Chapter 4
Experimental testing of magnetostrictive
LOS stabilization system

4.1 Background

Experimental testing of the magnetostrictive LOS stabilization system is described in this
chapter. The tests are motivated and the goals of the tests are spelt out. Performance, mass
and dimensional parameters of the test samples, i.e. the two actuators, optical instument and
its support structure, are given. These parameters are used to prescribe the test equipment
and to design the test signals. The test setups and equipment are described. The tests are
designed and carried out. Processing of the results is done. The results are presented,
discussed and compared with the modelled results obtained in chapter 2.

Experimental tests are carried out for the following reasons: The test results will firstly
indicate whether the degree of complexity of the model developed in chapter 2, was sufficient.
In the second place, a measure of accuracy of the modelled Terfenol-D material and system
characteristics will be provided. Thirdly, experimentally determined characteristics will be
required in chapter 5 to update and improve model accuracy. The fourth and most important
reason, is that an experimentally verified model will be required in chapter 6 to design a
controller.

Two types of tests, i.e. quasi-static and dynamic tests, are carried out. A quasi-static test is
done on each actuator in order to determine its stroke length and the ratio between its output
displacement and input voltage. The voltage where this ratio is a maximum, is used as the bias
voltage for the dynamic tests. Dynamic tests are carried out on the system to obtain the
transfer function between coil input voltage and instrument angular acceleration. From this
TF, other important system characteristics, such as resonance and antiresonance frequencies,
are obtained.

The experimental tests are systematically covered in the following sections. The test
specimens, i.e. the two actuators, optical instrument and its support structure, are discussed in
short in section 4.2. The test setup and equipment are described in section 4.3, followed by
the test design and test procedure in section 4.4. Section 4.5 covers the test results.
Processing of the test data is described in section 4.5.1. TF spectra are calculated and shown
in section 4.5.2. A discussion of the dynamic test results is given in section 4.5.3. The
experimental and modelled results are compared, reasons for the differences are discussed and
the need for an updated model is given in section 4.5.4. A summary of chapter 4 and a
preview of chapter 5 are given in section 4.6.
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4.2 Technical details of the test specimens

Technical details of the test specimens are given in this section. The details are required for
two purposes. Firstly, the performance requirements of the test equipment, such as signal
generator frequency bandwidth, measurement ranges of the displacement transducer and
accelerometers, and power output of the amplifier, must be determined. Secondly, the
technical details will serve as design inputs for the quasi-static and dynamic test signals.

For the purpose of this study, three specimens are considered, i.e. the two actuators, which
will be individually tested quasi-statically, and the entire system, which will be tested
dynamically. All the appropriate specimen parameters are tabled and dimensions are shown
schematically.

The dimensional parameters are the length, width and height of the test specimens. The
performance characteristics are: Actuator stroke length, maximum translational acceleration
at each end of the optical instrument, frequency bandwidth and coil resistance, voltage, current
and power. Note that the translational acceleration at the ends of the optical instrument is
given, rather than the angular acceleration. The reasons are twofold. In the first place, it is
easier to measure translational acceleration and to divide it by the instrument length in order to
obtain its angular acceleration, than to directly measure angular acceleration. Secondly, this
method of measurement will facilitate a direct comparison with the modelled characteristics
obtained in section 2.8 and to update the model, as will be discussed in chapter 5.

Actuator and system dimensions are obtained from sections 3.5 and 3.6, while the
performance parameters are obtained from sections 2.7, 2.8 and 3.2. Figures 4.2.1 and 4.2.2

respectively show the dimensions of the actuators and LOS stabilization system. The technical
and performance parameters are summarized in table 4.2.1.
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Figure 4.2.1: Terfenol-D actuator dimensions
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Figure 4.2.2: LOS stabilization system dimensions

Table 4.2.1: Actuator and system test parameters

Parameter Value
System length 0,295 m
System width 0,103 m
System height 0,099 m
Actuator length 0,103 m
Actuator width 0,025 m
Actuator height 0,065 m
Actuator stroke length 75.10°m
Translationa] acceleration at actuator 4,26 m/s’
Coil static resistance per actuator 32Q

Coil voltage input per actuator 17,5 V (p-p)
Coil current per actuator 5,47 A (p-p)
Coil power per actuator 98,7 W

One performance parameter that is not shown in the table, is the system frequency bandwidth
(333 Hz). The reason is that this bandwidth is considerably higher than the disturbance
bandwidth of 2,5 Hz to 100 Hz. The latter bandwidth, instead of the former, will be used to
design the dynamic test signals.

The parameters given in this section, will be used to in section 4.3 to determine the technical

requirements of the test equipment and to design the quasi-static and dynamic test signals in
section 4.4.
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4.3 Test setups and equipment

The test setups and equipment are described in this section. The equipment consists of a
personal computer, digital signal processing equipment, test bench, sensors, signal analyzer
and power amplifiers. The test bench provides a base for attachment of the LOS stabilization
system and sensors. A personal computer (PC) is used to generate the test input signals in
digital form. The PC contains a digital signal processing (DSP) card, which converts the
signals to analogue form. A power amplifier is used to drive the actuator coils.

Two types of sensors are used to measure the outputs, i.e. displacement transducers, to
measure actuator and system quasi-static displacements, and accelerometers, to measure base
and system accelerations. A voltage divider is used to facilitate measurement of the input
signal. A signal analyzer captures the coil input voltage and sensor output signals. The PC is
used for post-processing of the test results.

The test setups are described in section 4.3.1, followed by a discussion on the signal
generation equipment in section 4.3.2. The sensors, signal acquisition and processing
equipment are discussed in section 4.3.3.

4.3.1 Test setups

Test setups for the quasi-static and dynamic tests are shown and discussed in this section.
Two dynamic test setups are considered, i.e. an ideal setup and an available setup. The ideal
setup makes simultaneous characterization of the system possible for all the known inputs.
However, this setup is not feasible, since all the required equipment is not available. An
alternative setup, which makes use of available equipment, is used instead. The limitations of
this setup are mentioned and discussed.

The actuator quasi-static test setup is shown in figure 4.3.1.1. The actuator is attached to a
fixed base. The input signal is coil voltage (V) and the output signal is actuator displacement.
An inductive (eddy current) displacement transducer, mounted on a fixed base, is used for
measuring actuator displacement.

The reason for attaching the actuators to a fixed base is that the quasi-static tests are mainly
done to determine the most suitable coil bias voltages to be used in the dynamic tests. The
effect of base motion is not of importance for this purpose.

The dynamic test setup is designed to facilitate controller design and testing in chapter 6. The
controlled system will be excited by two inputs, i.e. the coil voltage (controllable input) and
the base acceleration (uncontrollable input or disturbance). The controllable input must be
commanded in such a way that its behaviour will cancel the uncontrollable input behaviour. In
order to determine the latter behaviour, the system is attached to an elastically-mounted base,
connected to an external shaker. The shaker will be used in chapter 6 to excite the base.
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Figure 4.3.1.1: Actuator quasi-static test setup

An ideal dynamic test setup is shown in figure 4.3.1.2. Each actuator is attached to a moving
base, in the form of a rigid beam. Each base is suspended by a spring, guided by a linear
bearing and connected to an electrodynamic shaker by means of a string (also known as a
stinger). The two actuator coils are excited 180 °out-of-phase to excite angular motion of the
optical instrument. Accelerometers are mounted at each end of the optical instrument and on
each moving base (i.e. four accelerometers in total). The advantage of this test setup is that it
makes simultaneous measurement of all the TF’s of the system possible, provided the test
equipment is available.

However, the equipment required for the above setup, is not available. Available equipment is
limited to the following: The test bench contains only one moving base and only one shaker is
available. Furthermore, the signal analyzer used to capture measured data has only two
analogue input channels, therefore only one coil voltage and one acceleration can be measured
during a test.

It is therefore necessary to simplify the setup by making use of available equipment. Such a
setup is shown in figure 4.3.1.3. Actuator 1 is attached to a fixed base, while actuator 2 is
attached to an elastically-mounted base. The coil of actuator 2 is excited by a voltage signal,
while that of actuator 1 has an open circuit. The coil voltage signal and one accelerometer
signal are measured during a test. The test is conducted as many times as the number of
accelerometers.

The advantage of this setup is its simplicity in comparison with the ideal setup. The
disadvantage is that separate tests must be done to obtain the various TF’s of the system.
With this setup, tests will necessarily take longer to conduct than with the ideal setup. This
setup will however be used, due to the problem with availability of test equipment.
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Figure 4.3.1.2: Ideal dynamic test setup
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Figure 4.3.1.3: Available dynamic test setup
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The system is excited by applying a voltage signal to the coil of actuator 2. The voltage and
accelerometer signals are captured and processed to obtain system TF’s. The signal
generation equipment is discussed in the next section.

4.3.2 Signal generation equipment

The test signal generation equipment is shown schematically in figure 4.3.2.1. The signals are
generated in Simulink, which is a Matlab real-time simulation environment. Using Simulink,
the following basic time-domain input signals can be generated: Constant, step, delayed step,
sine, sine sweep, square wave, sawtooth, random and band-limited white-noise.

Arbitrary signals can be obtained in a number of ways. The signals can either be imported
from Matlab or from external files. Alternatively, the abovementioned basic signals can be
combined to build the required signal. For instance, a signal can be added to, subtracted from,
multiplied with, or multiplexed with another signal. Furthermore, a signal can, inter alia, be
clipped, rate-limited, integrated, differentiated, filtered and resampled.
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Figure 4.3.2.1: Test signal generation equipment

A signal can be generated and viewed in real time. For this purpose, algorithms such as the
linear, Euler, Heun, 3™ order Runge-Kutta, 5" order Runge-Kutta, Adams, Gear and
Adams/Gear algorithms are supplied. Sample frequencies can be arbitrarily selected and
adaptive time-stepping is possible.

Digital signal processing card

The DSP card is a floating point card manufactured by dSpace. It is provided with a built-in
processor, the clock of which runs at 40 MHz. The card has the facility to directly code a
Simulink-generated signal in the C-programming language, as well as to compile the signal to

an object file.

Execution speed of the compiled signal is determined by the clock speed of the card only, and
not by that of the PC’s central processing unit. Adaptive time-stepping is not available for
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coding. Sampling frequency is strongly dependent on the number of operations executed per
time step.

The card gain, i.e. the ratio between the amplitude of the simulated signal and that of the card
output signal, is 10. The card has four digital-to-analogue (D/A) channels and four analogue-
to-digital (A/D) channels.

Power amplifier

An MB Dynamics SS 250 power amplifier is available for the tests. The amplifier is matched
to an electrodynamic shaker normally used for modal testing of structures. Amplifier
frequency bandwidth, according to the manufacturer, is 0 Hz to 30 kHz. Output power is
controlled by a rheostat. Maximum power output is 750 W and automatic clipping takes place
in case of overloading. For the purpose of this study, a bandwidth of 100 Hz and a power
output of 98,7 W are required.

An important amplifier characteristic applicable to this study is its input to output transfer
function. Since the amplifier will be used to power the actuator coils during control, a
minimum phase shift of the commanded signal will be required. To determine the phase shift,
TF’s were measured for random input signals with three different power levels. The signals
were low-pass filtered at 100 Hz. Power levels were -8,94 dB, -10,88 dB and -13,21 dB,
relative to maximum power output. A sample frequency of 1280 Hz was used. Measured 7F
spectra are shown in figure 4.3.2.2. The maximum phase shift at 100 Hz is 0,14°, which can
be considered negligible for all practical purposes.
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Figure 4.3.2.2: Amplifier transfer function spectra for three power output levels
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4.3.3 Signal measuring, acquisition and analyzing equipment

The sensors, sensor amplifiers and signal analyzer are described in this section. A schematic
layout of the equipment is shown. Sensor types and manufacturers, calibration factors, ranges
and amplifier gains are given. The displacement transducer is described first, followed by the
accelerometers and signal analyzer.

A schematic layout of the signal measurement, acquisition and analyzing equipment is shown
in figure 4.3.3.1. The type of sensor used depends on the type of test: A displacement
transducer is used for the quasi-static tests, while accelerometers are used for the dynamic
tests. The sensor output signal is amplified in order to capture it with the signal analyzer.
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Figure 4.3.3.1: Signal measurement, acquisition and analyzing equipment layout

The signal analyzer has two analogue input channels. The two channels are respectively used
for capturing the sensor output and coil input voltage signals. The amplitude of the latter
signal (17,5 V as simulated- see sections 2.7 and 2.8) exceeds the input range of the analyzer
(= 10 V) and is therefore reduced to a measurable level by means of a voltage divider. The
divider gain is 0,25.

Captured data can be processed in real-time, using the analyzer, or can be off-loaded to the
computer for post-processing. The latter option is preferred, since the available analyzer can
only process two signal characteristics at a time. If, for instance, the TF between two signals
is required in magnitude and phase format, other characteristics, such as time traces, PSD’s,
CSD’s and coherence spectra, cannot be obtained during the same test. In order to obtain
these characteristics, the tests must be repeated.

Computer post-processing, on the other hand, can be relatively easily done using signal
processing software. Overlaps can be adjusted and frequency resolution can be changed
without repeating the tests. In this study, the signal analyzer is only used to capture and view
the data, whereafter the signal processing is done on the computer.

213



Displacement transducer

An inductive (eddy current) transducer, manufactured by SKF, is used for the displacement
measurements. The transducer measures the distance between its tip and a magnetic material
placed close to its tip. A gap is normally left between the transducer and the actuator to
protect the transducer tip from damage. Due to this gap, the measured output has a DC
offset, which has to be subtracted from the measured output to obtain actuator displacement.
The transducer output is in volts and its calibration factor is 125 um/V. A 24V DC driver,
type CMSS665, by the same manufacturer, powers the transducer.

Accelerometers

Two accelerometers, manufactured by Setra, are available for the characterization tests.
Accelerometer ranges are 15 g and 30 g respectively. Nominal natural frequencies, as claimed
by the manufacturer, are 800 Hz for the 15 g accelerometer and 1150 Hz for the 30 g
accelerometer. Claimed + 3 dB flat response ranges are 0 Hz to 400 Hz and 0 Hz to 700 Hz
for the 15 g and 30 g accelerometers respectively. The lower cutoff frequencies were checked
and found to be 5 Hz, instead of 0 Hz, for both accelerometers. The accelerometers do
however respond below 5 Hz, but response is outside the + 3 dB range. Experimentally
determined calibration factors of the two accelerometers are 29,32 mV/g for the 15 g
accelerometer and 46 mV/g for the 30 g accelerometer.

Signal analyzer

A Diagnostic Instruments type PL 202 signal analyzer is used for data acquisition purposes.
The analyzer has two analogue input channels. The maximum signal input range is = 10 V per
channel. Any input outside this range is clipped. Single-capture or continuous acquisition is
possible.

Frequency bandwidth ranges from 25 Hz to 40 kHz. Acquisition time ranges from 2,5 ms to
64 s, depending on the bandwidth and number of data points. The latter is adjustable from
256 to 4096 in fixed steps. A manually selectable anti-alias filter is provided.

The following signal characteristics can be obtained in real time: Frequency spectrum, PSD,
time trace, difference between time traces of the two measured signals, FRF, coherence,
octave bands and 1/3 octave bands. Real-time averaging of data, including RMS calculation,
is possible. Four window types are provided, i.e. exponential (for pulse-type inputs), Hanning,
flat top and rectangular.

Automatic or manual screen ranging can be selected. The latter is logarithmically adjustable in
fixed steps from 10 mV to 10 V. Axis display formats include real and imaginary, logarithmic,
linear magnitude, logarithmic magnitude and phase.

Captured data can be stored in files. The files can be recalled, reviewed, erased, copied and

off-loaded, for instance to a personal computer, through a standard RS 232 port. Software for
data off-loading is provided by the manufacturer.
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4.4 Test design and procedure

The quasi-static and dynamic test design and procedures are described in this section. Quasi-
static test signal generation is discussed in section 4.4.1, followed by a description of the
quasi-static test execution in section 4.4.2. In section 4.4.3, quasi-static test data processing is
described and the test results are shown and discussed. The most suitable coil bias voltage for
the dynamic tests is calculated in section 4.4.4. Dynamic test signal selection, design and
generation are described in section 4.4.5, followed by a description of the dynamic test
execution in section 4.4.6.

4.4.1 Quasi-static test signal generation

Truncated ramp voltage signals are used as inputs for the quasi-static tests. The desired signal
characteristics are: A low rate-of-rise to prevent the excitation of dynamic behaviour such as
overshoot, sufficient amplitude to excite the actuator over its entire voltage and displacement
ranges, and a relatively short time duration to minimize the risk of coil overheating.

The maximum voltage applied to the coil depends on the coil resistance and amplifier output
power. For an amplifier power of 400 W (approximately 53% of full amplifier power, see
section 4.2) and static coil resistance of 3,2 Q (see section 3.5.2), a voltage of 36 V is
achievable. To prevent coil overheating, the signal time duration is limited to 4 s. The rate-
of-rise of the ramp is 250 V/s.

The signal generation block diagram is shown in figure 4.4.1.1. The signal is generated in
Simulink, using the available input functions. The truncated ramp input is constructed from
two rate-limited step inputs. The first step, with a height of H, is applied at time t = 0. The
ramp is terminated by adding a delayed, rate-limited step with height -H, to the first step. The
resulting signal is shown in figure 4.4.1.1.
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Figure 4.4.1.1: Block diagram for quasi-static signal generation

Analogue-to-digital conversion of the signal is done by means of the DSP card. The card has
a gain of 10 and its maximum output voltage is 10 V (see section 4.3.2). The card
characteristics must be compensated for in the Simulink model. Failure to do so may lead to
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clipping of the signal. To prevent this, the height H and rate-of-rise of the signal are
respectively adjusted to 0,96 V and 6,7 V/s. The signal is coded in the C-programming
language, compiled to an object file and viewed on the analyzer display screen.

4.4.2: Quasi-static test execution

The two actuators are tested separately. The test procedure is as follows. A voltage divider
with a gain of 0,25 is connected in parallel with the coil in order to facilitate input voltage
measurement. The displacement transducer is attached on a fixed base above the actuator, as
shown in figure 4.3.1.1. A gap is left between the actuator and the transducer tip. The
transducer is connected to its driver. The DSP card output is connected to the input of the
power amplifier, whose output is connected to the actuator coil (see figure 4.3.2.1). The
amplifier gain is adjusted to give the required coil voltage.

The test signal is applied to the actuator coil. The voltage across the divider and the
transducer output voltage, are measured and captured using the signal analyzer. Captured
data is transferred to a personal computer for processing. The input and output signals are
multiplied with their respective calibration and gain factors. (The transducer calibration factor
1s 125 um/V - see section 4.3.3, while the coil voltage gain is the inverse of the divider gain,
ie. 4 V/V). It is important to note that the actuator will give a negative displacement for a
positive coil voltage. This is due to the geometry of the octagonal displacement gain
mechanism (see figure 3.4.1.5) The actuator output signal is therefore multiplied with an
additional gain factor of —1.

Output displacement versus input voltage curves of the two actuators are plotted. The
characteristics of the two actuators are compared. If the characteristics display unduly large
differences, adjustments are made to the actuators and the tests are repeated.

A possible cause for differences between the actuator characteristics is Terfenol-D rod
prestress. Prestress can be easily adjusted, either by changing the torque in the prestress bolts,
or by replacing the prestress springs. However, measuring rod prestress is not as simple. Due
to space limitations, measuring equipment, such as load cells and strain gauges, cannot be
placed inside the actuators. Rod prestress is therefore adjusted iteratively. The characteristic
of the actuator with the highest output displacement is used as reference. The rod prestress of
the other actuator is adjusted and the test is repeated. The characteristics are compared again
and the process is repeated until sufficient correspondence between the characteristics is
obtained. The test results are displayed and discussed in section 4.4.3.

4.4.3 Quasi-static test results and discussion of results
Output displacement versus input voltage characteristics of the two actuators are shown in

figure 4.4.3.1. Voltage and displacement ranges are 40 V and 120 um respectively. The
loading and unloading curves are indicated, together with the required actuator stroke length

of 75 um.
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The maximum output displacements, for a 36 V coil input, are 110 um for actuator I and
113 pum for actuator II. The percentage difference between the maximum output
displacements, relative to that of actuator I, is 2,7%. From the loading curves, it can be seen
that the required stroke lengths of actuators I and II are produced with input voltages of
13,2V and 12,3 V respectively.

The linear and saturation ranges are not clearly demarcated. In section 2.2, it was mentioned
that subjective judgment is required to determine the transition point between the ranges.
From figure 4.4.3.1, it can be judged that the linear ranges of the two actuators end at the
required stroke length of 75 um.

A dead zone of 2,5 V appears in each loading curve. During loading from a state of 0 V and
0 um displacement, displacement initially remains at O um, but increases as soon as the voltage
reaches 2,5 V. The dead zone is a result of magnetostrictive hysteresis, which was discussed
in more detail in section 2.3. In short, the closer the spacing between the loading and
unloading curves, the less significant the effects of hysteresis. From figure 4.4.3.1, it can be
seen that, at lower voltages, spacing between the curves is wider than at higher voltages.
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Figure 4.4.3.1: Actuator quasi-static displacement versus coil input voltage
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The differences between the characteristics of the two actuators remain, even after adjustment
of the rod prestress, using the iterative method described above. The following reasons can be
given for the differences: Firstly, during actuator assembly, fitting the prestress springs may
have caused slight twisting of the flexures. The flexures are relatively soft and can be easily
damaged.

Secondly, the magnetostrictive characteristics of the rods may differ slightly. The rod
manufacturer, Etrema, does however include a measured quasi-static (strain versus field)
characteristic with each rod upon delivery. Differences in rod characteristics are therefore
known before actuator assembly.

The quasi-static characteristics shown in figure 4.4.3.1 are not expressed in terms of rod strain
and induced magnetic field. The reason is that, for the purpose of analyzing actuator and
system performance, parameters such as output displacement, stroke length and input voltage,
are more important. These parameters are also directly measurable.

However, in the interest of facilitating future designs and for updating the model, it is
necessary to determine the rod strain. If gain mechanism stiffness and passive rod length are
neglected and equal strains in the two rods are assumed, the maximum strain achieved with
actuator II, is 1100 ue. If passive rod length and gain mechanism stiffness (3,28 MN/m — as
calculated by means of the FE method in section 3.5.1) are included, the maximum strain in
the rods of actuator Il is 1410 ue. The maximum linear strain, which occurs at a stroke length
of 75 um, is 944 ue (see also section 3.5.1).

From the quasi-static test results, the most suitable bias voltage for the dynamic tests is
determined. This is done in section 4.4.4.

4.4.4 Calculation of bias voltage for dynamic tests

The following procedure is followed to calculate the bias voltage. The first step is to obtain
the dehysterized displacement versus coil voltage characteristic for each actuator. The
dehysterized characteristic is the average of the loading and unloading curves (this definition
was adopted in section 2.3, where the hysteresis effect on the strain versus field characteristics
was studied):

1
xdehy.\'terized (V) = 5 {xlrmding (V ) + 'xunl(mding (V )} (4'4'4' 1)

where V is coil input voltage and x is output displacement.

Equation 4.4.4.1 is differentiated numerically with respect to coil voltage to obtain the
displacement derivatives, or gradients, of the dehysterized characteristics. The curves of
displacement derivative versus coil voltage of the two actuators are shown in figure 4.4.4.1.

It can be seen from figure 4.4.4.1 that the shapes of the displacement derivative curves

resemble those of the modelled dehysterized strain constant curve (see figure 2.2.1.5). For
low coil voltages, the gradients are low. The gradients increase with an increase in voltage
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and reach a peak. The maximum displacement gradient of actuator I is 9,3 um/V at 6,7 V,
while that of actuator II is 8,8 um/V at 6,4 V. For further increases in coil voltage, the
gradients decay to zero in the saturation region.

Theoretically, the voltage where the gradient peaks, can be selected as the bias voltage. For
this bias voltage, coil voltage will range from 0 V to approximately twice the bias voltage.
(Actuator I, for example, produces a stroke length of 75 um at 13,2 V, while the theoretical
bias voltage is 6,7 V). However, it is undesirable to extend the voltage range below 2,5 V,
since hysteresis losses are more significant at lower voltages (see discussion in section 4.4.3).
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Figure 4.4.4.1: Displacement derivatives versus coil voltage of the two actuators

In order to limit hysteresis losses, it is necessary to increase the coil voltages. The required
increase is unknown at this stage. The coil voltages are therefore arbitrarily raised by 2,5 V
(the dead zone voltage), resulting in bias voltages of 9,1 V and 8,75 V for actuators I and II
respectively. These voltages respectively differ by only 3,4% and 0,5% from the design bias
voltage of 8,8 V (see table 3.5.2.3).

The disadvantage of increasing the coil voltage is that the maximum voltage is moved into the
saturation region. The maximum voltage of actuator I, for instance, will be 15,7 V, an
increase of approximately 20%. The problem can, to a large extent, be solved with permanent
magnet biasing.

219



4.4.5 Dynamic test signal selection, design and generation

The selection, design and generation of the dynamic test signals are described in this section.
A number of signal types are considered and a suitable test signal type is selected. Signal
parameters, such as duration, amplitude and bandwidth are determined and tabulated. A block
diagram for dynamic signal generation is shown.

Dynamic test signal types and selection of the most suitable signal type

Signal types to be considered for dynamic characterization purposes, are steady-state
harmonic, stepped-sine, sine-sweep, wide-band random (white noise) and transient type
signals. A short description of each input signal type, from Ewins [1991], is given below. The
application, advantages and disadvantages of each signal type are discussed in short. The
most suitable dynamic test signal type is selected.

Steady-state harmonic inputs are mainly applied to obtain the 7F magnitude and phase of a
system at a single frequency. If the TF’s are required at more than one frequency, a
characterization test must be carried out at each frequency of interest. Wide-band, high-
resolution characterization of systems using harmonic inputs is therefore not recommended.

Stepped-sine inputs can be used for system characterization over a limited bandwidth. A
harmonic input is applied, preferably at the lowest or highest frequency in the band. The
frequency is fixed for a sufficiently long period to ensure that steady-state conditions are
attained before measurements are made. The frequency is adjusted stepwise and the
procedure is repeated. The test is stopped when measurements have been made at all the
frequencies in the band. Input amplitude is held constant with time.

Sine sweep inputs are in a sense similar to stepped-sine inputs, but the frequency is varied
continuously, instead of stepwise. A harmonic input is applied at the lowest or highest
frequency in the band. The frequency is varied slowly to ensure that steady-state conditions
are attained before making measurements. Frequency can be varied linearly or logarithmically
with time. Input amplitude is held constant with time. Sine sweep tests are not recommended
for combinations of short test times, wide frequency bands and high resolutions. Under these
circumstances, steady-state conditions are difficult to attain.

Random inputs are often used for wide-band characterization of systems. A special type of
random input is the so-called “white noise” signal, with an approximately constant amplitude
spectrum and a random phase. During testing, the signal time trace is recorded in samples of
equal duration. The amplitude spectra of the individual samples are averaged. Sequential or
overlap averaging can be performed. For a given bandwidth, data reliability is improved with
an increase in sample duration and number of samples.
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Data reliability is indicated by the “statistical degrees of freedom” k, given by the following
equation:

Kk =2mT BW 4.4.5.1)

where m is the number of samples, T is the sample duration and BW is the frequency
bandwidth. The higher x, the more reliable the data. As an example, Ewins [1991]
recommends a k-value of 10 for an 80% probability that the estimated spectrum is within 50%
of the true spectrum at any given frequency. For an 80% probalility that the estimated
spectrum is within 18% of the true spectrum, x should approach 100.

Transient inputs are mainly applied to obtain the pulse- or impact behaviour of a system.
Input time duration is relatively short in comparison with the lowest natural period of the
system. The input amplitude spectrum normally decays exponentially with frequency. This
type of test is not suitable for wide-band characterization where constant amplitudes are
required over the frequency spectrum.

In this study, wide band random inputs are used for dynamic system characterization.
Harmonic excitation is ruled out because the disturbance frequency band is too wide to
conduct a test at each frequency (0 to 100 Hz, with a resolution of 1/3 Hz). Stepped-sine and
sine-sweep inputs are undesirable, since steady-state conditions will be difficult to attain in a
short test time. Lastly, transient tests will give unwanted exponentially decaying amplitude
spectra.

Dynamic test input signal design

The dynamic test input signal parameters are bias voltage, voltage amplitude, voltage RMS-to-
peak ratio, frequency bandwidth, time duration and sample frequency. The peak-to-peak
voltages, for a quasi-static stroke length of 75 um, are 13,2 V for actuator I and 12,3 V for
actuator II. The amplitude is 50% of the peak-to-peak voltage, i.e. 6,6 V for actuator I and
6,25 V for actuator II. The bias voltages are 9,1 V for actuator I and 8,75 V for actuator II.

It was mentioned in section 4.3 that, due to a problem with availability of test equipment, it is
possible to excite the coil of one actuator only. In the interest of safety, the bias voltage and
voltage amplitude are selected to correspond with those of the actuator with the maximum
peak-to-peak voltage, i.e. 9,1 V and 6,6 V respectively. The corresponding minimum and
maximum voltages are 2,5 V and 15,7 V respectively.

Test signal bandwidth is mainly determined by the disturbance bandwidth. As was motivated
in the previous section, a wide-band, white noise, random signal is used for system
characterization. However, this signal contains frequencies well above the disturbance
bandwidth. The signal must therefore be low-pass filtered above 100 Hz. In order to prevent
filter interference in the disturbance band, the signal is filtered at a 30% higher frequency, i.e.
at 130 Hz. A 4" order filter is used for this purpose. High-pass filtering of the signal is not
desirable, since the signal must be DC-biased. Test signal bandwidth is therefore 0 Hz to
130 Hz.
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As an unwritten rule, sampling frequency should be in the order of five to ten times the
maximum disturbance frequency, i.e. 500 Hz to 1 kHz. The DSP card, however, allows the
use of significantly higher sampling frequencies. To make full use of its performance, the test
signal is sampled at 2 kHz, which is 20 times that of the maximum disturbance frequency.

The crest factor of a signal is the inverse of its RMS-to-peak ratio. The disturbance crest
factor is 2,17 (see table 3.2.1), i.e. its RMS-to-peak ratio is 0,46. Using the same crest factor,
the required RMS voltage of the test signal, for an amplitude of 6,6 V, is 3,03 V. The RMS-
to-peak ratio of a wide-band random signal is normally in the order of 0,25. In order to obtain
a 0,46 RMS-to-peak ratio, the random signal is gained to raise the peak and then clipped. Due
to the high sampling rate, clipping of the signal does not occur inside the 0-100 Hz disturbance
band.

The reliability of test signal data is determined by the bandwidth, number of test samples and
sample duration (see equation 4.4.5.1). In this study, test signal duration is limited to 3,2 s per
sample. The number of samples is arbitrarily selected as 37. The total test duration is the
product of the number of samples and duration per sample, i.e. 118 s. For a bandwidth of
100 Hz, the statistical degrees of freedom k, from equation 4.4.5.1, is 23680. This value of K
is 237 times the value of 100, as recommended by Ewins [1991], for an 80% probability that
the measured value is within 18% of the true value. The dynamic test signal parameters are
summarized in table 4.4.5.1.

