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Increasing prominence is given to the role of optimization in engineering. The global optimization
problem is in particular frequently studied, since this difficult optimization problem is in general
intractable. As a result, many a solution technique have been proposed for the global optimization
problem, e.g. random searches, evolutionary computation algorithms, taboo searches, fractional
programming, etc. This study is concerned with the recently proposed zero-order evolutionary
computation algorithm known as the particle swarm optimization algorithm (PSOA). The follow-
ing issues are addressed:

1. It is remarked that implementation subtleties due to ambiguous notation have resulted in
two distinctly different implementations of the PSOA. While the behavior of the respective
implementations is markedly different, they only differ in the formulation of the velocity
updating rule.

In this thesis, these two implementations are denoted by PSOAF1 and PSOAF2 respectively.

2. It is shown that PSOAF1 is observer independent, but the particle search trajectories collapse
to line searches in n-dimensional space.

In turn, for PSOAF2 it is shown that the particle trajectories are space filling in n-dimensional
space, but this implementation suffers from observer dependence.
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It is also shown that some popular heuristics are possibly of less importance than originally
thought; their greatest contribution is to prevent the collapse of particle trajectories to line
searches.

3. A novel PSOA formulation, denoted PSOAF1* is then introduced, in which the particle tra-
jectories do not collapse to line searches, while observer independence is preserved. How-
ever, the observer independence is only satisfied in a stochastic sense, i.e. the mean objective
function value over a large number of runs is independent of the reference frame.

Objectivity and effectiveness of the three different formulations are quantified using a popu-
lar unimodal and multimodal test set, of which some of the multimodal functions are decom-
posable. However, the objective functions are evaluated in both the unrotated, decomposable
reference frame, and an arbitrary rotated reference frame.

4. Finally, a practical engineering optimization problem is studied. The PSOA is used to find
the optimal shape of a cantilever beam. The objective is to find the minimum vertical dis-
placement at the edge point of the cantilever beam. In order to calculate the objective func-
tion the finite element method is used. The meshes needed for the linear elastic finite element
analysis are generated using an unstructured remeshing strategy. The remeshing strategy is
based on a truss structure analogy.
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Toenemende belangrikheid word aan die rol van optimering in ingenieurswese gegee. Veral die
globale optimeringsprobleem word dikwels bestudeer, aangesien hierdie moelike optimeringspro-
bleem in die algemeen onoplosbaar is. Gevolglik is daar voorheen al verskeie oplossingstegnieke
voorgestel vir die globale optimeringsprobleem, soos byvoorbeeld lukrake soektogte, evolusionêre
berekeningsalgoritmes, taboe soektogte, fraksionele programmering, ens. Hierdie studie is ver-
moeid met die onlangs gepostuleerde nulde-orde evolusionêre berekeningsalgoritme wat bekend
staan as die partikel swerm optimeringsalgoritme (PSOA). Die volgende kwessies word bespreek:

1. Daar word opgemerk dat twee verskillende formulerings van die PSOA bestaan, moontlik
as gevolg van onduidelike notasie. Alhoewel die gedrag van die onderskeie implementer-
ings dramaties verskil, verskil hulle slegs ten opsigte van die formulering van die snelheids-
opdateringswet.

In hierdie tesis word die onderskeie implementerings as PSOAF1 en PSOAF2 aangedui.

2. Verder word aangetoon dat PSOAF1 waarnemer onafhanklik is, maar dat die partikel bane
in n-dimensionele ruimte na lyn soektogte ineenstort.

Om die beurt, word daar vir PSOAF2 aangetoon dat die partikel bane ruimtevullend is in
n-dimensionele ruimte, maar hierdie implementering is waarnemer afhanklik.

Daar word ook gewys dat sommige gewilde heuristieke moontlik van minder belang is as
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wat oorspronklik geag is. Daar word gewys dat hulle grootste bydrae waarskynlik is om
partikel baan ineenstorting na lyn soektogte te voorkom.

3. ’n Nuwe PSOA formulering word dan voorgestel, naamlik PSOAF1*. Partikel trajekte stort
nie na lyn soektogte ineen nie, terwyl waarnemer onafhanklikheid behou word. Waarne-
mer onafhanklikheid word egter slegs in ’n stogastiese sin bevredig, m.a.w. die gemiddelde
doelwit funksie waarde is onafhanklik van ’n koördinaatstelsel, gesien oor ’n groot aantal
verlope.

Objektiwiteit en effektiwiteit van die drie formulerings word gekwantifiseer deur gebruik
te maak van ’n gewilde unimodale en multimodale toets stel, waarvan die meerderheid
multimodale funksies skeibaar is. Nietemin word die doelwit funksies geëvalueer in beide
die ongeroteerde, skeibare, verwysingsraamwerk en ’n lukraak geroteerde verwysingsraam-
werk.

4. Laastens word ’n praktiese ingenieurs optimeringsprobleem bestudeer. Die PSOA word
aangewend om die optimale geometrie van ’n kantelbalk te vind. Die doelfunksie wat
geminimeer word is die vertikale verplasing by die eindpunt van die kantelbalk. Die doel-
funksies word bereken deur gebruik te maak van die eindige element metode. Die mase
wat benodig word vir die linieêr elastiese eindige element analises word gegenereer deur
van ’n ongestruktureerde hermasings-strategie gebruik te maak. Die hermasings-strategie is
gebaseer op ’n vakwerk struktuur analoog.
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Conceit of the Absurd - A sailor’s story

This story begins in the year 2002, as I reached my last year of formal enrollment as a sailor. My
fellow sailor friends and I used to meet up at a local tap and talk about the adventures to come, and
of possible treasures of gold.

As the year progressed I was adamant that I would set sail the following year for either Europe or
the middle East, as I considered some lucrative offers of possible gold treasures and adventure in
these distant and uncharted lands.

As the year came to an end, the sea tides turned.

I met Captain Groenwold and in the end I decided to trade adventures of Europe, and the mid-
dle East for adventures of another kind. The adventures that are about the journey and not the
destination.

As the year 2003 dawned, Captain Groenwold and I embarked on an adventure. The adventure
started calmly by sailing out of the harbor on a brig, affectionately referred to by the sailors as
SORG. At the boat’s command stood Captain Groenwold and on the deck stood I, a proud sailor.

We left the harbor and sailed into the open seas, that laid open for traveling and exploration. This
was my first time out on the ocean. As the harbor disappeared on the distant horizon I did not quite
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know where I was, but I knew I was out there, somewhere. Months past as we encountered some
light breezes and stormy clouds here and there.

Then one day Captain Groenwold got word that he was needed in a distant land. We anchored the
vessel at the nearest harbor and on board came co-Captain Kok to take command of the brig. Our
only contact with Captain Groenwold being the infamous message bottle system.

The vessel sailed further under co-Captain Kok’s command, over the calm seas and oceans. Every
now and then we would spot land here and there, for me the excitement grew as the frequency
of sightings of land increased. Some days the breezes became stronger than others as we set
forth towards the land. Not before long by the middle of 2004, the adventure turned into an epic
of Gulliver’s travels as we finally reached land. The epic started by us nearly shipwrecking the
preceding day after I misread the map. Fortunately, co-Captain Kok instantly realized my mistake
and recovered our situation. Nevertheless we anchored and set forth our exploration.

For months we set sail and anchored to explore various places, each an exotic place in it’s own
right. On one of the stops we picked up Captain Groenwold after his return from the distant lands.
The adventure continued, I was constantly fascinated by each place, and not before long it dawned.
What seemed to be vast and distant lands was actually one big island. We attempted to map what
we could of this beautiful island but as our supplies where running low, we had to set forth the
journey back home.

By the beginning of 2005, the adventure came to an end as our ship sailed into the harbor. As I
disembarked our ship and touched home soil I realized “I embarked on the right adventure”.
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Chapter 1

Introduction

1.1 Global optimization

Increasing prominence is given to the role of optimization in engineering, both in academia and
in industry. Computational power, combined with increased algorithm flexibility and simplicity,
allows for a faster transition of algorithm development in academia to industry.

In convex optimization, the local minimizer is characterized by the Karush-Kuhn-Tucker condi-
tions [1]. These conditions are necessary and sufficient to guarantee optimality.

In global optimization in general, no conditions are available to characterize the global optimizer,
and the optimization problem is intractable.

The difficulty of the general global optimization problem is further aggravated by

1. the presence of numerical noise,

2. the presence of infeasible regions in the design domain,

3. the presence of discontinuities,

4. a large number of design variables, and

5. the computational cost of evaluating an expensive objective function (simulation).

The large variety of solution techniques in global optimization is therefore not surprising. Recent
developments includes evolutionary computational algorithms, taboo searches, fractional program-
ming, dynamical searches, etc. [2].

This study is concerned with the evolutionary particle swarm optimization algorithm (PSOA),
introduced by Kennedy and Eberhart [3, 4]. Some advantages of the PSOA are that it is

1. gradient-free,

2. easy to parallelize, and

3. simple and easy to implement.

1
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CHAPTER 1. INTRODUCTION 2

1.2 Motivation

PSOA investigations are predominantly based on empirical test functions [5, 6, 7, 8, 9]. In these
investigations, the complexities of the algorithm are not broken into digestible units. An under-
standing of the fundamentals of the algorithm is therefore not easily achieved. In these studies,
judgment is largely passed based purely on the final objective function values that a particular
algorithm obtains.

Some researchers conduct empirical investigations to quantify the sequence effect of the algorithm
by observing the particle positions in the design domain at selected iterations for a single run [10].
Alternatively, the trace of positions of the swarm over a single run is observed [11, 12]. Although
some insight is gained into the behavior and convergence of the swarm, the stochastic nature of the
algorithm is neglected.

Ozcan and Mohan [13] conducted a deterministic trajectory analysis of a single particle by ne-
glecting the stochasticity of the algorithm. Clerc and Kennedy [14] extended the analysis to the
stochastic dynamic behavior of an individual particle in complex space, with the main focus on
constriction coefficients and achieving desirable dynamic characteristics for a particle. Trelea [15]
averaged the stochasticity in the PSOA, in an investigation based on dynamic system theory, to
increase the understanding of the dynamics of an individual particle. Zheng et al. [16] extended
the study of Ozcan and Mohan [13] and concluded that the inertia weight should increase over
time.

Although extensive research on the PSOA has been conducted, a basic understanding of the algo-
rithm still seems lacking. It is the aim of this study to gain fundamental insight into the PSOA.
It will be shown that there exist two different formulations of the PSOA. These formulations only
differ in the formulation of the velocity updating rule.

1.3 Objectives

The four objectives of this study are

1. to discern between the two different formulations of the PSOA,

2. to investigate observer independence of the PSOA,

3. to introduce a novel observer independent PSOA with diverse, space filling particle trajecto-
ries, and

4. to utilize the PSOA in shape optimization.

1.4 Approach

In attaining each objective, a different approach is followed:
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CHAPTER 1. INTRODUCTION 3

1. In order to discern between the different formulations, elementary linear algebra is used. In
order to quantify the differences, a numerical study is conducted.

2. The investigation of observer independence is conducted using Monte Carlo simulations. For
observer independence both translational and rotational invariance have to apply. Objectivity
is quantified with a numerical study in both the unrotated, and rotated reference frames.

3. Knowledge developed in 1. and 2. above is then used to develop a novel PSOA formulation.

4. In order to utilize the PSOA in shape optimization, an unstructured remeshing strategy is
implemented. This allows for large variations in designs, prominent in the initial phases of
the PSOA searches.

1.5 Thesis overview

The chapters in this thesis are self contained.

In Chapter 2, the problem formulation under consideration in Chapters 3 and 4 is presented, as well
as a very brief overview of the formulation of the PSOA, to allow for a brief historical overview of
the PSOA.

In Chapter 3, a detailed analysis of the particle swarm optimization algorithm (PSOA) is pre-
sented. It is shown that implementation subtleties due to ambiguous notation have resulted in two
distinctly different implementations of the PSOA, which have been used indiscriminately and un-
wittingly within the optimization community. However, discerning between these two implemen-
tations is shown to be of crucial importance. While the behavior of the respective implementations
is markedly different, they only differ in the formulation of the velocity updating rule. In fact, the
differences are merely due to subtle differences in the introduction of randomness into the algo-
rithm. For a population of p particles, it is shown that for the first implementation, the particle
trajectories collapse to p line searches. The second implementation does not suffer this drawback.
Instead, diverse stochastic search trajectories are retained. It is then shown that some popular
heuristics like maximum velocity limit, position restriction, craziness and high initial velocities
are possibly of less importance than originally thought; their greatest contribution is that they pre-
vent the collapse of particle trajectories to lines. Finally, it is emphasized that the determination
of optimal values for parameters like inertia, velocity limit, etc. has to be performed within the
context of the formulation used. To this extent, a proposed list of parameters and implementational
issues that should be reported when ‘tuning’ the PSOA is given.

