
Chapter 4

Objectivity of the PSOA

4.1 Introduction

In science, most physical phenomena are invariant. It is fundamental that mathematical repre-
sentation of these phenomena reflects this invariance. This fundamental requirement is known as
objectivity, frame-indifference or observer independence, and is well known in classical mechanics
[53]. For objectivity, the description of some quantity has to be invariant under pure translations,
as well as pure rotations.

Objectivity or observer independence is also highly desirable (almost essential) in optimization
procedures, to reflect the invariance of the physical processes that are optimized. Robust optimiza-
tion procedures and algorithms should definitely be invariant.

In classical gradient based optimization, the gradient vector (or some conjugate direction to the
gradient), indicates some direction of improvement, even if this direction is not optimal. This
accounts for the reference frame; classical optimization is (usually) frame invariant.

In modern (stochastic) optimization procedures, the requirement of observer independence is equally
essential. These algorithms include genetic programming [37], genetic algorithms [38], evolu-
tionary strategies [39], differential evolution [40] and the particle swarm optimization algorithm
(PSOA) [3, 4].

For the genetic algorithm (GA), Salomon [54, 55] demonstrated the lack of rotational invariance
of the algorithm. He showed that the GA’s performance at low mutation rates is significantly
influenced by the frame of reference used to pose a problem.

The PSOA was introduced by Kennedy and Eberhart [3] as a gradient free stochastic optimization
algorithm. The fundamental principle behind the PSOA is the evolutionary advantages that the
sharing of information offers. This is often known as ‘collaborative searching’.

The PSOA is quite simple: At first, a swarm of p particles is randomly deployed in an n-dimensional
design domain. The particles then update their positions in the design domain over unit time in-
crements using a simple stochastic rule, known as the ‘velocity rule’.

The quality of each particle’s position at each iteration is then evaluated using the objective or
cost function. Each particle’s cognitive memory allows it to remember it’s own best cost function
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value, with associated position, over time. Importantly, the social interaction and awareness of the
particles allow them to also remember the ‘best’ cost function value the swarm itself found over
time.

In Chapter 3 it was shown that implementation subtleties due to ambiguous notation have resulted
in two distinctly different implementations of the PSOA. While this does not repute negatively on
the ingenuity of the idea of Kennedy and Eberhart, discerning between these two implementations
is of crucial importance. The behavior of the respective implementations is markedly different,
although they only differ in the formulation of the velocity updating rule. In fact, the differences
are merely due to subtle differences in the introduction of randomness into the algorithm.

In this chapter, the objectivity of the PSOA is investigated. It is shown that the first formulation
PSOAF1 is objective, combined with the disadvantage that the particle trajectories collapse to line
searches. It is then show that the second formulation PSOAF2 is not objective, although it has the
advantage that the particle trajectories are n-dimensional space filling. A novel formulation that is
both objective and diverse, i.e. the algorithm generates particle trajectories that are space filling, is
then presented.

4.2 Notes on the investigation

The investigation into the objectivity of the PSOA is started by defining the instantaneous search
domain of a particle, viz. the domain to which the search of a particle i at iteration k is restricted
as discussed in Chapter 3.

From Eqs. (2.2) and (2.3), it is observed that the instantaneous search domain is composed from a
deterministic contribution given by (xi

k + wvi
k), and a stochastic contribution due to ν i

k.

The stochastic domain is bounded, and has an associated probability distribution, due to the random
scaling with finite scalars. In order to investigate the objectivity of the stochastic contribution ν i

k

of the instantaneous search domain, Monte Carlo simulations [56] are used. These are conducted
for different values of pi

k, p
g
k and xi

k. Scatter plots are constructed to define the domain of possible
stochastic vectors ν i

k by generating 104 instances of ν i
k. In all investigations c1 = c2 = 2.

