CFD MODELLING AND MATHEMATICAL OPTIMISATION OF A CONTINUOUS CASTER SUBMERGED ENTRY NOZZLE

submitted in partial fulfillment of the requirements for the degree of

Master of Engineering (Mechanical) in the Faculty of Engineering, Built Environment and Information Technology University of Pretoria

- Compiled by: Gideon Jacobus de Wet 9701364-2
- Study leader: Prof. K. J. Craig
- Year: April 2005

i

SUMMARY

CFD Modelling and Mathematical Optimisation of a Continuous Caster Submerged Entry Nozzle

Author	:	Gideon Jacobus de Wet
Student number	:	9701364-2
Study leader	:	Prof. K.J. Craig
Degree:	:	Master of Engineering (Mechanical)
Department	:	Department of Mechanical and Aeronautical Engineering

Abstract:

In the continuous casting of steel, the Submerged Entry Nozzle (SEN), in particular the SEN geometry, has a primary influence on the flow pattern: the SEN controls the speed, direction and other characteristics of the jet entering the mould. The SEN is however relatively inexpensive to change (in comparison with other continuous casting equipment). Thus; there is a feasible incentive to exactly understand and predict the flow of molten steel through the SEN and into the mould, in order to maximise the quality of the steel by altering the design of the SEN.

By changing the SEN geometry and SEN design, the flow pattern in the mould will also change: it is thus possible to obtain an optimum SEN design if (or when) the desired flow patterns and/or certain predetermined temperature distributions are achieved.

Expensive and risky plant trials were traditionally utilised to "perfect" continuous casting processes. As opposed to the plant trials, this dissertation is concerned with the Computational Fluid Dynamics (CFD) modelling of the SEN and mould, which, when used in conjunction with the Mathematical Optimiser LS-OPT, will enable the optimisation of the SEN design to achieve desired results. The CFD models are experimentally verified and validated using 40%-scaled (designed and built in-house) and full-scale water model tests.

This dissertation proves that the CFD modelling of the SEN and mould can be quite useful for optimisation and parametric studies, especially when automated model generation (geometry, mesh and solution procedures) is utilised. The importance of obtaining reliable and physically correct CFD results is also emphasised; hence the need for CFD model verification using water modelling.

Keywords: Submerged Entry Nozzle (SEN), mould, continuous casting, CFD modelling, scaled water model, CFD validation and verification with water modelling, mathematical optimisation, parametric studies.

SUMMARY

iii

OPSOMMING

Berekeningsvloeimeganika-modellering en Wiskundige Optimering van 'n Stringgietery se Ondergedompelde Spuitstuk

Skrywer	:	Gideon Jacobus de Wet
Studentenommer	:	9701364-2
Studieleier	:	Prof. K.J. Craig
Graadbenaming	:	Magister in Ingenieurswese (Meganies)
Departement	:	Departement Meganiese en Lugvaartkundige Ingenieurswese

Opsomming:

Die ondergedompelde spuitstuk (OS voortaan) in die staal-stringgietproses het 'n primêre invloed op die vloeipatrone binne-in die gietstukvolume: die OS beheer die spoed, rigting en ander karakteristieke van die spuitstraal wat die gietstukvolume binnestroom vanuit die OS se poorte. Tog is die OS relatief goedkoop om te verander in vergelyking met ander toerusting in die stringgietproses. Gevolglik is daar 'n dryfveer om presies die vloei deur die OS tot in die gietstukvolume te voorspel, ten einde die kwaliteit van die vervaardigde staal te maksimeer, deur slegs die ontwerp van OS stelselmatig te verander.

Deur die OS geometrie en ontwerp te wysig, sal die voeipatrone ook verander: gevolglik sal dit moontlik wees om 'n optimum OS te ontwerp sodra die verlangde vloeipatrone en/of temperatuurverspreidings verkry word.

Duur en riskante aanlegtoetse (van onder andere nuwe OS ontwerpe) was die tradisionele metode om ontwikkelingswerk vir die stringgietproses te verrig. Hierteenoor, besig hierdie verhandeling hom met die berekeningsvloeimeganika (alombekend as CFD) modellering van die OS en gietstukvolume. Tesame met die Wiskundige Optimeringspakket, LS-OPT, kan 'n OS ontwerp die resultaat wees van 'n optimeringsoefening – waar sekere voorafbepaalde resultate aan voldoen sal word deur die optimum OS ontwerp. Die CFD modelle wat gebruik is tydens die SUMMARY

optimering, word eksperimenteel bevestig met behulp van watermodeltoetse (40%skaal watermodel wat intern ontwerp en opgerig is), asook eksterne volskaal watermodeltoetse.

