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Appendix A
Complex Laplace-domain transfer functions from state-space equations

Consider the state and output equations of an LTI system (equations 2.5.1.19):

x=Ax+ Bu (A.1a)
y=Cx+ Du (A.1b)

The Laplace-transform of equation A.la is:
sX(s)-x(0)= AX (s)+ BU(s) (A2)
For x(0)= 0, equation A.2 becomes:
sX(s)= AX(s)+ BU(s) (A3)
Solving equation A.3 for X(s) gives:
X(s)=[s1 - 4" BU(s) (A4)
The Laplace-transform of equation A.1b is:
Y(s)=Cx(s)+ DU(s) (A.5)
Substitution of equation A.4 into equation A.5 gives:
¥(s)=(C[sI - 4" B+ D)U(s) (A.6)

The transfer function G(s) is the ratio of the output ¥(s) to the input U(s):

G(s)= 5 (s) _ Clst-AT'B+D (A7)
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Appendix B
Exact solution methods for equations of motion of nonlinear systems

Consider the equation of motion for natural behaviour of an undamped SDOF system with a
general, nonlinear restoring force g(y), as governed by the DE:

my +xg(y)=0 (B.1)

where m is the mass, x is a constant, y and ) are the mass displacement and acceleration
respectively.

Equation B.1 can be written as:

)
dgy +25g(y)=0 (B.2)
Iy m

The time versus displacement relationship is obtained by integrating equation B.2 twice:

ty = —— [ (B.3)
K
\/2— 0 \/f g(x)dz,
m 4]
where ¢ is time, #o corresponds to the time when y =0, ¥ is the displacement when y =0 and

x1 and y» are integration variables. The displacement versus time relationship may be
obtained by inverting equation B.3.

For an odd nonlinear restoring force, i.e. g(~y)=—g(y), the natural period of vibration z, is
given by:

(B.4)

\/ \/ f g(x )dxl

Exact solutions can be obtained in all cases where the integrals in equation B.4 can be

explicitly expressed in terms of Y. For pure powers of displacement g(y)= y", t, is given
by:

4

7, =———y/(n) (B.5)
E_Yu—l
m

where y(n) is a function whose values are given in table B.1, for » ranging from 0 to 7.
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Table B.1:  Values of the function y(n)

[Harris, 1988]
w(n)
1,4142
1,5708
1,7157
1,8541
1,9818
2,1035
2,2186
2,3282

~
-

NN R W~ O

Solutions for polynomials of displacement and velocity-squared damping are given by Harris
[1988]. Exact solutions for forced vibration of nonlinear systems are virtually nonexistent,
except if the system can be represented in a stepwise linear manner [Harris, 1988].
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Appendix C
The perturbation method

Consider the following equation of motion for natural behaviour of a weakly nonlinear SDOF
system:

.. 9 K .
j+aiy+—g(y,y)=0 (C.1)
—_—— m

N ———

lineur
nonlinear

where ay is the linear system natural frequency, « is a small parameter and g is a nonlinear
function of speed y and displacement y. The first two terms on the left hand side of equation
C.1 describe the behaviour of the linear part of the system, while the third, or perturbation
term, accounts for the effects of the weak nonlinearity.

A solution of the following form is assumed for y [Gelb & VanderVelde, 1968]:

2

H)=30)+ £ 0+ £ s+ €2

where y,, ¥, »,, -, are displacement functions of time. These functions are obtained
by solving the following system of linear, non-homogeneous, 2™ order DE’s:

Vo + @iy, =0 (C.3a)
¥ +wgy1 =_g(yo:YO) (C.3b)
.. og /. og ;. )

Fr+ 02y, = =22 (30, y0 —gyg."—(yo,yo )i (C3¢)

a)} .

Equations C.3a to C.3b are solved recursively. The first equation (C.3a) is solved for y, and
Yo With yo and y, known, g, 0g/dy and dg/dp are obtained. Equation C.3b is
subsequently solved for y; and y,, whereafter equation C.3c¢ is solved for y, and 3,. The

solutions of yg, y; and y, are substituted into equation C.2 to obtain y(r). The procedure can

be repeated as many times as the number of terms required in the series expansion in equation
C.2.
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Appendix D
The method of slowly varying amplitude and phase

Consider the following equation of motion for natural behaviour of a weakly nonlinear SDOF
system:

. 2 K .
y+a)0‘y+——g(y,y)=0 D.1)
—— m

linear —

nonlinear

where ay is the linear system natural frequency, « is a small parameter and g is a nonlinear
function of speed y displacement .

A solution of the following form is assumed for ¥ [Gelb & VanderVelde, 1968]:
y(t)= Asiny (D.2)
where 4 and y are functions of time, given by:

A= A(r) (D.3a)
v =yt +06(t) (D.3b)

The following set of approximate DE’s in 4 and & can be derived [Gelb & VanderVelde,
1968]:

2
Ax- Iyg(A siny, Aw, cos t//)cos wdy (D.4a)
27wy
0~ L yg(A siny, Aa, cos t//)cos wdy (D.4b)
2nw, § A

Equations D.4 are solved as follows: The right hand side of equation D.4 a is integrated with
respect to y, resulting in a 1% order separable DE in 4. This DE is solved and its solution
A=4 is obtained. Subsequently, the right hand side of equation D.4b is integrated with
respect to y and another 1*' order DE is obtained. Replacing A by A, the latter DE is solved
to obtain its solution § =49.

The solution of equation D.1 is then:

Wt)= A(t)sin[wyt +6(¢)] (D.5)
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Appendix E
Statistical linearization

Consider a general nonlinear SDOF system with an equation of motion of the form

g(3.7.y)= £(t) (E.1)

where g is the total internal force and fis the stationary gaussian random excitation force with
zero mean. It is assumed that a stationary solution to equation E.1 exists.

The linear equivalent of equation E.1 is:

my+cp+ky=f(r) (E.2)

where m, ¢ and k are the mass, damping coefficient and spring stiffness to be determined,
such that the solution of equation E.2 will give an approximate solution to equation E.1.

In approximating a nonlinear system by a linear system, an error will be made. The error
may be defined as the difference between the solutions of the two systems, an can be written
as:

e=g(3,9,y)-mj-cy—ky (E.3)

The mass, damping coefficient and stiffness are determined by setting the mean square (MS)
error equal to zero, resulting in:

m= E[M} (E.42)
oy

c= E[—————ag 0.0y )J (E.4b)
oy

k= E[M] (E.4¢)
oy

where E[ ] is the expected value of the term in brackets.

The method of equivalent linearization can be applied to a large variety of nonlinear system
types. Examples are systems with cubic stiffening characteristics [Atalik & Utku, 1976],
nonlinear damping characteristics [Atalik & Utku, 1976], hysteretic restoring forces [Wen,
1980], the Duffing oscillator [Budgor et al, 1976] and equations of motion of articulated
vehicles [EIMadany & Dokainish , 1980]. Application of the method to a system with
hysteretic restoring forces, as described by Wen [1980], is discussed next.
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Statistical linearization applied to a system with hysteretic restoring forces

Consider a system whose equation of motion is of the form

my + g(3,7)+ 2(3) = £(t) (E.5)

where y is the dimensionless displacement and £ is the dimensionless force:

<

y=2 (E.6a)

~<

7S
f=% (E.6b)

}

In equation E.5, g is the nonhysteretic component of the restoring force, while z is the
hysteretic component.

The relationship between z and y is given by the following 1* order nonlinear DE:

Z=—y ] }')|.z.|z’"—1 - by

2 +Gy (E.7)
where y and £ are parameters which control the shape of the hysteresis loop, G is the
restoring force amplitude and 7 is an exponent which describes the smoothness of transition
from elastic to plastic response.

From Wen [1980], equations E.5 and E.7 can be written in linear state-space form as

Xx=Ax+ Bu (E.8)

where x and u are the state vector and input respectively:

x={5, z, 3| (E.92)
u=f(t) (E.9b)

A and B are the coefficient and driving matrices respectively, given by:

0 0 0
A=| 0 —k, —c, (E.10a)

B=[o, 0, 1/m]" (E.10Db)

In equation E.10a, & is the post-to pre-yielding stiffness ratio, ¢o 1s the viscous damping ratio
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and ay is the pre-yielding natural frequency:

FY
= ‘}— E.11
Do mY ( )

k, and ¢, are the linearized hysteresis stiffness and damping coefficient. Both k, and ¢,
depend on . For the special case of n=1, k, and c, are given by:

d
ky, =yE Uy'l]+ ﬁE[y' g} (E.12a)

¢, = yE[%ﬂ + fE[]-G (E.12b)

It can be seen that the highly nonlinear system, as described by equations E.5 and E.7, is
replaced by the equivalent linear system, as represented by equations E.8 to E.12. By
comparison, the linear equations are considerably easier to solve than the nonlinear equations.
Linear solutions of the above hysteretic system to gaussian inputs are given by Wen [1980].
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Appendix F
The Describing Function (DF) method

Consider a nonlinear system driven by a harmonic input of the form
u(t) = Usinar (F.1)
where u is the input as a function of time and U is the input amplitude.

The output y(¢), which is generally non-sinusoidal, can be expressed as follows by means of a
Fourier series:

=5 +i [a, cos(icr) +b, sin(iar)) (F.2)
i=]

where the Fourier coefficients are g, and b, are functions of U and @, determined by:

a=— [ y(o(en) (F.3)
;== [' t)eos(iar)d(wt) (F.3b)
b, = i [’ y(t)sin(iar)d (wr) (F.3c)

For an odd nonlinearity, the coefficient ay is zero:
a, =0 (F.4)

In harmonic DF analysis, only the fundamental frequency is considered. Therefore, y(#) can
be approximated by:

y(t)= y,(t)=a, cosawr + b, sinart (F.5)

The output y(2) is written in terms of the output amplitude and phase of the fundamental
frequency as:

,(t) = Y sin(wrt + ¢) (F.6)

where Y are the output amplitude and phase respectively, as functions of i input amplitude and
frequency:

Y =Y({U,o0) (F.7a)
¢ =9(U,0) (F.7h)
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In terms of the fundamental Fourier coefficients, ¥ and ¢ are:

Y =4ja + b (F.8a)

¢ =tan™ (%J | (F.8b)

i
In complex representation, y; can be written as:
y, = Ye/l@+9) (F.9)

The describing function N of a nonlinear system is the ratio of the fundamental component of
the output, to the input:

Yej(a¥+¢)
N = o (F.10)
where N is a function of the input amplitude and frequency:
N=N{U,o0) (F.11)
In rectangular coordinates, N can be written as:
1 .
NU,0)= —E(b] + ja,) (F.12)

The above derivation is only applicable to harmonically excited nonlinear systems. The DF
method can also be extended to analyze nonlinear system behaviour to non-harmonic inputs,
like two-sinusoid inputs, dual-inputs (e.g. DC plus sinusoid), transient and random inputs. N
is tabled for a vast range of nonlinearities, for each of the above input types, by Gelb &
Vander Velde [1968]. Examples of nonlinearities applicable to the analysis of Terfenol-D
characteristics, are saturation and hysteresis. The DF’s of these nonlinearities can be found in
Gelb & Vander Velde [1968].
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Appendix G
Fifth order Runge-Kutta (R-K) method

In the R-K methods, the states and outputs are obtained in the time domain by direct
integration of the state equations. The solution of each state equation is approximated by a
polynomial. The order of the polynomial can vary from 1 order to 5" order and higher. The
higher the order, the more accurate the solution for the same computational effort [Chapra &
Canale, 1985). For this reason, higher order methods are often preferred to lower order
methods.

The R-K methods are discussed in detail by Burden & Faires [1985], Chapra & Canale
[1985], Conte & de Boor [1972], Gerald & Wheatley [1984] and Press et al [1992]. A short
description of the 5™ order method, also known as Butcher’s method, is given below.

Consider a nonlinear time-invariant system, whose state and output equations are of the
following form (see equations 2.5.1.2a and 2.5.1.2b):

X = f(x,u) (G.la)
y= g(x,u) (G.1b)

Equations G.1a and G.1b are solved by dividing time into finite intervals, and by recursively
calculating the states and outputs for successive intervals using simple algebra.

Time at the beginning of the i-th time step is denoted by #. The state and output equations
corresponding to 7 are:

%= fx,u,) (G.2a)
i =glx.u) (G.2b)

where x;, u; and y; respectively represent the state vector, input and output at the beginning of
the i-th time step.

The state vector x..,, at the beginning of the i+1-th time step, is obtained by the following
equation:

X =X, + %(m, +32k, +12k, +32k, + Tk, ) (G.3)

where At is the time step, given by:

At=t,, —t, (G.4)

1+ i

At may be constant, or may be adjusted during simulation to accommodate changing stiffness
of the system. Generally, the smaller At, the more accurate the solutions.

Variables k) to ks in equation G.3 represent the derivatives of the state vector at intermediate
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intervals between ¢ and #,,,. Note that k» does not appear in equation G.3. It is a “dummy”
variable, which is only used to determine k3, &4 and k.

Variables k; to kg are determined recursively by means of the following equations:

k, = f(tn xi) (G.5a)
k, =f(t‘,- +ﬂ, X, +£kl) (G.5b)
? 4 4
At At At
ky= f(t,. +T’ X; +?k, +—é—k2) (G.5¢)
k, = f(t,. +%£’ X, —%kz +(At)k3) (G.5d)
At 3At OAt
k.= t‘+3———, +—k +—k G.5e
5 f( T X; 16 ' 16 4) ( )
3At 2At 12At 12A¢ 8At
k6=f(t,.+At, X = 7 ky + 7 ky + 7 ky - 7 ko + 7 ksj
(G.5%)

The output y,,, for the i+1-th time step is given by:

Yin = g(xm > um) (G.6)
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Appendix H
Actuator nonlinear dehysterized transfer functions

In order to obtain the nonlinear, dehysterized TF's, three sets of simulations are done, one for
each of the input RMS values, i.e. 2,18 V, 1,63 V and 1,09 V. The nonlinear state equations
(equations 2.5.1.11 and 2.5.1.12) are solved in the time-domain by means of the 5" order

Runge-Kutta method. The states are the actuator displacement x,, speed i, and coil current /

(see equation 2.5.1.4). The input is the coil voltage V. The input with the highest RMS
value, i.e. 2,18 V, is applied first. The initial values of the states are set equal to zero.

