
Chapter 1

Introduction

1.1 Global optimization

Increasing prominence is given to the role of optimization in engineering, both in academia and
in industry. Computational power, combined with increased algorithm flexibility and simplicity,
allows for a faster transition of algorithm development in academia to industry.

In convex optimization, the local minimizer is characterized by the Karush-Kuhn-Tucker condi-
tions [1]. These conditions are necessary and sufficient to guarantee optimality.

In global optimization in general, no conditions are available to characterize the global optimizer,
and the optimization problem is intractable.

The difficulty of the general global optimization problem is further aggravated by

1. the presence of numerical noise,

2. the presence of infeasible regions in the design domain,

3. the presence of discontinuities,

4. a large number of design variables, and

5. the computational cost of evaluating an expensive objective function (simulation).

The large variety of solution techniques in global optimization is therefore not surprising. Recent
developments includes evolutionary computational algorithms, taboo searches, fractional program-
ming, dynamical searches, etc. [2].

This study is concerned with the evolutionary particle swarm optimization algorithm (PSOA),
introduced by Kennedy and Eberhart [3, 4]. Some advantages of the PSOA are that it is

1. gradient-free,

2. easy to parallelize, and

3. simple and easy to implement.
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CHAPTER 1. INTRODUCTION 2

1.2 Motivation

PSOA investigations are predominantly based on empirical test functions [5, 6, 7, 8, 9]. In these
investigations, the complexities of the algorithm are not broken into digestible units. An under-
standing of the fundamentals of the algorithm is therefore not easily achieved. In these studies,
judgment is largely passed based purely on the final objective function values that a particular
algorithm obtains.

Some researchers conduct empirical investigations to quantify the sequence effect of the algorithm
by observing the particle positions in the design domain at selected iterations for a single run [10].
Alternatively, the trace of positions of the swarm over a single run is observed [11, 12]. Although
some insight is gained into the behavior and convergence of the swarm, the stochastic nature of the
algorithm is neglected.

Ozcan and Mohan [13] conducted a deterministic trajectory analysis of a single particle by ne-
glecting the stochasticity of the algorithm. Clerc and Kennedy [14] extended the analysis to the
stochastic dynamic behavior of an individual particle in complex space, with the main focus on
constriction coefficients and achieving desirable dynamic characteristics for a particle. Trelea [15]
averaged the stochasticity in the PSOA, in an investigation based on dynamic system theory, to
increase the understanding of the dynamics of an individual particle. Zheng et al. [16] extended
the study of Ozcan and Mohan [13] and concluded that the inertia weight should increase over
time.

Although extensive research on the PSOA has been conducted, a basic understanding of the algo-
rithm still seems lacking. It is the aim of this study to gain fundamental insight into the PSOA.
It will be shown that there exist two different formulations of the PSOA. These formulations only
differ in the formulation of the velocity updating rule.

1.3 Objectives

The four objectives of this study are

1. to discern between the two different formulations of the PSOA,

2. to investigate observer independence of the PSOA,

3. to introduce a novel observer independent PSOA with diverse, space filling particle trajecto-
ries, and

4. to utilize the PSOA in shape optimization.

1.4 Approach

In attaining each objective, a different approach is followed:
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1. In order to discern between the different formulations, elementary linear algebra is used. In
order to quantify the differences, a numerical study is conducted.

2. The investigation of observer independence is conducted using Monte Carlo simulations. For
observer independence both translational and rotational invariance have to apply. Objectivity
is quantified with a numerical study in both the unrotated, and rotated reference frames.

3. Knowledge developed in 1. and 2. above is then used to develop a novel PSOA formulation.

4. In order to utilize the PSOA in shape optimization, an unstructured remeshing strategy is
implemented. This allows for large variations in designs, prominent in the initial phases of
the PSOA searches.

1.5 Thesis overview

The chapters in this thesis are self contained.

In Chapter 2, the problem formulation under consideration in Chapters 3 and 4 is presented, as well
as a very brief overview of the formulation of the PSOA, to allow for a brief historical overview of
the PSOA.

In Chapter 3, a detailed analysis of the particle swarm optimization algorithm (PSOA) is pre-
sented. It is shown that implementation subtleties due to ambiguous notation have resulted in two
distinctly different implementations of the PSOA, which have been used indiscriminately and un-
wittingly within the optimization community. However, discerning between these two implemen-
tations is shown to be of crucial importance. While the behavior of the respective implementations
is markedly different, they only differ in the formulation of the velocity updating rule. In fact, the
differences are merely due to subtle differences in the introduction of randomness into the algo-
rithm. For a population of p particles, it is shown that for the first implementation, the particle
trajectories collapse to p line searches. The second implementation does not suffer this drawback.
Instead, diverse stochastic search trajectories are retained. It is then shown that some popular
heuristics like maximum velocity limit, position restriction, craziness and high initial velocities
are possibly of less importance than originally thought; their greatest contribution is that they pre-
vent the collapse of particle trajectories to lines. Finally, it is emphasized that the determination
of optimal values for parameters like inertia, velocity limit, etc. has to be performed within the
context of the formulation used. To this extent, a proposed list of parameters and implementational
issues that should be reported when ‘tuning’ the PSOA is given.

In Chapter 4, the ability of the particle swarm optimization algorithm (PSOA) to satisfy objectiv-
ity, also called observer independence or frame indifference, is investigated. In Chapter 3 it was
shown that implementation subtleties have resulted in two distinctly different implementations of
the PSOA. The first implementation is now shown to be observer independent. In turn, the second
implementation of the PSOA is shown to suffer from observer dependence. A novel formulation
of the PSOA, in which the particle trajectories do not collapse to line searches, while observer in-
dependence is preserved, is then introduced. However, the observer independence is only satisfied
in a stochastic sense, i.e. the mean objective function value over a large number of runs is inde-
pendent of the reference frame. Objectivity and effectiveness of the three different formulations
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are quantified using a popular test set. The objective functions are evaluated in both the unrotated
reference frame, and an arbitrary rotated reference frame.

