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Summary

Having just survived what is arguably the worst financial crisis in time, it is expected that the

focus on regulatory capital held by financial institutions such as banks will increase significantly

over the next few years. The probability of default is an important determinant of the amount of

regulatory capital to be held, and the accurate calibration of this measure is vital. The purpose

of this study is to propose the use of the Shannon entropy when determining the parameters

of the prior bivariate beta distribution as part of a Bayesian calibration methodology. Various

bivariate beta distributions will be considered as priors to the multinomial distribution associated

with rating categories, and the appropriateness of these bivariate beta distributions will be tested

on default data. The formulae derived for the Bayesian estimation of Shannon entropy will be

used to measure the certainty obtained when selecting the prior parameters.

Keywords: Bayesian estimation, bivariate beta, calibration, credit risk, probability of default,

Shannon entropy
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Chapter 1

Introduction

1.1 Overview

Emerging out of arguably the worst financial crisis known to mankind, the emphasis on the

amount of regulatory capital held by banks has increased and is expected to continue increasing

significantly. Articles such as the one below (London Evening Standard, 2 March 2010) appear

almost on a daily basis in business newspapers. It is therefore imperative that the measures used

to calculate the capital required are as good as possible.
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CHAPTER 1. INTRODUCTION 12

The amount of regulatory capital that is held for each customer on a bank’s book depends,

amongst others, on the customer’s credit quality. The Basel II Accord (2006) is a set of regulatory

requirements that banks follow in order to ensure that their capital is adequate. This accord

prescribes the rules regarding, amongst others, the calculation of the regulatory capital.

One of the components of the regulatory capital requirement computation for a customer is the

probability of default of that customer. A default event is defined in the Basel II captial framework

(2006) as the occurence of either the bank considering the customer unlikely to repay its debt

obligations in full, or the customer being past due more than 90 days on any material credit

obligation.

Estimating the probability of default is relatively easy for high-default portfolios such as retail

customers or small business banking. In these cases, the samples are usually quite large and

logistic regression can be successfully applied to estimate the probability of default.

In small, low-default portfolios, default does not occur frequently (this is preferred economically!)

and the statistical estimation of the probability of default becomes significantly more challenging.

In practice, credit rating models are built to provide a ranking of customers, and probabilities of

default are assigned to the rating categories, based on historically observed default rates.

The industry of credit rating models is very wide. Companies such as Moody’s, Standard and

Poor’s and Fitch specialise in building rating models. Banks use internal rating models in con-

junction with external ratings available to determine the customer’s credit rating. Internal rating

models are usually determined using a statistical scorecard approach, combining quantitative fac-

tors such as financial ratios and qualitative factors such as management strength. A myriad of

papers are available on this topic, for a good overview refer to the compilation by Ong (2002).

A typical rating scale consists of 21 grades, with 1 (AAA in practice) being the best quality or

least risky, and 21 (C in practice) being the worst quality, or most risky. In order to compute the

regulatory capital, probabilities of default have to be assigned to each of the rating categories.

This is done by calibrating the model using scarcely available historically observed default rates.

The purpose of this study is to propose a Bayesian calibration methodology, using the Shannon

 
 
 



CHAPTER 1. INTRODUCTION 13

entropy as a measure of certainty in the choice of the prior distribution. For simplicity, this model

considers only three events, namely (1) default occurring in the investment grade rating class, (2)

default occurring in the speculative grade rating class and (3) no default occurring.

It is assumed that these events follow a multinomial distribution, and various bivariate beta

distributions will be considered as priors to the multinomial distribution. The appropriateness of

the bivariate beta distributions will be tested on Moody’s default rate data, and the formulae

derived for the Bayesian estimation of Shannon entropy will be used to select the parameters of

the prior distributions by measuring the certainty present in the distribution.

The Bayesian estimator of the Shannon entropy will first be derived in Chapter 2 using the well-

known bivariate beta type I distribution as prior, followed by the bivariate beta distribution as by

defined Connor and Mosimann (1969) in Chapter 3, and the bivariate beta type III distribution

(see Ehlers et al., 2009) in Chapter 4. The extended bivariate beta type I distribution (see Ehlers

and Bekker, 2010), which allows for positive and negative correlation, is considered in Chapter 5.

In Chapter 6, a practical example illustrates the application of these different bivariate beta priors

to default rate distributions, followed by some concluding remarks in Chapter 7. Appendix A

contains a summary of the notation used in this study, Appendix B contains important definitions

and relations, and Appendix C provides all relevant computer programs used in this study.

To the author’s knowledge, the Bayesian estimation of the Shannon entropy has only been studied

for the Dirichlet type I distribution, which can be reduced to the bivariate beta type I distribution,

see Simion (1999). The derivations of the Shannon entropy for the Connor and Mosimann bivariate

beta, bivariate beta type III and extended bivariate beta type I distributions are the first of their

kind. Also, not much research has been conducted with regards to Bayesian calibration methods

for credit risk models, and this study aims to make another step in that direction.

 
 
 



CHAPTER 1. INTRODUCTION 14

1.2 Shannon Entropy

Claude E. Shannon was a significant contributor to information science, and introduced his en-

tropy measure in 1948 in a “historically significant article” (see Shannon, 1948), according to the

Encyclopedia of Statistical Sciences.

Claude E. Shannon: The Pioneer of Entropy

He broke down information technology to the corner stones of 0’s and 1’s. Apparently von

Neumann recommended that Shannon uses the term “entropy”, because “nobody knows what

entropy really is, so in any discussion you will always have an advantage”, see Bishop (2007).

In this section, an overview of the concept of entropy will be given.

1.2.1 Definition

Entropy aims to measure the amount of information, certainty or homogeneity present in a random

variable, and plays an important role in surprisingly many fields. A good overview of the statistical

properties of the Shannon entropy can be found in the Encyclopedia of Statistical Sciences. For

a discrete variable X that can take one of k possible values, each with probability pi = P (Xi =

xi) ≥ 0, for i = 1, 2, ..., k and
∑k

i=1 pi = 1, the Shannon entropy is defined as

Hk = H(p1, p2, ..., pk)

= −
k∑
i=1

pilnpi (1.1)
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Entropy measures the extent to which observations are concentrated around a single point, and

is a descriptive measure similar to, but not the same as, standard deviation. For the multinomial

distribution, entropy is referred to as the heterogeneity present in the variable.

The concept of entropy is illustrated in Figure 1.1 using two extreme cases. Suppose we have a

discrete variable X that can take one of three possible values. Figure 1.1 (a) shows the probability

of an observation belonging to the second category, and since this probability is 1, there is no

uncertainty as to where the next observed value will be. Maximum certainty is attained, which is

also referred to as minimum uncertainty or complete homogeneity.

Figure 1.1 (b) shows that the next observed value is equally likely to belong to any of the

categories. There is no certainty, also called minimum certainty, maximum uncertainty or complete

heterogeneity.

Figure 1.1: Shannon Entropy: A Measure of Heterogeneity

(a) (b)

Generalising, distributions that are concentrated around a few values (i.e. peaked distribution) will

have relatively low entropy values (i.e. not much uncertainty), and distributions that are spread

around many values will have relatively higher entropy (i.e. more uncertainty), see Bishop (2007).

Since 0 ≤ pi ≤ 1, the entropy is non-negative, and its minimum value of 0 is attained when one

of the pi = 1 and all other pj 6=i = 0. The maximum entropy is obtained when pi = 1
k
for all i,

and substituting this into (1.1) shows that the maximum value of Shannon entropy is ln k.
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1.2.2 Applications

Entropy is currently used in a variety of fields across theory and practice, with a variety of

purposes. Theoretically, Vasicek (1976) used entropy to determine a goodness of fit test for

univariate normality, while Ebrahimi et al. (1992) used entropy to determine a goodness of fit

test of exponentiality. Zellner (1996) provides an overview of how the maximum entropy method

can be used to obtain distributions for random variables.

Essentially, the maximum entropy method is used to determine the distribution of possible values,

by optiminsing all the information that is known, but assuming nothing about what is not known.

This is similar to a Bayesian estimation of the Shannon entropy, but assuming a non-informative

prior (see Section 1.3.2.1). This method is used with large amounts of information, and involves

the use of optimisation algorithms, see Berger et al. (1996).

Practically, ecologists measure the diversity of a species of a biological population using entropy,

see Pielou (1967). In cryptography, Shannon entropy is used as a cryptographic measure for the

key generator module, which forms part of the security of the cipher system, see Simion (2000)

and Stephanides (2005). Berger et al. (1996) propose the use of the maximum entropy method

to select the correct translated word in natural language processes.

In data mining, the entropy is used to define an error function as part of the learning of weights

in multilayer preceptrons in neural networks. The entropy error function is then minimised to

determine the optimal weights, see Giudici (2003).

In this study, the Bayesian estimator of the Shannon entropy will be used to measure the level

of certainty provided by the parameters of each of the bivariate beta distributions considered as

priors (see Section 1.3.2.3). This will be illustrated with a credit risk application.
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1.3 Bayesian Estimation

The division between Bayesians and frequentists in statistics is well known, and debates between

which approach is best are endless (see O’ Hagan and Forster, 2004). Vallverdu (2008) discusses

the history and philosophy of Bayesian and frequentist statistical inference in detail; and points

out that whilst frequentism is still dominating, more and more Bayesian methods are used for

research. Box and Tiao (1992) suggest finding the fine balance between claiming that the Bayesian

estimation method can do everything and claiming that it can do nothing, and Berger (2003)

proposes to use both methods and compare their possibilities.

Martz and Waller (1982) point out that the frequentist approach might work well for large datasets,

but estimates for small datasets may not be reliable or can be heavily influenced by the data

set. The quality of parameter estimates can be improved by incorporating historical or expert

information using the Bayesian approach.

In this section, the components of Bayesian estimation that are used in this study are briefly

discussed.

The fundamental relationship is:

f(p|x) =
f(x|p)f(p)´
f(x|p)f(p)dp

(1.2)

where

p = (p1, p2, ..., pk) is the vector of parameters that has to be estimated,

x = (x1, x2, ..., xn) is vector of independent observations of the random variable X,

f(p) is the prior distribution of the parameters P, i.e. the information about P that is available

without knowledge of the data,

f(x|p) is the joint conditional probability distribution of X given p, regarded in (1.2) as the

likelihood function of observing x, given that the parameter values are p, and
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f(p|x) is the posterior distribution of the parameters P, i.e. the information about P when taking

into account the knowledge of the data.

Philosophically, the posterior distribution is interpreted as the distribution of the parameters P

that is obtained after incorporating current as well as previous information.

1.3.1 Likelihood

The likelihood function refers to the distribution of X, and is important since it modifies the

prior information about P when using the data. It is regarded as the function that represents

the information about P contained in the data, see Box and Tiao (1992) and Martz and Waller

(1982).

1.3.1.1 This study: multinomial distribution

In this study, the multinomial distribution is considered as the likelihood function, and is defined

in Bernardo and Smith (2000). Let:

X be a discrete random vector variable, whose values can take any of k + 1 categories,

xi = 0, 1, ... denote the number of observations of X in the sample of size n = 1, 2, ... that belong

to category i, where
∑k+1

i=1 xi = n, and

pi denote the probability of an observation belonging to category i, where 0 < pi < 1 and∑k
i=1 pi < 1.

Then the mass function of a discrete random variable X following a multinomial distribution of

dimension k with parameters p = (p1, p2, ..., pk) and n is given by

f(x|p) =
n!∏k

i=1 xi!(n−
∑k

i=1 xi)!

k∏
i=1

pxii (1−
k∑
i=1

pi)
n−

∑k
i=1 xi
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For the bivariate case, this reduces to

f(x|p1, p2) =
n!

x1!x2!x3!
px1

1 p
x2
2 (1− p1 − p2)n−x1−x2 (1.3)

where x1 + x2 + x3 = n , 0 < pi < 1 for i = 1, 2, and 0 < p1 + p2 < 1.

1.3.2 Prior

The prior is the distribution of the parameters P, without knowledge of the data, and is generally

selected subjectively. There are various types of prior distributions, but only the ones necessary

for this study will be summarised here.

1.3.2.1 Non-informative prior

If very little or no information is available about a parameter, a non-informative prior can be

assigned (see Martz and Waller, 1982, p.223; Bernardo and Smith, 2000, p 357).

1.3.2.2 Expert prior

This type of prior distribution summarises the expert’s opinion of the values that a parameter can

take, in conjunction with which values are more likely. The expert’s estimate of the distribution

parameters can be improved as more experience is obtained, or by combining the expert’s estimates

with estimated parameters as more data becomes available, see Bernardo and Smith (2000), and

Martz and Waller (1982).

If there is no data available at all, it is up to the statistician to elicit the required information

necessary for the construction of the prior distribution from the expert (who may not necessarily

have a statistical background), see O’ Hagan and Forster (2004, p159) for some guidelines.
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1.3.2.3 Natural conjugate prior

A prior distribution that, when combined with a likelihood function, results in a posterior distri-

bution of the same prior family is called a natural conjugate prior. Raiffa and Schlaifer (1961)

suggest to seek a family of priors that have analytic tractability, are flexible and rich and easily

interpreted. Conjugate priors are also known as convenience priors, due to the mathematical

convenience in calculating the posterior distribution. A method to obtain a conjugate prior is

described in Martz and Waller (1982).

Similar to the expert prior, the parameters of the natural conjugate prior are obtained based on

experience or some initial estimated parameters, or a combination of both, see Press (1989).

In contrast, a non-conjugate prior is obtained when the combination of the likelihood and prior

distribution does not result in a member of the same prior family distribution.

1.3.2.4 This study: bivariate beta priors

In this study, the use of various bivariate beta distributions as priors for the multinomial distribution

defined in (1.3) is investigated. Both expert and natural conjugate priors will be considered. For

illustrative purposes, the parameters of the prior distributions are taken to be the expert opinion;

although the parameters can be estimated with the method of moments or maximum likelihood

estimation if adequate data is available.

The various bivariate beta priors focused on in the study as well as their relationship with one

another are defined in this section. The priors will be discussed in more detail in the following

chapters.

Bivariate beta type I

The density function is given by:

f(p1, p2) =
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1
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where 0 < pi < 1 for i = 1, 2, 0 < p1 + p2 < 1 and π1, π2, π3 > 0.

Connor and Mosimann bivariate beta

The density function is given by:

f(p1, p2) =
Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)
pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1(1− p1)d−π2−π3

where 0 < pi < 1 for i = 1, 2, 0 < p1 + p2 < 1 and π1, π2, π3, d > 0.

Bivariate beta type III

The density function is given by:

f(p1, p2) =
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
cπ1+π2pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1

×[1 + (c− 1)p1 + (c− 1)p2]−(π1+π2+π3)

where 0 < pi < 1 for i = 1, 2, 0 < p1 + p2 < 1 and π1, π2, π3, c > 0.

Extended bivariate beta type I

The density function is given by:

f(p1, p2) =
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
β−π1

1 β−π2
2 cπ1+π2pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1

×[1− (1− c

β1

)p1 − (1− c

β2

)p2]−(π1+π2+π3)

where 0 < pi < 1 for i = 1, 2, 0 < p1 + p2 < 1 and π1, π2, π3, β1, β2, c > 0.

The relationship between these bivariate beta distributions is shown in Figure 1.2.
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Figure 1.2: Bivariate Beta Relationships

The bivariate beta distributions considered in this study are an extremely small portion of the

universe of bivariate beta distributions. For an overview of other bivariate beta distributions, the

reader is referred to Balakrishnan and Lai (2009), Nadarajah and Kotz (2005) and Kotz et al.

(2000).

1.3.3 Posterior

The posterior distribution is a summary of the information about P, combining the prior informa-

tion and the sample data. If the parameters of the posterior distribution are similar to those of

the prior distribution, it increases confidence in the subjective selection of the prior distribution.

Bayes’ theorem is sequential in nature, therefore making it easy to update the knowledge about

P with new sample or data information as it becomes available, refer to Martz and Waller (1982,

p176) for an illustration.
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1.3.3.1 This study

This study considers the bivariate case, therefore the posterior distribution in (1.2) simplifies to

f(p1, p2|x) =
f(x|p1, p2)f(p1, p2)´ ´
f(x|p1, p2)f(p1, p2)dp1dp2

where f(x|p1, p2) is the likelihood function of the multinomial distribution, given by (1.3), and

f(p1, p2) is one of the bivariate beta distributions discussed in Section 1.3.2.3.

It will be shown in the following chapters that if the bivariate beta type I distribution is used

as a prior to the multinomial distribution, the posterior distribution is also a bivariate beta type

I distribution. Sometimes circumstances require the statistician to select a more complex prior

distribution which has the ability to reflect the knowledge of the expert more accurately. This

may result in a posterior distribution of a different form than the prior distribution, and whilst this

reduces the mathematical convenience it should not be seen as a drawback.

The Connor and Mosimann bivariate beta, bivariate beta type III and extended bivariate beta type

I distributions are not natural conjugates to the multinomial distribution.

1.3.4 Loss Function and Estimator

A good overview of loss functions can be found in Berger (1980), Martz and Waller (1982) and

Bernardo and Smith (2000). Loss functions find their way from Bayesian decision theory, and aim

to measure the loss incurred by estimating a parameter. The smaller the loss, the more accurate

the estimator. This study is only concerned with the squared error (or quadratic) loss function.

1.3.4.1 Squared error loss

Suppose we are only estimating a single parameter p. Then the squared error loss function is

defined as

L(p, p̂) = (p− p̂)2 (1.4)
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where p̂ is the estimate of p.

The squared error loss can be generalised by using weighted squared error loss (see Lee, 2004).

Weights are assigned to the loss function, therefore taking into account that the impact of the

loss may be more or less severe at certain points. The weighted loss function is given by

L(p, p̂) = w(p)(p− p̂)2

To extend to the multivariate case, define the squared error loss function as

L(p, p̂) = (p− p̂)′Q(p− p̂) (1.5)

where p = (p1, p2, ..., pk), k ≥ 2, is the vector of parameters that has to be estimated,

p̂ = (p̂1, p̂2, ..., p̂k) is the vector of estimates, and

Q is a k × k positive definite matrix.

Q can be seen as the influence that the different loss functions have on one another. If Q is a

diagonal matrix, the loss functions of two parameters are not influenced by each other, and the

loss function becomes

L(p, p̂) =
k∑
i=1

qi(pi − p̂i)2

Weighted and squared error loss functions can be used in the presence of nuisance parameters,

which are parameters where some components are known or assumed to have a certain fixed value.

1.3.4.2 Bayes estimator

It is shown in Martz and Waller (1982, p200) and Lee (2004, p205) that under the squared

error loss function the Bayes estimator of P is the expected value with respect to the posterior

distribution. That is, when the loss function is specified by (1.4), the Bayes estimator for any
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specified prior f(p) will be the estimator that minimises the posterior risk given by

E[(P − P̂ )2|x] =

ˆ
(p− p̂)2f(p|x)dp

and the minimum is attained when

P̂ = E[P |x] =

ˆ
pf(p|x)dp

Under quadratic loss, when the loss function is specified by (1.5), the Bayes estimator is that

estimator that minimises the loss, that is, minimises

E[(P− P̂)′Q(P− P̂)|x]

and the minimum is attained when

P̂ = E[P|x] =

ˆ
pf(p|x)dp

 
 
 



Chapter 2

Bivariate Beta Type I Prior

2.1 The Bivariate Beta Type I prior

In general, the beta type I distribution (be it univariate, bivariate or multivariate) is famous for

its ability to model proportions.

2.1.1 Joint Density Function

The conjugate prior for the multinomial distribution is the well-known Dirichlet type I distribu-

tion. For the bivariate case, this reduces to the bivariate beta type I distribution, denoted by

BBetaI(π1, π2, π3) and with density function:

f(p1, p2) =
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1 (2.1)

where 0 < pi < 1 for i = 1, 2, 0 < p1 + p2 < 1 and π1, π2, π3 > 0.

26
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2.1.2 Univariate Properties

The marginal density function of P1 is derived as:

f(p1) =
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
pπ1−1

1

ˆ 1−p1

0

pπ2−1
2 (1− p1 − p2)π3−1dp2

=
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
pπ1−1

1 (1− p1)π2+π3−1 Γ(π2)Γ(π3)

Γ(π2 + π3)

using equation (B.1) found in Gradshteyn and Ryzhik (2007). It then follows that:

f(p1) =
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2 + π3)
pπ1−1

1 (1− p1)π2+π3−1

where 0 < p1 < 1, and π1, π2, π3 > 0, which is the density function of a univariate Beta(π1, π2 +

π3) distribution. Similarly, the marginal distribution of P2 is a univariate Beta(π2, π1 + π3)

distribution.

2.1.3 Methods of Derivation

The bivariate beta type I distribution is derived from three independently distributed χ2 variables.

Balakrishnan and Lai (2009, p174) refer to this as the trivariate reduction method.

Let Si ∼ χ2(2πi) for i = 1, 2, 3 be three independently distributed χ2 variables. That is,

f(si) =
1

2πiΓ(πi)
exp(−si

2
)sπi−1
i

for si > 0. The joint density function of these variables is given by

f(s1, s2, s3) =
3∏
i=1

f(si)

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

exp(−1

2

3∑
i=1

si)
3∏
i=1

sπi−1
i
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Consider the transformation Pi = Si
S1+S2+S3

for i = 1, 2 and P3 = S1 + S2 + S3. Then

S1 = P1P3

S2 = P2P3

S3 = P3(1− P1 − P2)

The Jacobian for this transformation is given by

J = J((s1, s2, s3)→ (p1, p2, p3))

=

∣∣∣∣∣∣∣∣∣∣
∂s1
∂p1

∂s1
∂p2

∂s1
∂p3

∂s2
∂p1

∂s2
∂p2

∂s2
∂p3

∂s3
∂p1

∂s3
∂p2

∂s3
∂p3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
p3 0 p1

0 p3 p2

−p3 −p3 1− p1 − p2

∣∣∣∣∣∣∣∣∣∣
= p3[p3(1− p1 − p2) + p2p3] + p1p

2
3

= p2
3

The joint density function of P1, P2 and P3 is given by

f(p1, p2, p3) = f(s1, s2, s3)|J |

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

(p1p3)π1−1(p2p3)π2−1[p3(1− p1 − p2)]π3−1

× exp(−1

2
[p1p3 + p2p3 + p3(1− p1 − p2)])

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

pπ1−1
1 pπ2−1

2 (1− p1 − p2)π3−1p
∑3
i=1 πi−1

3 exp(−p3

2
)
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The joint density function of P1 and P2 is given by

f(p1, p2) =

ˆ ∞
0

f(p1, p2, p3)dp3

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

pπ1−1
1 pπ2−1

2 (1− p1 − p2)π3−1

ˆ ∞
0

p
∑3
i=1 πi−1

3 exp(−p3

2
)dp3

The integral above can be written as

ˆ ∞
0

p
∑3
i=1 πi−1

3 exp(−p3

2
)dp3

= 2
∑3
i=1 πiΓ(

3∑
i=1

πi)

ˆ ∞
0

1

2
∑3
i=1 πiΓ(

∑3
i=1 πi)

p
∑3
i=1 πi−1

3 exp(−p3

2
)dp3 (2.2)

= 2
∑3
i=1 πiΓ(

3∑
i=1

πi)

where the integral in (2.2) is 1 since it is the total probability of a χ2(
∑3

i=1 πi) distribution. Then

f(p1, p2) =
Γ(
∑3

i=1 πi)∏3
i=1 Γ(πi)

pπ1−1
1 pπ2−1

2 (1− p1 − p2)π3−1

where 0 < pi < 1, i = 1, 2 and 0 < p1 + p2 < 1, and it follows that P1 and P2 are jointly

distributed as BBetaI(π1, π2, π3).