In Chapter 4, the ability of the particle swarm optimization algorithm (PSOA) to satisfy objectiv-
ity, also called observer independence or frame indifference, is investigated. In Chapter 3 it was
shown that implementation subtleties have resulted in two distinctly different implementations of
the PSOA. The first implementation is now shown to be observer independent. In turn, the second
implementation of the PSOA is shown to suffer from observer dependence. A novel formulation
of the PSOA, in which the particle trajectories do not collapse to line searches, while observer in-
dependence is preserved, is then introduced. However, the observer independence is only satisfied
in a stochastic sense, i.e. the mean objective function value over a large number of runs is inde-
pendent of the reference frame. Objectivity and effectiveness of the three different formulations
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CHAPTER 1. INTRODUCTION 4

are quantified using a popular test set. The objective functions are evaluated in both the unrotated
reference frame, and an arbitrary rotated reference frame.

In Chapter 5, the PSOA is combined with an unstructured remeshing shape optimization environ-
ment. The remeshing strategy creates unstructured meshes from triangular elements, based on the
truss structure analogy proposed by Persson and Strang [17]. The PSOA is then used to search for
optimal shapes. Results for a popular beam problem are presented.

Finally, conclusions and recommendations are offered in Chapter 6.
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Chapter 2

Problem formulation and background

In this chapter, the problem formulation under consideration in Chapters 3 and 4 is presented,
as well as a very brief overview of the formulation of the PSOA, to allow for a brief historical
overview of the PSOA.

2.1 Global optimization problem formulation

For the sake of brevity, we restrict ourselves to the unconstrained or bounded constrained multi-
modal global optimization problem which we will define as follows:

Find the global minimum value f(x∗) of a given real-valued function f : D ⊆ Rn → R, such that

f ∗ = f(x∗) ≤ f(x), ∀ x ∈ D, (2.1)

where D is the allowable (bounded) design domain. Since this problem is intractable, the aim is
usually to find a suitably low approximation f̄ to f ∗.

2.2 Basic formulation of the PSOA

Consider a swarm of p particles in an n-dimensional design space. The position vector xi
k of each

particle i is updated by
xi

k+1 = xi
k + vi

k+1, (2.2)

where k is a unit pseudo time increment (iteration number). vi
k+1 represents the velocity vector

that is obtained from the velocity rule, given by

vi
k+1 = wvi

k + νi
k, (2.3)

where the inertia factor w [8] is a real number, typically between 0.4 and 0.9, and ν i
k is the stochas-

tic ‘velocity’ vector.

In turn, the term ν i
k consists of the summation of the terms c1(p

i
k − xi

k) and c2(p
g
k − xi

k), which
are however randomly scaled in a to be specified way. pi

k represents the best position vector of

5
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CHAPTER 2. PROBLEM FORMULATION AND BACKGROUND 6

particle i, while p
g
k represents the global best position vector of the complete swarm, up to time

step k. The cognitive and social scaling factors c1 and c2 are real numbers; both are usually equal
to 2. By selecting c1 = c2, the cognitive and social contributions are weighed equally.

The vectors (pi
k − xi

k) and (pg
k − xi

k) utilize the magnitudes and directions from a given particle’s
current position xi

k to the particle’s best position pi
k, and to the global best position p

g
k.

2.3 Brief history of PSOA

The particle swarm optimization algorithm (PSOA) was introduced by Kennedy and Eberhart [3, 4]
in 1995. Since then, the PSOA has been applied to optimization problems in a variety of disci-
plines. To name but a few, neural network training [3, 4, 5, 6], biochemistry [18], manufacturing
[10], electromagnetism [11, 19, 20], electrical power [21, 22], optics [12] and structural optimiza-
tion [23, 24].

The initial implementations of the PSOA contained two parameters, namely the maximum velocity
limit [4] and the acceleration constant. The acceleration constant consists of two parts referred to
as the cognitive and social constants c1 and c2 [25]. The cognitive and social constants are usually
implemented statically, although dynamic implementations have also been studied [26]. Kennedy
and Eberhart [3] initially proposed that c1 = c2 = 2.

Shi and Eberhart [8] introduced an additional parameter, referred to as the inertia weight w. Static
and dynamic implementations of the inertia weight exist. Three dynamic inertia implementations
are the frequently encountered reducing inertia [8, 26, 27], increasing inertia [16] and unstructured
inertial adjustment [28]. Recently, Clerc [14, 29] introduced a new formulation, referred to as
constriction.

Particle position limits can be implemented to ensure that the particle searches are confined to the
defined design domain. The limits are usually implemented as constraints on each design vari-
able. There are various strategies to accommodate the boundary constraints or to enforce position
limitation. A complete discussion is given by Robinson and Rahmat-Samii [30].

The evaluation of the objective function value at a given iteration can occur either synchronously or
asynchronously [31]. In the synchronous update method, the swarm’s positions are updated before
the objective function evaluations occur at the updated positions. Hence the particle best and global
best positions can only be updated at the end of each iteration. In contrast, in the asynchronous
implementation, the objective function is evaluated directly after a position update for a particle
occurs. Therefore, the updates of the particle best position and the global best position occur after
each particle updates its position. In the synchronous implementation all the particles move at
once, whereas in the asynchronous update implementation, the particles move one after the other.

The PSOA methodology was extended through various hybrid PSOA implementations. Hybrid
PSOA’s can change the applicability of the algorithm, by incorporating gradient information [32,
33]. Hybrid PSOA’s alter the empirical performance of the algorithm by various strategies such as
reducing the stochastic terms in the velocity rule [3, 6, 29] or increasing the stochastic terms in the
velocity rule [34, 35].
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Chapter 3

Diversity in the PSOA

3.1 Introduction

The aim of evolutionary strategies is to improve on the performance of random searches in op-
timization [36]. This is accomplished by identifying regions containing good designs. It is then
assumed that searches in the region of good designs may uncover further improved designs. Vari-
ous strategies exist to identify and explore regions with a high probability of improved candidate
solutions. These strategies distinguish between different evolutionary computation algorithms;
the algorithms include genetic programming [37], genetic algorithms [38], evolutionary strategies
[39], differential evolution [40] and the particle swarm optimization algorithm (PSOA) [3, 4].

The PSOA was introduced by Kennedy and Eberhart [3] as a gradient free stochastic optimization
algorithm. The fundamental principle behind the PSOA is the evolutionary advantages that the
sharing of information offers. This is often known as ‘collaborative searching’.

The PSOA is quite simple: At first, a swarm of p particles is randomly deployed in an n-dimensional
design domain. The particles then update their positions in the design domain over unit time in-
crements using a simple stochastic rule, known as the ‘velocity rule’.

The quality of each particle’s position at each iteration is then evaluated using the objective or
cost function. Each particle’s cognitive memory allows it to remember it’s own best cost function
value, with associated position, over time. Importantly, the social interaction and awareness of the
particles allows them to also remember ‘fit’ or ‘good’ cost function values the swarm itself found
over time. The particles’ movement can be over a continuous domain, a discrete domain [6, 41] or
a mixed discrete-continuous domain.

The original formulation of Kennedy and Eberhart [3] is repeated here verbatim:

vx[ ][ ] = vx[ ][ ]
+2 ∗ rand() ∗ (pbest[ ][ ] − presentx[ ][ ])
+2 ∗ rand() ∗ (pbestx[ ][gbest] − presentx[ ][ ]).

The bracket pair [ ][ ] represents an n × p matrix, while rand() supposedly represents a scalar
uniform random number. The rightmost terms between round brackets (·) in the second and third
lines are denoted the cognitive and social components of learning, respectively.

7
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CHAPTER 3. DIVERSITY IN THE PSOA 8

The widespread use of, and the interest in, the PSOA, attests to the brilliance of the idea of Kennedy
and Eberhart. However, their notation is not unambiguous: It is unclear whether the random num-
bers are scalar numbers which simply scale the magnitude of the cognitive and social components
of learning, or whether the random numbers are vectors that scale each component of the cognitive
and social components of learning. Ambiguous notation persists in the literature and the reported
(i.e. notation) implementation is frequently different to the actual implementation. Examples of
the magnitude scaling notation are [41, 42, 43, 44, 45, 46]. Examples of the component scaling
notation are [3, 12, 13, 25, 35].

While the randomness issue outlined here may seem of minor importance, the implications are
quite severe, as will be demonstrated in sections to come.

In fact, it will be demonstrated that for the magnitude scaling implementation, the particle trajec-
tories collapse to p n-dimensional line searches. The component scaling implementation does not
suffer this drawback. Instead, diverse stochastic search trajectories are retained. (In this chapter,
the term ‘diversity’ implies the opposite of the collapse of a trajectory to a line.)

Also shown is that some popular heuristics like maximum velocity limit, position restriction, crazi-
ness and high initial velocities are possibly of less importance than originally thought; their greatest
contribution is that they prevent the collapse of particle trajectories to lines.

3.2 Notes on the PSOA formulation

The investigation of the PSOA is started by defining the instantaneous search domain of a particle,
viz. the domain to which the search of particle i at iteration k is restricted. Also introduced is the
term limit behavior, viz. the limiting behavior of the complete swarm when no improvement in
objective function value is experienced by any individual particle (and hence the swarm itself).

From Eqs. (2.2) and (2.3), observe that the instantaneous search domain depends on two inde-
pendent contributions, namely the deterministic contribution due to the term (xi

k + wvi
k), and the

stochastic contribution due to the term (ν i
k ∈ χi

k). The situation is depicted in Figure 3.1, where
we use the notation xi

k(j) to indicate the j-th component of vector xi
k.

x
i
k

+ wv
i
k

xi
k+1

(2)

xi
k+1

(1)

c1(pi
k
− x

i
k
)

ν
i
k
∈ χ

i
k

χ
i
k

c2(p
g

k
− x

i
k
)

Figure 3.1: The position vector xi
k+1, partitioned into a deterministic contribution (xi

k + wvi
k) and

a stochastic contribution (ν i
k ∈ χi

k).
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CHAPTER 3. DIVERSITY IN THE PSOA 9

The instantaneous search domain depends on the stochastic domain χi
k, the position vector xi

k, and
the inertia term wvi

k. In turn, the stochastic domain χi
k depends on the particle position xi

k, the
particle best position pi

k, the best global position p
g
k, and the cognitive and social scaling factors

c1 and c2.

The stochastic domain χi
k is bounded, and has an associated probability distribution, due to the

random scaling of finite scalars.

The position rule described by Eq. (2.2) may be viewed as being constructed in 2 separate steps:
1) stochastically generate a point ν i

k in the stochastic domain χi
k, and 2) deterministically translate

this point by xi
k + wvi

k.

Let us now proceed with an analysis of the two different formulations of the PSOA that have been
used in the literature.

3.3 Implementation subtleties: Formulation 1 (PSOAF1)

For the first formulation of the PSOA, which is denoted PSOAF1 here, the stochastic vector ν i
k is

given by
ν i

k = c1r
i
1k(p

i
k − xi

k) + c2r
i
2k(p

g
k − xi

k), (3.1)

where ri
1k and ri

2k represent two uniform real random scalar numbers between 0 and 1. ri
1k and ri

2k

are updated at every iteration k, and for each particle i in the swarm. Hence ri
1k and ri

2k simply
scale the magnitudes of the cognitive and social vectors c1(p

i
k − xi

k) and c2(p
g
k − xi

k).
For the sake of clarity, PSOAF1 is also described by the following pseudo code fragment:

for I = 1 to number of particles do
R1 = uniform random number
R2 = uniform random number
for J = 1 to number of dimensions do
V[I][J]=w*V[I][J]

+C1*R1*(P[I][J]-X[I][J])
+C2*R2*[G[I][J]-X[I][J])

enddo
X[I][J] = X[I][J]+V[I][J]

enddo

Let us now study the stochastic contribution ν i
k to the composition of the instantaneous search

domain given by Eq. (3.1). The cognitive vector (pi
k −xi

k) and the social vector (pg
k −xi

k) consist
of the directions and distances from the current position xi

k to the best particle position pi
k, and the

best global position p
g
k; the cognitive and social vectors can be anything from normal to parallel

w.r.t. each other.