4.3 Formulation 1 (PSOAF1)

For PSOAF1, the stochastic vector ν i
k is given by

ν i
k = c1r

i
1k(p

i
k − xi

k) + c2r
i
2k(p

g
k − xi

k), (4.1)

where ri
1k and ri

2k represent two uniform real random scalars between 0 and 1, which are updated
at every iteration k, and for each particle i in the swarm. The random numbers ri

1k and ri
2k in-

dependently scale only the magnitudes of the cognitive and social vectors, respectively given by
c1(p

i
k − xi

k) and c2(p
g
k − xi

k). The cognitive vector c1(p
i
k − xi

k) and the social vector c2(p
g
k − xi

k)
can be anything from normal to parallel w.r.t. each other.

When the cognitive and social vectors are not parallel, Eq. (4.1) may be interpreted as the vector
equation of a bounded plane P

i
k in n-dimensional space. The bounded plane is then translated in
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Figure 4.1: Partitioning the position vector xi
k+1 into a deterministic contribution (xi

k +wvi
k), and

a stochastic contribution (ν i
k ∈ P

i
k), for c1 = c2 = 2.
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Figure 4.2: Partitioning the position vector xi
k+1 into a deterministic contribution (xi

k +wvi
k), and

a stochastic contribution (ν i
k ∈ L

i
k), for c1 = c2 = 2.

n-dimensional space by the addition of xi
k and wvi

k, as depicted in Figure 4.1.

Whenever the cognitive and social vectors c1(p
i
k −xi

k) and c2(p
g
k −xi

k) are parallel, Eq. (4.1) may
be interpreted as the vector equation of a bounded line L

i
k in n-dimensional space. Again, the

bounded line is translated in n-dimensional space by the addition of xi
k and wvi

k, as depicted in
Figure 4.2.

The intrinsic properties of a vector are its magnitude and direction; these exist independent of a
reference frame [57]. In PSOAF1, only the vector magnitudes (which are invariant) are randomly
scaled. Also, since the vectors c1(p

i
k−xi

k) and c2(p
g
k−xi

k) are constructed through the subtraction
of two vectors, they are also translationally invariant. Both criteria for observer independence are
met, hence PSOAF1 is objective.

4.3.1 PSOAF1: Investigation of the instantaneous search domain

Objectivity of PSOAF1 is now illustrated by conducting Monte Carlo simulations. Similar simu-
lations will be conducted for the algorithmic formulations in sections to come.
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Figure 4.3: PSOAF1: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte

Carlo simulations, with a)
(

pi
k − xi

k

)

= [ 1√
2

1√
2
] and

(

p
g
k −xi

k

)

= [−
√

2
√

2] and b)
(

pi
k −xi

k

)

=

[1 0] and
(

p
g
k −xi

k

)

= [0 2]. Each point represents the end point of a stochastic vector with origin
at [0 0].

First, a study is conducted for non-parallel cognitive and social vectors c1(p
i
k−xi

k) and c2(p
g
k−xi

k).
In Figure 4.3(a), the vectors

(

pi
k − xi

k

)

and
(

p
g
k − xi

k

)

are respectively given by [ 1√
2

1√
2
] and

[−
√

2
√

2]. A scatter plot yields the plane P
i
k, with c1 and c2 merely scaling P

i
k.

A scatter plot is then constructed after rotating the vectors
(

p
g
k−xi

k

)

and
(

pi
k−xi

k

)

45◦ clockwise,
as depicted in Figure 4.3(b). Hence

(

pi
k − xi

k

)

and
(

p
g
k − xi

k

)

are respectively given by [1 0] and
[0 2]. From Figure 4.3(b), it is clear that the domain remains a bounded plane P

i
k, which is merely

rotated 45◦ clockwise.

It also follows from random variable theory that the probability distribution over the domain P
i
k is

uniform [50], as illustrated in Figures 4.3(a) and 4.3(b).

Secondly, a similar study is conducted for parallel cognitive and social vectors c1(p
i
k − xi

k) and
c2(p

g
k−xi

k), as depicted in Figure 4.4. In Figure 4.4(a), the parallel vectors
(

pi
k−xi

k

)

and
(

p
g
k−xi

k

)

are respectively given by [ 1√
2

1√
2
] and [

√
2
√

2]. The domain is a bounded line L
i
k with c1 and c2

merely scaling the length of L
i
k.