2.1.4 Correlation

The product moments are derived as

E[P i
1P

j
2 ] =

ˆ 1

0

ˆ 1−p2

0

pi1p
j
2f(p1, p2)dp1dp2

=
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)

ˆ 1

0

ˆ 1−p2

0

pπ1+i−1
1 pπ2+j−1

2 (1− p1 − p2)π3−1dp1dp2

Note that the integral above is proportional to a BBetaI(π1 + i, π2 + j, π3) distribution (see

 
 
 



CHAPTER 2. BIVARIATE BETA TYPE I PRIOR 30

(2.1)). Then

E[P i
1P

j
2 ] =

Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)

Γ(π1 + i)Γ(π2 + j)Γ(π3)

Γ(π1 + i+ π2 + j + π3)

=
Γ(π1 + i)Γ(π2 + j)

Γ(π1)Γ(π2)

Γ(π1 + π2 + π3)

Γ(π1 + π2 + π3 + i+ j)
(2.3)

It follows from (2.3) that

E[Pi] =
πi

π1 + π2 + π3

and

E[P 2
i ] =

πi(πi + 1)

(π1 + π2 + π3)(π1 + π2 + π3 + 1)

for i = 1, 2. The variance of P1 and P2 are then respectively given by

var(P1) =
π1(π2 + π3)

(π1 + π2 + π3)2(π1 + π2 + π3 + 1)

and

var(P2) =
π2(π1 + π3)

(π1 + π2 + π3)2(π1 + π2 + π3 + 1)

The covariance and correlation are respectively given by

cov(P1, P2) =
−π1π2

(π1 + π2 + π3)2(π1 + π2 + π3 + 1)

and

corr(P1, P2) = −
√

π1π2

(π1 + π3)(π2 + π3)
(2.4)

Since π1, π2, π3 > 0, the correlation between P1 and P2 will always be negative. Balakrishnan

and Lai (2009) comment on the unusualness of the negative correlation, and suggest negating

one of the variables in order to attain positive correlation. One advantage of the bivariate beta

type I distribution is that for variables that are restricted to negative correlation, good analytical
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tractability simplifies Bayesian analyses. Table 2.1 lists the correlation for some values of π1, π2

and π3.

Table 2.1: Bivariate Beta Type I Distribution: Correlation

π1 π2 π3 Correlation
2 2 2 -0.5
1 2 2 -0.408
10 2 2 -0.645
2 1 2 -0.408
2 10 2 -0.646
2 2 1 -0.667
2 2 10 -0.167

Since the bivariate beta type I distribution is symmetric in P1 and P2, the correlation between

interchanged parameter values for π1 and π2 is also the same.

2.1.5 Shape Analysis

The parameters of the prior distribution can be estimated from historical data using maximum

likelihood estimation, or determined from prior knowledge or expert judgement, see O’ Hagan and

Forster (2004). The examples that follow will show the effect of π1, π2 and π3 on the shape and

concentration of the distribution. A reference case will be used, where π1 = π2 = π3 = 2.

In Figure 2.1 it can be seen that if π1 is decreased and π2 and π3 remain constant, the distribution

shifts towards the marginal distribution of P2 on the right axis. If π1 is increased and π2 and π3

remain constant, the distribution shifts towards larger values of P1 and smaller values of P2 along

the line p1 + p2 = 1.
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Figure 2.1: Bivariate Beta Type I Distribution: Changing π1

Doing the same for π2, it can be seen in Figure 2.2 that if π2 is decreased and π1 and π3 remain

constant, the distribution shifts towards the marginal distribution of P1 on the left axis. If π2 is

increased, the distribution shifts towards smaller values of P1 and larger values of P2 along the

line p1 + p2 = 1.
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Figure 2.2: Bivariate Beta Type I Distribution: Changing π2

 
 
 



CHAPTER 2. BIVARIATE BETA TYPE I PRIOR 34

Figure 2.3 shows that if π3 is decreased, the concentration shifts towards the line p1 + p2 = 1. If

π3 is increased, the concentration shifts towards small values of P1 and P2. This is particularly

useful in practice if one deals with two variables P1 and P2 which are concentrated towards the

lower values of both.

Figure 2.3: Bivariate Beta Type I Distribution: Changing π3
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2.2 Bayesian Estimation of Shannon Entropy

2.2.1 Derivation

Theorem 2.1

The posterior distribution for the multinomial likelihood in (1.3) and bivariate beta type I prior

distribution in (2.1) follows a BBetaI(π1 + x1, π2 + x2, π3 + x3) distribution, that is

f(p1, p2|x) = [B(π1 + x1, π2 + x2, π3 + x3)]−1pπ1+x1−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1 (2.5)

where 0 < pi < 1 for i = 1, 2, 0 < p1 + p2 < 1, π1, π2, π3 > 0 and B(·) is the beta function (see

Appendix B, Definition 1).

Proof

Using Bayes’ theorem, the posterior distribution is defined as

f(p1, p2|x) =
f(x|p1, p2)f(p1, p2)´ ´
f(x|p1, p2)f(p1, p2)dp1dp2

where f(x|p1, p2) is the likelihood function of the multinomial distribution, given by (1.3), and

f(p1, p2) is the bivariate beta type I prior distribution, given by (2.1). The numerator of the

posterior distribution is given by

f(x|p1, p2)f(p1, p2) = [B(π1, π2, π3)]−1 n!

x1!x2!x3!
pπ1+x1−1

1 pπ2+x2−1
2 (1− p1 − p2)π3+x3−1 (2.6)
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The denominator of the posterior distribution is given by

ˆ 1

0

ˆ 1−p2

0

f(x|p1, p2)f(p1, p2)dp1dp2

=
n!

x1!x2!x3!

B(π1 + x1, π2 + x2, π3 + x3)

B(π1, π2, π3)

×
ˆ 1

0

ˆ 1−p2

0

[B(π1 + x1, π2 + x2, π3 + x3)]−1

×pπ1+x1−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2 (2.7)

Note that the integral on the right hand side of (2.7) is equal to 1, since it corresponds to the

total probability of a BBetaI(π1 + x1, π2 + x2, π3 + x3) distribution. The denominator of the

posterior distribution is therefore a constant, given by

ˆ 1

0

ˆ 1−p2

0

f(x|p1, p2)f(p1, p2)dp1dp2 =
n!

x1!x2!x3!

B(π1 + x1, π2 + x2, π3 + x3)

B(π1, π2, π3)
(2.8)

Combining the numerator (2.6) and denominator (2.8), the posterior distribution is given by

f(p1, p2|x) = [B(π1 + x1, π2 + x2, π3 + x3)]−1pπ1+x1−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1

where 0 < pi < 1 for i = 1, 2, 0 < p1 + p2 < 1 and π1, π2, π3 > 0; which is the density function

of a BBetaI(π1 + x1, π2 + x2, π3 + x3) distribution. �
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Theorem 2.2

The Bayesian estimator of the Shannon entropy under the squared error loss function using the

bivariate beta type I distribution as a prior for the multinomial distribution in (1.3) is given by:

ĤI
3 = −

3∑
i=1

βi∑3
j=1 βj

(ψ(βi + 1)− ψ(
3∑
j=1

βj + 1)) (2.9)

where

β1 = π1 + x1

β2 = π2 + x2

β3 = π3 + x3

are the parameters of the posterior distribution in (2.5).

Proof

From (1.1) the Shannon entropy for the bivariate beta type I distribution is denoted by

HI
3 = −

3∑
i=1

pi ln pi

The Bayesian estimator of the Shannon entropy under squared error loss is defined as the expected

value of the Shannon entropy with respect to the posterior distribution (see Section 1.3.4.2 of
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Chapter 1). That is,

ĤI
3 = Ef(p1,p2|x)[H

I
3 ]

= −
ˆ 1

0

ˆ 1−p2

0

3∑
i=1

pi(ln pi)[B(π1 + x1, π2 + x2, π3 + x3)]−1

×pπ1+x1−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2

= −[B(π1 + x1, π2 + x2, π3 + x3)]−1

×
3∑
i=1

ˆ 1

0

ˆ 1−p2

0

pi(ln pi)p
π1+x1−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2

= K

3∑
i=1

Ii

where

K = −[B(π1 + x1, π2 + x2, π3 + x3)]−1, and

Ii =
´ 1

0

´ 1−p2
0

pi(ln pi)p
π1+x1−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2.

The simplification of Ii will only be shown for I1 , but follows similarly for I2 and I3.

I1 =

ˆ 1

0

ˆ 1−p2

0

(ln p1)pπ1+x1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2

=

ˆ 1

0

ˆ 1−p2

0

(
∂

∂π1

pπ1+x1
1 )pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2

since d
dx

ln ax = ax ln a. Changing the order of integration and differentiation:

I1 =
∂

∂π1

ˆ 1

0

ˆ 1−p2

0

pπ1+x1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2

=
∂

∂π1

B(π1 + x1 + 1, π2 + x2, π3 + x3)

×
ˆ 1

0

ˆ 1−p1

0

[B(π1 + x1 + 1, π2 + x2, π3 + x3)]−1pπ1+x1
1 pπ2+x2−1

2

×(1− p1 − p2)π3+x3−1dp1dp2 (2.10)

=
∂

∂π1

B(π1 + x1 + 1, π2 + x2, π3 + x3)
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The integral in (2.10) is 1 since it is the density function of a BBetaI(π1 +x1 +1, π2 +x2, π3 +x3)

distribution. Using the product and chain rules for differentiation:

I1

=
Γ(π2 + x2)Γ(π3 + x3)

[Γ(π1 + x1 + 1 + π2 + x2 + π3 + x3)]2
[Γ′(π1 + x1 + 1)Γ(π1 + x1 + 1 + π2 + x2 + π3 + x3)

−Γ(π1 + x1 + 1)Γ′(π1 + x1 + 1 + π2 + x2 + π3 + x3)]

from which it follows that

KI1 = − Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)[Γ(π1 + x1 + 1 + π2 + x2 + π3 + x3)]2

×[Γ′(π1 + x1 + 1)Γ(π1 + x1 + 1 + π2 + x2 + π3 + x3)

−Γ(π1 + x1)Γ′(π1 + x1 + 1 + π2 + x2 + π3 + x3]

= − π1 + x1

π1 + x1 + π2 + x2 + π3 + x3

[ψ(π1 + x1 + 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + 1)]

where ψ(x) denotes the polygamma function (see Appendix B, Definition 2). Similarly,

KI2 = − π2 + x2

π1 + x1 + π2 + x2 + π3 + x3

[ψ(π2 + x2 + 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + 1)]

and

KI3 = − π3 + x3

π1 + x1 + π2 + x2 + π3 + x3

[ψ(π3 + x3 + 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + 1)]

For simplification, let

β1 = π1 + x1

β2 = π2 + x2

β3 = π3 + x3
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The Bayesian estimator of Shannon entropy is then given by

ĤI
3 = −

3∑
i=1

βi∑3
j=1 βj

(ψ(βi + 1)− ψ(
3∑
j=1

βj + 1))

which proves this theorem. �

A generalization of this result can be found in Simion (1999).

2.2.2 Numerical Analysis

Table 2.2 below summarises the Bayesian estimates of Shannon entropy obtained when using (2.9),

for each of the parameter combinations used in the shape analysis. The multinomial frequencies

were assumed to be x1 = 1, x2 = 2, x3 = 10.

Table 2.2: Bayesian Estimates of Shannon Entropy: Bivariate Beta Type I Prior

π1 π2 π3 ĤI
3

2 2 2 0.860
1 2 2 0.797
10 2 2 0.973
2 1 2 0.815
2 10 2 0.929
2 2 1 0.881
2 2 10 0.714

If π1 is decreased, a lower ĤI
3 is obtained, indicating less uncertainty. If π1 is increased, a higher

ĤI
3 is obtained, indicating more uncertainty. This is somewhat counterintuitive with the results

observed in the shape analysis in Figure 2.1, where a lower value of π1 is associated with less

concentration, indicating more uncertainty; and a larger value of π1 is associated with more

concentration, indicating less uncertainty.
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Similarly, if π2 is decreased, a lower ĤI
3 is obtained, indicating less uncertainty; and if π2 is

increased, a higher ĤI
3 is obtained, indicating more uncertainty. This is also counterintuitive with

the results from the shape analysis in Figure 2.2, where a lower value of π2 is associated with

less concentration, indicating more uncertainty; and a larger value of π2 is associated with more

concentration, indicating less uncertainty.

Now, if π3 is decreased, a higher ĤI
3 is obtained, indicating more uncertainty; and if π3 is increased,

a lower ĤI
3 is obtained, indicating less uncertainty. These results are consistent with the results

from the shape analysis in Figure 2.3, were a lower value of π3 is associated with less concentration,

indicating more uncertainty; and a larger value of π3 is associated with more concentration,

indicating less uncertainty.

The difference between these intuitive and counterintuitive results for parameters π1 and π2 may

be disturbing at first, but can be explained by the location of the distribution. In the first two

cases, changing π1 or π2 leads to distributions that are either tending to the marginal distribution

of P2 or P1 respectively, or are tending towards a specific point along the line p1 + p2 = 1. As

the concentration in the distribution remains closer to small values of P1 and P2, ĤI
3 stays lower,

but as soon as the concentration moves away from these small values to some point along the

line p1 + p2 = 1 the uncertainty increases. This suggests that the Bayesian estimate of Shannon

entropy may contain information of not only concentration, but of location as well.

It should also be kept in mind that since ĤI
3 is the Bayesian estimate of the Shannon entropy, it

also contains information about the likelihood function. Therefore, the multinomial frequencies

will also have an effect on the behaviour of ĤI
3 . In this example, the multinomial frequencies

were assumed to be x1 = 1, x2 = 2 and x3 = 10. If the multinomial model was symmetric, for

example x1 = x2 = 2, the values for ĤI
3 would have been the same for the case where π1 or π2

were changed, since the posterior parameters would have been the same.

 
 
 



Chapter 3

Connor and Mosimann Bivariate Beta

Prior

3.1 The Connor and Mosimann Bivariate Beta Prior

The Connor and Mosimann distribution stems from the concept of “neutrality”, where for some

practical reason a single proportion out of a set of proportions is eliminated. The concept of

neutrality is often used in biological data, for example to test the effect of fluoridation in the

chemical compostion of bones in rats, see Connor and Mosimann (1969) and Lochner (1975).

3.1.1 Joint Density Function

Consider as a prior to the multinomial distribution in (1.3) the bivariate beta distribution as defined

by Connor and Mosimann (1969), denoted by BBetaCM(π1, π2, π3, d) and with density function:

f(p1, p2) =
Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)
pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1(1− p1)d−π2−π3 (3.1)

where 0 < p1 + p2 < 1 and π1, π2, π3, d > 0. This prior distribution is not a natural conjugate

for the multinomial distribution in (1.3). Note that if d = π2 + π3, (3.1) reduces to the bivariate

42
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beta type I distribution in (2.1).

3.1.2 Univariate Properties

Due to the additional factor (1− p1)d−π2−π3 in the kernel of (3.1) the two marginal distributions

will not be of the same form. The marginal distribution of P1 is derived as

f(p1) =
Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)
pπ1−1

1 (1− p1)d−π2−π3

ˆ 1−p1

0

pπ2−1
2 (1− p1 − p2)π3−1dp2

=
Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)
pπ1−1

1 (1− p1)d−π2−π3(1− p1)π2+π3−1 Γ(π2)Γ(π3)

Γ(π2 + π3)

using equation (B.1). This simplifies to

f(p1) =
Γ(π1 + d)

Γ(π1)Γ(d)
pπ1−1

1 (1− p1)d−1

for 0 < p1 < 1 and π1, d > 0, which is the density of an univariate Beta(π1, d) distribution.

The marginal distribution of P2 is derived as

f(p2) =
Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)
pπ2−1

2

ˆ 1−p2

0

pπ1−1
1 (1− p1 − p2)π3−1(1− p1)d−π2−π3dp1

=
Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)
pπ2−1

2 (1− p2)π1+π3−1 Γ(π1)Γ(π3)

Γ(π1 + π3)

× 2F1(π1, π2 + π3 − d− 1; π1 + π3; 1− p2)

using equation (B.2). This simplifies to

f(p2) =
Γ(π1 + d)Γ(π2 + π3)

Γ(π2)Γ(π1 + π3)Γ(d)
2F1(π1, π2 + π3 − d− 1; π1 + π3; 1− p2)pπ2−1

2 (1− p2)π1+π3−1

for 0 < p2 < 1 and π1, π2, π3, d > 0 and where 2F1(a, b; c; z) is the Gauss hypergeometric function

(see Appendix B, Definition 4). Whilst this is not an exact univariate beta type I distribution, the

kernel suggests that this marginal distribution is proportional to an univariate Beta(π2, π1 + π3)
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distribution.

3.1.3 Methods of Derivation

The Connor and Mosimann distribution is a generalization of the Dirichlet type I distribution,

taking into account the concept of neutrality. For the bivariate case a vector of proportions

(P1, P2, P3) is said to be neutral if P1 is independent of ( P2

1−P1
, P3

1−P1
). This means that if P1

is removed from the sample, the proportional division of P2 and P3 over the remaining interval

(P1, 1) is not influenced by P1. It follows that P1 is independent of P2

1−P1
and P3

1−P1
.

A simple derivation is presented for the bivariate case, but a comprehensive extension to the

multivariate case can be found in Connor and Mosimann (1969).

Consider three variables P1, P2, and P3 and assume that (P1, P2, P3) is neutral. Then the

transformation

Z1 = P1

Z2 =
P2

1− P1

Z3 =
1− P1 − P2

1− P1 − P2

= 1

results in two independent random variables, since Z3 is constant. The Jacobian of the transfor-

mation is given by

J((z1, z2)→ (p1, p2)) =

∣∣∣∣∣∣∣
∂z1
∂p1

∂z1
∂p2

∂z2
∂p1

∂z2
∂p2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 0

p2
(1−p1)2

1
1−p1

∣∣∣∣∣∣∣
=

1

1− p1

Let the density functions of Z1 and Z2 be univariate beta distributions, i.e. Zi ∼ Beta(ai, bi),
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for i = 1, 2. Then

f(zi) =
Γ(ai + bi)

Γ(ai)Γ(bi)
zai−1
i (1− zi)bi−1

for i = 1, 2. The joint density function of P1 and P2 is given by

f(p1, p2) = f(z1, z2)J((z1, z2)→ (p1, p2))

= f(z1)f(z2)J((z1, z2)→ (p1, p2))

since Z1 and Z2 are independent. Then

f(p1, p2) =
Γ(a1 + b1)

Γ(a1)Γ(b1)

Γ(a2 + b2)

Γ(a2)Γ(b2)
pa1−1

1 (1− p1)b1−1(
p2

1− p1

)a2−1(1− p2

1− p1

)b2−1(1− p1)−1

=
Γ(a1 + b1)

Γ(a1)Γ(b1)

Γ(a2 + b2)

Γ(a2)Γ(b2)
pa1−1

1 pa2−1
2 (1− p1 − p2)b2−1(1− p1)b1−a2−b2

Letting a1 = π1, a2 = π2, b1 = d and b2 = π3 the expression simplifies to (3.1).

3.1.4 Correlation

A comprehensive generalisation of the calculation of moments for the multivariate case can be

found in Connor and Mosimann (1969), which involves neutrality. The simplified derivation of the

correlation in this section only relies on the mathematical properties of the bivariate distribution.

Using the binomial expansion in (B.3), it follows that:

(1− p1)d−π2−π3 =
∞∑
r=0

(
d− π2 − π3

r

)
(−1)rpr1 (3.2)

which will always converge since 0 < p1 < 1. The density function in (3.1) can thus be written

as

f(p1, p2) =
Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)

∞∑
r=0

(
d− π2 − π3

r

)
(−1)rpπ1+r−1

1 pπ2−1
2 (1−p1−p2)π3−1 (3.3)

 
 
 



CHAPTER 3. CONNOR AND MOSIMANN BIVARIATE BETA PRIOR 46

The product moments can be derived as

E[P i
1P

j
2 ] =

Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)

×
ˆ 1

0

ˆ 1−p2

0

pπ1+i−1
1 pπ2+j−1

2 (1− p1 − p2)π3−1(1− p1)d−π2−π3dp1dp2 (3.4)

Considering the integral in (3.4) and using (3.2),

ˆ 1

0

ˆ 1−p2

0

pπ1+i−1
1 pπ2+j−1

2 (1− p1 − p2)π3−1(1− p1)d−π2−π3dp1dp2

=

ˆ 1

0

ˆ 1−p2

0

pπ1+i−1
1 pπ2+j−1

2 (1− p1 − p2)π3−1

∞∑
r=0

(
d− π2 − π3

r

)
(−1)rpr1dp1dp2

=
∞∑
r=0

(
d− π2 − π3

r

)
(−1)r

ˆ 1

0

ˆ 1−p2

0

pπ1+i+r−1
1 pπ2+j−1

2 (1− p1 − p2)π3−1dp1dp2

=
∞∑
r=0

(
d− π2 − π3

r

)
(−1)rB(π1 + i+ r, π2 + j, π3)

×
ˆ 1

0

ˆ 1−p2

0

[B(π1 + i+ r, π2 + j, π3)]−1pπ1+i+r−1
1 pπ2+j−1

2

×(1− p1 − p2)π3−1dp1dp2 (3.5)

The integral in (3.5) is equal to 1, since it corresponds to the total probability of a BBetaI(π1 +

i+ r, π2 + j, π3) distribution. Combining (3.4) and (3.5),

E[P i
1P

j
2 ]

=
Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)

∞∑
r=0

(
d− π2 − π3

r

)
(−1)r[B(π1 + i+ r, π2 + j, π3)]−1 (3.6)
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The summation in (3.6) can be simplified as

∞∑
r=0

(
d− π2 − π3

r

)
(−1)r[B(π1 + i+ r, π2 + j, π3)]−1

=
∞∑
r=0

(
d− π2 − π3

r

)
(−1)r

Γ(π1 + i+ r)Γ(π2 + j)Γ(π3)

Γ(π1 + π2 + π3 + i+ j + r)

= Γ(π2 + j)Γ(π3)
∞∑
r=0

(−1)2r

r!
(π2 + π3 − d)r

Γ(π1 + i+ r)

Γ(π1 + π2 + π3 + i+ j + r)

where the last step is obtained by using relation (B.7). Then

Γ(π2 + j)Γ(π3)
∞∑
r=0

(−1)2r

r!
(π2 + π3 − d)r

Γ(π1 + i+ r)

Γ(π1 + π2 + π3 + i+ j + r)

=
Γ(π2 + j)Γ(π3)Γ(π1 + i)

Γ(π1 + π2 + π3 + i+ j)

∞∑
r=0

1

r!
(π2 + π3 − d)r

Γ(π1 + i+ r)Γ(π1 + π2 + π3 + i+ j)

Γ(π1 + i)Γ(π1 + π2 + π3 + i+ j + r)

=
Γ(π2 + j)Γ(π3)Γ(π1 + i)

Γ(π1 + π2 + π3 + i+ j)

∞∑
r=0

1

r!

(π2 + π3 − d)r(π1 + i)r
(π1 + π2 + π3 + i+ j)r

=
Γ(π2 + j)Γ(π3)Γ(π1 + i)

Γ(π1 + π2 + π3 + i+ j)
2F1(π2 + π3 − d, π1 + i; π1 + π2 + π3 + i+ j; 1) (3.7)

where (3.7) is obtained by using the definitions of the Pochhammer coefficient (Appendix B,

Definition 3) and the Gauss hypergeometric function (Appendix B, Definition 4) respectively. By

using relation (B.8), (3.7) becomes

Γ(π2 + j)Γ(π3)Γ(π1 + i)

Γ(π1 + π2 + π3 + i+ j)

Γ(π1 + π2 + π3 + i+ j)Γ(j + d)

Γ(π1 + i+ j + d)Γ(π2 + π3 + j)

=
Γ(π2 + j)Γ(π3)Γ(π1 + i)Γ(j + d)

Γ(π2 + π3 + j)Γ(π1 + i+ j + d)
(3.8)

and combining (3.6) and (3.8) gives

E[P i
1P

j
2 ] =

Γ(π1 + i)Γ(π2 + j)Γ(d+ j)Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π1 + d+ i+ j)Γ(π2 + π3 + j)
(3.9)
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Using (3.9) the variance of P1 can be calculated as:

E[P1] =
π1

π1 + d

E[P 2
1 ] =

π1(π1 + 1)

(π1 + d)(π1 + d+ 1)

var(P1) =
π1d

(π1 + d)2(π1 + d+ 1)

Similarly,

E[P2] =
π2d

(π1 + d)(π2 + π3)

E[P 2
2 ] =

π2d(π2 + 1)(d+ 1)

(π1 + d)(π1 + d+ 1)(π2 + π3)(π2 + π3 + 1)

var(P2) =
π2d{π1π2(π2 + 1) + π3[(d+ 1)(d+ π1) + π1π2]}

(π1 + d)2(π1 + d+ 1)(π2 + π3)2(π2 + π3 + 1)

The covariance can be calculated as:

cov(P1, P2) =
π1π2d

(π1 + d)(π1 + d+ 1)(π2 + π3)
− π1π2d

(π1 + d)2(π2 + π3)

The covariance will be negative if

π1π2d

(π1 + d)(π1 + d+ 1)(π2 + π3)
<

π1π2d

(π1 + d)2(π2 + π3)

⇐⇒ (π1 + d)(π1 + d+ 1)(π2 + π3) > (π1 + d)2(π2 + π3)

⇐⇒ π1 + d+ 1 > π1 + d

⇐⇒ 1 > 0

and since this always holds, the correlation between P1 and P2 will always be negative. Figure

3.1 plots the correlation for various values of d where π1 = π2 = π3 = 2. The correlation tends

to 0 for larger values of d, but remains negative, as per the derivation above.

