
AN INVESTIGATION INTO USING NEURAL

NETWORKS FOR STATISTICAL

CLASSIFICATION AND REGRESSION

by

EBEN UYS

23009595

Submitted in partial fulfillment of the requirements for the degree

MSc Mathematical Statistics

in the

Faculty of Natural & Agricultural Sciences

at the

University of Pretoria

PROMOTER: DR L. FLETCHER

March 2010

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Abstract

Neural networks are seldom used as a modelling tool by statisticians. This is often due

to the lack of knowledge in the field of neural networks as neural networks are frequently

perceived as mysterious methods that evolved from the field of computer science. In this

dissertation an attempt will be made to show that neural network methods are closely

related to statistical methods. In particular we will show how a backpropagation neural

network can be used for statistical applications like regression and classification which will

include the setting up a of neural network for different objectives and also using a neural

network for predictive inference. Through simulations we will show an efficient method

to fit a neural network in practical applications. A neural network will then be employed

in a practical application to illustrate how to use a neural network in a regression or

classification context. This application will also show the necessity of statistical knowledge

when using a neural network as a modelling tool.

I, Eben Uys declare that the dissertation, which I hereby submit for the degree Master

of Mathematical Statistics at the University of Pretoria, is my own work and has not

previously been submitted by me for a degree at this or any other tertiary institution.

SIGNATURE: DATE:

1

Contents

1 Introduction 7

2 Literature Review 10

2.1 Nonlinear regression . 10

2.1.1 Introduction . 10

2.1.2 Nonlinear regression models . 11

2.1.3 Nonlinear estimation techniques . 13

2.2 Nonparametric regression . 20

2.2.1 Projection pursuit regression . 24

2.3 Neural networks . 27

2.3.1 Introduction . 27

2

2.3.2 A concise history neural networks 28

2.3.3 Single layer neural networks . 29

2.3.4 Multilayer networks . 51

2.3.5 Learning in multilayer networks . 55

2.4 Neural networks as statistical modelling tools 75

2.4.1 Comparisons between neural networks and statistics 75

2.4.2 The regression problem . 77

2.4.3 Neural networks for classification 82

2.4.4 Generalising capability of neural networks 107

2.4.5 Conclusion . 114

3 Practical Application 117

3.1 Introduction . 117

3.2 Implementing neural networks . 118

3.2.1 Notation used . 118

3.2.2 Neural network for regression . 120

3

3.2.3 Neural network for classification . 123

3.2.4 Way forward . 126

3.3 Simulations . 127

3.3.1 Simulations illustrating the regression case 127

3.3.2 Simulations illustrating the classification case 135

3.4 Description of the problem . 146

3.4.1 The repeated sales model . 147

3.4.2 Comparable sales model . 152

3.4.3 Combining of predictions . 157

3.4.4 Rules For Determining The Choice Of The Final Prediction 161

3.4.5 Aim . 162

3.5 Description of the data . 165

3.6 Analysis . 170

3.6.1 Exploratory analysis . 170

3.6.2 Method followed for building the neural network model 181

4

3.6.3 Neural network for picking correct prediction 184

3.6.4 Neural network for combining predictions 187

3.7 Results . 188

3.7.1 Benchmark results . 190

3.7.2 Results and discussion for neural network used for picking best ob-

servation . 192

3.7.3 Results from neural network used for combining 194

3.8 Performance of fitted neural networks . 195

3.8.1 Post-hoc analysis . 195

3.9 Implementation . 209

3.10 Difficulties experienced . 218

3.11 Final remarks . 222

3.12 Future work . 224

4 Conclusion 227

A Appendix 239

5

A.1 Comparison of neural network literature terminology and statistical litera-

ture terminology . 239

A.2 Notation used to describe multilayer neural networks 241

A.3 R programs used for simulations . 244

A.3.1 R program to illustrate overfitting in regression case 244

A.4 SAS programs used for Lightstone application 286

A.5 Results from neural networks run on Lightstone application 317

6

Chapter 1

Introduction

When statisticians are presented with a modelling application they usually make use of

linear or nonlinear regression methods to approach the problem. Despite the claims being

made that neural networks have excellent prediction capabilities, neural networks are

very seldom used by statisticians as a modelling tool even if no interpretability of the

underlying process is necessary.

Neural networks is a method that was developed in the computer science field of machine

learning and although many exaggerated claims were made about neural networks’ abil-

ities, they can still be used as a predictive modelling tool with great success. As with

any modelling tool, there is a lot of preparation before one can build a model that is

effective. This preparation involves specifying the goal of the model, cleaning the data

and determining relevant variables to go into the model among other things. The time

spent on this preparation phase is often directly related to the performance of the model.

The problem is often that many of the techniques and methods that are used in the

preparation phase are of a statistical nature and computer scientists which are the most

7

active users of neural networks, often lack this statistical knowledge and therefore end up

with poor neural network models. On the other end, statisticians often have no knowledge

of neural networks and therefore cannot use any of the techniques with great success. This

lack of knowledge in neural networks is usually attributed to neural network literature

being difficult to understand for people with a statistical background and usually very

little theoretical foundation for the neural network methods is given.

In this dissertation an attempt is made to explain neural networks in terms and notation

that are familiar to persons with a statistical background. We will draw the analogy

between a neural network and a statistical regression model. We will start with statistical

methods of nonlinear regression and nonparametric regression and then explain how neural

networks also fit into this framework of a regression model. We will also show how neural

networks can be used for statistical classification and regression applications.

The layout of this dissertation is as follows: In chapter 2 a literature review will be con-

ducted. This literature review will start with an introduction to nonlinear regression and

nonlinear optimisation methods in section 2.1 and then also an introduction to nonpara-

metric regression in section 2.2. This will give the necessary background that is necessary

to fully understand how a neural network fits into a regression context and also how neu-

ral networks are fitted. In section 2.3 we will have a look at how neural networks evolved

from the simple single layer networks to the more complex multilayer neural networks.

This will give the reader an idea of exactly what a neural network is. In section 2.4 we

will link neural networks with statistical methods of regression and classification and show

how these methods are related. In this section we will also show how a neural network

can be used for statistical applications with special reference to issues such as overfitting

and generalisation.

In chapter 3 we will use a neural network for a business problem. This problem is not a

8

typical statistical application and therefore we will need to discuss the problem extensively

before attempting to apply a neural network. In section 3.2 we will discuss the different

neural networks that will be used for regression and classification in more detail. In section

3.3 we will show through simulations how a neural network can be used for regression and

classification. In section 3.4 we will discuss the business problem for which the neural

network is to be used in more detail. The analysis and results for the neural networks

applied to this problem is presented in sections 3.6 and 3.7. We will end this chapter with

some of the difficulties experienced with this neural network, future research ideas and

some final remarks in sections 3.10, 3.12 and 3.11 respectively.

It should also be mentioned that the amount of literature available which approaches

neural network from a statistical point of view is rather limited. The pioneering book

of Christopher Bishop by the name of Neural Networks for Pattern Recognition (Bishop,

1995) is by far the best for explaining neural networks from a statistical perspective.

Therefore we will use this book intensively in this dissertation and many references will

be made to this book.

9

Chapter 2

Literature Review

2.1 Nonlinear regression

2.1.1 Introduction

This section gives a brief overview of nonlinear regression and also some of the estimation

techniques used to fit nonlinear models by least squares. This is deemed necessary as

neural networks can be seen as a complex nonlinear regression. When a nonlinear model

is fitted and the objective is to minimise the sum of squares, it causes the normal equations

to be nonlinear, resulting in equations which cannot be expressed in an explicit form as

in the case of the linear model. This causes a problem since the parameters in the model

cannot be estimated in a simple way and the sum of squares function is then usually

directly minimised by a numerical optimisation algorithm involving complicated iterative

calculations (Draper and Smith, 1998).

10

An in-depth discussion about the statistical properties of least squares estimators will not

be conducted here as this is not the main focus of this dissertation but there is a vast

amount of literature available for the interested reader, e.g. Gallant (1975b); Jennrich

(1969); Malinvaud (1966, 1970).

2.1.2 Nonlinear regression models

A linear regression model fitted to data usually has the form:

Y = β0 + β1Z1 + β2Z2 + · · ·+ βpZp where p is the number of predictors

=
p∑
i=0

βiZi with Z0 = 1

where the Zi can represent any functions of the predictor variables X1, X2, . . . , Xp (Draper

and Smith, 1998). This means that the term linear models can accommodate most of the

situations that arise in applications (Gallant, 1975a). From this definition of the linear

model we see that a linear model has two meanings: The term linear model implies that

there is a straight line relationship between a predictor and a response variable but it also

means that the parameters that have to be estimated in the model, occurs linearly in the

equation.

A nonlinear function is one which is nonlinear in the parameters for example:

y = α + βx

This equation is nonlinear in the parameter β and cannot be made linear by a transfor-

mation. These types of functions usually arise in instances where the nature of a specific

scientific discipline specifies the form of the equation that the data ought to follow (Gal-

11

lant, 1987). This implies that the mathematical form of the relationship between the

response variable and explanatory variables is known and the aim of nonlinear regression

is to estimate the unknown parameters in the model (Seber and Wild, 1989). The re-

sponse function which arises from the solution of a differential equation is one example of

a nonlinear regression function (Gallant, 1975a). Another example of a nonlinear model is

responses which are periodic in time, with an unknown period, like the following equation:

y = θ1 + θ2 cos(θ4t) + θ3 sin(θ5t)

It can be seen that the parameters θi that need to be estimated in this model occur

nonlinearly in the equation and that the equation cannot be linearised in any way by

transforming one of the predictor variables.

The most common criterion to fit the parameters in a regression model, whether linear

or nonlinear, is to fit the parameters by minimising the sum of squares for error. Other

criteria can also be used, but it is known that the least squares estimators exhibit prefer-

able properties when certain conditions are met (Ratkowsky, 1983, p.2). In the case

of least squares estimates from linear models, if the errors are independent, identically

distributed normal random variables with mean zero and variance σ2, the least square

estimates are also the maximum likelihood estimates of the parameters. In addition to

this, the least square estimates are unbiased and have minimum variance, indicating that

when these assumptions are satisfied, least squares estimators provide the best estimates

of the unknown parameters (Ratkowsky, 1983, p.3). This is not the case in a nonlinear

regression model where the least squares estimators of the parameters of the nonlinear

regression model exhibit these properties only asymptotically while in finite samples the

least squares estimators have unknown properties (Ratkowsky, 1983, p.6). This topic will

not be pursued any further here, but more information can be found in Ratkowsky (1983,

ch.3–6). A good reference for ways to assess the nonlinearity in a regression equation can

be found in Ratkowsky (1983, ch.2)

12

Assume that we have a model which is nonlinear in the parameters β:

y = f(x,β) + ε (2.1)

When using least squares to estimate the parameters β, the objective is to estimate β̂

such that

min SSE(β̂) =
n∑
i=1

(y − f(x, β̂))2 (2.2)

where n is the number of observations,

β̂ =
(
β̂0, . . . , β̂p

)′
and p is the number of predictor variables.

When the regression function is nonlinear, the minimisation of the sum of squares for

error is not as simple as in the linear regression case, simply because one cannot find

explicit expressions for the parameter estimates in closed form. This means that in order

to estimate β by least squares, one has to use an iterative procedure (Ratkowsky, 1983,

p.5). In linear regression, the curve defined by SSE has only one global minimum point,

where for nonlinear regression, the surface generally has a number of local minimum points

in addition to a global minimum, which may or may not be unique.

2.1.3 Nonlinear estimation techniques

The aim of this section is to give an introduction to those iterative estimation techniques

that are most commonly used in nonlinear regression. Instead of providing an in-depth

discussion of all these techniques, I will focus on one technique, namely gradient descent,

as this method forms the basis for the delta method, which is the most popular method for

estimating the weights in a multilayer perceptron neural network. The Newton-Raphson

13

algorithm will also be discussed as this is a very popular method in estimation of nonlinear

regression and many of the other methods follow very similar approaches, meaning that

this method serves as an introduction to the other methods.

From (2.2) we see that the objective is to minimise the SSE(β) where f(x,β) is a function

which is nonlinear in the unknown parameters β. The iterative methods used to minimise

the SSE(β) all proceed by assuming initial values for the unknown parameters and then

iteratively updating the parameters until the parameters converge to a minimum of the

objective function, provided that a minimum in the vicinity of the initial values exists

(Kennedy and Gentle, 1980, p.426). In the case of nonlinear regression, the objective

function is SSE(β), which may have many local minima and also a possible unique

global minimum. There is no guarantee that the procedure chosen will always converge

to a global minimum and it may well converge to a local minimum. One has to choose a

reliable method that we can expect to converge to a local minimum based on an initial

guess about a value of β which minimises SSE (Kennedy and Gentle, 1980, p.426).

There is no best method in this case as every method has its advantages and constraints.

Deciding on which method to use is a function of the characteristics of the problem at

hand.

Some of the most well known techniques for estimating the unknown parameters in non-

linear least squares are gradient descent (steepest descent), conjugate gradient descent,

Gauss-Newton, modified Gauss-Newton, Levenberg-Marquatt and Newton-Raphson. The

focus here will be on gradient descent as this is typically the same as the delta rule in back

propagation neural networks which will be discussed in section 2.3.4. This will provide a

good basis for when we investigate the delta rule later and this method also gives a good

introduction to numerical optimisation algorithms since it is easy to understand. Com-

prehensive information on the other methods can be obtained in Thisted (1988, ch.4),

Seber and Wild (1989, ch.14), Kennedy and Gentle (1980, ch.10).

14

Gradient method

The basic idea of gradient descent, also known as steepest descent, is to start at an initial

value of the parameter β, denoted by β(0), and then update β each iteration by:

β(t+1) = β(t) + γd

where γ is the step size and d is the direction of steepest descent evaluated at the current

point β(t). It can be shown that the direction of greatest increase in the objective function

at a point, say β(t), is equal to the gradient of the objective function in β(t) (Fleming,

1965, p.61). This implies that the direction of greatest decrease in the objective function

is equal to the negative gradient evaluated at that point.

In a nonlinear regression context, the objective function to minimise is SSE(β). The

gradient descent method for nonlinear regression is:

β(t+1) = β(t) − γ 5 SSE(β(t))

where 5SSE(β(t)) =
∂SSE(β)

∂β

∣∣∣
β=β(t)

Gradient descent for nonlinear regression is based on the observation that if a real-valued

function SSE(β) is defined and differentiable in a neighborhood of a point β, then the

SSE will decrease fastest if one goes from β in the direction of the negative gradient,

SSE(β(t)) ≥ SSE(β(t+1)),for γ > 0, γ a small enough number. This implies that we

should proceed in the direction −5 SSE(β). With this in mind one starts at an initial

value SSE(β(0)), and then follows the path of steepest descent until a minimum is reached.

15

We are expecting that

SSE(β(0)) ≥ SSE(β(1)) ≥ SSE(β(2)) ≥ . . .

will continue to converge to a desired local minimum. The value of the step size γ is

allowed to change at every iteration. Several methods are available to adjust γ at each

step. Line search is a method which aims to choose the optimum value for γ (Seber and

Wild, 1989, p.597). Another popular approach is to choose γ to be a decreasing value at

each iteration e.g. halving it at each iteration. Using one of these methods to determine

the value for the step size usually ensures better convergence of the algorithm. Note that

the (negative) gradient at a point is orthogonal to the contour line going through that

point as this direction will give the fastest decrease in SSE(β).

Newton-Raphson method

One of the most popular methods for optimisation in nonlinear least squares is the

Newton-Raphson method. This method is known as a second derivative method because

the second derivatives of the objective function to be minimised are also computed.

A quick overview of the method follows: Suppose we want to find the p estimated values

of β, say β̂, that minimises the objective function

SSE(β) =
n∑
i=1

(y − f(x,β))2

for the n observations.

Let

q =
∂SSE(β)

∂β
=

(
∂SSE(β)

∂β0

,
∂SSE(β)

∂β1

, · · · ,
∂SSE(β)

∂βp

)

16

where p is the number of predictor variables.

Let H denote the matrix having entries

hij =
∂2SSE(β)

∂βi∂βj

Let q(t) and H(t) be those values evaluated at β(t). For the Newton-Raphson algorithm, a

Taylor series expansion of the second order is used to approximate SSE(β) in the vicinity

of β(0) at the tth iteration of the process.

Let Q(t)(β) be the Taylor series expansion of SSE(β) up to the second order at the point

β(t). Hence

Q(t)(β) = SSE(β(t)) + q(t)(β − β(t)) +
1

2
(β − β(t))H(t)(β − β(t))

To optimise, which in this case will mean to minimise, the value of Q(t)(β) at β(t), we

differentiate Q(t)(β) w.r.t. β, set the derivative equal to zero and then solve for β. The

value of β that is thus obtained becomes the next iterative value of β, i.e. β(t+1).

A single update of the Newton-Raphson algorithm is then:

β(t+1) = β(t) −
(
H(t)

)−1

q(t)

Other methods

Even though gradient descent is one of the oldest methods of determining a minimum of

a function, it is not used that often anymore as it is notoriously slow to converge. This

is especially true when the shape of the objective function resembles long flat valleys,

17

as this causes gradient descent to have a zigzag trajectory (also called hemstitching) to

the bottom of the valley (the minimum of the function). This causes the algorithm to

take lots of short steps until it eventually reaches the minimum of the objective function.

Conjugate gradient descent is a method that was developed to rectify this by ensuring

that there is only one step taken in each search direction in a scaled space. This improves

the performance of the algorithm and a minimum of the function is reached in fewer steps.

Detailed information on how this algorithm works can be found in Shewchuk (1994).

Because the Newton-Raphson method uses second derivative information in calculating

each iteration, more computational power and memory is necessary to calculate each

iteration than steepest descent. This method normally displays a quadratic convergence

rate near a minimum (Kennedy and Gentle, 1980, p.442). One problem with Newton-

Raphson is that the Hessian (second-derivative) matrix may not be positive definite at

each iteration. A slight modification to the Newton-Raphson was proposed by Levenberg

and Marquardt independently in which a ridge modification is made to the Hessian matrix

to ensure that it is positive definite (Levenberg, 1944; Marquardt, 1963) . This leads to

the Levenberg-Marquardt algorithm, which is one of the most widely used methods of

estimating the parameters in a nonlinear regression. The Hessian matrix may also be

difficult to obtain at each iteration or it may become ill-conditioned, causing problems

with the estimation of the inverse. With quasi-Newton methods, the Hessian matrix is

approximated at each iteration. Some of the methods used to estimate the derivatives are

the secant method and also the finite differences method. For more information on these

methods consult Seber and Wild (1989, pp.605–612).

Gauss-Newton is another popular method used in nonlinear regression. The basic outline

of this method is that, instead of approximating the objective function, viz.

SSE(β) =
n∑
i=1

(y − f(x,β))2

18

by a second order Taylor polynomial like in the Newton-Raphson, Gauss-Newton approx-

imates the nonlinear regression function f(x,β) itself, by a first order Taylor polynomial.

The SSE(β) is minimised similarly to the linear model case. Modifications to this method

was proposed by Hartley (1961).

19

2.2 Nonparametric regression

In traditional nonlinear and linear regression the objective is to fit a model of the form

yi = f(β, xi) + εi

where yi is the value of the i-th dependent variable, with corresponding predictors vari-

ables x′i = (xi1, . . . , xip) and β is the parameters of the model to be estimated. The errors

are assumed to be independently and normally distributed with constant variance. In

linear regression the model is linear in the parameters and in nonlinear regression the

parameters enter the model nonlinearly. The function f(·), which specifies the form of

the relationship between the dependent variable and the predictors, is known in advance

in a well defined analytical form and this reduces the regression problem to estimating

the parameters of the model fitted. This can mean that tradition linear and nonlinear

regression is very restricted, especially when the functional form between the predictors

and the response is very erratic.

A nonparametric regression model removes this limitation by not restricting the functional

form between the response and predictor variables. A nonparametric regression model is

defined as:

yi = f(xi) + εi

= f(xi1, . . . , xip) + εi

where it is assumed that f(·) is any continuous, smooth function. The errors are also

assumed to be independently distributed with a zero mean and constant variance.

The objective of nonparametric regression is to estimate the regression function f(·) di-

rectly rather than estimating the parameters in the model (Fox, 2002). For some non-

20

parametric models, the parameters obtained are not unique. This is often one of the

major disadvantages of nonparametric models in that the parameters in a nonparametric

regression model cannot be easily interpreted like in a linear regression model. This typ-

ically limits the use of nonparametric models in cases where interpretation of the model

is important.

The function f(·) in the nonparametric regression model can be fitted using least squares

and the regression function is usually estimated using smoothers or splines. Smoothers

are used as an estimator of the conditional expectation

f(x) ≈ E(y|x)

Smoothing methods in nonparametric regression are used to obtain pointwise estimates

of the regression function. The way in which this is most often done is by using a local

regression approach in which a point estimate of the regression function is obtained at say

x0, by carrying out a weighted least squares regression. This local regression is usually

in the form of a linear or polynomial regression. In this weighted least squares regression

the points are weighted by their distance from the focal point x0 in the sense that points

further away from x0 carry less weight (possibly a weight of 0) than the points closer

to x0. This technique of obtaining a point estimate of the regression function are then

repeated at several different points along the range of the inputs. Each of the estimated

values are then connected to obtain a nonparametric regression curve.

The weighting of the points around x0 is most often done by using a kernel function.

This kernel function is a symmetric function around zero. The kernel function awards

the largest weight to the point at x0 (or close to X0), and then the weight decreases

symmetrically on each side to 0. The choice of kernel function does not influence the fit

of the regression curve significantly (DiNardo and Tobias, 2001). Each kernel function

21

has a bandwidth parameter, which can be fixed or variable. This bandwidth parameter

influences the size of the neighborhood around the point x0. A larger value for the

bandwidth parameter causes more observations to be weighted in the local regression and

hence gives the regression model a more global fit. On the other hand, a small value for

the bandwidth parameter, causes a more local fit around the point x0. A fixed value for

the bandwidth means that the size of the neighborhood around the focal point x0 stays

constant. A generalisation of this is a variable bandwidth parameter, where an equal

amount of observations is included in the local regression around x0. The reason that this

is called a variable bandwidth, is that the size of the neighborhood will be small when

there is many observations close to x0, and this neighborhood size will become bigger as

there are fewer observations around x0.

There is a trade-off between choosing too large a value for the bandwidth parameter and

choosing the bandwidth parameter too small. A large value of the bandwidth parameter

causes the fit to be oversmoothed and introduces bias in the regression estimates, while

choosing a too small value for the bandwidth parameter, causes the regression curve to be

very bumpy and increases the variance of the estimate. This is referred to as the model

is being overfitted. The interested reader can find more information on kernel regression

in Bowman and Azzalini (1997); Fox (2000); Hastie et al. (2001) and Ildiko (1995).

The other popular method of nonparametric regression involves approximating the re-

gression function by using regression splines. The basic idea of regression splines is to

find a function, denoted by f̂(x), with continuous first and second order derivatives, that

will minimise the following criterion:

SS∗(h) =
n∑
i=1

(yi − f(xi))
2 + h

xmax∫
xmin

(f ′′(x))
2

(2.3)

22

This criterion is called the penalised sum of squares. The penalised sum of squares is a

function of h, where h is a smoothing constant similar to the bandwidth parameter which

was discussed earlier (Fox, 2000, p.67).