Table 4.4.5.1: Dynamic test signal parameters

Bias voltage 9,1V
Voltage amplitude 6,6V
Maximum voltage 15,7V
Mmimum voltage 25V
RMS voltage 303V
Crest factor 2,17
Frequency bandwidth 0 Hz to 130 Hz
Sampling frequency 2kHz
Total duration 118 s
Number of test samples 37
Duration per sample 32s

Dynamic test signal generation

As with the quasi-static signals, the signals are generated in Simulink. A signal generation
block diagram is shown in figure 4.4.5.1. The signals are constructed from standard Simulink
input functions, i.e. step and random functions. Every time the test signal is applied, a new
random signal, with the same frequency band, RMS and peak values, is generated.

Gradual application of the input signal is desirable to prevent the excitation of unwanted

transients. To this end, the random signal is multiplied with a truncated ramp function. The
ramp function is created from two rate-limited step functions, as described in section 4.4.1.
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The signal is low-pass filtered at 130 Hz, i.e. 30% above the maximum frequency of the
disturbance band. Gains and saturation elements are used to adjust the amplitude and crest
factor. The bias voltage is created using the same method as in section 4.4.1 and added to the
random function.

L L
e /]

Step input starts  Rate limiter

\l Product
1 ~ [ *

Step inputends  Rate limiter

A 4

Digital

E low-pass
1 filter

Random input Gain

T /|V — %*

Output
Bias step starts Rate limiter + | Sum Clip Gain to
DSP card
H--._d - I\
Bias step ends Rate limiter

Figure 4.4.5.1: Block diagram for dynamic signal generation

The test signal is simulated and viewed using the Simulink scope. It is then divided by the
DSP card gain factor (see section 4.4.1 for the procedure), coded in C and compiled to an
object file. It is captured and viewed using the signal analyzer.

4.4.6 Dynamic test execution

A voltage divider with a gain of 0,25 is connected in parallel with the coil. Accelerometers are
attached at the measurement positions (see figure 4.3.1.3). The DSP card output is connected
to the input of the power amplifier, whose output is connected to the actuator coil. The
amplifier output power is adjusted to —8,94 dB, relative to maximum power. The test signal is
applied to the actuator. The coil voltage signal and one accelerometer signal are captured
using the signal analyzer. A signal analyzer sampling frequency of 1280 Hz is used. This is
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12,8 times the maximum frequency of the disturbance band and 8,8 times the predicted first
natural frequency (see table 2.8.4.2).

A new test signal is generated and the test is repeated until all 37 tests have been completed.
Total test time is 118 s. Captured data of each test is viewed on the signal analyzer screen.
The data is stored in a file and transferred to the PC for processing. The tests are repeated for
the other accelerometer positions. In total, 111 tests are conducted, i.e. 37 per accelerometer.

4.5 Dynamic test results

The dynamic test results are processed, presented and discussed in this section. The data
processing method is explained. Transfer function magnitudes and phase spectra are
calculated and shown graphically. Frequency domain characteristics, such as resonance and
anti-resonance frequencies, are indicated. The dynamic test results are discussed and
compared with the modelled results. It is shown that the modelled results currently compare
poorly with the experimental results. Reasons for differences between experimental and
modelled results are given.

Dynamic test data processing is explained in section 4.5.1. TF magnitude and phase angle
spectra are shown in section 4.5.2. Resonance and anti-resonance frequencies are indicated.
The dynamic test results are discussed in section 4.5.3. A comparison between the
experimental and modelled results is drawn in section 4.5.4 and reasons for differences are
given.

4.5.1 Dynamic test data processing

The data is processed in Matlab, using the signal processing toolbox. Each measured signal is
multiplied with its calibration factor. The voltage signal is multiplied with the inverse of the
voltage divider gain, i.e. 4 V/V. The accelerometer calibration factors are converted from
mV/g to m/s*/V and multiplied with the accelerometer output signals.

The accelerations and coil input voltage are used to calculate the TF between coil input
voltage and rotational (angular) acceleration of the instrument. The TF between coil input
voltage and translational acceleration is also calculated. Although this TF does not influence
LOS accuracy of the instrument, it is a valuable tool to identify the modes of excitation of the
instrument.  The three accelerations at the accelerometer positions, together with the
rotational and translational accelerations, are shown diagrammatically in figure 4.5.1.1.
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Figure 4.5.1.1: Diagram indicating measured, rotational and translational accelerations

In figure 4.5.1.1, j,, is the acceleration at accelerometer 1 (see figure 4.3.1.3), j, is the
acceleration at accelerometer II and j, is the acceleration at accelerometer III, i.e. the base
acceleration. Note that ¥, is positive downward, since the accelerometer is mounted upside
down under the beam. 6 is the instrument rotational (angular) acceleration and j is the
translational acceleration of the instrument centre of mass. [ is the instrument length.

TF spectra between the output accelerations and input voltage are calculated using the
following equation, from Ewins [1991]:

G(w)= B (@) (4.5.1.1)

where P, (@) is the cross-spectral density (CSD) between input voltage and output

acceleration and P..(w) is the input voltage power spectral density (PSD).

Using equation 4.5.1.1, the following spectra are calculated: ¥, /V, ¥,,/V and 3,/V . Data

overlapping is done to smooth the spectra. The number of overlaps is 256 per test, for 37
tests per accelerometer. For 256 overlaps, a test duration of 3,2 s and sampling frequency of
1280 Hz, the frequency resolution is 1/3 Hz.

The averages G.i(w), G.2(w) and G(w) of the test spectra are calculated using the following
equations:

37( P.
G ,(w):iz Lal” (4.5.1.2a)
‘ 375\ B, ),
(P,
Gop(0)= — 3| a2t (4.5.1.2b)
375\ By ),
37 (P,
G,(w)=— % (4.5.1.2¢)
375\ By J,

where i is the test number.
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The transfer function Gpeuw for parallel excitation, i.e. excitation at actuator II and
measurements at accelerometers II and III, is calculated using the following equations:

Gpamllel (w ) = GaZ (w ) + Gb (w) (4'5'1'3)

The sign of G.(w) is positive, in agreement with the sign convention in figure 4.5.1.1.

The transfer function G..iwws fOr crisscross excitation, i.e. excitation at actuator II and
measurement at accelerometer I, is given by:

G )=G,(0) (4.5.1.4)

CrissScross (

The TF between coil input voltage and optical instrument rotational acceleration is the
difference between the parallel and crisscross accelerations, divided by the instrument length:

G =é=%G

rolation (4- 5. 1 .5)
vV

parallel - Gcri.s'.\'cmx.)')

The TF between coil input voltage and instrument translational acceleration is the average of
the parallel and crisscross TFs:

_%G + G o) (4.5.1.6)

- 5 parallel Crisscross

G =

translation

< |

The parallel, crisscross, rotational and translational TF magnitude and phase spectra are
calculated from equations 4.5.1.3 to 4.5.1.6 respectively. The spectra are shown graphically in
section 4.5.2.

4.5.2 Transfer function spectra

TF magnitude and phase spectra for parallel and crisscross excitations, for a frequency band of
0 Hz to 500 Hz, are shown in figure 4.5.2.1. The figure also shows the disturbance bandwidth
(BW) and input filter frequencies.

TF magnitude and phase spectra for rotational motion of the optical instrument are shown in
figure 4.5.2.2. For the purpose of clarity, the resonance and anti-resonance frequencies for
rotational motion, together with the magnitudes and phases at these frequencies, are given in
table 4.5.2.1. TF magnitude and phase spectra for translational motion are shown in figure
4.5.23.
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Figure 4.5.2.1: Parallel and crisscross excitation transfer function frequency spectra
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Figure 4.5.2.2: Transfer function magnitude and phase spectra for rotation
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Table 4.5.2.1: Resonance and anti-resonance frequencies, magnitudes & phases for rotation

Frequency Resonance Anti-resonance Magnitude Phase
(Hz) (rad/s’/V) ©)

186,3 v X 40,47 -128,0
206,7 X v 22,21 -130,4
2273 v X 67,98 -153,9
238,7 X v 28,19 -162,0
247,0 v X 45,42 -147,2
254,3 X v 48,14 -146,3
301,0 v X 320,5 -246,8
466,0 X v 6,53 -297,2
478,3 v X 18,11 -294.4
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Figure 4.5.2.3: Transfer function magnitude and phase spectra for translation

4.5.3 Discussion of dynamic test results

Magnitude and phase of the rotational DOF at the end of the disturbance band, i.e. at 100 Hz,
are 7,21 rad/s’/V and -63,1° respectively. All the resonance and anti-resonance frequencies
are well above the disturbance band. Dominant rotational resonance frequencies are 227,3 Hz
and 301 Hz. The magnitude peak at 478,3 Hz is due to base resonance. This peak also
appears in the translational 7F magnitude. An anti-resonance frequency, i.e. at 5 Hz, is
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noticable in the magnitude graph in figure 4.5.2.2. This is not a system anti-resonance
frequency, but rather a notch in the accelerometer transfer function.

From figure 4.5.2.3, it can be judged that the peak at 186,3 Hz, is a dominant translational
resonance frequency. At this frequency, a peak also appears in the rotational TF spectrum.
This may be attributed to different actuator stiffnesses. At 238,7 Hz, a slight peak appears in
the translational TF magnitude, while at 301 Hz, a notch occurs in the translational magnitude,
where the dominant rotational resonance frequency occurs.

It can be seen from figures 4.5.2.1 to 4.5.2.3, that the phase angles gradually drop with an
increase in frequency from O Hz. This phenomenon also appeared in the modelled TF (see
figure 2.8.5.3). The phase drop can be attributed to coil inductance.

The -3 dB bandwidth of the coil cannot be directly obtained from the TF spectra. The reason
is that the system consists of two coupled (mechanical and electrical) subsystems. The coil
bandwidth can however be calculated after separating the electrical characteristic of the coil
(I/V-spectrum) from the mechanical characteristic. This will be done in chapter 5.

4.5.4 Comparison between experimental and modelled results

The modelled and experimentally determined input voltage to output acceleration TF’s, for
parallel and crisscross excitation, are shown in figures 4.5.4.1 and 4.5.4.2 respectively.
Modelled spectra are obtained from coil input voltage to output displacement characteristics
as simulated in section 2.8.5. The modelled TF’s are multiplied with -’ to obtain voltage to
angular acceleration TF’s. Figure 4.5.4.3 shows the modelled and experimentally determined
input voltage to output angular acceleration TF’s.

It is clear from the abovementioned three figures that correspondence between the modelled
and experimental results is poor. It can be deduced that the model is currently highly
inaccurate and must therefore be improved before a controller can be designed.

Possible reasons for differences between the modelled and experimental results are as follows:
Firstly, in chapter 2, an ideal SDOF model was used for each actuator. It is however obvious
from this section that the experimental TF spectra display more resonant frequencies than the
modelled spectra. This can be attributed to actuator dynamics, i.e. each actuator behaves like
an excited structure, with more than one degree of freedom.

Furthermore, natural frequencies depend on a number of other factors, such as Young’s
modulus of the Terfenol-D rods, system distributed and concentrated mass, strain constant,
gain mechanism stiffness and gain factor. Parameters such as Young’s modulus and the strain
constant are prestress-dependent (see section 2.2). The problems of determining prestress
were discussed in more detail in sections 4.4.2 and 4.4.3.

In the third place, actuator output (displacement or acceleration) must be multiplied by -1,

since a positive Terfenol-D rod elongation produces a negative actuator output displacement
(see figure 3.4.1.5). The model developed in chapter 2 did not take this characteristic into
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consideration, which partly explains the large differences between modelled and measured
phase spectra.

Lastly, a hysteresis damping model, which was derived from quasi-static hysteresis loops
published in the literature, was used in chapter 2 (see section 2.3). An effort was made to
derive a dynamic damping model from the hysteresis loops. However, it was mentioned in
section 2.3 that experimentally measured results are required to obtain an accurate damping
model. Updating of the damping model will be explained in chapter 5, where a modal
damping model will be described.
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4.6 Summary of chapter 4 and preview of chapter 5

The Terfenol-D actuator and LOS stabilization system characteristics were determined
experimentally in this chapter. The actuators were tested quasi-statically. The system,
consisting of the two actuators, optical instrument and its support structure, was tested
dynamically. The purpose of the quasi-static tests was to determine the actuator linear ranges,
maximum stroke length, input voltages required to produce the stroke length and bias voltage
for the dynamic tests. The dynamic tests were carried out to obtain system frequency-domain
TF’s between coil voltage and instrument angular acceleration, as well as resonance and anti-
resonance frequencies. These characteristics are required to update the model and to design a
controller.

The test specimens were discussed in short.  Quasi-static and dynamic test setups and
equipment were described and shown diagrammatically. The tests were carried out and the
measured signals were processed. The results were shown graphically and discussed. It was
shown that all the resonance and anti-resonance frequencies are well above the disturbance
bendwidth. The dynamic test results were compared with the modelled results. Reasons for
differences between the modelled and measured results were given. It was shown that the
model is inaccurate and must therefore be updated to represent the measured results more
accurately. Model updating will be described in chapter 5.

The model updating procedure is as follows: A 2DOF discrete model is developed for each
actuator and an SDOF model of the elastically mounted base is included. The distributed
model of the optical instrument is left unchanged. The electrical and mechanical subsystems
are analyzed separately. The actuator, base and optical instrument equations of motion are
coupled using component mode synthesis. The TF spectra are recalculated and compared
with the experimentally determined spectra. It will be shown that the accuracy of this model is
sufficient.
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Chapter 5
Identification of system parameters
and updating of system model

5.1 Background

In this chapter, two model updating approaches are considered. The first approach is direct
identification from measured transfer function spectra, by using system identification theory.
The second approach is updating of a physical model, by means of iterative parameter
adjustment.

A motivation for updating the model is given and the procedure is explained. System
identification theory is discussed and a suitable identification technique is selected. The
selected technique is described in detail.

An updated TF model is obtained from the experimentally determined TF magnitude and
phase spectra, by means of linear frequency domain identification. The TF is presented in
numerator and denominator polynomial form. TF spectra of the updated model are compared
with the experimentally determined TF spectra. It is shown that the model is sufficiently
accurate. This identification technique generally gives high accuracy without a thorough
knowledge of the system and is relatively quick and easy to apply.

The limitations of the TF model are, firstly, that no physical insight is provided into certain
system characteristics, such as normal modes, modal forcing functions, coupling between
mechanical and electrical subsystems, or the effects of base motion on system transmissibility.
Secondly, depending on the order of the approximation model, an overdetermined system may
be required to ensure high accuracy. Although the model may closely approximate the
experimental data, excessive computational effort may be required to model noise, instead of
system characteristics.

In order to overcome the abovementioned limitations of the 7F model, a physical model is also
derived. The model parameters are selected and adjusted until the calculated TF magnitude
and phase spectra closely match the experimentally determined TF spectra. The advantage of
a physical model is that it can be derived from first principles and that all the characteristics
can be related to physical system parameters, such as mass, stiffness, damping and input force.
The disadvantage is that the model updating procedure may be tedious.

The physical model is subsequently separated into two models, i.e. one for the electrical
subsystem (coil) and one for the mechanical subsystem. Reasons for separating the models are
given and the difficulties of identifying the electrical and mechanical subsystem models are
mentioned. A method of analyzing the models separately is described. The coil model is
presented in canonical state-space and TF forms. Coil TF magnitude and phase spectra are
shown and the TF poles and zeroes are discussed. The relationship between coil current and
modal excitation force is given.

The equations of motion of the mechanical subsystem, which consists of the two actuators,
elastically mounted base and the optical instrument and support structure, are derived.
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Different methods of coupling the component equations of motion are discussed. The
component mode synthesis method is selected as the most suitable method for this purpose.
The undamped natural frequencies and normal mode shapes are calculated. Modal damping
and forcing terms are added. The latter terms are obtained from the coil model. The overall
system TF spectra are calculated and compared with the experimentally determined 7F
spectra, It is shown that the model is sufficiently accurate.

The system open-loop transmissibility (7R), i.e. the base angular acceleration to optical
instrument angular acceleration transfer function, is obtained by means of the physical model.
The open-loop transmissibility will be required in chapter 6 to design a controller.

Motivation for updating the system model

It was shown in section 4.5 that the modelled and experimentally determined system TF’s
differed considerably. The following reasons were mentioned. In the first place, the
experimental TF spectra displayed more resonant frequencies than the modelled spectra. This
was attributed to the fact that the SDOF actuator models were insufficient and that MDOF
actuator models would be required to accurately describe system characteristics.

Secondly, due to the geometry of the gain mechanisms, a positive rod elongation would
produce a negative actuator displacement (see figure 3.4.1.5). The model developed in
chapter 2 did not take this characteristic into consideration, which partly explains the large
differences between modelled and measured phase spectra. The problem can however be
solved relatively easily, by multiplying the output with -1.

Lastly, in chapter 2, damping was modelled by means of a hysteresis damping model, which
was derived from quasi-static hysteresis loops published in the literature (see section 2.3).
Since the system is required to operate over a wide frequency range, a quasi-static damping
model would necessarily be inaccurate. The damping model can be improved by making use
of viscous modal damping.

Layout of this chapter

Model updating is systematically described in the following sections. Identification theory is
discussed in short in section 5.2. A classification of identification techniques is given. Linear
and nonlinear system identification techniques are respectively mentioned in sections 5.2.1 and
5.2.2. A suitable identification technique is selected in section 5.2.3, followed by a discussion
of linear least-squares frequency domain identification in section 5.2.4.

In section 5.3, an updated frequency domain 7F model is obtained from the measured spectra
by means of a least-squares data fit. Model order is determined iteratively. The model
parameters, i.e. the numerator and denominator polynomial coefficients, are given and the TF
poles and zeroes are calculated. The updated model TF is compared with the experimentally
determined TF.
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Identification of the coil characteristics is covered in section 5.4. Separation of the coil and
mechanical subsystem models is motivated and described in section 5.4.1. The coil model is
presented in section 5.4.2.

The undamped equations of motion of the mechanical subsystem, for natural behaviour, are
derived in section 5.5, using the component mode synthesis method. Damping and forcing
terms are added in section 5.6. The latter terms are obtained from the coil model. Updated
system state-space and TF models are derived. The updated model 7F magnitude and phase
spectra are compared with the experimentally determined TF spectra and it is shown that
accuracy of the updated model is acceptable. The TF poles and zeroes are calculated and a
pole-zero diagram is shown. The TF’s of the individual mode shapes are calculated and the
dominating mode is identified. The system bandwidth is calculated. The open-loop
transmissibility is calculated by means of the physical model.

A summary of chapter 5 and a preview of chapter 6 are given in section 5.7.

5.2 System identification theory

System identification theory is summarized in this section. A broad classification of
identification model types is given. Linear and nonlinear, as well as time and frequency
domain identification models and techniques are discussed in short. A suitable identification
technique is selected for this study and described.

Linear time-domain and frequency-domain identification models and techniques are mentioned
in section 5.2.1. In section 5.2.2, nonlinear time- and frequency domain identification models
and techniques are mentioned. The most suitable identification technique is selected in section
5.2.3, followed by a detailed discussion of the technique in section 5.2.4.

The process of constructing models and estimating unknown system parameters from
experimental data, is called system identification [Franklin et al, 1990]. A broad classification
of estimation methods is given by Schoukens & Pintelon [1991]. The methods are classified in
three categories, i.e. nature of the selected model, application of the model and stochastic
characteristics of the measurements. A classification of identification methods is summarized
in table 5.2.1.

Table 5.2.1: Classification of system identification methods [Schoukens & Pintelon, 1991]
Category
Selected model: Parametric versus nonparametric

Time domain versus frequency domain
Linear-in-the-parameters versus nonlinear-in-the-parameters
Application: Time invariant systems versus time varying systems

Linear systems versus nonlinear systems

Stochastic characteristics: | Noise on the input and output versus noise on the input only
versus noise on the output only
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A category which can be added to the above, is on-line (real-time) versus off-line (classical)
identification. On-line and off-line identification are discussed in more detail by Sinha &
Kuszta [1983]. The determination of frequency spectra, e.g. those shown in section 4.5, can
be done on-line, using modern signal analyzers. Extraction of model parameters, such as
natural frequencies, damping factors and modal amplitudes, is mostly done off-line.

Parametric actuator and LOS stabilization system models were developed in chapter 2. The
state-space and TF models were derived in terms of the Terfenol-D magnetostrictive and
magnetization parameters and the actuator, coil and system dynamic parameters (see sections
2.4 to 2.8). Nonparametric models were obtained from the experimental test results in chapter
4, where the actuator and system TF’s were represented by their respective spectra (see figure
4.5.2.2). Time domain simulations of the actuator behaviour were done in chapter 2 (see
section 2.7.3), while the system frequency domain TF’s were derived from the complex
Laplace domain TF’s in section 2.8.5.

A distinction is made between a linear system and a linear-in-the-parameters system. A model
is called linear-in-the-parameters if there is a linear relationship between its parameters and its
output [Franklin et al, 1990]. The actuator and system frequency domain TF’s are nonlinear-
in-the-parameters. Consider for instance the modelled SDOF actuator frequency domain
output equation, which, from equation 2.5.3.5, can be written as:

FY — P .
RN e R o

where w is the angular excitation frequency, U(jw) and Y(jw) are the complex frequency
domain coil voltage input and actuator displacement output respectively. The parameters p,
4o, q: and g are the TF numerator and denominator polynomial coefficients. It can be seen
from the above equation that ¥(jw) is a nonlinear function of the parameters.

A system is linear if there is a linear relationship between its input and output. In equation
5.2.1, the ratio of the output ¥(jw) to the input U jw) at any given frequency w, is linear.

5.2.1 Linear system identification models and techniques

The objective of linear identification is to obtain a system model in transfer function or state-
space form, from measured data. Linear identification models and techniques include the
following: The ARMA method for discrete time-domain identification of linear systems, time-
domain models from free-decay response, identification models for time-varying systems,
regression techniques to determine model coefficients, Laplace- and frequency-domain TF
models from discrete time-domain models, frequency-domain models from measured TF
spectra and state-space identification of linear systems. The abovementioned models are not
discussed here. A summary of each of the methods is given in appendix U.
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5.2.2 Nonlinear system identification models and techniques

Techniques for determining the parameters of nonlinear systems from measured data can
broadly be classified as time-domain techniques, frequency-domain techniques, force-state
component identification and identification using neural networks. The methods are
summarized in appendix U.

5.2.3 Selection of a suitable identification technique

For the purpose of this study, the system models that will be identified, will mainly be
parametric, time invariant, linear, frequency (@) domain TF and state-space models. Time-
varying, nonlinear and time-domain models will not be considered.

The reasons are, firstly, that the models developed in chapter 2 are state-space and frequency-
domain TF models. These models will serve as a guide for updating the system model from
experimentally-determined TF spectra. A second reason is that TF and state-space models are
mostly used for the design of classical and optimal controllers. Adaptive controllers, which
adjust control parameters in real time using learning algorithms, are an exception. Adaptive
controllers will not be considered in this study. A third reason is that experimentally-
determined spectra already exist. These spectra were obtained during the test phase, as
described in chapter 4. The last reason is that w-domain spectra give physical insight into
dynamic characteristics, such as magnitude, phase angle, number of DOF’s, resonance and
anti-resonance frequencies, DC gains and frequency bandwidths.

The disadvantages are firstly that @-domain models are nonlinear-in-the-parameters, as
discussed before.  Secondly, processing is almost always done off-line. Real-time
determination of TF polynomial coefficients is not possible with the currently available
equipment. Thirdly, during conversion from a 7F model to a state-space model, a canonical
model almost always results. The canonical model states do not necessarily correspond with
the selected model states. The latter must be obtained by a similarity transform. Lastly,
frequency-domain identification requires longer data records than time-domain identification
[Liu & Miller, 1995].

In this chapter, the coil voltage to angular acceleration TF of the optical instrument is obtained
from measured spectra in the frequency-domain, using the Gauss-Newton technique. A
physical system model is also derived. The coil and mechanical subsystem models are
separated and a canonical coil model is developed.

Actuator characteristics are modelled by means of 2DOF discrete models, instead of the
SDOF models used in chapter 2. Substructure synthesis is used to couple the actuator, optical
instrument and base models. The actuator and base stiffnesses are adjusted until the modelled
TF spectra match the experimentally determined natural frequencies with an acceptable degree
of accuracy. The normal mode shapes of the optical instrument are subsequently calculated.
The mechanical subsystem model is coupled to the coil model in state-space. The system TF
magnitude and phase spectra are calculated and compared with the experimentally determined
spectra. The coil back-emf is not modelled.
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5.2.4 Least-Squares method for frequency-domain identification

The frequency domain TF model which approximates the measured spectra, can be written as
follows in complex form:

G(jw)= U ) (5.2.4.1)

~

where G(jo) is the approximate TF and P(jw) and Q(jw) respectively represent the

numerator and denominator of G(jw). P(jw) and Q(jw) are polynomials in ja:

M
P(jw)=Y p,(jo)* (5.2.4.2a)

k=0

. N
O(jw)=Y q,(jw) (5.2.4.2b)

where M is the order of the numerator polynomial and N is the order of the denominator
polynomial. p: and g, are the numerator and denominator polynomial coefficients respectively.
For the sake of convenience, the polynomial coefficients are written as follows in vector form:

{¢,}={po.pr 0w} (5.2.4.3)
{¢,} ={a0.q1 a0} (5.2.4.3b)

where {Cp} and {Cq} are the numerator and denominator polynomial coefficient vectors

respectively. These two vectors are combined as follows in one coefficient, or parameter,
vector {C}:

{C}z{{cp}’ {Crl}}Tz{Po’Pw"'aPM, qOﬂ:""an}T (5.2.4.4)

It is desirable to obtain a model which is proper, i.e. a model whose numerator order is less
than or equal to the denominator order:

M<N (5.2.4.5)

In order to ensure a high degree of accuracy, large values of M and N are required. However,
the larger M and N, the more computationally intensive the identification procedure becomes.
Furthermore, in a physical system model, such as an equation of motion, M and N are
determined by the number of normal modes.
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The purpose of the model is to represent the experimentally-determined TF spectra as
accurately as possible. The difference between the modelled TF and experimentally-
determined TF is known as the estimation error and is given by:

e=G-G (5.2.4.6)

where e is the error, G is the modelled TF and G is the experimentally determined TF. G is
known at discrete frequencies (see section 4.5), thus the error can only be evaluated at these
frequencies.

The error e, at the r-th frequency is:

e =G -G (5.2.4.7)

r r r

where ér and G, are the approximate TF and measured TF at the r-th frequency, given by:

= G(jw,) (5.2.4.82)

G,
G, =G(jo,) (5.2.4.8b)

It can be seen from equations 5.2.4.7 and 5.2.4.8, it can be seen that the error varies with
frequency. As a globally accurate model is required, the error squared is summed and
minimized over the frequency band.

The global error is given by the following equation:

N 2

E=Ee

r
r=1

(5.2.4.9)

where E is the global error of the model and N is the number of discrete frequencies.

Both G and G are complex (see equations 5.2.4.8). The global error can therefore be
expressed as the sum of the error of the real term squared plus the error of the imaginary term
squared [Schoukens & Pintelon, 1991]:

£=3[(Re{G,}-Re{6,]) + (1n{G,} - 1m{G, }) | (5.2.4.10)

r=1
E is a nonlinear function of the polynomial coefficient vector C:

E=E(C) (5.2.4.11)
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For the global error to be a minimum, the partial derivative of the error with respect to the
model parameters, must be zero:

9 =12 MtN+2 (5.2.4.12)
ac,

where C, is the [-th element of the model parameter vector, given by equation 5.2.4.4. The
coefficients which will minimize E, must be determined. Methods for solving LS problems are
discussed next.

Methods for solving least-squares problems

Least-squares (LS) problems can, inter alia, be classified as linear and nonlinear problems.
The following linear LS solution techniques are described by Chen et al [1989]: Gaussian
elimination, Cholesky decomposition, classical and modified Gram-Schmidt methods,
Householder transformation, Givens method and singular value decomposition (SVD). These
techniques are applicable to linear-in-the-parameters systems.

Frequency-domain models are nonlinear-in-the-parameters (see equation 5.2.1). The
following nonlinear LS solution techniques, for nonlinear-in-the-parameters systems, are
described by Schoukens & Pintelon [1991]: The gradient method, Newton-Raphson
algorithm, Gauss-Newton algorithm and the method of Levenberg-Marquardt. Methods to
obtain linear-in-the-parameters models for frequency-domain identification purposes are
described by Schoukens & Pintelon [1991]. These methods have however become obsolete
due to the rapid development of computers.

The main drawback of the gradient method is its slow convergence. Speed of convergence
can be improved using the Newton-Raphson method, which gives quadratic convergence.
However, to make this possible, 2" order derivatives must be calculated, which may be time-
consuming. Furthermore, the Newton-Raphson method does not gurarantee convergence.

The problem of calculating 2™ order derivatives can be avoided by using the Gauss-Newton
method. For most problems the Gauss-Newton method demands less computation time per
iteration step than the Newton-Raphson algorithm. In the neighbourhood of the solution, the
Newton-Raphson method will generally converge faster than the Gauss-Newton method.
However, the convergence region of the Gauss-Newton method is larger than that of the
Newton-Raphson method. As with the Newton-Raphson method, the Gauss-Newton method
does not guarantee convergence.

A method which assures unconditional convergence, at least to a local minimum, is the
Levenberg-Marquardt method. The method is a combination between the gradient and Gauss-
Newton methods.

The Gauss-Newton method is well-established for nonlinear-in-the-parameter LS
identification. This method is also used in this study to obtain the TF numerator and
denominator coefficients from experimentally-determined 7F frequency spectra. The method
is described in appendix V.
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3.3 Updated system TF model from least-squares data fit

In this section, an approximate transfer function is obtained by doing a least-squares data fit to
the experimentally determined frequency domain spectra. The TF is written in numerator and
denominator polynomial form and the polynomial coefficients are tabled. The approximate TF
magnitude and phase spectra are shown graphically and compared with the experimentally
determined spectra. The poles and zeroes are tabled.

The approximate frequency domain transfer function G( ja)) is written in the following form:

R P(j
&(jw) =242 (5.3.1)
o(jo)
13( ja)) and Q( ja)) respectively represent the TF numerator and denominator polynomials in
J, given by:
~ M k
P(jo)= Y, p.(jo) (5.3.2a)
O(jw)=Y q(jw) (5.3.2b)

l=

(=

where p: and ¢ are the k-th numerator and I-th denominator polynomial coefficients
respectively. M and N are the numerator and denominator polynomial orders respectively.

M and N are determined iteratively. Initial values of M and N are determined from the number
of resonance and anti-resonance frequencies of the experimentally determined TF (see table
4.5.2.1). A pole is added to model the coil TF. The total number of poles is therefore 2 per
resonance frequency, plus one coil pole. The number of zeroes is 2 per anti-resonance
frequency. Two zeroes, in the origin of the complex plane, are added. The notch, which
appears at approximately 5 Hz in the TF spectra (see figure 4.5.2.2), is not accounted for,
since it is assumed that it is an accelerometer characteristic, rather than a system characteristic
(see also section 4.3.3).