 
 
 



CHAPTER 3. CONNOR AND MOSIMANN BIVARIATE BETA PRIOR 49

Figure 3.1: Connor and Mosimann Bivariate Beta Distribution: Correlation

Note that for the bivariate case, the Connor and Mosimann bivariate beta distribution only allows

for negative correlation. For more than 2 variables, the generalised covariance structure does allow

for positive correlation, see Connor and Mosimann (1969), and Wong (1998).

3.1.5 Shape Analysis

The parameters of the prior distribution can be estimated from historical data using maximum

likelihood estimation, or determined from prior knowledge or expert judgement, see O’ Hagan and

Forster (2004). The examples that follow will study the effect of d on the shape and concentration

of the distribution. The reference case considered is where π1 = π2 = π3 = 2 and d = 4.

Figure 3.2 shows that if π1 is decreased and π2, π3 and d remain constant, the distribution shifts

towards the marginal distribution of P2. If π1 is increased and π2, π3 and d remain constant, the

distribution shifts towards smaller values of P2 along the line p1 + p2 = 1. This behaviour is

exactly the same observed in Figure 2.1. This is not surprising since d = π2 + π3, which means
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that for this specific set of parameters the Connor and Mosimann bivariate beta distribution is

actually the bivariate beta type I distribution.

Figure 3.2: Connor and Mosimann Bivariate Beta Distribution: Changing π1

Figure 3.3 shows that if π2 is decreased and π1, π3 and d remain constant, the distribution shifts

towards the marginal distribution of P1 on the left axis. If π2 is increased and π1, π2 and d remain

constant, the distribution shifts towards larger values of P2 along the line p1 + p2 = 1. Whilst the

direction of the shift is the same as observed in Figure 2.2 for the bivariate beta type I distribution,

 
 
 



CHAPTER 3. CONNOR AND MOSIMANN BIVARIATE BETA PRIOR 51

the shift is not as pronounced. It appears as if the inclusion of the parameter d dampens the

severity of the shift.

Figure 3.3: Connor and Mosimann Bivariate Beta Distribution: Changing π2

Figure 3.4 shows that if π3 is decreased and π1, π2 and d remain constant, the concentration shifts

towards the line p1 + p2 = 1. If π3 is increased and π1, π2 and d remain constant, the distribution

shifts towards small values of P1 and P2. Again, the direction of the shifts is the same as observed
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in Figure 2.3 for the bivariate beta type I distribution, but the magnitude of this shift is much

smaller. This confirms that the inclusion of the parameter d dampens the severity of the shift.

Figure 3.4: Connor and Mosimann Bivariate Beta Distribution: Changing π3

Figure 3.5 shows that if d is decreased, and π1, π2 and π3 remain constant, the distribution shifts

towards smaller values of P2 along the line p1 +p2 = 1. If d is increased and π1, π2 and π3 remain

constant, the distribution shifts towards the marginal distribution of P2.
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Figure 3.5: Connor and Mosimann Bivariate Beta Distribution: Changing d

(a)

 
 
 



CHAPTER 3. CONNOR AND MOSIMANN BIVARIATE BETA PRIOR 54

3.2 Bayesian Estimation of Shannon Entropy

3.2.1 Derivation

Theorem 3.1

The posterior distribution for the multinomial likelihood in (1.3) and the Connor and Mosimann

bivariate beta distribution in (3.1) is given by

f(p1, p2|x) = K

∞∑
r=0

 d− π2 − π3

r

 (−1)rpπ1+x1+r−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1 (3.10)

where K = Γ(π2+x2+π3+x3)Γ(π1+x1+x2+x3+d)
Γ(π1+x1)Γ(π2+x2)Γ(π3+x3)Γ(x2+x3+d)

is the normalising coefficient, 0 < pi < 1 for

i = 1, 2, 0 < p1 + p2 < 1 and π1, π2, π3, d > 0.

Proof

Using the binomially expanded form of the Connor and Mosimann bivariate beta distribution given

in (3.3), the numerator of the posterior distribution is given by

f(x|p1, p2)f(p1, p2)

=
n!

x1!x2!x3!

Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)

×
∞∑
r=0

 d− π2 − π3

r

 (−1)rpπ1+x1+r−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1 (3.11)
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The denominator of the posterior distribution is given by

ˆ ˆ
f(x|p1, p2)f(p1, p2)dp1dp2

=
n!

x1!x2!x3!

Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)

∞∑
r=0

 d− π2 − π3

r

 (−1)r

×
ˆ 1

0

ˆ 1−p2

0

pπ1+x1+r−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2 (3.12)

=
n!

x1!x2!x3!

Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)

×
∞∑
r=0

 d− π2 − π3

r

 (−1)rB(π1 + x1 + r, π2 + x2, π3 + x3) (3.13)

since the integral in (3.12) is proportional to a BBetaI(π1 +x1 + r, π2 +x2, π3 +x3) distribution.

The summation in (3.13) can be simplified to

∞∑
r=0

 d− π2 − π3

r

 (−1)rB(π1 + x1 + r, π2 + x2, π3 + x3)

=
∞∑
r=0

 d− π2 − π3

r

 (−1)r
Γ(π1 + x1 + r)Γ(π2 + x2)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r)

= Γ(π2 + x2)Γ(π3 + x3)
∞∑
r=0

(−1)2r

r!
(π2 + π3 − d)r

Γ(π1 + x1 + r)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r)
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by using relation (B.7). Then

Γ(π2 + x2)Γ(π3 + x3)
∞∑
r=0

(−1)2r

r!
(π2 + π3 − d)r

Γ(π1 + x1 + r)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r)

=
Γ(π2 + x2)Γ(π3 + x3)Γ(π1 + x1)

Γ(π1 + x1 + π2 + x2 + π3 + x3)

×
∞∑
r=0

1

r!
(π2 + π3 − d)r

Γ(π1 + x1 + r)Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π1 + x1 + π2 + x2 + π3 + x3 + r)

=
Γ(π2 + x2)Γ(π3 + x3)Γ(π1 + x1)

Γ(π1 + x1 + π2 + x2 + π3 + x3)

∞∑
r=0

1

r!

(π2 + π3 − d)r(π1 + x1)r
(π1 + x1 + π2 + x2 + π3 + x3)r

=
Γ(π2 + x2)Γ(π3 + x3)Γ(π1 + x1)

Γ(π1 + x1 + π2 + x2 + π3 + x3)

× 2F1(π2 + π3 − d, π1 + x1; π1 + x1 + π2 + x2 + π3 + x3; 1) (3.14)

where (3.14) is obtained by using the definitions of the Pochhammer coefficient (Appendix B,

Definition 3) and Gauss hypergeometric function (Appendix B, Definition 4) respectively. By

using relation (B.8), (3.14) simplifies to

Γ(π2 + x2)Γ(π3 + x3)Γ(π1 + x1)

Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3)Γ(n2 + x3 + d)

Γ(π1 + x1 + x2 + x3 + d)Γ(π2 + x2 + π3 + x3 + d)

=
Γ(π2 + x2)Γ(π3 + x3)Γ(π1 + x1)Γ(x2 + x3 + d)

Γ(π2 + x2 + π3 + x3)Γ(π1 + x1 + x2 + x3 + d)
(3.15)

and combining (3.13) and (3.15) gives

ˆ ˆ
f(x|p1, p2)f(p1, p2)dp1dp2

=
n!

x1!x2!x3!

Γ(π1 + d)Γ(π2 + π3)

Γ(π1)Γ(π2)Γ(π3)Γ(d)

×Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)Γ(x2 + x3 + d)

Γ(π2 + x2 + π3 + x3)Γ(π1 + x1 + x2 + x3 + d)
(3.16)
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Combining the expressions for the numerator, (3.11), and denominator, (3.16), the posterior

distribution is given by:

f(p1, p2|x) = K
∞∑
r=0

 d− π2 − π3

r

 (−1)rpπ1+x1+r−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1

where K = Γ(π2+x2+π3+x3)Γ(π1+x1+x2+x3+d)
Γ(π1+x1)Γ(π2+x2)Γ(π3+x3)Γ(x2+x3+d)

. �

Since the form of the posterior distribution is not the same as that of the prior distribution, it

follows that the Connor and Mosimann bivariate beta distribution is not a natural conjugate for

the multinomial distribution.
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Theorem 3.2

The Bayesian estimator of the Shannon entropy under the squared error loss function using the

Connor and Mosimann bivariate beta distribution as a prior for the multinomial distribution in

(1.3) is given by:

ĤCM
3 = −K

∞∑
r=0

(
d− π2 − π3

r

)
(−1)r

Γ(δ1)Γ(δ2)Γ(δ3)

Γ(δ1 + δ2 + δ3 + 1)

×
3∑
i=1

δi[ψ(δi + 1)− ψ(
3∑
j=1

δj + 1)] (3.17)

where

K =
Γ(π2 + x2 + π3 + x3)Γ(π1 + x1 + x2 + x3 + d)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)Γ(x2 + x3 + d)

and

δ1 = π1 + x1 + r

δ2 = π2 + x2

δ3 = π3 + x3

are the normalising coefficient and parameters of the posterior distribution in (3.10) respectively.

Proof

From (1.1) the Shannon entropy for the Connor and Mosimann bivariate beta distribution is

denoted by

HCM
3 = −

3∑
i=1

pi ln pi

The Bayesian estimator of the Shannon entropy under squared error loss is defined as the expected

value of the Shannon entropy with respect to the posterior distribution obtained in (3.10). That
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is,

ĤCM
3 = Ef(p1,p2|x)[H

CM
3 ]

= −K
ˆ 1

0

ˆ 1−p2

0

3∑
i=1

pi ln pi

∞∑
r=0

 d− π2 − π3

r

 (−1)rpπ1+x1+r−1
1 pπ2+x2−1

2

×(1− p1 − p2)π3+x3−1dp1dp2

= −K
3∑
i=1

Ii

where

K =
Γ(π2 + x2 + π3 + x3)Γ(π1 + x1 + x2 + x3 + d)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)Γ(x2 + x3 + d)

Ii =

ˆ 1

0

ˆ 1−p2

0

pi ln pi

×
∞∑
r=0

 d− π2 − π3

r

 (−1)rpπ1+x1+r−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2

for i = 1, 2, and

I3 =

ˆ 1

0

ˆ 1−p2

0

(1− p1 − p2) ln(1− p1 − p2)

×
∞∑
r=0

 d− π2 − π3

r

 (−1)rpπ1+x1+r−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2
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The simplification of Ii will only be shown for I1, but follows similarly for I2 and I3.

I1 =

ˆ 1

0

ˆ 1−p2

0

p1 ln p1

×
∞∑
r=0

 d− π2 − π3

r

 (−1)rpπ1+x1+r−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2

=
∞∑
r=0

 d− π2 − π3

r

 (−1)r
ˆ 1

0

ˆ 1−p2

0

(ln p1)pπ1+x1+r
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2

=
∞∑
r=0

 d− π2 − π3

r

 (−1)r
ˆ 1

0

ˆ 1−p2

0

[
∂

∂π1

pπ1+x1+r
1 ]pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2

since d
dx
ax = ax ln a. Changing the order of integration and differentiation:

I1 =
∞∑
r=0

 d− π2 − π3

r

 (−1)r

× ∂

∂π1

ˆ 1

0

ˆ 1−p2

0

pπ1+x1+r
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1dp1dp2 (3.18)

=
∞∑
r=0

 d− π2 − π3

r

 (−1)r
∂

∂π1

B(π1 + x1 + r + 1, π2 + x2, π3 + x3)

since the integral in (3.18) is proportional to a BBetaI(π1+x1+r+1, π2+x2, π3+x3) distribution.

Using the product and chain rules for differentiation:

I1 =
∞∑
r=0

 d− π2 − π3

r

 (−1)rB(π1 + x1 + r + 1, π2 + x2, π3 + x3)

×[ψ(π1 + x1 + r + 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + 1)]
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where ψ(x) denotes the polygamma function. Similarly,

I2 =
∞∑
r=0

 d− π2 − π3

r

 (−1)rB(π1 + x1 + r, π2 + x2 + 1, π3 + x3)

×[ψ(π2 + x2 + 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + 1)]

and

I3 =
∞∑
r=0

 d− π2 − π3

r

 (−1)rB(π1 + x1 + r, π2 + x2, π3 + x3 + 1)

×[ψ(π3 + x3 + 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + 1)]

Adding I1, I2 and I3 together

3∑
i=1

Ii

=
∞∑
r=0

 d− π2 − π3

r

 (−1)r
Γ(π1 + x1 + r)Γ(π2 + x2)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)

×[(π1 + x1 + r)ψ(π1 + x1 + r + 1) + (π2 + x2)ψ(π2 + x2 + 1) + (π3 + x3)ψ(π3 + x3 + 1)

−(π1 + x1 + π2 + x2 + π3 + x3 + r)ψ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)]

For simplification, let

δ1 = π1 + x1 + r

δ2 = π2 + x2

δ3 = π3 + x3

The Bayesian estimator of the Shannon entropy under squared error loss using the Connor and
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Mosimann bivariate beta distribution as a prior is then written as:

ĤCM
3 = −K

∞∑
r=0

(
d− π2 − π3

r

)
(−1)r

Γ(δ1)Γ(δ2)Γ(δ3)

Γ(δ1 + δ2 + δ3 + 1)

3∑
i=1

δi[ψ(δi + 1)− ψ(
3∑
j=1

δj + 1)]

where K is the normalising coefficient of the posterior distribution in (3.10). �

3.2.2 Numerical Analysis

Figure 3.6 compares the Shannon entropy values obtained when using the Bayesian estimator

derived in (3.17), for each of the parameter combinations discussed in the shape analysis. The

multinomial frequencies were assumed to be x1 = 1, x2 = 2, x3 = 10.
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Figure 3.6: Bayesian Estimates of Shannon Entropy: Connor and Mosiman Bivariate Beta Prior

Note that, for the first chart where the effect of changing π1 is analysed, if d = 4 the Connor

and Mosimann bivariate beta distribution reduces to the bivariate beta type I distribution and we

have that ĤCM
3 = ĤI

3 . That is, if π1 = 1,π2 = π3 = 2 and d = 4, then ĤCM
3 ≈ 0.8 (reading off

the chart). Similarly, if π1 = 10,π2 = π3 = 2 and d = 4, then ĤCM
3 ≈ 0.97, see Table 2.2.

In the first two charts it can be seen that if π1 and π2 are decreased respectively, the absolute

level of ĤCM
3 decreases, indicating less uncertainty. The magnitude of the decrease is not the

same, and is caused by the asymmetry of the Connor and Mosiman bivariate beta distribution.

Similarly, increasing π1 and π2 respectively increases the absolute level of ĤCM
3 , indicating more

uncertainty. The magnitude and shape of the change is not the same.
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Interestingly, if π1 is increased, the Bayesian estimate of Shannon entropy is not monotonic in

d; but in general larger values of d are associated with lower values of ĤCM
3 , indicating less

uncertainty. It is possible that this phenomenon is linked to the asymmetry of the Connor and

Mosiman bivariate beta distribution.

The results of the shape analyses in Figures 3.2 and 3.3 indicate that larger values of π1 and π2

respectively are associated with more concentration, indicating less uncertainty. Similarly, lower

values of π1 and π2 are associated with lower concentration, indicating more uncertainty. These

results appear to be counterintuitive, given the results observed above for ĤCM
3 .

Conversely, if π3 is decreased this leads to an increase in ĤCM
3 , indicating more uncertainty; and

if π3 is increased this leads to a decrease in ĤCM
3 , indicating less uncertainty. This is consistent

with the result in Figure 3.4, where a smaller value of π3 indicated less concentration (i.e. more

uncertainty) and a larger value of π3 indicated more concentration (i.e. less uncertainty).

The difference between these intuitive and counterintuitive results observed for parameters π1

and π2 may be disturbing at first, but can be explained by the location of the distribution.

In the first two cases, changing π1 or π2 leads to distributions that are either tending to the

marginal distribution of P2 or P1 respectively, or are tending towards a specific point along the

line p1 +p2 = 1. As the concentration in the distribution remains closer to small values of P1 and

P2, ĤCM
3 stays lower, but as soon as the concentration moves away from these small values to

some point along the line p1 + p2 = 1 the uncertainty increases. This suggests that the Bayesian

estimate of Shannon entropy may contain information of not only concentration, but of location

as well.

Again, it should be kept in mind that since ĤCM
3 is the Bayesian estimate of the Shannon entropy,

it also contains information about the likelihood function. Therefore, the multinomial frequencies

will also have an effect on the behaviour of ĤCM
3 .

 
 
 



Chapter 4

Bivariate Beta Type III Prior

4.1 The Bivariate Beta type III Prior

The bivariate beta type III distribution is a simple extension of the bivariate beta type I distribution,

where the extension enables the distribution to allow for both negative and positive correlation

between P1 and P2. Cardeño et al. (2005) study the univariate properties of this distribution in

detail.

4.1.1 Joint Density Function

Consider the bivariate beta type III distribution, defined in Ehlers et al. (2009), denoted by

BBetaIII(π1, π2, π3, c) and with density function:

f(p1, p2) =
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
cπ1+π2pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1

×[1 + (c− 1)p1 + (c− 1)p2]−(π1+π2+π3) (4.1)

where 0 < pi < 1, for i = 1, 2, 0 < p1 + p2 < 1, and π1, π2, π3, c > 0 .

If c = 1, the last factor in the kernel above reduces to 1, therefore reducing the bivariate beta

type III distribution to a bivariate beta type I distribution.

65
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It is shown in Ehlers et al. (2009) that the inclusion of the parameter c allows the density of the

distribution to shift between the larger and smaller values of P1 and P2, making it a more flexible

distribution than the bivariate beta type I distribution. In addition, specific choices of c allows for

positive correlation between P1 and P2, which is not the case with the bivariate beta type I or the

Connor and Mosimann bivariate beta distribution.

4.1.2 Univariate Properties

The marginal density functions of P1 and P2 can be found by integrating f(p1, p2) over P2 and

P1 respectively. Since f(p1, p2) is symmetric, the marginal density functions will be of the same

form. The derivation of the marginal distribution is only shown for P1, but follows similarly for

P2.

f(p1) =

ˆ 1−p1

0

{ Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
cπ1+π2pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1

×[1 + (c− 1)p1 + (c− 1)p2]−(π1+π2+π3)}dp2

=
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
cπ1+π2pπ1−1

1

×
ˆ 1−p1

0

pπ2−1
2 (1− p1 − p2)π3−1 [1 + (c− 1)p1 + (c− 1)p2]−(π1+π2+π3)dp2 (4.2)

Using equation (B.2), the integral in (4.2) simplifies to

(1−p1)π2+π3−1[1+(c−1)p1]−(π1+π2+π3) Γ(π2)Γ(π3)

Γ(π2 + π3)
2F1(π2, π1+π2+π3; π2+π3;−(c− 1)(1− p1)

1 + (c− 1)p1

)

Then applying relation (B.6),

2F1(π2, π1 + π2 + π3; π2 + π3;−(c− 1)(1− p1)

1 + (c− 1)p1

)

= (
c

1 + (c− 1)p1

)−(π1+π2+π3)
2F1(π1 + π2 + π3, π3; π2 + π3;

(c− 1)(1− p1)

c
)
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and the marginal density function of P1 is given by

f(p1) =
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2 + π3)
c−π3pπ1−1

1 (1− p1)π2+π3−1
2F1[π3, π1 + π2 + π3; π2 + π3;

c− 1

c
(1− p1)]

for 0 < p1 < 1 and π1, π2, π3, c > 0. Similarly,

f(p2) =
Γ(π1 + π2 + π3)

Γ(π2)Γ(π1 + π3)
c−π3pπ2−1

2 (1− p2)π1+π3−1
2F1[π3, π1 + π2 + π3; π1 + π3;

c− 1

c
(1− p2)]

for 0 < p2 < 1 and π1, π2, π3, c > 0.

4.1.3 Methods of Derivation

The bivariate beta type III distribution is derived using a transformation of three independently

distributed χ2 variables and the trivariate reduction method, and is briefly discussed in Ehlers et

al. (2009).

Let Si ∼ χ2(2πi) for i = 1, 2, 3 be three independently distributed χ2 variables. That is,

f(si) =
1

2πiΓ(πi)
exp(−si

2
)sπi−1
i

for si > 0. The joint density function of these variables is given by

f(s1, s2, s3) =
3∏
i=1

f(si)

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

exp(−1

2

3∑
i=1

si)
3∏
i=1

sπi−1
i

 
 
 



CHAPTER 4. BIVARIATE BETA TYPE III PRIOR 68

Consider the transformation Pi = Si
S1+S2+cS3

for i = 1, 2 and P3 = S1 + S2 + cS3. Then

S1 = P1P3

S2 = P2P3

S3 =
1

c
P3(1− P1 − P2)

The Jacobian for this transformation is given by

J = J((s1, s2, s3)→ (p1, p2, p3))

=

∣∣∣∣∣∣∣∣∣∣
∂s1
∂p1

∂s1
∂p2

∂s1
∂p3

∂s2
∂p1

∂s2
∂p2

∂s2
∂p3

∂s3
∂p1

∂s3
∂p2

∂s3
∂p3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
p3 0 p1

0 p3 p2

−p3
c
−p3

c
1−p1−p2

c

∣∣∣∣∣∣∣∣∣∣
= p3[p3

(1− p1 − p2)

c
+ p2

p3

c
] + p1

p2
3

c

=
p2

3

c

The joint density function of P1, P2 and P3 is given by

f(p1, p2, p3) = f(s1, s2, s3)|J |

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

(p1p3)π1−1(p2p3)π2−1[
p3

c
(1− p1 − p2)]π3−1

× exp(−1

2
[p1p3 + p2p3 +

p3

c
(1− p1 − p2)])× p2

3

c

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

(
1

c
)π3pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1p

∑3
i=1 πi−1

3

× exp(−p3

2c
[1 + (c− 1)p1 + (c− 1)p2])
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Integrating over P3 the joint density function of P1 and P2 is obtained as

f(p1, p2) =

ˆ ∞
0

f(p1, p2, p3)dp3

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

(
1

c
)π3pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1

×
ˆ ∞

0

p
∑3
i=1 πi−1

3 exp(−p3

2c
[1 + (c− 1)p1 + (c− 1)p2])dp3

The integral above can be written as

ˆ ∞
0

p
∑3
i=1 πi−1

3 exp(−p3

2c
[1 + (c− 1)p1 + (c− 1)p2])dp3

=
Γ(
∑3

i=1 πi)

( 1
2c

[1 + (c− 1)p1 + (c− 1)p2])
∑3
i=1 πi

×
ˆ ∞

0

( 1
2c

[1 + (c− 1)p1 + (c− 1)p2])
∑3
i=1 πi

Γ(
∑3

i=1 πi)
p

∑3
i=1 πi−1

3

× exp(−p3

2c
[1 + (c− 1)p1 + (c− 1)p2])dp3 (4.3)

=
Γ(
∑3

i=1 πi)

( 1
2c

[1 + (c− 1)p1 + (c− 1)p2])
∑3
i=1 πi

where the integral in (4.3) is 1 since it is the total probability of a Gamma(
∑3

i=1 πi,
1
2c

[1 + (c−

1)p1 + (c− 1)p2]) distribution. Then

f(p1, p2)

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

(
1

c
)π3pπ1−1

1 pπ2−1
2 (1− p1 − p2)π3−1 Γ(

∑3
i=1 πi)

( 1
2c

[1 + (c− 1)p1 + (c− 1)p2])
∑3
i=1 πi

=
Γ(
∑3

i=1 πi)∏3
i=1 Γ(πi)

cπ1+π2pπ1−1
1 pπ2−1

2 (1− p1 − p2)π3−1[1 + (c− 1)p1 + (c− 1)p2])−
∑3
i=1 πi

where 0 < pi < 1 for i = 1, 2, 0 < p1 + p2 < 1, and π1, π2, π3, c > 0. It follows that P1 and P2

have the joint density function of a BBetaIII(π1, π2, π3, c), as defined in (4.1).
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4.1.4 Correlation

The product moments of P1 and P2 are derived as:

E[P i
1P

j
2 ]

=

ˆ 1

0

ˆ 1−p2

0

pi1p
j
2f(p1, p2)dp1dp2

=
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
c(π1+π2)

×
ˆ 1

0

ˆ 1−p2

0

pπ1+i−1
1 pπ2+j−1

2 (1− p1 − p2)π3−1[1 + (c− 1)p1 + (c− 1)p2]−(π1+π2+π3)dp1dp2

Using equation (B.4), we get:

E[P i
1P

j
2 ] =

Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
c(π1+π2) Γ(π1 + i)Γ(π2 + j)Γ(π3)

Γ(π1 + π2 + π3 + i+ j)

×F1(π1 + π2 + π3, π1 + i, π2 + j, π1 + π2 + π3 + i+ j; 1− c, 1− c)

where F1(.) denotes the hypergeometric function of two variables (see Appendix B, Definition 5).