The first term in the penalised sum of squares is the usual residual sum of squares while

the second term that is added to this criterion is called the roughness penalty. This

roughness penalty ensures that the regression curve that is fitted to the data, does not

just interpolate the data, since if the data is interpolated, the normal residual sum of

squares, would be equal to 0, but the regression function will generalise very poorly to

unseen data. The penalised sum of squares function tries to avoid this overfitting of the

regression function, by penalising the function, if the roughness penalty becomes large.

This roughness penalty will become large when the second derivative, over the range of

the x’s, becomes large. The second derivative gives an indication of the curvature of the

function at a selected point, meaning that if the roughness penalty is large, the regression

function that was fitted varies rapidly over small regions of the input space. This tends

to cause the regression function to fit the training data exactly instead of the underlying

distribution in the data.

It can be shown that a natural cubic spline will minimize the penalised sum of squares

criterion in (2.3) (Green and Silverman, 1994). The roughness penalty that was added

to the penalised sum of squares in (2.3) can take on many different forms and can force

the regression function to have a special structure. This forms the basis for generalised

additive models of which projection pursuit regression is an example (Hastie et al., 2001,

p.34). Projection pursuit regression is of special interest in this dissertation as this is

closely related to a multilayer perceptron and will be discussed in the next section.

The above types of nonparametric regression methods are also called penalty methods

or regularisation methods. These methods generally restrict the regression coefficients to

23

avoid overfitting of the regression function to the data. Another method of regularisation

will be discussed when fitting a neural network in section 2.3.5. More information on

using regression splines can be found in Hastie et al. (2001); Eubank (1988) and Frank

(1995).

2.2.1 Projection pursuit regression

Projection pursuit regression is very closely related to neural networks in the sense that it

models the response variable as a sum of functions of linear combinations of the predictor

variables (Friedman and Stuetzle, 1981). We will see in section 2.3.4 that projection

pursuit regression is closely related to a neural network with one hidden layer where

the activation functions in the neural network are any arbitrary smooth functions. The

situations in which projection pursuit regression is useful is when:

• The number of independent variables is fairly large.

• Many of the independent variables are relevant.

• Most of the predictive information lies in a low-dimensional subspace.

This is also the situation in which it is most appropriate to use a feedforward neural

network. One difference between the projection pursuit regression model and feedforward

neural networks is the way in which the projection pursuit regression model and its pa-

rameters are estimated. The parameters in a neural network are estimated simultaneously

while the parameters in the projection pursuit regression model are estimated cyclically

in groups. Projection pursuit regression will not be treated indepth in this dissertation

but only an overview will be given. The interested reader can consult Bishop (1995,

24

pp.135-137), Thisted (1988, pp.232-234) , Hastie et al. (2001, pp.347–350) and Friedman

and Stuetzle (1981).

Suppose we have p predictor variables, X1, . . . , Xp, which can be combined in a vectorX =

(X1, . . . , Xp)
′, and a response variable denoted by Y , the projection pursuit regression

model is:

Y =
∑M

m=1 gm(w′mX)

where wm, m = 1, . . . ,M are unit p-vectors of unknown parameters. Since wm are unit

vectors, it follows thatw′mX is the projection ofX onto the vectorwm. These projections

are then transformed by nonlinear functions, gm, called activation functions. The output

Y is formed by taking the sum of these M activation functions. M is the number of

functions which is deemed necessary to approximate the regression surface closely. In

practice, this value M also needs to be estimated from the data (Thisted, 1988, p.232).

To simplify the explanation of how projection pursuit regression work, we will assume

that the value of M is known and fixed.

The functions gm are not known beforehand and these need to be estimated together with

the unknown vectors of parameters wm, m = 1, . . . ,M in an iterative way. The measure

for how well the projection pursuit regression model fits is usually the sum of squares for

error. When the objective is to minimise the sum of squares for error, the iterative estima-

tion method proceeds as follows: The activation functions are estimated by starting with

initial estimates for wm, m = 1, . . . ,M . This is a one-dimensional curve fitting problem

and the functions are usually estimated using smoothing methods like local regression or

smoothing splines (Hastie et al., 2001). These estimated functions are then used in the

next step where wm, m = 1, . . . ,M are estimated using nonlinear estimation techniques.

This process is then repeated, iterating cyclically between estimating the activation func-

tions and the unknown parameters, until the model fits well. This implies that the process

will be stopped when the value obtained for the error function is sufficiently small.

25

An alternative form of the projection pursuit regression model is presented by Bishop

(1995, p.136) The model is:

y =
∑M

m=1 bmgm(w′mx+ wm0) + b0

where bm, m = 1, . . . ,M are unknown parameters and b0 and wj0 are constant terms.

Using this model emphasizes that constant terms, called biases in the neural network

literature, can also be included in the model. Bishop (1995, p.136) states that projec-

tion pursuit regression can be seen as a generalisation of a multilayer feedforward neural

network, in the sense that the activation functions in the projection pursuit regression

model are more flexible. This is because the activation functions are estimated in a

nonparametric way in the projection pursuit regression model. A more comprehensive

comparison between the multilayer perceptron and projection pursuit regression can be

found in Hwang et al. (1994).

26

2.3 Neural networks

2.3.1 Introduction

Artificial neural networks come from the objective to develop mathematical algorithms

that emulate the human brain. These mathematical algorithms are computational mod-

elling tools that can be used to solve a wide array of complex real-world problems. In

this chapter, an introduction to neural networks will be given. In section 2.4, it will be

shown that neural networks can be expressed i.t.o. a generalisation of statistical models.

Since most of the research and development of artificial neural networks come from the

Engineering and Computer Science field, a special emphasis will be made to make this

understandable to persons coming from a statistical background as most of the notation

and terminology for neural networks differ from standard statistical terminology. In the

appendix a table is given in which the terminology of neural networks is related to those

in the statistical literature.

A neural network is characterised by the following features (Fletcher, 2002):

• The way in which the neurons are connected (architecture).

• The technique which is used to estimate the weights in the network (training

method).

• The activation functions.

In this section and in the next section we will discuss different neural networks, starting

from a simple feedforward single layer network, to the most popular multilayer network

27

called the backpropagation network. Different network architectures, estimation methods

and activation functions will be introduced later on.

2.3.2 A concise history neural networks

The aim of this section is not to give a full list of the historical development of neural

networks but rather point out the most significant contributions to the field. The earliest

work done on artificial neural networks can be traced back to the work of McCulloch and

Pitts (1943), who introduced simplified neurons. These simplified neurons was a very

simplified representation of a biological neuron which could perform computational tasks.

This is generally seen as the first work in artificial neural networks and this caused a spark

of interest in this field.

The first learning rule for artificial neural networks was created by Donald Hebb (Hebb,

1949). The learning rule can be seen as a way of estimating the weights in a neural

network. Researchers like Rosenblatt and Widrow and Hoff started to do serious research

in the field of neural networks in the 1950s. Frank Rosenblatt introduced and developed

a class of artificial neural networks called perceptrons (Rosenblatt, 1958, 1962), which

will be discussed in section 2.3.3. Bernard Widrow and Marcian Hoff (Widrow and Hoff,

1960) developed a powerful learning rule for single layer neural networks in the early

1960s. This rule is known as the Widrow-Hoff learning rule, least mean squares or delta

rule. This learning rule which was used for single-layer networks is the foundation on

which the backpropagation rule for multilayer networks is built (Fausett, 1994, p.23). The

ADALINE (ADAptive LInear NEuron or ADAptive LINEear system) was also developed

by Widrow and his students. The ADALINE is not a network but rather a single neuron,

which, when presented with a pattern of inputs, will produce a single output based on

those inputs. This concept is described more in section 2.3.3. In 1969 Minsky and Papert

28

published their book Perceptrons in which they exposed the limitations of these perceptron

models. Some of the weaknesses that they mentioned were that perceptrons could only

solve simple problems which were linearly separable and also the lack of a general method

to estimate the parameters in a multilayer network. This effectively ended the interest in

research in this field.

It was only in the 1980s that interest in the field increased again after several important

theoretical results were published. These developments included Hopfield’s energy ap-

proach in 1982 (Hopfield, 1982), estimation algorithms like the backpropagation learning

algorithm for multilayer perceptrons, different network architectures like Kohonen net-

works and the Boltzmann machine which is a nondeterministic neural network. For a

full account of all the historical developments in the field of artificial neural networks

consult Anderson and Rosenfeld (1988). A brief overview can be found in (Fausett, 1994;

Fletcher, 2002).

2.3.3 Single layer neural networks

In this section an introduction to single layer networks will be given. The early single

layer networks have their limitations as was proved by Minsky and Papert (1969), but

they will still be used in this introduction as they give a clear illustration of the concepts

involved in neural networks. This will then serve as a basis to generalise the networks to

more complex designs.

29

Model of the basic neuron

The most simple single layer network is the basic neuron. In the basic neuron, the inputs

are ordered in a layer. These inputs are analogous to the independent variables in a

statistical context, each input corresponding to one independent variable. Weights are

applied to each of these inputs and then summed. This summed value is called the net

input. The net input is compared to some threshold level and the neuron then produces

an output based on whether the net input exceeds a specified threshold level or not.

This model of the neuron was first proposed by McCulloch and Pitts in 1943 (McCulloch

and Pitts, 1943). Mathematically we can formulate this as (Beale and Jackson, 1990,

pp.41–43):

Suppose we have p inputs, denoted by x1, . . . , xp, to the neuron denoted by y :

yin = w1x1 + · · ·+ wpxp

=
∑p

i=1wixi

The step function with threshold θ is defined as :

f(x) =

 1 if x > θ

0 if x ≤ θ

Using this step function, the output or predicted value of the neuron, denoted by ŷ, is :

ŷ =


1 if

∑p
i=1wixi > θ

0 if
∑p

i=1wixi ≤ θ

30

It should be noted that ŷ will be used throughout this dissertation to denote the fitted

value produced from the network while y will be used to denote the value of the target

or dependent variable. The whole process of modelling a basic neuron is graphically

illustrated in figure 2.1:

Figure 2.1: Outline of basic model

We see that the inputs and the outputs are illustrated as neurons. The input neurons do

not perform any computation; they receive their signals or values from the outside world,

similar to how data is obtained on the independent variables in a statistical context.

Hence when we have a data set, the observations on the independent variables in the

data set are the inputs. The input neurons are arranged in what is known as the input

layer. Each of the neurons in the input layer are connected through a directed, weighted

path to the output neuron, in the output layer. The value coming from a neuron is

known as the neuron’s activation in the neural network architecture. In this example the

input neurons pass their values on to the output layer through the connection paths in

a forward way, meaning that the output obtained is not fed back to the input layer in

any way. This is referred to as a feedforward neural network (cf. 2.3.4). The direction of

31

the connection paths does not necessarily have to be forward. There may also be more

than one output neuron in the output layer. Neurons can be connected in many different

ways to define different neural network architectures. More information on other neural

network architectures can be found in Boden (2001); Hertz et al. (1991).

In the model of the simple neuron as defined earlier, the threshold can in essence be

subtracted from the net input and the result then compared to zero. On the basis of this

outcome the network produces an output. This is just an alternative way of applying the

threshold to the neuron.

A constant can also be added to the net input, to increase or decrease the net input into

the neuron. This is called a bias in the neural network literature. This bias is usually

included as an extra input, denoted as input x0, for which the value is fixed to be 1. The

weight on this input then determines the value with which the input to the next neuron

should be offset. This weight can be positive or negative. This is similar to what is done

in a regression model when a constant term is added. The equation describing the output

can then be written as

y = f

[
p∑
i=0

wixi

]
where f(x) =

 1 if x > θ

0 if x ≤ θ

Another approach is to incorporate the threshold, θ, into the bias and then have just one

constant. The equation for the simple neuron then becomes:

y = f

[
p∑
i=0

wixi

]
where f(x) =

 1 if x > 0

0 if x ≤ 0

32

This is the most simple way to describe the model of the basic neuron which includes a

bias. It should just be noted that there are many different ways in which this neuron

can be constructed and that a neural network model can include a bias term and also a

threshold term on the activation function. The difference being that a bias is added to

the net input into a neuron while a threshold is subtracted.

Figure 2.2 gives an illustration of how a single layer network is generally represented

graphically:

Figure 2.2: A single layer neural network

The step function which is used above is an example of an activation function in neural

network literature. This function can be any function although certain activation func-

tions provide favorable properties which will be seen later. The activation functions which

are used most often is a hard limiting function (either a step or the signum function), a

piecewise linear function, or a soft limiting function (for example the sigmodial or softmax

function). An example of each of the activation functions is given next.

33

The step or threshold function is defined as:

f(x) =

 1 if x ≥ 0

0 if x < 0

Figure 2.3: Step function

34

The piecewise linear function is defined as:

f(x) =


1 if x ≥ 0, 5

x+ 0.5 if − 0, 5 < x < 0, 5

0 if x ≤ −0, 5

Figure 2.4: Piecewise linear function

The sigmoidal function is the most popular activation function used. One of the favorable

characteristics of the function is that it is differentiable and that the derivative can be

expressed in a convenient form as will be shown later. An example of a sigmoidal activation

function is the logistic function defined as:

f(x) =
1

1 + exp(−ax)

where a is the slope parameter. The logistic function has a squashing effect, i.e. it scales

values to lie in a small range. For the logistic function, the values are scaled to lie between

35

0 and 1 which means it is also a favorable activation function to use when we want to

model probabilities (see section 2.4.3). An illustration of a logistic function for various

values of a is shown in figure 2.5.

Figure 2.5: Sigmoidal function with various slope parameters

The activation function used is very similar to the link function in generalised linear mod-

els and if a linear activation function is used, the single layer network exactly resembles

a linear regression model in statistics. The link between neural networks and similar

methods in statistics will be discussed in section 2.4.

36

The perceptron

Single-layer networks with threshold activation functions were given the name perceptrons

by Frank Rosenblatt (Rosenblatt, 1958, 1962). These perceptrons were applied to simple

classification problems and usually received binary (0 or 1) or bipolar (-1 or 1) inputs.

The perceptron produced an output, ŷ, by calculating the weighted sum of the inputs,

including a bias, which is denoted as the net input. This net input into the neuron in the

output layer is compared to a threshold and then produces a specified output based on

whether the net input exceeds this threshold value. In mathematical terms this is denoted

as

ŷ = f(net input) = f(

p∑
j=0

wpxp) (2.4)

where f(·) denotes a threshold function and x0 = 1 signifies the inclusion of a bias term.

An example of a threshold function that can be used is (Fausett, 1994, p.59):

f(net input) =


1 if input > θ

0 if − θ ≤ input ≤ θ

−1 if input < −θ

The threshold θ, can be any arbitrary but fixed value. This is not the only threshold

function available and we will look at another threshold function which can be used

later in this section. The weights in this perceptron were calculated with the perceptron

learning rule. The perceptron learning rule is an iterative algorithm for calculating the

parameters (i.e. the weights) in the network. The basic idea of the algorithm is that each

observation is presented to the network one at a time. The network then calculates the

output from the given input and the weights are adapted to reduce the error made by the

network. This process is often termed that the network learns from experience, although

it is nothing more than parameter estimation.

37

This algorithm is suitable for either binary or bipolar inputs and the output from this

perceptron is bipolar. A fixed threshold, denoted by θ, and adjustable bias, denoted

by wo is assumed for this algorithm. The algorithm is not particularly sensitive to the

starting values of the weights. To ensure better convergence of the algorithm a learning

rate, denoted by α, can be added to the algorithm. The algorithm will be described

in more detail now for a simple classification problem, where the objective is to classify

an observation to one of two classes based on a given input. (Fausett, 1994; Beale and

Jackson, 1990):

Assume each training observation consists of p inputs, xi = (xi1, . . . , xip), and correspond-

ing response, yi, where the response is coded as:

yi =

 1 if the observation is from class 1

−1 if the observation is from class 2

Assume that there are n training observations, i = 1, . . . , n.

Perceptron learning rule

Step 0: Choose initial values for the weights w0 = (w0, . . . , wp). (For simplicity the weights

may all be set to 0.)

Choose a learning rate α (0 < α ≤ 1). (For simplicity, the learning rate can be set

to 1.)

Step 1: Present a training pattern of p-inputs and response, (xi; yi), i = 1, . . . , n, and com-

pute the fitted value, ŷi, from the network with:

ini =
p∑
j=0

wjxij;

ŷi = f(ini)

38

where f(·) is the activation function used.

Step 2: Update the weights if an error (ŷi 6= yi) was made for this particular observation by

using:

wt+1 = wt + αyixi

If no error was made for this observation the weights do not change.

Step 3: Steps 1 and 2 are repeated for all the training patterns, each time computing the

output from the perceptron for the pattern and then adjusting the weights if the

pattern is not correctly classified. This process is continued until the weights do not

change anymore or if the weights do not change significantly for each iteration.

From this algorithm we see that since the response variable is coded as a bipolar variable

(-1 or 1), the weights are changed in the direction of the response variable if an error was

made. Note that only the weights on the connections from the inputs, where not all the

inputs are zero, will be changed with this procedure. To see how the perceptron leaning

rule works we will first consider a simple example.

Example: Solving a simple classification problem using the perceptron learn-

ing rule Before we continue with more complex single-layer networks and learning rules,

it may be beneficial to give a very simple example of a problem that can be solved using

the perceptron learning rule that was just discussed. This will give insight into how these

single layer neural networks work. This should also give a better understanding of the

notation used.

The problem that will be explained here is called the OR problem in computer science.

The perceptron takes two binary inputs (x1 and x2) and needs to classify each pattern

into one of two possible classes. More specifically, the patterns are given as:

39

x1 x2 y

0 0 -1

0 1 1

1 0 1

1 1 1

A plot of these observations are presented is figure 2.3.3. From this plot of the data we

see that this problem is perfectly linearly separable meaning that a linear boundary will

perfectly separate the blue dots (y = 1) from the red dot (y = −1).

The objective is to solve this simple problem by using the perceptron learning rule that

was discussed earlier in this section. We will use the following activation function for this

40

problem:

f(x) =

 1 if x ≥ 0

−1 if x < 0

We start by initialising all the weights in the perceptron to 0, i.e. w0 = (w0, w1, w2) =

(0, 0, 0). Note that a bias is included in the perceptron, which means that an extra weight,

w0, and input x0 = 1 needs to be included. A learning rate of α = 1 is chosen.

If we present the first pattern x1 = (x0, x1, x2) = (1, 0, 0) we get:

in1 = w0 × x0 + w1 × x1 + w2 × x2

= 0× 1 + 0× 0 + 0× 0

= 0

The output from the perceptron is:

ŷ1 = f(0) = 1

Now we have that y1 = −1 6= 1 = ŷ1 meaning that the weights should be adjusted. The

adjustment of the weights are calculated as:

w(1) = w(0) + y1x1
w

(1)
0

w
(1)
1

w
(1)
2

 =


0

0

0

+ (−1)


1

0

0



=


−1

0

0



41

After the first pattern has been presented the weights in the perceptron are:

w(1) =


−1

0

0


Now using these new weights, the second pattern, x2 = (1, 0, 1), is presented to the

perceptron. The output from this pattern is calculated as:

ŷ2 = f(−1× 1 + 0× 0 + 0× 1) = f(−1) = −1

We have that ŷ2 6= y2 and hence the weights should be adjusted. After adjusting the

weights we have that:

w(2) =


0

0

0


For the third pattern the output is ŷ3 = 1. and hence we have that ŷ3 = y3 = 1. This

means that the weights are not adjusted at this iteration, i.e. w(3) = w(2). Presenting the

fourth pattern, to the perceptron we find ŷ4 = 1 and hence the weights are not adjusted

for this pattern and w(4) = w(3).

Now that we have presented all the patterns to the perceptron we cycle through the

patterns again by starting from the first pattern again. Each cycle through all the patterns

is referred to an an epoch in neural network literature. If we present the first pattern again

to the perceptron using the weights

w(4) =


0

1

0



42

we find that ŷ5 = f(0× 1 + 1× 0 + 0× 0) = f(0) = 1. Because the predicted value is not

correct the weights should be adjusted and we find:

w(5) =


−1

1

0


We will continue in this fashion until the weights do not change from iteration to iteration.

After 13 iterations, we find the last change in the weights and after that all the patterns

are classified correctly using those weights. The weights which provide this solution is:

w(13) =


−1

1

1



A plot of the classification boundary that is fitted by the perceptron is given in figure

2.3.3. The line in the plot is the classification boundary, with every point on or above the

line being classified as a 1 and all the points below the line being classified as a -1. Note

that this line perfectly separates all the observations from the 1 category (blue dots) from

the observation which is labeled as -1 (red dot).

It can be proved that the perceptron learning rule will converge to a solution in a finite

number of steps if the data is linearly separable, i.e. the two classes can be perfectly sep-

arated by a linear boundary. There are a number of problems with this algorithm. These

problems include: The solution obtained is not unique and depends on the starting values,

the algorithm can take very long to converge and if the data is not linearly separable, the

algorithm will not converge (Ripley, 1996).

A number of solutions have been proposed to eliminate these problems like using kernels

43

to transform the input space to allow for better separability between the groups and

adding extra constraints to the algorithm to ensure convergence. This forms the basis for

another learning method called support vector machines. This topic will not be pursued

further here but the interested reader can obtain more information and references on this

topic in Cristianini and Shawe-Taylor (2000); Vapnik (1996).

ADALINE

The ADAptive LINEar neuron is also a single layer network very similar to the perceptron.

It was developed in 1960 by Bernard Widrow and Marcian Hoff (Widrow and Hoff, 1960).

The network typically also uses binary or bipolar inputs and outputs, although it is not

limited to these only. Similar to the perceptron, the ADALINE arranges the inputs in a

layer and the inputs are then connected in a forward direction to the output in the output

44

layer. The weights on the connections between the input and output layers are adjustable

and the bias is the weight on the connection of an input which is permanently set to 1.

The activation function is typically linear but this can be any function.

The major difference between the ADALINE and the perceptron as described above is

the way in which the network is trained, i.e. the weights are estimated. In general the

weights are estimated with the Widrow-Hoff rule. This algorithm is also known as least

mean squares. The Widrow-Hoff rule can also be used to estimate the parameters in a

network where there is more than one output neuron in the output layer.

The basic idea of the Widrow-Hoff rule is similar to the perceptron learning rule. The

fundamental change is in that the weights are not only changed if an error is made in

the classification, but that the weights are adapted proportional to the error made by the

network. This implies that the weights will be adapted a lot if a large error is made and

vice versa.

Any activation function can be used with the Widrow-Hoff rule, because as will be shown

now, the weights are adapted in relation to the error made on the output before the

activation function is applied. This means that we use the net input, denoted by ini,

into the output neuron to update the weights. For the final classification, the activation

function should be applied. This algorithm can be written in more mathematical detail

as in (Fausett, 1994; Beale and Jackson, 1990):

Suppose that each training observation has p-inputs, xi = (xi1, . . . , xip), each with cor-

responding output yi , where i = 1, . . . , n is the number of training observations. For

classification purposes the response variable can be coded as a binary or bipolar variable,

however we will not make any assumption on the form of the inputs and outputs, making

the network more general.