Hierdie verhandeling bevestig dat CFD modellering baie handig te pas kan wees vir die optimering en parametriese studies van die OS ontwerp, veral wanneer outomatiese modelgenerasie (geometrie, maas en CFD oplossingsprosedure) gebruik word. Die belangrikheid om betroubare en korrekte CFD resultate te gebruik vir optimeringsdoeleindes word ook beaam; daarom die behoefte aan gereelde CFD model eksperimentele bevestiging (met behulp van watermodeltoetse).

Sleutelwoorde: Ondergedompelde spuitstuk, kontinue staalgietproses (oftewel stringgietproses), berekeningsvloeimeganika (CFD) modellering, eksperimentele bevestiging van CFD modelle, watermodeltoetse, geskaalde watermodeltoetse, Wiskundige optimering, parametriese studies.

ACKNOWLEDGEMENTS

EXPRESSION OF THANKS

The following persons are thanked for their individual efforts and assistance in order to realise this dissertation:

Professor Ken Craig, for his leadership, patience, and moral guidance throughout the duration of study. Apart from his excellent abilities and expertise as a technical study leader, his overall modesty made an everlasting impression on the author.

Johan Haarhoff, for his dedicated assistance enabling the author to make sense of the UNIX / Linux powered network. He is also thanked for his contribution in perfecting the parameterised 3D model, which was used in Chapter 5 (as opposed to the author's parameterised model which was not appropriate as it does not support a welled SEN design).

Danie de Kock, for his expertise concerning FLUENT and GAMBIT, and his willingness and dedication to assist users in the Department¹ at the most inconvenient of times (for him, of course).

Thomas Kingsley, for help, advice and assistance in a wide variety of (mostly electronic) tasks at hand.

Chris Pretorius, for his knowledge of C programming and his contribution in extracting information from FLUENT during automated optimisation exercises.

Johan Ackerman (from Columbus Stainless), for his persistent nagging (seen in a positive spirit) during the period to complete the 40%-scaled water model, in an effort not to miss the window of opportunity to find an optimum SEN design. He was also a key role player responsible for the commencement of the entire THRIP² project, of which this dissertation is a part.

Katlego Makgata, a fellow- post graduate student in the cfd-labs, MDOG, University of Pretoria, for mutual support during the more dreary times, especially when full-time studies were halted, and many computer problems persisted.

¹ Department of Mechanical and Aeronautical Engineering, School of Engineering, University of Pretoria, South Africa.

² THRIP: The Technology and Human Resources for Industry Programme (of South Africa)

Marius Botha, for his unique ideas and competently executed modifications (towards the end of the period) to enhance the usefulness of the 40%-scaled water model. Petrus Mojela, for his dedicated assistance during the construction phase of the initial 40%-scaled water model, which was used for preliminary validation purposes.

FORMAL ACKNOWLEDGEMENTS

The Technology and Human Resources for Industry Programme (THRIP) of South Africa; a partnership programme funded by the Department of Trade and Industry (DTI) and managed by the National Research Foundation (NRF), supported this work. Columbus Stainless is acknowledged as the main industry partner of this THRIP project. LTM Technologies is also acknowledged as an active partner in this research.

TABLE OF CONTENTS

vii

TABLE OF CONTENTS

LI	<u>ST OF TAI</u>	<u>BLES</u>		<u>xiii</u>
LI	<u>ST OF FIG</u>	<u>URES</u>		<u>XV</u>
1.	INTROD	UCTIC	<u>)N</u>	<u>1</u>
2.	LITERAT	URE S	SURVEY	7
	2.1 Histor	ical De	evelopment of Continuous Casting	<u>7</u>
	2.1.1	Histo	orical Background	7
	2.1.2	Evolu	ution of Continuous Casting Machine Design	9
	2.1.3	Verti	cal Continuous Casting versus Horizontal Continuous Cas	sting 11
	2.2 Subme	erged I	Entry Nozzle Literature	<u>14</u>
	2.2.1	Curre	ent continuous casting: background	14
	2.2.2	SEN	influence on steel	14
	2.2.3	Class	ification of Literature	16
	2.2.4	Previ	ous work on Submerged Entry Nozzle design	18
	2.2	2.4.1	Plant trials	18
	2.2	2.4.2	Water modelling	19
	2.2	2.4.3	Numerical modelling of SEN and mould design	20
	<u>2.3 CFD t</u>	ackgro	ound	<u>24</u>
	2.3.1	Gene	ral: Numerical modelling and CFD	24
	2.3	3.1.1	Introduction: basic equations	24
	2.3	3.1.2	Boundary conditions: general	27
	2.3	3.1.3	Discretisation of equations: the CFD approach	28
	2.3.2	Pre-p	processing: geometry and grid generation	30
	2.3.3	Mode	els in commercial CFD-codes	30
	2.3.4	Perfo	ormance and monitoring criteria (for CFD modelling)	31
	2.3	3.4.1	Residuals	31
	2.3	3.4.2	Solution monitoring	32
	2.4 Design	<u>n Optir</u>	nisation	<u>33</u>
	2.4.1	Base	case evaluation and model perfection	34