Using Relation 5 in Appendix B allows this to simplify to

E[P i
1P

j
2 ] =

Γ(π1 + i)Γ(π2 + j)Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π1 + π2 + π3 + i+ j)
c(π1+π2)

× 2F1(π1 + π2 + π3, π1 + π2 + i+ j; π1 + π2 + π3 + i+ j; 1− c)

Figure 4.1 shows that by keeping π1, π2 and π3 constant and letting c vary, the correlation between

P1 and P2 can be positive and negative for the bivariate beta type III distribution, dependening

on the value of c.
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Figure 4.1: Bivariate Beta Type III Distribution: Correlation
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4.1.5 Shape Analysis

The parameters of the prior distribution can be estimated from historical data using maximum

likelihood estimation, or determined from prior knowledge or expert judgement, see O’ Hagan and

Forster (2004).

Since c = 1 reduces the bivariate beta type III distribution in (4.1) to the bivariate beta type I

distribution in (2.1), the results for the shape analysis of π1, π2 and π3 are as presented in Section

2.1.5 and not repeated here.

Figure 4.2 shows the effect of c on the shape and concentration of the bivariate beta type III

distribution. The reference case considered is where π1 = π2 = π3 = 2 and c = 1; this is in fact

the bivariate beta type I distribution. If c is decreased, the distribution shifts towards the line

p1 + p2 = 1. If c is increased, the distribution shifts towards small values of P1 and P2 in the

corner.
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Figure 4.2: Bivariate Beta Type III Distribution: Changing c
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4.2 Bayesian Estimation of the Shannon Entropy

4.2.1 Derivation

Theorem 4.1

The posterior distribution for the multinomial likelihood in (1.3) and bivariate beta type III dis-

tribution in (4.1) is given by

f(p1, p2|x) =
Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)
c(π1+π2+π3)

×[ 2F1(π1 + π2 + π3, π3 + x3; π1 + x1 + π2 + x2 + π3 + x3;
c− 1

c
)]−1

×
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)r

×pπ1+x1+r−s−1
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1 (4.4)

where 0 < pi < 1 for i = 1, 2, 0 < p1 + p2 < 1, π1, π2, π3, c > 0 and 2F1(·) is the Gauss

hypergeometric function (see Appendix B, Definition 4).

Proof

Using the binomial expansion, the last factor in (4.1) is

[1 + (c− 1)p1 + (c− 1)p2]−(π1+π2+π3)

= [1− (1− c)p1 − (1− c)p2]−(π1+π2+π3)

=
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)rpr−s1 ps2 (4.5)

which will converge if |(c− 1)p1 + (c− 1)p2| < 1.
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Using (4.5), the prior distribution can be written as

f(p1, p2)

=
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
cπ1+π2

×
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)rpπ1+r−s−1

1 pπ2+s−1
2 (1− p1 − p2)π3−1 (4.6)

This alternative form of the bivariate beta distribution is sometimes referred to as a mixture of

bivariate beta type I distributions, see Cardeño et al. (2005). The numerator of the posterior

distribution is given by

f(x|p1, p2)f(p1, p2)

=
n!

x1!x2!x3!

Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
cπ1+π2

×
∞∑
r=0

r∑
s=0

 −(π1 + π2 + π3)

r


 r

s

 (c− 1)r

×pπ1+x1+r−s−1
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1 (4.7)
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The denominator of the posterior distribution is given by

ˆ 1

0

ˆ 1−p2

0

f(x|p1, p2)f(p1, p2)dp1dp2

=
n!

x1!x2!x3!

Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
cπ1+π2

∞∑
r=0

r∑
s=0

 −(π1 + π2 + π3)

r


 r

s

 (c− 1)r

×
ˆ 1

0

ˆ 1−p2

0

pπ1+x1+r−s−1
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2

(4.8)

=
n!

x1!x2!x3!

Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
cπ1+π2

×
∞∑
r=0

r∑
s=0

 −(π1 + π2 + π3)

r


 r

s

 (c− 1)r

×B(π1 + x1 + r − s, π2 + x2 + s, π3 + x3) (4.9)

since the integral in (4.8) corresponds to the total probability of a BBetaI(π1 + x1 + r− s, π2 +

x2 + s, π3 + x3) distribution.
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The summation in (4.9) can be simplified as

∞∑
r=0

r∑
s=0

 −(π1 + π2 + π3)

r


 r

s

 (c− 1)rB(π1 + x1 + r − s, π2 + x2 + s, π3 + x3)

=
∞∑
r=0

 −(π1 + π2 + π3)

r

 (c− 1)r
Γ(π3 + x3)

Γ(π1 + x1 + r + π2 + x2 + π3 + x3)

×
r∑
s=0

 r

s

Γ(π1 + x1 + r − s)Γ(π2 + x2 + s)

=
∞∑
r=0

 −(π1 + π2 + π3)

r

 (c− 1)r
Γ(π3 + x3)

Γ(π1 + x1 + r + π2 + x2 + π3 + x3)

×Γ(π1 + x1)Γ(π2 + x2)Γ(π1 + x1 + π2 + x2 + r)

Γ(π1 + x1 + π2 + x2)

=
Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2)

×
∞∑
r=0

 −(π1 + π2 + π3)

r

 (c− 1)r
Γ(π1 + x1 + π2 + x2 + r)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r)

=
Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2)

Γ(π1 + x1 + π2 + x2)

Γ(π1 + x1 + π2 + x2 + π3 + x3)

× 2F1(π1 + x1 + π2 + x2, π1 + π2 + π3; π1 + x1 + π2 + x2 + π3 + x3; 1− c) (4.10)

Using equation (B.6), (4.10) reduces to

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3)
c−(π1+π2+π3)

2F1(π1+π2+π3, π3+x3; π1+x1+π2+x2+π3+x3;
c− 1

c
)

(4.11)
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Combining (4.9) and (4.11), the denominator is given by

ˆ ˆ
f(x|p1, p2)f(p1, p2)dp1dp2

=
n!

x1!x2!x3!

Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
cπ1+π2

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3)
c−(π1+π2+π3)

× 2F1(π1 + π2 + π3, π3 + x3; π1 + x1 + π2 + x2 + π3 + x3;
c− 1

c
) (4.12)

Using the numerator in (4.7) and the denominator in (4.12), the posterior distribution is given by

f(p1, p2|x)

=
Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)
c(π1+π2+π3)

×[ 2F1(π1 + π2 + π3, π3 + x3; π1 + x1 + π2 + x2 + π3 + x3;
c− 1

c
)]−1

×
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)rpπ1+x1+r−s−1

1 pπ2+x2+s−1
2 (1− p1 − p2)π3+x3−1,

as given in (4.4). �

This posterior distribution is not the same form as the prior distribution, indicating that the

bivariate beta type III distribution is not a natural conjugate for the multinomial distribution given

in (1.3).
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Theorem 4.2

The Bayesian estimator of the Shannon entropy under the squared error loss function using the

bivariate beta type III distribution as prior for the multinomial model in (1.3) is given by:

ĤIII
3 = −K

∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)r

Γ(γ1)Γ(γ2)Γ(γ3)

Γ(γ1 + γ2 + γ3 + 1)

×
3∑
i=1

γi(ψ(γi + 1)− ψ(
3∑
j=1

γj + 1)) (4.13)

where

K =
Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)
c(π1+π2+π3)

×[ 2F1(π1 + π2 + π3, π3 + x3; π1 + x1 + π2 + x2 + π3 + x3;
c− 1

c
)]−1

and

γ1 = π1 + x1 + r − s

γ2 = π2 + x2 + s

γ3 = π3 + x3

are the normalising coefficient and parameters of the posterior distribution in (4.4) respectively.

Proof

From (1.1) the Shannon entropy for the bivariate beta type III distribution is denoted by

HIII
3 = −

3∑
i=1

pi ln pi
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The Bayesian estimator of the Shannon entropy under squared error loss is given by the expected

value with respect to the posterior distribution obtained in (4.4). That is,

ĤIII
3 = Ef(p1,p2|x)[H

III
3 ]

= − Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)
c(π1+π2+π3)

×[ 2F1(π1 + π2 + π3, π3 + x3; π1 + x1 + π2 + x2 + π3 + x3;
c− 1

c
)]−1

×
ˆ 1

0

ˆ 1−p2

0

[p1 ln p1 + p2 ln p2 + (1− p1 − p2) ln(1− p1 − p2)]

×
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)r

×pπ1+x1+r−s−1
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2

= K
3∑
i=1

Ii

where

K =
Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)
c(π1+π2+π3)

×[ 2F1(π1 + π2 + π3, π3 + x3; π1 + x1 + π2 + x2 + π3 + x3;
c− 1

c
)]−1 (4.14)

Ii =

ˆ 1

0

ˆ 1−p2

0

pi ln pi

×
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)rpπ1+x1+r−s−1

1 pπ2+x2+s−1
2 (1− p1 − p2)π3+x3−1dp1dp2
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for i = 1, 2, and

I3 =

ˆ 1

0

ˆ 1−p2

0

(1− p1 − p2) ln(1− p1 − p2)

×
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)rpπ1+x1+r−s−1

1 pπ2+x2+s−1
2 (1− p1 − p2)π3+x3−1dp1dp2

The simplification of Ii will only be shown for I1, but follows similarly for I2 and I3.

I1

=

ˆ 1

0

ˆ 1−p2

0

p1 ln p1

×
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)rpπ1+x1+r−s−1

1 pπ2+x2+s−1
2 (1− p1 − p2)π3+x3−1dp1dp2

=
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)r

×
ˆ 1

0

ˆ 1−p2

0

(ln p1)pπ1+x1+r−s
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2

=
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)r

×
ˆ 1

0

ˆ 1−p2

0

[
∂

∂π1

pπ1+x1+r−s
1 ]pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2

since d
dx
ax = ax ln a. Changing the order of integration and differentiation:

I1 =
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)r

× ∂

∂π1

ˆ 1

0

ˆ 1−p2

0

pπ1+x1+r−s
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2 (4.15)

=
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)r

∂

∂π1

Γ(π1 + x1 + r − s+ 1)Γ(π2 + x2 + s)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r)

The integral in (4.15) is 1 because it corresponds to the total probability of a BBetaI(π1 + x1 +
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r− s+ 1, π2 + x2 + s, π3 + x3) distribution. Using the product and chain rules for differentiation:

I1 =
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)rB(π1 + x1 + r − s+ 1, π2 + x2 + s, π3 + x3)

×[ψ(π1 + x1 + r − s+ 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)]

where ψ(x) denotes the polygamma function. Similarly,

I2 =
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)rB(π1 + x1 + r − s, π2 + x2 + s+ 1, π3 + x3)

×[ψ(π2 + x2 + s+ 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)]

and

I3 =
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)rB(π1 + x1 + r − s, π2 + x2 + s, π3 + x3 + 1)

×[ψ(π3 + x3 + 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)]

Adding I1, I2 and I3 together

3∑
i=1

Ii

=
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)r

Γ(π1 + x1 + r − s)Γ(π2 + x2 + s)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)

×[(π1 + x1 + r − s)ψ(π1 + x1 + r − s+ 1) + (π2 + x2 + s)ψ(π2 + x2 + s+ 1)

+(π3 + x3)ψ(π3 + x3 + 1)

−(π1 + x1 + π2 + x2 + π3 + x3 + r)ψ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)]
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For simplification, let

γ1 = π1 + x1 + r − s

γ2 = π2 + x2 + s

γ3 = π3 + x3

The Bayesian estimator of the Shannon entropy under squared error loss using the bivariate beta

type III distribution as prior is then written as:

ĤIII
3 = −K

∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(c− 1)r

Γ(γ1)Γ(γ2)Γ(γ3)

Γ(γ1 + γ2 + γ3 + 1)

×
3∑
i=1

γi(ψ(γi + 1)− ψ(
3∑
j=1

γj + 1))

where K is the normalising coefficient in (4.14). �

4.2.2 Numerical Analysis

Figure 4.3 plots the Bayesian estimates of Shannon entropy values for various values of c, with

π1 = π2 = π3 = 2 and multinomial frequencies x1 = 1, x2 = 2, x3 = 10.
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Figure 4.3: Bayesian Estimates of Shannon Entropy: Bivariate Beta Type III Prior

For larger values of c the Bayesian estimate of Shannon entropy decreases, indicating less uncer-

tainty. This is consistent with the result from the shape analysis, where the concentration of the

distribution around small values of P1 and P2 increases when c is increased, see Figure 4.2.

Recall from Section 4.1.4 that larger values of c also allowed for positive correlation. This suggests

that in order to obtain a bivariate beta type III distribution that has positive correlation between

P1 and P2, and not much uncertainty, c should be chosen to be large.

 
 
 



Chapter 5

Extended Bivariate Beta Type I Prior

5.1 The Extended Bivariate Beta Bype I Prior

5.1.1 Joint Density

Consider as a prior for the multinomial model in (1.3) the extended bivariate beta type I distribution

studied by Ehlers and Bekker (2010), denoted as BBetaE(π1, π2, π3, β1, β2, c) and with density

function:

f(p1, p2) =
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
β−π1

1 β−π2
2 cπ1+π2

×pπ1−1
1 pπ2−1

2 (1− p1 − p2)π3−1[1− (1− c

β1

)p1 − (1− c

β2

)p2]−(π1+π2+π3)(5.1)

where 0 < p1 + p2 < 1, 0 < pi < 1, for i = 1, 2 and π1, π2, π3, β1, β2, c > 0. The inclusion of the

additional parameters β1 , β2 and c add to the flexibility of the distribution, and also increases

the range over which correlation between P1 and P2 can be positive.

If β1 = β2 = 1, then (5.1) reduces to the BBetaIII(π1, π2, π3, c) distribution in (4.1). In addition,

if c = 1, (5.1) reduces to the BBetaI(π1, π2, π3) distribution in (2.1).

85
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5.1.2 Univariate Density

The univariate density functions of P1 and P2 can be found by integrating f(p1, p2) over P2 and

P1 respectively. Since f(p1, p2) is symmetric, the univariate density functions will be of the same

form. Only the derivation of the marginal distribution of P1 is shown here, but it follows similarly

P2.

f(p1)

=
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
β−π1

1 β−π2
2 cπ1+π2pπ1−1

1

×
ˆ 1−p1

0

pπ2−1
2 (1− p1 − p2)π2−1[1− (1− c

β1

)p1 − (1− c

β2

)p2]−(π1+π2+π3)dp2 (5.2)

Using equation (B.2), the integral in (5.2) simplifies to

(1−p1)π2+π3−1[1−(1− c

β1

)p1]−(π1+π2+π3) Γ(π2)Γ(π3)

Γ(π2 + π3)
2F1(π2, π1+π2+π3; π2+π3,

(1− c
β2

)(1− p1)

1− (1− c
β1

)p1

)

Let z =
(1− c

β2
)(1−p1)

1−(1− c
β1

)p1
, then it follows from relation (B.6) that

2F1(π2, π1 + π2 + π3; π2 + π3,
(1− c

β2
)(1− p1)

1− (1− c
β1

)p1

)

=
c

β2

1− (1− β2

β1
)p1

1− (1− c
β1

)p1
2F1(π1 + π2 + π3, π3; π2 + π3;

β2

c

(1− c
β2

)(1− p1)

1− (1− β2

β1
)p1

)

Combining these results, the marginal density function of P1 is given by

f(p1) =
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2 + π3)
β−π1

1 βπ1+π3
2 c−π3pπ1−1

1 (1− p1)π2+π3−1[1− (1− β2

β1

)p1]−(π1+π2+π3)

× 2F1(π1 + π2 + π3, π3; π2 + π3;
(1− β2

c
)(1− p1)

1− (1− β2

β1
)p1

)

 
 
 



CHAPTER 5. EXTENDED BIVARIATE BETA TYPE I PRIOR 87

where 0 < p1 < 1 and π1, π2, π3, β1, β2, c > 0. Similarly,

f(p2) =
Γ(π1 + π2 + π3)

Γ(π2)Γ(π1 + π3)
βπ2+π3

1 β−π2
2 c−π2pπ2−1

2 (1− p2)π1+π3−1[1− (1− β1

β2

)p2]−(π1+π2+π3)

× 2F1(π1 + π2 + π3, π3; π1 + π3;
(1− β1

c
)(1− p2)

1− (1− β1

β2
)p2

)

where 0 < p2 < 1 and π1, π2, π3, β1, β2, c > 0.

5.1.3 Methods of Derivation

The extended bivariate beta type I distribution is derived using a transformation of three inde-

pendently distributed χ2 variables and the trivariate reduction method.

Let Si ∼ χ2(2πi) for i = 1, 2, 3 be three independently distributed χ2 variables. That is,

f(si) =
1

2πiΓ(πi)
exp(−si

2
)sπi−1
i

for si > 0. The joint density function of these variables is given by

f(s1, s2, s3) =
3∏
i=1

f(si)

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

exp(−1

2

3∑
i=1

si)
3∏
i=1

sπi−1
i

Consider the transformation Pi = βiSi
β1S1+β2S2+cS3

for i = 1, 2 and P3 = β1S1 + β2S2 + cS3. Then

the inverse transformation is

S1 =
1

β1

P1P3

S2 =
1

β2

P2P3

S3 =
1

c
P3(1− P1 − P2)
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The Jacobian for this transformation is given by

J = J((s1, s2, s3)→ (p1, p2, p3))

=

∣∣∣∣∣∣∣∣∣∣
∂s1
∂p1

∂s1
∂p2

∂s1
∂p3

∂s2
∂p1

∂s2
∂p2

∂s2
∂p3

∂s3
∂p1

∂s3
∂p2

∂s3
∂p3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
p3
β1

0 p1
β1

0 p3
β2

p2
β2

−p3
c
−p3

c
1−p1−p2

c

∣∣∣∣∣∣∣∣∣∣
=

p3

β1

[
p3

β2

(1− p1 − p2)

c
+
p2

β2

p3

c
] +

p1

β1

p2
3

β2c

=
p2

3

β1β2c

The joint density function of P1, P2 and P3 is given by

f(p1, p2, p3) = f(s1, s2, s3)|J |

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

(
p1p3

β1

)π1−1(
p2p3

β2

)π2−1(
p3(1− p1 − p2)

c
)π3−1

× exp[−1

2
(
p1p3

β1

+
p2p3

β2

+
p3(1− p1 − p2)

c
)]× p2

3

β1β2c

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

β−π1
1 β−π2

2 c−π3pπ1−1
1 pπ2−1

2 (1− p1 − p2)π3−1p
∑3
i=1 πi−1

3

× exp[− 1

2β1β2c
(β2cp1p3 + β1cp2p3 + β1β2p3(1− p1 − p2))]

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

β−π1
1 β−π2

2 c−π3pπ1−1
1 pπ2−1

2 (1− p1 − p2)π3−1p
∑3
i=1 πi−1

3

× exp[−p3

2c
(1 + (

c

β1

− 1)p1 + (
c

β2

− 1)p2)]

 
 
 



CHAPTER 5. EXTENDED BIVARIATE BETA TYPE I PRIOR 89

The joint density function of P1 and P2 is obtained when integrating f(p1, p2, p3) over P3.

f(p1, p2) =

ˆ ∞
0

f(p1, p2, p3)dp3

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

β−π1
1 β−π2

2 c−π3pπ1−1
1 pπ2−1

2 (1− p1 − p2)π3−1

×
ˆ ∞

0

p
∑3
i=1 πi−1

3 exp[−p3

2c
(1 + (

c

β1

− 1)p1 + (
c

β2

− 1)p2)]dp3 (5.3)

The integral in (5.3) can be written as

ˆ ∞
0

p
∑3
i=1 πi−1

3 exp[− 1

2c
p3(1 + (

c

β1

− 1)p1 + (
c

β2

− 1)p2)]dp3

=
Γ(
∑3

i=1 πi)

{ 1
2c

[1 + ( c
β1
− 1)p1 + ( c

β2
− 1)p2]}

∑3
i=1 πi

×
ˆ ∞

0

{ 1
2c

[1 + ( c
β1
− 1)p1 + ( c

β2
− 1)p2]}

∑3
i=1 πi

Γ(
∑3

i=1 πi)
p

∑3
i=1 πi−1

3

× exp[−p3

2c
(1 + (

c

β1

− 1)p1 + (
c

β2

− 1)p2)]dp3 (5.4)

=
Γ(
∑3

i=1 πi)

{ 1
2c

[1 + ( c
β1
− 1)p1 + ( c

β2
− 1)p2]}

∑3
i=1 πi

where the integral in (5.4) is 1 since it corresponds to the total probability of aGamma(
∑3

i=1 πi,
1
2c

[1+

( c
β1
− 1)p1 + ( c

β2
− 1)p2]) distribution. Combining the results,

f(p1, p2)

=
1

2
∑3
i=1 πi

∏3
i=1 Γ(πi)

β−π1
1 β−π2

2 c−π3pπ1−1
1 pπ2−1

2 (1− p1 − p2)π3−1

× Γ(
∑3

i=1 πi)

{ 1
2c

[1− (1− c
β1

)p1 − (1− c
β2

)p2]}
∑3
i=1 πi

=
Γ(
∑3

i=1 πi)∏3
i=1 Γ(πi)

β−π1
1 β−π2

2 cπ1+π2pπ1−1
1 pπ2−1

2 (1− p1 − p2)π3−1[1− (1− c

β1

)p1 − (1− c

β2

)p2]−
∑3
i=1 πi

and it follows that P1 and P2 have the joint density function of a BBetaE(π1, π2, π3, β1, β2, c)
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distribution, as defined in (5.1).