Again a scatter plot is constructed after rotating
(

p
g
k−xi

k

)

and
(

pi
k−xi

k

)

45◦ clockwise, as depicted
in Figure 4.4(b). Now,

(

pi
k − xi

k

)

and
(

p
g
k − xi

k

)

are respectively given by [1 0] and [2 0]. As
shown in Figure 4.4(b), the bounded line L

i
k is merely rotated.

It follows from random variable theory that the probability distribution over the bounded line is
tri-linear [50], for different vector lengths ||pi

k − xi
k|| and ||pg

k − xi
k||.

As discussed earlier and graphically demonstrated here, PSOAF1 is objective. A rotation of the
vectors pi

k, p
g
k and xi

k merely results in a rotation of the stochastic domains, P
i
k and L

i
k. This
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Figure 4.4: PSOAF1: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte

Carlo simulations, with a)
(

pi
k − xi

k

)

= [ 1√
2

1√
2
] and

(

p
g
k − xi

k

)

= [
√

2
√

2] and b)
(

pi
k − xi

k

)

=

[1 0] and
(

p
g
k − xi

k

)

= [2 0].

follows since only the magnitude of the cognitive and social vectors are scaled in PSOAF1.

4.4 Formulation 2 (PSOAF2)

The stochastic vector ν i
k of PSOAF2 is given by

ν i
k = c1r

i
1k ◦ (pi

k − xi
k) + c2r

i
2k ◦ (pg

k − xi
k), (4.2)

where the ◦ operator indicates component by component multiplication between two vectors.
Hence the random vectors ri

mk are given by

ri
mk = (ρi

1k, ρi
2k, · · · , ρi

nk), m = 1, 2, (4.3)

with ρi
lk, l = 1, 2, · · · , n uniform random numbers between 0 and 1. Eq. (4.2) is no longer a vector

equation of a bounded plane P
i
k, since every non-zero component of (pi

k − xi
k) and (pg

k − xi
k)

is independently scaled. As a result, the domain of possible stochastic vectors is generalized to
n-dimensional space S

i
k.

However, since the components of a vector are given with respect to a specific reference frame,
PSOAF2 is rotationally variant. (Although PSOAF2 is of course translationally invariant.) Never-
theless, PSOAF2 is observer dependent, since only one of the two criteria of objectivity is met.

4.4.1 PSOAF2: Investigation of the instantaneous search domain

The observer dependence of PSOAF2 is now quantified, using Monte Carlo simulations, similar to
those in Section 4.3.1.
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Figure 4.5: PSOAF2: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte

Carlo simulations with a)
(

pi
k − xi

k

)

= [ 1√
2

1√
2
] and

(

p
g
k − xi

k

)

= [−
√

2
√

2] and b)
(

pi
k − xi

k

)

=

[1 0] and
(

p
g
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)

= [0 2].

As before, the study is conducted for non-parallel cognitive and social vectors c1(p
i
k − xi

k) and
c2(p

g
k − xi

k). Figure 4.5(a) depicts that the domain is an n-dimensional space S
i
k (with n = 2 in

this case), with c1 and c2 merely scaling S
i
k. It is also clear that the probability distribution over

S
i
k is non-uniform.

The scatter plot after rotating the vectors
(

p
g
k − xi

k

)

and
(

pi
k − xi

k

)

45◦ clockwise, is depicted
in Figure 4.5(b). It is clear that the domain changes after rotation of the vectors. However, the
domain remains an n-dimensional space S

i
k, but the size of, and the probability distribution over,

the domain depends on the orientation w.r.t. the Cartesian coordinate axis.

The study is repeated for parallel cognitive and social vectors c1(p
i
k − xi

k) and c2(p
g
k − xi

k), as
depicted in Figure 4.6(a). The domain is still generalized to n-dimensional space S

i
k with c1 and

c2 merely scaling the size of S
i
k.