Five resonance and four anti-resonance frequencies are listed in table 4.5.2.1. Applying the
method set out above, M and N are:

M=10 (5.3.3a)
N=11 (5.3.3b)

The difference between M and N is the relative degree of freedom of the TF, given by:
M~-N-=1 (5.3.4)

With the above values of M and N, the Gauss-Newton method is used to fit an approximate
transfer function G(jw), to the experimental spectra. The numerator and denominator

polynomial coefficients are obtained from the data fit.
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é( ja)) is calculated using equations 5.3.2. The magnitude and phase of é( ja)) are calculated

and compared with the experimental spectra. If the accuracy of the fit is poor, M and N are
each increased by 2. The process is repeated until the poles and zeroes coincide. Coinciding
poles and zeroes are then eliminated. After two iterations, the following values of M and N
result:

M=14 (5.3.5a)
N=15 (5.3.5b)

The TF numerator and denominator polynomial coefficients p: and ¢, which minimize the LS
error for the above values of M and N, are given in table 5.3.1.

Table 5.3.1: Polynomial numerator and denominator coefficients

CoefTicient Value

po 0

P 0

P2 -1,0667.10%
3 -6,9076.10*°
Pa -2,6194.10"
Ps -1,5266.10*
Do -2,3520.10™
P -1,2339.10%®
s -9,4729.10%
Do -4,5154.10*
Pio -1,6358.10'®
P -7,3367.10"
P12 -8,0479.10"°
P13 -4,0799.107
P 1,7934.10°
qo 4,3672.10
qQ 1,3445.10%
q2 2,1924.10%
g3 4,1830.10%
qa 3,9207.10*
gs 5,2226.10%
gs 3,4152.10%°
qQ1 3,3812.107
gs 1,5984.10%
g9 1,2220.10*
qio 4,0475.10"7
qi 2,4539.10"
qi2 5,1186.10'"°
qi3 2,5149.107
qia 2,4468.10°
q15 1
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The magnitude and phase spectra of the approximate transfer function é( ja)), together with
the experimentally determined spectra, are shown in figure 5.3.1. The poles and zeroes of
é( ja)) are given in table 5.3.2.

TF MAGNITUDE SPECTRA: LS APPROXIMATION & EXPERIMENTAL
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Figure 5.3.1: LS approximation and experimentally determined TF spectra

It can be seen from figure 5.3.1 that the accuracy of the magnitude spectrum is acceptable for
a frequency band of 10 Hz to 430 Hz. For frequencies below 10 Hz, inaccuracies are caused
by the two zeroes in the origin of the complex plane. A more accurate low-frequency model
can for instance be obtained by detailed accelerometer modelling. Accuracy of the phase
spectrum is acceptable for a frequency band of 10 Hz to 350 Hz. The phase is slightly
inaccurate at 130 Hz and 240 Hz.
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Table 5.3.2: Transfer function poles and zeroes:

Frequency Damping factor Pole Zero Type Sign of real part
(Hz) (%)
0 X v Real
0 X v Real
68,74 v X Real Negative
167,5 2,29 X v Complex conjugate pair Negative
168,4 2,48 v X Complex conjugate pair Negative
197,3 6,48 v X Complex conjugate pair Negative
205,2 3,96 X v Complex conjugate pair Negative
228,6 2,69 v X Complex conjugate pair Negative
2370 3,21 X v Complex conjugate pair Negative
263,2 40,76 v X Complex conjugate pair Negative
287,7 3,25 v X Complex conjugate pair Negative
291,0 3,53 X v Complex conjugate pair Negative
301,2 2,61 v X Complex conjugate pair Negative
323,7 X v Real Negative
463,7 1,29 X v Complex conjugate pair Negative
474,7 2,68 v X Complex conjugate pair Negative
4016,1 X v Real Positive

All the poles and zeroes but one, are inside the test band of 0,33 Hz to 500 Hz. The zero at
4016 Hz is well above the test band. The real pole at 69 Hz is inside the isolation bandwidth
of the system, i.e. 2,5 Hz to 100 Hz. The real parts of all the poles are negative. The real
parts of all the zeroes, except for the two zeroes in the origin of the complex plane and the
zero at 4016 Hz, are negative. The sign of the latter zero indicates that é( ja)) is non-

minimum phase.

5.4 Identification of coil characteristics

The system spectra shown in figures 4.5.2.1 to 4.5.2.3 are spectra of a system which consists
of two coupled subsystems, i.e. electrical and mechanical subsystems. The electrical
subsystem consists of the coils, while the mechanical subsystem consists of the actuators,
elastically-mounted base, optical instument and its support structure. The coil input is the
supply voltage V and the output is current 1. The mechanical subsystem input is actuator force

and the output is the optical instrument angular acceleration 6. Actuator force is related to
coil current by the equation:

F=F]I (5.4.1)

where F, is force per unit current.

A block diagram of the system is shown in figure 5.4.1. The two subsystems and the
subsystem coupling element are also shown.
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Figure 5.4.1: System block diagram
The system TF is given by:

G=G_,F,G, 5.4.2)

where G. is the coil transfer function and G. is the mechanical subsystem transfer function.

5.4.1 Separation of electrical and mechanical subsystem models

It is convenient to separate the coil and mechanical subsystem characteristics, since this
measure will make it possible to obtain the coil TF, true normal mode shapes, natural
frequencies, damping factors and forces. One method of directly obtaining the coil
characteristics, would be to measure voltage and current during the test phase and to calculate
the coil TF, i.e. I/V. A signal analyzer with three analogue input channels, i.e. one for each of
the voltage, current and acceleration signals, would be required for this purpose.
Alternatively, an additional set of tests could be done to measure the coil current, using the
available signal analyzer.

Obtaining the mechanical subsystem TF, in isolation of the electrical characteristics, would be
more difficult, since both output angular acceleration and input force would be required for
this purpose. Firstly, angular acceleration cannot be measured directly. Angular acceleration
can however be calculated from measured vertical accelerations, as was explained in section
4.5. Secondly, force could not be measured directly, since the sensors required for this
purpose are load cells, which would not fit between the actuators and support structure. A
relatively flat, washer-type, load cell would be a welcome solution to the problem. Although
this type of load cell is currently under development, it is not ready for use in this study.

An alternative identification method is to obtain the coil and mechanical subsystem TF’s from
the system TF. To make this technique possible, a number of assumptions must be made. It is
firstly assumed that all the peaks and notches in the TF spectra are mechanical subsystem
characteristics, with the peaks occuring at resonance frequencies and the notches occuring at
anti-resonance frequencies. It is further assumed that coil damping is high. A consequence of
this assumption is that the coil TF will not display sharp resonance peaks.

A frequency domain 7F of the system is obtained from an LS data fit, using the Gauss-Newton

method (see appendix V). The resonance and anti-resonance frequencies are identified and
their corresponding poles and zeroes are calculated. Using the poles and zeroes, the
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mechanical subsystem TF is derived. The quotient of the system 7F and the mechanical
subsystem TF gives the coil TF.

An advantage of this identification technique is that the subsystem TF’s can be relatively easily
determined. Furthermore, the mechanical subsystem TF can be written in modal form and the
dominating mode can be identified. The disadvantage, however, is that the back-emf cannot
be obtained using this technique.

5.4.2 Coil model

The coil TF is the ratio between current [ and voltage V. The complex frequency domain
transfer function G.(jw) is given by:

I(ja)) g P (jw)Ck

G (jow)= = 420 (5.4.2.1)

695 o

cl=0

where p. and g. are the k-th numerator and I-th denominator polynomial coefficients
respectively. The coefficicents for M_ =2 and N_ =3 are given in table 5.4.2.1. The TF

magnitude and phase spectra are shown in figure 5.4.2.1.

Table 5.4.2.1: Coil TF numerator and denominator polynomial coefficients

Coefficient: po(x10%)  p,(x10°) pa(x10")  g0(x10°) ga(x10%)  ga(x10")  ga(x10%)

Value: 4,1629 1,0574 1,3316 1,3321 3,4874 1,8168 1

The coil Laplace-domain 7F is obtained by substitution of jw with s in equation 5.4.2.1:

Mc
ck
Epcks

G (s)=22—— (5.4.2.2)

N¢

cl
chls

cl=0
where the p. and g coefficients are equal to those in equation 5.4.2.1.

The coil TF has two complex conjugate zeroes, one real pole and two complex conjugate
poles. The undamped frequency and damping ratio of the zeroes are 889,9 Hz and 71,01 %
respectively. The frequency of the zeroes is above the maximum frequency of the
measurenent band (500 Hz). The frequency of the real pole is 74,19 Hz. The undamped
frequency and damping ratio of the poles are 269,1 Hz and 39,95% respectively. The real
parts of all the coil poles and zeroes are negative.
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Figure 5.4.2.1: Coil transfer function magnitude and phase spectra

The coil TF at DC is the ratio of py/go, which is equal to the inverse of the coil resistance of
3,2 Q, ie. 0,3125 A/V. The coil TF magnitude at 100 Hz is 3,69 dB lower than the DC
magnitude. The -3 dB bandwidth of the coil is 84 Hz. The coil bandwidth is lower than the
required bandwidth of 100 Hz and the design bandwidth of 150 Hz (see section 3.5.2). This
can mainly be attributed to the presence of the real pole at 74 Hz. It will however be shown in
section 5.6, that, due to the presence of mechanical subsystem poles above 100 Hz, the overall
system bandwidth is 199 Hz, which exceeds the required bandwidth by 99 Hz. The complex
poles and zeroes of the coil TF are well above the disturbance bandwidth of 100 Hz.
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The coil state-space model is given by:

X =Ax +BYV (5.4.2.3)
I=Cx, +DV (5.4.2.3b)

where x, is the coil state vector and A,, B., C. and D. are the coil state and output matrices,
given by:

0 1 0

A= 0 0 1 (5.4.2.4a)
- ch - qcl - qc2

B.={0 0 1}/ (5.4.2.4b)

Cc = {Pco P pcz} (5.4.2.4¢)

D, =0 (5.4.2.4d)

Actuator force, in terms of the state vector and input, is obtained by substitution of equation
5.4.2.3b into equation 5.4.1:

F=FCx, +FDV (5.4.2.5)

The individual modal forces Q; are given by:
Q =¢/F, (Cx . +D)V) (5.4.2.6)
where ¢ is the i-th normal mode shape vector and F,, is the i-th normal mode input force per

unit coil current. Equation 5.4.2.6 will be used in section 5.6 to describe the modal forcing
terms.

248



5.5 Mechanical subsystem model using component mode synthesis

It was shown in section 4.5.4 that the system model derived in chapter 2 is inadequate, due to
the fact that simple SDOF models were used to describe actuator behaviour. It was also
mentioned in chapter 4 that a dynamic model would be required to describe motion of the
elastically-mounted base. In this section, each actuator will be modelled with a 2DOF discrete
spring-mass model. The original distributed mass and stiffness model developed for the
optical instrument and support structure in section 2.8, is retained. An SDOF model is added
to represent the base.

The total number of DOF’s required to update the model is 15, i.e. 2 for each actuator, 10 for
the optical instrument and support structure, and one for the base. This number of DOF’s
exceeds the number of DOF’s used in the original model by five (see section 2.8).

The increase in DOF’s does not pose any problems for updating the model. A number of
modelling techniques that can be considered for this purpose, are the Rayleigh-Ritz method,
Newton’s 2™ law, FEM, the mechanical impedance method and component mode synthesis.
The main shortcoming of the Rayleigh-Ritz method, for this application, is that coupling of
discrete and distributed models may be difficult. This is also a drawback of Newtons’s 2™
law, which is clumsy in defining boundary values between discrete and continuous subsystems.
Another limitation, which is of secondary importance, is that displacement of an internal DOF
of a particular component may be difficult to obtain.

The mechanical impedance method is relatively easy to apply, but gives twice the required
number of eigenvalues, since the resulting system DE is 4™ order per DOF. Lastly, unless the
system is enlarged significantly, no real need exists to use FEM. The only method that is
powerful, yet simple enough for this purpose, is component mode synthesis. This method
deals with the coupling of component equations of motion using modal displacement vectors.
A coupling matrix is used to express boundary values in terms of component modal
displacements. System mass and stiffness matrices are derived using energy methods. Normal
mode shapes and natural frequencies are obtained from a Rayleigh-Ritz type eigenvalue
analysis.

The component mode shapes used in the analysis, may either be component normal modes or
component assumed modes. If normal modes are used, boundary values between
substructures will not necessarily be satisfied. Additional coupling modes may be required for
this purpose. Coupling modes include constraint modes, rigid body modes, attachment modes
and inertia relief attachment modes. A description of these modes is given by Craig [1981].
If, on the other hand, assumed modes are used, the modes can be initially selected to satisfy all
the boundary values. This method, as explained by Thomson [1993], is also used is in this
study. Mode shapes which satisfy the boundary values, will be selected below.

More detail about substructure synthesis is provided by Meirovitch [1990], Kubomura [1987],
Béliveau & Souci [1985], Kubomura [1982], Craig [1981], Hintz [1975], Rubin [1975], Klein
& Dowell [1974], Benfield & Hruda [1971] and Craig & Bampton [1968].

The system, with its components, is shown shematically in figure 5.5.1. Discrete spring-mass
models of the two actuators and base are shown in figure 5.5.2.
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Figure 5.5.1: System model, with substructures
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Figure 5.5.2: Actuator and base discrete models
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System equation of motion in terms of component displacements
The equation of motion of a linear mechanical system is:
my+cy+ky=F (5.5.1)

where m, c, k, y and F respectively represent mass, damping, stiffness, displacement and force.
F and y are functions of time r:

y=() (5.5.2a)
F=F() (5.5.2b)

The system described in this section, consists of the actuators, the optical instrument and its
support structure, and the elastically-mounted base. Discrete models are used for the
actuators and base, while a distribured model is used for the instrument and support structure.

The system equation of motion is firstly derived for natural motion of an undamped system.
This is done in order to obtain real normal mode shapes. The assumption is made that
damping does not change the mode shapes. This technique was also used in section 2.8.
Damping and forcing terms will be added in section 5.6.
The system equation of motion is written in the following general form:

my+ky=0 5.5.3)
where m and k are the system mass and stiffness matrices. m and & contain component mass

and stiffness matrices on the diagonal, as well as off-diagonal matrices which describe coupling
between adjacent components. y is the system displacement vector, given by:

y={vad wx). Hu} ow ) (5.5.4)

where {ya]} and {ynz} are the displacement vectors of actuators I and II respectively, w(x) is

the distributed displacement of the optical instrument and support structure and y, is the base
displacement.

System modal analysis

The system displacement vector y is determined by the superposition of r number of normal
modes:

y= Z 9.9.(7) (5.5.5)
i=1

where ¢; is the i-th normal mode shape and g: 1s the i-th normal mode displacement as a
function of time. The number of normal modes r depends on the total number of component
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modes n, and the number of constraint equations. The constraint equations describe motion at
boundaries between adjacent components.

Equation 5.5.5 is written concisely in matrix form as:

y= CI)qn (5.5.6)

where ® is the system normal mode shape matrix and g, is the modal displacement vector.
@ is given by:

&= (5.5.7)

| (@) ]

where [®,] is the 2 x r normal mode shape matrix of actuator I, {®,(x)} is the 1 x r normal
mode shape vector, as a function of x, of the optical instrument, [®-] is the 2 x r normal mode
shape matrix of actuator II and @, is the 1 x r normal mode vector of the base. The size of ®
18 6 x r. The elements of ® are derived later.

The system modal equation of motion, for undamped natural motion, is:

MG, +K'q,=0 (5.5.8)

where M~ and K" are the diagonal modal mass and stiffness matrices of the system. The
sizes of M" and K~ are n,-r each.

The normal mode shapes and mass and stiffness matrices are currently unknown. In order to
solve equation 5.5.3, a number of mode shapes must be assumed for each component. The
component assumed mode shapes are given in the next section.

Component assumed mode shapes

Assumed mode shapes for each component are given in this section. As opposed to the
Rayleigh-Ritz method, which requires that all the assumed mode satisfy the boundary values,
the component mode synthesis method only requires that the combination of assumed modes
of each component satisfy the boundary values [Thomson, 1993].
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The boundary values are:

w, (0) =Ya2 (5.5.9a)
W()=Yum +, (5.5.9b)
w/(0)=0 (5.5.9¢)
wi([)=0 (5.5.9d)

(1 1]

W, = (5.5.10a)
Ry
[1 1]

Ve = (5.5.10b)
R

The sizes of y.; and y,, are 2 x 2 each.

Three types of assumed modes were used for the optical instrument and support structure in
section 2.8.3, i.e. symmetric bending modes (see figure 5.5.3), asymmetric bending modes (see
figure 5.5.4) and a rigid body mode, with unity displacement along the length of the

instrument.

The assumed mode vector of the instrument and structure can be written as:

y,(x)= {{l// o (x)} {l// - (x)} W iid (x)} (5.5.11)

where v, and v .. are the symmetric and asymmetric assumed mode vectors and /., is

the rigid body mode of the following form:

W i (1) =1 (5.5.12)

The size of yi(x)is 1 x 10.

The assumed mode ¥, of the base is:

w, =1 (5.5.13)

W,isa 1 x 1 scalar.
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SYMMETRIC ASSUMED MODE SHAPES
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Figure 5.5.3: Symmetric assumed mode shapes for the optical instrument and support
structure
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Figure 5.5.4: Asymmetric assumed mode shapes for the optical instrument and support
structure
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The system assumed mode matrix ¥ is compiled from the component assumed modes as
follows:

Tv..]

v, ()}

V= (5.5.14)

v,

The size of yis 6 x 15.

Component displacements in terms of assumed mode displacements

The actuator displacements, in terms of their assumed mode shapes and modal displacements,
are:

Yar =V 019 (5.5.15a)
ynZ = l’/aZ qa'_’, (5-5.15b)
where y.; and y., are given by:
T
Yar = {Varts Ve (5.5.16a)
T
Yor ={Vari> Vam } (5.5.16b)

The actuator modal displacement vectors are given by:

dor ={dars Ga} (5.5.17a)
Qu2 ={dor> qum} (5.5.17b)

The displacement of the optical instrument, in terms of its assumed mode shapes and modal
displacements, is:

w(x) =y (x)g, (5.5.18)

where w(x) is the vertical translational displacement of the instrument, as a function of x, and
g is its modal displacement vector, given by:

T
q; = {q.\'l v Gy 7, q.\'lO} (5'5'19)
The displacement of the base, in terms of its assumed mode shape and modal displacement, is:

Yy =4, (5.5.20)
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Component modal mass and stiffness matrices

The modal mass matrices M,; and M,, of actuators I and II are:

M, =wyImuw, (5.5.21a)
M,=vIm,v,, (5.5.21b)

where ., and ., are given in equations 5.5.10. m, and m, are the mass matrices of
actuators I and II respectively, for the displacement coordinate systems y. and y.» given in
equations 5.5.16. m.; and m,; are given by:

(n‘lnll 0

m, = (5.5.223)
L 0 malZ
_m,121 0

My = (5.5.22b)
| 0 m,y,

Since each actuator is modelled as a 2DOF discrete system (see figure 5.5.2), m.; and m.; are
diagonal matrices. The sizes of M,; and M., are 2 x 2 each.

The modal stiffness matrices K,; and K., of actuators I and II are:

K, =ylk, v, (5.5.23a)
K,=vl_k,v,, (5.5.23b)

where k., and k. are the stiffness matrices of actuators I and II respectively, for the
displacement coordinate systems y.; and y., given in equations 5.5.16. k., and k., can be
derived as:

k,,l — —(klll +k112) —kuz } (5'5.243)
L _kuz (k112+kxzz)

ka2 _ F(kzn + kzxz) —k212 :, (5.5.24b)
- kzu (kzxz + kzzz)

The sizes of K,; and K, are 2 x 2 each.

The modal mass and stiffness matrices of the optical instrument and support structure, from
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equations 2.8.3.10, are:

M, =7 p, (04, (W (o, (e (5.5.25a)
K, = [ B (e, e (e o (e (5.5.25b)

where y.(x) are the assumed mode shapes of the optical instrument and support structure as
shown in figures 5.5.3 and 5.5.4. The mass per unit length p.A; and flexural rigidity E.J,, as
functions of x, are shown in figures 2.8.4.1 and 2.8.4.2. The sizes of M, and K, are 10 x 10
each.

The modal mass and stiffness matrices of the base are:

M, =y my, (5.5.26a)
K, =y kv, (5.5.26b)

M, and K, are 1 x 1 scalars.

System modal equation of motion

The modal equation of motion of the system is:
MG+ Kq=0 (5.5.27)

where M and K are the system modal mass and stiffness matrices respectively, given by:

M= ' (5.5.28a)

K= ' ' (5.5.28b)

M and K respeétively contain the component modal mass and stiffness matrices in square
blocks, of different sizes, on the diagonal. Oft-diagonal submatrices of M and K are zero. The
sizes of M and K are 15 x 15 each.
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The system displacement vector ¢ is:

9={an} {a.} {4} @} (5.5.29)

The size of g is the sum of the sizes of the different component modal displacement vectors,
ie. 15 x 1. The modal displacement vectors q.;, .2, g; and g, are currently uncoupled. Modal
coupling is done in the next section.

System coupled modal displacements

The displacement at the boundary between actuator I and the support structure, i.e. at x = 0,
is:

w,(0)= Y., (5.5.30)

The displacement at the boundary between actuator II and the support structure, i.e. at x = [, is
the sum of the base displacement and the deflection of actuator II:

W, (1)= Yo + 7, (5.5.31)

Combination of equations 5.5.10, 5.5.15 to 5.5.18, 5.5.30 and 5.5.31, gives:

¥.(0)q, =qu1 — 9oiz (5.5.32a)
v, (l)q.\- =da2 a2 T (5.5.32b)
or:
Qa2 = qay — ¥, (0)g, (5.5.33a)
Gz = Qo — V. (g, +4, (5.5.33b)

Equations 5.5.33a and 5.5.33b are combined and written as follows in matrix form:

(qnll‘

qan 1 O _w.\' (0) O qn;’l
= ) t (5.5.34)

9dan 01 -V, (l) 1 q,

\qu
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Substitution of equation 5.5.34 into equation 5.5.29, gives the system modal displacements as:

)

{a,}

{qrﬂl]
9 am

dp

\

r"‘]an ]
qalZ

[ 1

1

4

-

{o}
~{v.(0)}

{0}

Equation 5.5.35 is written in matrix notation as:

q=0Cq,

0

0

P 5
qall

{a.}

9 a2

0 0
{o} {0}
10
11
o 1]

| 9 |

(5.5.35)

(5.5.36)

where g is the uncoupled system modal displacement vector given by equation 5.5.29 and ¢, is
the reduced modal displacement vector, given by:

qrz{qall {q.\'} q a2y Qb}r

C is the coupling matrix, given by:

The sizesof ¢ and g, are 15 x 1 and 13 x 1 respectively. The size of Cis 15 x 13.

r

1

1
0}

0

0

0

L.

{o}
~{w,(0)}
[]
{0}
~{w. (0}
{0}
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0 0

0 0
{0} {o)

1 0

1 1

0 1 ]

(5.5.37)

(5.5.38)



System coupled modal equation of motion

The uncoupled modal equation of motion of the system is given in equation 5.5.27.
Substitution of the coupling equation 5.5.36 into equation 5.5.27, gives:

MC, + KCq, =0 (5.5.39)

Premultiplication of equation 5.5.39 with C” gives:

MG, +K.q, =0 (5.5.40)
where M. and K, are the reduced-order mass and stiffness matrices, respectively given by:

M,=C"MC (5.5.41a)
K. =CTKC (5.5.41b)

The sizes of M, and K. are 13 x 13 each. The off-diagonal elements of M, and K, are non-zero
and the reduced coordinate equation of motion (5.5.40), is coupled. The normal mode shapes,
natural frequencies, mass and stiffness matrices of the system are derived next.

Normal mode shapes, natural frequencies, mass and stiffness matrices

The reduced coordinate vector g, can be expressed as follows in terms of the eigenvector U
and the normal mode displacement vector g.:

q, =Ugq, (5.5.42)
The sizes of U and g, are 13 x 13 and 13 x 1 respectively.

Substitution of equation 5.5.42 into equation 5.5.40 and premultiplication of the resulting
equation with U” gives:

U'™MUj, +UTK,Ug, =0 (5.5.43)
For natural motion

i, =-9Q% (5.5.44)

where Q7 the 13 x 13 diagonal eigenvalue matrix.

Substitution of equation 5.5.44 into equation 5.5.43 and simplification of the resulting
equation, gives:

(k. - M,9*)Ug, =0 (5.5.45)
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The eigenvalues are the values of Q* for which:

K, - M Q=0 (5.5.46)

The natural frequency f; of the i-th normal mode is:

f=—La (5.5.47)

271_ i

The uncoupled, normal mode mass and stiffness matrices, from equations 5.5.8 and 5.5.43,
are:

M =UMU (5.5.48a)
K =U'K.U (5.5.48b)

The sizes of M* and K" are 13 x 13 each.

The normal mode shape matrix @ is given by:

where y and C are respectively given by equations 5.5.14 and 5.5.38 and U is the eigenvector.
The size of @ is 6 x 13.

The component normal mode shapes are given by:

[ [q) ! ] ] [W al ][mesl,z ]

(@, [{w.HCommsi]
= U (5.5.50)
(@] [W ., ][mexn,m]

L {Qb} _J L Wb meIS} _J

The system displacement vector, in terms of the normal mode matrix and modal displacement
vector, is given by:

y=q, (5.5.51)

yis a6 x 1 vector.
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Component displacements are given by:

’ Yai j [(Dl]
J w(x)| | {@.(x)}
| — [(D ] q. (5.5.52)
Yaz 2
LY ) {(Db} ]

The first five natural frequencies of the system were experimentally determined in section 4.5.
The first five natural frequencies and mode shapes of the system will be calculated in the next
section, using the equations derived in this section. The stiffnesses and masses of the
actuators and base will be selected and adjusted until the calculated natural frequencies
correspond sufficiently accurately with the experimentally determined natural frequencies. The
equation of motion will be written in state-space form and coupled to the coil state equations.
The state equations will be converted to TF form, TF spectra will be calculated and compared
with the experimentally determined spectra.

5.6 Updated system model

An updated system model is presented in this section. The actuators are modelled by means of
2DOF discrete models, instead of the SDOF models developed in chapter 2. An additional
SDOF model is included to represent the elastically mounted base. The distributed mass and
stiffness model of the optical instrument and support structure, as developed in chapter 2, is
left unchanged.

The updating procedure is as follows: Model parameters are selected and adjusted until the
calculated natural frequencies closely match the experimentally determined natural frequencies.
The model parameters are the actuator, optical instrument and base stiffnesses and masses.
Damping is initially ignored in order to obtain real mode shapes. The component mode
synthesis method, as described in section 5.5, is used to calculate the normal mode shapes of
the optical instrument and support structure. Once the mode shapes have been determined,
modal damping and excitation forces are added.

Modal equations of motion are derived and written in state-space form. From the state-space
equations, the system transfer function between input voltage and instrument angular
acceleration is obtained. As with the masses and stiffness, damping and force parameters are
adjusted until the calculated system TF closely matches the experimentally determined TF.
The modelled TF is compared with the experimentally determined TF and it is shown that the
updated model is sufficiently accurate.

A system block diagram is included to show the coil and mechanical subsystem models and to
indicate coupling between the subsystems. The modal TF’s are calculated and the dominating
mode is indicated. A pole-zero diagram of the TF is shown. The system bandwidth is
calculated and it is shown that it exceeds the required bandwidth.
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Base motion and its effect on system behaviour are also analyzed in order to obtain the open-
loop transmissibility (TR) of the system. (The TR is the ratio of instrument angular
acceleration to base angular acceleration). The TR, together with the system transfer function,
is required for control system design purposes, which will be described in chapter 6.

Updated natural frequencies and normal mode shapes

The normal mode shapes and natural frequencies are calculated by means of the component
mode synthesis method, described in section 5.5. The actuator and base masses and stiffnesses
are selected and the natural frequencies are calculated. The latter are compared with the
experimentally determined natural frequencies and, if the comparison is poor, the masses and
stiffnesses are updated until the model gives sufficiently accurate natural frequencies. The
resulting masses and stiffnesses are given in table 5.6.1.

These masses and stiffnesses, together with the assumed mode shapes, as given in section 5.5,
are substituted into equations 5.5.21 to 5.5.28 to obtain the component modal mass and
stiffness matrices M and K. The assumed mode shapes are substituted into equation 5.5.38 to
obtain the coupling matrix C. The coupled mass and stiffness matrices are calculated using
equations 5.5.41. The eigenvector U and natural frequencies f; are obtained by solving the
eigenvalue problem, the solution of which is given in equations 5.5.45 to 5.5.47. The normal
mode shapes are obtained by application of equation 5.5.50.

Table 5.6.1: Updated actuator and base stiffnesses and masses

Component Parameter Symbol Value
Actuator I Stiffness ki 7,34.10° N/m
Stiffness kirz 9,9672.10* N/m
Stiffness Ki22 1,0972.10° N/m
Displacement gain G 2,7
Mass (ungained) my; /Gy 0,1482 kg
Mass (ungained) my12/Gy 0,0456 kg
Mass (gained) My 0,4 kg
Mass (gained) My12 0,1231 kg
Actuator II Stiffness ko 8,7327.10° N/m
Stiffness Kaiz 1,1761.10° N/m
Stiffness Ka22 1,0863.10° N/m
Displacement gain G 2,7
Mass (ungained) my21/Gs 0,1482 kg
Mass (ungained) Ma22/Go 0,0456 kg
Mass (gained) Ma2) 0,4 kg
Mass (gained) Myo> 0,1231 kg
Base Stiffness ko 7,1559.10" N/m
Mass M 8 kg
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The first five normal mode shapes of the optical instrument and support structure, together
with their corresponding natural frequencies, are shown in figure 5.6.1. Each mode shape is
normalized with respect to the maximum displacement of the particular mode. A short
discussion of the mode shapes follows.