	·		·	`	·
TABLE OF CONTENTS	17	iii			

2.4.2	Parameter and objective function identification	35
2.4.3	Parametrisation of CFD-model	36
2.4.4	Design optimisation [general description]	36
2.4.5	Experimental validation	37
2.5 Conclusion of Literature Survey		<u>38</u>

3. EXPERIMENTAL VERIFICATION: 40%-SCALED WATER MODEL AND

RF	ESULTS		<u>40</u>
	<u>3.1 40%-8</u>	Scaled water model of SEN and mould	<u>40</u>
	3.1.1	Concept design	40
	3.1.2	Design	42
	3.1.3	Construction	51
	3.1.4	Commissioning	51
	3.1.5	Further improvements after commissioning	53
	<u>3.2 Simila</u>	rity issues	<u>56</u>
	3.2.1	General	56
	3.2.2	Fr-number	57
	3.2.3	Re-number	59
	3.2.4	Wb-number	62
	<u>3.3 Valida</u>	tion Results and Other Results	<u>63</u>
	3.3.1	Validation of 40%-scaled model with full-scale water model	63
	3.3	3.1.1 Widest width (1575mm) validation	63
	3.3	3.1.2 Smallest width (1060mm) validation	65
	3.3	3.1.3 Medium width (1250mm) validation	66
	3.3.2	Other Water Model Results	67
<u>4.</u>	CFD MO	DELLING AND VERIFICATION OF BASE CASE	<u>70</u>
	4.1 Appro	ach: CFD modelling of base case design	<u>70</u>
	4.1.1	General approach to modelling the base case	71
	4.1.2	Verifying base case CFD model	72
	4.1.3	Summary: approach to base case CFD modelling	73
	4.2 Descri	ption of base case SEN design	<u>75</u>
	4.2.1	SEN description	75

TABLE OF CONTENTS	ix	

	4.2.2	Mould description	76
	4.2.3	Momentum only vs. momentum and energy combined	77
	4.2.4	Simultaneous SEN and mould modelling	77
	4.2.5	2D and 3D CFD modelling	79
	<u>4.3 CFD-s</u>	<u>et-up</u>	<u>80</u>
	4.3.1	Geometry and gridding strategy (pre-processing)	80
	4.3.2	Boundary conditions	84
	4.3.3	CFD options and assumptions	86
	4.3.4	Solution Procedure	92
	<u>4.4 CFD n</u>	nodel: Verification Results	<u>96</u>
	4.4.1	CFD model verification: mimic water model	96
	4.4	A.1.1 Case 1: Base case (Old SEN of Columbus Stainless)	97
	4.4	1.1.2 Case 2: New SEN of Columbus Stainless	99
	4.4.2	2D versus 3D verification results	100
	4.4	3D verification results	100
	4.4	Differences between 2D and 3D CFD models of SEN and	
	mo	ould	102
	<u>4.5 CFD n</u>	nodel of steel plant	<u>103</u>
	4.5.1	Geometry and gridding strategy	104
	4.5.2	Boundary conditions	104
	4.5.3	CFD options and assumptions	105
	4.5.4	Solution procedure	106
	4.5.5	CFD Results and discussion	106
	<u>4.6 CFD S</u>	EN and mould model: reduced widths	<u>116</u>
	4.7 Conclu	usion of base case CFD modelling	<u>119</u>
<u>5.</u>	DESIGN	OPTIMISATION OF SEN	<u>120</u>
	<u>5.1 Autom</u>	nation of Optimisation process	<u>121</u>
	5.1.1	Parameterising: Automation of grid generation	121
	5.1.2	Automation of CFD-Optimiser interface	124
	5.2 Candio	date objective functions and constraint functions	<u>127</u>
	5.3 Design	n variables x	<u>130</u>
	5.4 Optim	isation process	<u>132</u>

TABLE OF C	University of Pretoria etd – De Wet, G J (2005) ONTENTS x	
TABLE OF C		
5.4.1	Response Surface Methodology	133
5.4.2	Optimisation algorithm: LFOPC	137
5.4.3	Variable screening (ANOVA)	138
<u>5.5 2D Op</u>	timisation: An example of the design optimisation process	<u>139</u>
5.5.1	Identification: Objective and constraint functions	139
5.5.2	Design variables x	140
5.5.3	Formulation of Optimisation problem	141
5.5.4	Base case and first perturbation set: discussion and results	143
5.5	6.4.1 Geometry and Mesh for 2D	144
5.5	5.4.2 SEN nozzle height in optimisation study: 3D vs. 2D	145
5.5	5.4.3 Boundary conditions	146
5.5	5.4.4 Solver solution procedure	146
5.5.5	Automation for design optimisation	146
5.5	G.5.1 GAMBIT parameterised script file	146
5.5	5.5.2 FLUENT script files	147
5.5	5.5.3 LS-OPT command file	147
5.5.6	Results and discussion of subsequent design iterations	148
5.5	5.6.1 Flow and Meniscus Turbulent Kinetic Energy Results: b	base
ca	Se	148
5.5	6.2 Optimisation History	148
5.5.7	Optimum design with design variables x^*	151
<u>5.6 3D SE</u>	N design space exploration	<u>154</u>
5.6.1	Computational expensive 3D models	154
5.6.2	Design space exploration	156
5.6	6.2.1 General and design variables	156
5.6	5.2.2 Formulation of multi-objective function	157
5.6	6.2.3 Geometry and mesh (parameterisation of mesh)	158
5.6	5.2.4 Boundary conditions and other settings	160
5.6	5.2.5 Experimental design	161
5.6.3	Results: Design space exploration	163
5.6.4	Design space exploration: geometry of chosen design	166
5.6.5	Validation of chosen design with 40%-scaled water model	167