The scatter plot after rotating
(

p
g
k −xi

k

)

and
(

pi
k −xi

k

)

45◦ clockwise, is depicted in Figure 4.6(b).
It is clear that the domain changes significantly after rotation of the vectors. In fact, the domain
collapses to a bounded line L

i
k, since both vectors are parallel to one of the Cartesian basis vectors.

As discussed earlier and graphically demonstrated here, PSOAF2 is observer dependent. A rotation
of the vectors (pi

k−xi
k) and (pg

k−xi
k) results in the size of, and the probability distribution over, the

stochastic domain to change. This follows since PSOAF2 scales the components of the cognitive
and social vectors. Since the components of a vector are observer dependent, PSOAF2 is also
observer dependent.

However, the advantage of PSOAF2 is that the particle trajectories remain space filling in n-
dimensional space as shown in Chapter 3. The result is that diversity in particle trajectories are
maintained.
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Figure 4.6: PSOAF2: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte

Carlo simulations with a)
(

pi
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)
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2
] and

(

p
g
k−xi

k

)

= [
√

2
√

2] and b)
(

pi
k−xi

k

)

= [1 0]

and
(

p
g
k − xi

k

)
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4.5 Novel Formulation: PSOAF1*

As discussed in Section 4.3, PSOAF1 is objective, although the particle trajectories collapse to
lines. (The advantage of diverse (n-dimensional) particle search trajectories are quantified in
Chapter 3.) On the other hand, PSOAF2 allows for particles to have diverse search trajectories, but
unfortunately this comes at the cost of sacrificing objectivity.

An implementation of the PSOA is now presented that allows for diverse particle search trajecto-
ries, while retaining objectivity. Based on PSOAF1, the novel, diverse implementation, is denoted
PSOAF1*.

In PSOAF1*, the vector magnitudes are scaled, and the vector directions of (pi
k−xi

k) and (pg
k−xi

k)
perturbed, by multiplying each of the above vectors with an independent random rotation matrix.
The random rotation matrices are constructed anew for each particle i and for every iteration k,
hence

νi
k = c1r

i
1kQ

i
1k(p

i
k − xi

k) + c2r
i
2kQ

i
2k(p

g
k − xi

k), (4.4)

with each Qi
lk, l = 1, 2, a random rotation matrix of dimension n × n.

Q is a proper orthogonal matrix (with determinant 1). Numerous methods are available to construct
rotation matrices (e.g. see the approach of Salomon [54]. Constructing n × n matrices using
Salomon’s routine is however computationally expensive, since (n − 1)(n − 2) matrix-matrix
multiplications are required.)

As a computationally viable alternative, the exponential map is used [58]. There are again numer-
ous ways to construct exponential maps. The simple series method is selected [58]. The general
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series expansion of an exponential map is given by

Q = I + W +
1

2
WW +

1

6
WWW + · · · , (4.5)

where I is the identity matrix and W is a skew matrix.

The random skew matrix W is constructed as follows:

W =
απ

180
(A − AT), (4.6)

with A an n× n random matrix with each entry a uniform random number between −0.5 and 0.5.
α is a real scaling factor and superscript T denotes the matrix transpose.

The author selects to construct the exponential map Qi
k for “small” perturbations, using only the

first two terms of a truncated series method, i.e.

Qi
k = I + W i

k. (4.7)

This is the linear approximation to a rotation matrix, and is valid for small perturbations, since the
entries of the higher order terms are close to zero. The advantage of the simplification is that the
number of matrix-matrix multiplications is zero.

(It is important to note that the variable bounds defining D should be normalized, such that the
boundary ranges are equal.)

4.5.1 PSOAF1*: Investigation of the instantaneous search domain

As before, the objectivity of PSOAF1* is quantified using Monte Carlo simulations. In 2 dimen-
sions, α = 15 is selected. (Although this is not “small”, this serves to clearly illustrate the proposed
concept).

Again, the study for non-parallel cognitive and social vectors is conducted, as depicted in Fig-
ure 4.7(a). The domain generalizes to n-dimensional space S

i
k, with c1 and c2 scaling S

i
k.

