/cos(\$x1) + 48.5*tan(\$x1) + 120 + \$x7 ELSE $x^2 = 17.00446417 + 70/\cos(x^1) + x^4/\cos(x^1) + 120 + x^7$ ENDIF coordinate create "meniskusas" cartesian oldsystem "c_sys.2" offset 0 0 $\$ \$x2 axis1 "x" angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation

```
APPENDICES
                                          Appendix M
face create "meniskus" width 200 height $x3 xyplane rectangle
/ lengte van gietstuk hier
volume create "gietstuk" translate "meniskus" vector 0 0 -$x6
volume subtract "volume.3" volumes "volume.1" keeptool
volume subtract "volume.2" volumes "volume.21" keeptool
volume intersect volumes "gietstuk" "volume.15" keeporiginals
volume subtract "volume.22" volumes "volume.14" keeptool
volume delete "volume.19" "volume.3" "volume.2" "volume.15" lowertopology
 / maak nou 'n kwartmodel
volume create "bo" width 110 depth 800 height 1110 offset 55 400 555 brick
volume create "onder" width 110 depth 800 height 4500 offset 55 400 -2250 brick
volume unite volumes "onder" "bo"
volume intersect volumes "onder" "volume.20" keeporiginals
volume intersect volumes "onder" "volume.21" keeporiginals
volume intersect volumes "onder" "volume.14" keeporiginals
volume intersect volumes "onder" "volume.22" keeporiginals
volume intersect volumes "onder" "volume.9" keeporiginals
volume intersect volumes "onder" "volume.13" keeporiginals
volume intersect volumes "onder" "gietstuk" keeporiginals
volume delete "onder" "volume.20" "volume.21" "volume.14" "volume.22" \
  "volume.9" "volume.13" lowertopology
volume delete "gietstuk" lowertopology
volume subtract "volume.31" volumes "volume.28" "volume.27" "volume.29" \
  "volume.30" keeptool
volume delete "volume.31"
face subtract "face.335" faces "face.296" keeptool
volume create stitch "face.305" "face.316" "face.351" "face.352" "face.310" \
  "face.315" "face.246" "face.245" "face.338" "face.335" "face.296" \
  "face.275" real
volume modify "volume.25" label "tuit"
volume modify "volume.26" label "rgtskag"
volume modify "volume.27" label "morfdeel"
volume modify "volume.30" label "SENpoort"
volume modify "volume.31" label "gietstuk"
volume delete "volume.28" "volume.29" lowertopology
 / heg los vlakke aan mekaar
face connect "face.201" "face.215" real
face connect "face.232" "face.218" real
face connect "face.230" "face.299" real
/ einde van model
/3 Aanpassings vir jetvolume voor meshing begin
coordinate create "jetvolas" cartesian oldsystem "meniskusas" offset 0 0 -450 \
  axis1 "x" angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation
volume create "tydelikonder" width 250 depth 1000 height 4000 offset 125 500 \
  -2000 brick
volume intersect volumes "gietstuk" "tydelikonder" keeporiginals
volume subtract "gietstuk" volumes "volume.33" keeptool
volume delete "tydelikonder" lowertopology
volume modify "volume.33" label "gietstukonder"
volume modify "gietstuk" label "jetvolume"
face connect "face.380" "face.377" real
/32 Addisionele aanpassings vir ekstra volume vir maasvereenvoudiging
coordinate activate "c_sys.2"
coordinate create "meshvolas" cartesian oldsystem "c sys.2" offset 0 0 -100 \backslash
  axis1 "x" angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation
volume create "meshvol" width 110 depth 180 height 450 offset 55 90 225 brick
volume intersect volumes "jetvolume" "meshvol" keeporiginals
volume delete "meshvol" lowertopology
volume subtract "jetvolume" volumes "volume.35" keeptool
volume modify "volume.35" label "meshvol"
face delete "face.321" "face.322" "face.339"
face connect "face.410" "face.416" real
face connect "face.412" "face.415" real
face connect "face.399" "face.296" real
```