5.6.6 CFD comparison between chosen design and base case model 169

xi

TABLE OF	CONTENTS	

6.	FUTURE V	WORK AND CONCLUSION	<u>172</u>
	6.1 Future 2	3D Optimisation	<u>174</u>
	6.1.1	CFD model: further refinements and comments	174
	6.1.	1.1 Symmetry assumption	174
	6.1.	1.2 Steady / unsteady behaviour of SEN-mould solutions	174
	6.1.	1.3 More refined CFD models (especially on wide moulds)	176
	6.1.	1.4 Temperature	176
	6.1.	1.5 Complexity of flow: natural frequency in SEN design and	
	mou	ald widths	178
	6.1.	1.6 Volume of Fluid (VOF) methods for meniscus modelling	178
	6.1.2	Parameterisation: full 3D optimisation	180
	6.2 Robusti	ness studies on optimum designs	<u>181</u>
	6.3 Other g	lobal approximation techniques	<u>182</u>
	6.3.1	Kriging and optimisation with CFD	182
	6.3.2	Neural network approximations	183
	6.4 Conclus	sion	<u>183</u>
<u>R</u> E	FERENCES	5	<u>184</u>
<u>A</u> F	PENDICES		<u>190</u>
Ap	pendix	Description	р.
<u>Ap</u>	pendix A	Related literature on continuous casting (tundish and ladle	<u>190</u>
		work)	
Ap	pendix B	Water model design: Detail drawings of bottom tank:	<u>194</u>
		Unfolded sheet metal drawings together with folding	
		instructions	
Ap	pendix C	Water model design: Frame design hand calculations	<u>199</u>
		confirming choice of steel sections	
Ap	pendix D	Water model design: Detail hand drawings of 3-part	<u>205</u>
-	-	Aluminium SEN	
Ap	pendix E	Water model construction: More information and Gantt-chart	<u>211</u>
		for water model construction	

TABLE OF CONTENTS

xii

Appendix	Description	р.
<u>Appendix F</u>	Water model results	<u>215</u>
<u>Appendix G</u>	Drawing of existing Columbus Stainless SEN (old SEN)	<u>220</u>
<u>Appendix H</u>	Drawing of new Columbus Stainless SEN (new SEN)	<u>222</u>
Appendix I	Comparison of 2D CFD results: VOF free surface as meniscus	<u>225</u>
	boundary vs. slip wall as meniscus boundary	
Appendix J	Optimisation automation: GAMBIT script file for 2D SEN and	<u>228</u>
	mould half model	
<u>Appendix K</u>	Optimisation automation: Combined FLUENT script file for	<u>237</u>
	2D SEN and mould half model (set-up file and run file)	
Appendix L	Optimisation automation: LS-Opt command file (com) for 2D	<u>241</u>
	SEN and mould half model	
Appendix M	GAMBIT 3D script file for generating 3D quarter model	<u>244</u>
	meshes (Parameterised for 5 parameters or variables)	
<u>Appendix N</u>	3D design exploration: Results: contours of velocity	<u>250</u>
	magnitude	
Appendix O	3D design exploration: Results: best 4 designs symmetry plane	<u>264</u>
	comparisons	
Appendix P	3D design exploration: Results: best 4 designs iso-surfaces	<u>282</u>
Appendix Q	3D design exploration: Validation of chosen or optimum SEN	<u>286</u>
	design with 40%-scaled water model	