When the cognitive vector (pi
k −xi

k) and the social vector (pg
k−xi

k) are not parallel, Eq. (3.1) may
be interpreted as the vector equation of a bounded plane P

i
k in n-dimensional space. The plane is

bounded, since the length of the cognitive and social vectors are scaled independently by the finite
scalars c1r

i
1k and c2r

i
2k. The bounded plane P

i
k is then translated in n-dimensional space by the

addition of xi
k and wvi

k, as depicted in Figure 3.2.
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i
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i
k
)

xi
k+1
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k+1
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k
− x

i
k
)

Pi
k

Figure 3.2: Partitioning the position vector xi
k+1 into a deterministic contribution (xi

k +wvi
k), and

a stochastic contribution (ν i
k ∈ P

i
k), for c1 = c2 = 2.

x
i
k

+ wv
i
k
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− x

i
k
)

xi
k+1

(1)

xi
k+1

(2)

(pg

k
− x

i
k
)
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k

Figure 3.3: Partitioning the position vector xi
k+1 into a deterministic contribution (xi

k +wvi
k), and

a stochastic contribution (ν i
k ∈ L

i
k), for c1 = c2 = 2.

If the cognitive vector (pi
k − xi

k) and the social vector (pg
k − xi

k) are parallel, Eq. (3.1) may be
interpreted as the vector equation of a bounded line L

i
k in n-dimensional space. Again, the line is

translated in the n-dimensional space by the addition of xi
k and wvi

k, as depicted in Figure 3.3.

3.3.1 Investigation of the limit behavior of PSOAF1

Let us study the 3-dimensional dynamic limiting behavior of a particle. For the sake of simplicity,
it is assumed that the best particle position pi

k, and the best global position p
g
k remain unchanged

for 25 consecutive iterations.

Randomly generate the best particle best position pi
0, the best global position p

g
0, and the initial

position vector xi
0 between -2 and 2 over each dimension. The initial velocity vector vi

0 is assumed
to equal 0. No velocity or position restriction is implemented. The study is conducted with c1 =
c2 = 2 and w = 0.8, being values which have frequently been used by others in combination with
constant inertia [8, 47, 45].

The sequence of 25 consecutive iterations, for a single particle, is depicted in Figure 3.4. The figure
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Figure 3.4: PSOAF1: Position vectors xi
k+1 generated for 25 consecutive iterations. The best

particle position pi
k and the best global position p

g
k are kept constant. Representing xi

0 is 4, pi
k is

©, and p
g
k is 2.

illustrates that the particle trajectory collapse to a straight line as the iteration counter increases.

Let us consider this (undesirable) phenomenon in more detail: The angle θ̄ between the cognitive
vector (pi

k − xi
k) and social vector (pg

k − xi
k) may be determined using

θ̄ = cos−1
( |(pi

k − xi
k) · (pg

k − xi
k)|

||(pi
k − xi

k)|| ||(p
g
k − xi

k)||
)

. (3.2)

If θ̄ = 0◦, the vectors (pi
k − xi

k) and (pg
k − xi

k) are parallel, when θ̄ = 90◦, the vectors (pi
k − xi

k)
and (pg

k − xi
k) are perpendicular.

The experiment performed in constructing Figure 3.4 is repeated. However, this time the algorithm
runs for 1000 iterations, and the average angle θ is determined from 100 independent runs. The
study is conducted for n = 3 and n = 30, to determine any dependency on dimensionality.

The results for a dimensionality of n = 3 and n = 30 are respectively depicted in Figures 3.5(a)
and 3.5(b). The figures illustrate that as the iterations progress, the average angle θ between the
cognitive vector (pi

k − xi
k) and the social vector (pg

k − xi
k) sharply decreases for both n = 3 and

n = 30. The initial decrease is rapid; after some 150 iterations, the average angle θ is less than
10◦.

The foregoing implies that for a given particle, the position vector xi
k+1 is updated in a ‘long narrow

bounded plane’. This is reminiscent of multiple line searches in a largely restricted domain.

It should be noted that for low values of the inertia w, complete collapse to line searches (θ = 0◦)
is demonstrated within 1000 iterations. Furthermore: for a given particle, it is impossible to escape
from this long narrow bounded plane until another particle’s best position p

g
k is updated, since each

particle’s best positions can only be updated in its own long narrow bounded plane.

For a swarm of p particles, this implies that if the best global position vector p
g
k is not updated, the
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Figure 3.5: PSOAF1: The average angle θ between (pi
k − xi

k) and (pg
k − xi

k) versus iteration
number, for a dimensionality of a) n = 3, and b) n = 30. For the 1000 iterations, the best particle
position pi

k and the best global position p
g
k are stationary.

swarm conducts p line searches in n-dimensional space for possibly a high number of consecutive
iterations. Worse: the line searches all intersect in the same point in the design domain, being the
best global position p

g
k. Again: if a particle updates its own best position vector pi

k, then it remains
searching in a line. Only when the global best position vector is updated do all other particles again
(briefly) search in planes.

For obvious reasons, the foregoing may have severe implications on algorithm performance.

3.4 Implementation subtleties: Formulation 2 (PSOAF2)

In the alternative implementation of the velocity rule, each component of (pi
k −xi

k) and (pg
k −xi

k)
is scaled independently. The vector directions are then no longer preserved.

In order to scale each component independently, the scalar random numbers ri
1k and ri

2k in the
stochastic vector in Eq. (3.1) are replaced by two random diagonal matrices Ri

1k and Ri
2k as fol-

lows:
νi

k = c1R
i
1k(p

i
k − xi

k) + c2R
i
2k(p

g
k − xi

k). (3.3)

The Ri
mk random diagonal matrices are explicitly given as

Ri
mk =











ρi
11k 0 · · · 0
0 ρi

22k · · · 0
... . . . ...
0 · · · · · · ρi

nnk











, m = 1, 2, (3.4)

with 0 < ρi
jjk < 1, j = 1, . . . , n a uniform random number [12, 48].
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The above form is used since it has previously been introduced by others. However, for future use,
the following equivalent form is proposed

ν i
k = c1r

i
1k ◦ (pi

k − xi
k) + c2r

i
2k ◦ (pg

k − xi
k), (3.5)

where the ◦ operator indicates element by element multiplication. Hence the random vectors r i
mk

are given as
ri

mk =
(

ρi
1k, ρi

2k, · · · , ρi
nk

)

, m = 1, 2. (3.6)

Eq. (3.5) is no longer a vector representation of a bounded plane P
i
k, since the non-zero compo-

nents of the cognitive vector (pi
k − xi

k) and the social vector (pg
k − xi

k) are independently scaled.
As a result, possible stochastic updates can occur in n-dimensional space.
The pseudo code for PSOAF2 is

for I = 1 to number of particles do
for J=1 to number of dimensions do
R1=uniform random number
R2=uniform random number
V[I][J]=w*V[I][J]

+C1*R1*(P[I][J]-X[I][J])
+C2*R2*[G[I][J]-X[I][J])

enddo
X[I][J] = X[I][J]+V[I][J]

enddo

The difference with the pseudo code given for PSOAF1 is subtle; the only difference is that the
random numbers are updated inside the for-loop that runs over the design dimensions (1, . . . , n).
However, the implications are severe.

3.4.1 Investigation of the limit behavior of PSOAF2

As with PSOAF1, the 3-dimensional trajectory of a particle when the best particle position pi
k, and

the best global position p
g
k are kept constant for 25 consecutive iterations is studied. In performing

the experiment, the same settings as for PSOAF1 are used, except for using a lower value of inertia,
namely w = 0.6, since PSOAF2 is unstable at high values of w.

Figure 3.6 suggests that the particle trajectories now do not collapse to line searches; instead,
‘diversity’ is retained. To verify this, the average angle θ between the cognitive vector (pi

k − xi
k)

and social vector (pg
k − xi

k) is calculated. A similar approach as for PSOAF1 is used; again the
study is conducted for n = 3 and n = 30 to determine the sensitivity to problem dimensionality.

As opposed to PSOAF1, the trajectories of PSOAF2 do not collapse to line searches. As depicted
in Figure 3.7, the angle θ is roughly 47◦ and 37◦ for n = 3 and n = 30 respectively, over the entire
range of iterations studied.
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Figure 3.6: PSOAF2: Position vectors xi
k+1 generated over 25 iterations without updating the

particle best position vector pi
k and the global best position vector p

g
k. No restriction is imposed

on the velocity vector.
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Figure 3.7: PSOAF2: The average angle θ between (pi
k − xi

k) and (pg
k − xi

k) versus iteration
number, for a dimensionality of a) n = 3, and b) n = 30. For the 1000 iterations, the best particle
position pi

k and the best global position p
g
k are stationary.
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3.5 Numerical experiments

Numerical experiments to evaluate the difference in performance between PSOAF1 and PSOAF2
are now conducted.

The aim is not an exhaustive determination of optimal algorithmic parameters, but to illustrate the
effects of the different velocity updating rules in the two formulations. Hence a basic PSOA is
implemented, without additional heuristics such as maximum velocity restriction, position restric-
tion, craziness or dynamic inertia reduction or increase. (These are however discussed in sections
to come.)

Initial velocities are set equal to 0. A simple synchronous updating scheme [31] is used. Real
variables are implemented using double-precision floating-point arithmetic.

For this study the algorithm parameters are c1 = c2 = 2, the swarm size is p = 20 particles and
the computations are performed for various constant inertia factors w. Each run is terminated after
10000 iterations, and the reported results are average values obtained from 100 independent runs.

In this study the following five test functions are used:
i) The Rosenbrock function (unimodal, f0):

f0(x) =

n
2
∑

i=1

(

100
(

x2i − x2
2i−1

)2
+
(

1 − x2i−1

)2
)

.

ii) The Quadric function (unimodal, f1):

f1(x) =

n
∑

i=1

(

i
∑

j=1

xj

)2

.

iii) The Ackley function (multimodal, f2):

f2(x) = −20 exp

(

− 0.2
√

1
n

∑n

i=1 x2
i

)

− exp

(

1
n

∑n

i=1 cos(2πxi)

)

+ 20 + e.

iv) The generalized Rastrigin function (multimodal, f3):

f3(x) =

n
∑

i=1

(

x2
i − 10 cos(2πxi) + 10

)

.

v) Finally, the generalized Griewank function (multimodal, f4):

f4(x) =
1

4000

n
∑

i=1

x2
i −

n
∏

i=1

cos
( xi√

i

)

+ 1.

The parameters used in the study are given in Table 3.1. The domain column represents the range
of each dimension of the design variables; the test function domains are symmetrical about 0.0 in
all dimensions.
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Table 3.1: Test function parameters.
Function n domain

f0 30 ± 2.048

f1 30 ± 100.0

f2 30 ± 30.0

f3 30 ± 5.12

f4 30 ± 600.0

3.6 Discussion of numerical results
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Figure 3.8: Average function value after 2 × 105 function evaluations (10000 iterations) over 100
runs on the Rosenbrock test function (f0).
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Figure 3.9: Average function value after 2 × 105 function evaluations (10000 iterations) over 100
runs on the Quadric test function (f1).

Figures 3.8, 3.9, 3.10, 3.11 and 3.12 depict the average objective function values after 2 × 105

function evaluations (10000 iterations) for the 5 test functions under consideration. A summary
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Figure 3.10: Average function value after 2× 105 function evaluations (10000 iterations) over 100
runs on the Ackley test function (f2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

Inertia constant ω

A
ve

ra
ge

 o
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e PSOAF1

PSOAF2

Figure 3.11: Average function value after 2× 105 function evaluations (10000 iterations) over 100
runs on the Rastrigin test function (f3).
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Figure 3.12: Average function value after 2× 105 function evaluations (10000 iterations) over 100
runs on the Griewank test function (f4).
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Table 3.2: Constant inertia factor at which the best average objective function value is obtained.
PSOAF1 PSOAF2

f best
ave w f best

ave w

f0 54.845 0.8 1.393 0.5

f1 4395.919 0.8 1.5 × 10−9 0.4

f2 11.804 0.8 9 × 10−15 0.6

f3 152.988 0.8 38.425 0.6

f4 32.078 0.7 1.5 × 10−2 0.5

of these results may be found in Table 3.2, which tabulates the best function values obtained with
PSOAF1 and PSOAF2 after the 10000 iterations, together with the corresponding inertia factor.