For each time-step, stress and field are calculated from the states, using equations 2.4.4 and
2.4.10. The magnetostrictive and magnetization parameters, i.e. permeability 4°, Young’s
modulus E, piezomagnetic cross-coupling constant d° and strain constant &, are calculated
from stress and field, using equations 2.5.1.10a to 2.5.1.10d. The state equations are
integrated using equations G.3 and G.5a to G.5f (see appendix G), thereby obtaining the state
vector at the end of each time step. The outputs are calculated in terms of the states at the
end of each time step, using equation G.6. At the beginning of a new time-step, input voltage
is updated and the procedure as set out in this paragraph, is repeated. At the end of the
simulation, outputs for all the time steps are stored. The procedure is repeated for the 1,63 V
and 1,09 V RMS inputs.

The nonlinear dehysterized transfer functions for the three coil input voltages, in terms of the
inputs and outputs, are obtained by means of the following equation:

P
Gljw)==* (H.1)

XX

where G(jw) is the transfer function between the coil input voltage and actuator displacement
output, P, is the cross-spectral density (CSD) between the input and output and P,. is the
power spectral density (PSD) of the input. Since the displacement signal is a simulation
output, no measurement noise is present, resulting in high coherence.

G(jw) in equation H.1 is complex, with a frequency-dependent magnitude and phase angle.
The transfer function magnitude and phase, for a 2,18 V RMS coil input voltage, are shown
in figure H.1.

The DC magnitude is 13,57 xm/V. The resonance frequency is 375 Hz. The maximum
magnitude, at resonance, is 21,88 tm/V. The ratio between the maximum and DC
magnitudes is 1,61. The -3dB bandwidth, i.e. where the magnitude is 70,7% of the DC value,
is 482 Hz. The TF phase decreases linearly from 0 Hz to approximately 300 Hz. This
reduction in phase can be attributed to coil inductance. At 375 Hz, phase decreases more
rapidly with frequency. This phase decrease is due to resonance. Above 482 Hz, the actuator
is operated in its filtering range, where the slope of the phase is approximately equal to that
for frequencies below 300 Hz.
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Similar TF spectra to figure H.1, exist for the 1,63 V and 1,09 V RMS coil input voltages.
These spectra will however not be shown because they correspond almost exactly with the TF
shown in figure H.1. Instead, the maximum and static magnitudes and their ratio, resonance
frequency and -3 dB bandwidth for the three input voltages, are given in table H.1.

DEHYSTERIZED TRANSFER FUNCTION MAGNITUDE: 2,18 V RMS
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Figure H.1: Dehysterized transfer function for a 2,18 V RMS coil input voltage

Table H.1: Nonlinear dehysterized static & dynamic transfer function parameters

Parameter 2,18V 1,63V 1,09V
Static magnitude (TFs): 13,57 pm/V 13,68 tam/V 13,76 tm/V
Maximum magnitude (TFg): 21,88 pm/V 21,95 pm/V 21,99 pam/V
TFr/TFs: 1,61 1,60 1,60
Resonance frequency: 375Hz 375 Hz 375 Hz

-3 dB bandwidth: 483 Hz 482 Hz 481 Hz

It can be seen from table H.1 that the static and dynamic parameters are, for all practical
purposes, independent of input voltage. The dehysterized characteristics can therefore be
considered linear and can be expressed in terms of constant magnetostrictive and
magnetization parameters, i.e. 4, E, d° and &”. The conclusion can be drawn that, for the
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voltage inputs used in the simulations, the actuator is excited inside its linear range, i.e.
outside its saturation range (see figure 2.2.1.6). The linear parameters are calculated in
appendix J and their effects on the linear TF are discussed.



Appendix J
Actuator linear dehysterized characteristics

An equivalent linear TF of the actuator, using constant magnetostrictive and magnetization
parameters, is obtained in this section. The linear TF magnitude and phase are calculated
from the average parameters and compared with the nonlinear TF magnitude and phase. It is
shown that the linear phase spectra closely match the nonlinear spectra, but that the
magnitude spectra differ, especially for frequencies above the resonance frequency.

The average values of 4°, E, d° and &" are calculated as follows from the nonlinear time-
domain simulation outputs:

T =y = _r u° (J.1a)
E=E, == [ B(t)d (3.1b)
= m —_T_ =0 ( .
d° =df =— f d° (1)t (J.1c)
d¥ =df = f d" (i)t (J.1d)

where 7 is time, T is the maximum time and the subscript m denotes the average value of the
particular parameter.

The average parameters for the three coil input voltages, using equations J.1a to J.1d, with
T'=40s, are given in table J.1.

Table J.1: Average linear dehysterized magnetostrictive & magnetization parameters

Parameter 2,18 V RMS 1,63 VRMS 1,09 V RMS
Permeability 4 6,962 fTm/A 6,969 uTm/A 6,977 pT/A
Young’s modulus E: 23,46 GPa 23,36 GPa 23,28 GPa
Piezomagnetic cross-coupling constant 4% 1,088.10° m/A  1,089.10% m/A  1,09.10® m/A
Strain constant d¥; 1,204.10° m/A  1,208.10° /A  1,21.10% m/A

The parameters tabled above and the actuator parameters (m,, G, R., N, I, and 4, from table
2.7.3.1), are used to calculate &, and w, (equations 2.4.22 and 2.4.23) and L, ¢f and Lo
(equations 2.4.45 to 2.4.47). For the dehysterized characteristics, zero damping is used. The
Laplace-domain transfer functions are calculated from equations 2.5.2.1 to 2.5.2.3. The
frequency-domain transfer function magnitude and phase angle are calculated from equation
2.5.3.6a and 2.5.3.6b respectively.
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The linear dehysterized TF magnitude and phase, for a 2,18 V RMS coil input voltage, are
shown in figure J.1. For comparison purposes, the nonlinear 7F magnitude and phase are
also shown. It can be seen from figure J.1 that the TF phase obtained from the linear average
parameters is virtually identical to that obtained from the nonlinear simulations. The linear
and nonlinear TF magnitudes compare well for frequencies below approximately 300 Hz.

However, for frequencies above 300 Hz, the magnitudes differ. The difference increases with
an increase in frequency.

The difference in magnitudes can be attributed to the fact that the 7F calculated from average
parameters does not include the effects of superharmonics. The result would be the same if
the harmonic balance technique were used. The nonlinear TF, on the other hand, was

obtained using the 5™ order Runge-Kutta method. Using this method, at least one

superharmonic for all frequencies, up to 50% of the Nyquist frequency, is included in the
output (see section 2.7.1).
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Figure J.1: Linear and nonlinear dehysterized TF’s for a 2,18 V RMS input

The linear, dehysterized TF parameters for an input voltage of 2,18 V RMS, using the
average values of 4° E, d° and d” in table J.1, are given in table J.2. For comparison
purposes, the nonlinear TF parameters, from table H.1, are also given.
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Table J.2: Linear and nonlinear TF characteristics for a 2,18 V RMS input

Parameter Nonlinear Linear
Static magnitude (TFs): 13,57 pm/V 13,00 tan/V
Maximum magnitude (TFR): 21,88 tm/V 23,52 pm/V
TFR/TFS: 1,61 1,81
Resonance frequency: 375 Hz 385Hz

-3 dB bandwidth: 483 Hz 500 Hz

_ A comprehensive list of the linear characteristics, for each input voltage, is given in table J.3.

Table J.3: Linear characteristics for 2,18 V, 1,63 V and 1,09 V RMS input voltages

Parameter 2,18 VRMS 1,63 V RMS 1,09 V RMS
Do 1,400.10° 1,397.10° 1,392.10°

qo 1,077.10'° 1,071.10'° 1,065.10'°

a1 7,754.10° 7,715.10° 7,683.10°

72 2486 2482 2476

03 1 ] 1

1° 6,962.10° Tm/A 6,969.10° Tm/A 6,977.10°° Tm/A
E 23,46 GPa 23,36 GPa 23,28 GPa

d° 1,088.10°% A/m 1,089.10°® A/m 1,090.10®% A/m
d" 1,204.10® A/m 1,208.10° A/m 1,210.10°® A/m
So 331,3 Hz 330,6 Hz 330,0 Hz

Sty 397,6 Hz 396,6 Hz 395,8 Hz

Lo 15,9% 15,9% 15,8%

L, 2,304 mH 2,306 mH 2,309 mH

of 0,6643 0,6640 0,6635

L, 1,287 mH 1,289 mH 1,292 mH
RJ/L, 395,7 Hz 395,0 Hz 394,12 Hz

Fy 27,03 N/A 27,01 N/A 26,98 N/A

Note that the effective damped natural frequency of the actuator exceeds the undamped
natural frequency. The reason is that £, is the uncoupled (mechanical) natural frequency of
the actuator, as given by equation 2.4.22, while Jagr 18 the imaginary part of the complex pole
of the coupled TF (see equations 2.6.11 and 2.6.12a).

Table J.3 shows that the dehysterized parameters vary slightly for different RMS inputs. This
is however not the case if hysteresis effects are taken into account (see appendix K).
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Appendix K
Actuator linear characteristics, including hysteresis effects

Actuator linear characteristics, including hysteresis effects, are calculated using the iterative
harmonic balance technique. The technique is explained in more detail in section 2.7.2. The
permeability 4°, strain constant @ and damping coefficient ¢, as well as the static and
dynamic parameters, are input voltage- and frequency-dependent. The effects of hysteresis
on E and d” are insignificant in comparison with its effect on 47 and @ (see section 2.3) and
are therefore neglected.

Harmonic voltages, whose RMS-values correspond with those of the random voltage inputs
used in the time-domain simulations, are used as inputs. This is done to allow a direct
comparison between the dehysterized and hysteresis characteristics. For each voltage
amplitude and frequency, the field amplitude H,, permeability 4, strain constant ¢ and
damping coefficient c, are calculated. The values of E and d°, for the appropriate voltage
input, are obtained from table J.3 (see appendix J).

The frequency band is 0,01 Hz to 600 Hz. Frequency resolution varies according to the slope
of the magnitude curve with respect to frequency. At low frequency, where the slope is low,
a low resolution is used. As the slope increases, resolution is increased.

1, E, d° and d”, together with m,, G, R., N, I, and 4, (from table 2.7.3.1), are used to calculate
k, and @, (equations 2.4.22 and 2.4.23), L, ¢f and Lo (equations 2.4.45 to 2.4.47). The
dimensionless damping factor ¢ is obtained from equation 2.4.25. The TF numerator and
denominator polynomial coefficients are calculated by means of equation 2.5.2.4, table
2.5.2.1 and equations 2.5.2.5. The transfer function magnitude and phase for each frequency
are calculated from equation 2.5.3.6a and 2.5.3.6b respectively.

The field strength frequency spectrum for a 2,18 V RMS input is shown in figure K.1. The
field amplitude at 0,01 Hz is 17,62 kA/m. From 0,01 Hz to 328 Hz, field amplitude
decreases. At 328 Hz, a gap appears in the spectrum, where the iterative harmonic balance
technique fails to give convergence. The frequency range of non-convergence is 328 Hz to
332 Hz. The gap is situated at the minimum field amplitude (4156 A/m). For frequencies
above 332 Hz, field increases until a local peak is reached at 440 Hz. From 440 Hz to
600 Hz, field amplitude decreases with an increase in frequency.

Similar spectra can be shown for the 1,63 V RMS and 1,09 V RMS inputs. The ranges of
non-convergence for these inputs are 327 Hz to 331 Hz and 324 Hz to 331 Hz respectively.
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FIELD STRENGTH FREQUENCY SPECTRUM: 2,18 V RMS
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Figure K.1: Field strength frequency spectrum, including hysteresis: 2,18 V RMS

The frequency spectrum of permeability, including hysteresis, for a 2,18 V RMS input
voltage, is shown in figure K.2. The permeability at 0,01 Hz is 5,57 HTm/A. Permeability
decreases from 0,01 Hz to 328 Hz, where 4 is 0,62 4Tm/A. For frequencies from 328 Hz to
332 Hz, permeability cannot be calculated, due to the convergence problem explained above.
Above 332 Hz, permeability increases with frequency until a local peak is reached at 440 Hz.
For frequencies above 440 Hz, permeability decreases with an increase in frequency.
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Figure K.2: Permeability frequency spectrum, including hysteresis: 2,18 V RMS
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The frequency spectrum of the strain constant, including hysteresis, for a 2,18 V RMS input
voltage, is shown in figure K.3. The strain constant at 0,01 Hz is 9,52.10° m/A. Strain
constant decreases from 0,01 Hz to 328 Hz, where g is 1,27.10° m/A. Above 332 Hz, strain
constant increases until a local peak is reached at 440 Hz. For frequencies above 440 Hz,
strain constant decreases with an increase in frequency.
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Figure K.3: Strain constant frequency spectrum, including hysteresis: 2,18 V RMS

For comparison purposes, the spectra of the strain constants for 1,63 V RMS and 1,09 V
RMS inputs are shown together with that of the 2,18 V RMS input (see figure K.4). It can be
seen that strain constant increases with an increase in input voltage.