OPTICAL INSTRUMENT & SUPPORT STRUCTURE: NORMAL MODE SHAPES 1 - 5

1 "Q- T T T I .-
Q\~ ¢'
—~. \ e
08 I . Mode 1: 193,7 Hz P .
‘\. ~ . .’
N,
0.6 .
7 04r Iy Mode 3: 250,1 Hz 1
'ﬁ AN ’ o~ ~ /
o] - 3 \~
S 02f s ~. :
=1 e N N
53 ~ . . ~.
g e i °N ~.
- =y | \\ . N \~ B
% 0 \\\ -’. ~ . ~ ~ -
o __—{\ \_. J
—§ 0.2 IR ’ \\\ \’. -
7] . ~ ~
8 P S~ o Mode 4: 301,5 Hz
Q _" ~ .
S ooaf TN S~ .. .
Mode 5: 476,4 Hz TS. .
. -~ «
0.6 \\\ - 7
Mode 2: 229,1 Hz ~< he
\\ ~
-0.8F RENR N -
\\\ ‘\
~
~
_1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25

Position x (m)

Figure 5.6.1: First five mode shapes of the optical instrument and support structure

It can be seen from figure 5.6.1 that translational motion dominates in the 1* mode. The
modal displacements at the ends of the support structure, i.e. at X = 0 and x = 0,25 m, differ by
approximately 10%. The mode shape is not entirely translational, which can be attributed to
unequal actuator stiffnesses, as shown in table 5.6.1. (A possible cause of the unequal
stiffnesses is slight distortion of the actuator flexures during assembly). It can further be seen
from figure 5.6.1, that rotational motion dominates in the 4™ mode. The modal displacement
at x = 0 is approximately equal to that at x = 0,25 m, but of opposite sign.

An almost constant displacement separates the 2* and 3% mode shapes. A possible
explanation is that, at 229 Hz and 250 Hz, the two actuators behave like dynamic absorbers.
At 229 Hz, actuator I passively cancels the motion at x = 0, with the result that the support
structure displacement is relatively small at that position. Similarly, at 250 Hz, actuator II
cancels the support structure motion at x = 0,25 m. Note that the 2™ and 3™ mode shapes, as
shown in figure 5.6.1, did not appear in the original mode shapes calculated in section 2.8.
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The 5™ normal mode shape results from the elastically mounted base. This mode is not closely
coupled to the other four normal modes.

The 1% to 4™ natural frequencies of the updated model differ from the experimentally
determined frequencies by 3,9%, 0,79%, 1,2% and 0,17% respectively (see also table 4.5.2.1).
Accuracy of the model will be further improved in the next section, when damping and forcing
terms are added and the mechanical subsystem model is coupled to the coil model.

The 6™ to 13" normal mode shapes are not shown. These mode shapes occur at frequencies
ranging from 5 kHz to 710 kHz. Since the acquisition frequency of the signal analyzer used in

the experimental tests was 1280 Hz (see section 4.4.6), the model can only be updated for
frequencies up to the Nyquist frequency, i.e. 640 Hz.

Updated system state-space and transfer function model
The system modal equations of motion are given by:

M‘q‘n + C'qn + K‘qn = ¢:’-FI I (5°6'1)
where M", C* and K respectively represent the modal mass, modal damping coefficient and
modal stiffness. @, is the optical instrument normal mode shape vector, [ is the coil current
and F; is the force per unit current. The current is given by equations 5.4.2.3 and 5.4.2.4.
Premultiplication of equation 5.6.1 with M*"' and simplification of the resulting equation gives:

4., +22Q4, +Q*q,=M"'Q (5.6.2)

where Z is the modal damping matrix, Q is the modal natural frequency matrix and Q is the
modal force input vector, given by:

Q=0TF,1 (5.6.3)

Z and Q are diagonal matrices, whose sizes correspond with the number of normal modes in a
given frequency band. For the first five normal modes, Z and Q are 5 x 5 square matrices
each. Qisa5 x 1 vector.

The optical instrument angular acceleration, in terms of the modal accelerations, is:

é=¢i“)‘®x%)% (5.6.4)

Xy — X

where x; and x; respectively represent the longitudinal coordinates of the accelerometer
attachment points.
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Equations 5.6.2 and 5.6.4 are written as follows in state-space form:
4| [l 1 e [, (5.6.59)
4] [~ -22Q]\¢.) M

—_— q’l —
5 2.(x) (Ds(xl)[_gz 70 L2)=2) ey (s 6.8m)

Combination of equations 5.4.2.3 to 5.4.2.5, 5.6.3 and 5.6.5 results in the following state
equation for the coupled system:

g,) [l [l [o] g, [{o}
G.r=|-Q% -22Q M™'OTEC, [i4,t+| 0}V (5.6.6)
X ] o] A, x,] |B.

(o

where A., B. and C, are the coil state and output matrices given in equations 5.4.2.4.
Numerical values of the coil state matrix elements are given in table 5.4.2.1.

The system output equation is given by:

qn
6= @, (xz )_ o, (xl )[__ Qr 2720 M *-l(D:FICC a, (5.6.7)
X X
xC
The system state and output equations are written as follows:
t=Ax+ B,V
y=Crt DV .68
where A, By, C and Dy are respectively given by:
o] I] [o]
A=|-Q% -2ZQ M"'®IFC, (5.6.9a)
o] [o] A
B, =[{o} {0} BT (5.6.9b)
c=2:6)-2.(x )[— Q -22Q MTOFC.] (5.6.9¢)
X X4
D, =0 (5.6.9d)
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The sizes of the A, By, C and Dy matrices are 13 x 13, 13 x 1, 1 x 13 and 1 x 1 respectively.
Note that the order of the system is lower than that of the frequency domain TF described in
section 5.3.

The undamped angular natural frequencies (), damping factors (Z) and input forces per unit
current per unit mass (M @7 ,) of the first five normal modes are given in table 5.6.2.

Table 5.6.2: Modal frequency, damping factor and force per unit mass per unit current

Mode number £, (Hz) Q (rad/s) Z (%) M '®,"F; (N/kg/A)
1 193,62 1216,6 4,00 35,242

2 230,17 14462 1,75 -7,9059

3 250,10 1571,4 3,55 22,9391

4 299,11 1879,4 3,04 -103,72

5 476,37 2993,1 1,20 65,347

The signs of the M '“'®TF, terms for the 2™ to 4" modes differ from those of the 1% and 5%

modes. The reason is that the signs of the displacements of the 2" to 4™ modes at the
attachment point of actuator II, i.e. at x = 0,25 m, differ from those of the 1% and 5™ modes
(see figure 5.6.1).

The transfer function between input voltage and output angular acceleration is obtained by
substitution of equations 5.6.9 into equation 2.5.2.1. The transfer function G(s), in numerator
and denominator polynomial form, is:

N

qusl

=0

Q
—~
N

i

-~
(=1

(5.6.10)

The TF numerator and denominator polynomial coefficients are given in table 5.6.3.

A block diagram of the system is shown in figure 5.6.2. The electrical and mechanical
subsystems, subsystem inputs and outputs, subsystem coupling, modal excitation forces,
accelerations, velocities and displacements, as well as system output angular acceleration, are
indicated.

In figure 5.6.2, V is the coil input voltage, G. is the coil transfer function, I is the coil current,
F, is the force per unit current, ®, is the normal mode shape vector and Q is the modal
excitation force. M", C* and K respectively represent the modal mass, modal damping
coefficient and modal stiffness. 8 is the angular acceleration of the optical instrument, s is the
complex Laplace domain differential operator, x; and x, are the longitudinal coordinates of the
accelerometer attachment points.
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Table 5.6.3: TF numerator & denominator polynomial coefficients
Coefficient Value

Po 0

)4 0

P2 -8,4062.10%
P3 -3,3157.10%
P4 -1,4211.10
s -4,8225.107
Ps -8,4473.10*
P -2,4310.10*
Ds -2,0674.10"
Po -4,8705.10™
Do -1,7883.10"
pu -3,0275.10
P12 -3,6572.103
qo 3,2766.10*
q 9,1519.10%
g 1,2393.10%
qs 2,0897.10%
qs 1,6119.10%
qs 1,8762.107
s 9,8145.107
q7 8,4358.10%
gs 3,0026.10"
qo 1,9869.10"
g0 4,3527.10"
qu1 2,2966.10’
q12 2,2632.10°
qd13 1

The updated model TF magnitude and phase spectra, for a frequency band of 0 Hz to 500 Hz,
are shown in figure 5.6.3. A comparison between the updated model TF spectra and the
experimentally determined spectra is shown in figure 5.6.4. A pole-zero diagram of the
updated model TF is shown in figure 5.6.5. The poles and zeroes are respectively indicated by
crosses and circles. All the real parts of the poles and zeroes are negative, indicating that the
updated system model is stable and minimum phase.

The input voltage to angular acceleration TF’s of the individual normal modes are shown in
figure 5.6.6. From the figure, it can be seen that the 4" mode is the dominating mode in the
frequency range of 0 Hz to 500 Hz. The relative contributions of the 1¥ and 2™ modes are
approximately one order below that of the 4" mode, while those of the 3™ and 5™ modes are
approximately two orders below that of the 4™ mode.
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Figure 5.6.4: Comparison between updated model 7F and experimental TF spectra
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Figure 5.6.6: Modal transfer function spectra

In order to determine the system isolation bandwidth (BW), the coil voltage to instrument
angular displacement TF is analyzed, instead of the voltage to angular acceleration TF. The
TF magnitude is shown in figure 5.6.7, together with the -3 dB and disturbance bandwidths.
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Figure 5.6.7: System isolation bandwidth and disturbance bandwidth
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The TF magnitude at 0 Hz is 2,57.10° rad/V. The lowest frequency where the magnitude is
3 dB below this value, i.e. 1,81.107 rad/V, is 199 Hz. This frequency is almost double the
maximum frequency of the disturbance, i.e. 100 Hz. It can therefore be concluded that the
system isolation bandwidth is sufficient, despite the fact that the coil bandwidth is only 84 Hz
(see section 5.4.2).

System base to output transmissibility

System transmissibility (TR) can be expressed in terms of a number of transfer functions, such
as the input force to output force TF, base angular displacement to output angular

displacement TF (6/6,, ), base angular velocity to output angular velocity TF (9/ éb ) and base

angular acceleration to output angular acceleration 7F (é/ Gb ). The most appropriate transfer
function, is mainly determined by the sensors used for system characterization and control.

Accelerometers were used for dynamic system characterization in chapter 4. The measured
vertical accelerations were subsequently used to calculate the base and output angular
accelerations (see section 4.5.1). Accelerometers will also be used as sensors during testing of
the control system, which will be described in more detail chapter 6. It is therefore
appropriate to express the TR as the transfer function between base angular acceleration and

output angular acceleration (9"/ 67,, ).

The transmissibility is required in terms of system characteristics, such as state and output
parameters, natural frequencies, damping factors and normal mode shapes. A derivation of the
TR is given in appendix W. In order to simplify the derivation, an assumption is made that the
TR is independent of sensor dynamics. The consequence of this assumption is that the transfer

functions, 6/6,, é/ 6, and 67/ 6, , are equal over a wide frequency bandwidth. This makes it
possible to derive the transfer function 6/6, and set it equal to /6, :

r=8 00 _6 (5.6.11)

6, -w’6, 6,

The component mode synthesis method, which was described in detail section 5.5, is used to
determine the 7R. The TR is determined independently of any coil voltage input, and therefore
does not contain any coil parameters. A state-space model is obtained for the mechanical
subsystem, which is subsequently written in TF form.

The modal equation of motion (see appendix W), is:

G, +2ZQ4, +Q%q =M"'Q (5.6.12)

where Q is the modal force vector (see appendix W).
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The modal state and output equations are written as follows:

x=A,x+B,0,
8=C,x+D,0,

_{qn}
X =9,
g,

A, By, Cy and D, are respectively given by:

The state vector x is:

f fo}
[ P )
Bb = ’
M*_IUTCT‘ {O} f
k
l T 211
N WaZ {kzzz }J J
Cb - {q)x(xz)_q)s(xl) {O}}
X, — X,
D,=0

(5.6.13a)
(5.6.13b)

(5.6.14)

(5.6.15a)

(5.6.15b)

(5.6.15¢)

(5.6.15d)

The sizes of A,, B, C» and D, are 24 x 24, 24 x 1, 1 x 24 and 1 x 1 respectively (see

appendix W).
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Combination of equations 5.6.13 to 5.6.15 gives:
‘ o} ‘
BRY;

‘J"}—[ 0 ! H‘J"}+< 0 (5.6.16a)
. - 2 . b «U.
{qﬂ _Q —ZZQ qn M‘_lUTCT4 {O} ¢ (
it
{ { Ky 1)

6= [ 2.()-®,(x) {o}ng} (5.6.16b)

Xy T X

The system transmissibility is the TF between 6, and @ is given by:

§=@M—&Fm (5.6.17)

b

By application of equation 5.6.11, the TR, which is also the TF between 9',, and 8 , is given
by:

éi_ =c,[s1-4,1"B, (5.6.18)

b

The number of state equations, for the selected number of actuator and optical instrument
assumed modes, is 24. The system as described by equations 5.6.16, has 24 eigenvalues in
complex conjugate pairs. However, many of the eigenvalues occur at high frequencies, well
above the bandwidth, and have no significant effect on system performance inside the band.
States corresponding with these frequencies, can therefore be eliminated. This was also done
for the coil voltage input, where, apart from the three coil states, only the first ten mechanical
subsystem states were retained. For the base input, the 5™ and 10" states (corresponding with
the 5" normal mode) are eliminated, while the 1¥ to 4™ and 6™ to 9™ states (corresponding
with the first four normal modes) are retained.

The transmissibility magnitude and phase spectra , for a frequency bandwidth of 0 to 500 Hz,
are shown in figure 5.6.8.
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Figure 5.6.8: System base to output transmissibility spectra

Two-input state-space model for control system analysis and design purposes

The state-space model of the system currently consists of two separate state models, one for
the coil voltage input, given by equations 5.6.6 to 5.6.9, and one for the base angular
acceleration input, given by equations 5.6.13 to 5.6.18. For the purpose of analyzing and
designing the control system, it is convenient to combine the two state models into a single
state model, with two simultaneous inputs, i.e. coil voltage and base angular acceleration. The
coil voltage is the controllable input, while the base motion is the uncontrollable input, or
disturbance. The state and output equations, for these two inputs, are:

|4

x=Ax+ B{ . } (5.6.19a)
9,

. V

0=Cx+ D{ . } (5.6.19b)
8,

The state vector, from equation 5.6.6, is:

q
x=1q, (5.6.20)

275



A 18 the system coefficient matrix, given in equation 5.6.9a:

o] [i] [o]

A=|-Q -27ZQ M"'®TFC, (5.6.21)
o] o] A

The first ten rows and columns of A correspond with A, in equation equation 5.6.15a.

B is a matrix with two vector columns:

B=[B, Bj] (5.6.22)

By 1s given by equation 5.6.9b:

{o}
B, =:{0} (5.6.23a)
B

¢

For the first four normal modes B, is given by:

[ {Bll}rowsl—4 \
0
{Bll }mw.\' 13-16
B,={ o | (5.6.23b)
0
0
. 0 7
C is the output matrix given in equation 5.6.9c:
C= D, (x,)- 2, (% )[_ Qr —270 M*"CDIF,CC] (5.6.24)
X T4
D is a row vector with two zero elements:
D= {o 0} (5.6.25)

Note that the C-matrix in equation 5.6.24 corresponds with the C-matrix in equation 5.6.9c.
However, this C-matrix does not correspond with C, in equation 5.6.15c. In order to obtain a
C-matrix, which is valid for both inputs, the elements of B, are modified as explained in short

in the following paragraphs. A more complete explanation is provided in appendix W.
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The procedure is as follows: Equations 5.6.16 are written in canonical form, whereby
uncoupled state and output equations for each normal mode are obtained. Each modal state
equation is then written as follows in TF form, using equation 5.6.11:

( _Q;) =( i) _clz-Al'B (5.6.26)

ebi 9111

where the subscript i denotes the i-th normal mode. The sizes of A, B;, C; and D; are
respectively2x2,2x1,1x2and 1 x 1.

For the i-th mode, equation 5.6.26 can be expressed as follows in numerator and denominator

polynomial form:
O _[_pstp (5.6.27)
6, | (s*+qs+q, )

where the numerator and denominator polynomial coefficients are given by:

Po = (= A,B,C, + A,B,C, + A, B,C, — A,B,C,), (5.6.28a)
p =(B,C, +B,C,), (5.6.28b)

9o = (A1 A, — ApAy), (5.6.28¢)

g == A, —Ay), (5.6.28d)

Equations 5.6.9 are subsequently written in canonical form to obtain an uncoupled state and
output equation for each of the first four normal modes. The modal state equation for the i-th
mode is then written as follows, in the TF form of equation 5.6.26:

{ %} =C[s1-AT'B, (5.6.29)

From equations 5.6.28a and 5.6.28b, B,; and Bj; for the i-th mode are determined as follows:

-1
{Bl} =[ G G J {p'} (5.6.30)
Bz i A21C2_A22C1 AIZC]—AHCZ i (Po);

where Cy and C, are the elements of C; in equation 5.6.29.

The resulting B, -vector, is:

By ={B) By By B 0 B B, (B, (B), 0 0 0 of
(5.6.31)
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Equations 5.6.19 therefore become:

W) [0 B b, )
g, t=|-9Q* -272Q MT'OFC {4, t+[B, Bé.b]{é.} (5.6.32a)
i) L[] [o] A, x, b
. P (x )—(I) (x) qn
6 =020 _270 MUOTEC g (5.6.32b)
X, — X
X,

c

Equations 5.6.32 will be used to design a suitable control system. Controller design, testing
and implementing will be discussed in more detail in chapter 6.

5.7 Summary of chapter 5 and preview of chapter 6

Updating of the system model was described in this chapter. Model updating was motivated
in section 5.1 and an updating procedure was given. Identification theory was discussed in
short in section 5.2 and linear least-squares frequency domain identification was selected as
the most suitable technique for this study.

In section 5.3, an updated TF model was obtained from the experimentally determined TF
spectra, using the Gauss-Newton method. The order of the model was determined iteratively.
The TF numerator and denominator polynomial coefficients were determined by means of a
least-squares data fit to the experimentally determined spectra. The TF magnitude and phase
spectra were calculated and compared with the measured spectra. It was shown that the
accuracy of the updated model was sufficient. The poles and zeroes of the updated TF were
calculated. It was shown that all the poles and zeroes, with the exception of one zero, have
negative real parts and are inside the test band.

Separation of the coil and mechanical subsystem models was motivated in section 5.4 and the
procedure was described. The coil TF model was separated from the system TF and written in
canonical state-space form. 2DOF actuator models were developed in section 5.5 to replace
the original SDOF models. The distributed mass and stiffness model developed for the optical
instrument and support structure in section 2.8 was retained. An SDOF model was included
to represent the elastically mounted base. Coupling of the actuator, base and optical
instrument models by means of component mode synthesis was explained.

In section 5.6, a physical model was developed to aid in updating the natural frequencies and
normal mode shapes. The model parameters were selected and adjusted until the modelled
natural frequencies matched the exprimentally-determined frequencies. The normal mode
shapes were calculated and modal damping and -force terms were added. A system state
model was derived and written in 7F form. The TF spectra were calculated and compared
with the experimentally-determined TF spectra. TF poles and zeroes were calculated and it
was shown that all the poles and zeroes have negative real parts. System open-loop
transmissibility was obtained and shown graphically. A two-input state-space model was
subsequently derived, with coil voltage and base angular acceleration as inputs.
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Controller design, implementation and testing will be described in chapter 6. Various
controller types will be discussed in section 6.2, followed by a discussion on disturbance
attenuation methods in section 6.3. The controller design will be described in detail in section
6.4. The experimental test setup and test equipment will be discussed in section 6.5, followed
by the test execution procedure in section 6.6. Test results will be presented and discussed in
section 6.7. Chapter 6 will be summarized in section 6.8.
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Chapter 6
Design, implementation and testing of a controller
for the LOS stabilization system

6.1 Background

Control system design, implementation and testing are described in this chapter. General
control theory is given as a background. Various controller types, i.e. feedforward, output
and state feedback controllers, linear and nonlinear controllers, tracking controllers, regulators
and optimal controllers, are discussed in short.

Principles of disturbance attenuation are discussed in more detail. The attenuation factor is
defined and the nature of the disturbance is discussed. Requirements for disturbance and noise
attenuation are given. An attenuation method for a known disturbance entering a system at a
given point, is described. A short summary of optimal control, in terms of H, and H.. optimal
criteria, is given. Other modern disturbance attenuation techniques, such as preshaping of
command inputs, attenuation of a continuous disturbance by means of digital regulation, and
“two-way” isolation, are discussed. Motion controllers, i.e. relative and absolute motion
controllers, are described in detail.

Control system design specifications are given, followed by a discussion of general control
system requirements, such as accuracy, stability, sensitivity, reaction speed, control effort,
robustness, observability and controllability. The specifications and general requirements are
used to select a suitable controller type. The control system design procedure is described and
a detailed exposition of the controller design is given. The design of a suboptimal controller,
coupled to a suboptimal observer, is described. These designs are derived from optimal
controller and observer designs. Controller characteristics are expressed in terms of state-
space models, transfer functions, and closed-loop poles and zeroes. In order to facilitate
implementation of the controller, the controller transfer functions are converted to digital filter
form.

The test apparatus, test procedure and execution are described. Three controller
configurations, i.e. disturbance feedforward, output feedback and feedforward plus feedback
configurations, are tested. Test data is processed and the test results are presented. The
attenuation factor spectra are shown graphically and RMS attenuation factors are given. The
test results are discussed.

The various controller types are discussed in section 6.2, followed by the disturbance
attenuation methods in section 6.3. The controller design is described in detail in section 6.4.
The test setup is shown in section 6.5 and the test equipment is discussed. A description of
the test execution follows in section 6.6. The test results are presented and discussed in
section 6.7. Finally, chapter 6 is summarized in section 6.8.
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6.2 Summary of various controller types

A concise summary of various controllers is given in this section. The controllers are
classified according to type and compared in terms of application, principles of operation,
advantages and disadvantages.

A large number of controller types exist. These controllers can broadly be classified in one or
more of the following categories: Open-loop feedforward-, closed-loop feedback-, linear-,
nonlinear-, output-, state-, optimal-, reduced-order-, tracking controllers and regulators.
These categories are discussed in short below.

6.2.1 Open-loop feedforward controllers

The principle of operation of open-loop controllers can be summarized as follows: On the
basis of knowledge about the system and of past experience, a prediction is made of what the
input should be to give the desired output; the input is adjusted accordingly [Schwarzenbach
& Gill, 1986]. The output may, or may not, be measured. A feedforward controller is also
known as a prefilter, series compensator, or feedforward compensator.

The purpose of a feedforward controller is to cancel out a significant part of a disturbance
before it enters the system. Computation of the control requires a model of the system. The
more closely the disturbance can be monitored and the more accurate the system model, the
better will be the control [Schwarzenbach & Gill, 1986].

Open-loop controllers can perform well if external disturbances are relatively insignificant
[Meirovitch, 1990]. However, the control depends only on the expected system behaviour,
and not on the actual behaviour. If some unexpected factor causes the output to deviate from
the desired output, there is no way of correcting the deviation.

A vast number of uncertainties, in the form of disturbances or plant variations, may cause the
deviations, and every possible uncertainty may require a different design. In order to avoid
repetitive design and testing, adaptive controllers can be used to do real-time adjustment of
controller characteristics. Adaptive controllers are described in detail by Goodwin & Sin
[1984], and will not be discussed any further in this study. Alternatively, open-loop control
can be used in combination with closed-loop control, where the feedforward compensator
attenuates the disturbance, and the feedback compensator provides the necessary corrective
action, stability and robustness.

6.2.2 Closed-loop feedback controllers

In feedback control, the control takes into consideration the actual system behaviour, instead
of the expected behaviour [Meirovitch, 1990]. Feedback is used in closed-loop controllers to
decrease the sensitivity of the system to plant variations, to enable adjustment of the system
transient response, to reject disturbances and to reduce steady-state tracking errors [Bishop,
1993]. Two main types of closed-loop controllers can be distinguished, i.e. output feedback
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controllers and state feedback controllers. These two controller types are discussed in short in
the next two sections.

6.2.3 Output feedback controllers

Output feedback controllers often used are PID controllers, rate feedback controllers, lead-lag
compensators and frequency-shaping filters. The choice of a suitable controller depends on
the control objective and the controller characteristic.

If accurate transient behaviour, in terms of overshoot, rise-time, settling-time and DC error is
required, a PID controller is normally used. This controller type consists of a parallel
combination of a proportional (P)-element, an integral (I)-element and a differential (D)-
element, placed in the forward path of the closed-loop, with unity feedback. The P-element
gains the output error to increase the control effort, the I-element integrates the error to obtain
accurate steady-state behaviour, while the D-element lowers the overshoot peak. Simpler
variations of PID controllers include PI- and PD controllers. PID controller design is
described in detail by Schwarzenbach & Gill [1986].

In order to eliminate large initial transients that may damage a plant or may cause system
malfunctioning, the PID controller discussed above may be removed and replaced by a minor
feedback loop, which differentiates the output. This method of feedback control is known as
rate feedback, or negative velocity feedback. Since it is not good practice to differentiate the
output signal, due to the presence of noise, measurement of the output rate may be directly
done, using an output rate sensor [Schwarzenbach & Gill, 1986].

If both control accuracy and high stability margins are essential, a phase compensator, such as
a phase-lead-, phase-lag- or lead-lag filter, may be used. A phase lead compensator is a 1*
order filter, with high-pass characteristics, which increases the phase of the closed-loop
system. The filter numerator and denominator coefficients determine the phase spectrum.
Phase-lead compensation generally improves rise-time and reduces the amplitude of transient
oscillations, but increases the bandwidth [Schwarzenbach & Gill, 1986].

A phase-lag filter is a 1¥ order filter with low-pass filtering characteristics. Lag compen-sation
reduces overshoot, but at the expense of rise-time. The limitations of lead- and lag filters are
partially overcome by lead-lag filters. The lead- and lag elements may be combined into a
single filter, or may be placed in series, separated by a buffer [Schwarzen-bach & Gill, 1986].

A frequency-shaping filter can be placed in the feedback loop to obtain the required plant
frequency-domain behaviour. This can be achieved by, inter alia, pole assignment and optimal
frequency shaping filter design techniques. Optimal frequency shaping is possible with LQG
design, by including frequency-shaped weighting matrices in the quadratic cost functional
[Meirovitch, 1990]. Pole assignment using output feedback is described by Brogan [1985].
Practically, output controllers can be implemented by placing digital filters between the
sensors and plant.
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6.2.4 State feedback controllers

In state-feedback control, the plant states are combined, either linearly or nonlinearly, to
obtain the control signal. A large variety of state feedback controllers exist. Since it is
impossible to discuss all the varieties here, a brief discussion is given on optimal-, static-,
dynamic-, full-state feedback- and reduced-order controllers, as well as state feedback
controllers using observers.

An optimal state feedback gain matrix can be determined which stabilizes the system,
minimizes the control effort and meets the disturbance rejection criterion. Two of the most
popular versions of optimal state feedback controllers, are H, and H.. controllers, the names of
which are derived from their respective optimality criteria. Other versions of optimal
controllers include bang-bang controllers, and optimal controllers designed by variational
methods, as discussed in detail by Kirk [1970] and Meirovitch [1990]. More recently, optimal
controllers have also been designed by application of genetic algorithms. A serious limitation
of optimal state controllers is that they are seldom robust [Kuo, 1982]. In order to obtain
sufficient robustness, modification of the controller design may be required. Robust design
will be discussed in short in section 6.4.

State control can be directly done if the output is invertible, i.e. if the states can be obtained by
inversion of the linear, or nonlinear, function y(x), that expresses the outputs in terms of the
states. This type of state control is known as static state control. The term “static” indicates
that the relationship between the output and control is either a constant factor, or a nonlinear
function of the output, but is independent of frequency. Static state controllers have no
dynamics of their own, which limits their performance in terms of criteria such as optimality,
stability and robustness. Static state controller design and stabilization are, however, relatively
simple. Stability of the closed-loop system is only determined by its gain and phase margins.

If y(x) is not invertible, for instance if the output matrix is singular, a state observer is required
to reconstruct the states from measured outputs. This type of state control is known as
dynamic state control, since the observer has its own dynamic behaviour, independent of that
of the plant. Observer order is normally equal to, or less than, the plant order. If the observer
order is equal to that of the plant, the observer is known as a full-state observer, and the
controller is known as a full-state feedback controller. Observability and controllability are
conditions for full-state feedback, and will be discussed in short in section 6.4.

In order to avoid interference of the observer with the plant, observer poles can be arbitrarily
placed at twice the plant natural frequencies, as a rule-of-thumb. However, if plant natural
frequencies are high, high sample rates may be required for accurate control, which may lead
to excessively noisy measurement signals. As an alternative, optimal linear quadratic gaussian
(LQG) observer design can be done, where both disturbance and output noise energy levels
are taken into account to determine the observer gain matrix.

Estimation of all the plant states is impossible if the plant is not observable. However, in
general, it is still possible to estimate the observable components of the states of such a plant;
if the unobservable components decay extremely rapidly, this partial estimation may be
adequate [Anderson & Moore, 1989]. Observers used for this purpose are known as reduced-
order observers, the design of which is discussed in more detail by Anderson & Moore [1989]
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and Meirovitch [1990]. It will be shown in section 6.4 that the magnetostrictive LOS
stabilization system is observable.

Stability of a closed-loop linear state-feedback controlled system is determined by the signs of
the real parts of the closed-loop eigenvalues. If the real parts of all the eigenvalues are
negative, the system is unconditionally stable. The stability margin of a closed-loop state-
controlled system can be obtained by means of the Nyquist criterion.

6.2.5 Linear controllers

A comprehensive range of linear controllers exists; a detailed description of which is beyond
the scope of this study. Linear controllers can broadly be classified as linear state- and linear
output controllers. The control signal generated by a linear state controller, is a linear
combination of the states, while that generated by a linear output controller, is the product of
the output and a transfer function with constant coefficients. The number of transfer functions
depends on the number of controls and outputs. A single-input-single-output (SISO)
controller has only one TF. The number of TF’s of a multiple-input-multiple-output (MIMO)
controller, is the product of the number of output and control variables. For large MIMO
systems, state control is generally more powerful than output control.

Linear control is applied to systems whose characteristics stay constant, or vary slightly with
changes in states or outputs (e.g. weakly nonlinear systems), over the range of operation.
Linear control is particularly popular because system characteristics and behaviour can be
analyzed using the well-established linear systems theory.

Linear controllers make use of linear feedback and / or feedforward elements, with constant
coefficients, to generate the plant control signal. Linear control design methods are, inter alia,
optimal design (H; and H..) methods, robust design methods, frequency shaping and arbitrary
pole placement. Stability of a linear closed-loop system is determined by the eigenvalues of
the system coefficient matrix, or poles of the transfer functions.

Disadvantages of linear control arise from the fact that most dynamic systems display some
degree of nonlinearity. This characteristic limits the application of linear controllers to weakly
nonlinear systems. Where large changes in characteristics are encountered, linear control may
lead to instability, unduly high input energy and inaccurate control [Slotine & Li, 1991].
Linear control is therefore not recommended for highly nonlinear systems. Nonlinear
controllers are recommended for this purpose.

6.2.6 Nonlinear controllers
In nonlinear control, the control signal may either be a nonlinear function of the outputs, or a
nonlinear function of the states. The former is known as nonlinear output control, while the

latter is known as nonlinear state control.