The scatter plot after rotating the vectors
(

p
g
k − xi

k

)

and
(

pi
k − xi

k

)

45◦ clockwise is depicted in
Figure 4.7(b). Clearly, the domain remains generalized to n-dimensional space S

i
k, rotated 45◦

clockwise. The probability distribution over the domain S
i
k is non-uniform.

Secondly, the study for parallel cognitive and social vectors c1(p
i
k − xi

k) and c2(p
g
k − xi

k) is con-
ducted. Again the domain generalizes to n-dimensional space S

i
k, with c1 and c2 merely scaling

the domain.

A scatter plot after rotating
(

p
g
k − xi

k

)

and
(

pi
k − xi

k

)

45◦ clockwise is constructed, as depicted
in Figure 4.8(b). Evidently, the n-dimensional space S

i
k is merely rotated, and the probability

distribution over the domain is non-uniform.

As discussed earlier and graphically demonstrated here, PSOAF1* is an objective formulation. A
rotation of the vectors (pi

k−xi
k) and (pg

k−xi
k) merely results in a rotation of the stochastic domain

S
i
k.

The drawback of PSOAF1 is overcome in PSOAF1*, where in addition to scaling the vector mag-
nitudes, the vectors are directionally perturbed. The magnitudes and directions of (pi

k − xi
k) and

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWiillkkee,,  DD  NN    ((22000055))  



CHAPTER 4. OBJECTIVITY OF THE PSOA 35

−3 −2 −1 0 1 2

0.5

1

1.5

2

2.5

3

3.5

4

4.5

νi
k+1

(1)

νi k+
1(2

)

( pg
k
− xi

k
) 

( pi
k
− xi

k
) 

(a)

−1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

νi
k+1

(1)

νi k+
1(2

)

( pg
k
− xi

k
) 

( pi
k
− xi

k
) 

(b)

Figure 4.7: PSOAF1*: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte

Carlo simulations, with a)
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Figure 4.8: PSOAF1*: Scatter plot of 104 instances of the stochastic vectors ν i
k, generated using

Monte Carlo simulations, with a)
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(pg
k −xi

k) are used to only indicate potential improvement, thereby placing only some faith in both
direction and step size.

This is in contrast to PSOAF1, where absolute faith is placed in the directions prescribed by (pi
k −

xi
k) and (pg

k − xi
k), while only some faith is placed on step size.

(Incidentally, termination occurs when pi
k, p

g
k and xi

k converge on the same point in n-dimensional
space, combined with wvi

k → 0.)

4.6 Numerical experiments

An empirical study to quantify the (lack of) objectivity of the three discussed implementations
of the PSOA is now performed. A synchronous updating method is used [31]. Real variables
are implemented using double-precision floating-point arithmetic. For this study the algorithm
parameters are c1 = c2 = 2, the swarm size is p = 20 particles and the computations are performed
for various constant inertia factors w. Initial velocities are assumed to equal 0. In PSOAF1*, α = 3
is simply selected. (The author does not seek an optimal value for α, but merely wishes to illustrate
the effects of perturbing the vector directions.) Furthermore, no boundary or velocity restrictions
are implemented. Each run consists of 200000 function evaluations (10000 iterations). All results
presented are averaged over 100 runs.

In the study the following five test functions are used:
i) The Rosenbrock function (unimodal, f0):

f0(x) =

n
2
∑

i=1

(

100
(

x2i − x2
2i−1

)2
+
(

1 − x2i−1

)2
)

.

ii) The Quadric function (unimodal, f1):

f1(x) =

n
∑

i=1

(

i
∑

j=1

xj

)2

.

iii) The Ackley function (multimodal, f2):

f2(x) = −20 exp

(

− 0.2
√

1
n

∑n

i=1 x2
i

)

− exp

(

1
n

∑n

i=1 cos(2πxi)

)

+ 20 + e.

iv) The generalized Rastrigin function (multimodal, f3):

f3(x) =
n
∑

i=1

(

x2
i − 10 cos(2πxi) + 10

)

.

v) Finally, the generalized Griewank function (multimodal, f4):

f4(x) =
1

4000

n
∑

i=1

x2
i −

n
∏

i=1

cos
( xi√

i

)

+ 1.
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Table 4.1: Test function parameters
Function n domain

f0 30 ± 2.048

f1 30 ± 100.0

f2 30 ± 30.0

f3 30 ± 5.12

f4 30 ± 600.0

The parameters used in the study are given in Table 4.1. The domain column represents the range
of each dimension of the design variables; the test function domains are symmetrical about 0.0 in
all dimensions.