The frequency spectrum of the damping coefficient, for a 2,18 V RMS input voltage, is
shown in figure K.5. The damping coefficient at 0,01 Hz is 1,31.10° Ns/m. A sharp notch
appears between 328 Hz and 332 Hz. At the latter frequency, the damping coefficient is
4,59 Ns/m. For a frequency range of 0,01 Hz to approximately 200 Hz, damping coefficient
varies hyperbolically with frequency. In this range, the mathematical relationship between
frequency and damping coefficient is:

_ 13076
f

where fis frequency and ¢ is damping coefficient.

c(f) (K.1)
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Figure K.4: Strain constant frequency spectra, including hysteresis, for 2,18 V,

1,63 V and 1,09 V RMS coil input voltages

The hyperbolic relationship between damping coefficient and frequency was discussed in
section 2.3, where hysteresis models of Terfenol-D were derived (see also equation 2.3.15).
On a logarithmic scale, the damping coefficient characteristic between 0,01 Hz and 200 Hz is
a straight line, as shown in figure K.5.

The magnitude and phase of the transfer function for a 2,18 V RMS input, including
hysteresis, are shown in figure K.6, together with the dehysterized magnitude and phase.
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Figure K.5: Damping coefficient frequency spectrum for 2,18 V RMS input
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DEHYSTERIZED & HYSTERESIS TF MAGNITUDES: 2,18 V RMS
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Figure K.6: Dehysterized and hysteresis transfer functions for a 2,18 V RMS input

At 0,01 Hz, the magnitude for hysteresis behaviour is 10,2 w/V, compared with 13,57 pm/V
for dehysterized behaviour (see table H.1). The resonance frequency and maximum
magnitude for the hysteresis 7F are 355 Hz and 17,7 4m/V respectively, compared with
375 Hz and 21,88 m/V for the dehysterized 7F. The inclusion of hysteresis effects therefore
reduces magnitude at 0,01 Hz by 24,8%, resonance frequency by 5,3% and maximum
magnitude by 19,1%.

Magnitude decreases slightly from 0,01 Hz to approximately 190 Hz, which can be attributed
to coil inductance. At approximately 250 Hz, magnitude gradually increases with frequency.
Between 328 Hz and 332 Hz, magnitude rises sharply with frequency. From 328 Hz to
370 Hz, magnitude is almost constant. Above 370 Hz, a gradual reduction in magnitude sets
in. The -3 dB bandwidth is 475 Hz, which is 1,5% lower than in the dehysterized case.

The phase angle displays a peculiar characteristic, especially at low frequencies. At 0,01 Hz,
phase is considerably lower that in the dehysterized case. The reason is the extremely high
damping coefficient, i.e. 1,31.10° Ns/m, at 0,01 Hz (see also figure K.5). This phase
characteristic is typical of hysteretic systems.

For frequencies from 0,01 Hz to 328 Hz, the slope of the phase, with respect to frequency, is

lower than in the dehysterized case. Between 328 Hz and 332 Hz, phase decreases sharply.
At 332 Hz, the phase is considerably lower than in the dehysterized case. Above 332 Hz, a

K.5



gradual phase reduction sets in, until 600 Hz, where the phases of the dehysterized and
hysteresis TF'’s are approximately equal.

A summary of the most important hysteresis characteristics at 0,01 Hz and resonance, for a
2,18 V RMS input, is given in table K.1.

Table K.1: Hysteresis characteristics at 0,01 Hz and resonance for a 2,18 V RMS input

Parameter 0,01 Hz Resonance (355 Hz)
Field amplitude H, 17618 A/m 7946 A/m
Permeability /_[U ' 5,57.10'6 Tm/A 3,63.10'6 Tm/A
Young’s modulus £ 23,46 GPa 23,46 GPa
Piezomagnetic cross-coupling constant d° 1,088.10° m/A 1,088.10° m/A
Strain constant d# 9,522.10° nVA 6,338.10° m/A
Damping coefficient ¢ 1,31.10° Ns/m 24,31 Ns/m

TF magnitude 10,2 zm/V 17,7 tm/V

TF phase -0,1263 rad -2,205 rad

Stroke length (17,5 V p-p) 178,5 1m 309,8 tm

The transfer function spectra for 1,63 V and 1,09 V RMS inputs are shown in figures K.7 and
K.8 respectively. Fora 1,63 V RMS input, the magnitude at 0,01 Hz is 9,27 m/V, which is
32,2% lower than in the dehysterized case. The maximum magnitude of 17,9 zam/V occurs at
345 Hz, a reduction of 18,5% in maximum magnitude and 8% in resonance frequency, in
comparison with the dehysterized case. The -3 dB bandwidth is 470 Hz, which is 2,5% lower
than in the dehysterized case.

Fora 1,09 V RMS input, the magnitude at 0,01 Hz is 7,42 tm/V, which is 46% lower than in
the dehysterized case. The maximum magnitude of 18,1 zm/V occurs at 340 Hz, a reduction
of 17,7% in maximum magnitude and 9,3% in resonance frequency, in comparison with the
dehysterized case. The -3 dB bandwidth is 445 Hz, which is 7,5% lower than in the
dehysterized case.

A graphical comparison between the hysteresis transfer functions for the 2,18 V, 1,63 V and
1,09 V RMS inputs, is shown in figure K.9. The effect of input voltage on the TF spectra, as
discussed above, is clearly visible. Furthermore, a typical nonlinear softening characteristic

is displayed. This is due to the voltage dependence of the strain constant, as shown in figure
K4,
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Figure K.7: Dehysterized and hysteresis transfer functions for a 1,63 V RMS input
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Figure K.8: Dehysterized and hysteresis transfer functions for a 1,09 V RMS input
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Figure K.9: Hysteresis transfer functions for 2,18 V, 1,63 V and 1,09 V RMS inputs
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Appendix L
Exact separation of variables method

Consider equation 2.8.2.1:

o*w o'w
p.vA.\' atz +E.s‘1.v ax4 :P (L'l)

] [N

N . W
mass  term siffness  term

Using separation of variables, the exact solution to equation L.1 is expressed as:

x t = i¢l ql (t (L'2)

where ¢(x) is the i-th normal mode shape of the beam at a position x on the beam and qi(t) is
the i-th modal amplitude at time 7.

The equation of motion for natural behaviour of the beam, from equation L.1, is:

o*w 3w
RNy S L3
P at_ 5 B 4 ( )

nass  1erm stiffiress  term

For natural behaviour, ¢; is a harmonic function of time:
g, =sinw;t (L4

where @ is the i-th angular natural frequency. The differential equation describing the i-th
normal mode shape, is

d‘o,
dx/ -B/®, =0 (L.5)
where /£ is the i-th eigenvalue, given by:
1
p A 5 4
.= '_’La)f L.6
(24t .6
The general solution of equation L.5 is:
®,(x)=4,cos f,x + B, sin B,x +C, cosh f,x + D, sinh f,x L.7)

The values of f, depend on the beam supports. Tabulated values of £ for cantilever, simply-
supported, clamped-clamped and clamped-free beams, are given by Harris [1988], Thomson
[1993] and Tse et al [1978]. In most of these references, only the first four to six eigenvalues
are given.
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Appendix M
Derivation of system state-space model

The forced modal equation of motion of the system (equation 2.8.5.1) is:
M§G+C4+Kqg=0 (M.1)

where M, C* and K" are normal mode mass, damping and stiffness matrices respectively and
Q is the modal excitation force vector, given by:

=1
Q= -E:o O (x)F(x,t)dx (M.2)
F'is the excitation force at any point x, at time ¢:
F=F(x,z) (M.3)
In a more concise matrix form, equation M.2 can be written as:
O=0TF (M.4)
The coordinates x,, and x,, of the actuator attachment points are:

Xg =0 (M.5a)
X, = (M.5b)

Substitution of equations M.5 into equation M.2 and writing the resulting equation in the
form of equation M.4, gives:

Fal
0=[07(0) o7 U] i (M.6)
a2

F. and F,, are the actuator excitation forces, which (from section 2.4) can be expressed as:

H
F, = ’”ﬁgw—- I (M.7a)
T
H
F, = ArENd” (M.7b)
a2 Gl 2
T

where /) and /; are the two actuator coil currents.

The modal equation of motion is obtained by substitution of equations M.7a and M.7b into



equation M.6 and by subsequent substitution of the resulting equation into equation M.1:

q I
A;ENd M7(0) o7 (1) ' (M.8)

G+27ZQ4¢ + Q%g =
2

where Z is the diagonal modal damping matrix, whose elements are given as follows in terms
of the damping coefficient C;,, mass M, and natural frequency Q, of the i-th normal mode:

*

C

Z. = i M.9
! 2MiiQii ( )
The coil current equations are:
A;ENd° R
l=_——~T-—dw(0,t)— °11+lV, (M.10a)
GlrL, L, L,
A;ENd° R 1

=T 1) - =51 +—V, M.10b
2 Gl L, (0.1) Ly 2 L, * ( )

where 7; and 7 are the coil input voltages and w(0,t) and w(/,f) are the vertical
translational speeds at the actuator attachment points, given by:

w(0,¢)
wl,1)

®(0)4(¢) (M.11a)
®()4(t) (M.11b)

Substitution of equations M.11 into equations M.10 gives:

5 __ A;ENd° d)(o)q_&l 0114, +L1 017 o2

i, Glrlo 1 o()|" Lolo 1]|,] Zolo 1||w,

Combining equations M.8 and M.12 and writing the resulting system of equations in state-
space form, gives:

({a}] [0 I 0 Mg} ) T 00 ]
.. 2 ATENdH *—1 T T .
~ = i @
{4} Q 270 a. M [©7(0) @"()]|| (g} 00 |
] r= 4 rt .
: £
I, A ENd° (0) R 10 I, (1o
L)) | Girly | q)) Lo 1 )] [Felo 1]
(M.13)
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The outputs can be chosen to be the translational and rotational displacements of the
instrument. The rotational displacement, which is equal to the LOS angle 6, is of prime
importance. The translational displacement is not required, since it does not determine LOS
accuracy. Two other outputs, which are of importance, are the vertical displacements w; and
w, at the instrument attachment points x; and x, on the support structure. The difference
between these two outputs, divided by the instrument length, gives the LOS angle 6.

Displacement w is given by:

wy = w(x;,1) = D(x, )g(r) (M.14)
Displacement w;, is given by:

wy = w(x,,1) = D(x, )q(¢) (M.15)

The angular displacement & of the optical instrument is:
9([) = —(w2 - wl) (M.16)

Substitution of equations M.14 and M.15 into equation M.16 gives:

o(1) =%(CD(x2) — a(x,))g(r) (M.17)

Equations M.14, M.15 and M.17 are combined as follows in one output equation:

[ fe)} o} fo o)) {4)]
fol2)} {0} o o} 14}

Wy b= J ! (M.18)

wy




Appendix N
Derivation of the complex Laplace-domain transfer function of a
hydraulically-gained magnetostrictive actuator

A hydraulically-gained Terfenol-D actuator is schematically shown in figure N.1.

equivalent mechanical model is shown in figure N.2.

PISTON FITH CONCENTRATED

TRICTIRAL Mo "
b ]

IORICLIC FLUID N

TERRENOL - D ROD - || Iy,

?kfluid A\d

[ | —

é %]\'T A\h
Rl )

Figure N2: Equivalent mechanical model of the hydraulically-gained actuator

The derivation that follows, will be done for a static base, i.e. x, =0.

N.1
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Bulk modulus and equivalent linear liquid stiffness

The bulk modulus K, of a fluid is defined as the ratio of the change in pressure dP, to the
change in volume dV per unit volume V-

K,=—— (N.1)

which gives:

dP = fV”— av (N.2)

Multiplication of equation N.2 with the Terfenol-D rod cross-sectional area 4 gives:

AdP = A—Ilf’idr/ (N.3)

The infinitesimal change in the force transmitted by the fluid dF;,., is given by:
dF ;.. = AdP (N.4)
The infinitesimal change in fluid volume is given by:
dV = Ad(x, - x,) (N.5)
S}lbstitution of equations N.4 and N.5 into equation N.3 and rewriting the resulting equation
gives:

dFﬂuizl _ AzK/}
d(xu —x,) v

(N.6)

It can be seen from equation N.6 that the rate of change of the force transmitted by the fluid,
with respect to the deflection of the rod, is directly proportional to the rod area squared,
directly proportional to the fluid bulk modulus and inversely proportional to the fluid volume.
4 and K}, are constant, while ¥ is not. Equation N.6 is therefore nonlinear. In order to obtain
a linear force-deflection characteristic, equation N.6 must be linearized. This is done below.

During excitation of the actuator, the fluid volume will contain a DC, or reference component
V.sand a fluctuating component AV:

V=V, +AV (N.7)
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Substitution of equation N.7 into equation N.6 gives:

dFﬂuitl _ A ? K B

d(x, —x,) - Vi +AV

(N.8)

Dividing both the numerator and denominator of the right hand side of equation N.8 by V.,
gives:

A’K,
dF, . V.,
Shuid - ref (N.9)
d(xa - xi) 1 + _A_K
V/-e_/'

Most hydraulic fluids have high bulk moduli. AV/V,, is therefore relatively small for most
hydraulic fluids, so that the numerator on the right hand side of equation N.9 can be
approximated by:

~1 N.10
? (N.10)

Substitution of equation N.10 into equation N.9 gives:

dF Shiid — A : K B

d(x” - xi) Vre.f

(N.11)

It can be seen from equation N.11 that the equivalent linear liquid stiffness kj,, is given by:

A’K,

Vrcf/

kﬂnid = (N.12)

Deflection of the Terfenol-D rod
Consider figure N.2. The deflection x, of the rod is determined by the force balance equation:
k_ﬂnid(xi _xu)_ ki"xa +‘FII: O (N'13)

where [ is the coil current, F, is the force per unit current and k, is the rod stiffness. F, and &,
are respectively given by:

_ AENd"

F, (N.14a)
I,

ky = A%E— (N.14b)
.



Rewriting equation N.13 gives:

k,.
x” - Shiid xi + F‘/ [ (N-IS)
k_/hli(/ + kT kﬂuia' + k’/'

The displacement gain is given as follows in terms of x, and x,:
G=2x (N.16)

Substitution of equation N.16 into equation N.15 gives the deflection of the rod as follows in
terms of x, and [:

k,.
x, =t X B (N.17)
k./luicl + k'l' G kﬂui(l + k7'

Equation of motion

The equation of motion of the piston is:

¥o=—L 4% (N.18)

where P is the fluid pressure and 4, is the piston cross-sectional area.