In Chapter 5, the PSOA is combined with an unstructured remeshing shape optimization environ-
ment. The remeshing strategy creates unstructured meshes from triangular elements, based on the
truss structure analogy proposed by Persson and Strang [17]. The PSOA is then used to search for
optimal shapes. Results for a popular beam problem are presented.

Finally, conclusions and recommendations are offered in Chapter 6.
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Chapter 2

Problem formulation and background

In this chapter, the problem formulation under consideration in Chapters 3 and 4 is presented,
as well as a very brief overview of the formulation of the PSOA, to allow for a brief historical
overview of the PSOA.

2.1 Global optimization problem formulation

For the sake of brevity, we restrict ourselves to the unconstrained or bounded constrained multi-
modal global optimization problem which we will define as follows:

Find the global minimum value f(x∗) of a given real-valued function f : D ⊆ Rn → R, such that

f ∗ = f(x∗) ≤ f(x), ∀ x ∈ D, (2.1)

where D is the allowable (bounded) design domain. Since this problem is intractable, the aim is
usually to find a suitably low approximation f̄ to f ∗.

2.2 Basic formulation of the PSOA

Consider a swarm of p particles in an n-dimensional design space. The position vector xi
k of each

particle i is updated by
xi

k+1 = xi
k + vi

k+1, (2.2)

where k is a unit pseudo time increment (iteration number). vi
k+1 represents the velocity vector

that is obtained from the velocity rule, given by

vi
k+1 = wvi

k + νi
k, (2.3)

where the inertia factor w [8] is a real number, typically between 0.4 and 0.9, and ν i
k is the stochas-

tic ‘velocity’ vector.

In turn, the term ν i
k consists of the summation of the terms c1(p

i
k − xi

k) and c2(p
g
k − xi

k), which
are however randomly scaled in a to be specified way. pi

k represents the best position vector of
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CHAPTER 2. PROBLEM FORMULATION AND BACKGROUND 6

particle i, while p
g
k represents the global best position vector of the complete swarm, up to time

step k. The cognitive and social scaling factors c1 and c2 are real numbers; both are usually equal
to 2. By selecting c1 = c2, the cognitive and social contributions are weighed equally.

The vectors (pi
k − xi

k) and (pg
k − xi

k) utilize the magnitudes and directions from a given particle’s
current position xi

k to the particle’s best position pi
k, and to the global best position p

g
k.

2.3 Brief history of PSOA

The particle swarm optimization algorithm (PSOA) was introduced by Kennedy and Eberhart [3, 4]
in 1995. Since then, the PSOA has been applied to optimization problems in a variety of disci-
plines. To name but a few, neural network training [3, 4, 5, 6], biochemistry [18], manufacturing
[10], electromagnetism [11, 19, 20], electrical power [21, 22], optics [12] and structural optimiza-
tion [23, 24].

The initial implementations of the PSOA contained two parameters, namely the maximum velocity
limit [4] and the acceleration constant. The acceleration constant consists of two parts referred to
as the cognitive and social constants c1 and c2 [25]. The cognitive and social constants are usually
implemented statically, although dynamic implementations have also been studied [26]. Kennedy
and Eberhart [3] initially proposed that c1 = c2 = 2.

Shi and Eberhart [8] introduced an additional parameter, referred to as the inertia weight w. Static
and dynamic implementations of the inertia weight exist. Three dynamic inertia implementations
are the frequently encountered reducing inertia [8, 26, 27], increasing inertia [16] and unstructured
inertial adjustment [28]. Recently, Clerc [14, 29] introduced a new formulation, referred to as
constriction.

Particle position limits can be implemented to ensure that the particle searches are confined to the
defined design domain. The limits are usually implemented as constraints on each design vari-
able. There are various strategies to accommodate the boundary constraints or to enforce position
limitation. A complete discussion is given by Robinson and Rahmat-Samii [30].

The evaluation of the objective function value at a given iteration can occur either synchronously or
asynchronously [31]. In the synchronous update method, the swarm’s positions are updated before
the objective function evaluations occur at the updated positions. Hence the particle best and global
best positions can only be updated at the end of each iteration. In contrast, in the asynchronous
implementation, the objective function is evaluated directly after a position update for a particle
occurs. Therefore, the updates of the particle best position and the global best position occur after
each particle updates its position. In the synchronous implementation all the particles move at
once, whereas in the asynchronous update implementation, the particles move one after the other.

The PSOA methodology was extended through various hybrid PSOA implementations. Hybrid
PSOA’s can change the applicability of the algorithm, by incorporating gradient information [32,
33]. Hybrid PSOA’s alter the empirical performance of the algorithm by various strategies such as
reducing the stochastic terms in the velocity rule [3, 6, 29] or increasing the stochastic terms in the
velocity rule [34, 35].
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Chapter 3

Diversity in the PSOA

3.1 Introduction

The aim of evolutionary strategies is to improve on the performance of random searches in op-
timization [36]. This is accomplished by identifying regions containing good designs. It is then
assumed that searches in the region of good designs may uncover further improved designs. Vari-
ous strategies exist to identify and explore regions with a high probability of improved candidate
solutions. These strategies distinguish between different evolutionary computation algorithms;
the algorithms include genetic programming [37], genetic algorithms [38], evolutionary strategies
[39], differential evolution [40] and the particle swarm optimization algorithm (PSOA) [3, 4].

