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Increasing prominence is given to the role of optimization in engineering. The global optimization
problem is in particular frequently studied, since this difficult optimization problem is in general
intractable. As a result, many a solution technique have been proposed for the global optimization
problem, e.g. random searches, evolutionary computation algorithms, taboo searches, fractional
programming, etc. This study is concerned with the recently proposed zero-order evolutionary
computation algorithm known as the particle swarm optimization algorithm (PSOA). The follow-
ing issues are addressed:

1. It is remarked that implementation subtleties due to ambiguous notation have resulted in
two distinctly different implementations of the PSOA. While the behavior of the respective
implementations is markedly different, they only differ in the formulation of the velocity
updating rule.

In this thesis, these two implementations are denoted by PSOAF1 and PSOAF2 respectively.
2. Itis shown that PSOAF]I is observer independent, but the particle search trajectories collapse
to line searches in n-dimensional space.

In turn, for PSOAF?2 it is shown that the particle trajectories are space filling in n-dimensional
space, but this implementation suffers from observer dependence.
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It is also shown that some popular heuristics are possibly of less importance than originally
thought; their greatest contribution is to prevent the collapse of particle trajectories to line
searches.

. A novel PSOA formulation, denoted PSOAF1* is then introduced, in which the particle tra-
jectories do not collapse to line searches, while observer independence is preserved. How-
ever, the observer independence is only satisfied in a stochastic sense, i.e. the mean objective
function value over a large number of runs is independent of the reference frame.

Objectivity and effectiveness of the three different formulations are quantified using a popu-
lar unimodal and multimodal test set, of which some of the multimodal functions are decom-
posable. However, the objective functions are evaluated in both the unrotated, decomposable
reference frame, and an arbitrary rotated reference frame.

. Finally, a practical engineering optimization problem is studied. The PSOA is used to find
the optimal shape of a cantilever beam. The objective is to find the minimum vertical dis-
placement at the edge point of the cantilever beam. In order to calculate the objective func-
tion the finite element method is used. The meshes needed for the linear elastic finite element
analysis are generated using an unstructured remeshing strategy. The remeshing strategy is
based on a truss structure analogy.
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Toenemende belangrikheid word aan die rol van optimering in ingenieurswese gegee. Veral die
globale optimeringsprobleem word dikwels bestudeer, aangesien hierdie moelike optimeringspro-
bleem in die algemeen onoplosbaar is. Gevolglik is daar voorheen al verskeie oplossingstegnieke
voorgestel vir die globale optimeringsprobleem, soos byvoorbeeld lukrake soektogte, evolusionére
berekeningsalgoritmes, taboe soektogte, fraksionele programmering, ens. Hierdie studie is ver-
moeid met die onlangs gepostuleerde nulde-orde evolusionére berekeningsalgoritme wat bekend
staan as die partikel swerm optimeringsalgoritme (PSOA). Die volgende kwessies word bespreek:

1. Daar word opgemerk dat twee verskillende formulerings van die PSOA bestaan, moontlik
as gevolg van onduidelike notasie. Alhoewel die gedrag van die onderskeie implementer-
ings dramaties verskil, verskil hulle slegs ten opsigte van die formulering van die snelheids-
opdateringswet.

In hierdie tesis word die onderskeie implementerings as PSOAF1 en PSOAF2 aangedui.
2. Verder word aangetoon dat PSOAF1 waarnemer onafhanklik is, maar dat die partikel bane
in n-dimensionele ruimte na lyn soektogte ineenstort.

Om die beurt, word daar vir PSOAF2 aangetoon dat die partikel bane ruimtevullend is in
n-dimensionele ruimte, maar hierdie implementering is waarnemer afhanklik.

Daar word ook gewys dat sommige gewilde heuristiecke moontlik van minder belang is as
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wat oorspronklik geag is. Daar word gewys dat hulle grootste bydrae waarskynlik is om
partikel baan ineenstorting na lyn soektogte te voorkom.