The displacement gain factor, in terms of the piston and rod areas, is given by:

G="- .19
© (N.19)

Substitution of equation N.19 into equation N.18 gives:

., P4
X = + X,
m.G

(N.20)

Substitution of equation N.16 into equation N.20 and simplification of the resulting equation
gives:

PA
¥ =e— N.21
X m (G - 1) ( )

The force exerted by the rod on the fluid, is given by:

P4 = kﬂuid (xa - xi) (N'22)
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Substitution of equation N.22 into equation N.21 gives:

kﬂuid
¥ =—"—(x —x, N.23
ey e ) (N-23)

Substitution of equation N.16 into equation N.23 and simplification of the resulting equation
gives:

+ k.ﬂuid x, = k.ﬂ"i‘l x, (N.24)
mG(G-1)" m(G-1)

Substitution of equation N.17 into equation N.24 gives:

k., k.. k..
X, + Sl = S LT il 1) (N.25)
' m‘\.G(G - 1) ' ms(G - l) kﬂ”id + kT G k_/,"id +k,

Collecting terms containing x, on the left hand side gives:

k,. k. k,.
..X;\, + Sid 1— Jhiid x‘. _ }TI Shid ] 1 (N.2 6)
Com GG kg k) m(G=1) Ky + Ky

Simplification of equation N.26 gives the equation of motion as follows in terms of x, and I:

: k g k.
j‘_ + k7 Shiid JXV _ E [ Sluid ]1 (N.27)
U omG(G-WYkyy +ke ) m(G-)\ Ky +

Coil current equation

The coil current equation of an ungained magnetostrictive actuator is given by:

° R
_AENd i ey, Ly (N.28)
1L, L, I

Substitution of equation N.17 into equation N.28 gives:

kﬂuid x\ + Fl

__AENd [ % 1) ey (N.29)
I'I'LO kjh/id + k'l' G k{/luia' + k'l' LO LO
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Collecting terms containing / on the left hand side gives:

. c ., k i ~Nd°
1+( 5 ) kN I= —( S J b Nd X, Ry (N.30)
k,/mid + k'/' L, k_ﬂm'd + k'/' GLo L, L,

The term £, / (kﬂ”,d + kT) is expressed as:

ky' _ 1 _ k_/luit/

- (N.31)
k_/lui(l + k'l' kﬂm'd + k'l'

Substitution of equation N.31 into equation N.30 gives the coil current equation as follows in
terms of x, and I

k e | k 1 ,Nd°
1+[1— Lo JF’Nd 1=_( fuid ]k’Nd w-fepi Ly sz
k Shiid +k T Lo kﬂuid +k T GLO Lo Lo

State-space equations

The equation of motion (N.27) and coil current equation (N.32) are simplified by defining the
following two constant parameters o and f:

k

o = — S (N.33a)
k_/,m.d +k,
A=1+(1-a) by Nd” (N.33b)
0
Substitution of equation N.33a into equation N.27 gives the equation of motion as:
X +a udl =« _5 I (N.34)

—_—X.
’ mG(G-1) " m, (G -1)
Substitution of equations N.33 into equation N.32 and dividing both sides of the resulting
equation by f gives the coil current equation as:

jo_okNa R 1, (N.35)

T 6L, T, AL
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The equation of motion (N.34) and coil current equation (N.35) are combined into a single set

of state-space equations, in the following familiar form:

X=Ax+ Bu
y=Cx+ Du
where
,
X = {x,, X, I}
is the state vector,
u=Vy
is the coil voltage input,
V=X,
is the actuator displacement output,
0 1
k,
A=|- 0
m,G(G - 1)
0 _ak,Nd°®
i B GL,

is the coefficient matrix,

B=| 0
I
| AL |
is the driving matrix,
C=[1 0 0]
is the output matrix and
D=0

is the transmission matrix.

N.7
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(N.36b)

(N.37)

(N.38)

(N.39)

(N.40)

(N.41)

(N.42)

(N.43)



Coil voltage to displacement TF
The coil voltage input to displacement output TF is obtained from:

X.(s)

u(s)

=C[sI-4]"B+D (N.44)

Substitution of equations N.40 to N.43 into equation N.44, and using the relationships for &;
and F; in equations N.14, gives the TF as:

a  AENG"
X9 5 m(G-hT,
6 AR, L__AE +a_2[AEN)Z d’d’ | a 4E R,
B L, m,G(G - N, g\l m,G(G— )L, BmG(G-1), L,
(N.45)
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Appendix P
Displacement gain factor for elliptical gain mechanism

Consider figure 3.4.1.4. The undeformed lengths of the major and minor axes of the ellipse
are given by b and a, respectively. The displacement gain factor G is the ratio of the change
in length Aa of the minor axis, to the change in length Ab of the major axis:

_Aa

G==22
Ab

(P.1)

It is however more convenient to obtain an equation for the gain factor in terms of the change
in length of the major axis only, since this will make it possible to obtain the output
displacement of the gain mechanism for a given input displacement. The derivation of this
equation is done as follows. Exact and approximate equations for the perimeter of an ellipse
are given and compared. It will be shown that the approximate equation is reasonably
accurate for a/b ratios ranging from 0,1 to 1. The approximate equation is then used to derive
an expression for Aa in terms of a, b and Ab. The latter equation is substituted into equation
P.1 to give the gain factor.

The exact equation for the perimeter of an ellipse, from Spiegel [1968], is:
/2

P, =4b J'\/l —k*sin’ 0 4o (P.2)
0

where P, is the perimeter, 6 is a dummy variable, which ranges from zero to the included
angle between the major and minor axes, i.e. 772, and k is a dimensionless constant, which
depends on the lengths of the major and minor axes:

k= ulll (P.3)

Division of equation P.2 by b, gives the ratio of the exact perimeter, to the length of the major
axis:

b

/2
i =4J'\/1—kzsi1129d0 (P.4)
0

The integral in equation P.4 is an incomplete elliptical integral of the second kind and does
not have a closed-form solution. The solution can be obtained numerically.

As an alternative, the following approximate equation can be used [Spiegel, 1968]:

P, ~ 2n‘/%(a2 + bz) (P.5)
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From equation P.5, the ratio of the approximate perimeter to the length of the major axis, is

obtained as:
P 2
Lenog X (ﬁj +1 (P.6)
b 21\b

The approximate and exact P/b ratios, for a/b ratios from 0,1 to 1, together with the
percentage error of the approximate P,/b ratio, are given in table P.1.

Table P.1: Approximate and exact P,/b ratios for different a/b ratios

a’b Approximate P/b Exact P/b % Error
(Equation P.6) (Equation P.4)
0,10 4,4650 4,0574 10,05
0,20 4,5309 4,2052 7,74
0,30 4,6385 4,3910 5,64
0,40 4,7851 4,5993 4,04
0,50 49673 4,8444 2,54
0,60 5,1812 5,1065 1,46
0,70 5,4232 5,3817 0,77
0,80 5,6897 5,6725 0,30
0,90 5,9773 5,9732 0,07
1,00 (circle) 6,2832 6,2832 0,00

It can be seen from table P.1 that the aproximate P,/b ratio, as obtained from equation P.6, is
acceptably accurate for the given range of a/b ratios.

Equation P.6 is subsequently used to derive an equation for G in terms of @, b and Ab. It is
assumed that the perimeter P, stays constant, irrepective of Ab.

Replacing the approximate equation P.6 with an equation, squaring both sides, and rewriting
gives:

(P.7)

For a constant perimeter, b can be increased to b+Ab, and a can be simultaneously decreased
to a—Aa, without affecting the left hand side of equation P.7. Replacing a with a—Aa and
b with b+Ab in equation P.7, gives:

9

2P"_, =(a-aa)’ +(b+ Ab)’ (P.8)
=

pP.2



Equations P.7 and P.8 are equal, therefore:
(a-0a)’ +(b+Ab)° =a® +b° (P.9)
Simplification of equation P.9 gives the following quadratic equation in Aa:
(8a)" - 2a(4a) +[ 2685 + (a8)' | = 0 (P.10)

The roots of equation P.10 are:

Aa=ax.|a’ —2bAb +(Ab)’ (P.11)

Rejection of the largest root in equation P.11 gives Aa as follows in terms of @, b and Ab:

Aa=a—+Ja® - 2bAb+(8b)’ (P.12)

Substitution of equation P.12 into equation P.1, gives the following expression for G in terms
of a, b and Ab:

a—+Ja® —2bAb +(Ab)’
- Ab

G (P.13)
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Appendix Q
Exact and approximate gain factors for octagonal flexural gain mechanism

Consider figure 3.4.1.5. The displacement gain factor is the ratio of the change in height of the
octagonal gain mechanism to the elongation of the rod:

G=—+ Q.1

where x, is the product of the strain £in the rod and the rod length l,:
x, =&, Q.2)
and x_ is given by:
x, =2(h, — 1) @3)
The initial height 4, of the slanted beam is given by:

hy, =rsiné, Q4

and the final height 4 is given by:

h

\/rz - (r cosf, + %"—j- Q.5

The final height is obtained in terms of the rod strain and length, by substitution of equation
Q.2 into equation Q.5:

h= \/rz - (r cosf, + %) (Q.6)

Substitution of equations Q.4 and Q.6 into equation Q.3 gives x, as follows:

X, = Z{rsin 6, — \/rz - (r cos@, + %—) ] (Q.7)

The exact gain factor is obtained by substitution of equations Q.7 and Q.2 into equation Q.1:

2
rsiné, —\/r2 —(rcos@o +ﬂJ
5 2

&,

G= (Q.8)
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Approximate gain factor
An approximate equation for the displacement gain, in terms of 8,, is subsequently derived.

From equation Q.8:

G, —rsiné, =—_[r* —| rcosé, +—€l—’—) Q.9
2 2
Squaring both sides of equation Q.9 gives:

2 2
(__G;l,. —rsin 6’0) =rl- (r cosf, + E—;’—j (Q.10)

Expanding terms on both sides of equation Q.10 gives:

Gel, Y Al
( ;lj —Gélyrsing, +r’sin’ 6, = r* — r? cos’ 6, — &l,r cosb), —(7’) (Q.11)

Neglecting 2" order terms and noting that sin’ §, +cos’6, =1, equation Q.11 reduces to:
- Géd,rsing, = —&l,rcosd, (Q.12)
From equation Q.12, the following approximate equation for G, in terms of 8, results:

G =~ cot 6, (Q.13)

A graphical comparison between the gain factors calculated with equations Q.8 and Q.13, for
initial angles ranging from 5° to 30°, an active rod length of 35 mm, strain of 1000 pe and
slanted beam radius of 19 mm, is shown in figure Q.1.

The error of the approximate gain factor, relative to the exact gain factor, is shown in figure
Q.2. It can be seen that the approximate gain factor is sufficiently accurate for initial angles
ranging from 5° to 30°, i.e. for gains ranging from 1,7 to 11,4. The error is less than 5% for
angles larger than 5,8° and less than 1° for angles larger than 12,8°.
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Figure Q.1: Approximate and exact gain factors versus initial angle of slanted beam
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Figure Q.2: Error of approximate gain factor versus initial angle of slanted beam
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Appendix R
Volume of a permanent magnet

Consider figure 3.4.2.1. The fluxes in the magnet, Terfenol-D rod and air gap between the
end caps and magnet, are respectively given by:

¢m = BmAm (R'la)
¢r=Brd; (R.1b)
$g =By A, (R.10)

me B T and
A,and A, are the

where ¢, , 4, and ¢, are the fluxes in the magnet, rod and air gap respectively. B

B, are the flux densities in the magnet, rod and air gap respectively. 4

m 2

cross-sectional areas of the magnet, rod and air gap respectively.

The flux in the magnet is equal to the flux in the rod and the flux in the air gap:

bn=0r =9, (R.2)

Substitution of equations R.1a to R.1c into equation R.2 gives:

B, = Brdr (R.32)
Ag
B, =Brdr (R.3b)
Alﬂ
The total magnetomotive force in the loop is zero:
H,l, + Hplp + Hl, =0 R.4)

where H,, is the demagnetizing force in the magnet and H, and H . are the field in the rod

and the field in the gap respectively. /,, I, and I, are the magnet, rod and gap lengths
respectively.

In equation R.4, it is assumed that the permeability of the end caps is infinite. The
assumption is justifiable, for two reasons. In the first place, the end caps are made of steel,
which has a relatively high permeability. Secondly, the end caps are relatively thin in
comparison with the rod length.

Equation R.4 can be written as:

m-m
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The field in the gap is given by:

H, =% (R.6)

where s =47107 Tm/ A4 is the permeability of free space.