The PSOA was introduced by Kennedy and Eberhart [3] as a gradient free stochastic optimization
algorithm. The fundamental principle behind the PSOA is the evolutionary advantages that the
sharing of information offers. This is often known as ‘collaborative searching’.

The PSOA is quite simple: At first, a swarm of p particles is randomly deployed in an n-dimensional
design domain. The particles then update their positions in the design domain over unit time in-
crements using a simple stochastic rule, known as the ‘velocity rule’.

The quality of each particle’s position at each iteration is then evaluated using the objective or
cost function. Each particle’s cognitive memory allows it to remember it’s own best cost function
value, with associated position, over time. Importantly, the social interaction and awareness of the
particles allows them to also remember ‘fit’ or ‘good’ cost function values the swarm itself found
over time. The particles’ movement can be over a continuous domain, a discrete domain [6, 41] or
a mixed discrete-continuous domain.

The original formulation of Kennedy and Eberhart [3] is repeated here verbatim:

vx[ ][ ] = vx[ ][ ]
+2 ∗ rand() ∗ (pbest[ ][ ] − presentx[ ][ ])
+2 ∗ rand() ∗ (pbestx[ ][gbest] − presentx[ ][ ]).

The bracket pair [ ][ ] represents an n × p matrix, while rand() supposedly represents a scalar
uniform random number. The rightmost terms between round brackets (·) in the second and third
lines are denoted the cognitive and social components of learning, respectively.

7
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CHAPTER 3. DIVERSITY IN THE PSOA 8

The widespread use of, and the interest in, the PSOA, attests to the brilliance of the idea of Kennedy
and Eberhart. However, their notation is not unambiguous: It is unclear whether the random num-
bers are scalar numbers which simply scale the magnitude of the cognitive and social components
of learning, or whether the random numbers are vectors that scale each component of the cognitive
and social components of learning. Ambiguous notation persists in the literature and the reported
(i.e. notation) implementation is frequently different to the actual implementation. Examples of
the magnitude scaling notation are [41, 42, 43, 44, 45, 46]. Examples of the component scaling
notation are [3, 12, 13, 25, 35].

While the randomness issue outlined here may seem of minor importance, the implications are
quite severe, as will be demonstrated in sections to come.

In fact, it will be demonstrated that for the magnitude scaling implementation, the particle trajec-
tories collapse to p n-dimensional line searches. The component scaling implementation does not
suffer this drawback. Instead, diverse stochastic search trajectories are retained. (In this chapter,
the term ‘diversity’ implies the opposite of the collapse of a trajectory to a line.)

Also shown is that some popular heuristics like maximum velocity limit, position restriction, crazi-
ness and high initial velocities are possibly of less importance than originally thought; their greatest
contribution is that they prevent the collapse of particle trajectories to lines.

3.2 Notes on the PSOA formulation

The investigation of the PSOA is started by defining the instantaneous search domain of a particle,
viz. the domain to which the search of particle i at iteration k is restricted. Also introduced is the
term limit behavior, viz. the limiting behavior of the complete swarm when no improvement in
objective function value is experienced by any individual particle (and hence the swarm itself).

From Eqs. (2.2) and (2.3), observe that the instantaneous search domain depends on two inde-
pendent contributions, namely the deterministic contribution due to the term (xi

k + wvi
k), and the

stochastic contribution due to the term (ν i
k ∈ χi

k). The situation is depicted in Figure 3.1, where
we use the notation xi

k(j) to indicate the j-th component of vector xi
k.

x
i
k

+ wv
i
k

xi
k+1

(2)

xi
k+1

(1)

c1(pi
k
− x

i
k
)

ν
i
k
∈ χ

i
k

χ
i
k

c2(p
g

k
− x

i
k
)

Figure 3.1: The position vector xi
k+1, partitioned into a deterministic contribution (xi

k + wvi
k) and

a stochastic contribution (ν i
k ∈ χi

k).
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CHAPTER 3. DIVERSITY IN THE PSOA 9

The instantaneous search domain depends on the stochastic domain χi
k, the position vector xi

k, and
the inertia term wvi

k. In turn, the stochastic domain χi
k depends on the particle position xi

k, the
particle best position pi

k, the best global position p
g
k, and the cognitive and social scaling factors

c1 and c2.

The stochastic domain χi
k is bounded, and has an associated probability distribution, due to the

random scaling of finite scalars.

The position rule described by Eq. (2.2) may be viewed as being constructed in 2 separate steps:
1) stochastically generate a point ν i

k in the stochastic domain χi
k, and 2) deterministically translate

this point by xi
k + wvi

k.

Let us now proceed with an analysis of the two different formulations of the PSOA that have been
used in the literature.

3.3 Implementation subtleties: Formulation 1 (PSOAF1)

For the first formulation of the PSOA, which is denoted PSOAF1 here, the stochastic vector ν i
k is

given by
ν i

k = c1r
i
1k(p

i
k − xi

k) + c2r
i
2k(p

g
k − xi

k), (3.1)

where ri
1k and ri

2k represent two uniform real random scalar numbers between 0 and 1. ri
1k and ri

2k

are updated at every iteration k, and for each particle i in the swarm. Hence ri
1k and ri

2k simply
scale the magnitudes of the cognitive and social vectors c1(p

i
k − xi

k) and c2(p
g
k − xi

k).
For the sake of clarity, PSOAF1 is also described by the following pseudo code fragment:

for I = 1 to number of particles do
R1 = uniform random number
R2 = uniform random number
for J = 1 to number of dimensions do
V[I][J]=w*V[I][J]

+C1*R1*(P[I][J]-X[I][J])
+C2*R2*[G[I][J]-X[I][J])

enddo
X[I][J] = X[I][J]+V[I][J]

enddo

Let us now study the stochastic contribution ν i
k to the composition of the instantaneous search

domain given by Eq. (3.1). The cognitive vector (pi
k −xi

k) and the social vector (pg
k −xi

k) consist
of the directions and distances from the current position xi

k to the best particle position pi
k, and the

best global position p
g
k; the cognitive and social vectors can be anything from normal to parallel

w.r.t. each other.