45

Widrow-Hoff rule:

Step 1: Choose starting values for the weights w0 = (w0
0, . . . , w

0
p). Small random weights

are usually used.

Set the learning rate α.

Step 2: For each training observation (xi; yi), compute the net input to the output neuron:

yini
=

p∑
j=0

wjxij where xi0 = 1

Step 3: Update the weights using the following update rule, i = 1, . . . , n:

wt+1 = wt + α(yi − yini
)xi

Step 3: Continue with this algorithm until a suitable stopping criterion is satisfied, e.g. the

largest change in the absolute value of the weight in the previous step is smaller

than a predetermined value.

The Widrow-Hoff rule changes the weights in the neural network to minimize the difference

between the net input to the output unit, and the response variable, y, for an observation.

The aim of the algorithm is to minimise the error over all the observations. This can be

done in two ways: The way in which the algorithm is described above, by minimising the

error one observation at a time, which is referred to as online learning or by accumulating

the errors until all the observations in the data set have been presented and then updating

all the weights by using the accumulated adjustment. This is referred to as batch learning.

The learning rate should be chosen with care. If a too small learning rate is chosen,

the algorithm will take long to converge. If too large value is taken the algorithm may

not converge. For a single layer network with one output neuron, a guideline to set the

46

learning rate is to choose a value such that 0, 1 ≤ pα ≤ 1, where p is the number of

inputs or independent variables. An adaptive learning rate can also be chosen and will

be discussed in section 2.3.5.

Delta rule The Widrow-Hoff rule was extended to allow continuous, differentiable and

monotone increasing activation functions to be applied to the network. This learning

rule is called the delta rule and was introduced by McClelland and Rumelhart (1986,

1988). The delta rule can be used to determine the weights in a single layer network, by

minimising an objective function with regards to the weights in the network, similar to

the method of Widrow-Hoff. The difference between the Widrow-Hoff rule and the delta

rule is in that the derivative of the activation function is used to update the weights. This

is why the activation function needs to be differentiable in order for the delta rule to be

applied.

The delta rule uses the gradient descent optimisation. The gradient descent technique

states that the objective function (sum of squares for error is usually used) decreases the

fastest in the direction of the negative gradient. This means that when using the delta

method, the weight changes are in the direction of the negative gradient.

The algorithm for training a single layer network with differentiable activation functions

is the same as that for the Widrow-Hoff rule and only the update rule for the weights

change. To derive the delta rule is mathematically simple. Using the same notation as

for the Widrow-Hoff rule, the sum of squares error function, denoted by E, for a single

layer network with differentiable activation function f(·) can be written as:

E[w] =
1

2

n∑
i=1

(yi − ŷi)2 =
1

2

n∑
i=1

(
yi − f(

p∑
j=0

wjxij)

)2

=
1

2

n∑
i=1

(yi − f(ini))
2

47

Differentiating this expression w.r.t. the weight wj, using the chain rule, we obtain:

∂E

∂wj
= −

n∑
i=1

(yi − f(ini)) f
′(ini)xij

so that the accumulated weight update (batch learning update) for wj , j = 1, . . . , p is:

wt+1
j = wtj + α

n∑
i=1

(yi − ŷi)f ′(ini)xij

The weight updates does not need to be accumulated until all training observations are

presented. The online version for updating the weights wj , j = 1, . . . , p after presenting

each pattern xij , i = 1, . . . , n to the network is:

wt+1
j = wtj + α∆wjxij

with

∆wj = (yi − ŷi)f ′(ini)

where 0 ≤ α ≤ 1 is the learning rate and j = 0, . . . , p. We see that the online version

is exactly the same form as the batch version, the only difference being that the sum

does not occur in the weight update. This means that the weights are updated after each

pattern is presented to the network instead of accumulating the weight updates for all the

patterns present and then updating the weights after each cycle through all the patterns

(also called an epoch).

Single-layer networks with more than one output unit

The networks that have been discussed thus far all have a single output unit. We can now

make the network more general by including more than one output unit in the network

and in this section an introduction will be given to this type of network. These types of

48

networks are often used for classification problems where the objective is to classify an

observation to a class, where there are more than two classes to which the observation can

belong to. A single-layer network with more than one output variable is closely related

to discriminant analysis in statistics. For example, each of the outputs can be used to

model the probability of an input belonging to each of those classes and in section 2.4.3

we will look at these networks and how they fit into a statistical methodology.

Let xi = (xi1, . . . , xip), (i = 1, . . . , n), be p inputs with corresponding response variables

yi = (y1i, . . . , yKi). To shorten the notation, the subscript which indicates the observation

number will be dropped and an observation which is presented to the network will be

denoted by (x; y), where x = (x1, . . . , xp) denotes the input variables and y = (y1, . . . , yK)

denotes K response variables corresponding to the same observation. Let fk(.), denote

the activation function of the k-th output neuron. These activation functions do not

necessarily need to be the same. More information on the activation functions in networks

where there is more than one output will be given in section 2.3.4.

This network is graphically illustrated in figure 2.6.

The weights, wjk indicate that it is the connection weight from input neuron j connecting

to output neuron k. Mathematically the output from output neuron k, k = 1, . . . , K,

when presented with an observation x = (x1, . . . , xp) is:

ŷk = fk

(
p∑
j=0

wjkxj

)
where xo = 1

49

Figure 2.6: A single layer neural network with multiple outputs

Delta rule for several output units

The delta rule can be extended to estimate the weights in single layer networks which

have more than one output unit. Suppose there are n observations, each of the form

x = (x1, . . . , xp), with corresponding response variables y = (y1, . . . , yK). The net input

into output neuron k from observation x is denoted by yin−k, where k = 1, . . . , K. Denote

wjk as the weight from the j-th input neuron, to the k-th output neuron. Denote the

predicted value on output neuron k by ŷk. The delta rule to update the weights for

this network follows similarly to the one for a network with only one output. Using the

notation defined the algorithm is now:

Step 1: Choose starting values for the weights w0
0,w

0
1, . . . ,w

0
K . Small random weights are

usually used.

Set the learning rate α.

50

Step 2: For each training observation (x; y), compute the net input to each of the output

neurons:

yin−k =
p∑
j=0

wjkxj where x0 = 1

Apply the activation function to each of the values obtained to get a predicted value,

denoted by ŷk on each of the output neurons:

ŷk = f(yin−k) k = 1, . . . , K

Step 3: Update the weights using the following update rule:

wt+1
k = wt

k + α(yk − ŷk)f ′(yin−k)x

Step 4: Continue to repeat these steps for each of the observations in the data set until a

suitable stopping criterion for the algorithm is satisfied.

The weight corrections can also be accumulated until every observation in the data set

have been presented and then the weights are updated before each observation is then

presented again to the network.

2.3.4 Multilayer networks

In this section an introduction to multilayer networks will be given. Different network

architectures and estimation techniques for multilayer networks will be discussed. The

single layer networks discussed in the previous section can represent a very limited range

of functions. To estimate more general functions, multilayer networks can be used.

51

Feedforward multilayer perceptron

To give an introduction to multilayer networks we are going to start by combining two sin-

gle layer networks to form a two layer network. The first network has p inputs, x1, . . . , xp,

each of these inputs are fully connected to M output neurons denoted by z1, . . . , zM . The

second network then uses these M outputs, z1, . . . , zM , of the first network as its inputs.

These M inputs of the second network are then fully connected to K output units. These

output units in the second network produce the outputs of the whole model which are de-

noted by ŷ1, . . . , ŷK . Bias terms can be added to both the inputs into the first and second

network, by including neurons which have activations (values) permanently set to 1. All

the inputs and outputs of the two networks are arranged in layers. The inputs to the first

network are called the input layer. The outputs of the first network (which also serve as

the inputs to the second network) are called the hidden layer and the outputs from the

second network are arranged in the output layer. Graphically this can be illustrated as:

Figure 2.7: A multilayer network

In this diagram, the weights from input neuron j to hidden layer neuron m are denoted

52

by w1jm and the weights from hidden layer neuron m to output neuron k are denoted by

w2mk.

This is known as a two layer feedforward neural network. The reason why it is a two layer

network is because there are two layers of weights which need to be estimated in this

network, and it is a feedforward network because the neurons in each layer contribute to

the input of the neurons in the next layer. Two layer networks provide a huge improvement

over single layer networks in that two layer networks can approximate any continuous

function arbitrary closely (Bishop, 1995, p.116). It should be noted that the weights

that need to be estimated in the neural network are sometimes referred to as the adaptive

weights while the parameters of the neural network generally refer to the number of hidden

layers, the number of neurons per layer and also the adaptive weights. Thus when we

say we need to estimate the parameters of the neural network, this generally refers to

estimating the number of hidden layers, the number of neurons per hidden layer and also

the connective weights between the neurons.

Step by step, the outputs from a two layer network when presented with an observation

x = (x1, . . . , xp), can be calculated as follows: Suppose the network has p inputs in the

input layer, M hidden nodes in one hidden layer and K output nodes in the output layer

(similar design as in diagram 2.7).

1. For each of the hidden neurons, z1, . . . , zM , compute a weighted sum of the inputs,

including a bias term:

zin−m =

p∑
j=o

w1jmxj with x0 = 1

where zin−m denotes the net input to hidden neuron zm when presented with an

observation x.

53

2. Pass this value, zin−m to the activation function, fm(·), on that particular unit to

get an output value from hidden neuron m, which is denoted by zm. That is, for

m = 1, . . . ,M calculate:

zm = fm(zin−m)

3. For each of the neurons in the output layer, y1, . . . , yk, calculate the net input to

each of these neurons by computing a weighted sum of z1, . . . , zM , including a bias

term:

yin−k =
M∑
m=0

w2km zm with z0 = 1

4. Use the activation function to get a final fitted value, ŷk. This implies that the fitted

values ŷk, k = 1, . . . , K are calculated by:

ŷk = gk(yin−k)

Combining these steps, we see that the output on neuron k in the output layer when the

two layer network is presented with an observation x = (x1, . . . , xp) is:

ŷk = gk

(
M∑
m=0

w2mk fm

(
p∑
j=o

w1jmxj

))

where gk(·) and fm(·) are the activation functions in the output and hidden layer respec-

tively.

The above design can be generalised further to include far more complex designs in which

there are more layers of hidden units. For the purpose of this dissertation, only the two

layer network will be discussed since the methods for higher order networks are similar.

54

2.3.5 Learning in multilayer networks

Up to this point we have discussed single layer networks which may or may not have more

than one output. The inputs and outputs were each arranged in a layer and there is only

one layer of weights between the input and output layer which needs to be estimated. In

the ADALINE, this layer of weights was estimated by the Widrow-Hoff or delta rule. The

development of a method for estimating the weights in multilayer networks was one of

the main reasons for the reemergence of interest in the fields of neural networks. Training

a multilayer network is usually done by setting the weights in the network to minimise

an objective function. Different objective functions can be used for this purpose but the

sum of squares for error function is usually chosen for regression problems and the cross

entropy error function for classification problems (cf. Section 2.4).

The sum of squares for error function is well-known in statistics, as most statistical re-

gression models are fitted by this criterion. In neural networks the sum of squares error

function is a function of the weights of the network similar to how the error function is a

function of the parameters in a regression model. The objective is then to choose values

for the weights in the network, such that the error function is a minimum. Graphically,

the process of minimising the error function is illustrated in figure 2.8.

From figure 2.8, it can be seen that the error function forms a surface above a p-

dimensional weight space, where the weight space in this example can be denoted by

w = (w1, w2). The shape of the error surface in figure 2.8, will typically depict the gen-

eral form of an error surface from a single layer network, with linear activation functions,

where the network was fitted using a sum of squares error function, much like in a linear

regression model. The objective is to choose the values of w1 and w2, such that the error

(denoted by E), is a minimum, that is where ∇E = 0. It can be seen from fig 2.8 that

the error surface has more than one minimum value (at point A and B) and one of the

55

Figure 2.8: Geometrical illustration of an error surface (Bishop, 1995, p.254)

main problems with optimisation methods is that the optimisation technique can become

stuck in a local minimum (like point A) instead of converging to a better solution (point

B).

The error surface for a neural network will generally be a highly nonlinear function of the

weights. This is especially true if the network has more than one layer of weights. This

will cause the error function to have numerous points where ∇E = 0 which are called

stationary points. Figure 2.9 illustrates this point for an error function E against one

weight w. For this graph, there are four points where the gradient of the error function

would be equal to zero. Point A is a local minimum, since this point is the lowest

for a small neighborhood around A but it is not the smallest value across the total error

function. Point B is a local maximum. Point C is a saddle point, and some algorithms can

get stuck on this flat surface for prolonged periods of time. Point D is a global maximum,

which is the desired value of the error function (for an optimal network architecture cf.

56

Section 2.4.4).

Figure 2.9: An error function with four stationary points (Bishop, 1995, p.255)

Because the error surface is a highly nonlinear function of the weights, explicit expressions

for the global minimum of the error function cannot be obtained. To overcome this

problem we must make use of a numerical optimisation method to train a neural network.

The main objective is to use an efficient method which will locate the global minimum of

the error function.

The basis for locating the global minimum of the error function for a neural network is

done by using an algorithm that conducts a search through the weight space. The basic

idea of this search is to start by choosing any point on the error surface, and then proceed

some distance in an appropriate direction that will decrease the error function. This

process continues until a minimum is reached. This can be formulated mathematically

as:

w(t+1) = w(t) + ∆w(t) (2.5)

where t is the step number, w is the weight vector and ∆wt is the adjustment to the

57

weight vector at time t (Hill and Lewicki, 2006). The two questions that can be asked

from this procedure is: what is the appropriate direction to move in and what distance

must the step length be?

Different algorithms involve different choices for the direction in which the weights must

be updated and the step length that must be used. This essentially means that different

algorithms involve different ways of choosing the weight adjustment ∆w(t). We will start

by looking at backpropagation in the next section and will also provide an overview of

other methods which can be used for neural network training in section 2.3.5.

Error backpropagation

The gradient method forms the basis for the backpropagation algorithm, which is the

most popular method for estimating the weights in a multilayer perceptron. Recall from

section 2.1.3, that the gradient at any point in the weight space , i.e. ∇w, is the direction

in which the gradient increases most rapidly. This is illustrated in the figure 2.8, in which

the gradient is calculated at the point C. Gradient descent is then based on the principle

that the negative gradient of the error function E at a point in the weight space, indicates

the direction in which the error function decreases the fastest.

This local gradient will often not point directly to the minimum value and therefore

gradient descent takes a number of small steps through the weight space, each time

moving a small distance in the direction of the negative gradient at that specific point.

The length of these steps is proportional to the learning parameter chosen. If a small step

is taken in the direction of the negative gradient, the error function should decrease and

this process is continued until a minimum is reached. By referring back to (2.5) we can

58

write the weight update for each iteration as

∆w(t) = −α∇E|w(t) (2.6)

where the gradient of the error function ∇E is evaluated at the point w(t).

The idea of backpropagation was independently discovered by several researchers. The

most popular version of backpropagation as it is used in neural networks for adjusting

the weights in the model was derived by Rumelhart et al. (1986) but similar ideas where

presented by Bryson and Ho (1969); Werbos (1974); Parker (1985). The backpropagation

rule is the name given to an algorithm which is used for evaluating the derivatives of the

errors in a multilayer feedforward neural network when the objective is to minimise the

total sum of squares for error. The backpropagation rule is also known as the generalised

delta rule. Essentially the backpropagation rule uses steepest descent to minimise the

sum of squares error function with regards to the weights in a multilayer network. This

whole process is done in three steps: the feedforward of an input pattern to produce an

output, the calculation of the error which is then propagated back through the network

and based on this the weights are set in the network. These three steps, which are used to

train a multilayer perceptron with backpropagation, will now be discussed. This is only

done for a multilayer perceptron with one hidden layer but the algorithm can easily be

extended to train multilayer perceptrons with more than one hidden layer.

Consider the two layer case as was introduced in the previous section. The second layer of

weights can be estimated by regarding this layer as a simple perceptron where the inputs

are given by the hidden layer, and then using the perceptron learning rule or any other

learning rule for a single layer network. The problem is that the first layer of weights

cannot be estimated using this technique since there are no target values on the hidden

layer units. This is known as the credit assignment problem (Bishop, 1995, p.140).

59

“The solution to this credit assignment problem is relatively simple. If we con-

sider a network with differentiable activation functions, then the activations of

the output units become differentiable functions of both the input variables,

and of the weights and biases. If we define an error function such as the sum of

squares error, which is a differentiable function of the network outputs, then

this error is itself a differentiable function of the weights. We can therefore

evaluate the derivatives of the error with respect to the weights, and these

derivatives can then be used to find weight values which minimize the error

function, by using gradient descent, or one of the more powerful optimization

methods” (Bishop, 1995).

This idea will be discussed in more detail in the next section.

The backpropagation algorithm

Suppose we have a two layer feedforward network, with p input nodes, x1, . . . , xp, in the

input layer. Each node in the input layer is fully connected to M hidden nodes, z1, . . . , zM ,

arranged in one hidden layer. Each hidden node is fully connected to K output nodes,

y1, . . . , yK . Let w1jm denote the weights from input xj to hidden node zm and w2mk

denote the weight from hidden unit zm to output node yk. Denote the net input into

hidden node zm, when the network is presented with observation x by zin−m and let zm

be the output from this hidden node when the activation function fm(·) is applied to the

net input. Denote the net input into output node yk, when the network is presented with

observation x, by yin−k. Apply an activation function gk(·) to the net input and denote

the fitted value by the network on output node yk by ŷk. Suppose that the activation

functions fm(·) and gk(·) are differentiable. The notation that is used for this two-layer

neural network is illustrated in figure 2.10.

60

Figure 2.10: Representation of a general 2-layer neural network

We will now proceed to derive the backpropagation rule for a general two layer neural

network which is trained by minimisation of the error sum of squares function. The result

obtained from this derivation will enable us to obtain the gradient descent weight updates

for the different types of networks that will be trained in chapter 3 of this dissertation.

Our goal is to determine suitable weights, using gradient descent, which will minimise the

following sum of squares error function:

E[w] =
1

2

n∑
i=1

K∑
k=1

(yik − ŷik)2 (2.7)

Training the neural network means that we minimise the error over all the output units

and all the observations in the training sample with respect to the weights in the neural

network. We see that this error function is written as the sum over all the observations

in the training data set. We can drop the subscript i to arrive at an instantaneous error

function for training the neural network. Hence we need to choose the weights in the

61

neural network as to minimise

E[w] =
1

2

K∑
k=1

(yk − ŷk)2

=
1

2

K∑
k=1

(
yk − gk

(
M∑
m=1

w2mkzm

))2

=
1

2

K∑
k=1

(
yk − g

(
M∑
m=1

w2mkfm

(
p∑
j=1

w1jmxj

)))2

(2.8)

over each of the training observations. This is a continuous differentiable function of every

weight which means that we can use gradient descent to minimise this error function with

respect to the weights in the network.

The gradient descent algorithm states that we start at an initial estimate of the weights

and then move some distance in the direction of the negative gradient to obtain a new

estimate of the weights in the neural network. This procedure is continued until there

is little change in the weights from iteration to iteration. This means that the weight

update rule for the gradient descent algorithm is:

w(t+1)
xyz = w(t)

xyz − α
∂E

∂wxyz
(2.9)

where x specifies the number of the layer in which the weight occurs, y and z is the input

and output respectively which the weight connects, t is the iteration number and α is the

learning rate.

62

For hidden to output units, we have:

∆w2mk = −α ∂E

∂w2mk

= −α ∂E

∂yin−k

∂yin−k
∂w2mk

= α(yk − ŷk)g′k(yin−k)zm

= αδ2kzm where δ2k = g′k(yin−k)(yk − ŷk) (2.10)

For the input to hidden layer weights, we must differentiate with respect to w1jm, by again

using the chain rule, we obtain:

∆w1jm = −α ∂E

∂w1jm

= −α ∂E
∂zm

∂zm
∂w1jm

= α
K∑
k=1

(yk − ŷk)g′k(yin−k)w2mk · f ′m(zin−m)xj

= α
K∑
k=1

δ2kw2mkf
′
m(zin−m)xj

= αδ1mxj where δ1m = f ′m(zin−m)
K∑
k=1

w2mkδ2k (2.11)

We see that the update equations for the weights connecting the input layer to the hidden

layer (2.11) is of the same form as the update equation of the weights that connect

the hidden layer to the output layer (eq 2.10). The general form of this equation is

the learning rate times the delta, which is calculated at the node to which the particular

weight connects to, times the activation of the input node from which the particular weight

connects. The weight update equations basically propagate the errors backwards through

the network, to determine the suitable weights. This is where the term backpropagation

comes from. This result can be extended to derive weight update equations for networks

63

with any number of hidden layers simply by further application of the backpropagation

rule. More detail on how this can be done and also on the backpropagation algorithm just

derived can be found in Fausett (1994); Beale and Jackson (1990); Hertz et al. (1991).

Now that we have derived the weight update rules, we implement the backpropagation

algorithm as follows:

1. Set initial values on the weights (small random numbers can be used).

Feedforward phase:

2. For each training observation (x,y), calculate the predicted values from the network:

ŷk = gk

(
M∑
m=0

w2mk fm

(
p∑
j=0

w1jm xj

))
k = 1, . . . , K

Backpropagation of error:

3. For each output node (yk, k = 1, . . . , K) in the output layer calculate the error

information term, also called the delta for that node:

δ2k = (yk − ŷk)g′k(yin−k)

The change in weights for weights connecting to the output layer is:

∆w2km = αδ2kzm

Each node in the hidden layer (zm,m = 1, . . . ,M), sums the delta inputs (from the

units in the output layer):

δin−m =
K∑
k=1

δ2k w2mk

64

The delta for the hidden nodes is then:

δ1m = δin−mf
′
m(zin−m)

The change in weights for weights connecting to the hidden layer is:

∆w1jm = α δ1m xp

Update the weights:

4. The update rule for the weights connecting to the output layer is:

w
(new)
2mk = w

(old)
2mk + ∆w2mk

The weights connecting to the hidden layer is updated by:

w
(new)
1jm = w

(old)
1jm + ∆w1jm

5. Continue this process until the weights converge or another suitable stopping crite-

rion is satisfied.

The algorithm above updates the weights after each observation is presented to the net-

work. Batch learning can also be used in backpropagation by accumulating the weight

updates for an entire training epoch. If online learning is used to update the weights, it

allows for wider examination of the surface of the error function which makes the training

rule stochastic. The choice of which of the two ways of learning should be used varies be-

tween different problems but in practice it is found that online learning seems to perform

better (Hertz et al., 1991, p.119).