Nonlinear control methods include input-output linearization, input-state linearization, sliding
mode control, linearization by means of describing functions, nonlinear control using nonlinear
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observers, and adaptive control. Nonlinear control design methods are described in detail by
Gelb & VanderVelde [1968], Slotine & Li [1991] and Vidyasagar [1978].

If applied to highly nonlinear systems, the advantages of nonlinear control are higher accuracy,
better stability and lower control effort. The disadvantages are a higher degree of
complication in mathematical analysis and control hardware. One of the most difficult tasks in
nonlinear control design is to find a feedback function that will linearize, as well as stabilize,
the system. In the case of weakly nonlinear systems, however, linearization is less
complicated, and linear control may often be directly applied.

6.2.7 Tracking controllers

Tracking control is defined as follows by Meirovitch [1990]: “The tracking problem is defined
as the problem of designing a control input so as to cause the plant state to follow a given
reference state. The linear tracking problem is the one in which the control is a linear function
of the state”.

Tracking control can be applied to this study, by controlling the relative angular acceleration
between the base and instrument. The base and instrument accelerations are measured and the
relative acceleration is calculated. The tracking error, which is the difference between the
relative acceleration and (negative) base acceleration, is driven to zero.

The advantage of using a tracking controller for this application is that the relative acceleration
is large, ideally equal in magnitude to the disturbance, and is therefore easily measurable.
Sensor noise is comparatively small and therefore does not significantly influence controller
performance, as long as the controller is operated outside the sensor noise frequency band.

The disadvantage is that, although control is closed-loop, the relative acceleration, instead of
the output acceleration, is controlled. The main objective of LOS stabilization of the optical
instrument is to minimize the output. A controller that drives the output to zero, or as close to
zero as possible, will therefore be more applicable. This controller type is known as a
regulator.

An example of a tracking controller that is of importance to this study, is a state observer.
The observer estimates the states from the measured plant output, estimated output and
control input. The observer error, which is the difference between the true states and
estimated states, is driven to zero. The control is obtained from the estimated states.

More information on tracking controllers is given by Anderson & Moore [1989] and Kirk
[1970].
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6.2.8 Regulators

The following definition of the regulator problem is given by Meirovitch [1990]: “The
regulator problem is defined as the problem of designing a control input so as to drive the
plant from some initial state to a constant final state. Another way of defining the regulator
problem is as one in which the reference input is constant. Because a simple coordinate
transformation can translate the origin of the state-space to any constant point in the space, the
regulator problem can be redefined as the problem of designing a control input, so as to drive
the plant to the zero state. The linear regulator problem is the one in which the control is a
linear function of the state.” Since the output of a linear system can be described as a linear
combination of the states, a controller that drives the output to zero, can also be classified as a
regulator.

The presence of noise may make it difficult to drive the output to zero. For this reason,
regulator design is often aimed at minimizing the output, instead of driving it to zero.
Generally, regulated systems with low output magnitudes, wide disturbance frequency bands
and high system cutoff frequencies, may experience serious noise effects.

The objective of this study is to minimize the output, in the presence of the base disturbance
and measurement noise. The output is the angular acceleration of the optical instument, the
base disturbance is the base angular acceleration, and the control is the actuator coil voltage.
For this application, the aim is to obtain the coil voltage, which will attenuate the effects of the
disturbance to such an extent that the output is minimized. Since the required output is
significantly smaller than the base disturbance, any regulator considered for attenuation
purposes, will therefore also have to be designed to minimize the effects of measurement
noise.

6.2.9 Optimal controllers

Optimality of a control system is expressed in terms of a performance measure, the concept of
which was originally introduced in classical controller design. Typical performance criteria are
system response to a step or ramp input, characterized by rise-time, settling-time, peak
overshoot and steady-state accuracy, and the frequency response of the system, characterized
by gain and phase margin, peak amplitude and bandwidth [Kirk, 1970].

In modern, or optimal, control, the main goal is to minimize the performance measure, or
performance index (“PI”), of a particular system or control problem. Typical optimal control
problems are minimum-time, terminal control, minimum control effort, tracking control and
regulator problems. (The PI’s of each of these problems are given by Kirk [1970]).

Formulation of the PI is necessarily influenced by the control objective. The objective of a
regulator, or instance, is to minimize the control effort required to drive the states (for a state
regulator), or outputs (for an output regulator), to zero, or as close to zero as possible.
Optimization of a regulator therefore requires that both the control and the states (or outputs),
be minimized. Weights can be placed on any of the terms in the PI, to emphasize the relative
importance of the particular term. For example, an increase in control weight will lower the
control effort, while an increase in output weight will lower the output.
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The PI may be expressed in linear quadratic (LQ) form, where the squared values of the
relevant performance terms are weighed, summed and subsequently integrated over a given
time period, which may be definite or indefinite. The value of the PI may be calculated to
obtain the relative performance of a system. A low PI indicates better performance than a high
PI, for the same plant.

If necessary, constraints can be imposed to limit, or bound, certain system variables or
parameters, to ensure that the system operates within its ability. The performance of a
constrained system may be the same as, or worse than, that of an unconstrained system. For
instance, a regulator with a high output weight, whose control is constrained, may command a
control signal in excess of the constraint. The control will be clipped as soon as it reaches the
constraint, thereby sacrificing output performance. This may however not happen in the case
of a regulator with a lower output weight.

Constraints may also be required to obtain relationships between the individual terms in the PI.
An example is the state-space equations of a plant. The state equation provides the
relationship between the states and control, while the output equation gives a relationship
between the states and outputs.

State feedback gains of LQ optimal linear regulators are obtained from, inter alia, the solution
of the steady-state Riccati equation. Derivation of the equation, from the PI and state
equations, is described in detail by Anderson & Moore [1989] and Kirk [1970]. The Riccati
equation is nonlinear, but can be solved in linear form by Hamiltonian eigenvector
decomposition, as described by Meirovitch [1990].

Optimal control design principles are also applied to observer, or estimator design. An
optimal observer is also known as a linear quadratic estimator, or Kalman filter. The objective
of optimal observer design is to obtain the observer feedback gain matrix that will minimize
the effects of input and output noise.

Optimal control is thoroughly described by Anderson & Moore [1989], Brogan [1985], Kirk
[1970] and Meirovitch [1990].

6.2.10 Conclusion of section 6.2

Controllers considered for this study are made up of combinations of two or more of the
controllers discussed in the foregoing sections. A suitable controller for the magnetostrictive
LOS stabilization system will typically be a linear regulator, with sufficient disturbance
attenuation, stability, robustness and optimality, for a bounded control voltage. The selection
of a suitable type of controller for the LOS stabilization system will be covered in section
6.4.3.
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6.3 Principles of disturbance attenuation

In this study, LOS stabilization of the optical instrument can be considered as a disturbance
attenuation method. The disturbance is the base motion, which is transmitted to the optical
instrument by the plant. The resulting motion of the optical instrument, i.e. the plant output, is
the product of the disturbance and uncontrolled transmissibility of the plant.

The objective is to attenuate the effects of the base motion on the LOS accuracy of the optical
instrument. To achieve this, the transmitted base motion must be attenuated to reduce the
motion of the optical instrument to a significantly low fraction of the base motion. The ratio
of the remaining output to the disturbance is known as the attenuation factor.

Base and optical instrument motions may be expressed in terms of variables such as angular
displacements, speeds or accelerations. The choice of the most suitable variable will
necessarily depend on the sensors used for measuring the motions. Since the sensors used in
this study are accelerometers, the base and instrument motions will be expressed in terms of
angular accelerations. (Although the sensors can only measure translational accelerations,
angular accelerations can be obtained by dividing the difference between the measured signals
by the distance between the sensors).

In this section, the attenuation factor is discussed in more detail. The nature of the disturbance
is subsequently discussed. Requirements for attenuation of disturbances and noise are given,
followed by a description of feedforward compensation of a known disturbance entering a
system at a given point. Modern attenuation methods, i.e. optimal attenuation, preshaping of
command inputs, digital regulation of continuous disturbances and two-way isolation, are
discussed in short.

The application of disturbance attenuation methods is extended to motion controllers of
various kinds, the most basic of which are relative and absolute motion controllers,
disturbance feedforward (open-loop) controllers and a combination of disturbance
feedforward and absolute motion controllers. A simple method for improving the robustness
of optimal motion controllers, is discussed.

6.3.1 Attenuation factor

The isolation ability of the system can be expressed in terms of an attenuation factor, which is
the ratio of the attenuated output, to the disturbance:

Yy
== (6.3.1.1)
4 d

where ¥ is the attenuation factor, y is the attenuated output and d is the disturbance.
In disturbance attenuation, the ultimate goal is to drive the output to zero, in order to achieve
total isolation. However, although this may be theoretically feasible, it is practically

impossible to achieve. The reason is that the measured disturbance and output signals will
almost always be contaminated with noise. As the output is driven to zero, its signal-to-noise
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ratio approaches zero, thereby making feedback control extremely difficult. It is therefore
more realistic to minimize the output, instead of driving it to zero.

At the other end of the scale, an attenuation factor of unity indicates that all the base motion is
transmitted to the optical instrument, i.e. no isolation takes place. This may for instance
happen in the trivial case of total absence of a stabilization system. When a stabilization
system is present, but is not controlled, the attenuation factor may exceed unity. This will for
instance happen if the base excites one or more of the natural frequencies of the plant. In this
case, ¥ represents the transmissibility (7R) of the stabilization system, for zero control input.
A properly designed isolation system must be able to attenuate both the disturbance and its
dynamic effects on the plant.

The TR magnitude and phase spectra of the LOS stabilization system were shown in figure
5.6.8. From the figure, it can be seen that the TR magnitude is unity at DC and gradually
increases with frequency, reaching local maxima at the natural frequencies, and local minima at
anit-resonant frequencies. The TR magnitude is approximately unity in the disturbance
frequency BW of 0 Hz to 100 Hz.

From the above discussion, it can be seen that a practically achievable goal for y should be
between zero and one:

0<y<1 (6.3.1.2)

The lower ¥, the more effective the isolation.

Mathematical expression of the attenuation factor will depend on the control objective. A
number of control objectives can be formulated to suit the need. Firstly, if the objective is to

reduce a peak in the time trace of the output to a given fraction of that of the disturbance, ¥
can be expressed as:

)] (6.3.1.3)

Secondly, if the objective is to attenuate the disturbance at the dominant frequency in the BW,
the attenuation factor can be expressed as:

, = He,) (6.3.1.4)

where @ is the dominant disturbance frequency.
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In the third place, if the objective is to obtain an output whose magnitude is a constant fraction
of that of the disturbance at each frequency in the disturbance BW, the attenuation factor can
be expressed as:

= const (6.3.1.5)

y(jo)=

To obtain this attenuation factor, an isolation system is required which rejects a constant
percentage of the disturbance at all the frequencies in the disturbance BW.

Lastly, if the objective is to minimize the ratio of output energy to disturbance energy over a
given frequency bandwidth, the attenuation factor can be expressed as the ratio of the RMS of
the output to that of the disturbance:

y = Yews (6.3.1.6)

dRMS

In this case, the attenuation factor is a constant scalar. It will however not necessarily be
constant with frequency and may contain a spectrum of frequencies.

6.3.2 Nature of the disturbance

A disturbance can broadly be classified in terms of its type, whether the disturbance is known,
and its position of entering the system. Disturbance types include, inter alia, wide-band
random, band-limited random, narrowband, harmonic, transient, and DC disturbances, as well
as measurement and system noise.

A distinction is often made between noise and disturbances, since the system characteristics
required for disturbance attenuation differ from those required for noise attenuation [Anderson
& Moore, 1989]. Disturbance and noise attenuation requirements will be discussed in section
6.3.3. A thorough comparison between different control methods for narrowband disturbance
attenuation is given by Sievers & von Flotow [1992]. DC disturbance attenuation is described
in detail by Kuo [1982].

A disturbance can be termed a known disturbance if it can be measured before control system
design. The disturbance is measured and characterized in terms of parameters such as
magnitude and phase spectra, power spectral density and RMS value. These parameters are
used to design the controller in order to meet the control objective, e.g. to achieve a required
RMS output. The control objective will be met as long as the known disturbance is the only
disturbance entering the system. Unknown disturbances are necessarily more difficult to
attenuate. To achieve this, sufficient robustness must be supplied by the feedback loop in
order to compensate for the uncertainties. Attenuation of a known disturbance entering a
system at a given position, by means of feedforward compensation, is described by
Schwarzenbach & Gill [1986].

Disturbances may enter the system at the input or output, or may originate inside the system.
An example of a disturbance entering the system at the input, is measurement noise
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contaminating the reference signal of a tracking controller. An example of a disturbance
entering the system at the output, is measurement noise contaiminating the output signal of a
regulator. Input noise and output noise mainly originate from sensors and electromagnetic
radiation, infiltrating the system through unscreened wires. System noise may originate from
loose, rattling or faulty system components.

In the case of the LOS stabilization system, which is the topic of this study, the known
disturbance is the angular acceleration of the mounting base of the optical instrument. The
disturbance enters the system at the input. The unknown disturbances are base and output
measurement noise, as well as seismic motion of the test setup, caused by environmental
disturbances such as traffic.

6.3.3 Requirements for disturbance and noise attenuation

The requirements for disturbance and noise attenuation are discussed in short in this section.
Sensitivity and complementary sensitivity functions, which provide an indication of the
dependence of the tracking error, output and control signals, on the reference, disturbance and
noise signals, are defined. The requirements for accurate tracking, disturbance and noise
attenuation are expressed in terms of these functions.

The block diagram of a closed-loop controller is shown in figure 6.3.3.1. The reference input,
output and tracking error signals are respectively denoted by r, y and e, while the output
measurement noise and disturbance signals are represented by n and d. The control signal is
denoted by u. The plant and controller transfer functions are represented by G,(s) and G.(s).
(The TF’s may either be vectors or scalars, depending on the number of inputs and outputs).

—’ Gc(s ) G,,(S ) | 'AV

Controller Plant

Figure 6.3.3.1:  Block diagram of closed-loop controller, with disturbance and noise
entering the system at the output [Anderson & Moore, 1989]
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The sensitivity function S and complementary sensitivity function 7, from Anderson & Moore,
[1989], are given by:

s=(I1+G,G.)" (6.3.3.1a)
T=G,6.(I+G,G,) (6.3.3.1b)

where T is the complement of S:
S+T=1 (6.3.3.2)

The plant output y, measured tracking error e and control u can be expressed as follows in
terms of S and T (the derivations are not done here, only the results are given):

y=T(r—n)+Sd (6.3.3.3)
e=S(r-n-d) (6.3.3.3b)
u= GCS(r -n- a’) (6.3.3.3c)

Requirements for accurate tracking, disturbance attenuation and noise attenuation, in terms of
the sensitivity and complementary sensitivity functions, are discussed in detail by Anderson &
Moore [1989].

The requirement for accurate tracking and good disturbance attenuation is:

o[s(jw)]<<1 (6.3.3.4)

where ¢ denotes the largest singular value of S.

The requirement for good noise attenuation is:
o[T(jw)]<<1 (6.3.3.5)

It can be seen from equations 6.3.3.2, 6.3.3.4 and 6.3.3.5, that there is an inconsistency
between the requirements for good tracking and disturbance attenuation on the one hand, and
noise attenuation on the other.

6.3.4 Attenuation of a known disturbance entering the system at a given point

A known disturbance entering a system at a given point can be attenuated by means of a
feedforward compensator, in conjunction with a unit feedback loop [Schwarzenbach & Gill,
1986]. The disturbance signal is monitored and a control signal is obtained that partially
attenuates the disturbance before it affects the system. This attenuation method is particularly
applicable to this study, since the disturbance and its position of entering the system, i.e. the
angular acceleration of the base, are known in advance.
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The block diagram of a feedback controller with feedforward compensation is shown in figure

6.34.1.

d
v
G(s) Feedforward-
compensator
+
v
+

Plant

v

Figure 6.3.4.1: Block diagram of feedback controller with feedforward compensator

[Schwarzenbach & Gill, 1986]

The output, tracking error and control are given by:

y=G,u+d
e=r—y
u=e+G.d

(6.3.4.1a)

(6.3.4.1b)
(6.3.4.1¢c)

The output, tracking error and control can be expressed as follows in terms of the reference

and disturbance inputs:

y=6,(1+G,) r+(G,G.~ 1)1 +G,) d
)'r-6,6.(1+G,) d

-1

u=(1+G,) r+(G. -II+G,) d

e=(I+GP

A special case is that of a regulator, whose reference input r is zero. The
regulator, in terms of the disturbance, from equation 6.3.4.2a, is given by:

(6,6.~1)1+G,) " d

Yy

The attenuation factor ¥, from equation 6.3.1.1, is given by:

Y
yd
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output of a

(6.3.4.3)
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Substitution of equation 6.3.4.3 into equation 6.3.4.4 gives:

(6,6, -1)1+6,)" (6.3.4.5)

Y

For a specified disturbance attenuation factor y, the required feedforward compensator
transfer function G. is:

G, =y +(I+7)G,;' (6.3.4.6)

The control u, in terms of the disturbance d and output y, is given by:

u=G.d-y 6.3.4.7)
Substitution of equation 6.3.4.6 into equation 6.3.4.7 gives:

u=[y +(I+7)G,'Jd -y (6.3.4.8)

Equation 6.3.4.8 is only valid for static unit feedback. A similar equation can be derived for
an arbitrary dynamic feedback gain H.(s).

6.3.5 Optimal disturbance attenuation using H, and H.. optimization techniques

The objective of disturbance attenuation in this study is to make the angular motion of the
optical instrument less sensitive to the angular motion of the base. To achieve this, the output
of the plant must be minimized.

The control required for this purpose can be obtained in a number of ways, e.g. by classical
controller design methods, such as pole placement. However, this method only involves the
output, and takes no account of the control effort required to achieve the objective.
Necessarily, the output will increase if the control decreases, and vice versa. In order to
obtain an efficient controller, the control effort must be weighed against the output. This
process is known as optimization.

Various control optimization techniques exist, such as variational optimization and linear
quadratic (Ha) optimization. The latter technique is applicable if the disturbance is fixed or has
a fixed power spectrum [Doyle et al, 1989). H. optimization is therefore applicable to this
study, since the disturbance spectrum is known.

The H, performance measure is defined as follows in the frequency domain for a stable
transfer function matrix G(s) [Doyle et al, 1989]:

lo

o /2
L= (-21; [ race[ G(jw) * G( jw)]dw] (6.3.5.1)
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Linear quadratic optimization will be discussed in more detail in section 6.4, where the control
design will be described in detail.

A modern control optimization technique still under development, which gives better
robustness to uncertainties, is H. control. The H. performance measure performance is
defined as follows in the frequency domain [Doyle et al, 1989]:

|G]..:=supo ., [G(jw)] (6.3.5.2)

where Oy is the maximum singular value.

The H.. criterion corresponds to designing for the worst disturbance signal [Doyle et al, 1989].
If a full-state feedback controller is used, the feedback gain matrix can be obtained from a
solution of a single Riccati equation. State-space solutions to H.. control problems and
disturbance attenuation by means of H.. control, are discussed in detail by Doyle et al [1989],
Petersen [1987] and Petersen [1989].

6.3.6 Preshaping of command inputs

Preshaping of command inputs is often used for open-loop disturbance attenuation. The
method can however be applied successfully if the input shaping accounts for the dynamic
characteristics of the closed-loop plant [Singer & Seering, 1990].

The behaviour of the system to a series of impulses is used to attenuate endpoint vibration.
The first impulse excites transient behaviour of the system, which is cancelled by the transient
behaviour of subsequent impulses. A short delay, of the order of the period of the first mode
of vibration, is incurred. Disturbances other than impulses are expressed as series of impulses.

The impulse amplitude and delay between impulses depend on the frequency and damping
factor of the first natural mode. For example, the amplitudes for a two-impulse input are:

A=t (6.3.6.12)
1+ K

= K (6.3.6.1b)

© 14K

where K is a dimensionless constant, given as follows in terms of the damping factor { of the
first natural mode of vibration:

K= e li-e (6.3.6.2)
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The time delay AT is given by:
AT=—7" (6.3.6.3)

where @, is the natural frequency of the first mode of vibration of the system.

6.3.7 Attenuation of a continuous disturbance by means of digital regulation

Digital control is almost universally used in modern control, mainly for its simplicity of
implementation and ease of changing control parameters. For these reasons, a digital
controller will be used to drive the LOS stabilization system discussed in this study. The
principle of operation of the controller is discussed in short below. The system block diagram,
from Jacquot [1981], is shown in figure 6.3.7.1.

| i
i GUs) !
: |
1 ]
; + |
U@) U@s) RO
G2 ZOH |—» G(s) —_b
P+ 5
Regulator Hold E Plant E Sampler

Figure 6.3.7.1: Block diagram of digital regulator for continuous disturbance attenuation
[Jacquot, 1981]

A disturbance D(s) enters the plant, with disturbance-to-output and input-to-output transfer
functions Gs) and G,(s), at the input. The plant output ¥(s) is sampled at a rate T and the
sampled output Y(z) is fed back into a digital regulator, with output U(z). A zero order hold is
applied to the control to obtain a continuous control signal U(s), which drives the plant to
attenuate the disturbance.
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6.3.8 Motion controllers

Motion controllers are discussed in this section. A translational SDOF spring-mass-damper
system is used to explain the principles of motion control. Although rotational pitch DOF’s
are of importance in this study, the translational model is used in the interest of simplcity.
Analytical equations are obtained which give clear insight into the system characteristics. The
principle can easily be extended to a rotational system, such as the LOS stabilization system.
This will be done in section 6.4, where the controller design will be covered in detail.

Motion controllers can conveniently be divided into relative motion controllers and absolute
motion controllers. A better understanding of the various types of motion controllers is
provided with the aid of figure 6.3.8.1. The figure shows a linear spring-mass-damper system,
with mass m, spring stiffness & and viscous damping coefficient c, mounted on a moving base

with vertical displacement d, speed d and acceleration d. The vertical displacement, speed
and acceleration of the mass are y, y and j respectively. The actuator force, which excites

the mass to attenuate the transmission of the base motion through the system, is F.

e
y, ¥, ¥

k ’___jc

jd, d, d
l

Figure 6.3.8.1 SDOF spring-mass-damper system excited by base motion and actuator
force

Moving base |

The motion variable that is controlled depends on the sensor type, €.g. accelerometer, eddy
probe (proximity sensor), or linear variable differential transformer (LVDT). In this study, the
dynamic motion variables are translational accelerations, measured by means of
accelerometers. Transmissibilities of the open-loop and closed-loop systems discussed below
will therefore be expressed as ratios of accelerations.

The equation of motion is normally expressed in terms of all the motion variables, i.e.
displacement, speed and acceleration. The equation of motion of the system shown in figure
6.3.8.11s:

my=-c(y—d)-k(y~d)+F, (6.3.8.1)
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Equation 6.3.8.1 is subsequently used to obtain the open- and closed-loop transmissibilities of
the various motion controller types.

6.3.8.1 Relative motion controller

Relative motion control is done by measuring both the base and absolute accelerations, and by
feeding back the difference between the two measured signals into the controller, to obtain the
actuator force.

In order to derive the equation of motion, consider figure 6.3.8.1 and equation 6.3.8.1. The
equation of motion of the SDOF system, for relative motion, is obtained by subtraction of md
on both sides of equation 6.3.8.1:

m(y - d)=—c(y - d)~ k(y—d) - md +F, (6.3.8.1.1)
" Equation 6.3.8.1.1 can be written as:
5 +Sy + &y —_dv iR (6.3.8.1.2)
n m
where y, is the relative displacement between the base and mass:
y,=y—-d (6.3.8.1.3)

The acceleration of the mass, in terms of the relative and base accelerations, from equation
6.3.8.1.3, is given by:
y=9, +d (6.3.8.1.4)

Selecting the relative displacement and relative speed as states, the base acceleration and
actuator force as inputs and the relative acceleration as the output, the state-space equations
of the system can be written as:

v, 0 1 y, 0 0
RS R AR T (6.3.8.1.5a)
¥, m ml L "
Y,
5, =[—5 —i} _i+L1F (6.3.8.1.5b)
m m y m
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For relative motion control, the actuator force can expressed as follows as a linear
combination of the relative displacement and speed:

Y
F,=[-K, -K,] (6.3.8.1.6)

Yr
where K; and K are the relative displacement and relative speed feedback gains respectively.
Because the relative displacement and speed are the plant states, the control law given in
equation 6.3.8.1.6 describes state feedback control. State control requires that the states be
known, either by direct measurement, or by state estimation. Since the output is the relative

acceleration, instead of the relative displacement and speed, the states must be reconstructed
from the output. This is done as follows, by direct integration of the relative acceleration:

y, = jj § didt (6.3.8.1.7a)
y, = j 5 d (6.3.8.1.7b)

where j, is the relative acceleration, which is obtained by subtraction of the measured
acceleration of the base, from the measured acceleration of the mass:

j =y-d (6.3.8.1.8)

The closed-loop state-space equations of the system are obtained by substitution of equation
6.3.8.1.6 into equations 6.3.8.1.5a and 6.3.8.1.5b:

3, 0 I Ay} (0]
= k + K1 c+ K" + d (6-3-8-1-93)
7% I I | 7% I O
Y,
5, = [- k+ X, _ctk } —d (6.3.8.1.9b)

The closed-loop transmissibility of the system, which is the TF between the acceleration of the
base and the absolute accleration of the mass, is obtained from equations 6.3.8.1.4 and
6.3.8.1.9b as:

c+K, k+K,
=5+

1 UL (6.3.8.1.10)
c+K, ot k+K,

m m

TR=2 =
d
s°+
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The poles of the closed-loop system are given by:

s= 1K +1J(C+K2] _g kK (6.3.8.1.11)

n m

2m 2

The zero of the closed-loop system is given by:

k+K,
c+K,

The natural frequency f, and dimensionless damping factor ¢ are respectively given by:

(6.3.8.1.12)

fo=m s (6.3.8.1.13a)
21 m
SCLE - (6.3.8.1.13b)
2,J(k+ K, )m

The DC transmissibility is unity, and is independent of the feedback gains.

The transmissibility given by equation 6.3.8.1.10 corresponds with the transfer function of a
passive low-pass (LP) filter. The filtering characteristic is such that the system will attenuate

above +/2 times the closed-loop natural frequency, i.e. above f = (1/ 27r),/2(k + K, )/ n.

Below the attenuation frequency, i.e. in the pass-band, the system will amplify the base
motion, in other words, the acceleration of the mass will exceed that of the base. The
attenuation band can be widened by reducing the natural frequency. This is achieved by
reducing K;; the lower K, the wider the attenuation band.

K, can however not be reduced indefinitely, since this will inevitably cause instability.
Similarly, instability will result if K, is reduced to such an extent that the damping factor
becomes negative. The lower limits of K; and K, are determined by the gain and phase
margins of the plant.

In the attenuation band, the TR increases with damping, therefore damping is undesirable in
this band. However, in the pass-band, the TR decreases with damping. In this band, damping
must be as high as possible. In order to provide efficient damping in both the attenuation and
pass bands, an optimum damping factor is required. For white-noise base motion, the
optimum damping factor is 70,7 %.

The controller feedback transfer function H,(s) between the relative acceleration and actuator

force is:

H (s)=- K‘ _& (6.3.8.1.14)

s s

The block diagram of the relative motion controller described above, is shown in figure
6.3.8.1.1. The inputs to the plant are the actuator force F, and base acceleration d. The
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plant output, which is also the controller input, is the relative acceleration j—d. The
controller output is the actuator force F..
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Figure 6.3.8.1.1: Block diagram of relative motion controller

An advantage of the relative motion controller is that it can be implemented passively, and
does not require an actuator. The LP characteristics may be desirable from a measurement
point of view, since the system can operate at low sample frequencies.

The disadvantages of the system are firstly, that it cannot attenuate at DC. However,
depending on the nature of the disturbance, this may not be a necessity, for example where the
disturbance does not contain a significant DC component. Secondly, since relative motion,
instead of absolute motion, is controlled, the system is incapable of taking any corrective
action if the motion of the mass deviates from the required motion. The system is therefore
relatively non-robust in comparison with an absolute motion controller.
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6.3.8.2 Absolute motion controller

An absolute motion controller measures the acceleration of the mass and feeds this signal back
into the controller to obtain the control signal.

In order to derive the equation of motion, consider figure 6.3.8.1. The equation of motion of
the system, from equation 6.3.8.1, is:

my+cy+ky=cd+kd+F, (6.3.8.2.1)

Equation 6.3.8.2.1 can be written as:
my+cy+ky=F, +F, (6.3.8.2.2)
where F, is the equivalent base excitation force, given by:
F,=cd+kd (6.3.8.2.3)

The base excitation force is obtained as follows from the base acceleration:

F, =c[(d)ar + k[[ (d)atar (6.3.8.2.4)

The base-excited spring-mass-damper system shown in figure 6.3.8.1 can be replaced with an
equivalent base-force excited system, as shown in figure 6.3.8.2.1.

TF“ jy
Al
K e

Fixed base __I =0

S S S S

Figure 6.3.8.2.1: Equivalent spring-mass-damper system excited by base and
actuator forces
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Selecting the absolute displacement and speed of the mass as states, the base excitation and
actuator forces as inputs and the acceleration of the mass as the output, the state-space
equations of the system can be written as:

s [0 17 [o 0
=l & c +<a1iF 91 F, (6.3.8.2.5a)
ol m mlPl m m
koo’ 1
= [__ __} +Lirslp (6.3.8.2.5b)
m m y m m

For relative motion control, the actuator force can be expressed as follows as a linear
combination of the absolute displacement and speed of the mass:

F,=[-K, -K,] (6.3.8.2.6)

where K, is the abolute displacement feedback gain and K> is the absolute speed feedback
gain.

The closed-loop state-space equations are obtained by substitution of equation 6.3.8.2.6 into
equations 6.3.8.2.5a and 6.3.8.2.5b:

y 0 1 y 0
= k + Kl c+ Kz + 1 Fb (6.3.8-2-73)
Y m m Y m
y
yz[_k”(* - ”K’] +L1F, (6.3.8.2.7b)
m m A om
y
The transfer function between the base force and output acceleration is
1 »
. —s
Do m (6.3.8.2.8)
F, ., c+K,  k+K
s s+
m m
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The transmissibility, which is the transfer function between the base acceleration and absolute
acceleration, is obtained from equations 6.3.8.2.3 and 6.3.8.2.8 as:

c k
y — S+ —
TR=== m__m 6.3.8.2.9)
d , c+Kk, k + K, (
ST+ s+
m m

The poles of the closed-loop system are given by:

go CtK 1 (”Kz) _gkr K (6.3.8.2.10)
2m 2 m m
The zero is given by:
k
§=—— (6.3.8.2.11)
c

The natural frequency, damping factor and DC transmissibility of the closed-loop system are
respectively given by:

fo= L jkEK (6.3.8.2.122)
27 m
-tk (6.3.8.2.12b)
2,/(k+ K, )m
TR, = k (6.3.8.2.12¢)
k+K,

The controller feedback transfer function H.(s) between the acceleration of the mass and
actuator force is:

H.(s)=—— - (6.3.8.2.13)

The block diagram of the absolute motion controller is shown in figure 6.3.8.2.1. The
controller input is the absolute acceleration of the mass . The controller output is the
actuator force F,. The plant inputs are the actuator and base excitation forces F, and F,. The
plant output is the absolute acceleration of the mass y .