When the cognitive vector (pi
k −xi

k) and the social vector (pg
k−xi

k) are not parallel, Eq. (3.1) may
be interpreted as the vector equation of a bounded plane P

i
k in n-dimensional space. The plane is

bounded, since the length of the cognitive and social vectors are scaled independently by the finite
scalars c1r

i
1k and c2r

i
2k. The bounded plane P

i
k is then translated in n-dimensional space by the

addition of xi
k and wvi

k, as depicted in Figure 3.2.
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x
i
k

+ wv
i
k

(pi
k
− x

i
k
)

xi
k+1

(2)

xi
k+1

(1)

(pg

k
− x

i
k
)

Pi
k

Figure 3.2: Partitioning the position vector xi
k+1 into a deterministic contribution (xi

k +wvi
k), and

a stochastic contribution (ν i
k ∈ P

i
k), for c1 = c2 = 2.

x
i
k

+ wv
i
k

(pi
k
− x

i
k
)

xi
k+1

(1)

xi
k+1

(2)

(pg

k
− x

i
k
)

Li
k

Figure 3.3: Partitioning the position vector xi
k+1 into a deterministic contribution (xi

k +wvi
k), and

a stochastic contribution (ν i
k ∈ L

i
k), for c1 = c2 = 2.

If the cognitive vector (pi
k − xi

k) and the social vector (pg
k − xi

k) are parallel, Eq. (3.1) may be
interpreted as the vector equation of a bounded line L

i
k in n-dimensional space. Again, the line is

translated in the n-dimensional space by the addition of xi
k and wvi

k, as depicted in Figure 3.3.

3.3.1 Investigation of the limit behavior of PSOAF1

Let us study the 3-dimensional dynamic limiting behavior of a particle. For the sake of simplicity,
it is assumed that the best particle position pi

k, and the best global position p
g
k remain unchanged

for 25 consecutive iterations.

Randomly generate the best particle best position pi
0, the best global position p

g
0, and the initial

position vector xi
0 between -2 and 2 over each dimension. The initial velocity vector vi

0 is assumed
to equal 0. No velocity or position restriction is implemented. The study is conducted with c1 =
c2 = 2 and w = 0.8, being values which have frequently been used by others in combination with
constant inertia [8, 47, 45].

The sequence of 25 consecutive iterations, for a single particle, is depicted in Figure 3.4. The figure
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Figure 3.4: PSOAF1: Position vectors xi
k+1 generated for 25 consecutive iterations. The best

particle position pi
k and the best global position p

g
k are kept constant. Representing xi

0 is 4, pi
k is

©, and p
g
k is 2.

illustrates that the particle trajectory collapse to a straight line as the iteration counter increases.

Let us consider this (undesirable) phenomenon in more detail: The angle θ̄ between the cognitive
vector (pi

k − xi
k) and social vector (pg

k − xi
k) may be determined using

θ̄ = cos−1
( |(pi

k − xi
k) · (pg

k − xi
k)|

||(pi
k − xi

k)|| ||(p
g
k − xi

k)||
)

. (3.2)

If θ̄ = 0◦, the vectors (pi
k − xi

k) and (pg
k − xi

k) are parallel, when θ̄ = 90◦, the vectors (pi
k − xi

k)
and (pg

k − xi
k) are perpendicular.

The experiment performed in constructing Figure 3.4 is repeated. However, this time the algorithm
runs for 1000 iterations, and the average angle θ is determined from 100 independent runs. The
study is conducted for n = 3 and n = 30, to determine any dependency on dimensionality.

The results for a dimensionality of n = 3 and n = 30 are respectively depicted in Figures 3.5(a)
and 3.5(b). The figures illustrate that as the iterations progress, the average angle θ between the
cognitive vector (pi

k − xi
k) and the social vector (pg

k − xi
k) sharply decreases for both n = 3 and

n = 30. The initial decrease is rapid; after some 150 iterations, the average angle θ is less than
10◦.

The foregoing implies that for a given particle, the position vector xi
k+1 is updated in a ‘long narrow

bounded plane’. This is reminiscent of multiple line searches in a largely restricted domain.

It should be noted that for low values of the inertia w, complete collapse to line searches (θ = 0◦)
is demonstrated within 1000 iterations. Furthermore: for a given particle, it is impossible to escape
from this long narrow bounded plane until another particle’s best position p

g
k is updated, since each

particle’s best positions can only be updated in its own long narrow bounded plane.

For a swarm of p particles, this implies that if the best global position vector p
g
k is not updated, the
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Figure 3.5: PSOAF1: The average angle θ between (pi
k − xi

k) and (pg
k − xi

k) versus iteration
number, for a dimensionality of a) n = 3, and b) n = 30. For the 1000 iterations, the best particle
position pi

k and the best global position p
g
k are stationary.

swarm conducts p line searches in n-dimensional space for possibly a high number of consecutive
iterations. Worse: the line searches all intersect in the same point in the design domain, being the
best global position p

g
k. Again: if a particle updates its own best position vector pi

k, then it remains
searching in a line. Only when the global best position vector is updated do all other particles again
(briefly) search in planes.

For obvious reasons, the foregoing may have severe implications on algorithm performance.