xiii

LIST OF TABLES

		р.
1.	CHAPTER 1: INTRODUCTION	1
2.	CHAPTER 2: LITERATURE SURVEY	7
3.	CHAPTER 3: EXPERIMENTAL VERIFICATION: 40%-SCALED WATER	
M	ODEL AND RESULTS	40
	Table 3.1: Summary of Fr-similarity and Re-similarity calculations	62
	Table 3.2: Preliminary validation of 40%-scaled water model: comparison with full-scale model	64
4.	CHAPTER 4: CFD MODELLING AND VERIFICATION OF BASE CASE	70
	Table 4.1: Comparison between different turbulence models [10]	88
	Table 4.2: Comparison between different near-wall treatments [10]	90
	Table 4.3: Verification of 2D CFD model (slip wall and free surface meniscus boundary condition) with 40%-scaled water model. CFD results displayed using contours of velocity	
	magnitude	98
	Table 4.4: Verification of 2D CFD model (slip wall and free surface meniscus boundary condition) with 40%-scaled water model. CFD results displayed using contours of velocity	
	magnitude	100
	Table 4.5: Verification of base case 3D CFD model (comparing RSM and k- ω (standard) as turbulence models) with 40%-scaled water model; 1575mm full-scale width. CFD results on	
	quarter model centre plane displayed using contours of velocity magnitude	102
5.	CHAPTER 5: DESIGN OPTIMISATION OF SEN	120
	Table 5.1: Constant parameters used in optimisation study: geometrical and steel properties	141
	Table 5.2: Constant parameters used in optimisation study: energy/temperature considerations	141
	Table 5.3: Ranges (or bounds) of SEN design variables and initial design for optimisation study	141
	Table 5.4: Summary of design optimisation results	152
	Table 5.5: Constant parameters used in 3D design space exploration optimisation study:	
	geometrical and steel properties	157
	Table 5.6: Experiments in central-composite design, including base case (experiment 1.0) and	
	linear and quadratic optima fits by LS-OPT	162
	Table 5.7: Chosen design following 3D design space exploration	166
	Table 5.8: Values: comparison between base case and chosen design from 3D exploration study	170

University of Pretoria etd – De Wet, G J (2005)		
LIST OF TABLES xiv	_	
6. CHAPTER 6: FUTURE WORK AND CONCLUSION	172	
REFERENCES	184	
APPENDICES	190	
Appendix C	199	
Table C.1: Steel sections for water model frame	199	
Appendix F Table F.1: List of water model experiments and reference Figure number	215 216	
Appendix I Table I.1: Details of comparison between the two boundary condition options (slip wall vs. free	225	
surface)	225	
Appendix N	250	
Table N.1: Experiments in central-composite design, including base case (experiment 1.0) and		
linear and quadratic optima fits by LS-OPT	251	
Table N.2: Summary Results data: maximum TKE and maximum velocity on meniscus of each		
SEN design for both widths (1060 and 1250mm)	252	

xv

LIST OF FIGURES

		P.
1.	CHAPTER 1: INTRODUCTION	1
	Figure 1.1: Continuous Casting process [7]	2
2.	CHAPTER 2: LITERATURE SURVEY	7
	Figure 2.1: Principle types of continuous casting machines [8]	10
	Figure 2.2: Evolution of continuous casting machine design [8]	11
	Figure 2.3: Horizontal caster with stationary mould and movable tundish in casting position	13
	Figure 2.4: Connection mode between tundish and mould, through a refractory nozzle	13
	Figure 2.5: SEN in the current continuous casting process and typical influential parameters [7]	15
	Diagram 2.1: Continuous casting Literature classification	17
3.	CHAPTER 3: EXPERIMENTAL VERIFICATION: 40%-SCALED WATER	
M	ODEL AND RESULTS	40
	Figure 3.1: Design concept: open tank with h as flow velocity source	41
	Figure 3.2: Schematic representation of SEN/mould water model and layout	42
	Figure 3.3: General layout of water model (top tank, frame and bottom tank - perspex mould not	
	shown)	43
	Figure 3.4: Isometric view of upper cylindrical tank and detachable lid	45
	Figure 3.5: Stopper inside the upper cylindrical tank	46
	Figure 3.6: Application of dye through the stopper – hole drilled through stopper	46
	Figure 3.7: Isometric view of bottom rectangular tank (baffles inside not shown)	48
	Figure 3.8: Aluminium SEN (3 different parts) shown in exploded view	50
	Figure 3.9: Water model being filled up: SEN nozzles exhausting in the air	52

4. CHAPTER 4: CFD MODELLING AND VERIFICATION OF BASE CASE70

Figure 3.10: Upgraded flow control and flow rate measurement section at the mould model outlet

Figure 3.12: Comparison between full-scale ADVENT water model [32] and the 40%-scaled

Figure 3.13: Comparison between full-scale ADVENT water model [32] and the 40%-scaled

Figure 3.14: Comparison between full-scale ADVENT water model [32] and the 40%-scaled