/33 Addisionele aanpassings vir ekstra volume vir gietstuk-RVW

Appendix M

APPENDICES

volume create "gietstukvol" translate "face.380" vector 0 0 -250 volume subtract "gietstukonder" volumes "gietstukvol" keeptool volume modify "volume.37" label "gietstukvol" volume modify "volume.38" label "jetvolume" /4 Begin met Meshing solver select "FLUENT 5/6" / 41 Mesh gietstuk /voorbereiding en mesh vir jetvolume, gietstukvol se mesh edge picklink "edge.847" "edge.850" "edge.907" "edge.902" "edge.911" \ "edge.666" edge mesh "edge.666" "edge.911" "edge.902" "edge.907" "edge.850" "edge.847" \ successive ratio1 1 size 5 edge picklink "edge.977" "edge.975" edge mesh "edge.975" "edge.977" successive ratio1 1 size 5 volume mesh "jetvolume" submap size 15 volume mesh "gietstukvol" map size 15 / 42 Mesh meshvol sfunction create "SENpoortbron" sourcefaces "face.399" startsize 4 growthrate 1.1 \ distance 50 sizelimit 10 attachvolumes "meshvol" fixed volume mesh "meshvol" tetrahedral size 10 / 43 Mesh SENpoort, tuit, rgtskag en morfdeel volume modify "volume.36" label "SENpoort" volume mesh "SENpoort" tetrahedral size 4 volume mesh "tuit" cooper source "face.204" "face.201" size 5 volume mesh "rgtskag" cooper source "face.232" "face.201" size 5 volume mesh "morfdeel" tetrahedral size 4 /44 Mesh onder gietstuk edge modify "edge.785" backward edge picklink "edge.785" edge modify "edge.785" successive ratio1 1 size 1 edge mesh "edge.978" "edge.785" "edge.980" "edge.979" firstlength ratio1 15 \ size 25.5 volume mesh "gietstukonder" map size 15 /45 Vee uit ekstra edges edge delete "edge.509" "edge.511" "edge.513" "edge.522" "edge.527" "edge.591" \ "edge.694" "edge.726" "edge.733" "edge.756" "edge.761" /5 Vir Fluent: Randvoorwaardes (defini-ering van vlakke)
physics create "SENinlaat" btype "VELOCITY_INLET" face "face.204" physics create "gietstuk uitlaat" btype "PRESSURE_OUTLET" face "face.367" physics create "SENmuur_buite" btype "WALL" face "face.217" "face.216" "face.202" \
"face.229" "face.233" physics create "SENmuur_binne" btype "WALL" face "face.402" "face.398" "face.401" \backslash "face.400" "face.405" physics create "SENpoortmuur binne" btype "WALL" face "face.290" "face.300" \ "face.295" "face.301" physics create "gietstukmuur nou" btype "WALL" face "face.310" "face.433" physics create "gietstukmuur wyd" btype "WALL" face "face.386" "face.396" \ "face.430" physics create "ondermould wyd" btype "WALL" face "face.366" physics create "ondermould_nou" btype "WALL" face "face.378" physics create "simmetrie nou" btype "SYMMETRY" face "face.197" "face.208" \ "face.234" "face.302" "face.395" "face.427" "face.431" "face.441" physics create "simmetrie_wyd" btype "SYMMETRY" face "face.205" "face.219" \
 "face.223" "face.413" "face.285" "face.352" "face.432" "face.440" physics create "meniskusvlak" btype "WALL" face "face.428" "face.414" physics create "meshvolvlak1" btype "INTERIOR" face "face.410" physics create "meshvolvlak2" btype "INTERIOR" face "face.412" physics create "binnemould_vlak" btype "INTERIOR" face "face.380" physics create "ondermould_vlak" btype "INTERIOR" face "face.438" physics create "SENpoortuitlaat" btype "INTERIOR" face "face.399"

/ File closed at Tue Apr 16 17:12:45 2002, 13215.00 cpu second(s), 79360040 maximum memory.

APPENDIX N

N. <u>Summary: CFD results of 3D design exploration</u>

N.1 CFD set-up data

The CFD set-up data is repeated here very briefly for the sake of completeness:

- Liquid steel properties used for temperature on settings
- Turbulence model: k-ω standard
- Dynamic grid adaption employed: based on velocity gradients as adaption criterion
- Initial grid size: 500 000 cells; Final grid size: approximately 800 000 cells
- First-order discretisation schemes followed by second-order discretisation

N.2 <u>Experimental designs</u>

The experiments used for the 3D exploration study are presented in Table N.1 below. The relevant Figure numbers are also shown in Table N.1.

Firstly, the constant operational parameters (constant for all results in this Appendix) will be listed below:

- Submergence depth: 80mm (regarded as a worst case)
- Casting speed (directly proportional to flow rate through CFD models): 1.3 m/min
- Mould width: 1060mm and 1250mm for each SEN design type

APPENDICES	
------------	--

Table N.1: Experiments in central-composite design, including base case (experiment 1.0) and	
linear and quadratic optima fits by LS-OPT	

Figure	Experiment	SEN port	SEN port	SEN well
N	designation	angle	height	depth
		[°]	[mm]	[mm]
2	1.0	15	70	$1 \approx 0$
3	1.1	0	55	20
4	1.2	7.9	69.9	32.1
5	1.3	-12.9	69.9	32.1
6	1.4	7.9	40.1	32.1
7	1.5	-12.9	40.1	32.1
8	1.6	7.9	69.9	8.9
9	1.7	-12.9	69.9	8.9
10	1.8	7.9	40.1	8.9
11	1.9	-12.9	40.1	8.9
12	1.10	-2.5	55	20.5
13	1.11	15	55	20.5
14	1.12	-2.5	80	20.5
15	1.13	-2.5	55	40
16	1.14	-20	55	20.5
17	1.15	-2.5	30	20.5
18	1.16	-2.5	55	1
19	2.0_linear	-20	80	1
20	2.0_quadratic	-20	55.56	40