3.4 Implementation subtleties: Formulation 2 (PSOAF2)

In the alternative implementation of the velocity rule, each component of (pi
k −xi

k) and (pg
k −xi

k)
is scaled independently. The vector directions are then no longer preserved.

In order to scale each component independently, the scalar random numbers ri
1k and ri

2k in the
stochastic vector in Eq. (3.1) are replaced by two random diagonal matrices Ri

1k and Ri
2k as fol-

lows:
νi

k = c1R
i
1k(p

i
k − xi

k) + c2R
i
2k(p

g
k − xi

k). (3.3)

The Ri
mk random diagonal matrices are explicitly given as

Ri
mk =











ρi
11k 0 · · · 0
0 ρi

22k · · · 0
... . . . ...
0 · · · · · · ρi

nnk











, m = 1, 2, (3.4)

with 0 < ρi
jjk < 1, j = 1, . . . , n a uniform random number [12, 48].
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The above form is used since it has previously been introduced by others. However, for future use,
the following equivalent form is proposed

ν i
k = c1r

i
1k ◦ (pi

k − xi
k) + c2r

i
2k ◦ (pg

k − xi
k), (3.5)

where the ◦ operator indicates element by element multiplication. Hence the random vectors r i
mk

are given as
ri

mk =
(

ρi
1k, ρi

2k, · · · , ρi
nk

)

, m = 1, 2. (3.6)

Eq. (3.5) is no longer a vector representation of a bounded plane P
i
k, since the non-zero compo-

nents of the cognitive vector (pi
k − xi

k) and the social vector (pg
k − xi

k) are independently scaled.
As a result, possible stochastic updates can occur in n-dimensional space.
The pseudo code for PSOAF2 is

for I = 1 to number of particles do
for J=1 to number of dimensions do
R1=uniform random number
R2=uniform random number
V[I][J]=w*V[I][J]

+C1*R1*(P[I][J]-X[I][J])
+C2*R2*[G[I][J]-X[I][J])

enddo
X[I][J] = X[I][J]+V[I][J]

enddo

The difference with the pseudo code given for PSOAF1 is subtle; the only difference is that the
random numbers are updated inside the for-loop that runs over the design dimensions (1, . . . , n).
However, the implications are severe.

3.4.1 Investigation of the limit behavior of PSOAF2

As with PSOAF1, the 3-dimensional trajectory of a particle when the best particle position pi
k, and

the best global position p
g
k are kept constant for 25 consecutive iterations is studied. In performing

the experiment, the same settings as for PSOAF1 are used, except for using a lower value of inertia,
namely w = 0.6, since PSOAF2 is unstable at high values of w.

Figure 3.6 suggests that the particle trajectories now do not collapse to line searches; instead,
‘diversity’ is retained. To verify this, the average angle θ between the cognitive vector (pi

k − xi
k)

and social vector (pg
k − xi

k) is calculated. A similar approach as for PSOAF1 is used; again the
study is conducted for n = 3 and n = 30 to determine the sensitivity to problem dimensionality.

As opposed to PSOAF1, the trajectories of PSOAF2 do not collapse to line searches. As depicted
in Figure 3.7, the angle θ is roughly 47◦ and 37◦ for n = 3 and n = 30 respectively, over the entire
range of iterations studied.
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Figure 3.6: PSOAF2: Position vectors xi
k+1 generated over 25 iterations without updating the

particle best position vector pi
k and the global best position vector p

g
k. No restriction is imposed

on the velocity vector.
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Figure 3.7: PSOAF2: The average angle θ between (pi
k − xi

k) and (pg
k − xi

k) versus iteration
number, for a dimensionality of a) n = 3, and b) n = 30. For the 1000 iterations, the best particle
position pi

k and the best global position p
g
k are stationary.
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3.5 Numerical experiments

Numerical experiments to evaluate the difference in performance between PSOAF1 and PSOAF2
are now conducted.

The aim is not an exhaustive determination of optimal algorithmic parameters, but to illustrate the
effects of the different velocity updating rules in the two formulations. Hence a basic PSOA is
implemented, without additional heuristics such as maximum velocity restriction, position restric-
tion, craziness or dynamic inertia reduction or increase. (These are however discussed in sections
to come.)

Initial velocities are set equal to 0. A simple synchronous updating scheme [31] is used. Real
variables are implemented using double-precision floating-point arithmetic.

For this study the algorithm parameters are c1 = c2 = 2, the swarm size is p = 20 particles and
the computations are performed for various constant inertia factors w. Each run is terminated after
10000 iterations, and the reported results are average values obtained from 100 independent runs.

In this study the following five test functions are used:
i) The Rosenbrock function (unimodal, f0):

f0(x) =

n
2
∑

i=1

(

100
(

x2i − x2
2i−1

)2
+
(

1 − x2i−1

)2
)

.

ii) The Quadric function (unimodal, f1):

f1(x) =

n
∑

i=1

(

i
∑

j=1

xj

)2

.

iii) The Ackley function (multimodal, f2):

f2(x) = −20 exp

(

− 0.2
√

1
n

∑n

i=1 x2
i

)

− exp

(

1
n

∑n

i=1 cos(2πxi)

)

+ 20 + e.

iv) The generalized Rastrigin function (multimodal, f3):

f3(x) =

n
∑

i=1

(

x2
i − 10 cos(2πxi) + 10

)

.

v) Finally, the generalized Griewank function (multimodal, f4):

f4(x) =
1

4000

n
∑

i=1

x2
i −

n
∏

i=1

cos
( xi√

i

)

+ 1.