5.1.4 Correlation

The product moments of P1 and P2 are derived as

E[P i
1P

j
2 ]

=

ˆ 1

0

ˆ 1−p2

0

pi1p
j
2f(p1, p2)dp1dp2

=
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
β−π1

1 β−π2
2 cπ1+π2

×
ˆ 1

0

ˆ 1−p2

0

pπ1+i−1
1 pπ2+j−1

2 (1− p1 − p2)π3−1[1− (1− c

β1

)p1 − (1− c

β2

)p2]−(π1+π2+π3)dp1dp2

Using equation (B.4), the integral above is proportional to a hypergeometric function of two

variables. That is,

E[P i
1P

j
2 ]

=
Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
β−π1

1 β−π2
2 cπ1+π2

Γ(π1 + i)Γ(π2 + j)Γ(π3)

Γ(π1 + π2 + π3 + i+ j)

×F1(π1 + π2 + π3, π1 + i, π2 + j, π1 + π2 + π3 + i+ j; 1− c

β1

, 1− c

β2

)

=
Γ(π1 + π2 + π3)Γ(π1 + i)Γ(π2 + j)

Γ(π1)Γ(π2)Γ(π1 + π2 + π3 + i+ j)
β−π1

1 β−π2
2 cπ1+π2

×F1(π1 + π2 + π3, π1 + i, π2 + j, π1 + π2 + π3 + i+ j; 1− c

β1

, 1− c

β2

) (5.5)

where F1(·) denotes the hypergeometric function of two variables.

Figure 5.1 shows the correlation between P1 and P2 for various values of β1, β2 and c. Note that

if β1 = β2 = 1, the extended bivariate beta distribution reduces to the bivariate beta type III

distribution and the correlation, shown as the dotted curve, is therefore the same as seen in the

previous chapter.

If β1 and β2 are both less than 1, the range of positive correlation increases. In this example, for
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β1 = β2 = 0.5, positive correlation is attained from c = 2 onwards. If β1 and β2 are both large,

the range of positive correlation decreases. In this example, for β1 = β2 = 4, positive correlation

is attained only from c = 15 onwards.

The last set of graphs in Figure 5.1 shows that for π1 = π2, the correlation function is symmetric

if π1 = π2. If the values of β1 and β2 are switched, the same function is obtained, this can also

be seen in (5.5).
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Figure 5.1: Extended Bivariate Beta Type I Distribution: Correlation
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5.1.5 Shape Analysis

The graphs that follow show the effect of the parameters on the shape and concentration of the

distribution. The reference case considered is where π1 = π2 = π3 = 2 and β1 = β2 = c = 1.

Using these parameters, the extended bivariate beta type I distribution in (5.1) reduces to the

bivariate beta type I distribution in (2.1) with parameters π1 = π2 = π3 = 2. For the impact of

π1, π2 and π3 on the shape and concentration of this reference case distribution, refer to Section

2.1.5.

Figure 5.2 shows the effect of β1 on the shape and concentration of the distribution. If β1 is

decreased, the distribution shifts towards the marginal distribution of p2 on the right axis. If β1 is

increased, the distribution shifts towards large values of P1 and small values of P2 along the line

p1 + p2 = 1.
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Figure 5.2: Extended Bivariate Beta Type I Distribution: Changing β1

Figure 5.3 shows the effect of β2 on the shape and concentration of the distribution. If β2 is

decreased, the distribution shifts towards the marginal distribution of P1 on the left axis. If β2 is

increased, the distribution shifts towards large values of P2 and small values of P1 along the line

p1 + p2 = 1.
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Figure 5.3: Extended Bivariate Beta Type I Distribution: Changing β2

Figure 5.4 shows the effect of simultaneously changing β1and β2 on the shape and concentration

of the distribution. If β1 and β2 are decreased, the distribution shifts towards small values of P1

and P2 in the corner. If β1 and β2 are increased, the distribution shifts symmetrically towards the

line p1 + p2 = 1.
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Figure 5.4: Extended Bivariate Beta Type I Distribution: Changing β1 and β2

Figure 5.5 shows the effect of c on the shape and concentration of the distribution. If c is

decreased, the distribution shifts towards the line p1 + p2 = 1. If c is increased, the distribution

shifts towards small values of P1 and P2 in the corner. Note that for β1 = β2 = 1, this is the

exact same behaviour as the bivariate beta type III distribution.
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Figure 5.5: Extended Bivariate Beta Type I Distribution: Changing c
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5.2 Bayesian Estimation of Shannon Entropy

5.2.1 Derivation

Theorem 5.1

The posterior distribution for the multinomial likelihood in (1.3) and extended bivariate beta type

I prior in (5.1) is given by

f(p1, p2|x)

=
Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

×[F1(π1 + π2 + π3, π1 + x1, π2 + x2, π1 + x1 + π2 + x2 + π3 + x3; 1− c

β1

, 1− c

β2

)]−1

×pπ1+x1−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1[1− (1− c

β1

)p1 − (1− c

β2

)p2]−(π1+π2+π3) (5.6)

where 0 < pi < 1 for i = 1, 2, 0 < p1 + p2 < 1, π1, π2, π3, β1, β2, c > 0 and F1(·) is the

hypergeometric function of two variables.

Proof

The numerator of the posterior distribution is given by:

f(p1, p2)f(x|p1, p2)

=
n!

x1!x2!x3!

Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
β−π1

1 β−π2
2 cπ1+π2

×pπ1+x1−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1[1− (1− c

β1

)− (1− c

β2

)]−(π1+π2+π3) (5.7)
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The denominator of the posterior distribution is given by:

ˆ 1

0

ˆ 1−p2

0

f(p1, p2)f(x|p1, p2)dp1dp2

=
n!

x1!x2!x3!

Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
β−π1

1 β−π2
2 cπ1+π2

×
ˆ 1

0

ˆ 1−p2

0

pπ1+x1−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1

×[1− (1− c

β1

)− (1− c

β2

)]−(π1+π2+π3)dp1dp2 (5.8)

Using equation (B.4), the integral in (5.8) simplifies to

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3)
F1(π1+π2+π3, π1+x1, π2+x2, π1+x1+π2+x2+π3+x3; 1− c

β1

, 1− c

β2

)

The denominator of the posterior distribution becomes

ˆ 1

0

ˆ 1−p2

0

f(p1, p2)f(x|p1, p2)dp1dp2

=
n!

x1!x2!x3!

Γ(π1 + π2 + π3)

Γ(π1)Γ(π2)Γ(π3)
β−π1

1 β−π2
2 cπ1+π2

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3)

×F1(π1 + π2 + π3, π1 + x1, π2 + x2, π1 + x1 + π2 + x2 + π3 + x3; 1− c

β1

, 1− c

β2

)(5.9)

Combining the numerator in (5.7) and the denominator in (5.9), the posterior distribution is given

by

f(p1, p2|x)

=
f(p1, p2)f(x|p1, p2)´ ´
f(p1, p2)f(x|p1, p2)dp1dp2

=
Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

×[F1(π1 + π2 + π3, π1 + x1, π2 + x2, π1 + x1 + π2 + x2 + π3 + x3; 1− c

β1

, 1− c

β2

)]−1

×pπ1+x1−1
1 pπ2+x2−1

2 (1− p1 − p2)π3+x3−1[1− (1− c

β1

)p1 − (1− c

β2

)p2]−(π1+π2+π3)

as given in (5.6). �
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This posterior distribution is not the same form as the prior distribution, indicating that the ex-

tended bivariate beta type I distribution is not a natural conjugate for the multinomial distribution.

Using the binomial expansion, the last term in the kernel in (5.6) can be written as

[1−(1− c

β1

)p1−(1− c

β2

)p2]−(π1+π2+π3) =
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

−1)r−s(
c

β2

−1)spr−s1 ps2

which will converge if |( c
β1
− 1)p1 + ( c

β2
− 1)p2| < 1, and the posterior distribution can be written

as

f(p1, p2|x)

=
Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

×[F1(π1 + π2 + π3, π1 + x1, π2 + x2, π1 + x1 + π2 + x2 + π3 + x3; 1− c

β1

, 1− c

β2

)]−1

×
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×pπ1+x1+r−s−1
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1 (5.10)
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Theorem 5.2

The Bayesian estimator of the Shannon entropy under squared error loss using the extended

bivariate beta type I distribution as a prior for the multinomial model in (1.3) is given by:

ĤE
3 = −K

∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s
Γ(γ1)Γ(γ2)Γ(γ3)

Γ(γ1 + γ2 + γ3 + 1)

×
3∑
i=1

γi(ψ(γi + 1)− ψ(
3∑
j=1

γj + 1)) (5.11)

where

K =
Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

×[F1(π1 + π2 + π3, π1 + x1, π2 + x2, π1 + x1 + π2 + x2 + π3 + x3; 1− c

β1

, 1− c

β2

)]−1

is the normalising coefficient, and

γ1 = π1 + x1 + r − s

γ2 = π2 + x2 + s

γ3 = π3 + x3

denote the parameters of the posterior distribution.

Proof

Denote the Shannon entropy for the extended bivariate beta type I distribution prior as

HE
3 = −

3∑
i=1

pi ln pi

The Bayesian estimator of the Shannon entropy under squared error loss is given by its expected
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value with respect to the posterior distribution given in (5.6). That is,

ĤE
3 = Ef(p1,p2|x)[H

E
3 ]

= −
ˆ 1

0

ˆ 1−p2

0

[p1 ln p1 + p2 ln p2 + (1− p1 − p2) ln(1− p1 − p2)

× Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

×[F1(π1 + π2 + π3, π1 + x1, π2 + x2, π1 + x1 + π2 + x2 + π3 + x3; 1− c

β1

, 1− c

β2

)]−1

×
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×pπ1+x1+r−s−1
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2

= K
3∑
i=1

Ii

where

K =
Γ(π1 + x1 + π2 + x2 + π3 + x3)

Γ(π1 + x1)Γ(π2 + x2)Γ(π3 + x3)

×[F1(π1 + π2 + π3, π1 + x1, π2 + x2, π1 + x1 + π2 + x2 + π3 + x3; 1− c

β1

, 1− c

β2

)]−1

Ii =

ˆ 1

0

ˆ 1−p2

0

pi ln pi

∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×pπ1+x1+r−s−1
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2

for i = 1, 2, and

I3 =

ˆ 1

0

ˆ 1−p2

0

(1− p1 − p2) ln(1− p1 − p2)
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×pπ1+x1+r−s−1
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2
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The simplification of Ii will only be shown for I1, but follows similarly for I2 and I3.

I1 =

ˆ 1

0

ˆ 1−p2

0

p1 ln p1

∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×pπ1+x1+r−s−1
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2

=
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×
ˆ 1

0

ˆ 1−p2

0

(ln p1)pπ1+x1+r−s
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2

=
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×
ˆ 1

0

ˆ 1−p2

0

[
∂

∂π1

pπ1+x1+r−s
1 ]pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2

since d
dx
ax = ax ln a. Changing the order of integration and differentiation:

I1 =
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

× ∂

∂π1

ˆ 1

0

ˆ 1−p2

0

pπ1+x1+r−s
1 pπ2+x2+s−1

2 (1− p1 − p2)π3+x3−1dp1dp2 (5.12)

=
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

× ∂

∂π1

Γ(π1 + x1 + r − s+ 1)Γ(π2 + x2 + s)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)

The integral in (5.12) is proportional to the total probability of a BBetaI(π1 + x1 + r − s +

1, π2 + x2 + s, π3 + x3) distribution. Using the product and chain rules for differentiation

I1 =
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×Γ(π1 + x1 + r − s+ 1)Γ(π2 + x2 + s)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)

×[ψ(π1 + x1 + r − s+ 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)]
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Similarly

I2 =
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×Γ(π1 + x1 + r − s)Γ(π2 + x2 + s+ 1)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)

×[ψ(π2 + x2 + s+ 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)]

and

I3 =
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×Γ(π1 + x1 + r − s)Γ(π2 + x2 + s)Γ(π3 + x3 + 1)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)

×[ψ(π3 + x3 + 1)− ψ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)]

Adding I1, I2 and I3 together,

3∑
i=1

Ii =
∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s

×Γ(π1 + x1 + r − s)Γ(π2 + x2 + s)Γ(π3 + x3)

Γ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)

×[(π1 + x1 + r − s)ψ(π1 + x1 + r − s+ 1) + (π2 + x2 + s)ψ(π2 + x2 + s+ 1)

+(π3 + x3)ψ(π3 + x3 + 1)

−(π1 + x1 + π2 + x2 + π3 + x3 + r)ψ(π1 + x1 + π2 + x2 + π3 + x3 + r + 1)]

Denote the parameters of the posterior distribution by γi, that is,

γ1 = π1 + x1 + r − s

γ2 = π2 + x2 + s

γ3 = π3 + x3
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The Bayesian estimator of the Shannon entropy under squared error loss using the extended

bivariate beta type I prior distribution is derived as:

ĤE
3 = −K

∞∑
r=0

r∑
s=0

(
−(π1 + π2 + π3)

r

)(
r

s

)
(
c

β1

− 1)r−s(
c

β2

− 1)s
Γ(γ1)Γ(γ2)Γ(γ3)

Γ(γ1 + γ2 + γ3 + 1)

×
3∑
i=1

γi(ψ(γi + 1)− ψ(
3∑
j=1

γj + 1))

where K = Γ(π1+x1+π2+x2+π3+x3)
Γ(π1+x1)Γ(π2+x2)Γ(π3+x3)

[F1(π1 + π2 + π3, π1 + x1, π2 + x2, π1 + x1 + π2 + x2 + π3 +

x3; 1− c
β1
, 1− c

β2
)]−1 is the normalising coefficient. �

Note that if the prior parameters are β1 = β2 = 1 in (5.1) and using (B.5), ĤE
3 in (5.11) reduces

to ĤIII
3 in (4.13).

5.2.2 Numerical Analysis

Figure 5.6 plots the Shannon entropy values for various values of β1, β2 and c, with π1 = π2 =

π3 = 2 and multinomial frequencies x1 = 1, x2 = 2, x3 = 10.
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Figure 5.6: Bayesian Estimates of Shannon Entropy: Extended Bivariate Beta Type I Prior

As seen for the bivariate beta type III distribution, ĤE
3 decreases for larger values of c, indicating

less uncertainty, see Section 4.2.2.

In the first two charts of Figure 5.6 it can be seen that if β1 and β2 are decreased respectively,

the absolute level of ĤE
3 decreases, indicating less uncertainty. Similarly, increasing β1 and β2

respectively increases the absolute level of ĤE
3 , indicating more uncertainty. The magnitude and

shape of the ĤE
3 curves are the same for both cases, confirming the symmetry of the extended

bivariate beta type I distribution.

These results are in contrast to the results from the shape analyses in Figures 5.2 and 5.3,

where lower values of β1 and β2 are associated with less concentrated distributions, or more
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uncertainty; and higher values of β1 and β2 are associated with more concentrated distributions,

or less uncertainty.

Note that in the first two charts, if c = 1 and β1 = β2 = 1, the extended bivariate beta

type I distribution reduces to the bivariate beta type I distribution, and ĤE
3 = ĤI

3 . That is, if

π1 = π2 = π3 = 2, β1 = β2 = 1 (the solid curve) and c = 1, then, reading off the charts,

ĤE
3 ≈ 0.8 and ĤE

3 ≈ 0.97. These values correspond to those provided in Table 2.1 for the

bivariate beta type I distribution.

In the third chart, decreasing β1 and β2 simultaneously decreases the absolute level of ĤE
3 ,

indicating the less uncertainty. Increasing β1 and β2 simultaneously increases the absolute level

of ĤE
3 , indicating more uncertainty. The directions of these shifts are the same as when changing

β1 and β2 respectively, although the magnitude is larger, confirming the combined effect of the

changes. In the shape analysis conducted in Figure 5.4, lower values of β1 and β2 results in a larger

concentration around small values of P1 and P2, and higher values of β1 and β2 are associated

with a larger concentration towards the line p1 + p2 = 1.

The difference between these intuitive and counterintuitive results observed for different combi-

nations of β1 and β2 parameters may be disturbing at first, but can be explained by the location

of the distribution. In the first two cases, if only β1 or β2 are changed, the distribution either

shifts towards the marginal distribution of P2 or P1 respectively, or towards a specific point along

the line p1 + p2 = 1, see Figures 5.2. and 5.3. Then, if β1 and β2 are changed simultaneously,

the distribution either moves towards small values of P1 and P2 or towards the line p1 + p2 = 1,

but is not concentrated at a specific point along this line.

This suggests that ĤE
3 provides information about both the concentration and location of the

distribution. Lower values of ĤE
3 indicate a larger concentration along small values of P1 and P2.

Larger values of ĤE
3 indicate lower concentration along small values of P1 and P2, but a larger

concentration elsewhere in the feasible region, with ĤE
3 increasing as the concentration moves

away from small value of P1and P2.

Again, it should be kept in mind that since ĤE
3 is the Bayesian estimate of the Shannon entropy,
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it also contains information about the likelihood function. Therefore, the multinomial frequencies

will also have an effect on the behaviour of ĤE
3 .

 
 
 



Chapter 6

Application to Credit Risk

6.1 Concepts

Banks are concerned with defaults occuring. A default event is defined by the Basel II captial

framework (2006) as the occurence of either the bank considering the customer unlikely to repay

its debt obligations in full, or the customer being past due more than 90 days on any material

credit obligation.

It is thus vital to distinguish two key concepts: default rate and probability of default (PD).

The default rate corresponds to the number of customers who have defaulted out of a particular

population of customers, i.e. the actual observed rate at which customers default. The probability

of default corresponds to the likelihood of a particular customer defaulting. In the calibration of

credit risk models, the default rate is used to determine the probability of default of a particular

customer.

6.2 Calibration: An Overview

Many credit analysts consider the probability of default as the most important driver for the

calculation of regulatory capital. As explained in the introduction, when data is readily available

109
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it is relatively easy to estimate the probability of default. This is typically done using logistic

regression.

In the environment of small low-default portfolios, it is almost impossible to construct meaningful

logistic regression-type models to directly predict the likelihood of default, since adequate default

information is generally not available. Instead, the probability of default of a customer is obtained

through an indirect method. Customers are assigned a credit rating (irrespective of whether they

defaulted or not), based on some regression model, and a probability of default is assigned to that

specific rating through a model calibration process. It is intuitive that the likelihood of default of

a customer is influenced, amongst others, by the state of the economic cycle, and a substantial

amount of research in this field take this into account. There are various types of calibration

methodologies, although most of these do not use an explicit Bayesian approach.

The simplest of these approaches is to use a moment matching approach, whereby a PD curve

is fitted to the credit ratings in the calibration sample, such that the required moment of the

portfolio PD is equal to the moment of the long-run observed default rate. The moment in

question is typically the simple average, although it is the view of many credit risk analysts that

taking the long-run average default rate without considering the economic conditions may not be

an accurate representation of the risk in a portfolio, see Trück and Rachev (2005).

Sometimes expert judgement is combined with the moment matching approach, where PDs and

PD bands are expertly assigned to rating classes, in particular for the very low-default investment

grade rating classes. The risk here is that the PDs and the relative bands may appear to be

correct, while in fact they are not, see Pluto and Tashce (2005).

Schuermann and Hanson (2004) use a cohort and duration approach to estimate PDs from tran-

sition matrices, with the focus on the last column of the transition matrix (i.e. the “default”

column) . They find that the investment grade PDs do not differ much between different eco-

nomic conditions, but that speculative grade PDs are much more sensitive to changes in the

economic cycle.

Trück and Rachev (2005) propose the use of the entire transition matrix and a bootstrapping
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method to determine confidence sets for the PDs for different rating classes over different points

in the economic cycle. In their bootstrap method they consider the occurrence of default within

each rating class to be binomially distributed, but do not consider the distribution between rating

classes.

The “most prudent estimation” methodology is contributed by Pluto and Tasche (2005), where

they use upper confidence bounds to obtain PD estimates to any desired degree of conservatism,

based on the assumption that PDs are monotonic between rating classes (which is generally true).

A new trend is to estimate the PD curve based on the discriminatory power of the underlying

rating model, measured by the receiver operating characteristic (ROC) and cumulative accuracy

profiles (CAP). This has been investigated by Van der Burgth (2008) and Tasche (2010).

The calibration methodologies discussed thus far are not explicit Bayesian calibration method-

ologies, which is most likely due to the fact that the majority of credit scoring and calibration

methodologies used in practice follow a frequentist approach. However, the Bayesian estimation

of credit risk, both the underlying credit rating model as well as the model calibration, appears

to occur more and more often.

As part of the credit rating model development, Löffler et al. (2005) propose a Bayesian method-

ology where they use as prior information the coefficients from credit rating models from other

data sets. They find that “Bayesian estimators are significantly more accurate than the straight

logit estimator”.

Gössl (2005) considers the development of a credit portfolio model using a Bayesian approach,

and proposes the use of the joint distribution of PDs and systemic correlation between the assets

in a portfolio, as opposed to the use of their point estimators.

Finally, the starting point of this analysis is obtained from Kiefer (2008). He considers the binomial

distribution as an indication of the likelihood of a default or non-default event in a portfolio, and

uses a univariate beta type I distribution as a prior for the binomial distribution. The parameters

of his beta distribution were obtained by eliciting information from an expert, where the expert

provided his/her opinion of the values to which the quantiles of the beta distribution should
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correspond to. Kiefer then used the method of moments to determine the beta distribution

that satisfies the expert’s opinion. The univariate beta type I distribution was in turn used for

calibration and to obtain confidence intervals for the PDs associated with the portfolio.

As an alternative to the method of moments for estimation of the prior parameters, Kiefer con-

sidered the maximum entropy prior selection method. This approach maximises the entropy in

the distribution (i.e. it maximises the uncertainty), but otherwise provides as little information as

possible.

The analysis in this study differs from Kiefer’s approach in two ways. Firstly, this study considers

the Bayesian estimation of Shannon entropy, whereas Kiefer used the maximum entropy approach,

which is a numerical optimisation of the entropy function. Secondly, the maximum entropy

approach aims to maximise the entropy, whereas using the Bayesian estimation of the Shannon

entropy allows the statistician to adjust the entropy level when selecting the prior distribution

parameters. This enables the statistician to consider the Shannon entropy in conjunction with

other measures.

6.3 Setting

The aim of this analysis is to illustrate how the Shannon entropy can be used as a tool to

select the prior distribution as part of a Bayesian credit risk model calibration approach. Whilst

Kiefer only considered the univariate situation, this analysis goes a step further and considers the

bivariate case. Following suit that probabilities of default are influenced by the economic cycle,

the differentiation between favourable and adverse economic conditions is considered.

The default rate distribution differs between good and bad economic conditions, which is an aspect

thoroughly investigated for macroeconomic stress testing purposes. Figure 6.1 below illustrates

the standardised default rates and US GDP for the last 29 years. The default rates in this graph are

taken from the Moody’s Annual Corporate Default Rate Study (2009), and represents the default

rate out of their total rated (“All Rated”) population for each year. The US GDP values are the
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seasonally adjusted year-on-year GDP growth rates obtained from the US Bureau of Economic

Analysis (BEA). The values are standardized in order to ease graphical interpretation.

Figure 6.1: Default Rates Over Time

It is clear that in favourable economic conditions, when a high GDP (dotted line) prevails, default

rates (solid line) are low. Similarly, adverse economic conditions are associated with high default

rates. Throughout this analysis the GDP growth rate is assumed to represent the economic

conditions. In practice other factors also indicate economic conditions, but for simplicity only one

factor is used.

The default rates of the overall portfolio (“All Rated”) can be divided into 21 rating classes, from

AAA to C, but for the purpose of this analysis only two segments will be considered, investment

grade and speculative grade. Investment grade represents all ratings between AAA and BBB-,

and speculative grade represents all ratings between BB+ and C. Consider the following three

events:

• Event 1: Default occurs in investment grade

• Event 2: Default occurs in speculative grade

• Event 3: Default does not occur
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If a default occurs, we are concerned with its rating quality. A company that defaults in the

investment grade class is more likely to have a larger exposure and therefore more significant

impact on the bank’s book than a company defaulting in the speculative grade class. If a default

does not occur, it is not really of interest since this is what we would expect from the counterparty.

It is assumed that these three events follow the multinomial model in (1.3), and that the param-

eters of this model follow a bivariate beta distribution. Given the practical importance of where

defaults occur, it is clear that the correct estimation of the bivariate beta distribution is very

important.