65

Backpropagation enhancements

The backpropagation training rule has been the topic of a lot of research in past years in

the field of neural networks and the algorithm illustrates the method of training neural

networks clearly but it is often criticised that it is slow to converge. This is largely due to

the nature of the error surface. Error surfaces are generally full of flat spots, steep regions

and local minima and these characteristics are even more pronounced when dealing with

classification problems or small samples. Many enhancements to the backpropagation

method of training a neural network have been suggested to improve the speed of conver-

gence, avoid that the algorithm converges to a local minimum and to estimate the weights

in the neural network such that it gives the best possible generalisation capability to un-

seen data. Only an overview of some of the methods to improve the speed of convergence

for the backpropagation training rule will be given.

The learning rate that is used in the backpropagation algorithm determines how fast the

network will converge to a solution. The problem with a constant learning rate, is that

if the learning rate is chosen to very small, the error function should decrease at each

iteration, but convergence will be very slow since a large number of iterations will be

needed to reach the minimum.

On the other hand, if the learning rate is chosen to be large, convergence will often be

quick initially but the algorithm may overshoot the minimum and end up oscillating

between values. This is especially true if the minimum is located in a deep valley with

steep sides. This will cause the algorithm to oscillate from the one side of the minimum

to the other side and the minimum may never be reached. This point is illustrated in

figure 2.11.

Different values of the learning rate α is best suited to different regions of the error

66

Figure 2.11: Illustration of a three dimensional error surface as viewed from the top. We
see that the gradients along the different directions in this figure differs drastically. The
single arrow shows that for most points on the error surface, the negative gradient at that
point does not point directly to the minimum. On the left hand side, it is shown that
gradient descent can take a long time to converge to the minimum. In this particular case,
the fixed step gradient descent oscillates across the error surface (Bishop, 1995, p.265).

surface and this shows that the algorithm will generally benefit from a learning rate that

begins with a large value, with the value becoming smaller as the algorithm approaches

a minimum. This is where adaptive learning rates can help and increase the rate of

convergence of the backpropagation algorithm. The easiest way to include an adaptive

learning rate, which will also ensure that the algorithm converges even though it may not

be the optimal solution, is to choose the learning rate as

α =
1

t

where t denotes the iteration number. This implies that the learning rate will become

smaller with each step and eventually the learning rate will so small that the weights will

change very little from iteration to iteration.

A more effective way of choosing the learning rate is to make it part of the training

process. This consists of checking whether a specific weight update did indeed reduce the

67

error. If the error increased in a specific step, it means that the step that was taken was

too large and overshot the minimum implying that the learning rate should be reduced.

On the other hand, if several steps in a row have lead to a decrease in the error function,

it means that the learning rate is too small and that the algorithm will take long to

converge implying that the learning rate could be increased to be more effective. Hertz

et al. (1991) states that it is better to increase the learning rate by adding a constant value

and decrease the learning rate geometrically. This will enable the learning rate to become

smaller rapidly if needed to. This means that the learning rate is chosen as follows:

αnew =

 αold + a if ∆E < 0 consistently

bαold if ∆E > 0

where a and b are appropriate constants. More information on choosing adaptive learning

parameters can be found in (Hassoun, 1995; Hertz et al., 1991).

A modification to increase performance in the backpropagation learning rule is to include

a momentum term to the weight updates. This is a very effective way to increase the

speed of learning especially when part of the training data differs a lot from the majority

of the training data. Momentum causes the current weight update, to be a combination

of the current gradient and the gradient at the previous update. The reason for this is

that it is desirable when an unusual training observation is presented to the network, that

the weights should not be influenced as much. On the other hand we want the network to

learn the weights fairly quickly when it is presented with training observations that are

relatively similar to each other.

By adding a momentum term to the weight updates, the learning rate of the algorithm

slows down when an unusual training observation is presented to the network. This means

that the rate of convergence is often accelerated when a momentum term is added to the

weight updates because the algorithm keeps learning in the average downhill direction

68

making the updates resistant to wild oscillations. The modified gradient descent formula

which includes momentum is given by

∆w(t) = α ∇E|w(t) + η∆w(t−1)

where 0 < η < 1 is called the momentum rate. This formula shows that the weight update

now becomes a combination of the update at the current iteration and the update that

was used at the previous iteration (Bishop, 1995). This concept is illustrated in figure

2.12.

Figure 2.12: Illustrates the use of a momentum term when using gradient descent. We see
now that the steps move in the average downhill direction, which means that the minimum
is reached in less steps than without the momentum term (Bishop, 1995, p.269).

This is one example of implementing momentum in the weight updates. There are also

other variations like adaptive momentum rates, one of which is called quickprop, but these

will not be discussed further here and the interested reader is referred to Fahlman (1988);

Hassoun (1995); Waugh and Adams (1997).

The backpropagation rule is very sensitive to the initial values assigned to the weights as

is shown in Kolen and Pollack (1991). This is due to the gradient descent nature of the

algorithm. If the initial weight vectors are chosen such that the algorithm starts in the

vicinity of a local minimum with steep sides, the weights will quickly converge and how

good the solution is will depend on how deep the local minimum is relative to the global

minimum. On the other hand, if the algorithm starts on a flat part of the error surface,

69

convergence can be slow. The initial weights are often chosen to be small zero-mean

random values which is found to work well in practice.

The backpropagation rule is not the only method for estimating the weights in a neural

network and many other methods and techniques have been developed. An overview of

some of these techniques will be given in the next section.

Other estimation methods

Gradient descent is easy to understand and although it is still widely used in neural

network training today, a lot of research has been done on implementing more efficient

algorithms for network training. Optimisation methods can be categorised according to

the type of information that they use and are generally be classified into three groups

(Fiesler and Beale, 1997):

(i) Search methods: These methods employs a search technique across the whole weight

space. The error function is evaluated at different points in the weight space and the

point which gives the lowest value of the error function is then used. This technique

is not used a a lot as they are very slow but they can be used to supplement other

methods, for example they can be used to obtain initial values to be used with the

other methods. Search methods will not be discussed any further.

(ii) First-derivative methods: These methods use first-derivative (gradient) information

of the error function to make weight adjustments. Gradient descent is a very good

example of a first derivative method and other examples are conjugate gradient de-

scent and quasi-Newton descent. The basic idea of these methods is to use gradient

information to compute a weight adjustment in a direction that will lead to a de-

crease in the value of the error function. They are generally fast and do not need a

70

lot of information to be computed at each weight adjustment.

(iii) Second-derivative methods: These methods use first and second order derivative

information of the error function. They are computationally very expensive since

these methods need to calculate the second-order derivative matrix (Hessian matrix)

at each weight adjustment, but they will generally be the fastest to converge to a

minimum.

We will not go into all the mathematical detail of these methods but will rather aim to

provide a brief overview of them. As was stated, the area of network training is a major

area of research in neural networks and a list of references where more information on

these methods can be obtained will be given at the end of this section.

We will start with first derivative methods which only make use of the first order deriva-

tives of the error function. Backpropagation, which was discussed in section 2.3.5 is the

most widely used first derivative method but the concept can be enhanced to form the

foundation of more sophisticated first derivative methods. Recall from section 2.3.5 where

it was stated that network training is an exploration of the error surface in which we start

at some point on the error surface, pick an appropriate direction to move in and then

move some distance in that direction. For the backpropagation rule it was shown (cf.

Section 2.3.5) that the direction which is moved in, is the negative gradient of the error

function and the distance is determined by the learning parameter.

A better procedure might be to move in the direction of the negative gradient and then

find the point in that direction that will minimise the error function. This procedure

is called line search and forms the basis of several methods which are more powerful

than gradient descent. Minimisation of the error function along a search direction is a

one dimensional minimisation problem and approaches on how to implement this can be

found in Bishop (1995).

71

By proceeding to move in the direction of the negative gradient after minimisation along

the initial negative gradient direction may not be the optimal choice. This may cause

the algorithm to oscillate on successive steps and can cause the algorithm to take long to

converge. A better approach to selecting the direction after minimisation along the initial

direction is called conjugate gradient descent or non-interfering directions. The concept of

conjugate gradients is that once minimisation was done in some direction, a minimisation

in another direction may spoil this other minimisation. Now if the directions are non-

interfering and linearly independent, this will reduce the need for multiple minimisations

in the same direction and will converge to a solution in fewer steps. This is the method of

conjugate gradient descent and more information can be found in Bishop (1995); Battiti

(1992).

We now move on to give a quick discussion of second derivative methods. These meth-

ods can be further subdivided into Newton methods and secant methods. Second order

methods uses local quadratic estimation of the error function around some point by use

of a Taylor series expansion. Consider a Taylor expansion of E(w) up to second order:

E(w) ≈ E(w′) + (w − w)′b+
1

2
(w − w′)′H(w − w′) (2.12)

where b is defined to be the gradient of E evaluated at w′

b =
∂E(w)

∂w

∣∣∣∣
w=w′

(2.13)

and H is the second order derivative matrix (Hessian) defined by

(H)ij =
∂2E

∂wi∂wj

∣∣∣∣
w=w′

(2.14)

72

The derivative of (2.12) with respect to w is given by

∂E(w)

∂w
= b+ H(w − w′) (2.15)

and if we set this equal to 0 we obtain:

∂E(w)

∂w
= b+ H(w − w′) set

= 0 (2.16)

⇒ w = w′ −H−1b (2.17)

This forms the basis of the second derivative methods. The second derivative methods

make explicit use of the Hessian matrix. The term −H−1b in expression (2.17) is known

as the Newton direction or the Newton step. Since (2.12) is a quadratic approximation to

the error surface, (2.17) should be applied iteratively. This will give rise to the following

weight update formula:

wnew = wold −H−1b (2.18)

where the gradient vector b and the Hessian matrix H is evaluated at the current point in

the weight space wold. Notice that this algorithm also takes on the form of starting with

an initial value on the error surface and then taking a step in a suitable direction that will

expectantly decrease the error function. For a quadratic error surface, the Newton step will

always point to the minimum of the error surface (Bishop, 1995). The major disadvantage

of the Newton method is that the Hessian matrix H has to be re-evaluated and inverted

at every iteration and thus for networks with a large number of weights. This makes the

method computationally very intensive. Other disadvantages of the Newton method is

that it may converge to a saddle point or a local maximum. This will typically happen

if the Hessian is not positive definite. The Newton method can however be modified to

become a practical method of optimisation in neural networks (Bishop, 1995).

73

Quasi-Newton methods fundamentally work in the same way as the Newton-method in

(2.17), but instead of calculating the Hessian directly, it iteratively builds up a good

approximation to the inverse of the Hessian matrix. By approximating the Hessian the

method is not computationally as expensive as the Newton method. More information

on using quasi-Newton methods for training neural networks can be obtained in Battiti

(1992) and Bishop (1995).

All the methods that we have considered up to now followed a search direction. A model-

trust region approach is another way of training neural networks. The model-trust region

assumes that the error surface is some well-behaved shape (for example a parabola) in

the vicinity of the current point. The Levenberg-Marquardt algorithm is an example of

a model-trust region approach in which it is assumed that the error surface is parabolic

in the region of the current point. The Levenberg-Marquardt algorithm is generally the

fastest of all the training algorithms for neural networks but it has severe limitations,

one of them being that it can only be employed on networks with a single output, that

is trained by the sum of squares criterion (Hill and Lewicki, 2006). Battiti (1992) and

Bishop (1995) gives more information on the Levenberg-Marquardt algorithm and how it

can be implemented.

74

2.4 Neural networks as statistical modelling tools

2.4.1 Comparisons between neural networks and statistics

There have been a lot of dispute in the recent years whether neural networks are indeed

intelligent models or if they are just generalisations of statistical models. There is con-

siderable overlap between the fields of neural networks and statistics and for many neural

networks models there is an equivalent or similar statistical technique. Examples of neural

networks with their statistical equivalents are (Sarle, 1997):

• Single layer feedforward neural networks are closely related to generalised linear

models.

• Multilayer perceptrons with one hidden layer are closely related to projection pursuit

regression.

• Probabilistic neural networks is the same as kernel discriminant analysis.

• Kohonen networks are very similar to k-means cluster analysis.

These are not the only neural networks models that are closely related to statistical models

and a comprehensive list of neural networks with a competing statistical method can be

found in Sarle (1997).

One of the major claims from users of neural networks is that neural networks require no

distributional assumptions about the data. Bishop (1995) showed that neural networks

involve the same distributional assumptions as statistical models, but these assumptions

are often ignored by persons using neural networks. In contrast to this, statisticians study

the importance of the distribution assumptions and also the consequences leading from

75

whether the assumptions are satisfied or not. Studying the distributional assumptions is

obviously a very important aspect of modelling and this can be the difference between

a model that fits and generalises well to unseen data and using an inappropriate model

for the training data at hand. An example of a very important assumption which is

almost never checked by users of neural networks is that of whether the error terms have

a constant variance.

Neural networks are characterised by the algorithm that was used to train the network, for

example the backpropagation network, because the weights in the network are estimated

using backpropagation. The criterion that is used to fit the model is not important

for people coming from the field of neural networks. Statisticians however consider the

different training algorithms just as different ways of implementing the same model or

to be more correct, different ways to estimate the parameters in the regression model.

However if a different criterion is used to fit the model, statisticians view this as a different

estimation method with different statistical properties (Sarle, 1997).

In section 2.3.5 it was shown that minimisation of the sum of squares for error function is

done by using a numerical optimisation algorithm, the most often used being the gradient

descent method leading to the backpropagation neural network. Many of the methods

that are often used to fit nonlinear regression models like the Levenberg-Marquardt and

conjugate gradient algorithms can also be used to estimate the weights in a feedforward

neural network.

Regression and classification problems where both independent and dependent or target

variables are present in the training data are called supervised learning in the neural net-

work literature. Unsupervised training occurs where only independent or feature variables

are present with no dependent variables and the objective is to explain how the data is

organised or clustered. A well known technique for unsupervised training in statistics is

76

cluster analysis while Kohonen networks and adaptive resonance theory (ART) are ex-

amples of unsupervised neural networks. In sections 2.4.2 and 2.4.3 we will show how

regression can be expressed as a neural network and how neural networks can be used for

classification and regression problems encountered in statistics.

2.4.2 The regression problem

Regression is described as the problem of modelling a continuous dependent variable

as a function of continuous, and possibly categorical independent variables, where the

categorical independent variables can be coded as dummy variables. This means that

regression defines a function that maps all the inputs of an observation, xi, i = 1, . . . , p

to an output y, where this output is a continuous variable. This relationship between the

dependent and independent variables are modelled as a mathematical function, with a

number of adaptive parameters which needs to be estimated from the training data. A

regression model can be written in the form

ŷ = f(x,w) (2.19)

where w denotes the parameters that needs to be estimated.

In statistics, linear and nonlinear regression are most often used for this purpose. When

using parametric regression, the functional form f(·) is determined beforehand and the

parameters of the chosen model is estimated such that the model fits the training data

well and generalises well to unseen data. This model enables us to obtain a predicted

value for given values or levels of the independent variables.

A neural network can be considered as a particular choice of the mathematical function

f(·) in (2.24). Neural networks provide a very general basis for representing nonlinear

77

mappings from input to output variables and can be used to approximate the regression

function.

Suppose that a response Y is given by the value of a deterministic function, say h(·), of

the input variables X with an added error term which follows a normal distribution with

zero mean and constant but unknown variance σ2. This can be written as:

Y = h(X) + ε where ε ∼ N(0, σ2)

We now seek to approximate the function h(·) by a neural network function of the form

f(X,w) where w is a set of weights. This set of weights in the neural network is estimated

from a training sample data set.

Bishop (1995, pp.195–197) shows that maximum likelihood estimates of the weights w

under the assumption that the error term is normally distributed with zero mean and

constant variance corresponds to minimising the error sum of squares function

E =
1

2

n∑
i=1

(ŷi − yi)2

or if an observation consists of more than one response variable, the sum of squares for

error function takes the sum over all the outputs of the network

E =
1

2

n∑
i=1

K∑
k=1

(ŷik − yik)2

This is an important result which motivates the use of the sum of squares for error

function for training a neural network which will be used for regression. Furthermore

Bishop (1995, pp.201–206) shows that for a sufficiently general neural network, which

is trained by minimisation of the sum of squares function, the outputs from the neural

network approximates the conditional average of the response variable for given values of

78

the inputs x. This can be written as

ŷ = f(x,w) = E(y|x)

Sufficiently general in this context means that the neural network must be complex enough

to approximate the regression function closely. This result is of practical importance:

The importance of neural networks is that they provide a practical framework

for approximating arbitrary nonlinear multivariate mappings and can there-

fore in principle approximate the conditional average to arbitrary accuracy

(Bishop, 1995).

Regression as a neural network

We will now show how a simple regression model can be written as a neural network. The

linear regression model in statistics is defined as:

ŷ = f(x, β̂) = β̂0 + β̂1x1 + · · ·+ β̂pxp (2.20)

This can very easily be illustrated graphically as a single layer neural network (figure

2.13). The activation function used in this neural network is the linear activation function

given by f(x) = x. This need not be the case and a single layer layer network can

also be extended to accommodate nonlinear regression by choosing a nonlinear activation

function. One example of this is the generalised linear model in statistics, which is defined

as:

h(y) = β̂0 + β̂1x1 + · · ·+ β̂pxp (2.21)

79

Figure 2.13: Linear regression as a single layer neural network

where h(.) is called the link function. There are various link functions which can be used.

The choice of link function depends on how the data is distributed. One example of a link

function is the logit function defined by h(y) = y
1−y . For more information on generalised

linear models consult McCullagh and Nelder (1983).

If we write (2.21) as:

ŷ = h−1(β̂0 + β̂1x1 + · · ·+ β̂pxp) (2.22)

we see that we can also express the generalised linear model as a single layer neural

network with activation function equal to the inverse of the link function (Warner and

Misra, 1996).

This shows that simple linear and nonlinear regression models can be expressed as single

layer neural networks by using the appropriate activation function. The main difference

between neural network models and statistical models is in the way the parameters are

estimated. Regression models are most often fitted by using the sum of squares criterion.

80

Other error functions can also be used - for example the root-mean square error. The

sum of squares error is motivated by the principle of maximum likelihood for normally

distributed response data. Generalised linear models are also fitted by using the principle

of maximum likelihood for a variety of distributions which are members of the exponen-

tial class (Sarle, 1994). These lead to likelihood functions which are nonlinear in the

parameters and a numerical optimisation technique like Newton-Raphson can be used to

estimate the parameters.

The weights in a multilayer perceptron are estimated by directly minimising the chosen

error function with some numerical optimisation algorithm. The function that is most

often used for this purpose in regression problems is the sum of squares error function.

In section 2.4.2 it was stated that the use of the sum of squares error function can be

motivated from the principle of maximum likelihood when the error term is distributed

as a normal distribution with a zero mean and constant variance. This means that the

sum of squares error function is most appropriate when the conditional distribution of

the target variable, given the input variables, are normally distributed, typically with a

constant but unknown variance and that each of the training cases is independent. This is

very similar to the linear regression model. However, since we mostly use neural networks

for prediction and not for statistical inference, the sum of squares error function can be,

and is often, used for training any neural network that is going to be used for regression.

Therefore, the assumption of normality of the error terms can be relaxed and we only

need the error terms to have a distribution which is symmetric around zero. This point

will be further discussed in section 2.4.4.

81

2.4.3 Neural networks for classification

Classification is the task of assigning observations to a number of distinct categories or

classes. Classification in a statistical pattern recognition context can have two distinct

meanings. In the unsupervised learning case, the observations in the data set only contain

independent variables, hence there is no label to know to which true class the observation

belong. When this is the case, the aim is to establish whether there are any classes

or clusters in the training data. In the supervised learning case, classification means

that we are given measurements on continuous (and possibly categorical) independent

variables and we know for certain to which group these inputs belong. The aim is then

to derive a method or rule which can be used to classify an observation that does not

form part of the training data into a group. The training data contains both dependent

and independent variables, where the dependent variable is often a group label (Michie

et al., 1994, p.6). The supervised training case will be discussed in this section and for

the rest of the dissertation we will refer to supervised training for statistical classification

just as classification while unsupervised training means clustering of data. In statistics,

classification is known as discrimination. Examples of applications of classification is:

• Classify an applicant for credit as being a good or bad risk. The classification can

be based on variables such as age, income and marital status and these types of

applications are found in credit scoring.

• Identify handwritten postal codes on an envelope. The objective is to scan each

number and then use information available on the pixels in the scanned image to

classify the digit as a number ranging from 0 to 9. This is an example of pattern

recognition.

• In the medical field, a diagnosis of a disease can be made based solely on symptoms

and other measures, like blood pressure, ldl and hdl levels of the patient.

82

The classification problem in general

In a statistical context, the problem of classifying an input pattern to a specific class

is often termed pattern recognition. In this section we will give a general approach to

classification from a statistical point of view and this will help to give a clear understanding

of how neural networks can be used for classification. A more thorough approach to

statistical methods for classification can be found in Hand (1981).

It was stated earlier that the aim of classification is to assign observations to one of a set

of discrete classes Ck, k = 1, . . . , K. Classification can also be seen as problem of defining

a function, to map an input pattern x in the data set, to an output y, where y specifies

the class to which the particular inputs belong to (Fiesler and Beale, 1997).

Bayesian decision theory forms the foundation of statistical classification methods such as

discriminant analysis (Zhang, 2000). An overview of Bayesian decision theory will be given

which follows in a similar way as in Bishop (1995, pp.17–27). The most general description

for statistical classification using a Bayesian framework is in terms of the probabilities

that a given input pattern, say x = (x1, . . . , xp)
′, belongs to each of the possible classes

Ck. These probabilities are called the posterior probabilities and is written as P (Ck|x),

meaning that it is the probability of belonging to class Ck, given input pattern x.

The decision to which class an input pattern x should belong to can then be argued as

follows:

The probability of a classification error is:

P (Error|x) =
∑
i6=k

P (Ci|x)

= 1− P (Ck|x) if we assign to class Ck

83

If the objective is to minimise the misclassification rate, this then leads to the Bayesian

classification rule:

Decide Ck for x if P (Ck|x) = max
i=1,...,K

P (Ck|x)

This means that an input pattern x is assigned to the class with the largest posterior

probability P (Ck|x).

From Bayes’ theorem, it follows that

P (Ck|x) =
p(x|Ck)P (Ck)

p(x)
(2.23)

where p(x|Ck) is known as the class conditional density, P (Ck) is known as the prior

probability and p(x) is the unconditional density of the inputs. The class conditional

density p(x|Ck) can roughly be stated as the probability of observing an input pattern

x given that the pattern belongs to class Ck. The prior probability is the probability of

class membership before any observation is made on an input pattern. The denominator

in (2.23) can be written as:

p(x) =
∑
k

p(x|Ck)P (Ck)

and this term normalises the posterior probability, ensuring that all the posterior proba-

bilities sum to one, that is
∑K

k=1 P (Ck|x) = 1.

An input pattern is assigned to the class which minimises the probability of misclassifi-

cation. Thus an input pattern x is assigned to class Ck if

P (Ck|x) > P (Ci|x) for all i 6= k (2.24)

By using (2.23), and since the denominator is independent of the class Ck, (2.24) is

84

equivalent to

p(x|Ck)P (Ck) > p(x|Ci)P (Ci) for all i 6= k (2.25)

A pattern classifier provides a method which enables us to assign any point in the input

feature space, say x, to one of K distinct classes. We can consider this as the feature

space being segmented into K decision regions, denoted by R1, . . . , RK . An input feature

that falls in the region Rk is then assigned to class Ck. It should be noted that a decision

region does not necessarily have to be a closed region and that one decision region can be

made up of several disjoint decision regions which are all related with the same class. The

boundaries between these regions are called decision boundaries. Figure 2.14 illustrates

different decision regions that are possible in a two-dimensional input space.