The parameters used in the study are given in Table 3.1. The domain column represents the range
of each dimension of the design variables; the test function domains are symmetrical about 0.0 in
all dimensions.
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Table 3.1: Test function parameters.
Function n domain

f0 30 ± 2.048

f1 30 ± 100.0

f2 30 ± 30.0

f3 30 ± 5.12

f4 30 ± 600.0

3.6 Discussion of numerical results
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Figure 3.8: Average function value after 2 × 105 function evaluations (10000 iterations) over 100
runs on the Rosenbrock test function (f0).
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Figure 3.9: Average function value after 2 × 105 function evaluations (10000 iterations) over 100
runs on the Quadric test function (f1).

Figures 3.8, 3.9, 3.10, 3.11 and 3.12 depict the average objective function values after 2 × 105

function evaluations (10000 iterations) for the 5 test functions under consideration. A summary
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Figure 3.10: Average function value after 2× 105 function evaluations (10000 iterations) over 100
runs on the Ackley test function (f2).
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Figure 3.11: Average function value after 2× 105 function evaluations (10000 iterations) over 100
runs on the Rastrigin test function (f3).
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Figure 3.12: Average function value after 2× 105 function evaluations (10000 iterations) over 100
runs on the Griewank test function (f4).
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Table 3.2: Constant inertia factor at which the best average objective function value is obtained.
PSOAF1 PSOAF2

f best
ave w f best

ave w

f0 54.845 0.8 1.393 0.5

f1 4395.919 0.8 1.5 × 10−9 0.4

f2 11.804 0.8 9 × 10−15 0.6

f3 152.988 0.8 38.425 0.6

f4 32.078 0.7 1.5 × 10−2 0.5

of these results may be found in Table 3.2, which tabulates the best function values obtained with
PSOAF1 and PSOAF2 after the 10000 iterations, together with the corresponding inertia factor.

The figures and the table clearly illustrate the vast difference in performance between PSOAF1 and
PSOAF2, with PSOAF2 superior to PSOAF1 for all the problems considered.

The performance of PSOAF1 improves as the inertia factor w is increased, up to an inertia factor
of w = 0.8. For higher inertia factors (w ≥ 0.9) there is a rapid decline in the performance of the
algorithm, due to instability. (Instability occurs due to excessive particle velocities, since there is
no limit on the maximum value of velocity.) For low values of inertia, performance is hampered,
since the collapse of a particle trajectory to a line search occurs earlier than at high values of w.

PSOAF2 performs well for w ≤ 0.6, but becomes unstable for w ≥ 0.8. For the test set and
conditions used, the optimal performance for PSOAF2 is obtained with 0.4 ≤ w ≤ 0.6. For
PSOAF1, higher values of w are suitable.

The average convergence history for Ackley’s test function, for PSOAF1 and PSOAF2, is depicted
in Figures 3.13(a) and 3.13(b) respectively. The two figures are drawn on the same scale; PSOAF2
is clearly superior to PSOAF1, both in terms of average convergence rate and in terms of the quality
of the solution found (for reasonable values of w).

3.7 Notes on some heuristics of the PSOA

An explanation of the effects of some popular heuristics that are widely considered to improve the
performance of the PSOA follows. (For obvious reasons, it should now be clear that the gain in
performance for PSOAF1 can be expected to be far higher than for PSOAF2. Indeed, most ‘suc-
cessful’ heuristics merely prevent or delay the collapse of particle trajectories to lines in PSOAF1.)

3.7.1 Local best neighborhood

Local neighborhoods [49] are used in an attempt to introduce independent social groups into the
swarm; information between these groups is then propagated back into the swarm in some struc-
tured fashion.

Local neighborhoods are beneficial since their introduction results in clusters of line searches
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Figure 3.13: Average convergence history for Ackley’s test function, for a) PSOAF1, and b)
PSOAF2.

which intersect in the locally best point of each neighborhood, instead of only intersecting in
the best global point of the complete swarm. Hence local neighborhoods increase the diversity of
the algorithm. In addition, the communication of this information between neighborhoods results
in an instantaneous increase in diversity.

3.7.2 Non-zero initial velocities

The introduction of non-zero initial velocities delays line searches in PSOAF1, since the term
wvi

k translates the instantaneous search domains (planes) in the design domain, which increases
diversity. Note however that this only helps during initial iterations; these contributions damp out
over time.

3.7.3 Maximum velocity restriction

Maximum allowed velocity [4] is a well known heuristic, frequently used in the literature. It is
used to stabilize the algorithm.

There are two fundamentally different ways to implement maximum velocity restriction. Firstly,
the restriction can be placed on each component of the vector v i

k+1, as shown in Figure 3.14(a).
Alternatively, the length of vi

k+1 can be restricted, as shown in Figure 3.14(b).

The advantage of restricting each component is the ease of implementation. When restricting the
components of the velocity vector, the magnitude of the velocity vector depends on the magnitudes
of the velocity components. The maximum length that the velocity vector can obtain is

vmax
k+1 =

√

√

√

√

n
∑

j=1

(

vmax(j)
)2

,
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Figure 3.14: The velocity restriction implemented by a) restricting the component values of the
velocity vector a) restricting the magnitude of the velocity vector.

when all the vector components are restricted. In addition, by restricting each component of the
velocity vector, (Figure 3.14(a)), the direction of the velocity vector is not preserved. The result is
that the velocity directions are not limited to the line L

i
k.

On the other hand, restriction of the velocity magnitude (Figure 3.14(b)), does not alter the velocity
direction between consecutive iterations.

In summary, this implies that the results of restriction of the maximum velocity component on the
PSOA are two-fold. Firstly, this stabilizes the algorithm, by limiting the maximum component
value in each dimension. Secondly, this increases diversity through the generation of position
vectors, which by their very nature are not confined to the line L

i
k.