6.4 Data

The default rate data used for this analysis is obtained from the Moody’s “Corporate Defaults

and Recovery Rates, 1920-2008” study (2009), and spans from 1930 to 2008. The first 10 years

are not used, but the rest of the data is used as-is, without making any assumptions regarding

the quality of the data. In order to distinguish between good and bad economic conditions, two

samples are selected: a “Good” sample and a “Bad” sample. The “Good” sample consists of years

where the GDP growth rate is larger than the 60th percentile of the GDP distribution spanning

the same period. The “Bad” sample consists of years where the GDP growth rate is less than

the 40th percentile of the GDP distribution spanning the same period. Observations with GDP

growth between the 40th and 60th percentiles are not used in this analysis in order to clearly

distinguish the differences between favourable and adverse economic conditions. In practice, it is

recommended to use all available data. Both datasets consist of 32 observations each.

For each sample, the investment and speculative grade default rates are used. The bivariate beta

distributions investigated in this study will be considered as priors to the joint distribution of the

investment and speculative grade default events, as described above.

Table 6.1 lists the values of the default rates in both samples. Note that there are quite a few years

in which no defaults occurred. Theoretically this violates the assumption of the bivariate beta
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distributions that pi > 0 for i = 1, 2. However, it is not believed that one should calibrate to a

default rate of 0. This implies another advantage of considering the bivariate beta distributions as

priors, in that the distributions will be able to provide non-zero calibrated probabilities of default.

Table 6.1: Moody’s Default Rates (1930-2008)
Favourable Economic Conditions Adverse Economic Conditions

Year Investment Grade Speculative Grade Year Investment Grade Speculative Grade
1934 0.00578 0.05929 1930 0.00159 0.02131
1935 0.01253 0.0609 1931 0.0049 0.07845
1936 0.00465 0.02736 1932 0.0078 0.10811
1937 0.00661 0.02595 1933 0.00806 0.15391
1939 0.00402 0.01751 1938 0.01579 0.02593
1940 0.00572 0.02606 1945 0 0.00525
1941 0 0.01698 1946 0 0
1942 0 0.0075 1947 0 0.00314
1943 0 0.00615 1949 0 0.01901
1944 0 0.00679 1954 0 0.00471
1948 0 0 1956 0 0
1950 0 0 1957 0 0.00452
1951 0 0.0045 1958 0 0
1953 0 0 1960 0 0.00737
1955 0 0.00505 1961 0 0.0107
1959 0 0 1967 0 0
1962 0 0.01463 1970 0.00271 0.08772
1963 0 0.01156 1974 0 0.01330
1964 0 0 1975 0 0.01735
1965 0 0 1980 0 0.01613
1966 0 0.00415 1981 0 0.00701
1968 0 0.00387 1982 0.00212 0.03571
1972 0 0.01957 1990 0 0.09976
1973 0.00231 0.01271 1991 0.00065 0.0937
1976 0 0.00864 1993 0 0.03072
1977 0.00109 0.01339 1995 0 0.0292
1978 0 0.01798 2001 0.00132 0.10124
1983 0 0.03824 2002 0.00507 0.07921
1984 0.00096 0.03333 2003 0 0.05123
1997 0 0.02028 2006 0 0.01688
1998 0.00038 0.03152 2007 0 0.00918
1999 0.00036 0.05384 2008 0.003 0.04129
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6.5 Analysis

Figure 6.1 has already shown the trends between the time series for default rates and economic

conditions for the overall Moody’s rated population. Figure 6.2 below compares the univariate

distributions of the default rates for each of the categories between favourable and adverse eco-

nomic times. Adverse economic conditions indicate less concentration in the low default rate

region, and the impact is particularly clear for the speculative grade default rates.

Figure 6.2: Univariate Default Rate Distributions

Having knowledge of the association between the two categories is important, and in this study

the Pearson correlation coefficient is used. It is expected that the likelihood of defaults occuring

 
 
 



CHAPTER 6. APPLICATION TO CREDIT RISK 117

in either rating class increases in bad times and decreases in good times, indicating positive

correlation between the two rating categories. Figure 6.3 confirms the correlation between the

default rates.

Figure 6.3: Correlation between Investment Grade and Speculative Grade

The positive correlation between investment grade and speculative grade default rates already

indicates that the bivariate beta type III or extended bivariate beta type I distributions may be

more appropriate as prior for this model.

Note that in 1938 there is a large investment grade default rate, which is likely to influence

the correlation estimate for adverse economic conditions. However, since banks are particularly

cautious about high investment grade default rates, the outlier has not been removed from the

analysis.

Figure 6.4 below compares the joint distributions of default rates for the two samples. The contour

plots are included for completeness.
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Figure 6.4: Joint Distribution of Investment and Speculative Grade Default Rates

6.6 Prior Parameter Selection

6.6.1 Maximum Likelihood Estimation

Determining the parameters of the bivariate beta prior distributions with such little data proved

to be quite challenging, as is generally the case with small samples. Using maximum likelihood

estimation (MLE), the likelihood function has to be optimised numerically since explicit expressions

for each of the parameters cannot be obtained. An additional problem arising with MLE is that

the parameter estimates are easily influenced by the observations. For example, one very bad
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economic year with an investment grade default rate of 5% will have a significant impact on the

default rate distribution.

Table 6.2 lists the parameter estimates obtained for the default rate distributions. Note that for

the extended bivariate beta type I distributions the maximum likelihood estimates of the prior

distribution parameters did not converge (indicated in the table as “DNC”). It is possible that this

is due to the combination of the large number of parameters (6 parameters) to be estimated in

conjunction with the small sample size (32 observations).

The parameters that could be obtained indicate that the parameter estimates obtained with MLE

are consistent with the shape analysis performed in each section, although the positive correlation

observed could not be captured.

Table 6.2: Parameter Selection: Maximum likelihood Estimates

Favourable Economic Conditions Adverse Economic Conditions
Type I C and M Type III Ext

Type I
Type I C and M Type III Ext

Type I
π1 0.135 0.166 0.134 DNC 0.126 0.164 0.125 DNC
π2 0.389 0.350 0.387 DNC 0.437 0.390 0.432 DNC
π3 27.994 20.370 49.694 DNC 14.246 10.458 49.848 DNC
d n/a 119.761 n/a n/a n/a 97.059 n/a n/a
c n/a n/a 0.552 DNC n/a n/a 0.270 DNC
β1 n/a n/a n/a DNC n/a n/a n/a DNC
β2 n/a n/a n/a DNC n/a n/a n/a DNC
Log

likelihood
376.097 379.421 376.155 n/a 341.431 346.198 341.566 n/a

Correlation -0.008 -0.002 -0.026 n/a -0.016 -0.003 -0.011 n/a

6.6.2 Method of Moments

An alternative to maximum likelihood estimation is to use the method of moments, where credit

experts assign values to, say, the median, standard deviation, 5th percentile, 95th percentile,

minimum, maximum, etc. The moments can be obtained relatively easily for the univariate case,
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see Kiefer (2008). Thinking in terms of “joint distributions” and “moments” is a lot more difficult

for credit experts who don’t have a mathematical background.

6.6.3 Bayesian Estimation of Shannon Entropy

The proposal is to use the Shannon entropy to determine the optimal values of the parameters

for the various bivariate beta priors considered for the multinomial model, in conjunction with

the data available and expert judgement. In this application, only the bivariate beta type III and

extended bivariate beta type I will be considered as candidates due to their ability to account for

positive correlation.

6.6.3.1 Bivariate beta type III distribution

The following steps are used to determine the parameters:

1. Determine the order of magnitude of the parameters using the conclusions from the shape

analyses in Sections 2.1.5 and 4.1.5, where P1 represents the investment grade default rates

and P2 represents the speculative grade default rates.

(a) Favourable economic conditions: From the joint distributions in Figure 6.4 it is noted

that for favourable economic conditions, the concentration of the distribution is to-

wards small values of investment grade default rates (P1) and small values of specula-

tive grade default rates (P2). This suggests a choice of parameters where π1, π2 and

π3 are less than c, see Figure 4.2.

(b) Adverse economic conditions: From the joint distributions in Figure 6.4 it is noted

that for adverse economic conditions, the concentration of the distribution is towards

larger values of the speculative grade default rates (P2), which can be obtained by

choosing π1 to be less than π2, π3 and c, see Figure 2.1.
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2. Determine bands for the parameters using quantitative analyst expert judgement (and trial

and error). For example, in the shape analysis, the combination of prior parameters π1 =

π2 = π3 = 2 and c = 4 was considered. However, comparing the contour plots between the

theoretical bivariate beta type III distribution in Figure 4.2 and the observed distributions

in Figure 6.4, the concentration of the distribution should be towards smaller values of P1

and P2, which can be obtained by:

(a) Favourable economic conditions: Choose c to be much larger than π1, π2 and π3.

(b) Adverse economic conditions: Choose π1 to be smaller than π2 and π3, and c to be

larger than π1, π2 and π3, but not as large as in the case of favourable economic

conditions.

3. Using a grid search approach and an arbitrary step size, calculate the Shannon entropy using

the Bayesian estimate in (4.13) with inputs:

(a) Bivariate beta type III distribution parameters: The combination of parameters in the

grid.

(b) Multinomial distribution parameters: Since the focus of this analysis is on the selection

of the prior distribution, x1 = 1, x2 = 2 and x3 = 10 were used as the multinomial

distribution observations. These can of course be changed as well.

4. Calculate the correlation for each combination of the parameters in the grid.

5. When selecting the parameters of the prior distributions, choose them such that:

(a) The parameters are in a pre-specified Shannon entropy range, keeping in mind that

lower Shannon entropy values are associated with less uncertainty around small values

of P1 and P2, and therefore higher concentration in the distribution, see Figure 4.3.

In this analysis, the bands can be different for the favourable and adverse economic

conditions, since the concentration in the observed distributions are different. Selecting

the range of Shannon entropy can be done by trial and error.
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(b) The parameters are in the range of the observed correlation (0.64 for favourable eco-

nomic conditions and 0.46 for adverse economic conditions), see Figure 6.3.

Table 6.3 summarises the grid search results. The first three columns provide information regarding

the bounds used. Note that, in order to illustrate the results clearly, a very coarse grid has been

used. In practice, it is advised to use a finer grid as this may significantly improve the accuracy

of the parameter estimates. The last two columns provide the parameters chosen for the two

bivariate beta type III distributions. The parameters were chosen by restricting the Shannon

entropy and correlation estimates:

1. Favourable economic conditions: Choose the parameters such that the Shannon entropy is

between 0.35 and 0.45, and the correlation is between 0.6 and 0.7. Deciding on the desired

level of certainty (or uncertainty) in the distribution is no easy task. These bounds were

chosen arbitrarily, but in practice one should investigate varying levels of Shannon entropy.

The bounds for the correlation were chosen based on the observed correlation of 0.64.

2. Adverse economic conditions: From the observed bivariate distributions in Figure 6.4 it

can be seen that the concentration in the distribution reduces during adverse economic

conditions, and therefore there is more uncertainty as to where the next default will occur.

To account for the increased uncertainty, parameters will now only be chosen if the Shannon

entropy lies between 0.45 and 0.55. In addition, the correlation has also decreased during

adverse economic conditions, and the parameters now have to be such that they provide

correlation between 0.4 and 0.5.
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Table 6.4: Parameter Selection: Bivariate Beta Type III distribution

Minimum Step Size Maximum Favourable Economic
Conditions

Adverse Economic
Conditions

π1 2 2 10 4 2
π2 2 2 10 8 4
π3 2 2 10 2 2
c 20 20 100 100 40

Shannon entropy 0.446 0.502
Correlation 0.698 0.491

Figure 6.5 compares the contour plots of the two fitted distributions. The parameters selected

provide a bivariate beta type III distribution that successfully reflects the characteristics of the

observed distributions.

Figure 6.5: Bivariate Beta Type III Parameters

6.6.3.2 Extended bivariate beta type I distribution

The steps for selecting the parameters are similar to those of the bivariate beta type III distribution,

but will be presented here for completeness. They are:

1. Determine the order of magnitude of the parameters using the conclusions from the shape

analyses in Sections 2.1.5 and 5.1.5, where P1 represents the investment grade default rates

and P2 represents the speculative grade default rates.
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(a) Favourable economic conditions: From the joint distributions in Figure 6.4 it is noted

that for favourable economic conditions, the concentration of the distribution is to-

wards small values of investment grade default rates (P1) and small values of specu-

lative grade default rates (P2). This suggests a possible choice of parameters where

π1, π2, π3, β1 and β2 are less than c, see Figure 5.5.

(b) Adverse economic conditions: From the joint distributions in Figure 6.4 it is noted that

for adverse economic conditions, the concentration of the distribution is towards larger

values of the speculative grade default rates (P2), which can be possibly be obtained

by choosing β1 to be less than π1, π2, π3, β2 and c, see Figure 5.2.

2. Determine bands for the parameters using quantitative analyst expert judgement (and trial

and error). For example, in Figure 5.5 of the shape analysis, the combination of prior pa-

rameters π1 = π2 = π3 = 2, β1 = β2 = 1, and c = 4 was considered. However, comparing

the contour plots between the theoretical extended bivariate beta type I distributions in Sec-

tion 5.1.5 and the observed distributions in Figure 6.4, the concentration of the distribution

should be towards smaller values of P1 and P2, which can be obtained by:

(a) Favourable economic conditions: Choose c to be much larger than π1, π2, π3, β1 and

β2.

(b) Adverse economic conditions: Choose β1 to be smaller than β2, and c to be much

larger than π1, π2 and π3.

3. Using a grid search approach and an arbitrary step size, calculate the Shannon entropy using

the Bayesian estimate in (5.11) with inputs:

(a) Extended bivariate beta type I distribution parameters: The combination of parameters

in the grid.

(b) Multinomial distribution parameters: Since the focus of this analysis is on the selection

of the prior distribution, x1 = 1, x2 = 2 and x3 = 10 were used as the multinomial

distribution observations. These can of course be changed as well.
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4. Calculate the correlation for each combination of the parameters in the grid.

5. When selecting the parameters of the prior distributions, choose them such that:

(a) The parameters are in a pre-specified Shannon entropy range, keeping in mind that

lower Shannon entropy values are associated with less uncertainty, and therefore higher

concentration, in the distribution, see Figure 5.5. In this analysis, the bands can be

different for the favourable and adverse economic conditions, since the concentration

in the observed distributions are different. Selecting the range of Shannon entropy can

be done by trial and error.

(b) The parameters are in the range of the observed correlation (0.64 for favourable eco-

nomic conditions and 0.46 for adverse economic conditions), see Figure 6.3.

Table 6.4 summarises the grid search results. The first three columns provide information regarding

the bounds used. Note that, in order to illustrate the results clearly, a very coarse grid has been

used. In practice, it is advised to use a finer grid as this may significantly improve the accuracy of

the parameter estimates. The last two columns provide the parameters chosen for the two extended

bivariate beta type I distributions. The parameters were chosen by restricting the Shannon entropy

and correlation estimates:

1. Favourable economic conditions: Choose the parameters such that the Shannon entropy is

between 0.35 and 0.45, and the correlation is between 0.6 and 0.7. Deciding on the desired

level of certainty (or uncertainty) in the distribution is no easy task. These bounds were

chosen arbitrarily, but in practice one should investigate varying levels of Shannon entropy.

The bounds for the correlation were chosen based on the observed correlation of 0.64.

2. Adverse economic conditions: From the observed bivariate distributions in Figure 6.4 it

can be seen that the concentration in the distribution reduces during adverse economic

conditions, and therefore there is more uncertainty as to where the next default will occur.

To account for the increased uncertainty, parameters will now only be chosen if the Shannon
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entropy lies between 0.45 and 0.55. In addition, the correlation has also decreased during

adverse economic conditions, and the parameters now have to be such that they provide

correlation between 0.4 and 0.5.

Table 6.5: Parameter Selection: Extended Bivariate Beta Type I Distribution

Minimum Step Size Maximum Favourable Economic
Conditions

Adverse Economic
Conditions

π1 2 2 10 6 4
π2 2 2 10 8 4
π3 2 2 10 4 4
β1 1 1 5 1 1
β2 1 1 5 2 3
c 20 20 100 80 40

Shannon entropy 0.395 0.488
Correlation 0.624 0.423

Figure 6.6 compares the contour plots of the two fitted distributions. The parameters selected

provide bivariate beta distributions which visually reflect the characteristics of the observed dis-

tributions.

Figure 6.6: Extended Bivariate Beta Type I Distribution

The parameters of the bivariate beta type III and extended bivariate beta type I distribution both

result in distributions that compare well to the observed distributions, and also provide similar
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correlations. Note that the general level of the Shannon entropy for the extended bivariate beta

type I distribution is lower than for the bivariate beta type III distribution. This could possibly be

as a result of the additional parameters included in the bivariate beta type I distribution. Having

more parameters implies that the distribution can be defined better, and therefore there is less

uncertainty.

For this example, the bivariate beta type III distribution appears to be the best candidate, since it

only requires one additional parameter to take into account the positive correlation between the

investment grade default rates and the speculative grade default rates. This additional parameter

is also flexible enough to provide different concentrations for favourable and adverse economic con-

ditions. In practice, each situation should evaluated individually, and the appropriate distribution

chosen accordingly.

6.7 Conclusion

The following important conclusions can be made:

• The bivariate beta type III and extended bivariate beta type I distributions are very flexible

since they have the ability to deal with positive correlation in the underlying data.

• Using the Bayesian estimates of the Shannon entropy proved to be a useful aid in selecting

the prior distribution when the sample size is small. The parameters selected for the bivariate

beta prior distributions resulted not only in visually comparable distributions but also in

correlation similar to what was observed.

• Now that a bivariate beta prior distribution has been selected, this can be used as part of

the Bayesian calibration methodology.

 
 
 



Chapter 7

Conclusion

In credit risk, a statistician is often faced with the problem of having very little data. In order

to determine probabilities of default for small and low-default portfolios a Bayesian calibration

approach was considered, since Bayesian methods are generally useful when sample sizes are small

and a lot of reliance is given on expert judgement.

This study provided a detailed analysis of the bivariate beta type I, Connor and Mosimann bi-

variate beta, bivariate beta type III and extended bivariate beta type I distributions. For each

of the bivariate beta distributions investigated the marginal distributions, correlation, method of

derivation and impact of parameters on the shape of the distribution were discussed in detail.

These bivariate beta distributions were then considered as priors for the multinomial model, from

which the posterior distribution and Bayesian estimators of the Shannon entropy were successfully

derived.

The following concluding remarks prevail:

1. Positive correlation between P1 and P2 can only be attained with the bivariate beta type III

and extended bivariate beta type I distributions.

(a) Bivariate beta type I distribution: This distribution only allows for negative correlation.
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(b) Connor and Mosimann bivariate beta distribution: This distribution does not allow for

positive correlation, although its generalisation to more than two variables allows for

positive correlation.

(c) Bivariate beta type III distribution: This distribution allows for positive and negative

correlation, and the larger c is, the larger the positive value of correlation is.

(d) Extended bivariate beta type I distribution: This distribution allows for positive and

negative correlation. Decreasing β1 and β2 simultaneously increases the range for

which positive correlation can be attained, whilst increasing β1 and β2 simultaneously

decreases the range for which positive correlation can be attained.

2. Extending the bivariate beta type I distribution by including additional parameters adds to

the flexibility of the distributions.

(a) Connor and Mosimann bivariate beta distribution: Small values of d shift the distribu-

tion towards small values of P2 along the line p1 + p2 = 1, and large values of d shift

the bivariate distribution towards the marginal distribution of P2.

(b) Bivariate beta type III distribution: Large values of c shift the distribution towards

small values of P1 and P2, whereas small values of c shift the distribution towards

values of P1 and P2 along the line p1 + p2 = 1.

(c) Extended bivariate beta type I distribution: Small values of β1 shift the distribution

towards the marginal distribution of P2, and large values of β2 shift the distribution

towards small values of P2 along the line p1 +p2 = 1. Similarly, small values of β2 shift

the distribution towards the marginal distribution of P1, and large values of β2 shift the

distribution towards large values of P2 along the line p1 + p2 = 1. The similar results

are due to the symmetry present in the extended bivariate beta type I distribution.

Small values of c shift the distribution towards the line p1 + p2 = 1, and large values

of c shift the distribution towards small values of P1 and P2.
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3. The parameters of the prior distribution have a significant impact on the Bayesian estimator

of the Shannon entropy (as expected).

(a) Bivariate beta type I distribution: Decreasing π1 or π2 reduces ĤI
3 , indicating less

uncertainty, and increasing π1 or π2 increases ĤI
3 , indicating more uncertainty. De-

creasing π3 increases ĤI
3 , indicating more uncertainty, and increasing ĤI

3 , indicating

less uncertainty.

(b) Connor and Mosimann bivariate beta distribution: Decreasing π1 or π2 reduces ĤCM
3 ,

indicating less uncertainty in the distribution. Conversely, increasing π1 or π2 increases

ĤCM
3 , indicating more uncertainty in the distribution. Decreasing π3 increases ĤCM

3

indicating more uncertainty, and increasing π3 decreases ĤCM
3 indicating less uncer-

tainty in the distribution. Larger values of d are associated with lower Shannon entropy

values, indicating less uncertainty. In summary, as the concentration in the distribu-

tion remains closer to small values of P1 and P2, ĤCM
3 stays lower, but as soon as

the concentration moves away from these small values to some point along the line

p1 + p2 = 1 the uncertainty increases.

(c) Bivariate beta type III distribution: Larger values of c are associated with lower Shan-

non entropy values, indicating less uncertainty.

(d) Extended bivariate beta type I distribution: Decreasing β1 or β2 respectively reduces

ĤE
3 , indicating less uncertainty. Conversely, increasing β1 or β2 respectively increases

ĤE
3 , indicating more uncertainty in the distribution. Decreasing β1 and β2 simulta-

neously increases ĤE
3 , indicating more uncertainty, whilst increasing β1 and β2 simul-

taneously decreases ĤE
3 , indicating less uncertainty. In general, larger values of c are

associated with lower Shannon entropy values, indicating less uncertainty. In summary,

a larger concentration around small values of P1 and P2 is associated with lower ĤE
3 ,

and as the concentration moves away ĤE
3 increases.

In general, the Bayesian estimator of Shannon entropy for the bivariate beta prior distributions

contains information of the concentration as well as location of the distribution.
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The knowledge obtained from the detailed study of the various bivariate beta distributions was

used in an application to credit risk, where the selection of a bivariate beta prior as part of a

Bayesian calibration methodology was considered. The Bayesian estimate of the Shannon entropy

proved to be a good aid when selecting the appropriate parameters for the prior distribution.

Areas for further research include, but are not limited to:

• This study investigated the Bayesian estimation of Shannon entropy using the squared error

loss function. It can be investigated using other loss functions, such as linear loss.

• The Bayesian estimation of other entropy measures, such as the Kullback-Leibler information

measure.

• The posterior distribution of the Shannon entropy can be investigated in more detail.

• In credit risk, most research has primarily been done on a portfolio level due to the di-

mensional restrictions of the frequentist approach when little data is available. Using the

Bayesian approach, the results obtained for the bivariate beta prior distributions can be

generalised to Dirichlet prior distributions, which will cater for the situation of more than

three categories in the multinomial distribution.

• One could use the Markov Chain Monte Carlo (MCMC) method to obtain the Bayesian

estimates of the Shannon entropy for the posterior densities in Chapters 3, 4 and 5, but

this was not part of this study.

In final conclusion, this study provided useful insight about various bivariate beta distributions as

well as the Bayesian estimation of Shannon entropy.
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Notation

This appendix lists the notation used in this study.