. ’n Nuwe PSOA formulering word dan voorgestel, naamlik PSOAF1*. Partikel trajekte stort
nie na lyn soektogte ineen nie, terwyl waarnemer onafhanklikheid behou word. Waarne-
mer onathanklikheid word egter slegs in ’n stogastiese sin bevredig, m.a.w. die gemiddelde
doelwit funksie waarde is onathanklik van ’n koordinaatstelsel, gesien oor 'n groot aantal
verlope.

Objektiwiteit en effektiwiteit van die drie formulerings word gekwantifiseer deur gebruik
te maak van ’n gewilde unimodale en multimodale toets stel, waarvan die meerderheid
multimodale funksies skeibaar is. Nietemin word die doelwit funksies ge€valueer in beide
die ongeroteerde, skeibare, verwysingsraamwerk en 'n lukraak geroteerde verwysingsraam-
werk.

. Laastens word ’n praktiese ingenieurs optimeringsprobleem bestudeer. Die PSOA word
aangewend om die optimale geometrie van 'n kantelbalk te vind. Die doelfunksie wat
geminimeer word is die vertikale verplasing by die eindpunt van die kantelbalk. Die doel-
funksies word bereken deur gebruik te maak van die eindige element metode. Die mase
wat benodig word vir die linieér elastiese eindige element analises word gegenereer deur
van 'n ongestruktureerde hermasings-strategie gebruik te maak. Die hermasings-strategie is
gebaseer op 'n vakwerk struktuur analoog.
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This section attempts to capture a mere snapshot of my thoughts and experiences over the last two
years. This section is written in the form of an informal short story. To anyone who may feel
affronted in any way by the writing style or content of this section, I offer my sincere apologies.

Conceit of the Absurd - A sailor’s story

This story begins in the year 2002, as I reached my last year of formal enrollment as a sailor. My
fellow sailor friends and I used to meet up at a local tap and talk about the adventures to come, and
of possible treasures of gold.

As the year progressed I was adamant that I would set sail the following year for either Europe or
the middle East, as I considered some lucrative offers of possible gold treasures and adventure in
these distant and uncharted lands.

As the year came to an end, the sea tides turned.

I met Captain Groenwold and in the end I decided to trade adventures of Europe, and the mid-
dle East for adventures of another kind. The adventures that are about the journey and not the
destination.

As the year 2003 dawned, Captain Groenwold and I embarked on an adventure. The adventure
started calmly by sailing out of the harbor on a brig, affectionately referred to by the sailors as
SORG. At the boat’s command stood Captain Groenwold and on the deck stood I, a proud sailor.

We left the harbor and sailed into the open seas, that laid open for traveling and exploration. This
was my first time out on the ocean. As the harbor disappeared on the distant horizon I did not quite
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know where I was, but I knew I was out there, somewhere. Months past as we encountered some
light breezes and stormy clouds here and there.

Then one day Captain Groenwold got word that he was needed in a distant land. We anchored the
vessel at the nearest harbor and on board came co-Captain Kok to take command of the brig. Our
only contact with Captain Groenwold being the infamous message bottle system.

The vessel sailed further under co-Captain Kok’s command, over the calm seas and oceans. Every
now and then we would spot land here and there, for me the excitement grew as the frequency
of sightings of land increased. Some days the breezes became stronger than others as we set
forth towards the land. Not before long by the middle of 2004, the adventure turned into an epic
of Gulliver’s travels as we finally reached land. The epic started by us nearly shipwrecking the
preceding day after I misread the map. Fortunately, co-Captain Kok instantly realized my mistake
and recovered our situation. Nevertheless we anchored and set forth our exploration.

For months we set sail and anchored to explore various places, each an exotic place in it’s own
right. On one of the stops we picked up Captain Groenwold after his return from the distant lands.
The adventure continued, I was constantly fascinated by each place, and not before long it dawned.
What seemed to be vast and distant lands was actually one big island. We attempted to map what
we could of this beautiful island but as our supplies where running low, we had to set forth the
journey back home.

By the beginning of 2005, the adventure came to an end as our ship sailed into the harbor. As I
disembarked our ship and touched home soil I realized “I embarked on the right adventure”.
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