Figure 2.14: Examples of possible decision regions (Schalkhoff, 1992, p.16)

Consider an example where we have two classes, C1 and C2, and the input vector is

two dimensional i.e. x = (x1, x2). The objective is to construct a decision boundary, or

decision regions R1 and R2, which will minimise the probability of misclassification. A

misclassification error will occur if we assign an input vector which belongs to class 1 to

class 2 or vice versa for an input vector which belongs to class 2. The probability of an

85

error can then be written as (Duda and Hart, 1973):

P (error) = P (x ∈ R2, C1) + P (x ∈ R1, C2) (2.26)

= P (x ∈ R2|C1)P (C1) + P (x ∈ R1|C2)P (C2) (2.27)

=

∫
R2

p(x|C1)P (C1)dx+

∫
R1

p(x|C2)P (C2)dx (2.28)

where P (x ∈ R2, C1) is the probability that the input x is assigned to class C2 when the

true class of the input is C1.

If, for a given value of the input vector, we have that P (C1|x) > P (C2|x), then from

(2.25), it follows that p(x|C1)P (C1) > p(x|C2)P (C2). From (2.26) we see that we need

to choose the regions R1 and R2 in such a way that the input pattern x is in R1 because

this will result in the smallest probability of a misclassification error. This is equivalent

to (2.24) in which a pattern is classified to the class with the largest posterior probability

of membership. This result is represented graphically in figure 2.15. In this figure it is

illustrated that for a two class problem, the probability of misclassification is minimised by

placing the decision boundary where the arrow is. This corresponds to where the densities

cross. If the vertical line is used for the decision boundary, we see that the probability

of misclassification becomes larger. This classification rule can also be generalised to the

case where a p-dimensional input vector x = (x1, . . . , xp) needs to be classified to one of

K classes, C1, . . . , CK .

The simple classification rule in (2.24) is the basis of many statistical methods for clas-

sification. Linear and quadratic discriminant analysis assumes that the class conditional

densities are multivariate normal distributions, with assumed equal or unequal covariance

matrices respectively. Two things should be noted about the simple Bayes classification

rule in (2.24). Firstly the class conditional density function needs to be estimated in order

to calculate the posterior probabilities. This can be done in a parametric or nonparamet-

86

Figure 2.15: Illustration of the optimal classification rule. (Bishop, 1995, p.25)

ric way and the interested reader is referred to Michie et al. (1994); Schalkhoff (1992)

for methods of density estimation. Secondly, the classification is done only to minimise

the probability of misclassification and this may not always be the most suitable criterion

since no provision is made for the different consequences associated with misclassifica-

tion. Misclassification of observations from a certain class may be seen as more serious

as misclassifications from other classes. An example of this is when a patient needs to

be diagnosed as either having a particular disease or not having the disease. It is much

more serious to classify a patient as not having the disease when the patient in fact has

the disease then it is other way around. This is an example where the cost of misclassi-

fication of a patient that does have the particular disease is very high compared against

the alternative classification. This cost of misclassification should then also be taken into

account when a classifier is constructed since this will improve the decision made.

An easy way to introduce the costs of misclassification is by using a loss matrix, say L,

where the elements Lkj specifies the cost of misclassifying an observation from group Ck

87

to Cj. The expected cost or loss of classifying an input vector x to group j is:

Lj(x) =
K∑
k=1

LkjP (Ck|x) j = 1, . . . , K

The function Lj(x) is known as the conditional risk function (Zhang, 2000). Following a

similar approach as for the derivation of the simple Bayes classification rule, the objective

is to minimise the overall expected cost:

Decide Ck for x if Lk(x) = min
j=1,...,K

Lj(x)

It can be shown that the optimal decision rule will be to classify an input vector to the

class Cj when

K∑
k=1

Lkjp(x|Ck)P (Ck) <
K∑
k=1

Lkip(x|Ci)P (Ci) for all i 6= j

An advantage of using posterior probabilities for classification is that a rejection criterion

can be introduced. In general when the posterior probabilities are all relatively low or

when the largest posterior probabilities are relatively similar it indicates that an observa-

tion cannot be assigned with enough certainty to a class. This means that there is a strong

overlap of classes in this region and this is where we expect most of the misclassification

errors to occur. If this happens, it may be better to not make a classification and rather

make use of manual classification, for example a human expert can do the classification of

that observation manually. If we introduce a rejection threshold this leads to the following

classification rule (Bishop, 1995, p.28):

if max
k
P (Ck|x)


≥ θ then classify x to Ck

< θ then reject x

88

Modelling discriminant functions Up to this stage, the classification task have been

based on modelling posterior probabilities. This involves assigning an observation to

the class with the largest posterior probability of class membership. It was also shown

how Bayes’ theorem could be used to relate this posterior probability to class-conditional

densities. These densities need to be estimated. An alternative method, which does not

involve estimating the class conditional densities, can be used in which we reformulate

the classification task in terms of a set of discriminant functions y1(x), . . . , yK(x). A

specific parameterised functional form for the discriminant function is chosen and then

the parameters function is estimated from a training sample.

The way in which discriminant functions are used for classification is to classify an input

vector x to class Ck if

yk(x) > yi(x) for all i 6= k

The decision boundaries can be seen as the areas where the discriminant functions are

equal. For example, if regions Rk and Ri are neighboring regions, then the boundary

which separates these two regions are given by the vectors in the input space where

yk(x) = yi(x)

The decision rule which is based on minimising the posterior probability of misclassifica-

tion as in 2.24 can be easily rewritten in terms of discriminant functions by choosing

yk(x) = P (Ck|x)

By using Bayes’ theorem 2.23, the discriminant function can be written as

yk(x) =
p(x|Ck).P (Ck)

p(x)

89

This can equivalently be written as

yk(x) = p(x|Ck)P (Ck)

since the denominator does not influence the classification. Now, since classification by

using discriminant functions are only influenced by the size of the discriminant function,

any monotonic function g(·) can be applied to the discriminant function without influ-

encing the classification made. For example, if we take the logarithm of the discriminant

function yk(x), then the discriminant function can be written as

yk(x) = ln p(x|Ck) + lnP (Ck)

Linear and quadratic discriminant analysis assume that the class conditional density func-

tion p(x|Ck) is multivariate normal with class mean vector µ
k

and class covariance matrix

Σk. The class conditional density for class Ck can be written as:

p(x|Ck) =
1

(2π)p/2|Σk|1/2
exp

{
−1

2
(x− µ

k
)′Σ−1(x− µ

k
)

}

If the class conditional densities are independent multivariate normal distributions, then

the discriminant functions can be written as

yk(x) = −1

2
(x− µ)′Σ−1

k (x− µ
k
)− p

2
ln(2π)− 1

2
ln |Σk|+ lnP (Ck)

This causes the decision boundaries to be quadratic functions in a p-dimensional space.

A simplification occurs when the class covariance matrices are assumed to be equal, in

which the decision boundaries reduce to linear functions in the p-dimensional input space.

Bishop (1995) shows that when the class covariance matrices are assumed to be equal,

i.e. Σk = Σ ∀k, then the discriminant functions can be written as

yk(x) = w′kx+ wk0

90

where

w′k = µ′
k
Σ−1

wk0 = −1

2
µ′
k
Σ−1µ

k
+ lnP (Ck)

These discriminant functions are linear in the components x and hence the boundaries

between the decision regions are also linear. A linear discriminant function is optimal for

normally distributed data with equal covariance matrices. More information on linear and

quadratic discrimination analysis can be found in Bishop (1995); Johnson and Wichern

(2002) and Hand (1981).

Neural networks and the classification problem

Using a neural network for classification can proceed in two ways. A neural network can

be set up to represent a nonlinear discriminant function enabling the network to directly

provide a classification when presented with an input pattern. The most general way

however is to model the probability of class membership for each input pattern x.

Some of the advantages of using a neural network to approximate the posterior probability

of class membership rather than using the network as a discriminant function includes

the following (Bishop, 1995, p.223):

Outputs sum to one: Since the outputs of the network can be interpreted as posterior

probabilities, they should sum to one. This can help to ascertain whether the network is

modelling the posterior probabilities with sufficient accuracy. A check of this is to average

the outputs from the neural network for a specific class over all the input observations,

and this should be close to the corresponding prior probability, which can be obtained

as the proportion of training sample observations which belong to this same class. This

91

means that:

P (Ck) =

∫
P (Ck|x)p(x)dx ' 1

n

∑
i

P (Ck|xi)

Different prior probabilities Sometimes the prior probabilities that are obtained from

the training data differ from what is expected or from the population prior probabilities.

The output from a neural network which models posterior probabilities can very easily

be adjusted to compensate for this difference in prior probabilities and without having

to retrain the neural network. The way in which this is done is by dividing the network

outputs by the prior probability which is calculates from the training data and then

multiplying this result with the correct prior probability to which you want to adjust

to. The results should then be normalised to ensure that the outputs sum to one Bishop

(1995, p.223).

Minimise risk As was discussed in section 2.4.3, the optimal classification rule may

not necessarily always be the one that minimise the probability of misclassification. This

is especially true if there are different costs associated with various misclassifications. The

objective is then rather to obtain a classification rule that will minimise the overall cost.

The posterior probabilities that are obtained from the neural network can be combined

with a loss matrix to arrive at a minimum cost decision. This can also be achieved without

having to retrain the original network.

Rejection threshold A rejection threshold can be used to reduce the probability of

a classification error as was discussed in section 2.4.3. This is easy to introduce when a

neural network is set up to model posterior probabilities and is achieved by only allowing

the neural network to make a classification if the posterior probability exceeds a specified

92

threshold level.

We will now show how a neural network can be set up for classification such that the

outputs from the network can be interpreted as posterior probabilities. We will start off

with the two-class classification problem, and the first error function that will be used

is the well known sum of squares for error. Then an alternative error function, called

the cross-entropy, will be introduced. This latter error function will later be extended to

classification with more than two classes.

It can be shown that training a neural network by minimising the error sum of squares

criterion, results in outputs that approximate the conditional average of the response data

(Bishop, 1995, pp.212–220):

ŷk(x) = E(yk|x) =

∫
ykp(yk|x)dyk

We can use the 1-of-K coding for the response variable, for example, let K = 4. This

means that we have four classes into which we can classify different input observations.

Then, by using the 1-of-K coding scheme for the dependent variable, the dependent

variable will be coded as follows:

Category y1 y2 y3 y4

Category 1 1 0 0 0
Category 2 0 1 0 0
Category 3 0 0 1 0
Category 4 0 0 0 1

Table 2.1: Example:1-of-4 coding scheme.

Now, if we train a neural network for classification, by minimising the sum of squared

error criterion over all the network outputs, where the 1-of-K coding scheme have been

used, we obtain

ŷk(x) = P (Ck|x)

93

This implies that these network outputs can be interpreted as Bayesian posterior proba-

bilities (Richard and Lippmann, 1991; White, 1989).

The network outputs ŷk, k = 1, . . . , K, can be shown to sum to unity since the response

variables yk sum to one for each observation when coded by the 1-of-K coding scheme.

Bishop (1995, pp.200–201) shows that the network outputs will satisfy the same linear

constraint indicating that the sum of the outputs for each observation will also be one.

The major problem when using the sum of squares error function with classification

problems, is that the probabilities are not guaranteed to lie between (0, 1) as they should.

It was stated in section 2.4.2, that the sum of squares error function is most appropriate

when the conditional distribution of the response variable, Pr(Y |X = x), is assumed to

be normal and the estimates of the parameters under this assumption corresponds to the

parameters derived from the maximum likelihood principle. It can be seen that the sum

of squares error is appropriate for regression problems. For classification problems, the

response variables are binary variables and have a Bernoulli distribution. This means that

although the sum of squares error function can be used to train a network for classification

problems, a more appropriate error function should be used.

We will now show that the most appropriate error function for classification problems are

called the cross-entropy error function which corresponds to maximum likelihood when the

response data follow a Bernoulli distribution. We will start of with the two class problem

and then in section 2.4.3 we will show that this error function can also be extended to

allow for more than two classes.

94

Classification of two classes using neural networks

For the two class problem, an observation should be classified to one of two possible

classes. One of two approaches can be followed for this problem. We can train a neural

network with two outputs, using the 1-of-C coding scheme for the response variables.

This method corresponds to what is done in section 2.4.3 and therefore it will not be

discussed now. The other method is to use only one network output ŷ and code the

response variables as a 1 if the input belongs to class C1 and a 0 if the input belongs to

C2.

Consider a two-class problem, where we use only one response variable y as was just shown.

We would like to construct an error function, such that the output from the network

ŷ = f(x,w) should represent the posterior probability that the observation is classified

into class C1 which is denoted as P (C1|x). This means that the posterior probability for

class C2 is then given by P (C2|x) = 1 − P (C1|x). This can be combined into a single

expression such that the probability of observing either of the response values is

p(y|x) = ŷy(1− ŷ)1−y

which is a case of a Bernoulli distribution. If we assume that the observations are inde-

pendently drawn from a Bernoulli distribution with probability of success ŷ ≈ P (C1|x),

the likelihood function can be written as:

L =
n∏
i=1

(ŷi)
yi(1− ŷi)(1−yi)

By taking the negative natural logarithm of this likelihood function we arrive at the

95

cross-entropy function

E = −
n∑
i=1

{yi ln ŷi + (1− yi) ln(1− ŷi)}

The absolute minimum of this function will occur when ŷi = yi for all i.

Bishop (1995) showed that the appropriate activation function to be used with the cross

entropy error function for the output of the network, is the logistic sigmoidal activation

function which is given by

g(a) =
1

1 + exp(−a)

This will ensure that the network outputs can be interpreted as probabilities. This is true

for a neural network with any number of layers. As long as the output layer uses a logistic

sigmoid activation function, the outputs will lie between 0 and 1 and can be considered

as probabilities.

This shows that when we train a neural network for classification purposes by minimising

the cross-entropy function

E = −
n∑
i=1

{yi ln ŷi + (1− yi) ln(1− ŷi)} (2.29)

the estimates for the weights w corresponds to maximum likelihood estimates and by using

a logistic sigmoid activation function for the output layer, the outputs from the network

ŷ can be interpreted as posterior probabilities of class C1 membership, i.e. ŷ = P (C1|x).

Classification of more than two classes

We now consider the case where an input has to be classified into one of K groups. The

objective is to arrive at an error function which can be used when the number of classes

96

is greater than two. Consider a neural network which has K outputs ŷk , k = 1, . . . , K.

Let the response variables y1, . . . , yK be coded using the 1-of-K coding scheme. We wish

to set up the neural network such that the probability of belonging to the k-th class,

given input x, should correspond to the k-th output from the neural network, that is

P (Ck|x) = ŷk. The conditional distribution of the response variable y
i

= (yi1, . . . , yiK)

given an input xi can be written as

p(y
i
|xi) =

K∏
k=1

(ŷik)
yik

(Bishop, 1995). Assuming that the input patterns are independently drawn, we can form

the likelihood function

L =
n∏
i=1

K∏
k=1

(ŷik)
yik

and by taking the negative logarithm of the likelihood function leads to an error function

of the form

E = −
n∑
i=1

n∑
k=1

yik ln ŷik (2.30)

Again we must choose an appropriate output unit activation function to match this error

function. Bishop (1995) shows that the softmax activation function is the appropriate

activation function to use in this case. The softmax activation function has the form

ŷk =
exp(yin−k)∑
∀k′

exp(yin−k′)

where yin−k denotes the net input into the k-th output neuron. The softmax activation

function has the properties that 0 ≤ ŷk ≤ 1 and
∑K

k=1 ŷk = 1 as required for probabilities.

A neural network for approximating the posterior probabilities of class membership where

the number of classes is greater than two, can be set up by using the error function in

(2.30) for training a network which uses a softmax activation function for the output units.

97

Under these conditions a sufficiently general neural network trained on a large data set

will approximate the posterior probabilities of class membership (Bishop, 1995).

Discriminant analysis

In section 2.4.3 it was shown that in order to minimise the probability of misclassification,

an observation should be assigned to the class with the largest posterior probability. The

posterior probability of class membership can be determined from the class-conditional

densities by using Bayes’ theorem (cf. section 2.4.3). These class-conditional densities then

need to be estimated from the data at hand. Another approach which avoids the need

of estimating the class-conditional densities, is to use discriminant functions in which the

form of the discriminant function is chosen beforehand and the parameters of the function

is estimated from the training data. These discriminant functions enables us to provide

a classification directly when provided with an input observation.

In this section we will discuss the way in which a neural network can be used to model

discriminant functions. We will see that a single layer network can be used for linear

discriminant functions including logistic discrimination which will be discussed in section

2.4.3. We will also explore the types of discriminant functions that a multilayer perceptron

can model.

We will begin by considering the two class classification problem. For this problem, we

need to define a discriminant function y(x) such that an observation will be assigned to

class C1 if y(x) > 0 and to class C2 when y(x) < 0. The simplest choice for the discrim-

inant function is to choose a function which is linear in the inputs x. This discriminant

function can then be written as

y(x) = w0 + w1x1 + · · ·+ wpxp (2.31)

98

Bishop (1995) shows that the decision boundary y(x) = 0, can be interpreted as a (p− 1)

dimensional hyperplane in the p dimensional input space and that the normal distance

from the origin to the hyperplane is given by

w′x

‖w‖
= − w0

‖w‖

An example of a linear discriminant function in a two dimensional input space is given

in figure 2.16. Here the decision boundary is found by finding the values in the input

space x = (x1, x2) which correspond to y(x) = 0. We can see here that the weights of

the decision boundary w = (w1, w2) determine the orientation of the decision boundary,

while the bias w0 determines the position of the decision boundary in the input space.

Figure 2.16: A linear decision boundary (Bishop, 1995, p.79)

A linear discriminant for a two class problem can be expressed as a single layer network

with a threshold activation function (Sarle, 1994), with one output similar to what is

shown in figure 2.2. A simple way to construct a neural network for discriminant analysis

is to code the response variable y as follows:

99

y =

 1 if observation is from C1

−1 if observation is from C2

By using this response variable, we can then train a single layer network by using back-

propagation. Once the weights in the network have been estimated we can then use it to

classify a new observation x, after it has been presented to the network. A classification

is made to class C1 if ŷ(x) > 0 and to class C2 otherwise. This is the same as using a

threshold activation function for the output neuron. A neural network that has been set

up in this way will construct a linear decision boundary to separate the two classes.

Extending this network to accommodate more than two classes can be done by using

one discriminant function yk(x) for each of the K classes. The simplest way to do this

is to let each of these K discriminant functions be linear in the components of x. Each

discriminant function can then be expressed as follows:

yk(x) = w′kx+ wk0

= wk0 + wk1x1 + · · ·+ wkpxp

=

p∑
j=1

wjkxj k = 1, . . . , K.

This can be expressed as a single layer neural network with K outputs as in figure 2.17.

Using this network, a classification to class Ck is made if

yk(x) > yk(x) ∀ k 6= j

A single layer neural network with a threshold activation function can only represent linear

decision boundaries which makes its use very limited. Linear discriminant functions can

be generalised by using nonlinear transformations of the inputs x1, . . . , xp. This expands

the range of decision boundaries that can be represented. A multilayer perceptron can

100

Figure 2.17: Using a neural network to model discriminant functions

be used to model generalised discriminant functions. Hornik et al. (1989) showed that a

neural network with a sufficient number of hidden nodes can approximate any function

to arbitrary accuracy. Figure 2.18 shows an example of the possible regions that a neural

network, with a different number of hidden layers can map. All these neural networks use

a threshold activation function for the output layer. It should be noted that the networks

in this figure should be read from the bottom upwards instead of left to right as we have

used up to now. The network in (a) is a single layer network. The network in (b) consists

of one hidden layer and the network in (c) consists of two hidden layers. The networks in

these examples only take two inputs in order to easily display the the classification areas

on a two dimensional graph.

101

Figure 2.18: Possible decisions regions generated by feedforward neural networks

Logistic discrimination

We will start with an overview of logistic regression in statistics and then show how this

can be linked to a single layer neural network with a sigmoidal activation function, which

is often called the logistic perceptron.

A logistic regression model is typically used in statistics to model a binary or dichotomous

dependent variable. We will now define the multiple logistic regression for a binary de-

pendent variable as is given by McCullagh and Nelder (1983). Let Y be a variable which

can take on the values 1 or 0. This can be used to identify whether a certain observation

belongs to one of two classes, a value of 1 indicating that the observation belongs to the

one class and 0 if the observation belongs to other class. The multiple logistic regression

102

model has the form

log

(
Pr(y = 1|x)

Pr(y = 0|x)

)
= log

(
Pr(y = 1|x)

1− Pr(y = 1|x)

)
= β0 + β1x1 + · · ·+ βpxp (2.32)

The term Pr(y=1|x)
Pr(y=0|x) is known as the odds. The logistic model indicates that we are mod-

elling the log(odds) (also known as the logit) as a linear function of the inputs x.

(2.32) can be rewritten as:

Pr(y = 1|x) =
exp (β0 + β1x1 + · · ·+ βpxp)

1 + exp (β0 + β1x1 + · · ·+ βpxp)
(2.33)

=
exp (g(x))

exp (1 + g(x))
(2.34)

By rewriting (2.32) as (2.34) we can see that the probability that an observation belongs

to class C1 for given values of the independent variables, that is Pr(Y = 1|x), is a function

that is nonlinear in the parameters β0, . . . , βp. These parameters in the logistic regression

model is estimated by using the principle of maximum likelihood.

It can be shown that the likelihood function for the two class logistic regression model

can be written as

l(β) =
n∑
i=1

{yi log pi + (1− yi) log(1− pi)}

=
n∑
i=1

{yi(β0 + β1x1 + · · ·+ βpxp)− log(1 + exp(β0 + β1x1 + · · ·+ βpxp))} (2.35)

(Hastie et al., 2001).

The values of the response variables yi are coded as 0 or 1 and pi = P (Y = 1|xi). Max-

imisation of this likelihood function with regards to the unknown parameters β0, . . . , βp

103

requires the use of numerical optimisation. The Newton-Raphson iterative algorithm is

often used for this purpose and details on how to estimate the parameters in the logis-

tic regression model using the Newton-Raphson algorithm can be found in Hastie et al.

(2001).