Figure 3.11: Improved modular SEN bottom insert compared with previous insert

model, satisfying the Fr-similarity in the latter case

Figure 4.1: Diagram: Summary of the development of the base case CFD model

model, satisfying Fr-similarity in the latter case: 1060mm mould width

model, satisfying Fr-similarity in the latter case: 1250mm mould width

74

54

55

64

66

67

n

LIST OF FIGURES	
-----------------	--

xvi

	Figure 4.2: Basic geometry of base case SEN	76
	Figure 4.3: Location of SEN outlet port / mould inlet port (quarter model)	78
	Figure 4.4: Static and Dynamic pressure distribution in 3D SEN port face (quarter model)	79
	Figure 4.5: Typical boundary conditions for momentum-only CFD model validation (quarter	
	model)	81
	Figure 4.6: Unstructured grid in area where complex jet flow occurs: incorrect solutions often	
	result (quarter model, 3D)	82
	Figure 4.7: Structured grid (hexahedral cells) in complex flow area results in more repeatable	
	solutions (quarter model, 3D)	83
	Figure 4.8: Residuals during solution procedure ('recipe')	96
	Figure 4.9: Comparison of 2D and 3D velocity predictions on centre plane of mould for 3D (base	
	case SEN design)	103
	Figure 4.10: Residuals history (as a function of iteration number)	108
	Figure 4.11: Physical property (maximum TKE on meniscus) as a function of iteration number	108
	Figure 4.12: Base case velocity magnitude contours on symmetry plane: range $0 - 1$ m/s	111
	Figure 4.13: Base case vorticity magnitude contours on symmetry plane: range $0 - 25$ 1/s	111
	Figure 4.14: Base case helicity magnitude contours on symmetry plane: range $-0.5 - 0.5 \text{ m/s}^2$	112
	Figure 4.15: Base case turbulent kinetic energy contours on symmetry plane: range $0 - 0.1 \text{ m}^2/\text{s}^2$	112
	Figure 4.16: Base case wall shear stress contours on wide mould face: range $0 - 10$ Pa	113
	Figure 4.17: Base case temperature contours on symmetry plane: range 1723 – 1758 K	113
	Figure 4.18: Base case path lines coloured by vorticity magnitude: range $0 - 25$ 1/s (isometric	
	view)	114
	Figure 4.19: Base case iso-surface of velocity magnitude (v=0.25m/s) coloured by turbulent	
	kinetic energy: range $0 - 0.1 \text{ m}^2/\text{s}^2$	114
	Figure 4.20: Base case velocity vectors coloured by velocity magnitude: range $0 - 1$ m/s	
	(isometric view)	115
	Figure 4.21: Base case turbulent kinetic energy contours on meniscus surface: range $0 - 0.001$	
	m^2/s^2 (top view)	116
	Figure 4.22: Comparison: Old SEN 40%-scaled water model with 3D CFD model (contours of	
	velocity) on centre plane	117
	Figure 4.23: Submergence depth does not influence jet angle significantly at Fr-similarity flow	
	rate	118
5.	CHAPTER 5: DESIGN OPTIMISATION OF SEN	120
	Figure 5.1: Design optimisation: parameterisation of 2D SEN	122
	Figure 5.2: Diagram depicting the tasks (including coordinating tasks) performed by LS-OPT	
	during the design optimisation process	127
	Figure 5.3: Design space terminology (design space, region of interest and experimental design	,
	points): response surface methodology [57]	135

LIST	0F	FIGURES	
	U 1	110 CILLS	

xvii

Figure 5.4: Example of response surface approximated over experimental design points [57]	135
Figure 5.5: Successive sub-region reduction scheme [57]	136
Figure 5.6: Successive sub-region reductions combined with optimisation of response surfaces	
(not shown) converges to an optimum [57]	137
Figure 5.7: Structured mesh of SEN and mould 2D half-model	144
Figure 5.8: Side view of the 3D SEN nozzle and subsequent reduction of port height for average	
height (2D height)	145
Figure 5.9: Flow pattern (velocity vectors) and point of impingement of initial design	148
Figure 5.10: Optimisation history: Objective function (max TKE) and maximum velocity on	
meniscus	150
Figure 5.11: Optimisation history: Constraint functions g_1 (geometrical constraint) and g_3 (jet	
direction constraint)	150
Figure 5.12: Optimisation history: Design variables	151
Figure 5.13: Comparison of turbulent kinetic energy on meniscus surface between initial design	
and optimum design (2D half model)	153
Figure 5.14: Turbulent kinetic energy $[m^2/s^2]$ contours in flow field of optimum design compared	
with initial design	154
Figure 5.15: Typical boundary conditions for quarter model of 3D CFD SEN and mould model	161
Figure 5.16: Central-composite design experimental points	163
Figure 5.17: Multi-objective values of the experiments listed in Table 5.6	164
Figure 5.18: Geometry of chosen design (port angle = 20° downwards, port height = 80 mm, no	
well)	167
Figure 5.19: Validation of optimum SEN design at mould width 1250mm and 200mm	
submergence depth, using contours of velocity (scale $0 - 1$ m/s)	168
Figure 5.20: Validation of optimum SEN design at mould width 1250mm and 200mm	
submergence depth, using path lines coloured by velocity magnitude (scale $0 - 1$ m/s)	169
Figure 5.21: Comparison between TKE on the meniscus of the base case and chosen design from	
3D exploration study for casting conditions indicated in Table 5.8	170
CHAPTER 6: FUTURE WORK AND CONCLUSION	172
Figure 6.1: Top view of 3D model of SEN and mould, indicating heat flux boundary conditions	
causing areas of too low temperature	177

REFERENCES

6.