Substitution of equation R.6 into equation R.3a gives:

=2t R.7)
H OAg
Subsequent substitution of equation R.7 into equation R.5 gives:
B, Al
Hmlm == s B HTIT (R's)
H OA g
H, is obtained as follows from equation R.8:
Br Azl
Hy=——| 2700 gy (R.9)
lm Ho Ag
Multiplying equation R.3b with equation R.9 gives:
B,A;l
BmHm =- BTAT ( e _ HTZT] (R-].O)
Am lm Ho Ag
The magnet volume 7, is given by:
Vm = Am lm (R'll)
Substitution of equation R.11 into equation R.10 gives:
B, A7l
BmHm == BTAT ( e HTIT] (R.12)
Vm Ho Ag
Rewriting equation R.12 gives:
Al
y = Bede | g Brdid (R.13)
BmHm :uOAg
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The flux density in the rod is a function of the field in the rod:
Br = B(Hy) (R.14)
The required field in the rod is equal to the bias field:
H,=H, (R.15)

Substitution of equation R.15 into equation R.14 gives the flux density in the rod in terms of
the bias field:

B = B;(H,) (R.16)

Substitution of equations R.15 and R.16 into equation R.13 gives:

vV, = By (H, )4; H,l, _M (R.17)
BmHm /uOA&'
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Appendix S
Maximum coil power for electromagnetic field biasing

The coil current, in terms of the magnetic field, is given by (see equation 3.4.2.7):

I =£]€_—H (S.1)

The coil voltage, in terms of the field, is given by (see equation 3.4.2.10):

V= % R +ao’LH (S.2)

(4

The coil power is the product of the coil voltage and coil current:
P=VI (S.3)

Substitution of equations S.1 and S.2 into equation S.3 gives the following equation for coil
power in terms of magnetic field:

P=(%) JR? + 0’2 H? (S.4)

Parameters which are of particular importance in the analysis of the electromagnetic field
biasing, are the maxima of the coil current, voltage and power. For excitation frequencies
that are considerably lower than the coil R/L, ratio, the phase angle of the coil can be
ignored. It can therefore be assumed that the maximum voltage and current coincide with the

maximum field. By sustitution of H = H,,, into equations S.1, S.2 and S.4, the maximum
current, voltage and power are given by:

by

max N max

L. r5—>
Vmax = Wr R02 + w2 L(Z) Hmax (SSb)
] 2
Pma\ = (FT) v Rc2 + w2 L% Hl%lax (S.SC)

In equations S.5, the maximum field is the sum of the bias field H, and the amplitude H , of
the AC component of the field:

I (S.5a)

Hmax = Hb + HA (S6)
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By substitution of equation S.6 into equations S.5, the maximum coil current, voltage and
power are expressed as follows:

Loy = l—T(Hb +H,) (S.7a)

!
Vo =WTJR3 +o’ L} (H, + H,) (S.7b)
ma‘( = (FT) + o L2 (H/, +H ) (S7C)
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Appendix T
Fundamental natural frequency of a simply-supported beam
with a concentrated mass attached at the centre
and which is subjected to a compressive axial force

The fundamental natural frequency of a beam with a concentrated mass at the centre, and which
is subjected to an axial force acting at the beam ends, is analyzed in the following steps. The
fundamental natural frequency of a simply-supported, uniform beam is first analyzed in the
absence of any concentrated mass or axial force. The effect of the concentrated mass is then
added. For the purpose of simplifying the analysis, the concentrated mass is expressed in terms
of an equivalent density, which is added to the beam material density to give the total distributed
beam density.

The next step will be to write the fundamental natural frequency of a uniform beam, which is
subjected to an axial force. The frequency is then adjusted by replacing the beam material
density with the total distributed density, to include the effect of the concentrated mass.

The fundamental angular natural frequency @ of a simply-supported uniform beam, in the
absence of any concentrated mass, can be obtained from the following equation:

4
w2 = (ﬁj ET (T.1)
I,) pA;

where E is Young’s modulus of the rods, 7 is the second moment of area of the rod cross-section,
p1is the density of the rod material, 4, is the rod cross-sectional area and I, is the rod length.

The relationship between the natural frequency £ and the angular natural frequency a is:

fi= El;a)] (T.2)

By taking the square root of the terms on both sides of equation T.1, and substitution of the
resulting equation into equation T.2, the fundamental natural frequency is obtained as:

1 (2 [E
fl_ﬁ(?) E (T.3)

An equation of the same form as equation T.3, for the fundamental natural frequency of a beam
with a concentrated mass attached at the centre, is required. This will facilitate inclusion of the
effect of the axial force. To this end, the concentrated mass is first expressed in terms of an
equivalent density. The equivalent density is then added to the beam material density to give the
distributed density of the beam.
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The equivalent density p,, is given by the following equation:

2m
= < T.4
Pa="1 (T.4)

where m_ is the concentrated mass.
The distributed density p,,,. is the sum of the beam material density and the equivalent density:

Paiar =P +p eq (T'S)

Substitution of equation T.4 into equation T.5 gives the distributed density as follows in terms of
the beam material density and concentrated mass:

2m
b = 1+ d T.6
p(l/.w p( pAlllj ( )

The fundamental natural frequency of the beam with a mass attached at the centre, is expressed
as follows in the form of equation T.3:

2

1 {x E]

fi=— (_) (T.7)
27[ l'l' p(li.\'er'I'

where p,.,. is given by equation T.6.

Substitution of equation T.6 into equation T.7 gives the fundamental natural frequency of a
simply-supported beam with a concentrated mass at the centre, as:

(T.8)

o 1 (zz) EL
" omfte2m, (a1, \1) \ pdy

It can be seen from equation T.8 that the addition of a concentrated mass at the beam centre
lowers the fundamental natural frequency.

The effect of the axial force on the fundamental natural frequency of the beam can now be
included. The fundamental natural frequency of a uniform, simply-supported beam subjected to

an axial compressive force F, acting at the ends, can be obtained from the following equation
[Tse et al, 1978]:

Y EI '
o} z(ij __(EJ b (T.9)
Ir) pAr \lp) pdy
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AUC 1usL CLLL UL WIS LIgHL [dnd S1IA€ O €quanon (.Y represents the natural rrequency ot the
uniform beam, as given by equation T.1, while the second term corrects for the axial force. Note
that the second term is negative for a compressive force, implying that a compressive force
lowers the beam natural frequency. By substitution of equation T.2 into equation T.9 and taking
the square root on both sides of the resulting equation, the fundamental natural frequency of a
uniform beam subjected to an axial force at the ends, is given by:

4 2
1 7| EI T\ F
cHTEDE o
2z \Ip) pAr \lp) pAr
In order to include the effect of the concentrated mass on the natural frequency, the material
density p in equation T.10 is replaced with the distributed density P

1 Y E > F
V2 V2
fi=— (—j —(——J —t (T.11)
2z \\Ir Paiste At Ir)  PgisnAr

Finally, by substitution of equation T.6 into equation T.11, the fundamental natural frequency of
a simply-supported beam with a concentrated mass attached at the centre and which is subjected
to compressive axial force, is given by:

4 2
fi=me (f—) El - (—”—] Fy (T.12)
22 \\Ip) p(1+2m,[pArls)Ar \1p) p(1+2m,]pdrl;) 4;
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Appendix U
Linear and nonlinear system identification models and techniques

U.1  Linear system identification models and techniques

The objective of linear identification is to obtain a system in transfer function or state-space
form from measured data. Different models have been developed for this purpose, such as
the following: AR (Auto Regressive), MA (Moving Average), ARX (Auto Regressive with
eXogenous inputs), ARMA (Auto Regressive Moving Average), ARMAX (Auto Regressive
Moving Average with eXogenous inputs) and ARIMA (Auto Regressive Integrated Moving
Average). In mechanical system identification terminology, “exogenous inputs” refers to
measurement noise.

The ARMA model is widely used for discrete time-domain identification of linear systems.
The model is a combination of the AR and MA models. Output at the current time step is
expressed in terms of previous outputs, previous inputs and the current input, using the
discrete delay element z”'. The current output 1s given by:

Y(z)= Y(z)i az* + U(z)fbkz-" (U.1.1)

where ¥{(z) is the z-domain output, U(z) is the z-domain input, 4, is the k-th output delay gain
and b, is the k-th input delay gain. N is the number of output delay elements used in the
model and M is the number of input delays. The z-domain TF is given by:

M
bzt
ROk

=k (U.1.2)

N

U(z) 1- Zakz"‘
k=1

G(z)

Regression methods are used to determine the gains. Regression methods will be discussed
in short later.

Time-domain model from free-decay system response

The method used for obtaining system parameters from free-decay response is known as the
complex exponential method. The output is written as a linear series of exponentially
decaying functions in complex conjugate pairs. Each function is represented by a modal
amplitude and an eigenvalue. A number of methods for determining the amplitudes and
eigenvalues exist, such as the Prony and Ibrahim time-domain (ITD) methods [Ewins, 1991].
The Prony method is limited in its application by the fact that the number of poles contained
in the response data must be known in advance and the data must be noise-free. Many
techniques have been developed to improve the performance of the method, two of which are
based on singular value decomposition (SVD) and oversized eigenmatrix methods.
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Identification models for time-varying systems

Various model types may be used to represent characteristics and behaviour of time-
dependent systems, such a discrete-time and state-space models. In both model types,
characteristics vary with time. In discrete-time models, the @,’s and b,’s in equation U.1.2 are
functions of time. Identification of time-varying systems is described in more detail by
Bittanti et al [1992] and Kashyap & Rao [1976]. The difference between time-invariant and
time-dependent state-space models was discussed in short in section 2.5 (see equations
2.5.1.1 to 2.5.1.3). In linear time-dependent state-space systems, state and output matrices
are of the form A = A(f), B = B(#), C = C(t) and D = D(f). If a discrete-time model of the
system is known, state and output matrices can be obtained from the coefficients a, and 5;.

Regression techniques

Regression techniques are used to determine system model coefficients. Least-squares (LS)
models are generally used for off-line identification of parameters. This method of
identification may however be time-consuming.

In order to speed up the process, real-time identification tools, such as exponentially-
weighted recursive least-squares (RLS) algorithms, have been developed. RLS identification

is described by, inter alia, Goodwin & Sin [1984], Kim [1997] and Schoukens & Pintelon
[1991]. The least-square error is given by Cowan & Grant [1985] as:

n+l

Ep = w5 - (U.1.3)
i=1

where E is the identification model error and w is an exponential weighting function of time,

such that 0 <w < 1. ) is the modelled output and y is the measured output. £ is a function
of the coefficient, or parameter vector, C:

E=E(C) (U.1.49)

r . . .
‘where C= {a1 Ay sy by by, b A,,} . The parameter vector is determined in real-
time.

For off-line identification, the weighting function is unity. The parameter vector is obtained
by setting the partial derivatives of E with respect to each of the parameters, equal to zero:

—=0, =12, N+ M+1 (U.1.5)

where C, the /-th element of the coefficient vector.

For linear-in-the-parameters models, the solution of equation U.1.5 can be obtained using
orthogonal, linear LS solution techniques. For nonlinear-in-the-parameters models, the
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Gauss-Newton and Newton-Raphson methods are generally used. The Gauss-Newton
method is described in appendix V.
Laplace- and frequency domain TF models from discrete time-domain models

The complex Laplace-domain TF of a system whose time-domain TF is known, is obtained
by substitution of z with e’ in equation U.1.2:

z=e" (U.1.6)

where s is the complex Laplace-domain differential operator and T is sample time. The
transfer function G(s) can be written in the form:

Gls)= k=t (U.L7)

where the p,’s and g¢,’s are the numerator and denominator polynomial coefficients
respectively.

The complex w-domain TF of a system whose time-domain 7F is known, is obtained by
substitution of z with e¢’*" in equation U.1.2:

z=e’" (U.1.8)

The transfer function G(fw) can be written in the following form:
G(jw)= ";0— (U.1.9)

where the p,’s and ¢,’s are the numerator and denominator polynomial coefficients
respectively, which are equal to those in equation U.1.7.

The polynomial coefficients can be determined if the a,’s and b,’s in equation U.1.2 are
known. If not, the TF model must be available in some other form, such as measured spectra.
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Frequency-domain models from measured TF spectra

The objective is to obtain system TF spectra that match the experimentally measured spectra
as closely as possible. A vast number of @ domain identification techniques exist. The
technique used will mainly depend on system characteristics, e.g. linearity and number of
degrees of freedom. Linear frequency-domain identification techniques can broadly be
classified as SDOF and MDOF identification techniques.

Frequency-domain identification of an SDOF system can be done by means of the peak-
amplitude method, circle fit method and the so-called inverse method [Ewins, 1991].
Receptance properties are used in the peak amplitude and circle fit methods to determine
system characteristics, while inverse receptance properties are used in the “inverse method”.

The receptance curve (X/F) of an SDOF system displays, inter alia, a peak amplitude and two
frequencies where the amplitudes are 70,7% of the peak amplitude. The frequency where the
peak occurs, is the natural frequency f,. The two frequencies where the amplitudes are 70,7%
of the peak amplitude, are the half-power points. The half-power bandwidth is denoted by Af.
The dimensionless damping factor ¢ is given by the equation ¢'= 2Af/ f;. This identification
method is known as the peak amplitude method. Stiffness and mass are respectively given
by:

-1

k= [(X/F)}M] (U.1.102)

m=k/(27f,)’ (U.1.10b)

The Nyquist plot of the receptance of an SDOF system is a circle in the complex plane. This
circle is known as the modal circle. Natural frequency, damping factor and modal amplitude
can be calculated from the circle properties. The procedure is not given here, but is described
in full by Ewins [1991]. This method is known as the circle-fit method and is widely used for
frequency-domain identification of SDOF systems.

An alternative to the circle-fit method, is the “inverse” method. In the complex plane, the
inverse receptance curve (F/X) produces a horizontal straight line. The maximum real value
of F/X is k, the spring constant. The intercept of the line with the imaginary axis gives the
damping co directly. The frequency at the origin of the graph, i.e. where the real and
imaginary axes cross, is the natural frequency.

Three types of MDOF frequency-domain identification techniques are discussed here. The
first type is the circle-fit method, which is an extension of the SDOF circle-fit method. The
method is described by Ewins [1991]. The method cannot be used if the modes are closely-
coupled or if damping is extremely light. (Closely coupled modes occur in systems where the
natural frequencies are closely-spaced or where damping is high, or both).

A more general approach to multi-mode curve-fitting is an LS data fit to measured TF
frequency spectra in complex form. Depending on reliability of measured data and system
characteristics, more accurate data fits are generally obtained than with the circle fit method.
One disadvantage of the method is that the LS problem is nonlinear, which requires iterative
solution techniques, such as the Newton-Raphson and Gauss-Newton methods. As is the
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case with all iterative techniques, starting values in the range of convergence of the numerical
system, are required. Furthermore, poles of the fitted 7F may be unstable, even for globally
stable plants. The LS method for frequency-domain identification is discussed in short by
Ewins [1991].