It can be seen from equation 6.3.8.2.9 that only the denominator of the TR is affected by the
feedback gains. The numerator is unaffected. The natural frequency increases with an
increase in K, while the damping factor increases with an increase in K>. For a positive Ki,
k/m is smaller than (k+K,)/m, giving a DC transmissibility of less than unity.
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The DC transmissibility and natural frequency are coupled by K, i.e. a change in K| changes
both the DC transmissibility and natural frequency. These two parameters can for instance be
separately adjusted by using acceleration feedback in conjunction with displacement and speed
feedback. In this case, the feedback law is:

F,=Ky+K,y+K,y (6.3.8.2.14)

where K; is the acceleration feedback gain.
The closed-loop transmissibility is:

c k
. % S+ %
y__mrak mrh, (6.3.8.2.15)
d , c+K, N k+ K,

s°+
m+ K, m+ K,

The natural frequency, damping factor and DC transmissibility are respectively given by:

fo= R LAY (6.3.8.2.16a)
" 2r\m+K,
¢ = ct® (6.3.8.2.16b)
2ﬂk+mxm+KQ
TR, = k (6.3.8.2.16¢)
k+K,

The transfer function H.(s) between the acceleration of the mass and actuator force is:
H (s)=-—-—-K, (6.3.8.2.17)

The block diagram of this controller is shown in figure 6.3.8.2.1.

Advantages of this system type are that the controller is capable of detecting the output,
irrespective of what happens at the input. Corrective action can therefore be taken if the
output deviates from the required output. Being a feedback controller, the system can be
designed to be sufficiently robust. Furthermore, contrary to the relative motion controller, the
system can be designed to attenuate at DC.

A disadvantage of this system type is that the control signal, which only depends on the

output, may be contaminated by measurement noise. Since the output is a relatively small
signal in comparison with the disturbance, the signal-to-noise ratio is low.
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Figure 6.3.8.2.1: Block diagram of absolute motion controller

6.3.8.3 Disturbance feedforward (open-loop) controller

The disturbance feedforward controller measures the acceleration of the base and feeds this
signal into the controller to obtain the actuator force.

The actuator force is expressed as follows as a linear combination of the base displacement
and speed:

F,=Kd+K,d (6.3.8.3.1)

where K is the base displacement gain and K; is the base speed gain.
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Substitution of equations and 6.3.8.3.1 into equation 6.3.8.2.1 and simplification of the
resulting equation gives the equation of motion as follows:

. k+K
grlyrky etk KK (6.3.83.2)
m m

m m

The transmissibility equation of the system is:

c+K, k+K,
=S5+

Y__m m (6.3.8.3.3)

, € k
S+ —s+—
m m

The poles of the feedforward-controlled system are given by:

c 11 cY) k
§=——=*— (—) -4— (6.3.8.3.4)
2m 2 \\m m
The zero is given by:
s= Ltk (6.3.8.3.5)
ctK,

The natural frequency, damping factor and DC transmissibility are respectively given by:

1 [k

fo==—4— (6.3.8.3.62)
2n
c
= (6.3.8.3.6b)
¢ 2N km
TR, =1+ % (6.3.8.3.6¢)
The transfer function G.(s) between the base acceleration and actuator force is:
G. (s) = &71 + —Ki (6.3.8.3.7)
T s

It can be seen from equations 6.3.8.3.6a and 6.3.8.3.6b that the natural frequency and damping
factor correspond to those of an uncontrolled SDOF system. The DC transmissibility depends
on the base displacement feedforward gain K;. A DC transmissibility of less than unity can be
obtained if K is negative.

The block diagram of the open-loop controller is shown in figure 6.3.8.3.1. The input to the
controller is the base acceleration, d. The controller output is the actuator force F.. The
plant inputs are the actuator force F, and the base disturbance force Fi. The plant output is
the acceleration of the mass j .
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Figure 6.3.8.3.1: Block diagram of disturbance feedforward controller

An advantage of the disturbance feedforward controller is that it is unconditionally stable for
any K, and K. Furthermore, since the base acceleration will be larger than the acceleration of
the mass, a higher signal-to-noise ratio will result than in the case of the absolute output
controller. This makes it possible to use a relatively high sample rate, which is required for
accurate control.

The disadvantage of a disturbance feedforward controller is that there is no feedback loop.
The controller can therefore not take any corrective action to compensate for disturbances
other than the known base motion. Furthermore, the absence of a feedback loop prevents the
system from compensating for shifts of plant poles due to uncertainties.

6.3.8.4 Absolute plus base motion controller

The absolute plus base motion controller measures both the base and mass accelerations and
feeds these signals into the controller to obtain the actuator force.

The actuator force is a linear combination of the displacement of the mass, speed of the mass,
displacement of the base and speed of the base:

F,=-Ky-K,y+K,d+K,d (6.3.8.4.1)
where K, is the absolute displacement gain, K is the absolute speed gain, K3 is the base
displacement gain and K} is the base speed gain. K, and K- are output feedback gains, while

K3 and K, are disturbance feedforward gains. This controller is a combination of the absolute
acceleration and open-loop controllers, respectively discussed in sections 6.3.8.2 and 6.3.8.3.
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Substitution of equations 6.3.8.4.1 into equation 6.3.8.2.1 and simplification of the resulting
equation gives the equation of motion as follows:

55+C+K2y+k+K‘y=C+K4a'l+k+K3d (6.3.8.4.2)
m m m i
The transmissibility equation of the controlled system is:
) c+K, o4 k+K,
X = m m (6.3.8.4.3)
d , c+K, k+K
s+ =5+
m m

The natural frequency, damping factor and DC transmissibility are respectively given by:

1 [k+K,

fo=— (6.3.8.4.4a)
27 m
{= _crk (6.3.8.4.4b)
2,/(k + K, )m
AL (6.3.8.4.4¢)
k+K,

The feedback transfer function H.(s) between the absolute acceleration and actuator force is:

H(s)=- & (6.3.8.4.5)

st s

The feedforward transfer function G.(s) between the base acceleration and actuator force is:

G.(s)= -IE;- oK (6.3.8.4.6)

S S

It can be seen from equation 6.3.8.4.3 that both the TR numerator and denominator are
affected by the controller gains. Poles and zeroes can therefore be shifted independently.
Stability of the system only depends on K, and K>, and is independent of K5 and K.

The controller block diagram is shown in figure 6.3.8.4.1. The inputs to the controller are the
absolute acceleration of the mass J and the acceleration of the base d . The controller output

is the actuator force F,. The inputs to the plant are the actuator force F. and the base
excitation force F;. The plant output is the absolute acceleration of the mass j .
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Figure 6.3.8.4.1: Block diagram of disturbance feedforward plus absolute motion

controller

A special case of this controller is the relative motion controller discussed previously, which
results if K3 = K; and K, = K.

The first advantage of this controller type is that its poles and zeroes can be determined
independently, since both base motion and absolute motion are used for control. Secondly, as
was mentioned in section 6.3.4, a known disturbance may be partially attenuated before
entering the system. Thirdly, in the case of a sensor failure, the controller may still operate,
albeit at the cost of performance.

A disadvantage of the system is that, because it is not a pure feedback controller, robustness
will be lower that that of the absolute motion controller.

6.3.8.5 Robustness improvement

Optimal state controllers are often non-robust. The main reason is that the transmissibilities of
optimal controllers are, in many cases, characterized by pole-zero cancellation. The poles will
be exactly cancelled by the zeroes, as long as the frequencies and damping factors of the poles
and zeroes are constant. This is however not guaranteed, since either the poles or the zeroes
may shift, due to, inter alia, plant nonlinearities. If, for instance, the poles shift, but the zeroes
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are unaffected, pole-zero cancellation will no longer be effective, resulting in inadequate
controller performance. Optimal controllers with low pole damping, in particular, are prone to
this problem.

Robustness improvement can be achieved by proper robust feedback design, employing
methods such as loop transfer recovery (LTR), as described in detail by Maciejowski [1989],
Skogestad & Postlethwaite [1997] and Tsui [1996]. An alternative method of robustness
improvement is to place an output integrator in parallel with the state feedback elements [Kuo,
1982, and Anderson & Moore, 1989]. The controller consists of two loops, i.e. an inner state-
feedback loop and an outer output integrator loop. This method or robust control is often
applied to reject DC disturbances in electric motors [Kuo, 1982].

This control method can also be applied to improve the robustness of motion controllers. A
simple example is the absolute motion controller described in section 6.3.8.2. In the case of
acceleration output, integral feedback will alter the speed feedback gain, thereby altering the
damping factor of the poles.

The actuator force is obtained as follows in terms of the absolute displacement, speed and
acceleration of the mass:

y
=[-k, -K,} }-H,[ydr (6.3.8.5.1)
y

F

where K; and K- are the optimal state feedback gains and H, is the acceleration integral
feedback gain.

Simplification of equation 6.3.8.5.1 gives:

F,=-Ky-(K,+H,)y (6.3.8.5.2)

Substitution of equation 6.3.8.5.2 into equation 6.3.8.2.1 gives the equation of motion of the
closed-loop system as follows:

K K,+H .k
j;+£)',+£y=___l_y_<__~_’_)})+f_d+__d (6.3.8.5.3)
m m m m m m

The transmissibility equation of the closed-loop system is:

c k
. —5+—
B m___m (6.3.8.5.4)
d , c¢+K,+H, k +K,
s°+ S+
m m
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The poles are given by:

2
s CHK +H, il\/(iﬁﬂ) _ 4[ kt Kl) (6.3.8.5.5)

2m 2 m m

The zero is given by:

s=_k (6.3.8.5.6)

The natural frequency, damping factor and DC transmissibility are respectively given by:

fo= L ErE (6.3.8.5.7a)
2 m
_CctK, +H, (6.3.8.5.7b)
2,J(k + K,)m
TR, = k (6.3.8.5.7¢)
k+ K,

The inner and outer feedback loops can be replaced by a single feedback loop. The transfer
function H.(s) between the acceleration of the mass and the actuator force, from equation
6.3.8.5.2, is:

H()=-tu - Kt (6.3.8.5.8)

s? s

Comparison of equation 6.3.8.2.12b with equation 6.3.8.5.7b shows that the relative increase
in damping, from the optimal damping, is H, / (c + Kz) .

6.3.9 “Two-way” isolation

The methods discussed so far in section 6.3 are mainly applicable to the attenuation of
disturbances exciting a system with a rigid base and mass, through the moving base. This
section focusses on the attenuation of disturbances entering the structure at the base and mass,
both of which are flexible. The actuator is mounted in between, from where it excites both the
base and mass. This attenuation method is appropriately known as “two-way isolation”
[Hyde, 1996].

The control system operates on the principle of dual sensor feedback. The absolute motion
(speed) of the mass and the actuator force are measured and fed back into the controller,
through two control loops, i.e. an inner (unit) force feedback loop and an outer motion
feedback loop. The inner feedback loop makes it possible to control the actuator force, as
follows. The measured motion signal is gained to give the commanded force signal. The
measured actuator force signal is subtracted from the commanded force signal and the
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difference is gained and supplied to the actuator. Two-way isolation and dual sensor feedback
are described in detail by Hyde [1996].

6.4 Control system design

The design of a controller for the LOS stabilization system is described in this section.
Controller specifications are given in section 6.4.1. Factors which influence controller design
are mentioned in section 6.4.2. The selection of a suitable controller type is motivated in
section 6.4.3. The controller design procedure is described in section 6.4.4. The plant and
controller design parameters are given in section 6.4.5.

6.4.1 Control system design specifications

Control system specifications include the particular system performance requirements, and
general controller requirements applicable to all types of controllers. Particular performance
requirements, applicable to the LOS stabilization system, are the closed-loop attenuation
factor, limits to the maximum and minimum values of the control signal, and frequency
bandwidth. General requirements, which are almost universal for all types of controllers, are
inter alia, stability, robustness and reaction speed. General control system requirements will be
given in section 6.4.2.

The required attenuation factor, in terms of RMS of the output, as a fraction of the RMS of
the disturbance, is 15%, over a frequency range of 2,5 Hz to 100 Hz. The upper limit of the
coil supply voltage is + 28 V. The lower voltage limit is not specified, but 0 V can be
accepted as a guide. (This constraint is applied to ensure that the coils are magnetically biased
- see section 3.4).

Time-domain performance parameters such as rise-time, settling-time, overshoot and DC error
are not specified. Although DC tracking error is not applicable, since the controlier required
for the LOS stabilization system will be a regulator, a DC voltage of 9,1 V is required to bias
the actuator coil.

6.4.2 General control system requirements

General controller requirements are normally expressed in terms of performance factors such
as accuracy, stability, sensitivity, reaction speed, control effort, robustness, observability and
controllability. These factors are not discussed here. Instead, a summary of each of the
factors is given in appendix X.

6.4.3 Selection of a suitable controller type
The controller which is selected for the magnetostrictive LOS stabilization system in this

study, is a digital, suboptimal output feedback plus disturbance feedforward regulator, with
output integral feedback. The reasons for the choice are as follows: If the advantages and
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disadvantages of digital and analogue controllers are compared (see appendix X), the relative
ease of implementation and adjustment of control parameters outweigh the cost disadvantage
of a digital controller. If a digital controller is available, as it is in this study, it is the logical
choice.

Tracking controllers and regulators were respectively discussed in sections 6.2.7 and 6.2.8.
The objective in this study is to minimize the output, i.e. the angular acceleration of the optical
instrument. This is a regulator objective. Although a tracking controller could also be
considered for this application, a relative motion controller would be required, whose control
objective would be to drive the relative motion between the base and output to the (negative
of the) base motion. An absolute motion controller is however preferred, since it controls the
parameter to be minimized, i.e. the absolute angular acceleration of the optical instrument,
instead of the relative angular acceleration.

Disturbance feedforward is included because the disturbance is known and enters the system
through the base. It can therefore be attenuated to a large extent, before affecting the system.

Optimal feedback controllers are seldom robust. Robustness of optimal controllers can be
improved by placing an output integral feedback loop, in parallel with the output feedback
loop. (This method of robustness improvement is discussed in appendix X). A disadvantage
of this control method is that it slightly complicates the system, since an additional control
loop is required. However, a considerable improvement in robustness can be achieved, as will
be illustrated in section 6.4.5.

An alternative to the above controller, is a full-state controller. Robustness set aside, state
controller design techniques are generally more powerful than TF design techniques, especially
for systems with large numbers of states, inputs and outputs. State control design techniques
also make it possible to convert the dynamic equations of a state controller to analogue TF
form. Conversion of the continuous TFs to digital filter form (in terms of the discrete delay
element 1/7) is also relatively easy, provided that the frequencies of the closed-loop system
poles and zeroes do not exceed the Nyquist frequency.

The advantages of both state and digital controllers will be exploited in the design and
implementation of the controller for the LOS stabilization system. The design will be carried
out by means of optimal linear quadratic state controller and observer design techniques. The
state and output equations will subsequently be written in analogue TF form and converted to
digital filter form.

The block diagram of the plant and digital regulator is shown in figure 6.4.3.1. The plant
inputs are the disturbance d (base angular acceleration) and control u (actuator coil voltage).
The plant output y is the absolute angular acceleration of the optical instrument. The
regulator inputs are the sampled disturbance D(z) and plant output Y(z). The controller output
is the control U(z), supplied to the plant through a zero-order hold (“zoh”™).

The digital regulator feedforward and feedback filter TF’s are G(z) and H(z) respectively. The
digital output feedback integrator TF, which is the zero-order-hold equivalent of 1/s, is T/(z-
1). The integrator gain is H;, a constant. The analogue plant disturbance and control input
TF’s are G.(s) and G.(s) respectively.
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Figure 6.4.3.1: Block diagram of plant and digital regulator

6.4.4 Control system design method

An iterative method is followed in the design of the controller. The process is started by
designing an optimal controller and an optimal observer. For the controller design, output and
control weights are arbitrarily selected, while MS values of measured disturbance and output
noise signals are used as weights for the observer design. Robustness is improved by
designing a suboptimal controller and a suboptimal observer. The plant, controller and
observer state-space equations are coupled and stability of the closed-loop system is verified.
The disturbance-to-control and output-to-control TF’s are obtained and converted to digital
form. The output integrator gain is arbitrarily selected.

A real-time simulation of the expected closed-loop system behaviour is done, with disturbance
and noise signals acting as the extraneous inputs. The RMS-value of the output, in a
frequency bandwidth of 0 Hz to 100 Hz, is compared with that of the disturbance. If the
output RMS exceeds the specified value, the output weight and integrator feedback gains are
adjusted and the process is repeated until the required output RMS is obtained.

The above design method is aimed at attenuating a known disturbance, entering the system
through the base. The design is disturbance specific, meaning that the controller will, for
example, not be able to reject the disturbance if a harmonic disturbance with the same
amplitude as that of the dominating disturbance, i.e. at 96,75 Hz, occurs at 50 Hz.

The magnitude of the disturbance used in the design is 50% of that of the true disturbance,
since only one actuator can be controlled. (The reason is that only two power amplifiers are
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available for the experimental tests, i.e. one to excite the base and one to drive an actuator coil
- see also section 4.3.1).

Detailed description of design procedure

The linear quadratic objective function of the controller is expressed in terms of the control
and output. Control and output weights are arbitrarily selected and an optimal linear quadratic
regulator (LQR) is designed. The Riccati equation is solved and the optimal feedback gain
vector is determined from the Riccati matrix. The closed-loop state-space equations are
obtained and converted to TF form. The poles and zeroes of the closed-loop transmissibility
are determined and graphically displayed on a pole-zero map. It is shown that the optimal
controller is characterized by pole-zero cancellation. The frequency spectrum of the closed-
loop attenuation factor is shown. The effect of output weight on the attenuation factor is
investigated. It is shown that an increase in output weight, reduces the attenuation factor.

A suboptimal controller is subsequently designed. The optimal controller is used as the point
of departure. In order to eliminate pole-zero cancellation, the damping factors of most of the
zeroes are increased and the frequency of the pole with the lowest frequency is raised. The
poles and zeroes of the closed-loop TR are shown on a pole-zero map. It is shown that the
suboptimal controller TF is nonminimum-phase. The frequency spectrum of the closed-loop
attenuation factor of the suboptimal controller is shown and compared with that of the optimal
controller. It is shown that the suboptimal controller is inferior in terms of attenuation, in
comparison with the optimal controller, but is superior in terms of robustness, since it does not
display pole-zero cancellation.

An optimal linear quadratic estimator (LQE) is designed. Results obtained from noise
measurements are used to determine the disturbance and output weights. The Riccati equation
for the optimal observer is solved and the optimal observer driving matrix is determined. The
state-space matrices of the optimal observer and suboptimal controller are coupled. The
eigenvalues of the coupled system are calculated to verify stability. A pole-zero map of the
coupled system is shown. The disturbance to control (u/d) and output to control (u/y) transfer
functions are calculated and their frequency spectra are shown in magnitude and phase form.
The plant state-space equations are coupled to the observer and controller equations and
stability of the closed-loop system is verified.

It is shown that certain elements of the optimal observer driving matrix are zero, which makes
it impossible to control corresponding states from the output. The problem is rectified by
designing a suboptimal observer. The zero elements in the driving matrix are replaced by non-
zero elements in order to make full-state feedback control possible. The suboptimal observer
is coupled to the suboptimal controller and stability of the coupled system is verified.

Equivalent digital filler 7F’s of the continuous TF’s are designed. Poles and zeroes that
exceed the Nyquist frequency, are eliminated. The output feedback integrator is replaced by
an “equivalent” digital filter, with bounded DC gain. This is done in order to ensure that the
control signal is bounded, thereby making it easier to obtain the required DC bias voltage.
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Plant, controller and observer state-space, TF and digital filter equations

This section gives a summary of the equations required to design the controller. Additional
information on different controller types, general controller requirements, configurations and
block diagrams, can be found in appendix X.

The plant state and output equations are:

%=Ax+B,u+B,d (6.4.4.1a)
y=Cx (6.4.4.1b)

The plant TF for the control input, in the absence of the disturbance input, in terms of the state
and output matrices, is given by:

) _ qor- AT, (6.4.4.2)

u(s)

The plant TF for the disturbance input, in the absence of the control input, is given by:

Y(s)
D(s)

The plant eigenvalues are the values of s for which:

= C[sI - A]"'B, (6.4.4.3)

|sI - A|=0 (6.4.4.4)
The plant attenuation factor, in the absence of the control input, from equation 6.4.4.3, is:
v(s)= sl - A]"'B, (6.4.4.5)

(Equation 6.4.4.5 gives the uncontrolled attenuation factor. This term is preferred to “open-
loop” attenuation factor, because the latter may also apply to the attenuation factor of a plant
controlled by an open-loop controller).

Observability matrix

The plant states are fully observable if the observability matrix
[CT D ATCT i (AT)CT e (AT)""CT] (6.4.4.6)

has rank n, where n is the number of plant states.
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Controllability matrix

The system is fully controllable if the controllability matrix
[B i 4B i A’B i - i A"'B| (6.4.4.7)

has rank n.

State and TF equations for a state feedback controlled system
For linear state control, the control is a linear combination of the states:

u=—-Kx (6.4.4.8)
where K is the state feedback gain vector.

The closed-loop state space matrices are obtained by substitution of equation 6.4.4.8 into
equation 6.4.4.1:

i=(A-B,K)x+B,d (6.4.4.9a)
y=Cx (6.4.4.9b)

The closed-loop eigenvalues are the values of s for which:
|sT - (A-B,K) =0 (6.4.4.10)

The closed-loop attenuation factor is given by:

¥ a(s)= % = ([sI-(A-B, K)|" B, (6.4.4.11)

where the subscript ¢/ denotes “closed-loop™.

Optimal control design equations

The cost function to be minimized, is:

7= [[Q,y* (1) + Ru?(z)]a (6.4.4.12)

0

H

t

where Q, and R are the output and control weights, respectively. For a SISO system, both Q,
and R are scalars.
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The relationship between the state weight matrix Q. and Q, is:

0,=C"Q,C (6.4.4.13)

The Riccati equation, in its steady-state version, has to be solved to determine the state
feedback gain vector K, which minimizes J for prescribed values of O, and R. The steady-state
algebraic Riccati equation (ARE), is:

Q +A"S . +S ,A-S B R'BIS =0 (6.4.4.14)

W u

where S, is the steady-state solution of the Riccati equation. The optimal state feedback gain
matrix is given in terms of the Riccati matrix as:

K=R"'B!S,, (6.4.4.15)

The optimal state feedback gain matrix gives a linear relationship between the state vector and
optimal control.

State-space and TF equations of coupled plant, observer and controller

The observer state-space equations are:

x=A%+B,u+B,d+L(y-3) (6.4.4.16a)
j=Cx (6.4.4.16b)

In equation 6.4.4.16a, the observer inputs are the control input i, disturbance d, plant output y
and observed output y.

Substitution of equation 6.4.4.16b into equation 6.4.4.16a gives the observer state equation in
the following form:

x=(A-LC)i+B,u+B,d +Ly (6.4.4.17)

In equation 6.4.4.17, the control, disturbance and plant output are the observer inputs.
Equation 6.4.4.17 is required to couple the plant, observer, controller and output feedback
integrator equations. The coupled equations will be given in the next section.

For state control by means of an observer, the control is a linear combination of the observed
states:

= —K& (6.4.4.18)
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Substitution of equation 6.4.4.18 into equation 6.4.4.17, gives the observer state equation in
yet another form:

%=(A-B,K-LC)X+B,d + Ly (6.4.4.19)
In equation 6.4.4.19, the disturbance and plant output are the observer inputs.
The coupled plant, observer and controller state-space equations are obtained by combining

equations 6.4.4.1, 6.4.4.16b, 6.4.4.18 and 6.4.4.19, as follows:

= + d (6.4.4.20a)
%l |LCc A-B,K-LC||%| |B,

(y) [C 0]
X

yr=l0 C (6.4.4.20b)
%

) [0 -K]

The closed-loop eigenvalues of the coupled plant, observer and state feedback controller, are
the values of s for which:

|sI—A,|=0 (6.4.4.21)

where A, is the coupled coefficient matrix:

A -B,K

u

A, = (6.4.4.22)
LC A-BK-LC

The closed-loop attenuation factor is given by:

B(I
v(s)=[c ofst-4,]" (6.4.4.23)
Bd

The controller TF’s, i.e. the disturbance to control and output to control TF’s, are given by:

U,(s)__ k[st - (A-B.K - LC)I'B, (6.4.4.243)
D(s)
U,Gs)_ ~k[s1-(A-BK-LO'L (6.4.4.24b)
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Design equations for LQE optimal observer

A Riccati equation similar to that of the optimal controller (see equation 6.4.4.14) can be
written for the optimal LQE observer. The steady-state Riccati equation for the LQE observer
is:

P_AT + AP, — PCTR"'CP+B,0B] =0 (6.4.4.25)

where P, is the steady-state Riccati matrix, A is the plant coefficient matrix, B, is the plant
disturbance input matrix, C is the plant output matrix, and Q and R are the covariances of the
uncorrelated process and output noise signals w and v, respectively given by:

0=—[w ()t (6.4.4.262)
T 0
1 T

R=— vi(1)dt (6.4.4.26b)

The observer gain matrix L is obtained as follows from the steady-state Riccati matrix:

L=R"P.CT (6.4.4.27)

The LQE observer produces an optimal linear quadratic gaussian (LQG) estimate of the
observer state vector x, for d =0, in equation 6.4.4.16.

State-space and TF equations of coupled observer and state plus output integral
feedback controller

For linear state plus output integral feedback, the control is given by:
u=—Ki-H, [ ydt (6.4.4.28)
where H, is the output integral feedback gain.
Differentiation of equation 6.4.4.28 with respect to time gives:
i=-Kx—-H,y (6.4.4.29)

Combination of equations 6.4.4.1, 6.4.4.16b, 6.4.4.17 and 6.4.4.29, gives the state-space
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equations of the coupled plant, observer and state plus output integral feedback controller, as:

(% A 0 B, 1[x] [ B, )

{xb= LC A-LC B, K#t+{ B, td  (6.4.4.30a)

&) |-(KL+H,)C -K(A-LC) -KB,||lu| |-KB,

L A, \

3 r VR

[yl [C 0 0O}(x

(6.4.4.30b)

=)

I$t=|0 C of

The closed-loop eigenvalues of the coupled plant, observer and state plus output integral
feedback controller, are the values of s for which:

|sI-A,|=0 (6.4.4.31)
where A, is the coupled coefficient matrix:
i A 0 B, |
A, = LC A-LC B (6.4.4.32)

cl u

—(KL+H,)C -K(A-LC) -KB,

The attenuation factor is given by:

v(s)=[C 0 Ost-A,]"| B, (6.4.4.33)

Equations for the digital filter equivalents of the disturbance to control and output to control
TF’s are given next.

Digital filter equivalents of continuous 7F’s

Two methods can be used to obtain the digital equivalents of the continuous TF’s. The first is
by conversion of the state-space matrices to their discrete equivalents, and by subsequent
conversion of the dynamic equations to digital 7F form. The second is by direct conversion
from continuous TF form to digital TF form. The first method, which is described in detail by
Franklin et al [1990], will not be used in this study. The second method can be directly
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applied, by transforming the plant poles and zeroes from the s-domain to the z-domain. The
transformation equation depends on the type of hold, e.g. zero-order hold (“zoh™), first order
hold (“foh™) and bilinear transformation (Tustin’s method). Application of the “zoh™ method
is the simplest, and is therefore popular and often used. The method will also be used here.
Although other methods may be more accurate for the same sample rate, accuracy can be
improved by using higher sample rates.

For a zero-order hold, the discrete domain differential operator z is related to the Laplace-
domain differential operator s, by the equation:

z=¢e" (6.4.4.34)
where T is the sample period.

The continuous TF’s are written in the following form:

G(s)=K, (=r)s=n)-(-r) (6.4.4.35)

(S—PIXS—PZ)‘“(S—P,J

where K, is the overall gain, r denotes a zero, p denotes a pole and m and n are the TF
numerator and denominator orders respectively.

By application of equation 6.4.4.34, the discrete equivalent of equation 6.4.4.35, is:

G(z)=K,, = fame)(e=e) (6.4.4.36)

< (Z _eP|T XZ _ePzT)_,_(Z _ ePnT)

The equivalent digital filter equation is obtained by expanding the numerator and denominator
terms to obtain polynomials in z, and by subsequent division by the highest power of z of the
denominator. The resulting equation is of the form:

G(z‘l)= by + bz 4 +b, 2" (6.4.4.37)
a, + a2 ++a,z”"

where 7' is the discrete delay.
The discrete equivalents of both the disturbance to control TF (as given by equation 6.4.4.24a)

and output to control TF (as given by equation 6.4.4.24b) are determined by the above
method.
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Controller design by means of Matlab and Simulink

In this study, design calculations are done with the aid of standard Matlab and Simulink
toolboxes. The use of Simulink has a number of advantages, namely that it makes it possible
to simulate the behaviour of a continuous plant, controlled by a digital controller. Secondly,
the block diagram developed for the simulations requires only minor adjustments, such as the
addition of A/D and D/A blocks, to implement the controller and download it onto the DSP.
The implementation process will be discussed in section 6.6.2. More information on the use of
Matlab for control system analysis, simulation and design is provided by Bishop [1993] and
Mathews and Fink [1999].

Real-time simulation of closed-loop system behaviour

After carrying out the above controller design steps, a time-domain simulation of the closed-
loop system behaviour is carried out in Simulink. The simulation block diagram is shown in
fiigure 6.4.4.1.

dar2

M Gus)
Plant y/d TF
w v
u
’ G@" ‘M—’ I G ¥ +
X
Digital Regulator Gain Clipper  Plant y/u TF
HP filter feedforward
filter TF
‘ R // —( + )—»’—»{ +>¢—<]‘J H(Z") f
y N V' S
DC Slope Gain Gain Regulator Digital
begins limiter feedback HP filter
filter TF
L \ ——<}‘* HEY ¢
DC Slope Gain  “Integrating”
ends limiter filter TF

(negative step)

Figure 6.4.4.1: Simulation block diagram of plant and controller, with DC bias
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The extraneous inputs are d/2, which is 50% of the disturbance, base signal measurement
noise w and output signal measurement noise v. The output of the closed-loop system is y.

Third-order, elliptic high-pass (HP) filters are placed in the feedforward and feedback paths in
order to demean the disturbance and output signals. Two DC bias blocks, i.e. a positive step
to start the DC signal, and a negative step to stop it at the end of the simulation period, are
included. The slope limiters ensure that the steps are applied and removed gradually, in order
to prevent large transient overshoots. Gain elements are included in the disturbance
feedforward, output feedback, output integral feedback and DC bias paths to facilitate
controller implementation. Unit feedforward, feedback and DC gains are used for the
simulations, while the integral feedback gain is adjustable. A clipper limits the actuator coil
supply voltage in order to prevent burnout.