The multimodal functions f2 and f3 are decomposable [54], viz. the design variables are uncou-
pled. This implies that once an optimal value for a given design variable is obtained, it remains
optimal, independent of the other design variables. This is similar to optimizing n 1-dimensional
optimization problems, instead of 1 n-dimensional coupled optimization problem. The test set is
therefore studied in the unrotated or decomposable reference frame f(x), as well as in an arbi-
trary rotated reference frame f(Rx), in which the design variables are coupled [55]. Here, R is
a random, proper orthogonal transformation matrix, constructed as in [54]. The transformation
matrix results in a pure rotation of each test function. For each of the 100 independent runs, a
new random rotation matrix R is constructed, to ensure that there is no bias toward any particular
reference frame.

4.7 Discussion of Results

Depicted in Figures 4.9, 4.10, 4.11, 4.12 and 4.13 are the mean objective function values after
2 × 105 function evaluations (or 10000 iterations) averaged over 100 runs for both the unrotated
and rotated functions.

The rotational invariance of PSOAF1 and PSOAF1* are evident from Figures 4.9(a), 4.10(a),
4.11(a), 4.12(a) and 4.13(a). The poor performance of PSOAF1 directly results from the particle
trajectories collapsing to lines as shown in Chapter 3. There is a significant improved performance
for all the test functions with PSOAF1*, due to the scaling of the vector magnitudes and perturba-
tion of the vector directions.

The rotational variance of PSOAF2 is evident from Figures 4.9(b), 4.10(b), 4.11(b), 4.12(b) and
4.13(b). There is a severe performance loss for some of the rotated functions compared to the
unrotated functions.

Two functions result in similar performance for the rotated and unrotated functions, namely the
Quadric function f1, and the Griewank function, f4. The Quadric and Griewank functions are
almost insensitive to rotation. (The Griewank function is a spherical function on which sinusoidal
“noise” is imposed. Hence this function is artificially indifferent to rotation, since many local
minima appear, irrespective of rotation.)
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Figure 4.9: Average function value obtained with a) PSOAF1 and PSOAF1*, and b) PSOAF2 after
2×105 function evaluations (10000 iterations) averaged over 100 runs on the rotated and unrotated
Rosenbrock test function f0.
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Figure 4.10: Average function value obtained with a) PSOAF1 and PSOAF1*, and b) PSOAF2
after 2 × 105 function evaluations (10000 iterations) averaged over 100 runs on the rotated and
unrotated Quadric test function f1.
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Figure 4.11: Average function value obtained with a) PSOAF1 and PSOAF1*, and b) PSOAF2
after 2 × 105 function evaluations (10000 iterations) averaged over 100 runs on the rotated and
unrotated Ackley test function f2.
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Figure 4.12: Average function value obtained with a) PSOAF1 and PSOAF1*, and b) PSOAF2
after 2 × 105 function evaluations (10000 iterations) averaged over 100 runs on the rotated and
unrotated Rastrigin test function f3.
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Figure 4.13: Average function value obtained with a) PSOAF1 and PSOAF1*, and b) PSOAF2
after 2 × 105 function evaluations (10000 iterations) averaged over 100 runs on the rotated and
unrotated Griewank test function f3.

Inadvertently, this also suggest that non-spherical unimodal test functions should be used to evalu-
ate objectivity. The two unimodal functions, namely the Rosenbrock function f0 and the Quadric
function f1, are of some interest, since they indicate the ability of an algorithm to search within a
local basin. The performance of PSOAF1* is significantly better than PSOAF2 for both functions,
for both the rotated and unrotated test functions. PSOAF2 demonstrates a severe performance loss
for the Rosenbrock function, for the rotated function compared to the unrotated function. (Note
the scale of the graphs in Figure 4.9.)