Notation Description

∼ Distributed as

X Random variable

x Observed value of the random variable X

X = (X1, X2, ..., Xk) Vector of random variables

x = (x1, x2, ..., xk) Vector of observed values of the random variable X

f(x) Distribution of X

f(x|y) Distribution of X, conditional on Y

E[X] Expected value of X

E[X|Y ] Expected value of X, conditional on Y

|X| Determinant of a matrix X

ex Exponential function

lnx Natural logarithmic function

L(x, x̂) Loss function
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Γ(α) Gamma function

2F1(α, β; γ;x) Gauss hypergeometric function of one variable

F1(α, β, β′, γ;x, y) Hypergeometric function of two variables

Hk Shannon entropy

Beta(α, β) Univariate beta distribution with parameters α and β

BBetaI(α1, α2, α3) Bivariate beta type I distribution with parameters α1, α2

and α3

BBetaCM(α1, α2, α3, d) Connor and Mosimann bivariate beta distribution with

parameters α1, α2, α3 and d

BBetaIII(α1, α2, α3, c) Bivariate beta type III distribution with parameters

α1, α2, α3 and c

BBetaE(α1, α2, α3, β1, β2, c) Extended bivariate beta type I distribution with parameters

α1, α2, α3, β1, β2 and c

χ2(α) Chi-squared distribution with parameter α

Gamma(α, β) Gamma distribution with parameters α and β
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Mathematical Preliminaries

This appendix lists known definitions and relations used in this study.

Definition 1 (Gradshteyn and Ryzhik, 2007, p892)

The beta function is defined as

B(α1, α2, ..., αn) =

∏n
i=1 Γ(αi)

Γ(
∑n

i=1 αi)

Definition 2 (Gradshteyn and Ryzhik, 2007, p902)

The polygamma or psi function is defined as the derivative of the logarithmic gamma function

ψ(x) =
d

dx
ln Γ(x)

=
Γ′(x)

Γ(x)
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Definition 3 (Gradshteyn and Ryzhik, 2007, pXIiii)

The Pochhammer coefficient is defined as

(α)k =
Γ(α + k)

Γ(α)

= α(α + 1)(α + 2)...(α + k − 1)

Definition 4 (Gradshteyn and Ryzhik, 2007, p1005)

The Gauss hypergeometric function is defined as

2F1(α, β; γ;x) =
∞∑
k=0

(α)k(β)k
(γ)k

xk

k!

and the integral representation is

2F1(α, β; γ;x) =
1

B(β, γ − β)

ˆ 1

0

tβ−1(1− t)γ−β−1(1− tx)dt

for Re γ > 0 and Reβ > 0.

Definition 5 (Gradshteyn and Ryzhik, 2007, p1018,1021)

The hypergeometric function of two variables is defined as

F1(α, β, β′, γ;x, y) =
∞∑
m=0

∞∑
n=0

(α)m+n(β)m(β′)n
(γ)m+nm!n!

xmyn

for |x| < 1 and |y| < 1, and the integral representation is
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F1(α, β, β′, γ;x, y) =
Γ(γ)

Γ(β)Γ(β′)Γ(γ − β − β′)

×
ˆ ˆ

u ≥ 0, v ≥ 0

u+ v ≤ 1

uβ−1vβ
′−1(1− u− v)γ−β−β

′−1(1− ux− vy)−αdudv

for Reβ > 0, Reβ′ > 0, and Re (γ − β − β′) > 0.

Relation 1 (Gradshteyn and Ryzhik, 2007, p315)

ˆ u

0

xν−1(u− x)µ−1dx = uµ+ν−1B(µ, ν) (B.1)

for Reµ > 0 and Re ν > 0.

Relation 2 (Prudnikov et al., 1986, p301)

ˆ b

a

(x−a)α−1(b−x)β−1(cx+d)γ−1dx = (b−a)α+β−1(ac+d)γB(α, β)2F1(α,−γ;α+β;
c(a− b)
ac+ d

)

(B.2)

Relation 3 (Gradshteyn and Ryzhik, 2007, p25)

The binomial expansion of a power series is

(1 + x)q =
∞∑
k=0

(
q

k
)xk (B.3)

and is a special case of the Maclaurin series (see Stewart,1999, p763). The series always converges

if |x| < 1. Convergence at 1 and -1 depends on the value of q:
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• If q ≥ 0, the series will converge at both 1 and -1.

• If −1 < q ≤ 0, the series will converge at 1.

If q = n is a natural number, the series is reduced to the finite sum:

(a+ x)n =
n∑
k=0

 n

k

xkan−k

Relation 4 (Prudnikov et al., 1986, p566)

ˆ ˆ
x ≥ 0, y ≥ 0

x+ y ≤ 1

xβ−1yβ
′−1(1− x− y)γ−β−β

′−1(1− ux− vy)−αdxdy

= Γ

 β, β′, γ − β − β′

γ

F1(α, β, β′, γ;u, v) (B.4)

where Γ

 a1, a2, ..., am

b1, b2, ...bn

 =
∏m
i=1 Γ(ai)∏n
j=1 Γ(bj)

,

and F1(α, β, β′, γ;u, v) is the hypergeometric function of two variables, see Definition 5.

Relation 5 (Gradshteyn and Ryzhik, 2007, p1020)

F1(α, β, β′, γ;x, x) = 2F1(α, β + β′; γ;x) (B.5)

where F1(α, β, β′, γ;x, x) is the hypergeometric function of two variables (see Definition 5) and

2F1(α, β + β′; γ;x) is the Gauss hypergeometric function (see Definition 4).
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Relation 6 (Gradshteyn and Ryzhik, 2007, p1008)

2F1(α, β; γ; z) = (1− z)−β 2F1(γ − α, β; γ;
z

z − 1
) (B.6)

Relation 7 (Mathai, 1993, p3)

 n

k

 =
(−1)k(−n)k

k!
(B.7)

Relation 8 (Gradshteyn and Ryzhik, 2007, p1008)

2F1(α, β, γ, 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
(B.8)

 
 
 



Appendix C

Computer Programs

All computations in this study were performed using Matlab.

Some computational difficulties were encountered with the gamma functions, as the argument

becomes too large the results no longer converge. To resolve this problem, the continuous form

representation of the Gauss hypergeometric function of one variable and the hypergeometric

function of two variables were determined using rectangular numerical integration. Similarly,

rectangular numerical integration was used for the valuation of the Bayesian estimates of the

Shannon entropy for the Connor and Mosimann bivariate beta, bivariate beta type III and extended

bivariate beta type I priors.

C.1 General Programs

Program: Num2F1.m

function H2F1 = Num2F1(a,b,c,z)

% Calculates the Gauss Hypergeometric function using numerical integration

if b <= 0 || c <= 0,

disp(’Error: Real(b) and Real(c) must be greater than 0’);
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else

width = 0.00001;

area = 0;

for t = 0 :width : 1;

if t == 1,

length = 0;

else

length = (t^(b-1))*((1-t)^(c-b-1))*((1-t*z))^(-a);

end;

area = area + length*width;

end;

H2F1 = area*gamma(c)/(gamma(b)*gamma(c-b));

end;

end
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Program: NumAppellF1.m

function AF1 = NumAppellF1Short(a,b1,b2,c,x,y)

% Calculates the hypergeometric function of two variables

% using numerical integration

if b <= 0 || c <= 0,

disp(’Error: Real(b) and Real(c) must be greater than 0’);

else

width = 0.0001;

area = 0;

for u = 0 :width : 1;

if u == 1,

length = 0;

else

length = u^(a-1)*(1-u)^(c-a-1)*(1-u*x)^-b1*(1-u*y)^-b2;

end;

area = area + length*width;

end;

AF1 = area*gamma(c)/(gamma(a)*gamma(c-a));

% end;

end
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C.2 Bivariate Beta Type I Prior

C.2.1 Correlation

Program: Corr_BBetaI.m

function corr_p1p2 = Corr_BBetaI(piI)

% This function caluclates the correlation between p1 and p2

% for the bivariate beta type I distribution

pi1 = piI(1); pi2 = piI(2); pi3 = piI(3);

corr_p1p2 = -sqrt(pi1*pi2/((pi1+pi3)*(pi2+pi3)));

end
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C.2.2 Shape Analysis

Program: ShapeAnalysis_BBetaI.m

close all; clear; clc;

% This program is used to perform the shape analysis for the bivariate beta

% type I distribution.

pi1 = 2; pi2 = 2; pi3 = 10;

g = gamma(pi1+pi2+pi3)/(gamma(pi1)*gamma(pi2)*gamma(pi3));

[pp1,pp2] = meshgrid(0.01:0.01:1);

f_p_all = ones(size(pp1,1),size(pp2,1));

for i = 1 : size(pp1,1);

for j = 1 : size(pp2,1);

if (pp1(i,j) + pp2(i,j) <=1),

f_p = g*(pp1(i,j)^(pi1-1))*(pp2(i,j)^(pi2-1))* ...

((1-pp1(i,j)-pp2(i,j))^(pi3-1));

f_p_all(i,j) = f_p;

else

f_p_all(i,j) = NaN;

end;

end;

end;

figure;

surf(pp1,pp2,f_p_all);

title([’ \pi_1 = ’,num2str(pi1),’ \pi_2 = ’,num2str(pi2), ...

’ \pi_3 = ’,num2str(pi3)]);

xlabel(’p_1’); ylabel(’p_2’); zlabel(’f(p)’);
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colormap(gray); axis([0 1 0 1 0 Inf]);

view([2 1 3]);

figure;

contour(pp2,pp1,f_p_all);

title([’ \pi_1 = ’,num2str(pi1),’ \pi_2 = ’,num2str(pi2), ...

’ \pi_3 = ’,num2str(pi3)]);

xlabel(’p_2’); ylabel(’p_1’);

colormap(gray);

view([0 -90]);
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C.2.3 Shannon Entropy

Program: ShEntr_BB1.m

function ShEntr = ShEntr_BB1(ppi,n)

% This function calculates the Shannon Entropy for the bivariate

% beta type I distribution

pi1 = ppi(1); pi2 = ppi(2); pi3 = ppi(3);

n1 = n(1); n2 = n(2); n3 = n(3);

b1 = pi1 + n1;

b2 = pi2 + n2;

b3 = pi3 + n3;

b = [b1, b2, b3];

ShEntr = 0;

for i = 1 : 3;

sum_i = -(b(i)/(sum(b)))*(psi(b(i)+1)-psi(sum(b)+1));

ShEntr = ShEntr + sum_i;

end;

end

Program: NumericalAnalysis_BBetaI.m

close all; clear; clc;

% This program is used to conduct the numerical analysis of the Bayesian

% estimate for the bivariate beta type I distribution.
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n1 = 1; n2 = 2; n3 = 10;

n = [n1, n2, n3];

pi1 = 2; pi2 = 2; pi3 = 2;

% Changing pi1

% pi1 = 1; pi2 = 2; pi3 = 2;

% pi1 = 10; pi2 = 2; pi3 = 2;

% Changing pi2

% pi1 = 2; pi2 = 1; pi3 = 2;

% pi1 = 2; pi2 = 10; pi3 = 2;

% Changing pi3

% pi1 = 2; pi2 = 2; pi3 = 1;

% pi1 = 2; pi2 = 2; pi3 = 10;

pi = [pi1, pi2, pi3];

ShEntI = ShEntr_BB1(pi,n);
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C.3 Connor and Mosimann Bivariate Beta Prior

C.3.1 Correlation

Program: Corr_BBetaCM.m

function corr_p1p2 = Corr_BBetaCM(piCM)

% This function caluclates the correlation between p1 and p2

% for the Connor & Mosimann bivariate beta distribution

pi1 = piCM(1); pi2 = piCM(2); pi3 = piCM(3); d = piCM(4);

ep1 = pi1/(pi1+d);

ep12 = (pi1+1)*pi1/((pi1+d+1)*(pi1+d));

ep2 = pi2*d/((pi2+pi3)*(pi1+d));

ep22 = (pi2+1)*pi2*(d+1)*d/((pi2+pi3+1)*(pi2+pi3)*(pi1+d+1)*(pi1+d));

ep1p2 = pi1*pi2*d/((pi2+pi3)*(pi1+d+1)*(pi1+d));

varp1 = ep12 - ep1^2;

varp2 = ep22 - ep2^2;

covp1p2 = ep1p2 - ep1*ep2;

corr_p1p2 = covp1p2/sqrt(varp1*varp2);

end

Program: CorrCM.m

close all; clear; clc;

% This program is used to determine the correlation for the Connor &
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% Mosimann bivariate beta distribution.

pi1 = 2;

pi2 = 2;

pi3 = 2;

outputmat = [];

for d = 0.1 : 0.1 : 200;

piCM = [pi1, pi2, pi3, d];

corrp1p2 = Corr_BBetaCM(piCM);

outputmat = [outputmat;[d,corrp1p2]];

end;

figure;

plot(outputmat(:,1),outputmat(:,2),’k’);

xlim([1,200]);

title([’ \pi_1 = ’,num2str(pi1),’ \pi_2 = ’,num2str(pi2),’ \pi_3 = ’,num2str(pi3)]);

xlabel(’d’);

ylabel(’corr(p_1,p_2)’);
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C.3.2 Shape Analysis

Program: ShapeAnalysis_BBetaCM.m

close all; clear; clc;

% This program is used to perform the shape analysis for the Connor and

% Mosimann bivariate beta distribution

pi1 = 2; pi2 = 2; pi3 = 2;

d = 10;

g = gamma(pi1+d)*gamma(pi2+pi3)/(gamma(pi1)*gamma(pi2)*gamma(pi3)*gamma(d));

[pp1,pp2] = meshgrid(0.01:0.01:1);

f_p_all = ones(size(pp1,1),size(pp2,1));

for i = 1 : size(pp1,1);

for j = 1 : size(pp2,1);

if (pp1(i,j) + pp2(i,j) <=1),

f_p = g*pp1(i,j)^(pi1-1)*pp2(i,j)^(pi2-1)*(1-pp1(i,j)-pp2(i,j))^(pi3-1) ...

*(1-pp1(i,j))^(d-pi2-pi3);

f_p_all(i,j) = f_p;

else

f_p_all(i,j) = NaN;

end;

end;

end;

figure;

surf(pp1,pp2,f_p_all);

title([’ \pi_1 = ’,num2str(pi1),’ \pi_2 = ’,num2str(pi2), ’ \pi_3 = ’,num2str(pi3), ...

’ d = ’,num2str(d)]);
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xlabel(’p_1’); ylabel(’p_2’); zlabel(’f(p)’);

colormap(gray); axis([0 1 0 1 0 Inf]);

view([2 1 3]);

figure;

contour(pp2,pp1,f_p_all);

title([’ \pi_1 = ’,num2str(pi1),’ \pi_2 = ’,num2str(pi2), ’ \pi_3 = ’,num2str(pi3), ...

’ d = ’,num2str(d)]);

xlabel(’p_2’); ylabel(’p_1’);

colormap(gray);

view([0, -90]);
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C.3.3 Shannon Entropy

Program: Calculate_ShEntr_BBCM.m

function output = Calculate_ShEntr_BBCM(n1,n2,n3,pi1,pi2,pi3,dmin,dstep,dmax)

% Numerically

output = [];

for d = dmin : dstep : dmax;

g = gamma(pi1+d) * gamma(pi2+pi3) / (gamma(pi1) * gamma(pi2) * gamma(pi3) * gamma(d));

n = factorial(n1+n2+n3) / (factorial(n1) * factorial(n2) * factorial(n3));

% fix size of grid to ensure that calculations do not run too long

[pp1,pp2] = meshgrid(0.01:0.01:1);

f_post_all = zeros(size(pp1,1),size(pp2,1));

f_entr_all = zeros(size(pp1,1),size(pp2,1));

area_post = 0;

area_entr = 0;

for i = 1 : size(pp1,1);

for j = 1 : size(pp2,1);

if (pp1(i,j) + pp2(i,j) <=1),

f_post = g * n * (pp1(i,j)^(pi1+n1-1)) * (pp2(i,j)^(pi2+n2-1)) ...

* ((1-pp1(i,j)-pp2(i,j))^(pi3+n3-1)) * (1-pp1(i,j))^(d-pi2-pi3);

f_post_all(i,j) = f_post;

area_post = area_post + f_post*0.01*0.01;

if f_post > 0 && isnan(f_post)==0,

f_entr = -f_post*(pp1(i,j)*log(pp1(i,j)) + pp2(i,j)*log(pp2(i,j)) ...

+ (1-pp1(i,j)-pp2(i,j))*log(1-pp1(i,j)-pp2(i,j)));
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end;

f_entr_all(i,j) = f_entr;

area_entr = area_entr + f_entr*0.01*0.01;

else

f_post_all(i,j) = NaN;

end;

end;

end;

ShEntr = area_entr/area_post;

output = [output; [d,ShEntr]];

end;

end

Program: ShEntr_BBCM.m

close all; clear; clc;

% likelihood parameters

n1 = 1; n2 = 2; n3 = 10;

% prior parameters

pi1_1 = 2; pi2_1 = 2; pi3_1 = 2;

pi1_2 = 2; pi2_2 = 2; pi3_2 = 1;

pi1_3 = 2; pi2_3 = 2; pi3_3 = 10;

dmin = 0.1;

dstep = 0.1;
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dmax = 50;

ShEntr_CM = zeros((dmax-dmin)/dstep+2,6);

% Calculate

ShEntr_CM(:,1:2) = Calculate_ShEntr_BBCM(n1,n2,n3,pi1_1,pi2_1,pi3_1,dmin,dstep,dmax);

ShEntr_CM(:,3:4) = Calculate_ShEntr_BBCM(n1,n2,n3,pi1_2,pi2_2,pi3_2,dmin,dstep,dmax);

ShEntr_CM(:,5:6) = Calculate_ShEntr_BBCM(n1,n2,n3,pi1_3,pi2_3,pi3_3,dmin,dstep,dmax);

series1 = [’ \pi_1 = ’,num2str(pi1_1),’ \pi_2 = ’,num2str(pi2_1),’ \pi_3 = ’,num2str(pi3_1)];

series2 = [’ \pi_1 = ’,num2str(pi1_2),’ \pi_2 = ’,num2str(pi2_2),’ \pi_3 = ’,num2str(pi3_2)];

series3 = [’ \pi_1 = ’,num2str(pi1_3),’ \pi_2 = ’,num2str(pi2_3),’ \pi_3 = ’,num2str(pi3_3)];

series = {series1;series2;series3};

plot(ShEntr_CM(:,1),ShEntr_CM(:,2),’-k’,ShEntr_CM(:,3),ShEntr_CM(:,4),’:k’,...

ShEntr_CM(:,5),ShEntr_CM(:,6),’--k’);

title(’ Shannon entropy: Changing \pi_3 ’);

legend(series,’Location’,’SW’);

xlim([dmin,dmax]); xlabel(’d’);

ylim([0.4,1]); ylabel(’Shannon Entropy’);
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C.4 Bivariate Beta Type III Prior

C.4.1 Correlation

Program: ProductMomentBetaIII.m

function EW1H1W2H2 = ProductMomentBetaIII(piIII,h1,h2)

pi1 = piIII(1); pi2 = piIII(2); pi3 = piIII(3); c = piIII(4);

G1 = gamma(pi1 + h1)*gamma(pi2 + h2)/(gamma(pi1)*gamma(pi2));

G2 = gamma(pi1 + pi2 + pi3)/gamma(pi1 + pi2 + pi3 + h1 + h2);

F = Num2F1(pi1+pi2+h1+h2, pi1+pi2+pi3, pi1+pi2+pi3+h1+h2, 1-c);

EW1H1W2H2 = G1*G2*F*c^(pi1+pi2);

end

Program: CorrBBetaIII.m

% This program caluclates the correlation of p1,p2 for a range of c-values

close all; clear; clc;

a1 = 2;

a2 = 2;

a3 = 2;

corr_p1p2 = [];

cmin = 0.1;

cstep = 0.1;
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cmax = 20;

for c = cmin : cstep : cmax;

a = [a1,a2,a3,c];

E_p1_1 = ProductMomentBetaIII(a,1,0);

E_p1_2 = ProductMomentBetaIII(a,2,0);

var_p1 = E_p1_2 - (E_p1_1)^2;

E_p2_1 = ProductMomentBetaIII(a,0,1);

E_p2_2 = ProductMomentBetaIII(a,0,2);

var_p2 = E_p2_2 - (E_p2_1)^2;

E_p1p2 = ProductMomentBetaIII(a,1,1);

cov_p1p2 = E_p1p2 - E_p1_1*E_p2_1;

corr_p1p2_c = cov_p1p2/sqrt(var_p1*var_p2);

corr_p1p2 = [corr_p1p2;corr_p1p2_c];

end;

figure;

plot(cmin:cstep:cmax,corr_p1p2,’k’,cmin:cstep:cmax,0,’k’);

ylim([-1,1]);

title([’ \pi_1 = ’,num2str(a1),’ \pi_2 = ’,num2str(a2),’ \pi_3 = ’,num2str(a3)]);

xlabel(’c’);

ylabel(’corr(p_1,p_2)’);
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C.4.2 Shape Analysis

Program: ShapeAnalysis_BBetaIII.m

close all; clear; clc;

% This program is used to perform the shape analysis for the bivariate beta

% type III distribution.

pi1 = 2; pi2 = 4; pi3 = 2;

c = 40;

g = gamma(pi1+pi2+pi3)/(gamma(pi1)*gamma(pi2)*gamma(pi3))*c^(pi1+pi2);

% [pp1,pp2] = meshgrid(0.01:0.01:1);

% for application use a smaller grid, will make analysis more meaningful

[pp1,pp2] = meshgrid(0.01:0.01:0.2);

f_p_all = ones(size(pp1,1),size(pp2,1));

for i = 1 : size(pp1,1);

for j = 1 : size(pp2,1);

if (pp1(i,j) + pp2(i,j) <=1),

f_p = g*(pp1(i,j)^(pi1-1))*(pp2(i,j)^(pi2-1))*((1-pp1(i,j)-pp2(i,j))^(pi3-1)) ...

*(1+(c-1)*pp1(i,j)+(c-1)*pp2(i,j))^(-(pi1+pi2+pi3));

f_p_all(i,j) = real(f_p);

else

f_p_all(i,j) = NaN;

end;

end;

end;
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figure;

surf(pp1,pp2,f_p_all);

% title([’ \pi_1 = ’,num2str(pi1),’ \pi_2 = ’,num2str(pi2), ’ \pi_3 = ’,num2str(pi3), ...

% ’ c = ’,num2str(c)]);

title(’Adverse Economic Conditions’);

xlabel(’p_1’); ylabel(’p_2’); zlabel(’f(p)’);

colormap(gray); view([2 1 3]);

% axis([0 1 0 1 0 Inf]); % for shape analysis

axis([0 0.2 0 0.2 0 Inf]); % for application

figure;

contour(pp2,pp1,f_p_all);

% title([’ \pi_1 = ’,num2str(pi1),’ \pi_2 = ’,num2str(pi2), ’ \pi_3 = ’,num2str(pi3),...

% ’ c = ’,num2str(c)]);

title(’Adverse Economic Conditions’);

xlabel(’p_2’); ylabel(’p_1’);

colormap(gray); view([0 -90]);
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C.4.3 Shannon Entropy

Program: ShEntr_BBetaIII.m

function ShEntr = ShEntr_BBetaIII(piIII,n)

% This function is used to calculate the Shannon Entropy for the bivariate

% beta type III distribution.

% Note: Numerical integration is used due to technical difficulties

% encountered when using the Bayesian Estimates.

pi1 = piIII(1); pi2 = piIII(3); pi3 = piIII(3);

c = piIII(4);

n1 = n(1); n2 = n(2); n3 = n(3);

g = gamma(pi1+pi2+pi3) / (gamma(pi1) * gamma(pi2) * gamma(pi3));

kc = c^(pi1+pi2);

n = factorial(n1+n2+n3) / (factorial(n1) * factorial(n2) * factorial(n3));

[pp1,pp2] = meshgrid(0.01:0.01:1);

f_post_all = zeros(size(pp1,1),size(pp2,1));

f_entr_all = zeros(size(pp1,1),size(pp2,1));

area_post = 0;

area_entr = 0;

for i = 1 : size(pp1,1);

for j = 1 : size(pp2,1);

if (pp1(i,j) + pp2(i,j) <=1),

f_post = g * n * kc * (pp1(i,j)^(pi1+n1-1)) * (pp2(i,j)^(pi2+n2-1)) ...

* ((1-pp1(i,j)-pp2(i,j))^(pi3+n3-1)) ...