In the interest of high accuracy, a sample period of 4.10" s, corresponding to a sample
frequency of 2,5 kHz, is used. This frequency is 25 times the maximum frequency of the
disturbance band of interest (i.e. 100 Hz), 5 times the maximum frequency of the disturbance,
including all frequencies (i.e. 500 Hz) and approximately 5 times the maximum measured
natural frequency of the plant (476,3 Hz). In order to simulate continuous behaviour of the
plant as accurately as possible, the 5™ order Runge-Kutta method is used to integrate the
dynamic equations. The total duration of the simulation is 4s, which corresponds with that of
the known disturbance.

A digital HP filter with the following TF is used:

10,9919 -29757z™" +2,9757z7 — 099197

Gz )= _ (6.4.4.38)
sl ( ) 1-2,9838z7" +2,967777% — 0,98397™

The upper limit of the voltage clipper is set to 28 V and the lower limit to 0 V. The DC bias
voltage is 9,1 V (see also table 4.4.5.1). The bias voltage slope limit is 100 V/s.

Design of the disturbance feedforward, output feedback and output integral feedback elements
is described in detail in section 6.4.5. The plant characteristics, which were discussed in detail
in chapter 5, are repeated in order to provide a better understanding of the controller
characteristics.
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6.4.5 Plant, controller, observer and closed-loop system parameters

The plant state-space equations are:

i=Ax+B,u+B,d (6.4.5.1a)
y=Cx (6.4.5.1b)

where u is the actuator coil voltage, d is the base angular acceleration and y is the optical
instrument angular accceleration:

u=V (6.4.5.2a)
d=0, (6.4.5.2b)
y=0 (6.4.2.5¢)
A consists of the following submatrices (see equation 5.6.9a):
[0 I 0 ]
A=|-Q* 270 MT'®TF,.C, (6.4.5.3)
| 0 0 A, ]
Numerical values of the elements of the submatrices of A are as follows:
1,481 i
2,093
Q*=1.10° 2,469 (6.4.5.4a)
3,588
i 8,959 |
[97,35 1
50,53
272Q = 1116 (6.4.5.4b)
1150
i 71,83
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[ 1,47.10°  3,734.10° 4702
-3,179.10° -8,075.10° -1017
M™'®TF,C =| -1,204.10° -3,058.10° -38,51 (6.4.5.4c)
-4,379.10"° -1112.10" -1401
| 2,723.10°  6,916.10° 8709 |
0 1 0
A = 0 0 1 (6.4.5.4d)
-1,332.10° -3,487.10° -1817
Numerical values of the elements of the driving matrices B, and B, are as follows:
B,=[0 0000000000O0O0 1
(6.4.5.5a)

,
B,=[—9,705.10‘6 1,57710° 6,437.10° 9,23510° 0 0,476 -0,06532 -0,1424 —0288 0 0 O 0]

¢

(6.4.5.5b)
Numerical values of the elements of the output matrix C are as follows:
C=
[51410° -32410° -37210° —7,9410° —18210° 338 -783 —168 -255 —146 -L14.10" 2910 ~3657]
(6.4.5.6)
The plant transfer functions for the control and disturbance inputs are given by:
Y(s -
(s) = C[sl - A] 'B, (6.4.5.7a)
u(s)
Y(s -
LO C[s1-A]"'B, (6.4.5.7b)
D(s)

Numerical values of the plant TF numerator and denominator polynomials are obtained by
substitution of equations 6.4.5.4 into equation 6.4.5.3, and by subsequent substitution of the
resulting equation, as well as equations 6.4.5.5 and 6.4.5.6, into equations 6.4.5.7.

The plant TF poles and zeroes, in frequency and damping form, are given in tables 6.4.5.1 to
6.4.5.3.
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Table 6.4.5.1: Plant TF poles
Undamped frequency Damping factor

(Hz) (%)
74,19 * real pole

193,64 4,00
230,26 1,75
250,09 3,55
269,05 39,95
301,46 3,04
476,37 1,20

* Damping factor not given for real poles and zeroes

Table 6.4.5.2: Plant TF zeroes for control input
Undamped frequency Damping factor

(Hz) (%)

0 * real zero

0 * real zero
199,15 3,87
234,23 1,88
251,25 3,52
469,22 1,25
889,88 71,01

Table 6.4.5.3: Plant TF zeroes for disturbance input
Undamped frequency Damping factor

(Hz) (%)

74,19 * real zero
196,10 3,94
233,90 1,98
261,96 3,33
269,05 39,95
476,37 1,20

The plant pole-zero maps, for the control and disturbance inputs, are shown in figures 6.4.5.1
and 6.4.5.2 respectively. The units are in rad/s.

The TF magnitude and phase spectra for the control and disturbance inputs are shown in
figures 6.4.5.3 and 6.4.5.4 respectively.
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Figure 6.4.5.1: Plant pole-zero map for control input
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2: Plant pole-zero map for disturbance input
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PLANT TF MAGNITUDE: CONTROL INPUT
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Figure 6.4.5.3: Plant TF magnitude and phase spectra for control input
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Figure 6.4.5.4: Plant TF magnitude and phase spectra for disturbance input
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Plant canonical state-space matrices

The plant state-space matrices are expressed as follows in modal canonical form:

(4867 1216
-1216 48,67
2527 1447
1447 25727
-55.82 1570
-1570 -5582
A= 5753 1893
1893 -57.53
3592 2993
—2993 3592
—466,1
-6753 1550
i ~1550 —6753]
(6.4.5.8a)

B, ={—5,534 09727 02827 0242 05233 08961 -8419 3373 -005148 1282 2,550 -10,69 —4,101}T
(6.4.5.8b)

B, ={—0,005910 0,1476 000506 -0,1424 -0,06529 -0,002281 02876 001749 0 0 0 0O O}T
(6.4.5.8¢)

C ={421,9 1689 -2365 -84,04 -7825 2239 2546 -4186 -607.9 -7,296 -1003 -2854 2504}
(6.4.5.8d)

Observability
The rank of the observability matrix in equation 6.4.4.6 is 13, which corresponds with the
number of states. The system is therefore observable. (The A matrix is multiplied by a

constant factor of 1.10° to calculate the observability matrix, since the magnitudes of the
higher powers of A cause roundoff errors).

Controllability

The rank of the controllability matrix in equation 6.4.4.7 is 13. The system is therefore
controllable. (The A matrix is scaled by a factor of 1.10°, as for the observability matrix).
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Selection of output and control weights and calculation of state feedback gains

Output and control weights for use in the optimization cost function (equation 6.4.4.12) are
arbitrarily selected and their influence on the closed-loop attenuation factor is investigated.
Output weights Q, of 1000, 2000 and 5000, are selected, together with a unit control weight
R. The state weight Q. is determined for each of the output weights, by application of
equation 6.4.4.13. The Riccati equation (6.4.4.14) is solved and the steady state Riccati
matrix is obtained, which is used to determine the state feedback gain vectors for each of the
above output weights.

The state feedback gain vector X, for Q, = 1000 and R = 1, is:

K ={—13325 —126,22 74687 12851 907,15 -70794 —66929 132290 19212 399,74 28390 87605
(6.4.5.9)

The state feedback gain vector X, for Q, = 2000 and R = 1, is:

K ={—18851 —24534 105650 19453 1478 -100130 -9384.4 187140 27176 437,68 40881 124390
(6.4.5.10)

The state feedback gain vector X, for @, = 5000 and R = 1, is:

K={-29816 -5184 167100 34118 27726 -158340 —14951 295970 42967 532,1 65900 197950
(6.4.5.11)

Closed-loop attenuation factors for optimal state feedback gains

The closed-loop attenuation factors for each of the above state feedback gain factors are
calculated by means of equation 6.4.4.11. The attenuation factors, which are also the
magnitude spectra of the closed-loop 7R’s, are shown in figure 6.4.5.5.

It can be seen from figure 6.4.5.5 that, for the three selected weights, the lowest (i.e. best)
attenuation factor is obtained with an output weight of 5000, while the highest (worst) is
obtained with a weight of 1000. The suboptimal controller design will be based on the optimal
controller, obtained with an output weight of 5000 and a unit control weight.
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Figure 6.4.5.5: Optimal attenuation factors for Q, = 1000, 2000 & 5000, with R = 1

The closed-loop poles and zeroes of the optimal controller, for @, = 5000 and R = 1, are given
in tables 6.4.5.4 and 6.4.5.5 respectively. The closed-loop pole-zero map is shown in figure
6.4.5.6. (The real pole at 41,16 kHz is not shown). From tables 6.4.5.4 and 6.4.5.5, and
figure 6.4.5.6, it is clear that almost all of the poles, except for the complex pole pair at
3,74 Hz, are cancelled by zeroes.

Table 6.4.5.4: Closed-loop poles for O, = 5000, R =1

Undamped frequency Damping factor
(Hz) (%)
3,74 70,74
199,15 3,87
234,23 1,88
251,35 3,52
469,22 1,25
889,92 71,01
41155 real
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Table 6.4.5.5: Closed-loop zeroes for O, = 5000, R = 1

Undamped frequency Damping factor
(Hz) (%)
2,64 real
199,15 3,87
234,23 1,88
251,35 3,52
469,22 1,25
888,35 71,08

CLOSED-LOOP POLE-ZERO MAP: OPTIMAL CONTROLLER (@, = 5000, R = 1)
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Figure 6.4.5.6: Closed-loop pole-zero map for optimal controller (Q, = 5000, R = 1)

The attenuation factor of the optimal controller is compared with the open-loop TR magnitude
in figure 6.4.5.7. The effect of pole-zero cancellation is clear from the figure.
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Figure 6.4.5.7: Open-loop 7R magnitude and optimal closed-loop attenuation factor

The suboptimal control parameters are given next. The design is based on the optimal
controller.

Suboptimal state feedback controller

The closed-loop pole with undamped frequency of 3,7 Hz is shifted to 5,6 Hz (i.e. an increase
of 50%) and the damping factors of all the zeroes, with the exception of one, are increased to
above 5%. Damping of the pole at 234 Hz is lowered from 1,88% to 1,22%. The state
feedback gain vector K which places the poles accordingly, is:

K ={—19871 5315 107030 11421 -36570 92131 —13057 187250 29893 62592 40340 126250 —113250}
(6.4.5.12)

The poles and zeroes of the suboptimal closed-loop system are given in tables 6.4.5.6 and
6.4.5.7 respectively. The pole-zero map is shown in figure 6.4.5.8. (The real pole at
25,42 kHz is not shown).
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Table 6.4.5.6: Poles of suboptimal closed-loop system

Undamped frequency Damping factor
(Hz) (%)
5,63 70,71
199,45 3,87
234,05 1,22
251,33 3,52
468,56 1,25
901,57 71,89
25417 real

Table 6.4.5.7: Zeroes of suboptimal closed-loop system

Undamped frequency Damping factor
(Hz) (%)
3,99 real
199,04 7,41
240,04 1,78 (positive real part)
261,74 7,14
462,60 7,47
879,19 55,03
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Figure 6.4.5.8: Closed-loop pole-zero map for suboptimal controller
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The attenuation factor of the suboptimal controller is compared with the open-loop 7R
magnitude in figure 6.4.5.9.

OPEN-LOOP 7R MAGNITUDE vs SUBOPTIMAL CLOSED-LOOP ATTENUATION FACTOR
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- Dotted line: Open-loop TR magnitude
- Solid line: Suboptimal attenuation factor
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Figure 6.4.5.9: Open-loop TR magnitude and suboptimal closed-loop attenuation factor

A comparison between the optimal and suboptimal controller attenuation factors is shown
graphically in figure 6.4.5.10. It can be seen from the figure that, unlike in the case of the
optimal controller, the suboptimal attenuation factor does not display pole-zero cancellation.

The suboptimal attenuation factor graph displays a resonance peak at 476 Hz, which

corresponds with the base natural frequency. The suboptimal controller excites the base
mode, while the optimal controller doesn’t.
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OPTIMAL vs SUBOPTIMAL CLOSED-LOOP ATTENUATION FACTORS
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Figure 6.4.5.10: Comparison between optimal and suboptimal closed-loop

controller attenuation factors

The optimal linear quadratic observer parameters are given next.

Linear quadratic optimal observer (LQE)

The solution of the optimal observer Riccati equation (6.4.4.25) is determined for measured Q
and R values of 0,0103. These values correspond with 15,6% of that of the required output.
The solution of the Riccati equation is subtituted into equation 6.4.4.27 to give the optimal
observer gain matrix as follows:

L={007109 01065 -0,102 -0,0797 -0,04247 004399 0,09784 —0,2468 0 0 0 0 O}
(6.4.5.13)
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The disturbance-to-control and output-to-control TF’s are obtained by application of
equations 6.4.4.24a and 6.4.4.24b. The poles of U/D and U/Y are given in table 6.4.5.8, while
the zeroes of U/D and U/Y are respectively given in tables 6.4.5.9 and 6.4.5.10.

Table 6.4.5.8: Poles of U/D & U/Y for optimal observer

Undamped frequency Damping factor
(Hz) (%)
6,66 84,36
199,53 3,98
234,14 1,46
251,63 3,59
468,67 1,36
900,62 71,61
25647 real

Table 6.4.5.9: Zeroes of U/D for optimal observer

Undamped frequency Damping factor
(Hz) (%)
74,19 * real

196,16 3,94

233,88 1,78

261,93 3,33

269,05 39,95

476,37 1,20
17681 positive real

Table 6.4.5.10: Zeroes of U/Y for optimal observer

Undamped frequency Damping factor
(Hz) (%)
74,19 real
146,95 real
196,62 3,44
234,29 1,02
262,83 2,33
269,05 39,95
476,37 1,20

The pole-zero maps of U/D and U/Y for the suboptimal controller and optimal observer are
shown in figures 6.4.5.11 and 6.4.5.12 respectively. (The real zero of U/D at 17,68 kHz is not

shown).

The magnitude and phase spectra of U/D and UJ/Y are respectively shown in figures 6.4.5.13
and 6.4.5.14.
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.12: Pole-zero map of U/Y (suboptimal controller with optimal observer)
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Figure 6.4.5.13: Disturbance to control TF magnitude & phase spectra:
Suboptimal controller with LQE optimal observer
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Figure 6.4.5.14: Output to control TF magnitude and phase spectra:
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The coupled state and output equations of the closed-loop system, consisting of the plant,
suboptimal controller and optimal observer, are given in equations 6.4.4.20. The system is
stable.

Suboptimal controller with suboptimal observer

It can be seen from equation 6.4.5.13 that the last five elements of the optimal observer gain
matrix are zero. This is a consequence of the fact that the corresponding elements in the
disturbance driving matrix Bs (see equation 6.4.5.8c) are zero. Although the plant is fully
observable, the controller will not be able to control the last five states, i.e. the two base states
and the three coil states, from the output.

In order to control these states, the corresponding elements of the observer gain matrix are
changed to nonzero values. Contrary to the design of the suboptimal controller, the purpose is
not to alter the frequencies and damping factors of poles and zeroes, but to control all the
states. The resulting observer is necessarily suboptimal in terms of the process and output
weights Q and R in equations 6.4.4.26.

The suboptimal observer gain matrix is modified as follows:

L={0,07109 01065 -0102 -007697 -004247 004397 009784 -02468 005 005 005 -0O02
(6.4.5.14)

The magnitude and phase spectra of U/D and U/Y of the suboptimal controller and suboptimal
observer are shown in figures 6.4.5.15 and 6.4.5.16 respectively.

The coupled state and output equations of the closed-loop system, consisting of the plant,
suboptimal controller and suboptimal observer, are given in equations 6.4.4.20. The coupled
system is stable.

The TF magnitude and phase of U/Y for the suboptimal controller and suboptimal observer are
compared with those of the suboptimal controller and optimal observer in figure 6.4.5.17.
(The magnitude and phase spectra for U/D are not shown because the differences between the
spectra are hardly visible. This is mainly because certain elements of the the L matrix are
adjusted, while the B, matrix is unaffected.)
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MAGNITUDE OF U/Y: SUBOPTIMAL OBSERVER vs OPTIMAL OBSERVER
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Figure 6.4.5.17: Output to control 7F magnitude and phase spectra:
Suboptimal controller, suboptimal observer vs optimal observer

The effect of output integral feedback on the attenuation factor spectra and stability of the
closed-loop system are discussed next.

Suboptimal controller with suboptimal observer and output integral feedback

In this study, the optimal integral feedback gain is determined with the aid of simulations.
Before the simulation results are given, the effects of the gain on the attenuation factor and
closed-loop stability are indicated. The maximum allowable gain at the stability limit,
determined by trial-and-error, is 2237. The closed-loop attenuation spectra, for gains of
0, 1000 and -50000, are shown in figure 6.4.5.18. It can be seen that, for the above three
gains, the lowest (best) attenuation is achieved with a gain of -50000.
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Figure 6.4.5.18: Attenuation factors for suboptimal controller with suboptimal

observer and various output integral feedback gains

The design of equivalent digital filters for the disturbance feedforward (U/D), output feedback
(U/Y) and output integral feedback TF’s are given next.
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Equivalent digital filters

The equivalent digital filters for the disturbance to control and output to control transfer
functions U/D and U/Y are respectively given by:

2.bu(z)
G(z)=22 , (6.4.5.15a)
a, (Z_l)’
i=0
ib,,,. (z'l)'
H(z")=%2 , (6.4.5.15b)
Y a, (z"l)

The numerator and denominator coefficients of the two digital filters, for a sample frequency
of 2,5 kHz, are given in table 6.4.5.11. (Only the first five digits after the decimal point are

shown.)

Table 6.4.5.11: Numerator and denominator filter coefficients for G(z’) and H(z")

i by Api b Qhi

0 0,05593 1,00000 0,17840 1,00000

1 -0,31316 -6,86194 -1,51049 -7,24684
2 0,69647 21,71518 6,17473 24,48686
3 -0,40650 -40,88123 -16,06805 -50,24938
4 -1,71159 48,39971 29,60721 67,85216
5 5,64420 -32,27825 -40,65931 -59,48195
6 -9,37469 1,15975 42,62427 27,33570
7 10,41497 22,41063 -34,31553 5,90594

8 -8,23882 -25,61932 21,01443 -20,38617
9 4,65344 15,38907 -9,52534 16,49180
10 -1,80623 -5,27795 3,02686 -7,29457
11 0,43651 0,86682 -0,60429 1,76323
12 0,05013 -0,02246 0,05722 -0,17677

In order to determine the coefficients tabled above, the real pole at 25,65 kHz and the real
zero of U/D at 17,68 kHz, are removed. These frequencies are well in excess of the Nyquist
frequency (1,25 kHz). The resulting filter orders are therefore 12, instead of 13. Both filters
are the closed-loop system are stable.
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Equivalent digital filter for output integrator and filter gain

The feedback integrator is replaced by the following digital filter:

y 1+z"
H,(z")=0,0002 ——=— (6.4.5.16)
1-0,99z
The filter TF is compared with that of a pure integrator in figure 6.4.5.19.
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Figure 6.4.5.19: Integrator and equivalent filter magnitude and TF phase spectra

The minimum attenuation factor, for a frequency band of 0 Hz to 100 Hz, is achieved with a
gain of —61,3.
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6.5 Controller test setup and equipment

The controller test setup and test equipment are described in this section. The equipment
mainly consists of a test bench, disturbance generation equipment, power amplifiers for the
disturbance and control signals, the plant, sensors, sensor signal amplifiers, control equipment
and data capturing equipment. A schematic layout of the test setup is shown in figure 6.5.1.

The test bench that was used for characterization of the magnetostrictive LOS stabilization
system, as shown in figure 4.3.1.3, is used for testing the controller. The bench serves as a
platform for the optical instrument stabilization system and electrodynamic shaker, which
excites the base.

The base disturbance signal is generated in Visual Designer, which is a graphical simulation
environment, similar to Simulink. The software operates with a low-cost Burr-Brown /
Intelligent Instrumentation data card, model PCI 20428-W1, which is normally used for test
signal generation and data capturing. Data is generated and captured in buffers, with
selectable length, type and sample frequencies. The card is supplied with two D/A and sixteen
A/D channels.
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Figure 6.5.1: Controller test setup

The computer communicates with the card through direct memory access (DMA). Processing
speed is determined by the computer CPU speed. Contrary to the dSpace card which was
used to characterize the plant, this particular Burr-Brown card does not contain a DSP and is
not suitable for real-time control, due to excessive throughput lag.

The base disturbance signal is supplied to the electrodynamic shaker via a matched power

amplifier. According to the manufacturer, MB Dynamics, frequency bandwidth and maximum
power output of the amplifier are 0 Hz to 30 kHz and 750 W respectively.
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The shaker excites the base by means of a stinger (a thin steel string). The base is guided by
linear bearings, in order to eliminate stick-slip motion, shock feedbacks to the shaker and
angular motion of the base. The shaker cannot support the base statically, therefore the latter
is suspended by a leaf spring. Spring stiffness and base mass are 7,16 MN/m and 8 kg
respectively (see table 5.6.1).

The plant consists of the two actuators, the “dummy” optical instrument and its support
structure. Dimensional details of the plant are given in section 4.2, while the dynamic coil and
plant characteristics are given in sections 5.4 and 5.6 respectively.

An MB Dynamics SS 250 amplifier, similar to the shaker amplifier, powers the coils of
actuator II. The amplifier was discussed in more detail in section 4.3.2. Its TF magnitude and
phase spectra, for different output levels and a constant input level, are shown in figure
4.3.2.2.

Three accelerometers are used to measure the base and instrument translational motion. Two
of the accelerometers are attached to the “dummy” optical instrument, one at each end of the
instrument, while the third is placed upside down underneath the base. (A preferred position
for accelerometer III would be on top of the base, next to actuator II. However, this space is
taken up by the stinger).

Each sensor signal is amplified by a battery-powered amplifier. ~Amplifier gains are
logarithmically adjustable, with gains of 2, 10 or 20, for accelerometers I and II, and gains of
1, 10 or 100 for accelerometer III. The instrument accelerometer amplifiers can also be
powered by the main electrical supply, through a transformer, during lengthy test periods.

The amplified signals are captured by a separate PC, which houses the digital signal processor
(DSP). The DSP has four analogue input and four analogue output channels. It is timed by a
built-in clock, which runs at 40 MHz, and operates independently of the computer CPU clock.
The DSP converts the accelerometer signals to digital form, carries out the control
calculations, converts the control signal to analogue form and supplies it to the actuator coil
via the power amplifier. The software supporting the DSP codes the Simulink block diagram
in C, compiles it and loads it onto the DSP. (The DSP was discussed in more detail in section
43.2)

The amplified sensor signals are displayed on a Visual Designer scope and stored in files for
later processing.
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6.6 Controller implementation and test procedure

Controller implementation and the test procedure are discussed in this section. Excitation of
the disturbance is discussed in section 6.6.1, followed by controller implementation in section
6.6.2. The test procedure and test execution are described in sections 6.6.3 and 6.6.4
respectively.

6.6.1 Disturbance excitation

An iterative approach is followed to excite the required disturbance. A description of the
procedure is as follows: A filtered random voltage signal excites the base through the
electrodynamic shaker (see figure 6.6.1.1 for a diagrammatic representation of the
experimental setup). Test duration is 80 s. The base translational acceleration is measured
and compared with that of the required disturbance signal. If the RMS-value of the measured
signal differs by more than 5% from that of the required signal, the voltage signal amplitude is
adjusted and the test is repeated. The procedure is repeated until the RMS-value of the
measured signal is within 5% of that of the required signal.
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Figue 6.6.1.1: Disturbance excitation experimental setup
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The random white-noise signal V; is generated in Visual Designer. The signal is sampled at
2 kHz, which is 20 times the control bandwidth (100 Hz) and 4 times the maximum frequency
of the disturbance signal (500 Hz). The signal is digitally filtered above 500 Hz, by means of a
2™ order low-pass (LP) filter.

The filter TF is given by:

14227 +1(z f
1+0.(z")+0,17157.c ' )

TF = G(z™)=0,29289 (6.6.1.1)

where the term z™' represents a single sample-period delay.

Filter TF magnitude and phase spectra are shown in figure 6.6.1.2. Filter TF magnitude at 500
Hz is 0,707, or -3dB.
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Figure 6.6.1.2: Second order digital LP filter TF magnitude and phase spectra

The signal is gained to facilitate amplitude adjustment. The resulting signal is supplied to the
shaker through a built-in digital-to-analogue (D/A) converter and an external power amplifier,
whose gain is held constant. (The amplifier was discussed in more detail in section 4.3.2).
The base is excited by the shaker through a steel string, or stinger. Accelerometer output
voltage V, is captured with a PL202 signal analyzer. The captured signal is downloaded to a
personal computer and processed in Matlab.
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The base translational acceleration ¥, is obtained from the accelerometer output voltage
signal V, by means of the following equation:

y,=V,x (-1) x 1000(—"1V) x-l—(mv) X ( g j x 981 22
Fom % 10\ mV ] 831326\ mV g
acitor ~ v 4 - v s \ -~ J
Factor2  Factor3 Factor 4 Factor 5
(6.6.1.2)

Factor 1 compensates for the accelerometer being mounted upside-down. Factor 2 converts
the measured accelerometer voltage signal unit from volt to millivolt. This factor is included
because the accelerometer calibration factor is given in mV/g. Factor 3 is the inverse of the
accelerometer signal amplifier gain factor, i.e. 10. Factor 4 is the inverse of the accelerometer
calibration factor, i.e. 83,1326 mV/g. Factor 5 converts the unit of acceleration from g to
m/s’>. The resulting conversion factor between the accelerometer output signal V, and base
acceleration ¥, in equation 6.6.1.2, is -11,8 m/s’/V.

The base angular acceleration 8, is obtained by division of j, by 0,25m (the base length).
The overall conversion factor between the accelerometer output voltage and base angular
acceleration, i.e. 0 b /Vn , is therefore -47,2 rad/s*/V.

Once a base angular acceleration with an acceptable RMS-value is achieved, its crest factor,
amplitude at 96,75 Hz and percentage energy in the control band, are calculated. If any of
these values differ by more than 5% from those of the required acceleration signal, a new
voltage signal is generated. The procedure is as follows: The complex Discrete Fourier
Transform (DFT) of the required acceleration signal is divided by that of the measured signal,
at each frequency in the spectrum, and multiplied with that of the random voltage signal:

P(jo,)

‘/i](jwk ) = ‘/imndnm (.]wk) Y(JCU )
&

required signal (6.6.1-3)

measured signal |

where @ is the k-th frequency in the spectrum and Y( jw k) is the DFT of y at the -th

frequency. The voltage signal Vi (z) is obtained from the spectrum of voltages Vi(ja) by
means of an inverse Fast Fourier Transform. The test is repeated with V;(r) as input. Base
acceleration is measured and its RMS-value, crest factor, amplitude at 96,75 Hz and
percentage energy in the control band, are calculated. If all of these parameters are within 5%
of those of the required signal, V;;(¢) is the voltage signal which will be used to excite the base.

If not, the base acceleration spectrum is calculated and the DFT of V;, is obtained as follows:

Vio(jo.) =V (jo,) Yiiﬁk))

required signal (6.6. 1 -4)

measured signal 2

The voltage signal Vio(r) is obtained from the spectrum of voltages Va(jaa) by means of an
inverse Fast Fourier Transform. The procedure is repeated until the base acceleration RMS-
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value, crest factor, amplitude at 96,75 Hz and percentage energy in the control band, are
within 5% of those of the required signal.

Parameters of the experimentally generated disturbance signal are compared with those of the

required disturbance signal in table 6.6.1.1. The amplitude spectrum of the experimentally
generated signal is shown in figure 6.6.1.3.

Table 6.6.1.1: Comparison between measured and required disturbance parameters

Parameter Required Measured Relative
disturbance disturbance error
RMS angular acceleration 4,56 rad/s” 4,59 rad/s’ 0,66 %
Crest factor 2,21 2,14 3,17 %
Maximum amplitude (@ 96,75 Hz) 4,14 rad/s® 4,06 rad/s” -1,93 %
Percentage energy in controlband 91 % 93,7 % 2,97 %

MEASURED DISTURBANCE AMPLITUDE SPECTRUM

Angular acceleration (rad/s?)

0 50 100 150 200 250 300 350 400 450 500
Frequency (H z)

Figure 6.6.1.3: Measured disturbance amplitude spectrum

6.6.2 Controller implementation

The controller block diagram is generated in Simulink, coded in C, compiled and loaded onto
the DSP. The block diagram is based on that of the simulated controller, shown in figure
6.4.4.1. For the control experiments, certain elements of the simulated block diagram are
retained, some elements are deleted, and a number of elements are added. Elements that are
retained, are the high-pass filters, disturbance feedforward and output feedback filter elements,
bias signal generation blocks (i.e. step and rate limiter blocks), and gain and summation
blocks.
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Elements that are deleted, are the plant blocks and noise inputs. During testing, the noise
inputs and plant outputs are automatically replaced by the true plant response and
measurement noise signals.

Elements that are added, are A/D and D/A converter blocks, overall sensor calibration factor
blocks and a "triggering" block, which synchronizes the bias signal with the sensor signals.
The latter block is required to force the DSP to cut off the control signal whenever it is
unbiased. Synchronization is achieved by multiplication of the bias signal, gained by the
inverse of its maximum value, with the control signal.

The resulting experimental block diagram is shown in figure 6.6.2.1. The disturbance sensor
signal is V, and the two output accelerometer signals are V., for accelerometer I and V,, for
accelerometer II. K., K., and K... are the calibration factors for the disturbance and output
accelererometers I and II respectively.

Numerical values of the overall sensor calibration factors, DC voltage, rate-of-rise, soft start
gain, bias gain, power amplifier gain, clipper limits and DSP card gain are determined. The
card gain is unity for throughput signals, i.e. sensor-to-control signals, and 10 for signals
generated in Simulink, ie. the bias signal. The soft start gain and bias gain are scaled
accordingly, by dividing the required values by 10. The numerical values used in the block
diagram are given in table 6.6.2.1.

Table 6.6.2.1: Constant factors applicable to experimental control block diagram

Constant factor Value Unit of measurement
Disturbance accelerometer calibration factor K., -45,39 rad/s*/V
Output accelerometer I calibration factor K, 76,27 rad/s’/V
Output accelerometer II calibration factor K. =~ 46,37 rad/s’/V
DC voltage 9,2 A
Rate-of-rise 100 Vi/s
Soft start gain 0,0927 Dimensionless
Bias gain 0,1087 Dimensionless
Power amplifier gain 1,7 Dimensionless
Clipper limits: Upper; lower 9,9 \Y%

-9,9 \Y

Feedforward, feedback and integrator feedback gains are adjustable. The values depend on
the controller type to be tested, i.e. open-loop feedforward, closed-loop feedback or
feedforward plus feedback. The required values will be given in section 6.6.3, where the
controller test procedure will be discussed.