The figures and the table clearly illustrate the vast difference in performance between PSOAF1 and
PSOAF2, with PSOAF2 superior to PSOAF1 for all the problems considered.

The performance of PSOAF1 improves as the inertia factor w is increased, up to an inertia factor
of w = 0.8. For higher inertia factors (w ≥ 0.9) there is a rapid decline in the performance of the
algorithm, due to instability. (Instability occurs due to excessive particle velocities, since there is
no limit on the maximum value of velocity.) For low values of inertia, performance is hampered,
since the collapse of a particle trajectory to a line search occurs earlier than at high values of w.

PSOAF2 performs well for w ≤ 0.6, but becomes unstable for w ≥ 0.8. For the test set and
conditions used, the optimal performance for PSOAF2 is obtained with 0.4 ≤ w ≤ 0.6. For
PSOAF1, higher values of w are suitable.

The average convergence history for Ackley’s test function, for PSOAF1 and PSOAF2, is depicted
in Figures 3.13(a) and 3.13(b) respectively. The two figures are drawn on the same scale; PSOAF2
is clearly superior to PSOAF1, both in terms of average convergence rate and in terms of the quality
of the solution found (for reasonable values of w).

3.7 Notes on some heuristics of the PSOA

An explanation of the effects of some popular heuristics that are widely considered to improve the
performance of the PSOA follows. (For obvious reasons, it should now be clear that the gain in
performance for PSOAF1 can be expected to be far higher than for PSOAF2. Indeed, most ‘suc-
cessful’ heuristics merely prevent or delay the collapse of particle trajectories to lines in PSOAF1.)

3.7.1 Local best neighborhood

Local neighborhoods [49] are used in an attempt to introduce independent social groups into the
swarm; information between these groups is then propagated back into the swarm in some struc-
tured fashion.

Local neighborhoods are beneficial since their introduction results in clusters of line searches
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Figure 3.13: Average convergence history for Ackley’s test function, for a) PSOAF1, and b)
PSOAF2.

which intersect in the locally best point of each neighborhood, instead of only intersecting in
the best global point of the complete swarm. Hence local neighborhoods increase the diversity of
the algorithm. In addition, the communication of this information between neighborhoods results
in an instantaneous increase in diversity.

3.7.2 Non-zero initial velocities

The introduction of non-zero initial velocities delays line searches in PSOAF1, since the term
wvi

k translates the instantaneous search domains (planes) in the design domain, which increases
diversity. Note however that this only helps during initial iterations; these contributions damp out
over time.

3.7.3 Maximum velocity restriction

Maximum allowed velocity [4] is a well known heuristic, frequently used in the literature. It is
used to stabilize the algorithm.

There are two fundamentally different ways to implement maximum velocity restriction. Firstly,
the restriction can be placed on each component of the vector v i

k+1, as shown in Figure 3.14(a).
Alternatively, the length of vi

k+1 can be restricted, as shown in Figure 3.14(b).

The advantage of restricting each component is the ease of implementation. When restricting the
components of the velocity vector, the magnitude of the velocity vector depends on the magnitudes
of the velocity components. The maximum length that the velocity vector can obtain is

vmax
k+1 =

√

√

√

√

n
∑

j=1

(

vmax(j)
)2

,
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Figure 3.14: The velocity restriction implemented by a) restricting the component values of the
velocity vector a) restricting the magnitude of the velocity vector.

when all the vector components are restricted. In addition, by restricting each component of the
velocity vector, (Figure 3.14(a)), the direction of the velocity vector is not preserved. The result is
that the velocity directions are not limited to the line L

i
k.

On the other hand, restriction of the velocity magnitude (Figure 3.14(b)), does not alter the velocity
direction between consecutive iterations.

In summary, this implies that the results of restriction of the maximum velocity component on the
PSOA are two-fold. Firstly, this stabilizes the algorithm, by limiting the maximum component
value in each dimension. Secondly, this increases diversity through the generation of position
vectors, which by their very nature are not confined to the line L

i
k.

To illustrate the foregoing, the average angle θ between the vectors (pi
k − xi

k) and (pg
k − xi

k) is
again studied. As before, randomly generate the best particle position vector pi

0, the best global
position vector p

g
0, initial positions xi

0, and the initial velocities vi
0 with each vector component

between -2 and 2.

Velocity restriction on both the component and the magnitude is implemented. Again, c1 = c2 = 2
and w = 0.8. The algorithm is again terminated after 1000 consecutive iterations, with θ averaged
over 100 runs. As before, the best particle position pi

k and the best global position p
g
k are assumed

stationary. The study is conducted for n = 30.

When applying restriction to the components of velocity, Figure 3.15(a) depicts that the average
angle θ between the cognitive vectors (pi

k −xi
k) and the and social vectors (pg

k −xi
k) is some 60◦;

the trajectories do not collapse.

However, when the velocity magnitude is restricted, the angle θ quickly collapses to 0◦ (Fig-
ure 3.15(b)). (Here, a restriction of ||vi

k+1|| ≤ 4 is used.)

Depicted in Figure 3.16 is the average function value after 2 × 105 function evaluations or 10000
iterations for the Griewank test function f4. As expected, velocity restriction significantly improves
algorithm performance for high values of inertia (w ≥ 0.8), since instability at high inertia factors
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Figure 3.15: Velocity restriction on a) the components, and b) the magnitude of velocity. Depicted
is the average angle θ between (pi

k−xi
k) and (pg

k−xi
k) versus iteration number, for a dimensionality

of n = 30. For the 1000 iterations, the best particle position pi
k and the best global position p

g
k are

stationary.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−1

100

101

102

103

Inertia constant ω

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

at
 N

I=1
04 PSOAF1 without maximum velocity restriction

PSOAF1 with maximum velocity of the domain on each component
PSOAF1 with maximum velocity of half the domain on each component

Figure 3.16: Average function value for the Griewank test function (f4) after 1000 iterations,
averaged over 100 runs.
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is prevented.

Clearly, a restriction on each vector component of maximum velocity avoids the collapse of search
trajectories to lines. This observation was also made by Carlisle and Dozier [31], who demon-
strated that lower values of maximum velocity improves algorithm performance. The mechanism
for this is now easily understood: lower values of maximum velocity trigger the introduction of
diversity more often than higher values of maximum velocity. (Although low values of course
decrease the instantaneous search domain.)

3.7.4 Minimum velocity restriction

Velocity may also be restricted on the lower end of the scale, as a mechanism to prevent premature
convergence. Again, either the components or the magnitude of velocity may be restricted.
However, firstly demonstrated is the remarkable sensitivity of the algorithm to arithmetic preci-
sion, which may be viewed as a special case of minimum velocity restriction: PSOAF1 is imple-
mented using both single-precision floating-point arithmetic and double-precision floating-point
arithmetic. Otherwise, the two implementations are identical. Also provided is a minimum velo-
city limit on each component of the velocity vector of the code implemented with double-precision
floating-point arithmetic. Using pseudo-code, it is done as follows:

for I = 1 to number of particles do
for J = 1 to number of dimensions do
calculate V[I][J]
if abs(V[I][J]) less than Vmin then
V[I][J] = sign(V[I][J]) * Vmin

endif
enddo

enddo

Values of Vmin = 10−2 and Vmin = 10−3 are used, again for runs consisting of 10000 iterations,
and reported are the average values for 100 runs. Results for only the Griewank test function (f4)
are presented, but the results for the other test functions are similar. The same initial positions,
velocities and random number sequences are used in the three different implementations.

Figure 3.17 depicts the average objective function value. The single-precision floating-point im-
plementation is slightly superior to the double-precision floating-point implementation, simply
because the lower precision results in angles which are not quite zero. For the double-precision
floating-point implementation, minimum velocity increases the performance of the algorithm dra-
matically. (Although not shown in the figure, values of Vmin equal to the precision attainable in
single precision, renders the two implementations almost identical.)

As with maximum velocity restriction, the implications of minimum velocity restriction are two-
fold: Firstly, premature convergence may be overcome, and the collapse to the line L

i
k may be

delayed.

(The very low values above are for illustrative purposes only, in practice higher values may be
desirable.)
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Figure 3.17: Average function value after 2× 105 function evaluations (10000 iterations) over 100
runs on the Griewank test function (f4).

3.7.5 Position restriction

There are various ways to implement position restriction, as Robinson and Rahmat-Samii [30] for
example point out in their study. Position restriction may be seen as an alternative implementa-
tion of velocity restriction, albeit more complicated, since every vector xi

k+1 may equivalently be
represented as the vector xi

k + vi
k+1.

While the implementation of position restriction has to a large extent been neglected in the liter-
ature, note that the desirability and implementation should be judged against the background of
collapsed line searches.

3.7.6 Craziness

Craziness [3] is a heuristic which randomly places particles in the design domain. Normally
performed at low probability, it obviously increases diversity, and prevents the collapse to line
searches. (At high probability, craziness results in (ineffective) pure random search.) The crazi-
ness operator is somewhat reminiscent of mutation in the genetic algorithm (GA).

Continuous monitoring of θ may effectively be combined with craziness to prevent premature
convergence of the PSOA. In addition, ‘small perturbations’, reminiscent of creep mutation in the
GA, may be more effective than the equivalent of jump mutation in the GA.

A number of authors have previously reported that craziness is ineffective. However, it is a simple
matter to demonstrate that craziness is indeed effective for PSOAF1, and in particular for problems
of high dimensionality.

Consider the very simple unconstrained n-dimensional (convex) quadratic test function

f5(x) =
∑

(xi − i)2, i = 1, 2, 3, · · · , n,

subject to the bounds
−100 ≤ xi ≤ 100, i = 1, 2, 3, · · · , n.
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Table 3.3: Effect of probability of craziness Pcr on f5(x)

n Pcr PSOAF1 PSOAF2

10 0.00 1.158E+02 6.310E-32

0.05 1.719E-05 1.650E-09

0.10 1.165E-02 1.434E-03

30 0.00 1.627E+04 4.469E-28

0.05 2.787E-02 5.597E-04

0.10 2.528E+00 1.073E+01

Tabulated numerical results are presented in Table 3.3; the optimum solution f ∗ = 0.0. Again,
PSOAF1 and PSOAF2 are used without any heuristic whatsoever. Both algorithms are terminated
after 10000 iterations, and the reported results are averaged over 100 independent runs. Again
p = 20 is used. For PSOAF1, select w = 0.7, for PSOAF2 select w = 0.5. Many implementations
of craziness are possible; in this case, Pcr indicates the probability of a given particle to become
crazy.

Table 3.3 illustrates that craziness is highly beneficial to PSOAF1, while it impairs the performance
of PSOAF2. The reasons are obvious: for PSOAF1, craziness increases diversity, and prevents the
collapse of trajectories to line searches. (Note that this does not imply that craziness is indispens-
able for PSOAF1; any of the other heuristics which increases diversity will of course improve the
performance of PSOAF1.) The impairment of PSOAF2 is also easily explained: this algorithm is
diverse ‘enough’. (In the limit, an increase in craziness of course results in pure random search in
both algorithms.)

3.7.7 Increasing social awareness

Again, in this approach [34, 35], a number of different implementations are possible. In a simple
implementation, the best position of each particle in the swarm is considered when constructing
the velocity rule.

It is now clear why this works: diversity is increased; the collapse of trajectories to line searches
is delayed.

3.7.8 Inertia factor

Zheng et. al. [16] proposed to increase the inertia w as the iterations progress. They increased w
from 0.4 to 0.9 over the prescribed number of iterations. Clearly, this assists in prolonging the
time before the trajectories collapse to line searches, due to translation of the instantaneous search
domains (planes) in D.

Very high inertia factors (w larger than unity) may of course also be used to prolong diverse
searches. The amount 1 − w may be viewed as the equivalent damping term in a spring-mass-
damper system [19]. Hence w > 1.0 implies negative damping, or the introduction of energy into
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the system as the iterations progress. However, this is only recommended in terminal phases of the
PSOA; during initial phases, this may result in pure random search. In addition, w > 1.0 should
be used in combination with heuristics like position restriction.