The binary logistic model can be extended to a K class problem. This is achieved by

choosing a reference class and then modelling the log(odds) of the K − 1 other classes,

each with respect to the reference class, as a linear function of the inputs x1, . . . , xp. The

K-class logistic regression model has the form

log Pr(G=1|x)
Pr(G=K|x) = β10 + β11x1 + · · ·+ β1pxp

log Pr(G=2|x)
Pr(G=K|x) = β20 + β21x1 + · · ·+ β2pxp

...

log Pr(G=K−1|x)
Pr(G=K|x) = β(K−1)0 + β(K−1)1x1 + · · ·+ β(K−1)pxp

(2.36)

where Pr(G = k|x) denotes the probability that an observation belongs to class Ck (Hastie

et al., 2001). The model specified in (2.36) uses the last class as the reference class, but

any of the K available classes can be used for this purpose without affecting the resulting

classifications from the model. Expressions for the probabilities of class membership can

be found from (2.36) and have the form

104

Pr(G = k|x) =
exp(βk0+βk1x1+···+βkpxp)

1+
∑K−1

l=1 exp(βl0+βl1x1+···+βlpxp)
, k = 1, · · · , K − 1

Pr(G = K|x) = 1

1+
∑K−1

l=1 exp(βl0+βl1x1+···+βlpxp)

(2.37)

The probabilities of class membership lies between 0 and 1 and the sum of all the proba-

bilities is one. The parameters in the K-class logistic regression model are estimated by

using the principle of maximum likelihood similarly to the 2-class problem.

Logistic regression models offer an advantage in that it can be used for statistical inference.

This implies that the model can be used to assess the effects of the different input variables

on the response variable by interpreting the model coefficients. Used as a data analysis

tool, typically many logistic regression models are fit to the data and the simplest model

which yields a good fit is chosen. A logistic regression model can also contain interaction

terms between the independent variables. More information on using logistic regression

for data analysis and inference can be found in Hosmer and Lemeshow (1989).

The logistic regression model is equivalent to using a single layer neural network with a

logistic activation function (Sarle, 1994). This is commonly known as the logistic percep-

tron. The output from the logistic perceptron is written as

ŷ = f(

p∑
j=0

wixi)

where x0, . . . , xp denotes the inputs and w0, . . . , wp denotes the weights and x0 = 1.

f(a) = 1
1+exp(−a) denotes the logistic activation function. The weights in the logistic

perceptron can be interpreted in a similar fashion as in the logistic regression model

(Schumacher et al., 1996).

105

The weights w = (w0, . . . , wp) in the logistic perceptron are determined by minimising

the sum of squares error function

E(w) =
1

2

n∑
i=1

(yi − ŷi)2

or by minimising the cross-entropy error function

E = −
n∑
i=1

{yi ln ŷi + (1− yi) ln(1− ŷi)}

The error functions can be minimised by using the backpropagation method (cf. Section

2.3.5) or any other numerical optimisation method. By using the cross-entropy error

function the estimates of the weights correspond to the maximum likelihood estimates

(cf. Section 2.4.3).

The main difference between the logistic perceptron model and logistic regression model

is that the weights in the logistic perceptron are usually obtained by backpropagation, i.e.

method of steepest descent, but is not restricted to this method of numerical optimisation

and the Newton-Raphson algorithm can also be used to estimate the unknown weights.

This implies that the logistic perceptron is equivalent to the logistic regression model

when the cross-entropy error function is minimised by the Newton-Raphson method.

The logistic perceptron can be extended to K classes by choosing a reference class and

then fitting separate logistic perceptrons for each class versus the reference class. This

approach is used often but the problem with it is that the probabilities does not sum to

one (Cherkassky et al., 1994). A more appropriate extension of the logistic perceptron to

the problem of K classes is the log-linear model for posterior probabilities.

Consider a feedforward neural network with linear activation functions. The target vari-

able can be coded using the 1-of-K coding scheme and the neural network provides an

106

output ŷk for each of the K classes. Ripley (1994) gives the error function, corresponding

to the log likelihood, for network training as

E =
K∑
k=1

yk log
yk

P (Ck|x)

where this is summed over all the observations. The posterior probabilities are given by

P (Ck|x) =
exp ŷk∑K
k=1 exp ŷk

k = 1, . . . , K

and a classification is made to the class with the largest output P (Ck|x) or equivalently in

this case ŷk. This log-linear approach is named softmax (Bridle, 1989). More information

on how to fit a neural network using softmax can be obtained in Cherkassky et al. (1994);

Ripley (1994).

2.4.4 Generalising capability of neural networks

The main aim of neural networks should not be to model or memorise the training data

exactly, but rather to model the underlying generator of the data, i.e. to build a statistical

model of the process or distribution from which the data in the training data set originates

from. This is very important if the neural network is going to be used to make predictions

on data that was not part of the training data set. The neural network literature describes

this as that the network must be able to generalise well to unseen data.

Training data can be regarded as being generated by some deterministic function of x

with added noise. This can be written as

y = h(x) + ε

107

where h(·) is a deterministic function and ε is a zero-mean error term which is added

to the response data. The main goal of neural networks is to model the function h(·).

Overfitting occurs when we allow the function that is fitted to the training data to become

too flexible and then interpolate the training data instead of modelling the underlying

process h(·), i.e. the model is fitted to the noise in the data.

Consider a simple example of fitting a polynomial to only 12 training observations (Hertz

et al., 1991). Say the data was generated by a second order polynomial with added

Gaussian noise having mean zero and a constant variance. The number of coefficients of

the polynomial fitted to the data determines the complexity or flexibility of the model.

If we fit a simple model, for example a straight line in this case, the model will not

generalise well because it is a poor approximation to the true underlying function. This

model exhibits a high bias. On the other hand, if we fit a polynomial of high order, the

model will be too flexible and will start to interpolate the training data. In the extreme

case of where we fit a polynomial of the same order as the number of training cases,

the model will fit the training data perfectly, but this model will generalise poorly since

we have fitted the model to the noise in the training data and not the true underlying

function. This model exhibits a high variance. An example which illustrates this point is

shown in figure 2.19.

Figure 2.19: (a) A model that approximates the underlying distribution well. (b) An
overfitted model (Hertz et al., 1991, p.147)

108

In this example, the sample data set was split into two parts. A training sample rep-

resented by the crosses and a test sample represented by the circle in figure 2.19. The

model is fitted using the training data, and the test data is used as a measure of perfor-

mance of the model. In the first graph we see that this model fits well and will generalise

well to unseen data. In the second graph, the overfitted polynomial fits the training data

perfectly, but will have poor performance on the unseen test data. This is due to that the

model complexity is too high and it gives a poor approximation to the true underlying

generator of the data.

This point can be best explained by the bias-variance trade-off. The bias-variance trade-

off states that the mean squared error of prediction, can be decomposed into a bias and

a variance component. Mathematically we can write this as:

MSE = E[(y − ŷ)2] = (y − E[ŷ])2︸ ︷︷ ︸
bias2

+E[(ŷ − E[ŷ])2]︸ ︷︷ ︸
variance

(2.38)

Variance and bias are complementary quantities and the goal is to select a model which

gives the best balance between bias and variance, leading to the smallest prediction error

when used for generalisation.

To enable neural networks to generalise well to unseen data, the complexity of the neural

network must be controlled. This can be done through two complementary approaches:

determine the correct network architecture and avoid overfitting of the network (De Veaux

and Ungar, 1994a). Both these approaches will be discussed in more detail.

The complexity of a neural network is determined by the network architecture and in

particular by the number of hidden layers in the network and also the number of hidden

units within each of these hidden layers. The complexity of the optimal neural network

model is determined by the number of training observations, the amount of noise within

109

the data and how complex the function is that we are trying to approximate (Svozil

et al., 1997). Generally there is no simple way to optimise the network architecture. A

multilayer neural network with one hidden layer and a large enough number of hidden

units is a universal approximator of any continuous function (Hornik et al., 1989; Hornik,

1991). This means that a neural network with one hidden layer is generally sufficient,

although the complexity of the problem may justify the use of a second hidden layer in

some cases. The other problem is choosing the number of hidden units. One approach

which can be followed is to try fitting neural networks with different number of hidden

neurons. For each of these neural networks an estimate of the generalisation error can be

obtained and the network with the lowest generalisation error can be used. An alternative

way of deciding on the amount of hidden neurons to use, is to start with a large amount

of hidden neurons and then prune the neurons until the network performance starts to

suffer. This is referred to as a pruning technique. The opposite version of this is a

growing technique in which you start with a very simple neural network architecture and

then make it more complex. More information on growing and pruning techniques for

neural networks can be found in Bishop (1995).

Another way to control the complexity of the network at hand is to use a sufficiently

general neural network, meaning a neural network with a large number of hidden units,

and then use an approach to prevent the network from overfitting. Overfitting is also

sometimes called overtraining the network. Estimation of the weights in a neural network

is done through training, which corresponds to minimisation of an error function on the

training set. For a neural network with many hidden units, the error rate on the training

data set will continue to decrease as the number of training epochs increases and the error

rate will become zero when the network perfectly fits the training data. This results in

an overfitted network with a poor generalising capability to unseen data. This means

that we cannot use the error on the training data as a measure of network performance

since for a neural network with many hidden units, the training error is a function of the

110

number epochs.

The first method which can be used to avoid overfitting is called early stopping. The

easiest way to implement this is to split the data into two samples: a training sample and

a validation sample. The neural network is trained using the training sample and after

each training epoch, the error made by the network is computed using the validation

sample. This is called the validation error. As training increases, this will cause the

training error to become smaller, but at some stage the validation error will start to

increase. This is indicative that the model is being fitted to the noise in the training data

and hence the model is being overfitted and training should be stopped. The training and

test error of a neural network with an increasing number of hidden nodes, or with a large

number of hidden nodes and an increasing number of training epochs, is shown in figure

2.20. We see that the training error continues to decrease with network training, while

the test error will reach a minimum and then increase after that point, indicating that a

network is being overfitted.

It should be noted that validation error does not provide us with a good estimate of

generalisation error (Svozil et al., 1997). A solution to this is to divide the data into three

parts: the training data, validation data and testing data. Calculating the prediction

error on the testing data will provide a good estimate for generalisation error. This is due

to the fact that the testing data set is not used in the training of the model. The problem

is that this method reduces the amount of data that is available for network training.

A more elaborate version of this split sample technique is called cross-validation in which

all the data is used for model training and a good estimate of generalisation error can be

obtained. This technique comprises of dividing the data into k equally sized subsets. One

of the k subsets is then left out and the network is trained on the remaining data. The

omitted subset is used to compute prediction error. This is repeated k times, each time

111

Figure 2.20: Using the split sample approach (Basheer and Hajmeer, 2000)

leaving out a different one of the k subsets. After repeating this procedure k times, the

values for prediction error can be combined to obtain an estimate for the generalisation

error of the network. For a discussion of the disadvantage of using cross-validation for

neural networks consult (Svozil et al., 1997).

Regularisation is another method which can be used to avoid overfitting of a neural

network. This method involves using a neural network with large number of hidden

neurons and the network is trained by minimisation of a penalised error function. This

penalised error function consists of the usual error function for example the sum of squares

for error, but added to this is a penalty term. The penalised error function has the form

Ẽ = E + vΩ

112

where Ω is the penalty term and v is called the regularisation coefficient. This penalty

term is chosen in such a way that it encourages smoother network mappings. One of

the simplest forms for the penalty term is to take the sum of squares of the weights in

the neural network. This is known as weight decay and is most often used as a method

of regularisation in neural networks. The penalty term when using weight decay can be

written as

Ω =
1

2

∑
∀i

w2
i

where this sum is over all the weights that are present in the network and the 1
2

in front of

the summation is to simplify computation (Bishop, 1995). In a statistical linear model this

method of regularisation is called ridge regression and is a method of coefficient shrinkage

(Hastie et al., 2001).

The objective of the penalty term as it is chosen when using weight decay is to penalise

large absolute values of the weights. Bishop (1995); Svozil et al. (1997) gives detailed

discussions of why large weights (in absolute value) decrease generalisation performance

of the network, but a basic general reason is that it increases the variance of the network

outputs.

Other forms of the penalty function exist which does not involve penalising the size of the

weights, as in weight decay. One such method is to choose the penalty term in such a way

to prevent fitting a network function with relatively high degree of curvature (Bishop,

1995). This is done by penalising a function with high curvature, since this increases the

variance of the network outputs resulting in an overfitted neural network. The penalty

term in this case will consist of the second derivative of the network function, since the

second derivative of a function gives an indication of curvature.

Bishop (1995, pp345–346) claims that the method of weight decay will give similar results

to early stopping when the sum of squares for error function is used as the criterion for

113

network training.

2.4.5 Conclusion

When neural networks first arrived onto the scene, lots of exaggerated claims were made

about the capabilities of neural networks. Some of the claims made were that neural

networks can be used without any experience and that they can be used as an automatic

modelling tool without having the need to learn more complicated statistical methods

(Sarle, 1994; De Veaux and Ungar, 1994a). These claims are not true for most applications

of neural networks for data analysis. Removing outliers from the data set before network

training and investigating the error distributions will increase the performance of the

neural network. This means that exploratory data analysis is still an important part

of the data modelling process and that neural networks cannot be made into a fully

automated process and does still need some human interaction (De Veaux and Ungar,

1994a).

For many neural networks, there is a statistical technique that can be utilised to perform

the same task as the neural network. These statistical techniques include generalised linear

models, nonlinear regression, nonparametric regression, discriminant analysis, projection

pursuit regression, principal regression and cluster analysis (Sarle, 1994). Some of the

similarities between neural network models and statistical models were discussed in this

section. For more information on relating neural network models to statistical models

consult (Sarle, 1994),

The question that is asked very often is, which one is better: statistical techniques or

neural networks? There is no clear-cut answer to this question. Both neural networks

and statistics have their place as modelling tools and the choice of technique depends on

114

the problem that needs to be solved.

Neural networks, like nonparametric statistics, does not impose any functional form on the

relationship between the dependent and independent variables. Multilayer perceptrons in

particular can be used as a flexible nonlinear model that, given the network has enough

hidden neurons and the training sample is large, can approximate any function to arbitrary

accuracy (White, 1992). The disadvantage of not imposing a functional form between the

dependent and independent variables is that the estimated coefficients in the model cannot

be interpreted (Stern, 1996).

Neural network models outperform statistical regression with regard to prediction accu-

racy when the dimensionality of the problem is high, the functional relationship that needs

to modeled is complex and the sample contains a large number of observations (Basheer

and Hajmeer, 2000). Neural networks are also shown to perform well even when the data

contains a high level of noise (Svozil et al., 1997).

When the focus is on statistical inference, regression models are more appropriate to use

than neural networks. Regression models allows a statistician to describe the underlying

process, generate hypotheses, provide confidence intervals, test the model assumptions

and investigate the data closely. On smaller data sets with low dimensional problems,

statistical techniques regularly outperform neural networks techniques and results in less

complex models which are easier and faster to fit computationally (Basheer and Hajmeer,

2000).

There is a vast number of papers available in which neural networks are compared to

statistical techniques. Comparative studies of regression neural networks and statistical

regression methods can be found in College et al. (1995). One of the most comprehensive

studies of supervised classification techniques in statistics, neural networks and machine

115

learning has been done by Michie et al. (1994). A thorough study between logistic re-

gression and neural networks for logistic discrimination has been done by Dreiseitl and

Ohno-Machado (2002).

Neural networks and statistics are not competing methods of data analysis. Neural net-

works is a nonparametric method that should rather be used to compliment other non-

parametric statistical methods since they can be useful in statistical applications and can

be an extremely powerful tool in a purely predictive problem. For this reason alone it

should get statisticians involved in the field of neural networks.

116

Chapter 3

Practical Application

3.1 Introduction

In this chapter the aim will be to implement a neural network to solve a business problem.

This problem is currently handled with a set of rules which have been decided upon after

trial and error testing. For this reason I think that it might be worthwhile to attempt to

use a neural network as an alternative to these rules. In the next section we will give an

overview of the type of neural networks that we will be using and also discuss some of

the theoretical aspects using results stated in section 2.3 and section 2.4. In section 3.3

we will conduct a small simulation study to show some characteristics of neural networks.

In section 3.4 a thorough description of the problem at hand will be given and in section

3.5 we will describe the data that will be used. The analysis and results will follow in

sections 3.6 and 3.7 respectively. In sections 3.8, 3.9 and 3.10 we will discuss various issues

regarding the performance of the neural networks, implementation of the neural network

and also some of the difficulties that were experienced during the analysis. We will end

this chapter with some final remarks in section 3.11 and then give some future research

117

topics in section 3.12.

3.2 Implementing neural networks

In this section we will describe how to use a neural network for a practical problem.

The aim will be to use a two-layer network and solve a regression problem and also a

classification problem. We will start by giving a short description of the neural networks

that will be used for these purposes. This description will include the way in which to

choose the architecture of the network, the appropriate activation functions and error

functions to use, and how the network will be trained. These topics have already been

discussed in general for neural networks in the literature review (cf. chapter 2). In this

section, we will use this knowledge to customise the networks specifically for the problem

at hand. These networks will be discussed in more detail.

3.2.1 Notation used

A description of the notation that is going to be used in this chapter will be given here.

This notation is the same as was used in the literature review but a complete summary

of the notation will be given to make things easier. We will start with the weights: The

weights that connect the input units to the hidden units will be denoted by w1jm. The 1

in the subscript specifies that the weight occurs in the first layer of adaptive weights, the j

subscript specifies the neuron from which the weight connect and the subscript m denotes

the unit to which the weight connects. The weights in the second layer are denoted

by w2mk and this follows the same methodology as those in the first layer. The i-th

observation is denoted by (xi, yi), where xi = (xi1, . . . , xip) are the independent variables

and y
i

= (yi1, . . . , yiK) denote the dependent variables. When working with a two-layer

118

network, we have that the weighted sum of the inputs forms the net input into the hidden

unit which are denoted by zin−m. For observation i, this is written as

zin−im =
M∑
j=0

w1jmxij

Remember that x0 = 1 denotes the bias term.The net-input is passed through the acti-

vation function and produces output

zim = f

(
M∑
j=0

w1jmxij

)

Following the same principle as above we have that the output ŷik, when the neural

network is presented with input xi is given by

ŷik = g

(
M∑
m=0

w2mkf

(
p∑
j=1

w1jmxij

))

To keep the notation simple, I will generally not specify the number of the observation

that is presented to the neural network, i.e. subscript i will be dropped from the notation.

This means that the output ŷk, when the neural network is presented with an input x

from the training sample is given by

ŷk = gk

(
M∑
m=0

w2mkf

(
p∑
j=0

w1jmxj

))

The aim is to keep the notation as simple as possible. If we have a look at the notation, we

will see that the subscript i is always used to refer to the observation number, subscript

j is always used to refer to an input unit or variable, subscript m is used to denote a

hidden unit and subscript k is used to refer to an output unit. The weights always follow

the convention in which the first subscript denotes the number of the layer of adaptive

weights in which the weight occurs, the second subscript denotes the input unit from

119

which the weight connects and the last subscript denotes the output unit to which the

weight connects. When there is only one output unit, which is often the case when the

neural network is to be used for regression, then the subscript k is dropped from all the

notation in the network. This means that the network output is then denoted by ŷ1 = ŷ

and the weights which connect the hidden-layer to the output-layer are denoted by w2m.

It can be seen that the notation is chosen in such a way that each subscript has a specific

meaning and hence can easily be dropped when it is not needed without any confusion to

what the remaining subscripts mean.

3.2.2 Neural network for regression

Our first aim will be to train a neural network for regression purposes. In section 2.3.5 we

derived the backpropagation rule for a general two-layer network trained by minimisation

of the error sum of squares. This derivation did not specify the form of the activation

functions. From the literature, it seems that the most appropriate activation functions to

use for a neural network is a sigmoid activation function for the hidden layer and linear

output activation functions (Bishop, 1995).

The neural network to be used for this specific regression problem consists of one depen-

dent variable and hence the network will only have one output node. This means that

K = 1 and that the subscript k can be dropped from the notation used for this neural

network. This network can graphically be illustrated as in figure 3.1.

The output from this neural network, ŷ, when presented with observation x is calculated

as follows:

ŷ = g

(
M∑
m=0

w2mf

(
p∑
j=0

w1jmxj

))
(3.1)

Recall from section 2.3.5 that the weight updates for a neural network trained by back-

120

Figure 3.1: Illustration of neural network that will be used for regression.

propagation is:

w
(t+1)
2mk = w

(t)
2mk + α(yk − ŷk)g′k(yin−k)zm (3.2)

= w
(t)
2mk + αδ2kzm where δ2k = g′k(yin−k)(yk − ŷk)

= w
(t)
2mk + α∆w2mk where ∆w2mk = δ2kzm

for the weights connecting the hidden layer to the output layer and

w
(t+1)
1jm = w

(t)
1jm + αf ′m(zin−m)

K∑
k=1

w2mk(yk − ŷk)g′k(yin−k)xj (3.3)

= w
(t)
1jm + αδ1mxj where δ1m = f ′m(zin−m)

K∑
k=1

w2mkδ2k

for the weights connecting the hidden layer to the output layer. For this particular neural

network that we are going to use we will use the logistic sigmoid activation function for

the hidden units:

fm(a) = f(a) =
1

1 + exp(−a)
(3.4)

121

We know that the derivative of the logistic activation can be expressed as follows:

f ′(a) = f(a)(1− f(a)) (3.5)

For the output units, a linear activation function will be used:

gk(a) = g(a) = a (3.6)

When a neural network is used for regression, the problem usually consists of a single

dependent variable (i.e. K = 1). This means that the objective is to choose the weights

in the neural network to minimise the standard sum of squares for error function

E[w] =
1

2

n∑
i=1

(yi − ŷi)2

or to minimise the error made by each pattern, given by

(y − ŷ)

over each one of the training observations.

If we use (3.2) we see that the weight update rules for the weights which connects the

hidden layer to the output layer for this particular neural network, i.e. a neural network

which has only one output, linear output unit activation functions and logistic hidden

unit activation functions, is given by:

w
(t+1)
2m = w

(t)
2m + α(y − ŷ)zm (3.7)

Notice that this is the online version of the backpropagation rule but this rule can easily

be extended by accumulating the weight updates until each observation in the training

sample has been presented to the neural network and then updating the rule, hence the

122

weights are only updated after each epoch. The batch weight updates is as follows:

w
(t+1)
2m = w

(t)
2m + α

n∑
i=1

(yi − ŷi)zim (3.8)

From (3.3) the weight updates for the weights which connect the input units with the

hidden units is given by

w
(t+1)
1jm = w

(t)
1jm + αw2m(y − ŷ)zm(1− zm)xj (3.9)

Again we can decide to accumulate the weight updates until each observation in the

training sample has been presented to the neural network, in which case the weight update

will be

w
(t+1)
1jm = w

(t)
1jm + αw2m

n∑
i=1

(yi − ŷi)zim(1− zim)xij (3.10)

Note that the subscript i is added to the above equation. This is just to make it clear

that the network was presented with observation i in the sample. Thus zim is the output

of the m-th hidden unit when the network was presented with observation i. This then

follows similarly for the output units.

3.2.3 Neural network for classification

A neural network will also be used for classification purposes. This neural network will be

used to classify an input to one of K mutually exclusive classes where the number K will

be greater than two. The way in which this problem is approached is by using a 1-of-K

coding for the dependent variable. This means that we code the dependent variable into

a number of dummy variables, with the number of dummy variables used being the same

as the number of categories that the dependent variable can take. The most appropriate

neural network for this problem seems to be a network with sigmoid hidden activation

123

functions, softmax output activation functions and number of outputs equal to the number

of categories that dependent variable can take on. The sum of squares error function can

be used to train this network but as was stated in section 2.4.3, the cross-entropy error

function would be more suitable for this problem. This will ensure that the outputs from

the network can be interpreted as posterior probabilities. The reason that I think this

will be useful is that we can then assign a threshold and say that only when the posterior

probability of a classification exceeds a certain threshold then we classify that specific

observation. I will now proceed to give an overview of the design of the network that will

be trained for classification purposes and how this network is to be trained using gradient

descent.