The third method is identification using overdetermined systems, as described by Braun &
Ram [1987]. Model order is assumed higher than that of the physical system. The method
was developed to overcome the problem of specifying model order in the presence of noise.
Singular value decomposition is used to solve the LS data fitting problem.

State-space identification of linear systems

State-space identification techniques can broadly be classified as direct and indirect
techniques. Indirect techniques are applied to convert existing time-, frequency- or Laplace-
domain models to state-space models. Direct models are used to obtain state-space models
from measured spectra without intermediate steps.

Conversion of s-domain models to state-space models is described by Schwarzenbach & Gill
[1986]. The TF (Y/U) is written as the product of two functions in s:

Y(s)  Y(s) V(s) (U.L1D)

where Y(s)/V(s) is the numerator, divided by the highest power of s, and V(s)/U(s) is the
denominator, divided by the highest power of s. ¥/U is written as a linear DE and expressed
in canonical state-space form. The output is expressed in terms of the state vector and input,
in the form of equation 2.5.1.3b.

A similar technique can be used to convert discrete-time models to discrete state-space form

if the a, and b, coefficients in equation U.1.2 are known. The state and output equations of a
linear discrete system are:

x(k +1) = Ox(k) + Cu(k) (U.1.12a)
y(k) = Hx(k) + Ju(k) (U.1.12b)

where x(k), u(k) and y(k) are the k-th state vector, input and output respectively. @, I', H and
J are the coefficient-, driving-, output- and transmission matrix, respectively.
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The discrete state and output matrices are related to their respective continuous equivalents
by means of the following equations [Franklin et al, 1990] and [Liu & Miller, 1995]:

Dol (U.1.13a)
r= fe"’”Bdn (U.1.13b)
H=C (U.1.13¢)
J=D (U.1.13d)

where T is the sample period and 7 is an integration variable.

State-space models can be directly obtained from measured spectra, using, for instance, the
Frequency domain Observability Range Space Extraction (FORSE) algorithm.  The
algorithm is explained in detail by Liu et al [1996]. It uses proper state-space
parameterization and Singular Value Decomposition (SVD) to ensure good numerical
properties for multivariable and high dimensional structural systems. It achieves high
accuracy in the frequency domain by overparameterizing the model. The FORSE algorithm
is an extension of the ORSE time-domain identification algorithm [Liu & Miller, 1995].

U.2  Nonlinear system identification models and techniques

Techniques for determining the parameters of nonlinear systems from measured data can
broadly be classified as time-domain techniques, frequency-domain techniques, force-state
component identification and identification using neural networks.

Time-domain identification techniques for nonlinear systems

Similar models to the linear time-invariant models have been developed for time-domain
identification of nonlinear systems. Two of the most popular models are as the NARX
(Nonlinear Auto Regressive with eXogenous inputs) and NARMAX (Nonlinear Auto
Regressive Moving Average with eXogenous inputs) models. The NARX model is a special
case of the NARMAX model. The NARMAX model is described by Chen et al [1989] and
Worden et al [1994]. Othogonal LS data fit techniques, such as the classical Gram-Schmidt
(CGS) and modified Gram-Schmidt (MGS) schemes, Householder transformation and Givens
method can be used to determine model parameters [Chen et al, 1989].
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Force-state component identification

Force-state component identification is done to obtain the restoring force £in a component or
structure in terms of the state vector x and its derivative with respect to time, x.

The equation of motion is written in the following form:

mx + f(x,x) = p(t) (U.2.1)
where p(f) is the load vector.

S can be determined for a large variety of nonlinearities, e.g. nonlinear spring and nonlinear
damping characteristics, nonlinearities with memory and combinations of linear and
nonlinear stiffness and damping.

Characteristics may be represented mathematically, i.e. by f (x,ic), or graphically, by a

3-dimensional force-state map. Force-state component identification is described in more
detail by Masters et al [1996], Worden & Tomlinson [1988] and Wright & Al Haddid [1991].

Frequency-domain identification of nonlinear systems

Nonlinear frequency-domain identification can broadly be classified as SDOF identification,
modal analysis (for MDOF systems), and identification using time-domain inputs. The
SDOF and modal analysis identification techniques are, in essence, extensions of linear
system identification methods. Two SDOF identification techniques are the circle fit method,
as described by Ewins [1991] and the use of response-surface plots, as explained by Dimas &
Pardoen [1988].

Modal analysis identification methods for MDOF systems include the Hilbert transform
method, the use of functional series (Volterra method) and range-dependent linear
identification. The Hilbert transform method is a well-known linearization technique in the
fields of numerical signal processing of filters, acoustics and physics. It is extended to
MDOF mechanical system identification by Vinh et al [1984] and Simon & Tomlinson
[1984]. The frequency response function (FRF) of an MDOF system, for a sinusoidal input,
is expressed in terms of an equivalent linear TF. The method can be applied to systems with
strong nonlinearities and no a priori assumption of the nonlinearities is required. The
disadvantage, however, is that the method is more difficult to apply to identification
procedures where random excitation is used.

The Volterra system model consists of two parts, i.e. a linear system model and a nonlinear
extension to the model, using higher order terms. In the @w-domain, the linear term is
expressed by a classical Fourier transform of the 7F. The nonlinear terms are written as
multiple convolutions, using Volterra kernels. The wdomain representation of the nonlinear
part is obtained by taking the multi-dimensional Fourier transform of the higher order terms.
Two difficulties associated with the method are the number of terms required for accurate
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modelling and efficient methods of computing multi-dimensional Fourier transforms
(MDFT’s). The Volterra method is explained in more detail by Tomlinson [1986].

A third method is range-dependent linearization. The system is assumed linear for a given
input energy level. Linear identification is done for each input energy level, using linear
MDOF techniques. The effects of nonlinearities on the @-domain FRF for a constant input
energy level are ignored. This method is applicable if the system is weakly nonlinear or if the
nonlinearity only has a significant influence outside the frequency band of interest. The
disadvantage is that characterization tests must be done for each input energy level in order to
determine the effect of the nonlinearity on the FRF.

Nonlinear frequency-domain identification is often done from measured time-domain inputs
and responses, using methods such as the NARMAX method. Application of the NARMAX
method to nonlinear frequency response estimation is described by Billings et al {1988]. The
NARMAX method is a convenient method of expressing inputs and outputs as higher order
series. The model is validated in the time domain and transformed to the frequency-domain.
The procedure is as follows: The input is first assumed to be harmonic. The input is
substituted in the NARMAX model and the output amplitude at the given frequency is
calculated, using harmonic balance. A second harmonic is added to the input. The output
amplitude is calculated as a function of the two input frequencies. The procedure is repeated
until the amplitudes of all the desired frequencies have been obtained.

Identification using neural networks

Neural network identification makes use of parallel distributed processing to identify the
internal forces of structure-unknown nonlinear dynamic systems typically encountered in the
field of applied mechanics [Masri et al, 1992]. Identification of the restoring force of an

SDOF system is described by Masri et al [1993]. The restoring force g(y,y) is written in
terms of the measured input u(¢), acceleration y'(t) and mass m as:

g(y,y) = u(r) - mi\(r) (U.2.2)

Measured signals are discretized and fed into the neural network. Network output is an
approximate restoring force g(y, y). The identification procedure consists of two phases, i.e.

the network learning phase and the evaluation phase. The procedure is described in detail by
Masri et al [1993].
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Appendix V
Gauss-Newton method applied to LS identification in the
frequency domain

The difference between the modelled TF and experimentally-determined TF is known as the
estimation error and is given by:

e=G-G (V.1)

where e is the error, G is the modelled TF and G is the experimentally-determined TF. G is
known at discrete frequencies, thus the error can only be evaluated at these frequencies. The
error e, at the r-th frequency is:

e.=G -G (V.2)

where G, and G,. are the measured TF and approximate TF at the r-th frequency, given by:

G, =G(jw,) (V.3a)

G =G(jo,) (V.3b)
It can be seen from equations V.2 and V.3 that the error varies with frequency. As a globally

accurate model is required, the error squared is summed and minimized over the frequency
band. The global error is given by:

E=)e; (V4)

where E is the global error and of the model and R is the number of discrete frequencies.

Both G and G are complex (see equations V.3). The global error can therefore be expressed
as the sum of the error of the real term squared, plus the error of the imaginary term squared
[Schoukens & Pintelon, 1991]:

E= i{(Re{G,}— RelG.f +(im{G.} - m{6, il (V.5)

r=1

E is a nonlinear function of the polynomial coefficient vector C:

E=E(C) (V.6)
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Cis given as follows in terms of the 7F numerator and denominator polynomial coefficients:

,
C:{pmpla"'ap/m %a%s"':%/} V.7)
where M and N are the numerator and denominator polynomial orders respectively.

From equation V.4, E can be expressed in matrix notation as:
E=ee vV.8)

Substitution of equation V.1 into equation V.8 gives:
e=-(6-6fl6-¢) (V.9)

where G and G are R x 1 vectors and Eisa 1 x 1 scalar.

The objective of LS identification is to determine the parameter vector C, which minimizes E.
C1s obtained by setting the partial derivatives of E with respect to each of the parameters C,,
equal to zero and by solving for C;:

O 0, =12, N+ M+2 (V.10)
ac,

where C, is the /-th element of the coefficient vector.

The solution of equation V.10 is determined iteratively. An initial estimate of C is made,
which will not necessarily satisfy equation V.10. The initial estimate is known as the starting
value. Using the estimated C, the error gradient dE/8C is calculated, from which the change
AC in the parameter vector is obtained. C is added to AC to obtain an updated parameter
vector. The updated C is subsequently used to calculate OE/6C. 1If the error gradient is
sufficiently close to zero, the procedure is stopped. This condition is known as the stopping
criterion.  If the stopping criterion is not met, AC, C and OE/3C are updated and the
procedure is repeated until the stopping criterion is met.

The starting value must be selected within a limited range, known as the system range of
convergence. If the starting value is selected outside this range, the method will diverge. If
the starting value is selected inside the range of convergence, the method will either converge
to a local minimum, or to the global minimum. The selection of starting values of a system
with unknown coefficients is generally difficult. The method suggested by Schoukens &
Pintelon [1991] is to linearize equation V.4, in order to obtain the linear solution to equation
V.10 and to use this solution as a starting value. With a known starting value, AC can be
calculated, using the procedure set out below.
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For a small increment AC in equation V.6, the estimation error can be written as follows,
using a Taylor series expansion:

)’/‘% ——(AC)I a E

E(C+AC)= E(C)+(aC "3

(V.11)

where C and 0E/0C are (N+M+2) x 1 vectors. 9°E/8C? is an (N+M+2) x (N+M+2) matrix.

The partial derivative of equation V.11 with respect to AC is:

BE(C +AC) aE(c)+ L PE
dAC 9AC ' oC ' aC

AC +---+ (V.12)

For £ to be a minimum, the partial derivative of E(C + AC) with respect to 4C must be zero:

BE(C + AC)

=0 V.13
0AC ( )

The first term on the right hand side of equation V.11 is constant, therefore:

22(c)

=0 V.14
O0AC ( )

Substitution of equations V.13 and V.14 into equation V.12 gives:

oF O’E
— = AC 15
oCc  ac? (V-15)
AC is obtained from equation V.15 as:
5 ~1
ac=9E| & (V.16)
oC ) oC

It can be seen from equation V.16 that AC depends on both 1% order and 2™ order derivatives
of E with respect to C. It is however more convenient to express AC in terms of the 1* order
derivative only. This is done with the aid of equation V.9.

The 1% order partial derivative of E with respect to C, from equation V.9, is given by:

oE  (aG .
= "O(ac] (e (V.17)

where 8G/8C is an R x (N+M-+2) matrix.
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8’E/8C* is obtained by partial differentiation of equation V.17 with respect to C. For a
small error, 8*E/8C? is given by:

5 aNT ~
oL XK (V.18)
oc ) | ac

Substitution of equationsV.17 and V.18 into equation V.16 gives:
-1

AC = (EJ (ﬁ] (—‘?9-) (ce) (V.19)
ac ) |ac )| \ac

Methods of determining the stopping criterion are explained by Schoukens & Pintelon
[1991]. For the purpose of this study, the stopping criterion can either be a relatively small
change in E, or a negligible increment AC in the parameter vector. The former stopping
criterion may be mathematically expressed as:

E(C +AC)

5O <a (V.20)

where «is an arbitrarily selected factor, e.g. 0,1%.

If system sensitivity to parameter variations is low, equation V.20 will not necessarily
guarantee a negligible AC. For systems of this type, the following stopping criterion is
recommended:

Zlcg (V.21)

The stopping criterion given in equation V.21 is generally stricter than that in equation V.20,
since the latter may give a parameter vector whose elements do not satisfy equation V.21.
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Appendix W
Derivation of system transmissibility and two-input model

System transmissibility (TR) can be expressed in terms of transfer functions such as the input
force to output force TF, base angular displacement to output angular displacement TF

(6/6,), base angular velocity to output angular velocity TF (9/9,,) and base angular

acceleration to output angular acceleration 7F (é/ é,, ). The most appropriate transfer
function is mainly determined by the sensors used for system characterization and control.

Accelerometers were used for dynamic system characterization in chapter 4. The measured
vertical accelerations were subsequently used to calculate the base and output angular
accelerations (see section 4.5.1). Accelerometers will also be used as sensors during testing
of the control system. It is therefore appropriate to express the TR as the transfer function

between base angular acceleration and output angular acceleration (é/ é,, ).

The transmissibility is required in terms of system characteristics, such as state and output
parameters, natural frequencies, damping factors and normal mode shapes. A derivation of
the TR follows below. In order to simplify the derivation, an assumption is made that the TR
is independent of sensor dynamics. The consequence of this assumption is that the transfer

functions, /6, , 0/ 6, and é/ g, , are equal over a wide frequency bandwidth. This makes it
possible to derive the transfer function 6/6, and set it equal to é/ g,:

N 9
TR=—= =— W.1
7 (W.1)

Consider figure 5.5.1. The displacement of the moving base is denoted by ;. The base mass,
stiffness and excitation force, are respectively denoted by k,, m, and F,.