3.7.9 Using a single random number

Some authors have attempted to replace the random numbers ri
1k and ri

2k in Eq. (3.1) by a single
random number. While this is acceptable, the implications should be understood.

This issue is addressed by asking the following question: What is the range and the distribution
of the sum of two random numbers r1 and r2 that are both uniformly distributed between 0 and 1?
(All three authors initially guessed that the range would lie between 0 and 2 and that the probability
distribution would remain uniform.)

However, a simple Monte Carlo simulation based on 106 instances reveals that the solution is the
bi-linear probability distribution. The reason is of course obvious [50]: In order to generate a
number close to zero both r1 and r2 need to be close to zero. In contrast, to generate a number
close to 1, a large number of possibilities exist e.g. (0.1+0.9), (0.7+0.3), (0.6+0.4), (0.5+0.5),
etc.

The sum of two random variables ri
3k = ri

1k + ri
2k should not be considered a uniform random

number with a range between 0 and 2, e.g. see [16]. Instead it should be chosen from a bi-linear
distribution.

3.8 On tuning of PSOA parameters (finding universal optimal
parameter values)

In the foregoing, it is demonstrated that it is essential to distinguish between implementations
of randomness into the PSOA when reporting results. ‘Optimal settings’ for the parameters of
PSOAF1 are simply not optimal for PSOAF2.

However, the same argument applies for many other implementational issues. Without further
elaboration, a check list of implementation issues is given that should in my opinion be reported
when ‘optimal setting’ for the PSOA are published, since the optimality of the parameters strongly
depends on the implementation.

The implementational issues to be reported are as follows:

1. General:

(a) the selected velocity rule (using unambiguous notation),

(b) the updating strategy (whether synchronous or asynchronous), and

(c) the stopping criteria used.

2. The heuristics used (with a detailed description thereof):

(a) minimum velocity restriction (and arithmetic precision),
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(b) maximum velocity restriction,

(c) the implemented inertia strategy,

(d) position restriction,

(e) etc.

3. The parameters used:

(a) the population size p,

(b) the initial inertia and velocity values, and

(c) the social and cognitive scaling factors c1 and c2.

Finally, optimal parameters should of course be understood within the context of the ‘no free lunch
algorithms [51, 52].

3.9 Closure

Implementation subtleties due to ambiguous notation that resulted in two distinctly different im-
plementations of the PSOA have been pointed out. Discerning between these two implementations
is of crucial importance.

While the behavior of the two different implementations is markedly different, they only differ
in the formulation of the velocity updating rule. In fact, the differences are merely due to subtle
differences in the introduction of randomness into the algorithm.

A scrutiny of PSOA codes has revealed that the reported implementation is often different to the
actual computer implementation. Against the background of this chapter, it is now also possible to
identify papers for which this discrepancy holds.

As shown for the first implementation, the particle trajectories collapse to ineffective line searches.
The second implementation does not suffer this drawback. Instead, diverse stochastic search tra-
jectories are retained.

Also shown is that some popular heuristics like maximum velocity limit, position restriction, crazi-
ness and high initial velocities are not of overwhelming importance in their own right; they merely
prevent collapse of the particle trajectories to lines.

Finally, it is emphasized that the determination of optimal values for parameters like inertia, velo-
city limit, etc. has to be performed within the context of the formulation used. A list of parameters
and implementational issues that should be included when reports on PSOA parameter settings are
written is proposed.
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Chapter 4

Objectivity of the PSOA

4.1 Introduction

In science, most physical phenomena are invariant. It is fundamental that mathematical repre-
sentation of these phenomena reflects this invariance. This fundamental requirement is known as
objectivity, frame-indifference or observer independence, and is well known in classical mechanics
[53]. For objectivity, the description of some quantity has to be invariant under pure translations,
as well as pure rotations.

Objectivity or observer independence is also highly desirable (almost essential) in optimization
procedures, to reflect the invariance of the physical processes that are optimized. Robust optimiza-
tion procedures and algorithms should definitely be invariant.

In classical gradient based optimization, the gradient vector (or some conjugate direction to the
gradient), indicates some direction of improvement, even if this direction is not optimal. This
accounts for the reference frame; classical optimization is (usually) frame invariant.

In modern (stochastic) optimization procedures, the requirement of observer independence is equally
essential. These algorithms include genetic programming [37], genetic algorithms [38], evolu-
tionary strategies [39], differential evolution [40] and the particle swarm optimization algorithm
(PSOA) [3, 4].

For the genetic algorithm (GA), Salomon [54, 55] demonstrated the lack of rotational invariance
of the algorithm. He showed that the GA’s performance at low mutation rates is significantly
influenced by the frame of reference used to pose a problem.

The PSOA was introduced by Kennedy and Eberhart [3] as a gradient free stochastic optimization
algorithm. The fundamental principle behind the PSOA is the evolutionary advantages that the
sharing of information offers. This is often known as ‘collaborative searching’.

The PSOA is quite simple: At first, a swarm of p particles is randomly deployed in an n-dimensional
design domain. The particles then update their positions in the design domain over unit time in-
crements using a simple stochastic rule, known as the ‘velocity rule’.

The quality of each particle’s position at each iteration is then evaluated using the objective or
cost function. Each particle’s cognitive memory allows it to remember it’s own best cost function

27
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value, with associated position, over time. Importantly, the social interaction and awareness of the
particles allow them to also remember the ‘best’ cost function value the swarm itself found over
time.

In Chapter 3 it was shown that implementation subtleties due to ambiguous notation have resulted
in two distinctly different implementations of the PSOA. While this does not repute negatively on
the ingenuity of the idea of Kennedy and Eberhart, discerning between these two implementations
is of crucial importance. The behavior of the respective implementations is markedly different,
although they only differ in the formulation of the velocity updating rule. In fact, the differences
are merely due to subtle differences in the introduction of randomness into the algorithm.

In this chapter, the objectivity of the PSOA is investigated. It is shown that the first formulation
PSOAF1 is objective, combined with the disadvantage that the particle trajectories collapse to line
searches. It is then show that the second formulation PSOAF2 is not objective, although it has the
advantage that the particle trajectories are n-dimensional space filling. A novel formulation that is
both objective and diverse, i.e. the algorithm generates particle trajectories that are space filling, is
then presented.

4.2 Notes on the investigation

The investigation into the objectivity of the PSOA is started by defining the instantaneous search
domain of a particle, viz. the domain to which the search of a particle i at iteration k is restricted
as discussed in Chapter 3.

From Eqs. (2.2) and (2.3), it is observed that the instantaneous search domain is composed from a
deterministic contribution given by (xi

k + wvi
k), and a stochastic contribution due to ν i

k.

The stochastic domain is bounded, and has an associated probability distribution, due to the random
scaling with finite scalars. In order to investigate the objectivity of the stochastic contribution ν i

k

of the instantaneous search domain, Monte Carlo simulations [56] are used. These are conducted
for different values of pi

k, p
g
k and xi

k. Scatter plots are constructed to define the domain of possible
stochastic vectors ν i

k by generating 104 instances of ν i
k. In all investigations c1 = c2 = 2.

4.3 Formulation 1 (PSOAF1)

For PSOAF1, the stochastic vector ν i
k is given by

ν i
k = c1r

i
1k(p

i
k − xi

k) + c2r
i
2k(p

g
k − xi

k), (4.1)

where ri
1k and ri

2k represent two uniform real random scalars between 0 and 1, which are updated
at every iteration k, and for each particle i in the swarm. The random numbers ri

1k and ri
2k in-

dependently scale only the magnitudes of the cognitive and social vectors, respectively given by
c1(p

i
k − xi

k) and c2(p
g
k − xi

k). The cognitive vector c1(p
i
k − xi

k) and the social vector c2(p
g
k − xi

k)
can be anything from normal to parallel w.r.t. each other.

When the cognitive and social vectors are not parallel, Eq. (4.1) may be interpreted as the vector
equation of a bounded plane P

i
k in n-dimensional space. The bounded plane is then translated in
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Figure 4.1: Partitioning the position vector xi
k+1 into a deterministic contribution (xi

k +wvi
k), and

a stochastic contribution (ν i
k ∈ P

i
k), for c1 = c2 = 2.
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Figure 4.2: Partitioning the position vector xi
k+1 into a deterministic contribution (xi

k +wvi
k), and

a stochastic contribution (ν i
k ∈ L

i
k), for c1 = c2 = 2.

n-dimensional space by the addition of xi
k and wvi

k, as depicted in Figure 4.1.

Whenever the cognitive and social vectors c1(p
i
k −xi

k) and c2(p
g
k −xi

k) are parallel, Eq. (4.1) may
be interpreted as the vector equation of a bounded line L

i
k in n-dimensional space. Again, the

bounded line is translated in n-dimensional space by the addition of xi
k and wvi

k, as depicted in
Figure 4.2.

The intrinsic properties of a vector are its magnitude and direction; these exist independent of a
reference frame [57]. In PSOAF1, only the vector magnitudes (which are invariant) are randomly
scaled. Also, since the vectors c1(p

i
k−xi

k) and c2(p
g
k−xi

k) are constructed through the subtraction
of two vectors, they are also translationally invariant. Both criteria for observer independence are
met, hence PSOAF1 is objective.

4.3.1 PSOAF1: Investigation of the instantaneous search domain

Objectivity of PSOAF1 is now illustrated by conducting Monte Carlo simulations. Similar simu-
lations will be conducted for the algorithmic formulations in sections to come.
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Figure 4.3: PSOAF1: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte

Carlo simulations, with a)
(

pi
k − xi

k

)

= [ 1√
2

1√
2
] and

(

p
g
k −xi

k

)

= [−
√

2
√

2] and b)
(

pi
k −xi

k

)

=

[1 0] and
(

p
g
k −xi

k

)

= [0 2]. Each point represents the end point of a stochastic vector with origin
at [0 0].

First, a study is conducted for non-parallel cognitive and social vectors c1(p
i
k−xi

k) and c2(p
g
k−xi

k).
In Figure 4.3(a), the vectors

(

pi
k − xi

k

)

and
(

p
g
k − xi

k

)

are respectively given by [ 1√
2

1√
2
] and

[−
√

2
√

2]. A scatter plot yields the plane P
i
k, with c1 and c2 merely scaling P

i
k.

A scatter plot is then constructed after rotating the vectors
(

p
g
k−xi

k

)

and
(

pi
k−xi

k

)

45◦ clockwise,
as depicted in Figure 4.3(b). Hence

(

pi
k − xi

k

)

and
(

p
g
k − xi

k

)

are respectively given by [1 0] and
[0 2]. From Figure 4.3(b), it is clear that the domain remains a bounded plane P

i
k, which is merely

rotated 45◦ clockwise.

It also follows from random variable theory that the probability distribution over the domain P
i
k is

uniform [50], as illustrated in Figures 4.3(a) and 4.3(b).

Secondly, a similar study is conducted for parallel cognitive and social vectors c1(p
i
k − xi

k) and
c2(p

g
k−xi

k), as depicted in Figure 4.4. In Figure 4.4(a), the parallel vectors
(

pi
k−xi

k

)

and
(

p
g
k−xi

k

)

are respectively given by [ 1√
2

1√
2
] and [

√
2
√

2]. The domain is a bounded line L
i
k with c1 and c2

merely scaling the length of L
i
k.

Again a scatter plot is constructed after rotating
(

p
g
k−xi

k

)

and
(

pi
k−xi

k

)

45◦ clockwise, as depicted
in Figure 4.4(b). Now,

(

pi
k − xi

k

)

and
(

p
g
k − xi

k

)

are respectively given by [1 0] and [2 0]. As
shown in Figure 4.4(b), the bounded line L

i
k is merely rotated.

It follows from random variable theory that the probability distribution over the bounded line is
tri-linear [50], for different vector lengths ||pi

k − xi
k|| and ||pg

k − xi
k||.

As discussed earlier and graphically demonstrated here, PSOAF1 is objective. A rotation of the
vectors pi

k, p
g
k and xi

k merely results in a rotation of the stochastic domains, P
i
k and L

i
k. This
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Figure 4.4: PSOAF1: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte

Carlo simulations, with a)
(

pi
k − xi

k

)

= [ 1√
2

1√
2
] and

(

p
g
k − xi

k

)

= [
√

2
√

2] and b)
(

pi
k − xi

k

)

=

[1 0] and
(

p
g
k − xi

k

)

= [2 0].

follows since only the magnitude of the cognitive and social vectors are scaled in PSOAF1.