* (1+(c-1)*pp1(i,j)+(c-1)*pp2(i,j))^(-(pi1+pi2+pi3));
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f_post_all(i,j) = f_post;

area_post = area_post + f_post*0.01*0.01;

if f_post > 0 && isnan(f_post)==0,

f_entr = -f_post*(pp1(i,j)*log(pp1(i,j)) + pp2(i,j)*log(pp2(i,j)) ...

+ (1-pp1(i,j)-pp2(i,j))*log(1-pp1(i,j)-pp2(i,j)));

end;

f_entr_all(i,j) = f_entr;

area_entr = area_entr + f_entr*0.01*0.01;

else

f_post_all(i,j) = NaN;

end;

end;

end;

ShEntr = area_entr/area_post;

end
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C.5 Extended Bivariate Beta Type I Prior

C.5.1 Correlation

Program: ProductMomentBetaExt.m

function EW1H1W2H2 = ProductMomentBetaExt(ppi,h1,h2)

pi1 = ppi(1); pi2 = ppi(2); pi3 = ppi(3);

b1 = ppi(4); b2 = ppi(5);

c = ppi(6);

GNum = gamma(pi1+pi2+pi3)*gamma(pi1+h1)*gamma(pi2+h2);

GDenom = gamma(pi1+pi2+pi3+h1+h2)*gamma(pi1)*gamma(pi2);

Const = (b1^(-pi1))*(b2^(-pi2))*(c^(pi1+pi2));

F1 = NumAppellF1Short(pi1+pi2+pi3,pi1+h1,pi2+h2,pi1+pi2+pi3+h1+h2,1-c/b1,1-c/b2);

EW1H1W2H2 = (GNum/GDenom)*Const*F1;

end

Program: Calculate_CorrBBetaExt.m

% This program caluclates the correlation of p1,p2 for a range of c-values

function corr_p1p2 = Calculate_CorrBBetaExt(a_in,cmin,cstep,cmax)

corr_p1p2 = [];

for c = cmin : cstep : cmax;

a = [a_in,c];
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E_p1_1 = ProductMomentBetaExt(a,1,0);

E_p1_2 = ProductMomentBetaExt(a,2,0);

var_p1 = E_p1_2 - (E_p1_1)^2;

E_p2_1 = ProductMomentBetaExt(a,0,1);

E_p2_2 = ProductMomentBetaExt(a,0,2);

var_p2 = E_p2_2 - (E_p2_1)^2;

E_p1p2 = ProductMomentBetaExt(a,1,1);

cov_p1p2 = E_p1p2 - E_p1_1*E_p2_1;

corr_p1p2_c = cov_p1p2/sqrt(var_p1*var_p2);

corr_p1p2 = [corr_p1p2;corr_p1p2_c];

end;

end

 
 
 



APPENDIX C. COMPUTER PROGRAMS 162

C.5.2 Shape Analysis

Program: ShapeAnalysis_BBetaExt.m

close all; clear; clc;

% This program is used to perform the shape analysis for the extended

% bivariate beta type I distribution

pi1 = 2; pi2 = 2; pi3 =2;

b1 = 4; b2 = 4;

c = 1;

g = gamma(pi1+pi2+pi3)/(gamma(pi1)*gamma(pi2)*gamma(pi3))*b1^(-pi1)*b2^(-pi2)*c^(pi1+pi2);

[pp1,pp2] = meshgrid(0.01:0.01:1);

% for application use a smaller grid, will make analysis more meaningful

% [pp1,pp2] = meshgrid(0.01:0.01:0.2);

f_p_all = ones(size(pp1,1),size(pp2,1));

for i = 1 : size(pp1,1);

for j = 1 : size(pp2,1);

if (pp1(i,j) + pp2(i,j) <=1),

f_p = g*(pp1(i,j)^(pi1-1))*(pp2(i,j)^(pi2-1))*((1-pp1(i,j)-pp2(i,j))^(pi3-1)) ...

*(1-(1-c/b1)*pp1(i,j)-(1-c/b2)*pp2(i,j))^-(pi1+pi2+pi3);

f_p_all(i,j) = f_p;

else

f_p_all(i,j) = NaN;

end;

end;
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end;

figure;

surf(pp1,pp2,f_p_all);

title([’ \pi_1 = ’,num2str(pi1),’ \pi_2 = ’,num2str(pi2), ’ \pi_3 = ’,num2str(pi3), ...

’ \beta_1 = ’,num2str(b1), ’ \beta_2 = ’,num2str(b2),’ c = ’,num2str(c)]);

% title(’Favourable Economic Conditions’);

xlabel(’p_1’); ylabel(’p_2’); zlabel(’f(p)’);

colormap(gray); view([2 1 3]);

axis([0 1 0 1 0 Inf]); % for shape analysis

% axis([0 0.2 0 0.2 0 Inf]); % for application

figure;

contour(pp2,pp1,f_p_all);

title([’ \pi_1 = ’,num2str(pi1),’ \pi_2 = ’,num2str(pi2), ’ \pi_3 = ’,num2str(pi3), ...

’ \beta_1 = ’,num2str(b1), ’ \beta_2 = ’,num2str(b2),’ c = ’,num2str(c)]);

% title(’Favourable Economic Conditions’);

xlabel(’p_2’); ylabel(’p_1’);

colormap(gray);

view([0 -90]);
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C.5.3 Shannon Entropy

Program: ShEntr_BBetaExt.m

function ShEntr = ShEntr_BBetaExt(ppi,n)

pi1 = ppi(1); pi2 = ppi(2); pi3 = ppi(3);

b1 = ppi(4); b2 = ppi(5);

c = ppi(6);

n1 = n(1); n2 = n(2); n3 = n(3);

% Numerically

g = gamma(pi1+pi2+pi3) / (gamma(pi1) * gamma(pi2) * gamma(pi3));

kc = c^(pi1+pi2) * b1^(-pi1) * b2^(-pi2);

n = factorial(n1+n2+n3) / (factorial(n1) * factorial(n2) * factorial(n3));

% fix size of grid to ensure that calculations do not run too long

[pp1,pp2] = meshgrid(0.01:0.01:1);

f_post_all = zeros(size(pp1,1),size(pp2,1));

f_entr_all = zeros(size(pp1,1),size(pp2,1));

area_post = 0;

area_entr = 0;

for i = 1 : size(pp1,1);

for j = 1 : size(pp2,1);

if (pp1(i,j) + pp2(i,j) <=1),

f_post = g * n * kc * (pp1(i,j)^(pi1+n1-1)) * (pp2(i,j)^(pi2+n2-1)) ...

* ((1-pp1(i,j)-pp2(i,j))^(pi3+n3-1)) * ...

(1-(1-c/b1)*pp1(i,j)-(1-c/b2)*pp2(i,j))^(-(pi1+pi2+pi3));

f_post_all(i,j) = f_post;

area_post = area_post + f_post*0.01*0.01;
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if f_post > 0 && isnan(f_post)==0,

f_entr = -f_post*(pp1(i,j)*log(pp1(i,j)) + pp2(i,j)*log(pp2(i,j)) ...

+ (1-pp1(i,j)-pp2(i,j))*log(1-pp1(i,j)-pp2(i,j)));

end;

f_entr_all(i,j) = f_entr;

area_entr = area_entr + f_entr*0.01*0.01;

else

f_post_all(i,j) = NaN;

end;

end;

end;

ShEntr = area_entr/area_post;

end
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C.6 Application to Credit Risk

Program: Application_1.m

close all; clear; clc;

% The purpose of this program is to graphically compare the observed

% default rates to GDP

load MoodysDefaultRates.txt;

x = MoodysDefaultRates;

% This data contains the Moody’s default rates from 1930 to 2008 as well as

% the USA seasonally adjusted GDP change

% Standardise values in order to make them comparable

n1 = size(x);

lastn = 29;

z = zscore(x(n1-lastn+1:n1,:));

n = size(z,1);

figure;

plot(1980:2008,z(:,10),’-k’,1980:2008,z(:,11),’:k’,1980:0.05:2008,0,’-k’);

xlim([1980,2008]);

title(’Default Rates and US GDP’);

legend(’Default Rate’,’US GDP’,’Location’,’SE’);
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Program: Application_2.m

close all; clear; clc;

load MoodysDefaultRates.txt;

InvGr = MoodysDefaultRates(:,8);

SpecGr = MoodysDefaultRates(:,9);

GDP = MoodysDefaultRates(:,11);

GoodYears = find(GDP>=prctile(GDP,60));

BadYears = find(GDP<=prctile(GDP,40));

% Divide by 100 since default rates are given as % in report

DRGood = [InvGr(GoodYears),SpecGr(GoodYears)]/100;

DRBad = [InvGr(BadYears),SpecGr(BadYears)]/100;

% Compare univariate distributions - inv grade

figure;

bar([0.002:0.002:0.016],BinInvGrade(DRGood(:,1)),1);

title(’Investment Grade: Favourable Economic Conditions’);

set(findobj(gca,’Type’,’patch’),’FaceColor’,’k’);

xlim([0 0.018]); ylim([0 26]);

xlabel(’Default Rate’); ylabel(’Frequency’);

figure;

bar([0.002:0.002:0.016],BinInvGrade(DRBad(:,1)),1);

title(’Investment Grade: Adverse Economic Conditions’);

set(findobj(gca,’Type’,’patch’),’FaceColor’,’k’);

xlim([0 0.018]); ylim([0 26]);
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xlabel(’Default Rate’); ylabel(’Frequency’);

% Compare univariate distributions - Spec grade

figure;

bar([0.02:0.02:0.16],BinSpecGrade(DRGood(:,2)),1);

title(’Speculative Grade: Favourable Economic Conditions’);

set(findobj(gca,’Type’,’patch’),’FaceColor’,’k’);

xlim([0 0.18]); ylim([0 23]);

xlabel(’Default Rate’); ylabel(’Frequency’);

figure;

bar([0.02:0.02:0.16],BinSpecGrade(DRBad(:,2)),1);

title(’Speculative Grade: Adverse Economic Conditions’);

set(findobj(gca,’Type’,’patch’),’FaceColor’,’k’);

xlim([0 0.18]); ylim([0 23]);

xlabel(’Default Rate’); ylabel(’Frequency’);

% Correlation between good and bad times

CorrGood = corrcoef(DRGood);

figure;

plot(DRGood(:,1),DRGood(:,2),’.k’,’MarkerSize’,14);

title({’Favourable Economic Conditions’;[’Correlation = ’,num2str(CorrGood(1,2))]});

CorrGood = corrcoef(DRGood);

xlabel(’Investment Grade’); ylabel(’Speculative Grade’);

CorrBad = corrcoef(DRBad);

figure;

plot(DRBad(:,1),DRBad(:,2),’.k’,’MarkerSize’,14);

title({’Adverse Economic Conditions’;[’Correlation = ’,num2str(CorrBad(1,2))]});

xlabel(’Investment Grade’); ylabel(’Speculative Grade’);
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% Plot observed bivariate distribution

xInv = 0.002:0.002:0.016;

ySpec = 0.02:0.02:0.16;

edg = {xInv;ySpec};

figure;

hist3(DRGood,’FaceAlpha’,0.85,’Edges’,edg);

title(’Favourable Economic Conditons’);

xlabel(’Investment Grade’); ylabel(’Speculative Grade’);

surfHandle = get(gca, ’child’);

set(surfHandle,’FaceColor’,’interp’, ’CdataMode’, ’auto’);

colormap(gray);

view([2 1 3]);

figure;

hist3(DRBad,’FaceAlpha’,0.85,’Edges’,edg);

title(’Adverse Economic Conditions’);

xlabel(’Investment Grade’); ylabel(’Speculative Grade’);

surfHandle = get(gca, ’child’);

set(surfHandle,’FaceColor’,’interp’, ’CdataMode’, ’auto’);

colormap(gray);

view([2 1 3]);

% Contourplots

hGood = hist3(DRGood,’FaceAlpha’,0.85,’Edges’,edg);

figure;

contour(ySpec,xInv,hGood); colormap(gray);
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title(’Favourable Economic Conditions’);

xlabel(’Speculative Grade’); ylabel(’Investment Grade’);

view([0 -90]);

hBad = hist3(DRBad,’FaceAlpha’,0.85,’Edges’,edg);

figure;

contour(ySpec,xInv,hBad); colormap(gray);

title(’Adverse Economic Conditions’);

xlabel(’Speculative Grade’); ylabel(’Investment Grade’);

view([0 -90]);

% Fit BBetaI

paramBetaI_0 = [2; 2; 2];

% A and b are the constraints of beta I distribution

A = [-1, 0, 0; 0, -1, 0; 0, 0, -1];

b = ones(3,1)*(0);

[paramBetaI_Good,LLHIval_Good] = fmincon(@(paramBetaI_0)LogLikelihoodBetaI ...

(paramBetaI_0,DRGood(:,1),DRGood(:,2)),paramBetaI_0,A,b);

[paramBetaI_Bad,LLHIval_Bad] = fmincon(@(paramBetaI_0)LogLikelihoodBetaI ...

(paramBetaI_0,DRBad(:,1),DRBad(:,2)),paramBetaI_0,A,b);

corr_BetaI_Good = Corr_BBetaI(paramBetaI_Good);

corr_BetaI_Bad = Corr_BBetaI(paramBetaI_Bad);

% Fit CMBBeta

paramBetaCM_0 = [2; 2; 2; 2];

% A and b are the constraints of beta I distribution

A = [-1, 0, 0, 0; 0, -1, 0, 0; 0, 0, -1, 0];

b = ones(3,1)*(0);

[paramBetaCM_Good,LLHCMval_Good] = fmincon(@(paramBetaCM_0)LogLikelihoodBetaCM ...
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(paramBetaCM_0,DRGood(:,1),DRGood(:,2)),paramBetaCM_0,A,b);

[paramBetaCM_Bad,LLHCMval_Bad] = fmincon(@(paramBetaCM_0)LogLikelihoodBetaCM ...

(paramBetaCM_0,DRBad(:,1),DRBad(:,2)),paramBetaCM_0,A,b);

corr_BBetaCM_Good = Corr_BBetaCM(paramBetaCM_Good);

corr_BBetaCM_Bad = Corr_BBetaCM(paramBetaCM_Bad);

% Fit BBetaIII

paramBetaIII_0 = [0.5; 0.5; 50; 0.5];

% A and b are the constraints that the estimated parameters must be

% positive

A = [-1 0 0 0;

0 -1 0 0;

0 0 -1 0;

0 0 0 -1];

b = ones(4,1)*(0);

[paramBetaIII_Good,LLHIIIval_Good] = fmincon(@(paramBetaIII_0)LogLikelihoodBetaIII ...

(paramBetaIII_0,DRGood(:,1),DRGood(:,2)),paramBetaIII_0,A,b);

[paramBetaIII_Bad,LLHIIIval_Bad] = fmincon(@(paramBetaIII_0)LogLikelihoodBetaIII ...

(paramBetaIII_0,DRBad(:,1),DRBad(:,2)),paramBetaIII_0,A,b);

corr_BBetaIII_Good = Corr_BBetaIII(paramBetaIII_Good);

corr_BBetaIII_Bad = Corr_BBetaIII(paramBetaIII_Bad);

% Fit BBetaExt

paramBetaExt_0 = [0.9; 0.9; 20; 2; 2; 0.5];

% A and b are the constraints of beta I distribution

A = [-1, 0, 0, 0, 0, 0;

0, -1, 0, 0, 0, 0;

0, 0, -1, 0, 0, 0;
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0, 0, 0, -1, 0, 0;

0, 0, 0, 0, -1, 0;

0, 0, 0, 0, 0, -1];

b = ones(6,1)*(0);

[paramBetaExt_Good,LLHExtval_Good] = fmincon(@(paramBetaExt_0)LogLikelihoodBetaExt ...

(paramBetaExt_0,DRGood(:,1),DRGood(:,2)),paramBetaExt_0,A,b);

[paramBetaExt_Bad,LLHExtval_Bad] = fmincon(@(paramBetaExt_0)LogLikelihoodBetaExt ...

(paramBetaExt_0,DRBad(:,1),DRBad(:,2)),paramBetaExt_0,A,b);

% Save the files

dlmwrite(’DRGood.txt’,DRGood);

dlmwrite(’DRBad.txt’,DRBad);
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Program: LogLikelihoodBetaI.m

function LLHBetaI=LogLikelihoodBetaI(param,p1,p2)

pi1 = param(1);

pi2 = param(2);

pi3 = param(3);

n = size(p1,1);

% add small number to factors to avoid problems with zero default rates

s1 = sum(log(p1 + 0.000001));

s2 = sum(log(p2 + 0.000001));

s3 = sum(log(1 - p1 - p2 + 0.000001));

g = gamma(pi1 + pi2 + pi3)/(gamma(pi1)*gamma(pi2)*gamma(pi3));

LLHTmp = n*log(g) + (pi1-1)*s1 + (pi2-1)*s2 + (pi3-1)*s3;

% Matlab optimisation constraint: can only do minimisation

% For MLE: minimise negative LLH

LLHBetaI = -LLHTmp;

end

Program: LogLikelihoodBetaCM.m

function LLHBetaCM = LogLikelihoodBetaCM(param,p1,p2)

pi1 = param(1);

pi2 = param(2);

pi3 = param(3);
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d = param(4);

n = size(p1,1);

% add small number to factors to avoid problems with zero default rates

s1 = sum(log(p1 + 0.000001));

s2 = sum(log(p2 + 0.000001));

s3 = sum(log(1 - p1 - p2 + 0.000001));

s4 = sum(log(1 - p1 + 0.000001));

g = (gamma(pi1 + d)*gamma(pi2 + pi3))/(gamma(pi1)*gamma(pi2)*gamma(pi3)*gamma(d));

LLHTmp = n*log(g) + (pi1-1)*s1 + (pi2-1)*s2 + (pi3-1)*s3 + (d-pi2-pi3)*s4;

LLHBetaCM = -LLHTmp;

end

Program: LogLikelihoodBetaIII.m

function LLHBetaIII = LogLikelihoodBetaIII(param,p1,p2)

pi1 = param(1);

pi2 = param(2);

pi3 = param(3);

c = param(4);

n = size(p1,1);

% add small number to factors to avoid problems with zero default rates

s1 = sum(log(p1 + 0.000001));

s2 = sum(log(p2 + 0.000001));
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s3 = sum(log(1 - p1 - p2 + 0.000001));

s4 = sum(log(1 + (c-1)*p1 + (c-1)*p2 + 0.000001));

g = gamma(pi1 + pi2 + pi3)/(gamma(pi1)*gamma(pi2)*gamma(pi3));

LLHTmp = n*log(g) + n*(pi1+pi2)*log(c) + (pi1-1)*s1 + (pi2-1)*s2 + (pi3-1)*s3 ...

- (pi1+pi2+pi3)*s4;

LLHBetaIII = -LLHTmp;

end

Program: LogLikelihoodBetaExt.m

function LLHBetaIII = LogLikelihoodBetaExt(param,p1,p2)

pi1 = param(1);

pi2 = param(2);

pi3 = param(3);

c = param(4);

b1 = param(5);

b2 = param(6);

n = size(p1,1);

% add small number to factors to avoid problems with zero default rates

s1 = sum(log(p1 + 0.000001));

s2 = sum(log(p2 + 0.000001));

s3 = sum(log(1 - p1 - p2 + 0.000001));

s4 = sum(log(1 - ((1-c)/b1)*p1 + ((1-c)/b2)*p2 + 0.000001));

g = gamma(pi1 + pi2 + pi3)/(gamma(pi1)*gamma(pi2)*gamma(pi3));
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const = -pi1*log(b1) - pi2*log(b2) + (pi1+pi2)*log(c);

LLHTmp = n*log(g) + n*const + (pi1-1)*s1 + (pi2-1)*s2 + (pi3-1)*s3 - (pi1+pi2+pi3)*s4;

LLHBetaIII = -LLHTmp;

end
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Program: Application_3_III.m

close all; clear; clc;

tic;

% Assume multinomial parameters are constant (for this example)

n1 = 1;

n2 = 2;

n3 = 10;

n = [n1, n2, n3];

% Create parameter matrix

pi1min = 2; pi1step = 2; pi1max = 10;

pi2min = 2; pi2step = 2; pi2max = 10;

pi3min = 2; pi3step = 2; pi3max = 10;

cmin = 20; cstep = 20; cmax = 100;

xpi1 = pi1min:pi1step:pi1max;

xpi2 = pi2min:pi2step:pi2max;

xpi3 = pi3min:pi3step:pi3max;

c = cmin : cstep : cmax;

npi1 = (pi1max - pi1min)/pi1step + 1;

npi2 = (pi2max - pi2min)/pi2step + 1;

npi3 = (pi3max - pi3min)/pi3step + 1;

nc = (cmax - cmin)/cstep + 1;

xc = repmat(c’,npi3,1);

x3 = sortrows(repmat(xpi3’,nc,1));

x3c = repmat([x3,xc],npi2,1);
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x2 = sortrows(repmat(xpi2’,npi3*nc,1));

x23c = repmat([x2,x3c],npi1,1);

x1 = sortrows(repmat(xpi1’,npi2*npi3*nc,1));

x123c = [x1,x23c,zeros(npi1*npi2*npi3*nc,2)];

% calculate Shannon entropy and correlation

for i = 1 : npi1*npi2*npi3*nc;

ShEntr_III_i = ShEntr_BBetaIII(x123c(i,1:4),n);

corr_i = Corr_BBetaIII(x123c(i,1:4));

x123c(i,5:6) = [ShEntr_III_i, corr_i];

end;

dlmwrite(’BBetaIII_Comb5.txt’,x123c);

toc;
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Program: Application_3_Ext.m

close all; clear; clc;

tic;

% Assume multinomial parameters are constant (for this example)

n1 = 1;

n2 = 2;

n3 = 10;

n = [n1, n2, n3];

% Create parameter matrix

pi1min = 2; pi1step = 2; pi1max = 10;

pi2min = 2; pi2step = 2; pi2max = 10;

pi3min = 2; pi3step = 2; pi3max = 10;

cmin = 20; cstep = 20; cmax = 100;

b1min = 1; b1step = 1; b1max = 5;

b2min = 1; b2step = 1; b2max = 5;

xpi1 = pi1min:pi1step:pi1max;

xpi2 = pi2min:pi2step:pi2max;

xpi3 = pi3min:pi3step:pi3max;

b1 = b1min : b1step : b1max;

b2 = b2min : b2step : b2max;

c = cmin : cstep : cmax;

npi1 = (pi1max - pi1min)/pi1step + 1;

npi2 = (pi2max - pi2min)/pi2step + 1;

npi3 = (pi3max - pi3min)/pi3step + 1;

nb1 = (b1max - b1min)/b1step + 1;
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nb2 = (b2max - b2min)/b2step + 1;

nc = (cmax - cmin)/cstep + 1;

xc = repmat(c’,nb2,1);

xb2 = sortrows(repmat(b2’,nc,1));

xb2c = repmat([xb2,xc],nb1,1);

xb1 = sortrows(repmat(b1’,nb2*nc,1));

xb1b2c = repmat([xb1,xb2c],npi3,1);

x3 = sortrows(repmat(xpi3’,nb1*nb2*nc,1));

x3b1b2c = repmat([x3,xb1b2c],nb2,1);

x2 = sortrows(repmat(xpi2’,npi3*nb1*nb2*nc,1));

x23b1b2c = repmat([x2,x3b1b2c],nb1,1);

xb1 = sortrows(repmat(xpi1’,npi2*npi3*nb1*nb2*nc,1));

x123cb1b2 = [xb1,x23b1b2c ,zeros(npi1*npi2*npi3*nb1*nb2*nc,2)];

% calculate Shannon entropy and correlation

for i = 1 : npi1*npi2*npi3*nb1*nb2*nc;

ShEntr_Ext_i = ShEntr_BBetaExt(x123cb1b2(i,1:6),n);

corr_i = Corr_BBetaExt(x123cb1b2(i,1:6));

x123cb1b2(i,7:8) = [ShEntr_Ext_i, corr_i];

end;

dlmwrite(’BBetaExt_Comb2.txt’,x123cb1b2);

toc;
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