The selected method for integration of the dynamic control equations, i.e. the 5" order Runge-
Kutta method, is entered, as well as the integration time-step, i.e. 400us. The latter is
constant, since adaptive time-stepping is not available for real-time implementation of the
controller on the DSP (see also section 4.3.2). The block diagram, with its filter, control, bias
voltage, gain, clipper and integration parameters, are coded in C, compiled and loaded onto
the DSP,
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Figure 6.6.2.1: Experimental control block diagram

6.6.3 Test procedure

Three configurations of the controller, i.e. the disturbance feedforward, output feedback and
disturbance feedforward plus output feedback configurations, are tested separately. The
feedforward controller is tested first. This is to ensure that as large a percentage of the
disturbance as possible is removed before the feedback loop is closed.

During the feedforward controller tests, zero output feedback and output integral feedback
gains are used. The feedfoward gain is adjusted in increments of 5%, starting at 5%. After
incrementing the gain, a test is carried out, the data is captured, processed, and the RMS
attenuation factor is calculated. The attenuation factor is compared with that obtained during
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the previous test. If an improvement is noticed, the gain is increased and the test is repeated,
until no further improvement is achieved. The gain of the last test carried out with this
configuration, is the maximum practically achievable feedforward gain.

The feedback loop is subsequently closed. The feedback gain, like the feedforward gain, is
adjusted in 5% increments. For this configuration, a zero feedforward gain is used. The
output integral feedback gain is initially zero. The feedback gain is increased until the system
becomes unstable. The gain at the stability limit, is the maximum feedback gain. The output
feedback gain, at the limit, is then held constant and the output integral feedback gain is
adjusted in 5% increments, until the system becomes unstable. The gain at the stability limit is
the maximum output integral feedback gain.

The disturbance feedfoward plus output feedback controller is subsequently tested. The
maximum feedforward gain, output feedback and output integral feedback gains are used
during the tests.

6.6.4 Test execution

The disturbance feedforward, output feedback and output integral feedback filter coefficients,
sensor calibration factors, feedforward and / or feedback gains, DC voltage, rate limiter slope,
clipper limits, sample rate, test duration and integration method are entered into the Simulink
block diagram and parameter menu. The block diagram is compiled and loaded onto the DSP.
The disturbance signal is excited in Visual Designer and the power amplifier gain is adjusted.
An open-loop test is run, the time trace of the disturbance signal is captured and shown on a
Visual Designer scope. It is processed and its RMS value is compared with that in table
6.6.1.1. If it differs by more than 5% from that in the table, it is corrected by adjusting the
power amplifier gain.

While the disturbance signal is active, the gain of the power amplifier that drives the actuator
coils, is adjusted. The DSP, which is inactive at this stage of the test, is activated and the
control signal is supplied to the actuator coils, via the power amplifier. The time traces of the
base and output signals are captured in Visual Designer and stored in a file for later
processing. The time duration of the test corresponds with that of the known disturbance, i.e.
4s. Since this duration is relatively short, the test is repeated 22 times, giving a total duration
of 88s for each controller configuration.

Although the same signal analyzer that was used for the characterization tests (as described in
section 4.3.3) is available for the tests, it is not used. The reason is that its number of channels
is limited to two, and its sample frequencies and window lenghts are only adjustable is fixed
increments. The Visual Designer software, on the other hand, gives more flexibility in terms
of number of channels, sample frequencies and window lengths. The disadvantage of
capturing time traces, however, is that post-processing of the time-domain data is required to
obtain the attenuation factor.
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6.7 Controller test results

The controller test results are processed, presented and discussed in this section. Processing
of the results is described in section 6.7.1. The results are presented in section 6.7.2 and
discussed in section 6.7.3.

6.7.1 Processing of test results

The time domain data is processed for each test run of 4s. The captured accelerometer signals
are multiplied by their overall calibration factors to obtain the vertical accelerations. The base
acceleration signal is divided by the base length to obtain the base angular acceleration. The
acceleration measured by accelerometer I is subtracted from that measured by accelerometer
II, and divided by the distance between the accelerometers to obtain the output angular
acceleration.

The transfer function spectrum of each test is calculated, using the following equation:

G(w)= (6.7.1.1)

where P is the cross spectral density between the disturbance and output, and P is the
disturbance power spectral density. A Hanning window is used to take start- and end effects
into account. The frequency resolution is 0,25 Hz, which is the inverse of the test duration of
every test, i.e. 4s. The average of the test spectra is calculated for each configuration. The
magnitudes of the spectra, i.e. the attenuation factors, are plotted for the disturbance
frequency band of 0 Hz to 100 Hz. The attenuation factors at the dominating frequencies in
the disturbance spectrum, i.e. at 24 Hz, 48,5 Hz, 72,5 Hz and 96,75 Hz, are tabulated.

The isolation factors, i.e. the complement of the attenuation factors, are calculated at each of
the dominating frequencies. The attenuation factors, in terms of the ratio of output RMS to
disturbance RMS, in the frequency band of 0 Hz to 100 Hz, are calculated from the time-
domain data.

6.7.2 Experimental test results

The maximum feedforward gain achieved during the tests, is 0,76. The maximum feedback
and integral feedback gains achieved during the tests are 0,76 and -87,5 respectively. These
gains are at the limit of stability.

The experimentally determined attenuation factor of the feedforward controller, for a 0,76
disturbance feedforward gain, zero output feedback gain and zero integral output feedback
gain, is shown in figure 6.7.2.1. The frequency range is 0 Hz to 100 Hz, with a resolution of
0,25 Hz. The dashed line indicates a unit attenuation factor accross the spectrum, i.e. the
attenuation that would be achieved in the absence of an isolation system. The RMS
attenuation for the disturbance feedforward controller, for a frequency bandwidth of 0 Hz to
100 Hz, is 0,44 (-7,06 dB).
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The experimentally determined attenuation factor of the feedback controller, for a zero
disturbance feedforward gain, output feedback gain of 0,76 and output integral feedback gain
of -87,5 is shown in figure 6.7.2.2. The RMS attenuation factor for the feedback controller is

0,7 (-3,1 dB).
The experimentally determined attenuation factor of the feedforward plus feedback controller,
for feedforward and feedback gains of 0,76 and an output integral feedback gain of -87,5 is

shown in figure 6.7.2.3. The RMS attenuation factor for the disturbance feedforward plus
feedback controller is 0,32 (-9,75 dB).

The test results for the three configurations are summarized in table 6.7.2.1.
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Figure 6.7.2.1: Attenuation factor spectrum for disturbance feedforward controller
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Table 6.7.2.1: Summary of controller test results

Configuration: Feedforward | Feedback Feedforward plus feedback
RMS attenuation 0,44 0,70 0,32

Attenuation in dB -7,06 dB -3,1 dB -9,75 dB

Isolation 0,56 0,3 0,68

Target isolation 0,85 0,85 0,85

% of target achieved 66% 35% 80%

dB attenuation at 24 Hz -3.41 -0,75 -4,73

dB attenuation at 48,5 Hz 3,38 -7,47 -2,58

dB attenuation at 72,5 Hz -1,11 4,11 -6,82

dB attenuation at 96,75 Hz * | -10,08 -3,55 -11,66

* Dominant disturbance frequency

A comparison between modelled and experimental transmissibilities of the three controller
configurations, at the frequencies where the disturbance peaks (24 Hz, 48,5 Hz, 72,5 Hz and
96,75 Hz) is given in table 6.7.2.2. The tranmissibilities compare favourably at 72,5 Hz for
the feedback controller and at 24 Hz for the feedforward plus feedback controller. At the
dominant disturbance frequency, i.e. 96,75 Hz, the difference varies from 13,7 % for the
feedback controller, to 28,7% for the feedforward controller. The difference is large at
48,5 Hz for all the controllers, and at 72 Hz for the feedforward and feedforward-plus-
feedback controllers. Measured and modelled overall attenuations differ by 13,6% for the
feedforward controller, -11,4% for the feedback controller and -3,12% for the feedforward
plus feedback controller.

Table 6.7.2.2: Comparison between measured and modelled TR’s at disturbance peaks

Frequency 24 48,5 72,5 96,75# Overall

(Hz): (RMS)

Feedfoward Measured (dB): -341 3,38 -1,11 -10,08 0,44
Modelled (dB): -2,06 -3,29 -4,53 -7,89 0,5
*Difference (%): 16,8 -53,6 -32,5 28,7 13,6

Feedback Measured (dB): -0,75 747 4,11 -3,55 0,7
Modelled (dB): -1,76  -3,31 -4,19 -4,83 0,62
*Difference (%): -10,99 61,44 -0,92 -13,7 -11,4

Feedforward Measured (dB): -4,73  -2,58 -6,82 -11,66 0,32

plus feedback Modelled (dB): -5,13  -10,06 -12,65 -13,62 0,31
*Difference (%): -4,5 -57,73  -48,89  -20,2 -3,12

* Relative to measured transmissibility # Dominant disturbance frequency

Experimental and modelled transmissibilities over the entire disturbance band, for the three
controller configurations, are compared in figures 6.7.2.4 to 6.7.2.6. The circles and crosses
respectively indicate the measured and modelled transmissibilities at the frequencies where the
disturbance peaks. Modelled and measured transmissibilities differ considerably between
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peaks, which can be attributed to low signal-to-noise ratios (the disturbance is approximately
two orders of magnitude lower between the peaks than at the peaks — see figure 6.6.1.3).

MODELLED vs EXPERIMENTAL TR’s: FEEDFORWARD
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Figure 6.7.2.5: Modelled and measured TR’s: Feedback
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Figure 6.7.2.6: Modelled and measured TR’s: Feedforward plus feedback

6.7.3 Discussion of test results

A comparison of the attenuation factor graphs and table 6.7.2.1 show that the best attenuation
accross the frequency spectrum is achieved with the disturbance feedforward plus output
feedback controller. The RMS attenuation factor achieved with this controller is 80% of the
required RMS attenuation. The feedforward controller is ranked second, in terms of RMS
attenuation, while the feedback controller is ranked last.

All three controllers display weak performance at 48,5 Hz, which is close to the frequency of
the electricity supply network, i.e. 50 Hz. The feedback controller gives the best attenuation
at 48,5 Hz, while the feedforward controller amplifies the disturbance. The disturbance
feedforward plus output feedback controller attenuates at this frequency, but amplifies slightly
in the vicinity of 50 Hz.

A logical choice of the best controller, in terms of overall performance, is the disturbance
feedforward plus output feedback controller. Although it slightly amplifies the disturbance at
48,5 Hz, its performance across the rest of the frequency band is acceptable. Furthermore, it
is doubtful if the problem at 48,5 Hz will ever be experienced on a vehicle, where the
frequency of the power supply varies with engine speed.
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Possible reasons for the differences between modelled and experimental results are as follows:
Firstly, controller design was based on measured open-loop transfer functions, obtained using
a white-noise drive signal, LP-filtered at 130 Hz (see section 4.4.5). This signal did not
correspond with the closed-loop drive signal. Secondly, due to the LP filter, open-loop drive
signal magnitude above 130 Hz decreased with frequency, resulting in a noisy signal and
possibly an inaccurate transfer function magnitude at the dominant plant natural frequency, i.e.
301 Hz. Thirdly, the differences at 47,5 Hz are attributed to (unsuppressed) noise caused by
the electricity supply network. Lastly, while feedforward and feedback gains of unity could be
achieved during the modelling stage (see section 6.4.4), this was not possible during
experimental testing, possibly due to plant nonlinearities.

To summarize, a stable, linear disturbance feedforward plus output feedback controller was
tested, which gave an RMS attenuaton of 80% of the target attenuation, in a frequency band
of 0 Hz to 100 Hz.

6.8 Summary of chapter 6

The design, implementation and experimental evaluation of a controller for the LOS
stabilization system were described in this chapter. A background on various basic controller
types was given, followed by a more detailed description of disturbance attenuation methods.

The design of a suitable controller was described in detail. General requirements of controllers
were discussed, followed by a specification of the controller performance. The requirements
and specification were used to select a suitable controller, i.e. a linear disturbance feedforward
plus output feedback regulator, with output integral feedback.

A linear quadratic optimal regulator was subsequently designed. Robustness of the regulator
was improved by increasing the lowest natural frequency and damping factors of the
attenuation factor zeroes. A suboptimal controller was thus obtained. An optimal state
regulator was designed next. The regulator was coupled to the plant and controller. The
disturbance-to-control and output-to-control TF’s were determined. Zero elements in the
observer gain matrix were replaced by nonzero elements. The resulting suboptimal observer
was coupled to the plant and suboptimal controller. The integral feedback gain was
determined with the aid of simulations of the closed-loop system behaviour. The integrator
gain which produced the minimum attenuation factor, was thereby obtained. The disturbance
to control and output to control TF’s were converted to digital filter form. An “equivalent”
digital filter was designed to replace the output feedback integrator.

The control apparatus and test procedure were described. Three configurations of the
controller were tested, i.e. disturbance feedforward, output feedback, and disturbance
feedforward plus output feedback. The test results were processed and presented. It was
found that the disturbance feedforward plus output feedback controller gave the best overall
performance in terms of RMS attenuation over the frequency band of 0 Hz to 100 Hz. The
controller achieved an RMS attenuation of -9,75 dB in this frequency band. A weak point of
the controller is the fact that it does not perform well in the vicinity of 50 Hz, which may be
attributed to the electricity supply.
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Chapter 7
Summary, conclusions and recommendations

This study covered the line of sight stabilization of an optical instrument by means of gained
magnetostrictive actuators. The stabilization system was modelled, designed, manufactured
and tested. Modelled and experimental results were compared and inaccuracies of the model
were discussed and explained. The model was updated, using the experimental results. A
control system was modelled, designed, implemented and tested.

This chapter gives a summary of the work done, conclusions that can be drawn from the
results and contributions made by the study, problems encountered and recommendations for
future work in the field. The summary is given in section 7.1. Conclusions and contributions
are discussed in section 7.2, followed by the problems experienced, in section 7.3. Finally,
recommendations for future study are made in section 7.4.

7.1 Summary

Magnetostrictive active LOS stabilization of an optical instrument, excited by a known base
disturbance, was motivated in chapter 1. The differences between passive and active isolation
methods were discussed and the advantages of active isolation were given. Different actuation
methods, i.e. hydraulic, electrodynamic, piezoelectric and magnetostrictive actuation, were
compared. Magnetostrictive actuation was selected as the most appropriate isolation method
for this study. The cost advantage of magnetostrictive actuators over conventional
stabilization devices, e.g. gyroscopes, was pointed out. The limitation of magnetostrictive
active isolation, i.e. that a gain mechanism would be required to enhance actuator stroke
length, was mentioned. A literature survey of the theory and applications of magnetostriction,
and the “giant” magnetostrictive material Terfenol-D, was given.

An analytical model of the magnetostrictive active isolation system was derived in chapter 2.
Material characteristics, as obtained from the literature, were used for this purpose. The
model would firstly serve as a design aid, and secondly, as a theoretical basis to obtain an
accurate, updated model from experimentally determined transfer functions.

The nonlinear and linear magnetostrictive and magnetization characteristics of Terfenol-D
were discussed. Strain was modelled as a function of applied mechanical stress and magnetic
field strength. Special attention was paid to the two most important nonlinearities, i.c.
saturation and hysteresis. The nonlinearities were modelled as range-dependent linearities, in
order to facilitate system characterization.

A nonlinear state-space model of a magnetostrictive actuator was derived. The model
consisted of an SDOF (2" order) mechanical subsystem model, coupled to a 1% order
electrical coil model. The actuator model was subsequently linearized and coupled to an
MDOF structural model of the optical instrument and its support structure. For this purpose,
a number of system modelling techniques were evaluated, i.e. the Galerkin, Finite Element,
Finite Difference and Rayleigh-Ritz methods. The latter method was selected as the most
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suitable modelling technique. The system model was obtained in state-space and transfer
function forms. System natural frequencies, normal mode shapes, damping factors, frequency
bandwidth and modal forces were obtained from the model.

System design was described in chapter 3. The required system performance parameters, i.e.
actuator stroke length and force, system bandwidth and coil resistance to inductance ratio,
were calculated from the results obtained in chapter 2. Design concepts for the system
components were discussed and evaluated and the most suitable design concepts were
selected. An octagonal flexural gain mechanism was selected in favour of resonance spring,
hydraulic and elliptical structure mechanisms. Electrodynamic field biasing was considered to
be more suitable than permanent magnet biasing, while coil springs were selected in favour of
Belleville washers for rod prestressing. Actuator and system concepts were presented.

A detailed system design followed. The required rod lengths, rod diameters and gain factors
were calculated and practical design aspects were discussed. The gain mechanisms, field coils,
prestress springs and support structure were designed. Detailed drawings of the system
components and an assembly drawing of the system, were included. Static and dynamic
buckling of the rods, as well as eddy current losses, were checked. The manufacturing
procedure was described in short.

Experimental testing of the actuators and LOS stabilization system was dicsussed in chapter 4.
The objective of the tests was to obtain quasi-static and dynamic system characteristics. A
summary of the most important technical details of the test specimens, i.e. the two actuators
and system, was given. These details were required to develop a test procedure and to specify
the test equipment.

Two test setups were described, i.e. one for quasi-static characterization of the actuators, and
one for dynamic characterization of the system. The quasi-static tests served two purposes,
i.e. to ascertain that the actuator stroke lenghts would be sufficient to reject the disturbance,
and to determine the most suitable bias voltage for the dynamic tests. The quasi-static test
equipment was described in short. The tests were designed and executed and the results were
processed. An iterative procedure was followed to obtain the required rod prestress. Graphs
of deflection versus coil voltage were obtained for the two actuators. The most suitable bias
voltage was calculated.

Different types of dynamic test signals were evaluated and compared and the appropriate
signal type was selected. Two dynamic test setups, i.e. and “ideal” and an “available” setup
were presented. The latter was chosen by necessity. The tests were designed and executed
and the results were processed. The coil voltage to angular acceleration transfer function of
the system, for a frequency bandwidth of 0 Hz to 500 Hz, was obtained. It was shown that
the modelled results given in chapter 2, differed significantly form the experimentally
determined results. Possible reasons for the differences were given and updating of the model
was motivated.

Chapter 5 was devoted to updating the model. Identification theory was discussed in short
and the most suitable identification technique, i.e. linear, frequency domain identification, was
selected and described. An accurate nonparametric transfer function model was identified
from the experimentally determined results. The model was adequate for control purposes,
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but failed to provide insight into the system dynamic characteristics. To overcome this
limitation, a parametric model was derived.

Parametric modelling was facilitated by separating the electrical and mechanical subsystem
models. A 3™ order coil model was obtained in state-space and transfer function forms. A
mechanical subsystem model, consisting of two 2DOF actuator models, an MDOF model for
the optical instrument and support structure, and an SDOF model for the elastically mounted
base, was subsequently derived.

The 2DOF actuator models differed from the original SDOF models derived in chapter 2,
while the original MDOF model of the optical instrument, was retained. The actuator, base
and instrument models were coupled by means of the component mode synthesis method. The
mechanical subsystem model was subsequently written in state-space form and coupled to the
coil model. The updated system state-space model was converted to transfer function form.
The transfer function magnitude and phase spectra of this model compared favourably with the
experimentally determined spectra. System natural frequencies, normal mode shapes, damping
factors, frequency bandwidth, modal forces and open-loop transmissibility were obtained.

Chapter 6 described the analysis, modelling, simulation, design and experimental evaluation of
the control system. General control theory was given as a background. Various controller
types, i.e. feedforward, output and state feedback feedback controllers, linear and nonlinear
controllers, tracking controllers, regulators and optimal controllers, were discussed in short.

Principles of disturbance attenuation were discussed in more detail. The attenuation factor
was defined and the nature of the disturbance was discussed. Requirements for disturbance
and noise attenuation were given. An attenuation method for a known disturbance entering a
system at a given point, was described. A short summary of optimal control, in terms of H,
and H.. optimal criteria, was given. Other modern disturbance attenuation techniques, such as
preshaping of command inputs, attenuation of a continuous disturbance by means of digital
regulation, and “two-way” isolation, were discussed. Motion controllers, i.e. relative and
absolute motion controllers, were described in detail.

Control system design specifications were given, followed by a discussion of general control
system requirements, such as accuracy, stability, sensitivity, reaction speed, control effort,
robustness, observability and controllability. The specifications and general requirements were
used to select a suitable controller type. A linear, disturbance feedforward plus output
feedback controller, with output integral feedback, was selected. The control system design
procedure was described and a detailed exposition of the controller design was given. The
design of a suboptimal controller, coupled to a suboptimal observer, was described. The
controller and observer designs were derived from optimal controller and observer designs.
Controller characteristics were expressed in terms of state-space parameters, transfer
functions, and closed-loop poles and zeroes. In order to facilitate implementation of the
controller, the controller transfer functions were converted to digital filter form.

The test apparatus, test procedure and execution were described. Three controller
configurations, i.e. disturbance feedforward, output feedback and feedforward plus feedback
configurations, were tested. Test data was processed and the test results were presented and
discussed. The attenuation factor spectra were shown graphically and RMS attenuation
factors were given. It was shown that the linear disturbance feedforward plus output feedback
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controller, with output integral feedback, could achieve 80% of the target attenuation in a
disturbance band of 0 Hz to 100 Hz.

7.2  Contributions and conclusions

Firstly, it is possible to stabilize the line of sight of the given optical instrument, over a
disturbance frequency bandwidth of 0 to 100 Hz, using gained magnetostrictive actuators.
This result shows that magnetostrictive stabilization is a feasible alternative to the more
expensive gyroscopic systems normally used for LOS stabilization. Due to the relatively large
magnetostrictive strains of 1400 ue obtainable with Terfenol-D rods, a relatively small
displacement gain of 2,7 was sufficient to produce the required actuator stroke length of
75 ym. By comparison, piezoelectric materials, with maximum strains of 200 ue, would
require significantly larger gain factors. This, in turn, would result in excessive gain
mechanism stresses and an insufficient isolation frequency bandwidth.

Due to the low frequency response of the magnetostrictive LOS stabilization system (as low as
0 Hz), it is superior to electrodynamic systems for low frequency isolation. On the other side
of the frequency scale, the high frequency response of the magnetostrictive system (well in
excess of 100 Hz — see figure 5.6.7), makes it more suitable than hydraulic isolation for this
application. A practical consequence is that hydraulic pumps and valves are eliminated, with
an accompanying reduction in maintenance cost.

Secondly, an updated model, based on experimental system identification, must be employed.
Since the theoretical model is too inaccurate for controller design purposes (figure 4.5.4.3), it
should be combined with the updated model to compose an accurate plant system
representation for control design.

Model updating is facilitated by separately modelling the mechanical and electrical subsystems.
The mechanical subsystem model, consisting of simple linear lumped mass and stiffness
actuator models, coupled to the original distributed optical instrument model, can be obtained
using component mode synthesis (section 5.5). The system state-space and transfer function
model, which couples the updated mechanical subsystem model to the coil model (section
5.6), gives physically interpretable characteristics, i.e. normal mode shapes, natural
frequencies, damping factors and forces, coil DC resistance, voltage to current transfer
function and -3dB cutoff frequency. Compared with the experimentally-determined transfer
function, the updated model is sufficiently accurate for control design (figure 5.6.4).

Thirdly, reasonable attenuation can be achieved with a linear regulator, in spite of the highly
nonlinear saturation and hysteresis characteristics of Terfenol-D. The controller, which
consists of a suboptimal disturbance feedforward plus output feedback regulator, with output
integral feedback to improve robustness, can be designed using linear state control theory (see
section 6.4.4). The tedious work required to construct input-versus-state functions, to
linearize and stabilize nonlinear state feedback controllers, is thus eliminated, thereby
significantly simplifying controller design. In addition, the regulator employed in this study is
relatively easily implemented digitally and can be run on a commercial DSP, using standard
Simulink block diagram elements (figures 6.4.4.1 and 6.6.2.1).
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In the fourth place, it was experimentally shown (table 6.7.2.1) that the magnetostrictive
active LOS stabilization system developed in this study, achieves an attenuation of -9,75 dB,
i.e. 80% of the target isolation, in a frequency band of 0 Hz to 100 Hz. This is an indication of
the effectiveness of the system.

Lastly, a theoretical model, though inaccurate, can be derived from first principles, to serve as
an input to actuator design. The lumped mass and stiffness models of the actuators, coil
resistance and inductance equations derived in chapter 2, are a useful design aid. The model
makes it possible to calculate the required Terfenol-D rod length and diameter, displacement
gain factor, actuator stroke length, rod prestress, number of coil windings, coil resistance to
inductance ratio and system isolation frequency bandwidth.

As a final comment: The LOS stabilization system was specifically developed to isolate a
lightweight video camera with a mass of 1 kg and length of 250 mm, against a random base
disturbance with a frequency bandwidth of 0 to 100 Hz, encountered on a military tank. The
given disturbance spectrum (figure 1.1.3) is unique to tracked vehicles and will normally not
be encountered in other vehicle types.

Alternative applications of the LOS stabilization system are not the topic of discussion in this
thesis. However, extensions to the application are possible under certain circumstances,
provided the system bandwidth of 199 Hz and actuator stroke of 75 um are not exceeded.
Applications which may require alterations to the plant and controller, are as follows: An
increase in instrument length, for example, will necessitate actuators with longer stroke
lengths, since the angular displacement of the isolation system will decrease. If the disturbance
frequency spectrum deviates from that of the given disturbance, the controller may have to be
redesigned. A change in instrument mass will change the system natural frequencies and
isolation bandwidth, but small increases in mass will not decrease the bandwidth to below
100 Hz. Pole and zero shifts due to mass changes must necessarily be accounted for in the
control design.

7.3 Problems encountered

A number of problems were experienced in this study. In the first place, design of the gain
mechanisms proved problematic and a “worse-than-average” solution had to be accepted.
Secondly, the measured -3dB coil cutoff frequency was lower than the required frequency
(84 Hz versus 100 Hz). Lastly, an additional personal computer and signal processing board
had to be acquired to generate the base motion. These problems are discussed in more detail
below.

Design of octagonal gain mechanisms

The octagonal gain mechanisms used in the actuators, are supplied with notched flexures in
the corners, in order to allow translational deflection (see figure 3.4.1.5). Although the
flexures are sufficiently soft to allow translational deflection, they are too soft to prevent
rotational deflection. If the normal mode shapes of a single actuator, in the absence of the
optical instrument and other actuator, are analyzed, it is found that the first normal mode
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shape is an undesirable rocking mode. (The actuator normal mode shapes were not discussed
in this study). Rocking modes place the Terfenol-D rods under fluctuating bending moments,
which can cause breakages.

An alternative gain mechanism, with slotted flexures, instead of notched flexures, was
originally considered in this study. The mechanism prevents rocking motion and only allows
translational motion. A quarter model of the gain mechanism is shown in figure 7.3.1. The
forces and bending moment acting on the mechanism, are indicated.

Compression

Slot

A

Actuator output force Tension Flange thickness
Outside flange
Bending\> 5
moment
Inside flange
Force in rod pl

Figure 7.3.1: Quarter model of gain mechanism with slotted flexures

The bending moment causes a tensile force in the inside flange of the flexure and a
compressive force in the outside flange. During evaluation of the design concepts, a finite
element analysis revealed that the compressive force in the outside flange would exceed the
critical buckling force. An effort was made to increase the critical buckling force, by
increasing flange thickness and by decreasing flange length, while maintaining the required
bending stiffness. Unfortunately, the efforts were unsuccessful and the concept was shelved.

Coil design

One of the design objectives was to obtain a coil with a ~3dB cutoff frequency of more than
100 Hz, that could be matched to amplifiers with often-used input impedances of 4  or 8 Q
(see section 3.5.2). The design was based on magnetostrictive and magnetization
characteristics of Terfenol-D, as published in the literature. In order to allow a margin of error
in the design, the target cutoff frequency was set at 150 Hz, which exceeded the required
frequency by 50%.

Initially, a coil with an 8  impedance was selected in favour of a 4 Q coil, since this measure
would make it easier to obtain a sufficiently high cutoff frequency. The higher impedance
could be obtained in two ways, i.e. by means of a longer wire, or by means of a wire with a
smaller diameter. The longer wire was preferred, since the thinner wire would be too fragile.
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The resulting coil was however too heavy and didn’t produce the minimum required cutoff
frequency of 100 Hz. (The design of the 8 Q coil is not included in this study).

In order to obtain a lighter coil, with a relatively strong wire, and which could be matched to
the available amplifier, it was decided to design an entirely new coil with a 4 Q impedance, at
the cutoff frequency of 100 Hz. The lower impedance was achieved with a shorter and thinner
wire, resulting in a significantly smaller and lighter coil. The design of the coil was explained
in detail in section 3.5.2.

Experimental identification of the system revealed that the coil cutoff frequency was 84 Hz
(see section 5.4.2). This frequency differed from the design cutoff frequency of 150 Hz and
the minimum required cutoff frequency of 100 Hz. The differences were attributed to
differences between the modelled and true Terfenol-D characteristics. It was mentioned in
section 2.7.3 that especially hysteresis characteristics would be difficult to model. The initial
hysteresis model was derived from published quasi-static magnetostrictive and magnetization
characteristics (see section 2.3), while experimental characterization of the actuators and
optical instrument was done dynamically (see section 4.4).

However, although the coil —3dB bandwidth was lower than 100 Hz, the system —3dB
bandwidth was sufficient (see section 5.6). The low-pass filtering effect of the coil was to a
certain extent cancelled by the mechanical characteristics of the system, due to resonance at
frequencies above the disturbance band (see also figure 5.6.7).

Excitation of base motion

Excitation of the disturbance required an additional personal computer and signal processing
board (see section 6.6). A more convenient solution would be to generate the signal digitally,
€.g. on a computer with signal generation software and D/A converters (as in section 4.3.2),
record the signal with an analogue data recorder and save it on a magnetic tape. During
controller tests, the base could be excited by playing back the recorded signal through a power
amplifier, and by supplying it to the electrodynamic shaker. The suggested procedure is
schematically shown in figure 7.3.2.

The abovementioned setup would make it possible to repeat controller tests as many times as

required without the need of an additional computer or signal processing board.
Unfortunately, a data tape recorder was not available for this purpose.
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Figure 7.3.2: Suggested disturbance excitation procedure

7.4 Recommendations for future work

A number of recommendations can be made for future work in the field. Firstly, excitation of
the optical instrument with both actuators, instead of one, should be considered. This would
make it possible to obtain the required output angular acceleration, when exciting the system
with the full base angular acceleration.

Secondly, simultaneous translational and rotational isolation of the instrument would both
stabilize the line of sight, and isolate the instrument against vertical vibrations that could
damage the instrument. In the third place, optimization of the plant and controller during the
design phase would make it possible to obtain the optimal plant parameters, before
manufacture. Parameters which could be optimized, include, inter alia, plant mechanical and
electrical characteristics, sensor types and positions, control inputs and plant outputs.

In the fourth place, more powerful control methods, such as two-way isolation and nonlinear

control, could be implemented. A fifth recommendation is to apply permanent magnet biasing,
instead of electrodynamic baising. This measure would significantly reduce coil input power
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and would eliminate the need for additional biasing signals. A last recommendation is to do
away with the mechanical biasing springs altogether and to adjust prestress in the Terfenol-D
rods by means of the prestress bolts.
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