4.4 Formulation 2 (PSOAF2)

The stochastic vector ν i
k of PSOAF2 is given by

ν i
k = c1r

i
1k ◦ (pi

k − xi
k) + c2r

i
2k ◦ (pg

k − xi
k), (4.2)

where the ◦ operator indicates component by component multiplication between two vectors.
Hence the random vectors ri

mk are given by

ri
mk = (ρi

1k, ρi
2k, · · · , ρi

nk), m = 1, 2, (4.3)

with ρi
lk, l = 1, 2, · · · , n uniform random numbers between 0 and 1. Eq. (4.2) is no longer a vector

equation of a bounded plane P
i
k, since every non-zero component of (pi

k − xi
k) and (pg

k − xi
k)

is independently scaled. As a result, the domain of possible stochastic vectors is generalized to
n-dimensional space S

i
k.

However, since the components of a vector are given with respect to a specific reference frame,
PSOAF2 is rotationally variant. (Although PSOAF2 is of course translationally invariant.) Never-
theless, PSOAF2 is observer dependent, since only one of the two criteria of objectivity is met.

4.4.1 PSOAF2: Investigation of the instantaneous search domain

The observer dependence of PSOAF2 is now quantified, using Monte Carlo simulations, similar to
those in Section 4.3.1.
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Figure 4.5: PSOAF2: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte

Carlo simulations with a)
(

pi
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)

= [ 1√
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1√
2
] and

(

p
g
k − xi

k

)

= [−
√

2
√

2] and b)
(

pi
k − xi
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)

=

[1 0] and
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p
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)
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As before, the study is conducted for non-parallel cognitive and social vectors c1(p
i
k − xi

k) and
c2(p

g
k − xi

k). Figure 4.5(a) depicts that the domain is an n-dimensional space S
i
k (with n = 2 in

this case), with c1 and c2 merely scaling S
i
k. It is also clear that the probability distribution over

S
i
k is non-uniform.

The scatter plot after rotating the vectors
(

p
g
k − xi

k

)

and
(

pi
k − xi

k

)

45◦ clockwise, is depicted
in Figure 4.5(b). It is clear that the domain changes after rotation of the vectors. However, the
domain remains an n-dimensional space S

i
k, but the size of, and the probability distribution over,

the domain depends on the orientation w.r.t. the Cartesian coordinate axis.

The study is repeated for parallel cognitive and social vectors c1(p
i
k − xi

k) and c2(p
g
k − xi

k), as
depicted in Figure 4.6(a). The domain is still generalized to n-dimensional space S

i
k with c1 and

c2 merely scaling the size of S
i
k.

The scatter plot after rotating
(

p
g
k −xi

k

)

and
(

pi
k −xi

k

)

45◦ clockwise, is depicted in Figure 4.6(b).
It is clear that the domain changes significantly after rotation of the vectors. In fact, the domain
collapses to a bounded line L

i
k, since both vectors are parallel to one of the Cartesian basis vectors.

As discussed earlier and graphically demonstrated here, PSOAF2 is observer dependent. A rotation
of the vectors (pi

k−xi
k) and (pg

k−xi
k) results in the size of, and the probability distribution over, the

stochastic domain to change. This follows since PSOAF2 scales the components of the cognitive
and social vectors. Since the components of a vector are observer dependent, PSOAF2 is also
observer dependent.

However, the advantage of PSOAF2 is that the particle trajectories remain space filling in n-
dimensional space as shown in Chapter 3. The result is that diversity in particle trajectories are
maintained.
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Figure 4.6: PSOAF2: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte

Carlo simulations with a)
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4.5 Novel Formulation: PSOAF1*

As discussed in Section 4.3, PSOAF1 is objective, although the particle trajectories collapse to
lines. (The advantage of diverse (n-dimensional) particle search trajectories are quantified in
Chapter 3.) On the other hand, PSOAF2 allows for particles to have diverse search trajectories, but
unfortunately this comes at the cost of sacrificing objectivity.

An implementation of the PSOA is now presented that allows for diverse particle search trajecto-
ries, while retaining objectivity. Based on PSOAF1, the novel, diverse implementation, is denoted
PSOAF1*.

In PSOAF1*, the vector magnitudes are scaled, and the vector directions of (pi
k−xi

k) and (pg
k−xi

k)
perturbed, by multiplying each of the above vectors with an independent random rotation matrix.
The random rotation matrices are constructed anew for each particle i and for every iteration k,
hence

νi
k = c1r

i
1kQ

i
1k(p

i
k − xi

k) + c2r
i
2kQ

i
2k(p

g
k − xi

k), (4.4)

with each Qi
lk, l = 1, 2, a random rotation matrix of dimension n × n.

Q is a proper orthogonal matrix (with determinant 1). Numerous methods are available to construct
rotation matrices (e.g. see the approach of Salomon [54]. Constructing n × n matrices using
Salomon’s routine is however computationally expensive, since (n − 1)(n − 2) matrix-matrix
multiplications are required.)

As a computationally viable alternative, the exponential map is used [58]. There are again numer-
ous ways to construct exponential maps. The simple series method is selected [58]. The general
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series expansion of an exponential map is given by

Q = I + W +
1

2
WW +

1

6
WWW + · · · , (4.5)

where I is the identity matrix and W is a skew matrix.

The random skew matrix W is constructed as follows:

W =
απ

180
(A − AT), (4.6)

with A an n× n random matrix with each entry a uniform random number between −0.5 and 0.5.
α is a real scaling factor and superscript T denotes the matrix transpose.

The author selects to construct the exponential map Qi
k for “small” perturbations, using only the

first two terms of a truncated series method, i.e.

Qi
k = I + W i

k. (4.7)

This is the linear approximation to a rotation matrix, and is valid for small perturbations, since the
entries of the higher order terms are close to zero. The advantage of the simplification is that the
number of matrix-matrix multiplications is zero.

(It is important to note that the variable bounds defining D should be normalized, such that the
boundary ranges are equal.)

4.5.1 PSOAF1*: Investigation of the instantaneous search domain

As before, the objectivity of PSOAF1* is quantified using Monte Carlo simulations. In 2 dimen-
sions, α = 15 is selected. (Although this is not “small”, this serves to clearly illustrate the proposed
concept).

Again, the study for non-parallel cognitive and social vectors is conducted, as depicted in Fig-
ure 4.7(a). The domain generalizes to n-dimensional space S

i
k, with c1 and c2 scaling S

i
k.

The scatter plot after rotating the vectors
(

p
g
k − xi

k

)

and
(

pi
k − xi

k

)

45◦ clockwise is depicted in
Figure 4.7(b). Clearly, the domain remains generalized to n-dimensional space S

i
k, rotated 45◦

clockwise. The probability distribution over the domain S
i
k is non-uniform.

Secondly, the study for parallel cognitive and social vectors c1(p
i
k − xi

k) and c2(p
g
k − xi

k) is con-
ducted. Again the domain generalizes to n-dimensional space S

i
k, with c1 and c2 merely scaling

the domain.

A scatter plot after rotating
(

p
g
k − xi

k

)

and
(

pi
k − xi

k

)

45◦ clockwise is constructed, as depicted
in Figure 4.8(b). Evidently, the n-dimensional space S

i
k is merely rotated, and the probability

distribution over the domain is non-uniform.

As discussed earlier and graphically demonstrated here, PSOAF1* is an objective formulation. A
rotation of the vectors (pi

k−xi
k) and (pg

k−xi
k) merely results in a rotation of the stochastic domain

S
i
k.

The drawback of PSOAF1 is overcome in PSOAF1*, where in addition to scaling the vector mag-
nitudes, the vectors are directionally perturbed. The magnitudes and directions of (pi

k − xi
k) and
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Figure 4.7: PSOAF1*: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte

Carlo simulations, with a)
(

pi
k − xi

k

)

= [ 1√
2

1√
2
] and

(

p
g
k −xi

k

)

= [−
√

2
√

2] and b)
(

pi
k −xi

k

)

=

[1 0] and
(

p
g
k − xi

k

)

= [0 2].
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Figure 4.8: PSOAF1*: Scatter plot of 104 instances of the stochastic vectors ν i
k, generated using

Monte Carlo simulations, with a)
(

pi
k − xi

k

)

= [ 1√
2

1√
2
] and

(

p
g
k − xi

k

)

= [
√

2
√

2] and b)
(

pi
k − xi

k

)

= [1 0] and
(

p
g
k − xi

k

)

= [2 0].
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(pg
k −xi

k) are used to only indicate potential improvement, thereby placing only some faith in both
direction and step size.

This is in contrast to PSOAF1, where absolute faith is placed in the directions prescribed by (pi
k −

xi
k) and (pg

k − xi
k), while only some faith is placed on step size.

(Incidentally, termination occurs when pi
k, p

g
k and xi

k converge on the same point in n-dimensional
space, combined with wvi

k → 0.)

4.6 Numerical experiments

An empirical study to quantify the (lack of) objectivity of the three discussed implementations
of the PSOA is now performed. A synchronous updating method is used [31]. Real variables
are implemented using double-precision floating-point arithmetic. For this study the algorithm
parameters are c1 = c2 = 2, the swarm size is p = 20 particles and the computations are performed
for various constant inertia factors w. Initial velocities are assumed to equal 0. In PSOAF1*, α = 3
is simply selected. (The author does not seek an optimal value for α, but merely wishes to illustrate
the effects of perturbing the vector directions.) Furthermore, no boundary or velocity restrictions
are implemented. Each run consists of 200000 function evaluations (10000 iterations). All results
presented are averaged over 100 runs.

In the study the following five test functions are used:
i) The Rosenbrock function (unimodal, f0):

f0(x) =

n
2
∑

i=1

(

100
(

x2i − x2
2i−1

)2
+
(

1 − x2i−1

)2
)

.

ii) The Quadric function (unimodal, f1):

f1(x) =

n
∑

i=1

(

i
∑

j=1

xj

)2

.

iii) The Ackley function (multimodal, f2):

f2(x) = −20 exp

(

− 0.2
√

1
n

∑n

i=1 x2
i

)

− exp

(

1
n

∑n

i=1 cos(2πxi)

)

+ 20 + e.

iv) The generalized Rastrigin function (multimodal, f3):

f3(x) =
n
∑

i=1

(

x2
i − 10 cos(2πxi) + 10

)

.

v) Finally, the generalized Griewank function (multimodal, f4):

f4(x) =
1

4000

n
∑

i=1

x2
i −

n
∏

i=1

cos
( xi√

i

)

+ 1.
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Table 4.1: Test function parameters
Function n domain

f0 30 ± 2.048

f1 30 ± 100.0

f2 30 ± 30.0

f3 30 ± 5.12

f4 30 ± 600.0

The parameters used in the study are given in Table 4.1. The domain column represents the range
of each dimension of the design variables; the test function domains are symmetrical about 0.0 in
all dimensions.

The multimodal functions f2 and f3 are decomposable [54], viz. the design variables are uncou-
pled. This implies that once an optimal value for a given design variable is obtained, it remains
optimal, independent of the other design variables. This is similar to optimizing n 1-dimensional
optimization problems, instead of 1 n-dimensional coupled optimization problem. The test set is
therefore studied in the unrotated or decomposable reference frame f(x), as well as in an arbi-
trary rotated reference frame f(Rx), in which the design variables are coupled [55]. Here, R is
a random, proper orthogonal transformation matrix, constructed as in [54]. The transformation
matrix results in a pure rotation of each test function. For each of the 100 independent runs, a
new random rotation matrix R is constructed, to ensure that there is no bias toward any particular
reference frame.

4.7 Discussion of Results

Depicted in Figures 4.9, 4.10, 4.11, 4.12 and 4.13 are the mean objective function values after
2 × 105 function evaluations (or 10000 iterations) averaged over 100 runs for both the unrotated
and rotated functions.

The rotational invariance of PSOAF1 and PSOAF1* are evident from Figures 4.9(a), 4.10(a),
4.11(a), 4.12(a) and 4.13(a). The poor performance of PSOAF1 directly results from the particle
trajectories collapsing to lines as shown in Chapter 3. There is a significant improved performance
for all the test functions with PSOAF1*, due to the scaling of the vector magnitudes and perturba-
tion of the vector directions.