Graphically the network can be represented as in figure 3.2.

Figure 3.2: Illustration of neural network that will be used for classification purposes.

The network is trained by using a 1-of-K dependent variable coding and the output for

output node k, which is denoted by ŷk, when presented with observation x is calculated

124

as follows:

ŷk = g

(
M∑
m=0

w2mkf

(
p∑
j=0

w1jmxj

))
(3.11)

For this network the activation function for the hidden units is chosen as the logistic

function:

fm(a) = f(a) =
1

1 + exp(−a)
(3.12)

for which the derivative can be expressed in a convenient form:

f ′(a) = f(a)(1− f(a)) (3.13)

For the output units, we use the softmax activation function which means the predicted

value on output k is given by

ŷk =
exp(yin−k)∑K
k′=1 exp(yin−k′)

where
∑K

k′=1 exp(yin−k′) is the sum of the natural exponents of all the net inputs into

the output units. Hence, the softmax function basically ensures that the sum of all the

outputs add up to one. This is especially necessary when we want to interpret the outputs

as probabilities.

It was shown in section 2.4.3 that the most appropriate error function to use to train

a neural network for classification of more than two classes is the cross-entropy error

function given by:

−
n∑
i=1

K∑
k=1

yik ln(ŷik)

The gradient descent algorithm can then be used to estimate the weights in the neural

network that will minimise this error function.

Berka et al. (2009) shows that the weight updates when training a neural network, with

125

softmax output activation functions, by minimising the cross-entropy error function is

given by the following:

w
(t+1)
2mk = w

(t)
2mk + α(yk − ŷk)zm (3.14)

for the weights connecting the hidden layer and the output layer and

w
(t+1)
1jm = w

(t)
1jm + α

K∑
k=1

w2mk(yk − ŷk)f ′(zin−m)xj (3.15)

for the weights connecting the input layer and the hidden layer. These weight updates

are exactly the same as those found for a neural network with linear output activation

functions which is trained by minimisation of the sum of squares for error function. This

is because of the combination of the error function and the output activation function

which leads to the same equations for the weight updates when gradient descent is used

(Bishop, 1995).

When used with a logistic activation function for the hidden units, (3.15) then becomes

w
(t+1)
1jm = w

(t)
1jm + α

K∑
k=1

w2mk(yk − ŷk)zm(1− zm)xj (3.16)

3.2.4 Way forward

The two neural networks just described will form the foundation of this analysis. As this

is a first attempt at building a neural network, I will mainly fit these two types of neural

networks to the data and from this do comparisons against the current approaches that

are in use.

126

3.3 Simulations

Before we proceed with the business application, we will perform simulations to illustrate

the different neural networks that will be used for the business application. The aim of

these simulations will be to show how the neural network can be used for a regression

and for a classification problem. We will also show the effect of the hidden nodes in the

two-layer network. The programs that will be used for the simulations will be written in

the open source software package R and can be found in the appendix. These programs

are provided with a full set of comments for the interested reader.

3.3.1 Simulations illustrating the regression case

We will start by illustrating how a neural network can be used in the regression case.

Data will be simulated from the following function:

y = 1 + sin(0, 5x) + ε ε ∼ N
(
0; (0, 2)2

)
(3.17)

The aim is to use this data to train a neural network that will give a predicted value ŷ

when the neural network is presented with an input x. This means that we want to train

the network to give the best possible generalisation to unseen data.

From (3.17) we see that y is related to x through some function, say h(·), with added noise

which is denoted by ε. The aim of fitting the neural network is to model the underlying

generator of the data, which in this case is given by the function

y = h(x) = 1 + sin(0, 5x) (3.18)

127

If we simulate 16 observations from the function given in (3.17) and plot these data points,

together with the true underlying distribution, we obtain the scatterplot given in figure

3.3. From the scatterplot in figure 3.3 we see that our intent would be to fit a neural

Figure 3.3: Data simulated from the function y = 1 + sin(0, 5x) + ε, where ε is a normal
random variable with mean 0 and standard deviation 0,2 that is added to the y values.
The blue line indicates the true underlying function, given by h(x) = 1 + sin(0, 5x), that
we want to model with a neural network.

network, using the simulated data points, that will closely model the underlying generator

of the data given by the blue line. A neural network that will model the underlying

generator of the data, denoted by the function h(·), closely will have the best possible

generalisation to unseen data. This matter was discussed in more detail in section 2.4.4.

I will proceed by fitting a number of neural networks, each with a different number of

128

hidden nodes. These neural networks will be used to map an input x to an output y.

This simulation exercise will be used to illustrate the function of the hidden nodes clearly.

The neural networks that will be used for this purpose, will be two-layer backpropagation

neural networks, with logistic hidden node activation functions and linear output activa-

tion functions. The neural network will be trained on all the simulated data points for

1,000,000 epochs. The inputs, x, will be standardised when the network is trained. For

this illustration, I am not going to standardise the y values. The epoch with the lowest

error, calculated on the training data, will be used to show the function of the hidden

nodes in the neural network.

We will start by training a neural network, using the simulated data from (3.17), with

one hidden node. The fitted neural network, the underlying generator of the data and the

simulated data points are given in figure 3.4. We see in this plot, that the one hidden node

is not enough to model the function h(x) = 1 + sin(0, 5x) accurately. A neural network

with one hidden node can only model the logistic function and the best that the neural

network can manage with this limited complexity is clearly illustrated in figure 3.17.

By increasing the number of hidden neurons to two, we again fit a neural network to the

simulated data and this neural network is illustrated in fig 3.5. In this plot, we see that

inclusion of the extra hidden node enables us to model one of the turning points in the

function. Thus we can see that the extra hidden node increased the complexity of the

function that was fitted. Intuitively we feel that if we include another hidden node, it

should model the underlying function accurately.

We now proceed to increase the number of hidden nodes to three and repeat the simu-

lation. The fitted neural network from this simulation is plotted in figure 3.6. We see

from this plot that the neural network with three hidden nodes, accurately models the

underlying distribution, especially considering that we have such a small sample of data

129

Figure 3.4: Plot of neural network with one hidden node.

points to train the network on.

We see that three hidden nodes will be the optimal number of hidden nodes to train the

network on and that if we include more hidden nodes, the neural network will start to

overfit the data and the neural network will be fitted to the noise in the data. To illustrate

this point, a neural network with 20 hidden nodes is fitted to the simulated data. The

fitted neural network is given in figure 3.7.

From the fitted neural network in figure 3.7 we see that this neural network overfits the

data. We see that the large number of hidden nodes introduced too much complexity to

the neural network and the neural network interpolates the data points, i.e. the neural

130

Figure 3.5: Plot of neural network with two hidden nodes.

network is fitted to the noise in the data implying that it will not provide good generalising

capability to unseen data.

We see that the choice of hidden nodes is a difficult one, because if we have too few

hidden nodes, the neural network may not be able to accurately model the underlying

function as was shown in figures 3.4 and 3.5. On the other hand, if we have to many

hidden nodes, the neural network starts to fit the training data, and hence does not

model the underlying distribution of the data. This case is shown in figure 3.7. Thus we

see from these simulations that the number of hidden nodes directly controls the effective

complexity of the neural network. The question now is, how do we choose the number

of hidden nodes in the neural network, such that the network will accurately model the

131

Figure 3.6: Plot of neural network with three hidden nodes.

underlying relationship in the data, and not model the sampled observations.

Through simulation we will show two easy ways, in which the effect of overfitting can

be minimised. The above simulations were done on a small data set. Neural networks

typically perform better when the data sets are relatively large. Large data sets also seem

to limit the effect of overfitting as will be shown in the next simulation. The other factor

which can be used for better neural network training is to divide the data into a modelling

and a testing data set. The neural network is then trained on the modelling set, but after

each epoch, the network is tested on the testing data set and the prediction error on this

testing data set is then used to decide which neural network gives the best fit and will

have the best generalisation capability.

132

Figure 3.7: Plot of neural network with 20 hidden nodes.

An approach which seem to work relatively well when fitting a neural network is to split

the data into a modelling and a testing data set and then train a neural network which

have a relatively large number of hidden nodes but the neural network must be tested

after each iteration on the testing set. The large number of hidden nodes ensures that

the neural network will have the required complexity to accurately model the underlying

relationship between the model inputs and outputs, while the concurrent testing on an

independent testing set enables the learning algorithm to stop training before the neural

network starts to overfit the training data.

To illustrate the effectiveness of this approach, we will again use simulations. The ap-

proach used in this simulation will be the approach that will be used for the business

133

application later on, because it is very difficult to determine the optimal number of hid-

den nodes which should be used with the real life data.

For this simulation, we will again use the small sample of 16 observations, simulated from

the distribution given in (3.17). The aim is to illustrate that even with such a small

sample, splitting the data into a modelling (80%) and testing (20%) data set provides

benefit in limiting overfitting of the neural network. A neural network with 20 hidden

nodes will be trained. The model will be trained on the modelling data set, but after

each epoch, the model will be tested on the testing data set. The neural network which

gives the lowest sum of squared errors on the testing set will then be used as the final

neural network. The fitted network, together with true underlying relationship and the

modelling and testing observations are given in figure 3.8.

We see from figure 3.8 that even with so few datapoints, splitting the data into a modelling

and a testing data set provides an advantage as this seem to reduce overfitting of the

neural network. The fitted neural network gives a very reasonable approximation to

the true relationship between the inputs and outputs, especially considering the size of

the data set. For interest sake I will increase the number of obsevations to 200, again

simulating from the distribution given in figure 3.17. The data will again be split into a

80% modelling set and a 20% testing set. The fitted neural network is plotted in figure

3.9.

Figure 3.9 illustrates that the number of observations increases the accuracy of the neural

network to model the underlying relationship between the inputs and outputs. It can be

seen from these simulations that the approach of fitting a neural network with a relatively

large number of hidden neurons, and incorporating the testing on an independent data set

into the learning process, gives good performance as it ensures that the neural network has

enough complexity to model the underlying relationship between the inputs and outputs

134

Figure 3.8: Plot of fitted neural network through simulation to indicate the effect of an
independent testing set. The neural network has 20 hidden nodes and the neural network
with the smallest prediction error on the testing set is used in the plot (indicated by the
thick line). The dotted line indicates the true relationship between x and y. The dots
indicate the modelling data and the crosses the testing data.

accurately while minimising the effect of overfitting.

3.3.2 Simulations illustrating the classification case

In the previous section, a neural network was used in a regression context. This means

that the neural network was used to model the relationship between input variables and

a continuous output variable. Simulations were performed to assess the effect that the

number of hidden neurons have on the modelling in a regression context. The same

135

Figure 3.9: Plot of fitted neural network through simulation to indicate the effect of an
independent testing set. The neural network has 20 hidden nodes and the neural network
with the smallest prediction error on the testing set is used in the plot (indicated by the
thick line). The dotted line indicates the true relationship between x and y. The dots
indicate the modelling data and the crosses the testing data.

exercise will now be repeated in a classification framework.

Recall from section 2.4.3 that when using a neural network for classification, the objective

is to classify each observation into one of a distinct number of categories. Essentially, when

a neural network is used for classification, the neural network builds classification areas,

and each observation is then classified into a group corresponding to the classification

area into which that particular observation falls. The effect of the number of hidden

nodes in the trained neural network on these classification boundaries will be shown by

using simulation. Again we will also show that the most effective way of training a neural

136

network is by splitting the data into a modelling and testing data set and incorporating

the testing with the training algorithm.

To start, we will simulate data from 5 groups, each group containing 100 observations.

These data points are basically simulated from 5 different bivariate normal distributions,

each with its own mean and covariance structure. A plot of the simulated data is given

in figure 3.10. From this plot, we can see that there is overlap between the 5 groups,

indicating that perfect seperation between the groups will not be possible.

Figure 3.10: Data simulated from 5 different bivariate normal distributions. The colour
of the observation indicates the group to which the observation belongs to.

These simulations will be conducted by using a neural network that is set up for classi-

fication. The inputs to this neural network will be standardised and the outputs will be

137

coded according to the 1-of-K coding scheme, which means that for this specific example,

the neural network will consist of 3 inputs, which includes a bias term, and 5 outputs

corresponding to each of the 5 groups in the data. The hidden layer activation function

that will be used will be the logistic activation function and the output activation will be

the softmax function, which guarantees that the outputs can be interpreted as posterior

probabilities.

We start by training a neural network with one hidden node for a 100,000 epochs and

choose the neural network which gave the lowest missclassification rate measured on the

training data itself. The fitted classification areas from this neural network is presented

in figure 3.11.

Figure 3.11: Classification areas fitted by neural network with one hidden node

138

From figure 3.11 we can clearly see that the one hidden neuron that is used in this neural

network does not allow for sufficient flexibility and that only linear classification bound-

aries can be mapped by this neural network. This leads to a high rate of misclassifications.

It is clear from figure 3.11 that one hidden neuron does not allow for enough complexity

to accurately classify the observations and that we can lower the misclassification rate by

increasing the number of hidden neurons.

For the next simulation, the number of hidden neurons will be increased to 2 to see the

effect on the classification boundaries. The fitted classification areas for this simulation

together with simulated data is presented in figure 3.12. We see that two hidden nodes

offer a big improvement over using just one hidden node, but it still does not look like

the optimal classification areas.

Increasing the number of hidden neurons to 3, we find the neural network that is plotted

in figure 3.13. Three hidden nodes still does not seem to be sufficient, so we will proceed

to increase the number of hidden neurons until we get an optimal fit. The results of neural

networks fitted with four, five, six, seven and eight hidden neurons and the classification

boundaries that each of these neural networks fits can be found in figures 3.14, 3.15, 3.16,

3.17 and 3.18 respectively.

’

139

Figure 3.12: Classification areas fitted by neural network with two hidden nodes

140

Figure 3.13: Classification areas fitted by neural network with three hidden nodes

Figure 3.14: Classification areas fitted by neural network with four hidden nodes

141

Figure 3.15: Classification areas fitted by neural network with five hidden nodes

Figure 3.16: Classification areas fitted by neural network with six hidden nodes

142

Figure 3.17: Classification areas fitted by neural network with seven hidden nodes

Figure 3.18: Classification areas fitted by neural network with eight hidden nodes

143

From the neural networks that was fitted and presented in figures 3.14, 3.15, 3.16, 3.17

and 3.18 we see that the optimum number of hidden nodes seem to be around five or six.

Three or four hidden nodes seem to be too few and seven or eight hidden nodes seem to

be too many, as the neural network starts to overfit the training data. For interest’s sake,

we will also increase the number of hidden nodes to 50 to illustrate the results. This will

serve as a caution, not to just increase the number of hidden nodes because even though

this network will have lower prediction error on the training set, it will overfit severely

and not provide good generalising ability. The result of this simulation can be found in

figure 3.19. From the plot of figure 3.19, we see that the classification boundaries become

too specific to the current training data, indicating the noise in the data is being modelled

instead of the true underlying distribution.

Figure 3.19: Classification areas fitted by neural network with fifty hidden nodes

In the classification context, the need for a testing set is even higher and will provide the

best possible fit of a neural network. Similar to what was explained in section 3.3.1, the

data will be split into a modelling and testing set. After each iteration of the learning

144

algorithm on the modelling data, the misclassification rate will be calculated on the testing

set, and the weights from the epoch with the lowest misclassification rate on the testing

set will be used as the final neural network. For this simulation, we will use a neural

network with 20 hidden nodes, since the testing set will limit the overfitting of the neural

network. The result of this simulation is presented in figure 3.20.

Figure 3.20: Classification areas fitted by a neural network that uses a modelling and
testing set. The network was fitted using 20 hidden neurons and the weights which gave
the lowest misclassification rate on the testing set were chosen. The dots indicate the
modelling data and the * symbol indicate the testing observations.

From 3.20, we can see that this neural network provides a clear improvement over the

previously fitted neural networks. This approach of splitting the data into a modelling

and testing set and conducting the testing concurrently with the training of the neural

network seem to be very effective and this will be the approach that will be followed on

145

the business problem that is described in the remainder of this chapter.

3.4 Description of the problem

In this section we will give an in-depth description of the problem at hand. A thorough

description is needed to fully understand the problem. This is a complex problem which

is not currently handled by a statistical model but by a rules-based approach. The aim of

the neural network would be to see if we can build a model with comparative performance

to what we currently achieve with the set of rules. We will start by discussing where the

data originates from and then proceed to discuss the data set that will be used.

Lightstone is a company which employs an automated valuation model (AVM) to provide

estimates for the values of residential properties in South Africa. Lightstone purchases

data from the deeds office of all sales of properties in South Africa. This data is augmented

by data obtained from the banks, because there is a delay in the data from the deeds office.

This data is used by Lightstone to build its models and to provide an automated valuation

of a property. Basically there are two main models, namely a repeated sales (RS) model

and a comparable sales (CS) model which, together with various other measurements, are

used in order to determine a final prediction for a property. I will not describe the whole

process of how the repeated sales model and the comparable sales model work, but will

rather give an overview and references of these models and their methodologies which the

interested reader can consult.

146

3.4.1 The repeated sales model

In the repeat sales approach, house prices in a given location are determined by modelling

the inflation between the last two sales of the particular property. The current value of

the property is then derived by using the estimated coefficients from the regression to

inflate the property’s value from the previous transacted price to the current price.

The fundamental benefit of the repeat sales approach is that it captures the inherent

characteristics of a property the moment that property trades in the market. For example,

in the same area, a big house with good finishes will cost more than a small house with

average finishes. Thereafter, the model will differentiate between the big house and the

small house, without the need for any information on size or finishes of the house (which

is called hedonic data).

The repeat sales model is based on a regression method, wherein the log of the price

inflation between any two sale prices of a property is modelled as a function of the period

between the two transactions. In this model, it is assumed that prices are driven solely

by inflation (for example, we assume that two similar properties alongside each other will

have the same growth in value; we do not allow for the possibility that the one owned by a

pensioner may be more poorly maintained than the one owned by a younger person), even

though the property inflation rate may change from year to year. Different models are

tailored for separate market segments, which typically have different inflation patterns.

The repeat sales model which is fitted to the data will now be defined:

147

Notation

n number of properties in the area which have been sold more than twice during the time

period under consideration

ti1 year in which the first sale of property i took place

ti2 year in which second sale of property i took place

yti1 first sale price of property i

yti2 second sale price of property i

rk property inflation rate in year k, k = 1, . . . , T where k = 1 denotes the start of the

period under consideration (e.g. 2003) and k = T the end of this period (e.g. . 2006).

The model

Assuming that prices are driven solely by inflation, yti1 and yti2 are related by the formula:

yti2 =

ti2−1∏
k=ti1

(1 + rk)yti1

Then

Zi = log

(
yti2
yti1

)
=

ti2−1∑
k=ti1

log(1 + rk) =

ti2−1∑
k=ti1

ak

This means that our regression model will take on the following form:

Zi =

ti2−1∑
k=ti1

ak + εi =
T∑
k=1

akδik + εi i = 1, 2, . . . , n

where

δik = 1 if k ε ti1, . . . , ti2 − 1

= 0 otherwise

148

Finally, recognising the fact that the first and last sales are unlikely to take place on the

first day of the year (as the above formulation implies) and defining δik instead to be the

fraction of year k between the first and second sales of property i, then the above formula

for Zi will still apply, the only difference being that now 0 ≤ δik ≤ 1. (In fact δik could

only be different from 0 or 1 in the years when the property transacted.) Note that this

model is in the form of a multiple linear regression model for Zi = log
(
yti2

yti1

)
in terms of

the predictors δik , k = 1, . . . , T , over the n observations.

Model with an intercept

It is found in practise that the model which includes an intercept term usually produces

more accurate predictions, particularly for properties where the first and second sales are

close, say less than two years apart. In this case the model becomes:

Zi = a0 +
T∑
k=1

akδik + εi i = 1, . . . , n

Parameter estimation

Two approaches can be taken towards estimating the parameters ak , k = 0, 1, . . . , T in

the model:

1. Ordinary least squares, which assumes the error terms εi all have the same variance.

2. Weighted least squares. This is based on the assumption that the errors follow a

normal diffusion process (i.e. the errors in the unlogged model follow a lognormal

diffusion process), which in turn implies that the error variance is proportional to

the period between the two sales. Thus, for example, sale prices that are four years

149

apart will have half the weight of sale prices that are two years apart in the fitting

of the model.

Note on the data set used for fitting the model

In order to use the repeated sales model, only transactions which have transacted at least

twice can be included into the modelling data set. Lightstone uses only records where the

most recent sale (second sale) of the property was within the last 21 months. One can use

all the records which had two or more sales, but since we are trying to give a prediction of

the value of the property currently, it was found that by only using the most recent data,

the regression is skewed towards current trends which gives us a more accurate prediction

of what is currently happening in the market.

The model also assumes that the properties which have transacted, sold for a market

related price and that the property have not undergone significant changes. Lightstone

have developed various methods to flag the records which do not meet these requirements

and these records are not used in the modelling data set.

Modelling Segments

Lightstone have developed segments into which properties are classified. It is found that

properties which fall into different segments experience different rates of inflation and that

is why the following modelling segments are used and a repeated sales model built for

each of these modelling segments:

1. A: Township

150

2. B: Very poor and poor

3. E1: Freehold not too poor metro

4. E2: Freehold not too poor non-metro high activity

5. E3: Freehold not too poor non-metro low/med activity

6. F: Sectional title not too poor

7. G1:Freehold comfortable metro

8. G2: Freehold comfortable high activity

9. G3: Freehold comfortable non-metro low/med activity

10. H: Sectional title comfortable

11. I: Freehold wealthy

12. J: Sectional title wealthy

13. K: High density

14. L: Estates

15. Z1: Freehold unclassified properties

16. Z2: Sectional title unclassified properties

Prediction from the fitted model

Denote the predicted log-ratio for a property, based on this model, by

Ẑ =
T∑
k=1

âkδk

151

, where the δk, k = 1, . . . , T are determined by the year of its previous sale. A prediction

of the value of the property at t2, when that same property transacted for an amount y1

at time t1 is then given by

ŷ2 = y1 exp(Ẑ) = y1 exp

(
T∑
k=1

âkδk

)

This is the basic theory for the repeated sales model to provide a prediction for a property.

For information on repeated sales methodology the interested readers can consult Bailey

et al. (1963); Wang and Zorn (1997); Meese and Wallace (1997).