184

T OF FIGURES xviii	
PENDICES	
Appendix A	
Diagram A.1: Tundish classification of literature	
Appendix B	
Figure B.1: Detail folded open drawing extracted from Solid Edge: Belly or base	
Figure B.2: Detail folded open drawing extracted from Solid Edge: Top	
Figure B.3: Detail folded open drawing extracted from Solid Edge: Side, left	
Figure B.4: Detail folded open drawing extracted from Solid Edge: Side, right	
Figure B.5: Detail folded open drawing extracted from Solid Edge: Support and baffle, right	
Figure B.6: Detail folded open drawing extracted from Solid Edge: Support and baffle, middle an	ł
left	
Appendix C	
Figure C.1: Water model frame, front view: Detail hand drawing	
Figure C.2: Water model frame, side view: Detail hand drawing	
Figure C.3: Water model frame, top view and detail: Detail hand drawing	
Figure C.4: Water model frame: detail of hanging sections: Detail hand drawing	
Appendix D	
Figure D.1: Aluminium SEN: Assembly drawing: full section	
Figure D.2: Aluminium SEN: Assembly drawing: side view	
Figure D.3: Aluminium SEN: Auxiliary sections and views	
Figure D.4: Mandrel for manufacture of Aluminium SEN inside	
Figure D.5: Assembly drawing of 40%-scaled stopper and SEN upper part	
Appendix F	
Figure F.1: Old SEN (1060mm width, 150mm submergence depth, 1.1 m/min full-scale cas	t
speed) snapshots	
Figure F.2: Old SEN (1060mm width, 150mm submergence depth, 1.0 m/min full-scale cas	t
speed) snapshots	
Figure F.3: New SEN (1060mm width, 150mm submergence depth, 1.0 m/min full-scale cas	t
speed) snapshots	
Figure F.4: Old SEN (1060mm width, 80mm submergence depth, 1.0 m/min full-scale cast speed)
snapshots	
Figure F.5: New SEN (1060mm width, 80mm submergence depth, 1.0 m/min full-scale cas	t
speed) snapshots	
Figure F.6: Old SEN (1250mm width, 150mm submergence depth, 1.0 m/min full-scale cas	t
speed) snapshots	

LIST OF FIGURES

xix

Figure F.7: New SEN (1250mm width, 150mm submergence depth, 1.0 m/min full-scale cast	
speed) snapshots	219
Figure F.8: Old SEN (1250mm width, 80mm submergence depth, 1.0 m/min full-scale cast speed)	
snapshots	219
Figure F.9: New SEN (1250mm width, 80mm submergence depth, 1.0 m/min full-scale cast	
speed) snapshots	219
Appendix G	220
Figure G.1: Old SEN Columbus Stainless: Official Drawings (copyright Vesuvius)	221
Appendix H	222
Figure H.1: New SEN Columbus Stainless: Official Drawings (copyright Vesuvius)	224
Appendix I	225
Figure I.1: 2D CFD-model meniscus boundary condition comparison: base case (Old SEN)	
(comparing velocity contours of magnitude)	226
Figure I.2: CFD-model (2D) meniscus boundary condition comparison: base case (New SEN)	
(comparing velocity contours of magnitude)	226
Appendix L	241
Figure L.1: Diagram depicting the tasks (including coordinating tasks) performed by LS-OPT	
during the design optimisation process	242
Appendix N	250
Figure N.1: Graphical display of data in Table N.2	253
Figure N.2: Experiment 1.0 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	254
Figure N.3: Experiment 1.1 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	254
Figure N.4: Experiment 1.2 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	255
Figure N.5: Experiment 1.3 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	255
Figure N.6: Experiment 1.4 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	256
Figure N.7: Experiment 1.5 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	256
Figure N.8: Experiment 1.6 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	257
Figure N.9: Experiment 1.7 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	257
Figure N.10: Experiment 1.8 contours of velocity magnitude on centre plane (range 0 - 1 m/s)	258
Figure N.11: Experiment 1.9 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	258
Figure N.12: Experiment 1.10 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	259
Figure N.13: Experiment 1.11 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	259
Figure N.14: Experiment 1.12 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	260
Figure N.15: Experiment 1.13 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	260