In this derivation, y, is a known signal, i.e. the disturbance signal. For a known base
displacement, the system displacement vector is given by:

y={{ra} w@® )} (W.2)

The equation of motion of actuator I, for a base translational displacement input yj, is:

[’”821 0 :H%}az] }+ {kzn +ky, —ky, J{yuz] } _ {kzn }yh (W.3)
M2 (Va2 —kyy, Koy +kpy [ Van ko



The equation of motion, for a base angular displacement input 6, is:

m,y 0 Van 4 ko + ka1 —ky, Yaai =7 ko, 0
0 My Vun —ky, Kyy +kypy || Ve Kyp ’

where / is the horizontal distance between the two actuators.

The equation of motion of motion of actuator II, in modal coordinates, is:

Ma] {?"2] } + Ka] {q”ZI } = {Fal }
qu22 qa22

} is the modal excitation force vector, given by:

-~ Lk,
{Faz}zll/’jz 2 6,
ks

The system equation of motion, in component modal coordinates, is:

where {F

a2

Mi+Kg=F
where F'is the modal base excitation force.

M, K, g and F are respectively given by:

[7,,]

The sizes of M and K are 14 x 14 each, while those of g and F are 14 x 1 each.

(W.4)

(W.5)

(W.6)

(W.T)

(W.8a)

(W.8b)

(W.8¢c)

(W.8d)



The equations of motion of the actuators and structure are currently uncoupled. Coupling is
done by means of the modal coupling equation:

q=Cyq, (W.9)

where g,.is the coupled modal displacement vector and C is the coupling matrix, given by:

(1 fo} 0]
1 ={p. (0} o
c=f} [1] { (W.10)
0 o} 1
0 (O} 1]

The sizes of C and ¢, are 14 x 12 and is 12 x 1 respectively. The coupling matrix given
above, is the C-matrix given in equation 5.5.38, whose last row and last column are deleted.

The coupled system modal equation of motion is:

qur +qur =F (W'll)

r

where M, and K, are given by equations 5.5.41 and F, is given by:
F. =C'F (W.12)

The reduced coordinate vector g, is written as follows in terms of the eigenvector U and the
normal mode displacement vector g, (see equation 5.5.42):

q,=Uqg, (W.13)

The sizes of Uand g, are 12 x 12 and 12 x 1 respectively.

Substitution of equation W.13 into equation W.11 and premultiplication of the resulting
equation with U”, gives:

MG, +K'q, =0 (W.14)

where M" and K" are the normal mode mass and stiffness matrices respectively, as given by
equations 5.5.48. Q is the modal excitation force vector, given by:

Q=U'C'F (W.15)
Premultiplication of equation W.14 with M*' gives the normal mode equation of motion in
the following form: ‘

g, +Q%q, =M"'0 (W.16)

where Q is the diagonal natural frequency matrix.
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Adding modal damping terms to equation W.16 gives:
g, +22Q4,+Q%q, = M0
The modal state and output equations can be written as follows:

x=A4,x+B,06,
8=C,x+D,6,

{q,, }
X = .
q"

The state vector x is:

4,, B,, C, and D, are respectively given by:

DI):O

The sizes of 4,, B,, C,and D, are 24 x24,24x 1,1 x24and 1 x 1 respectively.

W.4

(W.17)

(W.18a)
(W.18b)

(W.19)

(W.20a)

(W.20b)

(W.20¢)

(W.20d)



Combining equations W.18 to W.20 gives:

7 0 I
{?n } — li o 220}{qn } +9 {O} }9,, (W.ZIa)
qn - - qn M“ll'J"/'C‘T< }
ll//T {kZH }
L _— ko ]

6= {(D-* ()=, (x) {O}H""} (W.21b)

x2 - x] qn

The system transmissibility is the TF between 6, and @is given by:

g— =C,[sI-4,]"B, (W.22)

b

By application of equation W.1, the TR, i.e. the TF between é,, and 6, is given by:

gi =C,[sI-4,]"B, (W.23)

h

The number of state equations, for the selected number of actuator and optical instrument
assumed modes, is 24. The system as described by equations W.21 has 24 eigenvalues in
complex conjugate pairs. However, many of the eigenvalues occur at high frequencies, well
above the bandwidth, and have no significant effect on system performance inside the band.
States corresponding with these frequencies, can therefore be eliminated. This was also done
for the coil voltage input, where, apart from the three coil states, only the first ten mechanical
subsystem states were retained. For the base input, the 5™ and 10™ states (corresponding with
the 5 normal mode) are eliminated, while the 1% to 4™ and 6" to 9" states (corresponding
with the first four normal modes) are retained.

The transmissibility magnitude and phase spectra, for a frequency bandwidth of 0 to 500 Hz,
are shown in figure W.1.
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Figure W.1: System base to output transmissibility spectra

Two-input state-space model for control system analysis and design purposes

The state-space model of the system currently consists of two separate state models, one for
the coil voltage input, given by equations 5.6.6 to 5.6.9, and one for the base angular
acceleration input, given by equations W.18 to W.23. For the purpose of analyzing and
designing the control system, it is convenient to combine the two state models into a single
state model, with two simultaneous inputs, i.e. coil voltage and base angular acceleration.
The coil voltage is the controllable input, while the base motion is the disturbance. The state
and output equations, for these two inputs, are:

14
%= Ax+ B{ g } (W.24a)

h

h

0= Cx+D{g} (W.24b)

The state vector, from equation 5.6.6, is:

x=1q, (W.25)
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4 is the system coefficient matrix, given in equation 5.6.9a:

o] 1] [o]

A=|-Q* -22z0 MO'FC, (W.26)

o] o] 4,

The first ten rows and columns of 4 correspond with 4, in equation equation W.20a.

B is a matrix with two vector columns:

B=[B, Byl (W.27)
B, 1s given by equation 5.6.9b:
{o}
B, =4{0} (W.28a)
B,
For the first four normal modes, B 1s given by:
( {Bl! }/'uw.ﬂ—4 \
0
{Bh } rows 13-16
B, =1 0 f (W.28b)
0
0
0
C'is the output matrix given in equation 5.6.9c:
C = Q"_ (xz)‘ qD.v(xl ) [_ QZ _ 2ZQ MM@(F/CC] (W.29)
X, = X,
D is arow vector with two zero elements:
D={0 0} (W.30)

Note that the C-matrix in equation W.29 corresponds with the C-matrix in equation 5.6.9c.
However, this C-matrix does not correspond with C, in equation W.20c. In order to obtain a

C-matrix, which is valid for both inputs, the elements of B, are modified as explained next.
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The procedure is as follows: Equations W.21 are written in canonical form, whereby
uncoupled state and output equations for each normal mode are obtained. Each modal state
equation is then written as follows in TF form, using equation W.1:

(ﬁj = [05] =C[s1-4]'B, (W.31)

6[1 b /i

where the subscript i denotes the i-th normal mode. The sizes of 4, B, C, and D, are
respectively 2x2,2x1,1x2and 1 x 1.

Equation W.31 is written as follows for the i-th mode:

§— Ay A
i_ ={C C } 52_(/41:+A22)S+AHA22"A21A12 52_(A11+A22)S+A11A22_AzlAlz B
] 1 2)i AZI S — A” B
s? _(An + 4y )S + A Ay — Ay 4y S _(An + 4y )S+ Ay Ay — Ay 4y, |
(W.32)
Expanding equation W.32 gives:
G [PStp (W.33)
6,), \s +q,5+q,),
where:
Po; == 4,B,C, + 4,B,C, + 4, B,C, — 4,,B,C, ), (W.34a)
by = (BI ¢, +B,C, )/ (W.34b)
Gor = 4y 4y, — Ay 4y, ),- (W.34¢)
4, = (" A -4y, ),' (W.34d)

The input voltage to angular acceleration TF is subsequently written in canonical form to
obtain an uncoupled state and output equation for each of the first four normal modes. The
modal state equation for the i-th mode is then written as follows, in the TF form of
equation W.33:

(g] =C[sI-4]"B, (W.35)

i
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Equations W.34a and W.34b are written in matrix form as:

AyC, =40 4,0 - 4,,C, ; B, i WPe);

where Cy, and Cs; are the elements of C; in equation W.35. From equation W.36, By, and By,
are determined as follows:

-1
{B'} =[ G < } {p '} (W.37)
B,j, [4,C-4,C A4,C -4, Py ),

i

The resulting B, -vector, is:

By, ={(Bl)i=l (B!)i=2 (Bl)i=3 (Bl)i=4 0 (Bl)i=l (B2)i=2 (BZ)i=3 (BZ)i=4 0 00 O}T

(W.38)
Equations W.24 therefore become:
o) [ 11 [ )
Cjn = _Q2 —27Q M‘_]CDZ'.F‘ICC qn +[BV Bﬁtj{e'} (W'39a)
) [ lo] o] 4, x, "
() .(x) .
§=2)" QW 2 70 yerec g, (W.39b)
Xy =X
X
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Appendix X
General control system requirements

General controller requirements are normally expresessed in terms of performance factors
such as accuracy, stability, sensitivity, reaction speed, control effort, robustness, observability
and controllability. These factors are discussed in short below, together with methods to
meet the requirements.

X.1  Accuracy

Control accuracy is influenced by parameters such as transient overshoot, settling time, DC
error, tracking error and disturbance attenuation over a given bandwidth. Excessive transient
overshoot may damage the plant and must therefore be reduced to within a safe range. Two
simple methods of transient overshoot control, are rate feedback and PID-control
[Schwarzenbach & Gill, 1986]. Differentiation of the error signal, by means of a
differentiator (D) element, in parallel with the P and I elements, will lower the overshoot
peak. The higher the D-element gain, the lower the overshoot. However, the higher the
D-element gain, the longer the transient rise time.

Rate feedback is accomplished by placing a differentiator in parallel with the output feedback
elements. A disadvantage of rate feedback is that it may drive the plant unstable if contro] is
non-collocated.

Settling time is the time it takes the system output to reach and stay within 5% of the steady-
state value, during step excitation [Schwarzenbach & Gill, 1986]. The settling time T of a
system with distinct, complex poles, can be obtained from the following approximate
equation:

5

~ar (X.1.1)

where @) is the lowest angular natural frequency and ¢ is the corresponding damping factor.

DC error is the deviation of the system output from the setpoint, after the settling time has
elapsed. A simple method of eliminating DC error is to integrate the error signal, by means
of an integrator element, placed in parallel with the proportional element. The disadvantage
of this measure is that it will lower the damping required to limit transient overshoot
[Schwarzenbach & Gill, 1986].

Tracking error is the relative error between the reference signal and output. It is, as the name
indicates, only applicable to tracking controllers. Tracking error may depend on a variety of
factors, such as the transient phenomena discussed above, system frequency bandwidth,
nonlinearities, measurement noise, control hardware throughput delay, as well as sensor
range, resolution and bandwidth. All of these factors must necesssarily be addressed during
the design of a tracking controller. This is, however, beyond the scope of this study.
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Disturbance attenuation, on the other hand, is important in this study. The plant must provide
the necessary filtering characteristics to reject the base disturbance, in order to obtain a
sufficiently low output angular acceleration. Due to noise and unmodelled plant
characteristics, such as nonlinearities, it will be extremely difficult to totally reject the
disturbance. Instead, the remaining output must be minimized. The ratio of the remaining
output to the base disturbance, is known as the attenuation factor. This factor is a measure of
determining the performance of the system. The attenuation factor was discussed in more
detail in section 6.3.1.

Control accuracy may also be affected by the control system type. It may for instance be
attractive, from a cost point of view, to use an analogue controller, instead of a digital
controller. Simple analogue controllers, although outdated, do not require digital signal
processing equipment, analogue-to-digital (A/D) and digital-to-analogue (D/A) converters.

The limitation of an analogue controller, however, is that the required feedforward and
feedback characteristics may be difficult to obtain. If the controller does not perform as
originally anticipated during the design, certain parameters may have to be changed.
Whereas this is easily accomplished with digital controllers, it may be extremely difficult
with analogue controllers. The reason is that analogue equipment such as resistors,
capacitors and inductors, may not have the required range of adjustment. While rheostats
have been around for a long time, adjustable capacitances are currently only available in
capacitors with relatively small capacitances.

X.2  Stability

Stability, together with accuracy, is probably the most important requirement of a control
system. Stability of a linear time invariant (LTI) system is determined by the real parts of its
eigenvalues: An LTI system is unconditionally stable if the real parts of all its eigenvalues
are negative.

This statement must, however, be qualified for a linearized system. Linear systems analysis
applied to a nonlinear system, may only be accurate over a limited working range. This
phenomenon was discussed in detail in section 2.7. The equivalent linear range will depend
on the nature of the nonlinearity. A weakly nonlinear system may have a fairly large linear
range of operation and may therefore be accurately represented by a linear model. Linear
stability (gain and phase) margins of the linearized system will closely approximate those of
the nonlinear system. This system type can be relatively easily stabilized by a linear
controller.

On the other hand, a strongly nonlinear system may have relatively small linear ranges of
operation, also known as regions of local stability. If the system is operated inside any of
these regions, it will be stable. If operated outside these regions, it will be unstable. Such a

system is globally unstable. Local and global stability are discussed in more detail by Slotine
& Li[1991].

Nonlinear systems may be accurately controlled and stabilized by nonlinear controllers. The
design and implementation of nonlinear controllers is however beyond the scope of this
study.
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Alternatively, a nonlinear plant may be controlled by a linear controller, with sufficient
robustness to compensate for changes in characteristics (e.g. DC gains, natural frequencies
and damping factors), without sacrificing other important performance parameters (e.g.
accuracy). Techniques of improving system robustness will be discussed in section X.6.