The rotational variance of PSOAF2 is evident from Figures 4.9(b), 4.10(b), 4.11(b), 4.12(b) and
4.13(b). There is a severe performance loss for some of the rotated functions compared to the
unrotated functions.

Two functions result in similar performance for the rotated and unrotated functions, namely the
Quadric function f1, and the Griewank function, f4. The Quadric and Griewank functions are
almost insensitive to rotation. (The Griewank function is a spherical function on which sinusoidal
“noise” is imposed. Hence this function is artificially indifferent to rotation, since many local
minima appear, irrespective of rotation.)
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Figure 4.9: Average function value obtained with a) PSOAF1 and PSOAF1*, and b) PSOAF2 after
2×105 function evaluations (10000 iterations) averaged over 100 runs on the rotated and unrotated
Rosenbrock test function f0.

0 0.2 0.4 0.6 0.8 1

10
−40

10
−30

10
−20

10
−10

10
0

Inertia constant ω

A
ve

ra
ge

 o
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

PSOAF1 − unrotated
PSOAF1 − rotated
PSOAF1* (α=3) − unrotated
PSOAF1* (α=3) − rotated

(a)

0 0.2 0.4 0.6 0.8 1

10
−40

10
−30

10
−20

10
−10

10
0

Inertia constant ω

A
ve

ra
ge

 o
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

PSOAF2 − unrotated
PSOAF2 − rotated

(b)

Figure 4.10: Average function value obtained with a) PSOAF1 and PSOAF1*, and b) PSOAF2
after 2 × 105 function evaluations (10000 iterations) averaged over 100 runs on the rotated and
unrotated Quadric test function f1.
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Figure 4.11: Average function value obtained with a) PSOAF1 and PSOAF1*, and b) PSOAF2
after 2 × 105 function evaluations (10000 iterations) averaged over 100 runs on the rotated and
unrotated Ackley test function f2.
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Figure 4.12: Average function value obtained with a) PSOAF1 and PSOAF1*, and b) PSOAF2
after 2 × 105 function evaluations (10000 iterations) averaged over 100 runs on the rotated and
unrotated Rastrigin test function f3.
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Figure 4.13: Average function value obtained with a) PSOAF1 and PSOAF1*, and b) PSOAF2
after 2 × 105 function evaluations (10000 iterations) averaged over 100 runs on the rotated and
unrotated Griewank test function f3.

Inadvertently, this also suggest that non-spherical unimodal test functions should be used to evalu-
ate objectivity. The two unimodal functions, namely the Rosenbrock function f0 and the Quadric
function f1, are of some interest, since they indicate the ability of an algorithm to search within a
local basin. The performance of PSOAF1* is significantly better than PSOAF2 for both functions,
for both the rotated and unrotated test functions. PSOAF2 demonstrates a severe performance loss
for the Rosenbrock function, for the rotated function compared to the unrotated function. (Note
the scale of the graphs in Figure 4.9.)

The performance difference between PSOAF2 and PSOAF1* for the unimodal Quadric test func-
tion f1, is depicted in Figure 4.14. Figure 4.14 depicts the mean function value convergence history
of PSOAF1 (with w = 0.8), PSOAF2 (with w = 0.4) and PSOAF1* (with w = 0.5 and α = 3)
over 2500 iterations. The values for w are optimal for each algorithm, but no attempt was made
to optimize α. Of the three formulations, it is clear that PSOAF1* is computationally the most
effective on the Quadric test function.

For the multimodal functions, PSOAF2 demonstrates notable performance loss. See for example
the Ackley function f2, and the Rastrigin function f3. In contrast, the performance of PSOAF1* is
comparable to the best obtained with PSOAF2, with no performance loss due to rotation.

For the sake of clarity, an overview of the performances of PSOAF1, PSOAF2 and PSOAF1* is
given in Table 4.2. The table summarizes the best function values obtained, together with the
inertia factor at which the best function value is obtained after 2× 105 function evaluations (10000
iterations). The results for both the unrotated and rotated test functions are given.
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Table 4.2: Constant inertia factor at which the best average objective function value is obtained for
the unrotated test functions. The accompanying average objective function value for rotated test
functions is also presented.

PSOAF1

funrotated frotated

w f best
avg f best

avg

f0 0.8 54.071 54.712

f1 0.8 4087.657 4123.801

f2 0.8 11.791 11.925

f3 0.8 157.656 154.368

f4 0.7 30.924 29.731

PSOAF2

funrotated frotated

w f best
avg f best

avg

f0 0.5 1.358 9.905

f1 0.4 1.4×10−9 1.5×10−8

f2 0.6 8.6×10−15 2.099

f3 0.6 40.992 138.507

f4 0.6 1.5 × 10−2 1.1 × 10−2

PSOAF1* (α = 3)

funrotated frotated

w f best
avg f best

avg

f0 0.6 1.6 × 10−2 1.7 × 10−2

f1 0.5 1.2×10−43 3.8×10−44

f2 0.7 3.583 3.492

f3 0.5 76.949 76.880

f4 0.6 1.1 × 10−2 1.3 × 10−2
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Figure 4.14: Mean function value history plot averaged over 100 runs on the rotated and unrotated
Quadric test function f3 with PSOAF1 (with w = 0.8), PSOAF2 (with w = 0.4) and PSOAF1*
(with w = 0.5 and α = 3).

4.8 Comments on PSOAF1*

4.8.1 On invariance

It is now shown that PSOAF1* is not strictly rotationally invariant, but only in a stochastic sense.

Consider an arbitrary vector, expressed in two different reference frames, by respectively y and y ′.
The two reference frames are related by a pure rotation M , hence

y′ = My, M ∈ Orth+, (4.8)

where Orth+ indicates the space of proper orthogonal matrices.

Now apply two independent directional perturbations (rotations) Q ∈ Orth+ and Q′ ∈ Orth+ to y

and y′ respectively. The vectors ŷ and ŷ′ then obtained, are respectively given by

ŷ = Qy, (4.9)

and
ŷ′ = Q′y′. (4.10)

Strict deterministic rotational invariance requires a one-to-one mapping of the perturbed vectors in
either reference frame. Hence

ŷ′ = Mŷ, ∀ M ∈ Orth+ (4.11)

By substituting Eqs. (4.8), (4.9) and (4.10) into Eq. (4.11), the following is obtained

Q′My = MQy, ∀ M ∈ Orth+. (4.12)

Eq. (4.12) is rewritten as

(Q′M − MQ)y = 0, ∀ M ∈ Orth+. (4.13)
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Since Eq. (4.13) has to hold for any arbitrary vector y, it follows that

Q′M = MQ, ∀ M ∈ Orth+. (4.14)

The unique solution to Eq. (4.14) is that both Q′ and Q are the second-order isotropic tensor, i.e.

Q′ = Q = I. (4.15)

The foregoing implies that a strict enforcement of rotational invariance results in Qi
lk = I, l =

1, 2. In other words, PSOAF1* reduces to PSOAF1.

However, since the PSOA is a stochastic algorithm, it is adequate to satisfy Eq. (4.15) in an average
sense only. In order to satisfy Q′ = Q = I in a stochastic sense, it is sufficient to require that
mean(Q′) = mean(Q) = I , if the probability distributions of Q′ and Q are chosen equal over
identical domains.

4.8.2 Implementational issues of PSOAF1*

Further to the implementation in Section 4.5, numerous strategies exist to achieve independent
directional perturbation.

An obvious, computationally inexpensive possibility is to randomly perturb each component of
the unit vectors (pi

k − xi
k)/||(pi

k − xi
k)|| and (pg

k − xi
k)/||(pg

k − xi
k)||; the vectors (pi

k − xi
k) and

(pg
k − xi

k) are then reconstructed from the normalization of the perturbed vectors. (Although this
makes a rigorous mathematical analysis of the algorithm difficult.)

In the implementation, in updating Q, strategies to limit the computational expense associated
with matrix multiplications and the generation of random numbers may also be implemented. For
example, multiplying the sum of c1(p

i
k −xi

k) and c2(p
g
k −xi

k) by a single random rotation matrix,
reduces the number of matrix multiplications by half.

However, depicted in Figure 4.15 is the difference in instantaneous search domain that results
when independent rotation matrices Qi

1k 6= Qi
2k are used, as opposed to identical rotation matrices

Qi
1k = Qi

2k.

To reduce the computational effort even further, the vectors c1(p
i
k − xi

k) and c2(p
g
k − xi

k) of all
the particles can be directionally perturbed by the same independent rotation matrices, viz. Qi

lk =
Qlk, l = 1, 2 and i = 1, 2, · · · , p.

4.8.3 Alternatives to PSOAF1*

Finally, there are of course numerous methods to introduce diversity into PSOAF1, as opposed to
the proposed option of independent directional perturbation.

Only a single alternative is mentioned here, namely an increase in the social awareness of the
particles. In turn, this may for example be effected by increasing the number of particles that
contribute to Eq. (4.1) [35, 34]. (One may of course achieve n-dimensional searches, if the number
of particles p ≥ n, unless the particle trajectories are parallel.) Additional information about the
objective function is then also used in the searches of any particle i.
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Figure 4.15: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte Carlo sim-

ulations, with (pi
k − xi

k) = [−1 0] and (pi
k − xi

k) = [2 0] using a) identical rotation matrices
Qi

1k = Qi
2k and b) independent rotation matrices Qi

1k 6= Qi
2k.

4.9 Closure

It is shown that PSOAF1 is objective, but it demonstrates an overall poor performance, due to the
particle trajectories collapsing to lines. This is a direct result of only scaling the magnitude of the
cognitive and social vectors c1(p

i
k − xi

k) and c2(p
g
k − xi

k).

In turn, PSOAF2 is not objective, which results in severe performance loss for “rotated” functions.
Nevertheless, PSOAF2 still outperforms PSOAF1 for both rotated and unrotated test functions,
since the algorithm is diverse, i.e. the particle trajectories do not collapse to lines.

A novel implementation denoted PSOAF1* is proposed, which is both objective and diverse. In
PSOAF1*, the magnitudes are scaled, and the directions perturbed independently, of both the
cognitive and social vectors c1(p

i
k − xi

k) and c2(p
g
k − xi

k). (This however comes at the cost of
an additional scaling factor.) PSOAF1* outperforms PSOAF2 for the unimodal functions used,
for both the rotated and unrotated test functions. In addition, its performance is comparable to
PSOAF2 for the multimodal functions, with the added advantage of being independent of the
reference frame in which the objective function is formulated.
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Chapter 5

Shape optimization problem

5.1 Introduction

Shape optimization involves the constrained minimization of a cost function. The cost function in
turn typically involves the solutions of a system of partial differential equations, which depend on
parameters that define a geometrical domain [59]. The continuum description of the geometrical
domain is normally discretized. This allows for efficient solution of the system of partial differ-
ential equations, using for example the finite element method (FEM). Normally, the discretized
geometric domain is defined by control variables with predefined freedom. The control variables
in turn bound the geometrical domain through a predefined relationship, which may be piecewise
linear, or based on B-splines, etc.

Furthermore, different meshing strategies can be used. These include fixed grid strategies [60, 61,
62], design element concepts [63], adaptive mesh strategies [64], and remeshing strategies. The
first three methods imply an a priori mesh discretization with obvious limitations, for example
when dealing with large shape changes in the geometry during optimization. Some of the draw-
backs of remeshing strategies are the implementation expense, and the tendency of gradient based
optimization methods to get trapped in local minima [65]. On the other hand, the (unstructured)
remeshing strategies allow for generality in structural models and objective functions. Large shape
changes can be accommodated using the remeshing strategy with minimum mesh distortion.

The cost function may be optimized using either a gradient free or gradient based optimization
method. While the gradient free methods require only the relationship between the cost function
and the discretized geometric domain to be specified, the gradient based optimization methods
require additional sensitivity information. The sensitivities needed for the gradient optimization
techniques can either be calculated numerically, semi-analytically or analytically. All these meth-
ods have merits and drawbacks. Numerical gradients using finite difference methods are computa-
tionally expensive, but are easily implementable. The semi-analytical and analytical methods are
more complex to implement, but are computationally cheaper. The advantage of gradient free evo-
lutionary strategies are their global optimization capability. They have been used with success by
Xie and Steven [61, 62] in a fixed grid strategy. Related works of evolutionary strategies in shape
optimization are the biological growth method of Mattheck and Burkhardt [66], and the genetic
algorithm used by Garcia and Gonzales [60].