The performance difference between PSOAF2 and PSOAF1* for the unimodal Quadric test func-
tion f1, is depicted in Figure 4.14. Figure 4.14 depicts the mean function value convergence history
of PSOAF1 (with w = 0.8), PSOAF2 (with w = 0.4) and PSOAF1* (with w = 0.5 and α = 3)
over 2500 iterations. The values for w are optimal for each algorithm, but no attempt was made
to optimize α. Of the three formulations, it is clear that PSOAF1* is computationally the most
effective on the Quadric test function.

For the multimodal functions, PSOAF2 demonstrates notable performance loss. See for example
the Ackley function f2, and the Rastrigin function f3. In contrast, the performance of PSOAF1* is
comparable to the best obtained with PSOAF2, with no performance loss due to rotation.

For the sake of clarity, an overview of the performances of PSOAF1, PSOAF2 and PSOAF1* is
given in Table 4.2. The table summarizes the best function values obtained, together with the
inertia factor at which the best function value is obtained after 2× 105 function evaluations (10000
iterations). The results for both the unrotated and rotated test functions are given.
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Table 4.2: Constant inertia factor at which the best average objective function value is obtained for
the unrotated test functions. The accompanying average objective function value for rotated test
functions is also presented.

PSOAF1

funrotated frotated

w f best
avg f best

avg

f0 0.8 54.071 54.712

f1 0.8 4087.657 4123.801

f2 0.8 11.791 11.925

f3 0.8 157.656 154.368

f4 0.7 30.924 29.731

PSOAF2

funrotated frotated

w f best
avg f best

avg

f0 0.5 1.358 9.905

f1 0.4 1.4×10−9 1.5×10−8

f2 0.6 8.6×10−15 2.099

f3 0.6 40.992 138.507

f4 0.6 1.5 × 10−2 1.1 × 10−2

PSOAF1* (α = 3)

funrotated frotated

w f best
avg f best

avg

f0 0.6 1.6 × 10−2 1.7 × 10−2

f1 0.5 1.2×10−43 3.8×10−44

f2 0.7 3.583 3.492

f3 0.5 76.949 76.880

f4 0.6 1.1 × 10−2 1.3 × 10−2
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Figure 4.14: Mean function value history plot averaged over 100 runs on the rotated and unrotated
Quadric test function f3 with PSOAF1 (with w = 0.8), PSOAF2 (with w = 0.4) and PSOAF1*
(with w = 0.5 and α = 3).

4.8 Comments on PSOAF1*

4.8.1 On invariance

It is now shown that PSOAF1* is not strictly rotationally invariant, but only in a stochastic sense.

Consider an arbitrary vector, expressed in two different reference frames, by respectively y and y ′.
The two reference frames are related by a pure rotation M , hence

y′ = My, M ∈ Orth+, (4.8)

where Orth+ indicates the space of proper orthogonal matrices.

Now apply two independent directional perturbations (rotations) Q ∈ Orth+ and Q′ ∈ Orth+ to y

and y′ respectively. The vectors ŷ and ŷ′ then obtained, are respectively given by

ŷ = Qy, (4.9)

and
ŷ′ = Q′y′. (4.10)

Strict deterministic rotational invariance requires a one-to-one mapping of the perturbed vectors in
either reference frame. Hence

ŷ′ = Mŷ, ∀ M ∈ Orth+ (4.11)

By substituting Eqs. (4.8), (4.9) and (4.10) into Eq. (4.11), the following is obtained

Q′My = MQy, ∀ M ∈ Orth+. (4.12)

Eq. (4.12) is rewritten as

(Q′M − MQ)y = 0, ∀ M ∈ Orth+. (4.13)
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Since Eq. (4.13) has to hold for any arbitrary vector y, it follows that

Q′M = MQ, ∀ M ∈ Orth+. (4.14)

The unique solution to Eq. (4.14) is that both Q′ and Q are the second-order isotropic tensor, i.e.