To illustrate the foregoing, the average angle θ between the vectors (pi
k − xi

k) and (pg
k − xi

k) is
again studied. As before, randomly generate the best particle position vector pi

0, the best global
position vector p

g
0, initial positions xi

0, and the initial velocities vi
0 with each vector component

between -2 and 2.

Velocity restriction on both the component and the magnitude is implemented. Again, c1 = c2 = 2
and w = 0.8. The algorithm is again terminated after 1000 consecutive iterations, with θ averaged
over 100 runs. As before, the best particle position pi

k and the best global position p
g
k are assumed

stationary. The study is conducted for n = 30.

When applying restriction to the components of velocity, Figure 3.15(a) depicts that the average
angle θ between the cognitive vectors (pi

k −xi
k) and the and social vectors (pg

k −xi
k) is some 60◦;

the trajectories do not collapse.

However, when the velocity magnitude is restricted, the angle θ quickly collapses to 0◦ (Fig-
ure 3.15(b)). (Here, a restriction of ||vi

k+1|| ≤ 4 is used.)

Depicted in Figure 3.16 is the average function value after 2 × 105 function evaluations or 10000
iterations for the Griewank test function f4. As expected, velocity restriction significantly improves
algorithm performance for high values of inertia (w ≥ 0.8), since instability at high inertia factors
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Figure 3.15: Velocity restriction on a) the components, and b) the magnitude of velocity. Depicted
is the average angle θ between (pi

k−xi
k) and (pg

k−xi
k) versus iteration number, for a dimensionality

of n = 30. For the 1000 iterations, the best particle position pi
k and the best global position p

g
k are

stationary.
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Figure 3.16: Average function value for the Griewank test function (f4) after 1000 iterations,
averaged over 100 runs.
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is prevented.

Clearly, a restriction on each vector component of maximum velocity avoids the collapse of search
trajectories to lines. This observation was also made by Carlisle and Dozier [31], who demon-
strated that lower values of maximum velocity improves algorithm performance. The mechanism
for this is now easily understood: lower values of maximum velocity trigger the introduction of
diversity more often than higher values of maximum velocity. (Although low values of course
decrease the instantaneous search domain.)

3.7.4 Minimum velocity restriction

Velocity may also be restricted on the lower end of the scale, as a mechanism to prevent premature
convergence. Again, either the components or the magnitude of velocity may be restricted.
However, firstly demonstrated is the remarkable sensitivity of the algorithm to arithmetic preci-
sion, which may be viewed as a special case of minimum velocity restriction: PSOAF1 is imple-
mented using both single-precision floating-point arithmetic and double-precision floating-point
arithmetic. Otherwise, the two implementations are identical. Also provided is a minimum velo-
city limit on each component of the velocity vector of the code implemented with double-precision
floating-point arithmetic. Using pseudo-code, it is done as follows:

for I = 1 to number of particles do
for J = 1 to number of dimensions do
calculate V[I][J]
if abs(V[I][J]) less than Vmin then
V[I][J] = sign(V[I][J]) * Vmin

endif
enddo

enddo

Values of Vmin = 10−2 and Vmin = 10−3 are used, again for runs consisting of 10000 iterations,
and reported are the average values for 100 runs. Results for only the Griewank test function (f4)
are presented, but the results for the other test functions are similar. The same initial positions,
velocities and random number sequences are used in the three different implementations.

Figure 3.17 depicts the average objective function value. The single-precision floating-point im-
plementation is slightly superior to the double-precision floating-point implementation, simply
because the lower precision results in angles which are not quite zero. For the double-precision
floating-point implementation, minimum velocity increases the performance of the algorithm dra-
matically. (Although not shown in the figure, values of Vmin equal to the precision attainable in
single precision, renders the two implementations almost identical.)

As with maximum velocity restriction, the implications of minimum velocity restriction are two-
fold: Firstly, premature convergence may be overcome, and the collapse to the line L

i
k may be

delayed.

(The very low values above are for illustrative purposes only, in practice higher values may be
desirable.)
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Figure 3.17: Average function value after 2× 105 function evaluations (10000 iterations) over 100
runs on the Griewank test function (f4).

3.7.5 Position restriction

There are various ways to implement position restriction, as Robinson and Rahmat-Samii [30] for
example point out in their study. Position restriction may be seen as an alternative implementa-
tion of velocity restriction, albeit more complicated, since every vector xi

k+1 may equivalently be
represented as the vector xi

k + vi
k+1.

While the implementation of position restriction has to a large extent been neglected in the liter-
ature, note that the desirability and implementation should be judged against the background of
collapsed line searches.

3.7.6 Craziness

Craziness [3] is a heuristic which randomly places particles in the design domain. Normally
performed at low probability, it obviously increases diversity, and prevents the collapse to line
searches. (At high probability, craziness results in (ineffective) pure random search.) The crazi-
ness operator is somewhat reminiscent of mutation in the genetic algorithm (GA).

Continuous monitoring of θ may effectively be combined with craziness to prevent premature
convergence of the PSOA. In addition, ‘small perturbations’, reminiscent of creep mutation in the
GA, may be more effective than the equivalent of jump mutation in the GA.

A number of authors have previously reported that craziness is ineffective. However, it is a simple
matter to demonstrate that craziness is indeed effective for PSOAF1, and in particular for problems
of high dimensionality.