N.3 <u>Summary results data</u>

After each CFD model evaluation, the maximum TKE and the maximum velocity on the meniscus surface (averaged over the last 5000 iterations), are calculated using the post-processing capabilities of FLUENT. These values are listed in Table N.2 below, and will be used to determine the multi-objective values for each experimental design (and optima predicted by LS-OPT).

Table N.2: Summary Results data: maximum TKE and maximum velocity on meniscus of each
SEN design for both widths (1060 and 1250mm)

Experiment	1060 mm width		1250 mm wid	lth
designation	Maximum	Maximum	Maximum	Maximum
	velocity	ТКЕ	velocity	ТКЕ
	[m/s]	$[m^2/s^2]$	[m/s]	$[m^2/s^2]$
1.0	3.87E-01	2.55E-03	3.98E-01	1.33E-03
1.1	4.63E-01	2.61E-03	5.34E-01	4.37E-03
1.2	4.68E-01	2.09E-03	5.88E-01	3.84E-03
1.3	5.23E-01	4.14E-03	5.16E-01	5.95E-03
1.4	5.54E-01	9.98E-03	5.44E-01	9.43E-03
1.5	4.36E-01	2.42E-03	5.88E-01	4.25E-03
1.6	5.49E-01	5.58E-03	5.90E-01	6.10E-03
1.7	3.39E-01	2.35E-03	4.84E-01	1.90E-03
1.8	3.13E-01	5.34E-03	4.84E-01	9.53E-03
1.9	4.06E-01	2.22E-03	6.95E-01	9.88E-03
1.10	4.92E-01	3.16E-03	6.86E-01	6.20E-03
1.11	4.49E-01	2.75E-03	4.97E-01	2.43E-03
1.12	4.82E-01	3.24E-03	5.80E-01	6.90E-03
1.13	4.71E-01	2.86E-03	5.44E-01	3.05E-03
1.14	3.83E-01	3.10E-03	5.46E-01	4.69E-03
1.15	5.72E-01	6.77E-03	6.00E-01	9.72E-03
1.16	5.55E-01	4.11E-03	6.07E-01	4.53E-03
2.0_linear	2.63E-01	1.47E-03	4.45E-01	2.24E-03
2.0_quadratic	3.70E-01	3.21E-03	4.21E-01	2.17E-03

The values tabulated in Table N.2 are depicted graphically in Figure N.1 below:

Figure N.1: Graphical display of data in Table N.2

The multi-objective values that are calculated from the data in Table N.2 and Figure N.1 above are displayed in the main text (Chapter 5) in Figure 5.17.

The velocity contours on the centre plane of each design follows in section N.4.

j	<u>iterations)</u>		
Experiment	Velocity scale	1060mm width	1250mm width
designation	[0 - 1 m/s]	(80mm submergence; 1.3 m/min)	(80mm submergence; 1.3 m/min)
 angle port height well depth 15° (up) 70mm 0mm 	1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.00e-01 7.50e-01 7.50e-01 6.50e-01 6.50e-01 5.50e-01 4.50e-01 4.50e-01 3.50e-01 2.50e-01 1.50e-01 1.50e-02 0.00e+00		

N.4 CFD Results: velocity contours of magnitude on centre plane (last

Experiment	Velocity scale	1060mm width	1250mm width
designation	[0 – 1 m/s]	(80mm submergence; 1.3 m/min)	(80mm submergence; 1.3 m/min)
 angle port height well depth 0° 55mm 20mm 	1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.50e-01 7.50e-01 7.50e-01 6.50e-01 6.50e-01 5.50e-01 4.50e-01 4.50e-01 3.50e-01 2.50e-01 2.50e-01 1.50e-01 1.50e-01 5.00e-02 0.00e+00		

Figure N.3: Experiment 1.1 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Figure N.4: Experiment 1.2 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Experiment	Velocity scale	1060mm width	1250mm width
designation	[0 – 1 m/s]	(80mm submergence; 1.3 m/min)	(80mm submergence; 1.3 m/min)
 1.3 angle port height well depth -12.9° 69.9mm 32.1mm 	1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.00e-01 7.50e-01 7.00e-01 6.50e-01 6.00e-01 5.50e-01 4.50e-01 4.50e-01 3.50e-01 2.50e-01 2.50e-01 1.50e-01 1.50e-02 0.00e+00		