xx

Figure N.16: Experiment 1.14 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	261
Figure N.17: Experiment 1.15 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	261
Figure N.18: Experiment 1.16 contours of velocity magnitude on centre plane (range $0 - 1$ m/s)	262
Figure N.19: Experiment 2.0_linear contours of velocity magnitude on centre plane (range $0 - 1$	
m/s)	262
Figure N.20: Experiment 2.0_quadratic contours of velocity magnitude on centre plane (range 0 -	
1 m/s)	263
Appendix O	264
Figure O.1: Contours of velocity magnitude on the symmetry plane (range $0 - 1$ m/s)	266
Figure O.2: Contours of helicity on the symmetry plane (range $-0.5 - 0.5 \text{ m/s}^2$)	266
Figure O.3: Contours of turbulent kinetic energy on symmetry plane (range $0 - 0.1 \text{ m}^2/\text{s}^2$)	267
Figure O.4: Contours of vorticity on the symmetry plane (range $0 - 25 \text{ s}^{-1}$)	267
Figure O.5: Contours of shear stress on the wide mould walls (range $0 - 10$ Pa)	268
Figure O.6: Contours of temperature on the symmetry plane (range 1723 – 1758 K)	268
Figure O.7: Path lines originating from the SEN inlet, coloured by vorticity magnitude (range of	
vorticity $0 - 25 \text{ s}^{-1}$)	269
Figure O.8: Contours of velocity magnitude on the symmetry plane (range $0 - 1$ m/s)	270
Figure O.9: Contours of helicity on the symmetry plane (range $-0.5 - 0.5 \text{ m/s}^2$)	270
Figure O.10: Contours of turbulent kinetic energy on symmetry plane (range $0 - 0.1 \text{ m}^2/\text{s}^2$)	271
Figure O.11: Contours of vorticity on the symmetry plane (range $0 - 25 \text{ s}^{-1}$)	271
Figure O.12: Contours of shear stress on the wide mould walls (range $0 - 10$ Pa)	272
Figure O.13: Contours of temperature on the symmetry plane (range 1723 – 1758 K)	272
Figure O.14: Path lines originating from the SEN inlet, coloured by vorticity magnitude (range of	
vorticity $0 - 25 \text{ s}^{-1}$)	273
Figure O.15: Contours of velocity magnitude on the symmetry plane (range $0 - 1$ m/s)	274
Figure O.16: Contours of helicity on the symmetry plane (range $-0.5 - 0.5 \text{ m/s}^2$)	274
Figure O.17: Contours of turbulent kinetic energy on symmetry plane (range $0 - 0.1 \text{ m}^2/\text{s}^2$)	275
Figure O.18: Contours of vorticity on the symmetry plane (range $0 - 25 \text{ s}^{-1}$)	275
Figure O.19: Contours of shear stress on the wide mould walls (range $0 - 10$ Pa)	276
Figure O.20: Contours of temperature on the symmetry plane (range 1723 – 1758 K)	276
Figure O.21: Path lines originating from the SEN inlet, coloured by vorticity magnitude (range of	
vorticity $0 - 25 \text{ s}^{-1}$)	277
Figure O.22: Contours of velocity magnitude on the symmetry plane (range $0 - 1$ m/s)	278
Figure O.23: Contours of helicity on the symmetry plane (range $-0.5 - 0.5 \text{ m/s}^2$)	278
Figure O.24: Contours of turbulent kinetic energy on symmetry plane (range $0 - 0.1 \text{ m}^2/\text{s}^2$)	279
Figure O.25: Contours of vorticity on the symmetry plane (range $0 - 25 \text{ s}^{-1}$)	279
Figure O.26: Contours of shear stress on the wide mould walls (range $0 - 10$ Pa)	280
Figure O.27: Contours of temperature on the symmetry plane (range 1723 – 1758 K)	280

Figure O.28: Path lines originating from the SEN inlet, coloured by vorticity magnitude (range of vorticity $0 - 25 \text{ s}^{-1}$) 281

Appendix P	282
Figure P.1: Iso-surface of velocity coloured by turbulent kinetic energy (range $0 - 0.1 \text{ m}^2/\text{s}^2$)	284
Figure P.2: Iso-surface of velocity coloured by turbulent kinetic energy (range $0 - 0.1 \text{ m}^2/\text{s}^2$)	284
Figure P.3: Iso-surface of velocity coloured by turbulent kinetic energy (range $0 - 0.1 \text{ m}^2/\text{s}^2$)	285
Figure P.4: Contours of turbulent kinetic energy on symmetry plane (range $0 - 0.1 \text{ m}^2/\text{s}^2$)	285
Appendix Q	286
Figure Q.1: Validation of optimum SEN design at 80mm submergence depth, using contours of	
velocity (scale $0 - 1 \text{ m/s}$)	287
Figure Q.2: Validation of optimum SEN design at 80mm submergence depth, using path lines	
coloured by velocity magnitude (scale $0 - 1 \text{ m/s}$)	287
Figure Q.3: Validation of optimum SEN design at 150mm submergence depth, using contours of	
velocity (scale $0 - 1 \text{ m/s}$)	288
Figure Q.4: Validation of optimum SEN design at 150mm submergence depth, using path lines	
coloured by velocity magnitude (scale $0 - 1 \text{ m/s}$)	288