Consider the very simple unconstrained n-dimensional (convex) quadratic test function

f5(x) =
∑

(xi − i)2, i = 1, 2, 3, · · · , n,

subject to the bounds
−100 ≤ xi ≤ 100, i = 1, 2, 3, · · · , n.
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Table 3.3: Effect of probability of craziness Pcr on f5(x)

n Pcr PSOAF1 PSOAF2

10 0.00 1.158E+02 6.310E-32

0.05 1.719E-05 1.650E-09

0.10 1.165E-02 1.434E-03

30 0.00 1.627E+04 4.469E-28

0.05 2.787E-02 5.597E-04

0.10 2.528E+00 1.073E+01

Tabulated numerical results are presented in Table 3.3; the optimum solution f ∗ = 0.0. Again,
PSOAF1 and PSOAF2 are used without any heuristic whatsoever. Both algorithms are terminated
after 10000 iterations, and the reported results are averaged over 100 independent runs. Again
p = 20 is used. For PSOAF1, select w = 0.7, for PSOAF2 select w = 0.5. Many implementations
of craziness are possible; in this case, Pcr indicates the probability of a given particle to become
crazy.

Table 3.3 illustrates that craziness is highly beneficial to PSOAF1, while it impairs the performance
of PSOAF2. The reasons are obvious: for PSOAF1, craziness increases diversity, and prevents the
collapse of trajectories to line searches. (Note that this does not imply that craziness is indispens-
able for PSOAF1; any of the other heuristics which increases diversity will of course improve the
performance of PSOAF1.) The impairment of PSOAF2 is also easily explained: this algorithm is
diverse ‘enough’. (In the limit, an increase in craziness of course results in pure random search in
both algorithms.)

3.7.7 Increasing social awareness

Again, in this approach [34, 35], a number of different implementations are possible. In a simple
implementation, the best position of each particle in the swarm is considered when constructing
the velocity rule.

It is now clear why this works: diversity is increased; the collapse of trajectories to line searches
is delayed.

3.7.8 Inertia factor

Zheng et. al. [16] proposed to increase the inertia w as the iterations progress. They increased w
from 0.4 to 0.9 over the prescribed number of iterations. Clearly, this assists in prolonging the
time before the trajectories collapse to line searches, due to translation of the instantaneous search
domains (planes) in D.

Very high inertia factors (w larger than unity) may of course also be used to prolong diverse
searches. The amount 1 − w may be viewed as the equivalent damping term in a spring-mass-
damper system [19]. Hence w > 1.0 implies negative damping, or the introduction of energy into
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the system as the iterations progress. However, this is only recommended in terminal phases of the
PSOA; during initial phases, this may result in pure random search. In addition, w > 1.0 should
be used in combination with heuristics like position restriction.

3.7.9 Using a single random number

Some authors have attempted to replace the random numbers ri
1k and ri

2k in Eq. (3.1) by a single
random number. While this is acceptable, the implications should be understood.

This issue is addressed by asking the following question: What is the range and the distribution
of the sum of two random numbers r1 and r2 that are both uniformly distributed between 0 and 1?
(All three authors initially guessed that the range would lie between 0 and 2 and that the probability
distribution would remain uniform.)

However, a simple Monte Carlo simulation based on 106 instances reveals that the solution is the
bi-linear probability distribution. The reason is of course obvious [50]: In order to generate a
number close to zero both r1 and r2 need to be close to zero. In contrast, to generate a number
close to 1, a large number of possibilities exist e.g. (0.1+0.9), (0.7+0.3), (0.6+0.4), (0.5+0.5),
etc.

The sum of two random variables ri
3k = ri

1k + ri
2k should not be considered a uniform random

number with a range between 0 and 2, e.g. see [16]. Instead it should be chosen from a bi-linear
distribution.

3.8 On tuning of PSOA parameters (finding universal optimal
parameter values)

In the foregoing, it is demonstrated that it is essential to distinguish between implementations
of randomness into the PSOA when reporting results. ‘Optimal settings’ for the parameters of
PSOAF1 are simply not optimal for PSOAF2.

However, the same argument applies for many other implementational issues. Without further
elaboration, a check list of implementation issues is given that should in my opinion be reported
when ‘optimal setting’ for the PSOA are published, since the optimality of the parameters strongly
depends on the implementation.

The implementational issues to be reported are as follows:

1. General:

(a) the selected velocity rule (using unambiguous notation),

(b) the updating strategy (whether synchronous or asynchronous), and

(c) the stopping criteria used.

2. The heuristics used (with a detailed description thereof):

(a) minimum velocity restriction (and arithmetic precision),
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(b) maximum velocity restriction,

(c) the implemented inertia strategy,

(d) position restriction,

(e) etc.

3. The parameters used:

(a) the population size p,

(b) the initial inertia and velocity values, and

(c) the social and cognitive scaling factors c1 and c2.

Finally, optimal parameters should of course be understood within the context of the ‘no free lunch
algorithms [51, 52].

3.9 Closure

Implementation subtleties due to ambiguous notation that resulted in two distinctly different im-
plementations of the PSOA have been pointed out. Discerning between these two implementations
is of crucial importance.

While the behavior of the two different implementations is markedly different, they only differ
in the formulation of the velocity updating rule. In fact, the differences are merely due to subtle
differences in the introduction of randomness into the algorithm.

A scrutiny of PSOA codes has revealed that the reported implementation is often different to the
actual computer implementation. Against the background of this chapter, it is now also possible to
identify papers for which this discrepancy holds.

As shown for the first implementation, the particle trajectories collapse to ineffective line searches.
The second implementation does not suffer this drawback. Instead, diverse stochastic search tra-
jectories are retained.

Also shown is that some popular heuristics like maximum velocity limit, position restriction, crazi-
ness and high initial velocities are not of overwhelming importance in their own right; they merely
prevent collapse of the particle trajectories to lines.

Finally, it is emphasized that the determination of optimal values for parameters like inertia, velo-
city limit, etc. has to be performed within the context of the formulation used. A list of parameters
and implementational issues that should be included when reports on PSOA parameter settings are
written is proposed.
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