Figure N.5: Experiment 1.3 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Figure N.6: Experiment 1.4 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Experiment	Velocity scale	1060mm width	1250mm width
designation	[0 – 1 m/s]	(80mm submergence; 1.3 m/min)	(80mm submergence; 1.3 m/min)
 1.5 angle port height well depth -12.9° 40.1mm 32.1mm 	1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.00e-01 7.50e-01 7.50e-01 6.50e-01 6.50e-01 6.50e-01 4.50e-01 4.50e-01 3.50e-01 3.00e-01 2.50e-01 2.50e-01 1.50e-01 1.00e-02		

Figure N.7: Experiment 1.5 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Figure N.8: Experiment 1.6 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Experiment	Velocity scale	1060mm width	1250mm width
designation	[0 – 1 m/s]	(80mm submergence; 1.3 m/min)	(80mm submergence; 1.3 m/min)
 1.7 angle port height well depth -12.9° 69.9mm 8.9mm 	1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.00e-01 7.50e-01 7.50e-01 6.50e-01 6.50e-01 6.00e-01 5.50e-01 4.50e-01 3.50e-01 3.50e-01 2.50e-01 1.50e-01 1.50e-02 0.00e+00		

Figure N.9: Experiment 1.7 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Figure N.10: Experiment 1.8 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Experiment	Velocity scale	1060mm width	1250mm width
designation	[0 - 1 m/s]	(80mm submergence; 1.3 m/min)	(80mm submergence; 1.3 m/min)
 angle port height well depth -12.9° 40.1mm 8.9mm 	1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.00e-01 7.50e-01 7.50e-01 6.50e-01 6.50e-01 5.50e-01 4.50e-01 4.50e-01 3.50e-01 2.50e-01 1.50e-01 1.50e-01 1.00e-02 0.00e+00		

Figure N.11: Experiment 1.9 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Figure N.12: Experiment 1.10 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Experiment	Velocity scale	1060mm width	1250mm width
designation	[0 – 1 m/s]	(80mm submergence; 1.3 m/min)	(80mm submergence; 1.3 m/min)
 1.11 angle port height well depth 15° 55mm 20.5mm 	1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.00e-01 7.50e-01 6.50e-01 6.00e-01 5.50e-01 4.50e-01 4.50e-01 4.50e-01 3.50e-01 2.50e-01 1.50e-01 1.50e-01 1.00e-02 0.00e+00		

Figure N.13: Experiment 1.11 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Figure N.14: Experiment 1.12 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Experiment	Velocity scale	1060mm width	1250mm width
designation	[0 – 1 m/s]	(80mm submergence; 1.3 m/min)	(80mm submergence; 1.3 m/min)
 angle port height well depth -2.5° 55mm 40mm 	1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.00e-01 7.50e-01 6.50e-01 6.50e-01 6.00e-01 5.50e-01 4.50e-01 4.50e-01 3.50e-01 3.00e-01 2.50e-01 2.00e-01	(somm submergence; 1.5 m/mm)	(onim submergence; 1.5 m/mm)
	1.50e-01 1.00e-01 5.00e-02 0.00e+00		

Figure N.15: Experiment 1.13 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Figure N.16: Experiment 1.14 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Experiment	Velocity scale	1060mm width	1250mm width
designation	[0 – 1 m/s]	(80mm submergence; 1.3 m/min)	(80mm submergence; 1.3 m/min)
 1.15 angle port height well depth -2.5° 30mm 20.5mm 	1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.00e-01 7.50e-01 6.50e-01 6.50e-01 6.00e-01 5.50e-01 4.50e-01 4.50e-01 3.50e-01 2.50e-01 2.50e-01 1.50e-01 1.50e-02 0.00e+00		

Figure N.17: Experiment 1.15 contours of velocity magnitude on centre plane (range 0 - 1 m/s)
APPENDICES

Appendix N

Figure N.18: Experiment 1.16 contours of velocity magnitude on centre plane (range 0 - 1 m/s)

Experiment	Velocity scale	1060mm width	1250mm width
designation	[0 – 1 m/s]	(80mm submergence; 1.3 m/min)	(80mm submergence; 1.3 m/min)
2.0_linearangleport	1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.00e-01 7.50e-01		
height	7.00e-01		
• well	6.00e-01		
depth	5.50e-01 5.00e-01 4.50e-01		
• -20°	4.00e-01		
• 80mm	3.00e-01		
• 1mm	2.50e-01 2.00e-01 1.50e-01 1.00e-01 5.00e-02 0.00e+00		

Figure N.19: Experiment 2.0_linear contours of velocity magnitude on centre plane (range 0-1

m/s)

Figure N.20: Experiment 2.0_quadratic contours of velocity magnitude on centre plane (range 0 -

1 m/s)