Q′ = Q = I. (4.15)

The foregoing implies that a strict enforcement of rotational invariance results in Qi
lk = I, l =

1, 2. In other words, PSOAF1* reduces to PSOAF1.

However, since the PSOA is a stochastic algorithm, it is adequate to satisfy Eq. (4.15) in an average
sense only. In order to satisfy Q′ = Q = I in a stochastic sense, it is sufficient to require that
mean(Q′) = mean(Q) = I , if the probability distributions of Q′ and Q are chosen equal over
identical domains.

4.8.2 Implementational issues of PSOAF1*

Further to the implementation in Section 4.5, numerous strategies exist to achieve independent
directional perturbation.

An obvious, computationally inexpensive possibility is to randomly perturb each component of
the unit vectors (pi

k − xi
k)/||(pi

k − xi
k)|| and (pg

k − xi
k)/||(pg

k − xi
k)||; the vectors (pi

k − xi
k) and

(pg
k − xi

k) are then reconstructed from the normalization of the perturbed vectors. (Although this
makes a rigorous mathematical analysis of the algorithm difficult.)

In the implementation, in updating Q, strategies to limit the computational expense associated
with matrix multiplications and the generation of random numbers may also be implemented. For
example, multiplying the sum of c1(p

i
k −xi

k) and c2(p
g
k −xi

k) by a single random rotation matrix,
reduces the number of matrix multiplications by half.

However, depicted in Figure 4.15 is the difference in instantaneous search domain that results
when independent rotation matrices Qi

1k 6= Qi
2k are used, as opposed to identical rotation matrices

Qi
1k = Qi

2k.

To reduce the computational effort even further, the vectors c1(p
i
k − xi

k) and c2(p
g
k − xi

k) of all
the particles can be directionally perturbed by the same independent rotation matrices, viz. Qi

lk =
Qlk, l = 1, 2 and i = 1, 2, · · · , p.

4.8.3 Alternatives to PSOAF1*

Finally, there are of course numerous methods to introduce diversity into PSOAF1, as opposed to
the proposed option of independent directional perturbation.

Only a single alternative is mentioned here, namely an increase in the social awareness of the
particles. In turn, this may for example be effected by increasing the number of particles that
contribute to Eq. (4.1) [35, 34]. (One may of course achieve n-dimensional searches, if the number
of particles p ≥ n, unless the particle trajectories are parallel.) Additional information about the
objective function is then also used in the searches of any particle i.
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Figure 4.15: Scatter plot of 104 possible stochastic vectors ν i
k, generated using Monte Carlo sim-

ulations, with (pi
k − xi

k) = [−1 0] and (pi
k − xi

k) = [2 0] using a) identical rotation matrices
Qi

1k = Qi
2k and b) independent rotation matrices Qi

1k 6= Qi
2k.

4.9 Closure

It is shown that PSOAF1 is objective, but it demonstrates an overall poor performance, due to the
particle trajectories collapsing to lines. This is a direct result of only scaling the magnitude of the
cognitive and social vectors c1(p

i
k − xi

k) and c2(p
g
k − xi

k).

In turn, PSOAF2 is not objective, which results in severe performance loss for “rotated” functions.
Nevertheless, PSOAF2 still outperforms PSOAF1 for both rotated and unrotated test functions,
since the algorithm is diverse, i.e. the particle trajectories do not collapse to lines.

A novel implementation denoted PSOAF1* is proposed, which is both objective and diverse. In
PSOAF1*, the magnitudes are scaled, and the directions perturbed independently, of both the
cognitive and social vectors c1(p

i
k − xi

k) and c2(p
g
k − xi

k). (This however comes at the cost of
an additional scaling factor.) PSOAF1* outperforms PSOAF2 for the unimodal functions used,
for both the rotated and unrotated test functions. In addition, its performance is comparable to
PSOAF2 for the multimodal functions, with the added advantage of being independent of the
reference frame in which the objective function is formulated.
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