45

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWiillkkee,,  DD  NN    ((22000055))  
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In shape optimization, mesh generation plays an important role and is in general an expensive
aspect of a computational iteration when fixed grid strategies are not considered. Remeshing
strategies in shape optimization accentuate the importance of robustness, computational speed,
flexibility and accuracy of the mesh generator in discretizing the geometrical domain.

In this study a remeshing shape optimization environment is combined with the gradient free par-
ticle swarm optimization algorithm (PSOA) developed by Kennedy and Eberhart.

5.2 Problem formulation

The problem under consideration is now the general inequality constrained minimization problem
stated as follows: Given a cost function f

(

Ω(x)
)

, find the minimum f ∗ such that

f ∗ = f
(

Ω∗(x∗)
)

= min
x∈Rn

{f
(

Ω(x)
)

: g
(

Ω(x), x
)

≤ 0}, (5.1)

where Rn represents a set of n real numbers. The cost function f(x) and the constraints gj(x), j =
1, 2, · · · , m are scalar functions of the control variables x and the geometrical domain Ω(x), which
is also a function of the control variables x. For the sake of brevity, the cost function and the
constraints will respectively be denoted by f(x) and g(x); this notation will however imply de-
pendency on Ω(x). We choose to represent the geometrical domain boundary ∂Ω by a simple
piecewise linear interpolation between the control variables. However, Bezier curves or B-splines,
etc. may of course also be used.

In our case, the cost function f(x) = f
(

u(Ω(x))
)

is an explicit function of the nodal displacements
u, which is obtained by solving the approximate finite element equilibrium equations for linear
elasticity, formulated as

Ku = f , (5.2)

where K represents the assembled structural stiffness matrix and f the consistent structural loads.

5.2.1 Accommodation of constraints

Shape problems are subjected to an inequality constraint g
(

Ω(x), x
)

≤ 0, being the maximum
allowed volume.

The inequality constraints g
(

Ω(x), x
)

≤ 0 can be accommodated using a simple exterior penalty
formulation. With the exterior penalty formulation the optimal design problem represented by
(5.1) is now modified to become: Find the minimum f ∗ such that

f ∗ = f
(

Ω∗(x∗)
)

= min
x∈Rn

{

f
(

Ω(x)
)

+

m
∑

j=1

Λj[gj

(

Ω(x), x
)

]2µj(gj)

}

, with

(5.3)

µj(gj) =

{

0 if gj

(

Ω(x), x
)

≤ 0
1 if gj

(

Ω(x), x
)

> 0
and penalty parameters Λj > 0, prescribed.
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5.3 Mesh generation

In this section, we present triangulation based on the truss structure analogy proposed by Persson
and Strang [17]. This incorporates a Delaunay strategy [67] which ensures good mesh quality,
albeit at the cost of potentially introducing discontinuities between consecutive meshes due to the
addition or removal of nodes. The continuous geometrical domain Ω is discretized by nodes X .
The nodes X are the union of the boundary nodes X

∂Ω and the interior nodes X
Ω.

5.3.1 Mesh generator based on a truss structure analogy

The mesh generator is based on a truss structure analogy that solves for the equilibrium position
of a truss structure. The geometrical domain is defined by a signed distance function that signs the
nodes outside the domain as positive, inside as negative and zero on the boundary. The distance
function is a function of the control variables through the interpolation of the domain.

The truss force function z is defined with a force discontinuity, as no tensile forces are permitted
in the truss elements. This allows the propagation of the nodes X to the boundary ∂Ω. The nodes
are kept inside the geometrical domain by external forces acting on the boundary nodes X

∂Ω. The
forces act perpendicularly to the boundary, keeping the nodes from moving outside the boundary
while allowing movement along the boundary.

The truss force function z is defined as

z(l, h0) =

{

k(h0 − l) if l < h0

0 if l ≥ h0
(5.4)

with k the spring (truss) stiffness, l the current spring length and h0 the undeformed spring length
(also referred to as the ideal element length). In Persson and Strang’s [17] implementation, all
springs are precompressed by 20%, which provides the driving force necessary to propagate nodes
to the boundary.

The truss system F (X ) = 0 is transformed to a system of ordinary differential equations through
the introduction of artificial time-dependence in the equations. The system is then solved by a
forward Euler method

X n+1 = X n + ∆tF (X n). (5.5)

The forward Euler method is essentially a matrix free method ideally suited to create meshes with
a very large number of elements. This method exhibits linear convergence rates.

5.4 Numerical results for the cantilever beam problem

Consider the cantilever beam depicted in Figure 5.1. The domain has a predefined length of 30
units and a height of 10 units. The objective is to minimize the maximum vertical displacement of
the structure, subject to a maximum volume constraint of 70%. The magnitude of F is 10 N.

Numerical results for the cantilever beam problem are presented, using linear elastic finite element
analyses under plane stress conditions. All the simulations are performed using material property
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values of E = 200 × 103 for Young’s modulus, and ν = 0.3 for Poisson’s ratio. An elemental
thickness of unity and ideal element length h0 = 1 is used throughout. 21 control variables are
used.

For the PSOA, a swarm size of p = 20 is used. The social and cognitive parameters are selected
as c1 = c2 = 2. The constant inertia factors for PSOAF1 is w = 0.7, for PSOAF2 w = 0.5 and for
PSOAF1* w = 0.6, together with α = 5. Each run consists of 20000 function evaluations (1000
iterations). Results are obtained by conducting 10 independent runs for each formulation.

The volume constraint is accommodated using the exterior penalty approach with the exterior
penalty parameter selected as Λ = 108. When a particle’s position violates a simple bound the
position update is allowed but no function evaluation is conducted. The simple bounds for this
problem are 1 ≤ xi

k(d) ≤ 10, d = 1, 2, . . . , n. No velocity restrictions are implemented and the
initial velocities are set equal to 0.

The chosen settings for each formulation are based on judgment obtained from the results of the
test sets in Chapter 4. The aim is not to determine or use optimal settings for each formulation, but
merely to illustrate the applicability of the PSOA in shape optimization.

F

Control variables

Figure 5.1: Initial structure and definition for the cantilever beam.

The results are summarized in Table 5.1 and Figure 5.2 illustrates the average convergence his-
tory over 10 runs. As shown, for the selected settings, PSOAF1* demonstrates the fastest initial
convergence. PSOAF1 stagnates rapidly, due to the particle trajectories collapsing to line searches.

Selected shapes are depicted in Figures 5.3–5.11; this includes the best function value f best ob-
tained for each run, and the mean best function value f best

mean obtained over 10 runs. The statistical
significance of using only 10 runs allows at most for only general observations. The performance
of PSOAF1 is poor, as illustrated visually and shown numerically. PSOAF1* and PSOAF2 have
comparable performance.
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Table 5.1: Optimal results for the cantilever beam after only 1000 iterations.

Run PSOAF1 PSOAF2 PSOAF1*

f best(×10−2) f best(×10−2) f best(×10−2)
1 1.981224 1.001660 1.000307
2 2.585177 1.001963 1.004114
3 1.814116 1.002475 1.014873
4 1.570862 1.002285 1.000066
5 1.578468 1.002799 1.004792
6 2.586973 1.000644 1.000284
7 1.488452 1.003684 1.000723
8 1.612004 1.000872 1.000594
9 2.136010 1.001666 1.001907
10 2.082606 1.000784 1.000346
f best

mean(×10−2) 1.943589 1.001883 1.002800
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Figure 5.2: Mean function value history plot averaged over 10 runs for the cantilever beam shape
optimization problem for PSOAF1 (with w = 0.7), PSOAF2 (with w = 0.5) and PSOAF1* (with
w = 0.6 and α = 5).

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWiillkkee,,  DD  NN    ((22000055))  



CHAPTER 5. SHAPE OPTIMIZATION PROBLEM 50

(a) (b)

Figure 5.3: Cantilever beam: results obtained after 100 iterations with PSOAF1 for a) the worst
run (run 6), and b) the best run (run 7).

(a) (b)

Figure 5.4: Cantilever beam: results obtained after 500 iterations with PSOAF1 for a) the worst
run (run 6), and b) the best run (run 7).

(a) (b)

Figure 5.5: Cantilever beam: results obtained after 1000 iterations with PSOAF1 for a) the worst
run (run 6), and b) the best run (run 7).
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(a) (b)

Figure 5.6: Cantilever beam: results obtained after 100 iterations with PSOAF2 for a) the worst
run (run 7), and b) the best run (run 6).

(a) (b)

Figure 5.7: Cantilever beam: results obtained after 500 iterations with PSOAF2 for a) the worst
run (run 7), and b) the best run (run 6).

(a) (b)

Figure 5.8: Cantilever beam: results obtained after 1000 iterations with PSOAF2 for a) the worst
run (run 7), and b) the best run (run 6).
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(a) (b)

Figure 5.9: Cantilever beam: results obtained after 100 iterations with PSOAF1* for a) the worst
run (run 3), and b) the best run (run 4).

(a) (b)

Figure 5.10: Cantilever beam: results obtained after 500 iterations with PSOAF1* for a) the worst
run (run 3), and b) the best run (run 4).

(a) (b)

Figure 5.11: Cantilever beam: results obtained after 1000 iterations with PSOAF1* for a) the worst
run (run 3), and b) the best run (run 4).
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5.5 Closure

In Chapters 3 and 4 it was demonstrated with a popular analytical test function set that the perfor-
mance of PSOAF1 is poor. In turn, it was demonstrated that PSOAF2 and PSOAF1* demonstrate
comparable performance.

In this chapter, the three different formulations of the PSOA were applied to a real engineering op-
timization problem, namely the optimal shape design of the cantilever beam. This was done using
an unstructured remeshing optimization strategy, based on a truss structure analogy. Although the
statistical significance of using only 10 runs at most allows for only general observations, it was
again shown that PSOAF1 demonstrates poor performance. In turn, comparable performance for
PSOAF1* and PSOAF2 was again demonstrated.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions

The main conclusions of this study are:

1. Implementation subtleties due to ambiguous notation have resulted in two distinctly different
formulations of the PSOA, respectively denoted by PSOAF1 and PSOAF2 herein.

2. PSOAF1 as given by Eq. (3.1) is strictly observer independent, but the particle trajectories
collapse to line searches.

3. PSOAF2 as given by Eq. (4.2) is observer dependent, although the particle trajectories are
space filling.

4. Even though PSOAF2 is observer dependent, it outperforms PSOAF1 for both the rotated
objective functions and unrotated objective functions (or decomposable multimodal objec-
tive functions).

5. A novel formulation, denoted PSOAF1*, was proposed, which is observer independent,
while the particle trajectories are space filling.

6. The performance of PSOAF1* is comparable to the performance of PSOAF2 for the test
function considered, with the added advantage of being objective.

7. The three different formulations were applied to a real engineering problem, namely the
shape optimization of a cantilever beam.

8. For both the analytical test functions and the shape optimization problem, PSOAF1* and
PSOAF2 outperformed PSOAF1, with the performance of PSOAF1* and PSOAF2 being
comparable.

54
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6.2 Recommendations

It is recommended that PSOAF1* is used in practice. Other formulations may of course also be
formulated, but care should be taken to ensure that these formulations are objective and diverse,
viz. the search trajectories should be space filling in n-dimensional space, and not collapse to line
searches.

Secondly, when reporting on algorithms, it is of importance that the following points are reported
upon, to ensure that research is reproducible:

1. General:

(a) the selected velocity rule (using unambiguous notation),

(b) the updating strategy (whether synchronous or asynchronous), and

(c) the stopping criteria used.

2. The heuristics used (with a detailed description thereof):

(a) minimum velocity restriction (and arithmetic precision),

(b) maximum velocity restriction,

(c) the implemented inertia strategy,

(d) position restriction,

(e) etc.

3. The parameters used:

(a) the population size p,

(b) the initial inertia and velocity values, and

(c) the social and cognitive scaling factors c1 and c2.

Furthermore, in order to ensure robustness (objectivity) of an algorithm, decomposable functions
should be used in both the rotated and the unrotated reference frames.
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