X.3  Sensitivity

Sensitivity of a control system depends on two factors, i.e. parameter sensitivity and sensor
sensitivity.  Parameter sensitivity can be described as the “inverse phenomenon” of
robustness, i.e. a more robust system is less sensitive to a change in the value of a specific
parameter. Robustness will be discussed in short in section X.6. More detailed discussions
on the subject are provided by D’Azzo & Houpis [1986], Maciejowski [1989], Skogestad &
Postlethwaite [1997], Slotine & Li [1991] and Tsui [1996].

Sensor sensitivity mainly depends on sensor resolution and sensor calibration factor. Sensor
resolution is the smallest increment in a measured signal to which a sensor will respond
(Cooper & Helfrick, 1985]. The smaller the increment, the better the resolution. Sensor
resolution is an important parameter in vibration isolation applications. The objective of
vibration isolation is to obtain output signals with low magnitudes, in comparison with the
disturbances. In order to measure and control accurately, sensors must be able to respond to
small changes in outputs. |

Calibration factor is the ratio of the sensor output signal to the measured variable [Cooper &
Helfrick, 1985]. The calibration factor of an accelerometer, for instance, is the ratio of the
output voltage to the measured acceleration, and is normally expressed in mV/g. The most
suitable calibration factor is determined by the full-scale range of the data acquisition
equipment. It is preferable that this range correspond to the output range of the sensor, as it
will eliminate the need for unduly high control signal gains. (In section 4.3.3, for example, it
was mentioned that the coil voltage exceeded the signal analyzer range, and had to be scaled
by means of a voltage divider, before it could be measured).

X.4 Reaction speed

Reaction speed is determined by two main factors, i.e. controller frequency bandwidth and
throughput lag. The required frequency bandwidth can be obtained during the design phase,
by calculation of the controller feedforward and feedback parameters. Optimal and pole-
placement design techniques are often used for this purpose. The cutoff frequency of the
controlled system can be verified by comparing it with the required cutoff-frequency.

Throughput lag is the time it takes to execute the A/D conversion of sensor signals, apply
digital control (e.g. by feedforward and feedback compensation, digital filtering, frequency
shaping, addition, subtraction, gaining and clipping of signals) and convert the signals back to
analogue form. The lag is often also expressed in terms of data buffer length or number of
samples.



The lag depends, inter alia, on the control hardware configuration. If the controller runs on
its own processor (DSP), the DSP does the A/D and D/A conversion, as well as the control
calculations. The processor must be specifically programmed for this purpose. Programming
is normally done externally, in languages like Assembler, C, Pascal, Quick Basic, or Visual
Basic, whereafter the program is compiled and loaded onto the processor. Some processors
may be programmed and compiled from graphic environments like Simulink (see section
4.4). Processing speed mainly depends on the DSP clock speed. Compiling of the program
necessarily improves throughput speed.

X.5 Control effort

Control effort is the input required to drive the plant to its desirable output. In the case of the
magnetostrictive LOS stabilization system, coil voltage is the input, and the optical
instrument angular acceleration is the output. The objective is to minimize the output. While
this is an important goal, it must be achieved with as little control effort as possible. Both the
output and control effort must therefore be minimized. This process is known as
optimization. A type of controller which simultaneously minimizes output and control input,
is an optimal regulator.

The optimal feedforward and feedback control parameters are determined mathematically, by
application of methods such as variational optimization and linear quadratic optimal regulator
(LQR) design. In order to obtain a criterion which can be used to evaluate system optimality,
and which can be expressed in terms of a single numerical value, an objective function is
defined. This function, also known as the cost function, must be minimized to obtain the
optimal control parameters.

The linear quadratic (LQ) optimal cost function for the regulator problem under discussion,

J= j:or[ () +u? (1) (X.5.1)

where J is the cost function.

In equation X.5.1, the output and control are equally weighed. The output and control can be
separately weighed, as follows:

=t 2 2
J=["[0,y*(0) + Ru*(1)}ar (X.5.2)
where @ and R are the output and control weights, respectively.
The cost function is more conveniently expressed in matrix form, where y and u are vectors:

J=y"0,y+u"Ru (X.5.3)
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The cost function can be extended to include a term which contains the product of the input
and output:

J = fol [0,()+ R (1) + Ny e (X.5.4)

where N is the weight of the product yu. Inclusion of this term may result in a cost function
which cannot strictly be termed “linear quadratic”, as yu will only be positive for all ¢ if  and
y are in phase. This is however not the case with the magnetostrictive active vibration
isolation system (see figure 4.5.2.3). For this reason, the yu-term will henceforth not be
included in the cost function.

Optimization can either be unconstrained or constrained. Unconstrained optimization means
that neither y nor u is bounded. An example of an unconstrained optimization equation is
given by equation X.5.2. The equation does not supply sufficient information to minimize J,
since there is no relationship between v and y. The required relationship is supplied by the
state and output equations, which are the constraint equations for the LQR state regulation
problem under discussion:

x=Ax+B,u+ B,d (X.5.5a)
y=Cx (X.5.5b)

Equations X.5.5 may not necessarily be the only constraint equations. Constraints can be
added to suit the problem. Although the input is accounted for in the cost function, it may
exceed the available supply. To avoid this, an additional constraint, i.e. available source
voltage (+28 V for the magnetostrictive active isolation system) can be added. Another
constraint, which can be added in the interest of robustness, is minimum damping.

A relationship between the states and control, which satisfies equations X.5.3 and X.5.5
above, is required. In a state-controlled linear system, the control is a linear combination of
the states:

u=—-Kx (X.5.6)
where K is the optimal state feedback gain, or “state feedback control law”. A necessary
condition for equation X.5.6 is that all the states be known from measured outputs. This
property, which is known as observability, will be discussed later.
The elements of K can be determined in a number of ways, e.g. by variational optimization

methods and by solving the algebraic Riccati equation (ARE). The Riccati equation, in its
steady state form, is:

0. +A4"S, +S . A-S_BR'B'S_ =0 (X.5.7)
where S, is the steady-state Riccati matrix and Q, is the state weight, related to Q, by:

0.=C"Q,C (X.5.8)
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Equation X.5.7 must be solved to obtain the steady-state Riccati matrix. A solution method
often used, is Hamiltonian eigenvector decomposition, which is described in detail by
Meirovitch [1990].

The optimal feedback gain matrix K is given in terms of the Riccati matrix as:

K=R"B!S,, (X.5.9)

The closed-loop state and output equations are obtained by substitution of equation X.5.6 into
equation X.5.5:

x=(4-B,K)x+B,d (X.5.10a)
y=Cx (X.5.10b)

It can be seen from equation X.5.10a that the only input to the closed-loop regulator, is the
disturbance d.

The closed-loop eigenvalues are the values of s for which:
|s1 - (4-B,K)|=0 (X.5.11)

The block diagram of the plant and state feedback regulator, with state and control equations
given by equations X.5.5 and X.5.6 respectively, is shown in figure X.5.1.
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Figure X.5.1: State feedback regulator block diagram

More thorough discussions on optimal control can be found in Anderson & Moore [1989],
Brogan [1985], D’Azzo & Houpis [1986], Kirk [1970], Kuo [1982] and Meirovitch [1990].
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X.6 Robustness

The ability of a controller to meet its performance criteria in the presence of plant, input,
disturbance and measurement noise uncertainties, is known as robustness. An example of a
plant uncertainty is a nonlinearity, which may cause the plant to display different
characteristics at different excitation levels. Depending on the nature of the nonlinearity, a
robust controller will partly or fully compensate for the changes in characteristics.

Examples of input and disturbance uncertainties are DC offsets, which may be attributed to
unmodelled sensor characteristics. A typical example is the DC characteristic of an
accelerometer. Theoretically, an accelerometer has a zero DC output, but practically, the
output voltage may contain a DC component. Resistive accelerometers, in particular, display
this characteristic. Noise uncertainties may include input and output sensor noise, noise
generated by measurement equipment, such as amplifiers, and electromagnetic noise in
unscreened cables.

Linear quadratic (LQ) optimal state feedback controllers are seldom robust [Kuo, 1982]. The
reason is that these controllers often operate on the principle of pole-zero cancellation, i.e. the
frequency and damping factor of a 7F pole coincide with those of a TF zero. When the plant
is excited at the design drive level, the zero will exactly cancel the pole. If, however, the
drive level is slightly altered, phenomena such as nonlinear plant behaviour may cause the
frequency and damping factor of the pole to shift, to such an extent that it may no longer
coincide with those of the zero. The pole may not be cancelled at all, with the result that
transmissibility of the closed-loop system may be worse than that of a system without
vibration isolation.

A number of solutions exist to improve robustness, three of which are as follows: Firstly,
pole damping may be increased, using pole-placement techniques. If the pole shifts within a
narrow frequency band, it will still be partly cancelled by the zero. Although performance, in
terms of attenuation, will not match that of the LQ optimal controller, robustness will
improve.

Secondly, the optimality constraints (see equations X.5.5) may be expanded to include
minimum closed-loop damping factors. Although this measure may complicate the solution
of the Riccati equation, the optimal feedback gain may be obtained by application of
alternative optimization methods, such as variational methods.

Thirdly, a solution suggested by Kuo [1982], is to place an output integrator, with gain H,,
in parallel with the state feedback matrix, as shown in figure X.6.1. The effect of this method
on improving the robustness of an absolute motion controller was discussed in section
6.3.8.5.
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Figure X.6.1: State plus output integral feedback regulator block diagram

The control law is of the following form:
u=—Kx— H, [ydt (X.6.1)
Differentiation of equation X.6.1 with respect to time, gives:
u=-Kx—-H,y (X.6.2)

Substitution of equations X.5.5 into equation X.6.2 and simplification of the resulting
equation gives:

u=—(KA4+H,C)x - KB,u— KB,d (X.6.3)

Equation X.6.3 is the controller state equation. The term KA+ H,C couples the plant and
controller state equations.
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Combination of the plant and controller state and output equations X.5.5 and X.6.3 gives the
closed-loop system state-space equations as follows:

x,=A,x,+B,d (X.6.4a)
Ya=Cyx, (X.6.4b)

where x,, is the closed-loop state vector, given by:

X, = (X.6.5)

A,, B, and C, are the closed-loop coefficient, driving and output matrices, respectively
given by:

4, = (X.6.62)

B(I
B, = (X.6.6b)
-KB,
C, =[C 0] (X.6.6¢)

The eigenvalues of the closed-loop system are the values of s for which:

]sl - A,

=0 (X.6.7)

The integrator raises the DC and low-frequency content of the control signal, thereby making
the system more sensitive to feedback at low frequencies and less sensitive at high
frequencies. A typical application is DC disturbance rejection in electric motor control, as
explained by Kuo [1982].

The method can also be applied to improve low-frequency behaviour of the magnetostrictive
LOS stabilization system, which is the topic of this study. All but one of the plant poles are
well in excess of the disturbance band (see table 5.3.2), therefore an integrator will make the
system less sensitive to feedback at most of the plant natural frequencies.

However, a disadvantage of this method, is that an integrator in the feedback loop may drive
the control to infinity, although the output may be bounded. A cure to the problem is to high-
pass filter the control signal. If the filter cutoff frequency is sufficiently low, the DC
component will be eliminated, but the desirable low-frequency characteristics will be
retained.

X.9



More sophisticated robust controller design methods include loop transfer recovery (LTR), as
discussed by Maciejowski [1989], Skogestad & Postlethwaite [1997] and Tsui [1996].

X.7  Observability

State feedback is a powerful control method, especially for high-order systems. A condition
for state control is that the states be observable from output measurements. If all the states
can be reconstructed from the output, a system is said to be completely observable, or simply,

observable.

Mathematically, the n-th order LTI system, whose state and output equations are given by

X =Ax + Bu (X.7.1a)
y=Cx (X.7.1b)

is observable if and only if the matrix
CiaTe i (4T bk (47) ] (X.7.2)

has rank » [Kirk, 1970].

Observability makes it possible to observe the states by means of a state observer, or
estimator. State observer dynamics can be described by means of observer state and output
equations. The inputs to the observer depend on the controller configuration. For an absolute
motion controller, i.e. for pure output feedback (see section 6.3.8.2), the observer input is the
plant output. For a relative motion controller and an absolute plus base motion controller (see
sections 6.3.8.1 and 6.3.8.4), the observer inputs are the plant output and disturbance.

The observer state-space equations, for an absolute plus base motion controller, are:

X=A%+Bu+ B,d+ L(y~7) (X.7.3a)
$=C# (X.7.3b)

where X is the observed state vector, which differs from the true plant state vector, 4 is the
plant coefficient matrix, B, is the plant driving matrix for the controllable input u, B, is the

plant driving matrix for the disturbance input, y is the plant output, y is the observed output
and L is the observer driving matrix. The observer state equation for a pure output feedback
controller is given by equation X.7.3a, with a zero disturbance driving matrix B, .

For full-state feedback control, the control is a linear combination of the observed states:
u=—K% (X.7.4)

where KX is the state feedback gain matrix.
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Figure X.7.1: Block diagram of plant, state observer and state feedback controller

To conclude, if the system is non-observable, the observable states may still be estimated, by
means of a reduced-order observer. Reduced-order observers are described in more detail by
Anderson & Moore [1989], Franklin et al [1990] and Kwakernaak & Sivan [1972].
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X.8 Controllability

A system is said to be completely controllable if every state variable can be controlled to
reach a certain objective in finite time by some unconstrained control u [Kuo, 1982]. The
physical interpretation of controllability is that, if any one of the state variables is
independent of the control u, driving this particular state to a desired state in finite time by
means of u will be impossible. This state is said to be uncontrollable, which means that the
system is not completely controllable, or simply uncontrollable [Kuo, 1982].

Controllability can be expressed as follows in terms of the plant state matrices A and B.
Mathematically, the n-th order LTI system, whose state and output equations are given by

x=Ax+ Bu (X.8.1a)
y=Cx (X.8.1b)

is controllable if and only if the matrix
[B : AB i A’B : - i A"'B] (X.8.2)

has rank n [Kirk, 1970].

Alternative practical methods of testing controllability of a system are discussed by Kuo
[1982].
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