3.4.2 Comparable sales model

In the comparable sales approach, the property value is determined from current values of

’comparable’ neighbouring properties, based on historical sales indices linked to current

values. The comparable sales approach is built on three data sets:

• Freehold properties

• Sectional title properties

• Freehold properties in “residential estates”

The data set for Freehold and Sectional title carries information on three levels:

• For the specific Enumerator Area (EA) /Sectional title/Estate for (inflated) sales

for the last two years

• For the specific EA /Sectional title/Estate for (inflated) sales for the last five years

152

• If fewer than five sales have occurred in the last two years, then the data for the

EA is pooled with the closest EA of the same wealth segment. For Sectional Title

properties, the data for the scheme is pooled with the data for other schemes in

the same EA. No pooling takes place for Estates, beyond the Estate in which the

subject property is located.

The data sets contain the distribution of sales prices (inflated to reflect current values using

the coefficients developed in the repeat sales model), and property sizes, as well as the

mean and median rand per square meter calculated over all the sales in the EA/Sectional

Title/Estate/Pooled group.

Although the comparable sales tables are based on the deeds data it is tested on the

mortgage application data to establish the accuracy of the predictions.

Rules for making a prediction

The tables are used to derive a prediction for a specific property according to the following

set of rules:

Sectional Title Properties

In general, sectional title prices are dependent on the erf size of a unit within a sectional

scheme, with larger units selling for more and smaller units selling for less. Thus, a

comparable sales (CS) prediction for sectional title units is calculated by multiplying the

unit’s erf size with the average or median 1 Rand per sqm for that particular sectional

1The mean is used when it lies between the first and third quartiles of the inflated purchase price
distribution, otherwise the median is used. This logic is used throughout.

153

scheme. In the case where a unit’s erf size is unobtainable, either the mean or median

price of units in that sectional scheme is used as the predicted value for that unit.

Rules determining which set of information to use:

• If the number of transactions in the last two years within the same sectional scheme

is more than three, then this distribution will be used

• If the above is not satisfied, and the number of transactions in the last five years

within the same sectional scheme is higher than three, then this distribution will be

used

• If the above points are not fulfilled, and the number of transactions in the last two

years for all the sectional schemes within the same EA is greater than three, then

this distribution will be used

• If there are more than three transactions in the last two years for all the sectional

schemes within the same EA and one adjacent EA (next to the one in which the

subject property is located) of similar profile EA (i.e. same wealth classification –

wealthy, poor, etc.) and the above criteria are not satisfied, then this distribution

will be used

• If the above points are not fulfilled, and the number of transactions in the last two

years for all the sectional schemes within the same EA and two adjacent similar

EAs is greater than three, then this distribution will be used

• If the above points are not fulfilled, and the number of transactions in the last two

years for all the sectional schemes within the same EA and three adjacent similar

EAs is greater than three, then this distribution will be used

• If the above points are not fulfilled, then regardless of the number of transactions,

the distribution of purchase prices for all the sectional schemes within the sub-place

154

for transactions in the last two years will be used.

Freehold properties

Since freehold property (FH) prices are more variable and not as dependent on the prop-

erty’s size as sectional title properties, the first quartile, mean, median or third quartile

inflated price for properties within the closest possible area is most often used as the pre-

dicted value. The exception to this is when variation in purchase prices is closely linked

to the variation in erf sizes; a rand per sqm calculation will then be used, provided the

property’s erf size is not missing.

Rules determining which set of information to use:

• If the number of transactions in the last two years within the same EA or surrounding

similar EAs, if necessary, is five or more, then this distribution will be used.

• If the above is not satisfied, and the number of transactions in the last five years

within the same EA is five or more, then this distribution will be used.

• If the above points are not fulfilled, and the number of transactions in the last two

years within the same EA and adjacent similar is five or more, then this distribution

will be used.

• If the above points are not fulfilled, the distribution of purchase prices for transac-

tions in the last two years within the same EA and two adjacent similar EAs will

be used.

• If the above points are not fulfilled, the distribution of purchase prices for transac-

tions in the last two years within the same EA and three adjacent similar EAs will

be used.

155

• If the above criteria are not satisfied, then regardless of the number of transactions,

the distribution of purchase prices for transactions in the last two years within the

sub-place (SP) will be used. A sub-place is an area which is bigger than an EA but

smaller than a suburb.

• The previous sales price of the property is being compared with the price distribution

for that year, to establish whether the property should receive a comparable sales

estimate of the current price distribution’s midpoint, or its quarter point or its three

quarter point.

For example, if in an EA a property sold in 2008 at a price which were in the

lower quantile of all sales for FH properties in that EA in that year, then the Q1

comparable sales price gets allocated to the current sale. Were the previous price

to have been in the top quantile of prices the Q3 price would have been allocated as

the CS prediction for the property. Where there were not sufficient sales in the year

of the previous sales, all sales are inflated to current values and the relative position

of the property in the overall price distribution is used to determine whether Q1,

mean or median or Q3 CS value should be used.

Freehold properties within estates

The estimation of a freehold property’s value within an estate is derived in the same way

as for freehold properties outside of estates.

Rules determining which set of information to use:

• If the number of transactions within the same estate in the last two years is more

than three, then this distribution will be used

156

• If the above is not satisfied, and the number of transactions in the last five years

within the same estate is more than three, then this distribution will be used

• If the above two points are not fulfilled, and the number of transactions in the last

two years for freehold properties within the same EA (circling out to surrounding and

similar EAs if volumes are insufficient) is greater than three, then this distribution

will be used

• If the above three points are not satisfied, then regardless of the number of trans-

actions, the distribution of purchase prices for all freehold properties within the

sub-place will be used.

The rules stated were well tested before it was implemented and were found to be optimum

when providing a prediction for a property from the comparable sales model.

3.4.3 Combining of predictions

After obtaining the predictions from the repeated sales model and the comparable sales

model Lightstone proceeds to combine the predictions from both these models in a statis-

tical way. This combining helps to overcome some of the problems that are experienced

when the models are used separately. To describe the advantages of combining these two

models let’s first look at the advantages and disadvantages of each model separately.

We will start with the advantages of the repeated sales model:

• If no hedonic data, i.e. data on the characteristics of the property, is available, the

repeat sales model would still be able to provide a prediction since the characteristics

of a house is inherently captured in the purchase price. This means that it is

157

not necessary to have the characteristics of the house, because a bigger house will

transact for more than a smaller house in the same area, if the transactions are

arms-length deals and the property sold for a market related price.

• The approach models the real inflation based on properties that have sold more than

once during the modelling period. Other approaches (e.g. comparing the average

price in an area from one time period to the next to calculate the inflation) are based

on the assumption that the properties transacting in each period are representative

of the properties in the areas. This assumption is often incorrect. Consider the

example where an established area holds 50 properties that churn at 10% a year

(i.e. five transactions per annum). Assume that the properties in year 1 had an

average price of R500 000 and that the properties in the area were appreciating at

10% per annum. Then, in year 2 a new high-end development is completed with

ten properties selling for R1million per unit each. This would obviously skew the

inflation calculation substantially.

The advantages of the comparable sales model is:

• When we know which area a property falls into, we can obtain a prediction from

the comparable sales model, even though there may be no previous purchase price

for that property.

Some of the disadvantages to using these two models separately are

• Repeat sales model

– A prediction can only be generated if there was a previous sale on the property

since we need a price of the property to inflate using the estimated coefficients.

158

– If the price that we inflate using the estimated coefficients from the model is

wrong, the prediction from the repeated sales model will be inaccurate. This

can easily happen when there are capture errors in the data or if the property

has sold previously for a price which was not market related.

• Comparable sales model

– The prices of properties in some areas may have a bimodal distribution and

care should be taken when applying a comparable sales approach to properties

falling in such areas as the comparable sales from the more expensive properties

in the area may average out those prices from the less expensive homes in the

area providing an unreliable prediction from the comparable sales model.

– The comparable sales approach alone does not allow for sufficient differentiation

of prices within a geographical area.

As we can see, if we can combine these two estimates in an effective way, we can try to

negate the disadvantages from using each of these models separately and more impor-

tantly, provide the most accurate possible estimate of the current value for a property.

Before we can show how Lightstone combines these estimates we need to describe what

the safety and accuracy score of each prediction is.

Safety and accuracy scores

Every prediction (from both the repeat sales model and the comparable sales model) also

has two diagnostic scores attached to it:

• The accuracy score, which is the probability of the prediction being within 20% of

the actual value of the property.

159

• The safety score, which is the probability that the prediction does not exceed the

actual value of the property by more than 10%.

These accuracy and safety scores are built using logistic regression models using mortage

application data from the various banks. Six logistic models are used to derive the fol-

lowing scores:

• Repeat sales accuracy score

• Repeat sales safety score

• Comparable sales accuracy score

• Comparable sales safety score

• Combined prediction accuracy score.

• Combined prediction safety score.

Combining Predictions from the two Models

Suppose one has both repeated sale and comparable sales predictions for the price of a

house, each one with its own accuracy score, and you want to combine them in an optimal

way, in order to maximise the accuracy and safety score for the combined prediction

(COMB).

I will not present the proof here, but if we assume that we have two predictions, in this

case one from the repeated sales model, say X1 with standard deviation σ1, and one from

the comparable sales model, say X2 with standard deviation σ2, it can be shown that the

optimal combination of the two predictions is:

160

Xcomb =

(
σ2

2

σ2
1 + σ2

2

)
X1 +

(
σ2

1

σ2
1 + σ2

2

)
X2

with standard deviation

σcomb =

(
1

σ2
1

+
1

σ2
2

)− 1
2

The accuracy and safety score for the combined prediction can also be obtained by using

logistic models as was discussed earlier.

3.4.4 Rules For Determining The Choice Of The Final Predic-

tion

Lightstone most often uses the combined prediction as an estimate of the value of a

property since the combined prediction tends to give a more accurate prediction because

it is a weighted combination of two predictions rather than a single prediction. There

are however times, when this prediction can be deemed unreliable and the repeated sales

prediction or the comparable sales prediction is closer to the actual value of the property.

Another problem can be that one of the two predictions from which the final prediction is

derived, can be unreliable which means that the combined prediction may also not be as

accurate. For example, we may have that the repeated sales prediction may be unreliable

but the prediction from the comparable sales model is reliable. In this instance, we may

not want to use the combined prediction because of the influence from the unreliable

repeated sales prediction and would rather like to use the comparable sales prediction

as the estimate for the value of a property. Various rules are also used to determine if a

particular transaction was a arms-length transaction. This will give an indication whether

the price, that we use to inflate off using the repeat sales coefficients, is a reliable price

and hence if the repeat sales prediction is an accurate estimate.

161

Lightstone has developed a set of rules which aim to pick the correct prediction from the

three possible predictions at hand (the repeated sales model prediction, comparable sales

model prediction and also the combined prediction). These rules will not be given here

but the basic idea of these rules is to determine whether a specific prediction is reliable

by looking at the standard error of the prediction, the accuracy score and the safety score

of the prediction and also the relative sizes of these predictions with regards to each other

in order to pick the best possible prediction.

3.4.5 Aim

To summarise, the current approach that Lightstone employs is that we obtain a repeated

sales prediction from the current data and together with this prediction we also obtain

a standard deviation, and a safety and accuracy score. For the comparable sales model,

we also have a prediction, standard deviation for this prediction, and then a safety and

accuracy score attached to the prediction. These two predictions are then combined

to form a combined prediction, together with a standard deviation, safety score and

accuracy score. This means that there are basically three estimates for the value of the

property which can be used. Lightstone then uses rules to determine which of these three

predictions is the best prediction for the value of the property.

There are however two problems with this approach. The first is in the way the predictions

from the repeated sales model and the comparable sales model are combined. It is basically

assumed that both these predictions follow normal distributions and the final prediction

is derived as a weighted average of the two predictions where the estimated standard

deviations of the predictions determine the weights which are used. It may be that the

distributions for the individual predictions may not satisfy the assumption of normality

and hence the two predictions may not be combined in the most optimal way.

162

The second problem has to do with the rules that are used to determine the best prediction.

These rules were derived by using trial and error to see what works and what does not

but it is very difficult to keep track of what each rule does. It is also difficult to add

new rules because any new rule may override some of the previous rules that are in use

and then actually end up performing worse than before. As an example of this, assume

that the true value of a property is R7 500 000. The property is much larger than the

properties in the immediate surrounding area and therefore the estimate of the property

from the comparable sales model is R2 000 000. The repeated sales model prediction is R8

000 000 and the combined prediction is R3 000 000. Now under the current rules in use,

the prediction for this property is R3 000 000. This is of course not correct and a better

prediction would have been the repeated sales model prediction of R8 000 000. If you go

and add a rule such that for this particular case the prediction reverts to the repeated sales

prediction of R8 000 000, it will more often than not cause lots of other predictions to also

revert to the repeated sales model prediction, where in fact the combined prediction would

have been a much better prediction and hence one ends up overall actually performing

worse than before. Another problem is that the rules needs to be updated quite often

since the property market changes and rules that have worked a few months ago may not

be as effective when used now.

The first aim of this research would be to investigate if a neural network will not perhaps

provide a better way to combine the estimates from the repeated sales model and the

comparable sales model. The inputs to the neural network can be the various predictions

together with their standard deviations, safety scores and confidence scores. These need

not be the only inputs into the neural network and I will also experiment with other

inputs to try and improve the combining of the predictions. Two that come to mind at

this stage are the churn rate of the properties in a specific EA, and also the modelling

segment into which the property falls. This will of course need to be experimented with

and tested. The aim of this neural network would be to combine the predictions from

163

the two available models, by using the safety and accuracy scores and also various other

inputs, to arrive at the best possible final prediction. This means that this model should

in some way distinguish between when it is appropriate to weigh one prediction more

and the other prediction less and vice versa. This is not impossible since we also have

standard errors and indicators of the confidence we have in each of the estimates. This

will be the first aim, to see if a neural network would not be able to do this combining in

a more efficient way, such that the combined estimate from the neural network can always

be used as the final prediction.

The second method that will also be experimented with is to use the current way of

combining the estimates and then train a neural network that will be able to pick the best

of the three available predictions, i.e. the repeated sales model prediction, the comparable

sales model prediction or the combined prediction. The inputs to the neural network can

be the different predictions, together with their safety and accuracy scores and various

other inputs which we will look at in section 3.5. For this problem, we would then like

the neural network to pick up the trends in the data and distinguish when a specific

observation is considered a reliable observation. Some of the additional inputs to this

network can be for example churn rate of properties in an area, since this may mean that

the comparable sales model may provide a reliable estimate.

The reason why we are choosing to use these two methods is because the first method that

we are going to try is an example of using a neural network in a regression context while

the second method is for using a neural network in a classification context. These two

problems will enable us to learn how to use a neural network for statistical problems and

will therefore be very useful if we wish to use a neural network for a statistical problem in

the future. This problem at hand is also quite complex in the sense that there might be

multicollinearity present between the independent variables. It will also be seen from the

data that there are quite a lot of inputs which can be used by the neural network but not

164

all of these inputs will provide meaningful information to the neural network. Therefore,

there is quite a large exploratory data analysis phase to this study in order to determine

the most appropriate inputs for the neural network.

3.5 Description of the data

I will now proceed to give a description of the data that will be used for building the

neural network. This data set is obtained from mortgage application data that Lightstone

collects from the banks which use their system. When Lightstone’s AVM is used to do a

valuation on a property, the user is required to enter a purchase price for the property.

All this information that the desktop valuer at the bank enters is captured and a process

is then used to see if this purchase price can be regarded as appropriate and therefore be

used as the price at which the property is going to transact. These records are the ones

which are going to be used for building the neural network.

Records from January 2009 to May 2009 were combined into one data set. From this data

set, various checks and techniques were used to clean the data. This includes checking

to make sure both the repeated sales and comparable sales are usable predictions, ensure

that the purchase price which was entered by the valuer can be deemed as a valid purchase

price at which the property will transact for and also removing data that can be considered

as outliers. For the excluding of outliers, we looked at records which had extreme values

(compared to the rest of the data) on one or more of the variables that are going to be

considered for inputs to the neural network, and also records which had extreme values

on the purchase price. These data cleaning techniques are used to make sure that the

data set that is used for building the neural network contains only dependable records.

We will now continue and give a broad overview of the variables that will be considered as

165

inputs to the neural networks. It should be noted that this data set contains a very large

number of variables, but most of the variables will not be useful in this specific problem.

Therefore, I am going to give a description of the variables which are considered to be

relevant in helping to solve this specific problem at hand. It should be noted, that this is

done purely in a logical way, and not all the variables that are given here will be included

into the final neural network. The variables that are finally included in the neural network,

will be decided upon using exploratory data analysis and also by experimenting with a

few neural networks. This involves including certain variables into a neural network and

then excluding the variables to see if the variables really do contribute to increasing the

performance of the neural network.

We will start by giving an explanation of the variables that are deemed to have an influence

in the picking or combining of the optimal prediction. It is stressed again that these

variables are only potential candidates for inputs to the neural network and will not

necessarily all be included in the neural network that is going to be used. Each variable

name (as it occurs in the data set) together with a description of the variable are going to

be given here. We will start with available predictions together with their accuracy scores,

safety scores and standard errors as these variables are deemed to be the most important

inputs. Then we will name a few other variables which may also have an influence and

add extra information to the model. The variables which will be considered as inputs to

the neural network are:

166

Variable name Description

predval rs Prediction from the repeated sales model.

p ab rs Accuracy score for the repeated sales prediction.

p 90 rs Safety score for the repeated sales prediction.

sigma rs Standard error of the repeated sales prediction.

predval cs Prediction from the comparable sales model.

p ab cs Accuracy score for the comparable sales prediction.

p 90 cs Safety score for the comparable sales prediction.

sigma cs Standard error of the comparable sales prediction.

predval comb Combined prediction.

p ab comb Accuracy score for the combined prediction.

p 90 comb Safety score for the combined prediction.

sigma comb Standard error of the combined prediction.

mod seg 16 Modelling segments into which properties in South Afica are clas-

sified into by Lightstone. These modelling segments also accounts

for whether a property is freehold or sectional title.

ssflag Denotes whether it is a freehold property or a sectional title prop-

erty. Should not be used together with mod seg as this variable is

contained in mod seg.

167

flag used Gives an indication of whether the last three years’ or the last five

years’ comparable sales are used for the comparable sales model.

The reason for the inclusion of this variable is that if there were

many recent comparable sales, it might give an indication that the

prediction from the comparable sales model can be deemed reliable.

comp num used The number of comparable sales used in the comparable sales model

prediction. Again, if there are many recent comparable sales used

for the calculation of the comparable sales prediction, this predic-

tion may be reliable.

csflag Gives an indication of the which comparable sales are used, i.e. if

the sales occured in the same EA or sectional scheme, or if the sales

of this EA/sectional scheme was pooled with the sales of the ad-

jacent EA/sectional scheme because there was not enough data in

the EA/sectional scheme alone. As soos as the comparable sales are

pooled with the data from adjacent area, the comparable sales pre-

diction might not be as reliable. This is because all the properties

within a certain EA/sectional scheme may be very homogenous, but

may also differ a huge amount from the properties in the adjacent

EA/sectional scheme.

churn Variable to indicate the number of properties sold in an area over

a period of a year. This gives an indication of whether there is

many properties that are transacting in an area. This might help

with the comparable sales prediction of an area: high number of

transactions in an area, more data for comparable sales and hence

comparable sales more reliable.

168

newmonthdiff Variables that shows the number of months between the date the

property valuation is done and the date at which the property last

transacted on. Recall that for the repeated sales model, the coeffi-

cients from the model is used to inflate a previous transaction price

of the property up to a value at a specified date. The reason behind

this variable maybe being a potential candidate is that if the time

elapsed between the date from which we inflate from to the date

up to which we inflate to is a long period, the prediction from the

repeated sales model is subject to more variability. This variable

may help provide information on whether the particular repeated

sales model prediction is a reliable prediction.

Other variables which are also used are:

Purcase Price This is the price at which the property transacted for. The variable

will be used as the dependent variable in the neural network for

regression.

predval final The final prediction which Lightstone currently uses to provide a

value for a property.

pred method Indicates which of the predictions were used for the current Light-

stone final prediction (predval final).

The data set that will be used for this analysis contains 44 498 observations.

169

3.6 Analysis

In this section we will start by conducting an exploratory data analysis phase. This is to

enable us to determine which of the variables that were specified in the previous section

(cf. section 3.5) are the most relevant to use as input into the neural network that will

be used for this problem. It is not always easy to know which of the variables should

be included and which should be excluded by just looking at descriptive statistics of the

variables and therefore we will also train a few neural networks, including and excluding

certain variables to see if they do increase the performance of the neural network.

3.6.1 Exploratory analysis

We will give a short discussion about each variable that are considered as input to the

neural network and then also do an exploratory analysis to see if the variable should be

included into the neural network. Before we continue with the analysis we first need to

define the following three variables:

error percentage rs = 100

(
predval rs

purchase price
− 1

)

error percentage cs = 100

(
predval cs

purchase price
− 1

)

error percentage comb = 100

(
predval comb

purchase price
− 1

)
These variables shows the percentage error made of a prediction in relation to the actual

purchase price. We will make extensive use of these variables in the exploratory analysis

as it is easy to see if certain variables have an influence by lowering the error percentage

of a prediction.

170

Accuracy and safety scores

We will start with some analysis of the variables that are thought to be most relevant

to this analysis, for both the combining of the predictions and also the picking of the

correct predictions. The variables that are thought to be the most relevant inputs in this

analysis are the accuracy and safety scores of each of the predictions. Recall the accuracy

score is calculated by using a logistic model and the value signifies the probability of the

prediction being within 20% of the actual purchase price. To show the importance of the

accuracy score as an input we will look at the percentage of predictions that lie within

in 10% of the actual purchase price, for various bands of the accuracy score. This will

be done for the repeated sales (RS), comparable sales (CS) and the combined prediction

(COMB). The results are displayed in table 3.1. From this table we see that generally, a

high accuracy score indicates that the prediction tends to be more accurate. Therefore,

the accuracy score should be included as inputs to the neural network as these variables

give information about the accuracy of the predictions. The same calculation have been

done to have a look at the percentage of predictions that lie within 20% of the purchase

price and this result can be found in table 3.2. This results again confirms that accuracy

score should definitely be included as an input to the neural network.

% RS predictions
within 10% of
purchase price

% CS predictions
within 10% of
purchase price

% COMB predic-
tions within 10% of
purchase price

[0;50) 17,31 21,58 22,51
[50;60) 30,07 24,82 30,30

Accuracy [60;70) 36,25 36,28 35,62
score band [70;80) 44,25 45,13 44,83

[80;90) 55,75 55,96 58,04
[90;100] 65,81 67,01 73,83

Table 3.1: Table displaying the percentage of predictions that are within 10% of the
purchase price for various categories of accuracy scores. This is done for each of the
available predictions.

The next input which is also considered to be important is the safety scores of each of

171

% RS predictions
within 20% of
purchase price

% CS predictions
within 20% of
purchase price

% COMB predic-
tions within 20% of
purchase price

[0; 50) 34,33 41,28 43,00
[50; 60) 56,04 55,15 55,93

Accuracy [60; 70) 65,17 64,27 63,80
score band [70; 80) 74,47 74,67 74,27

[80; 90) 84,61 85,61 86,32
[90; 100] 93,45 92,78 94,39

Table 3.2: Table displaying the percentage of predictions that are within 20% of the
purchase price for various categories of accuracy scores. This is done for each of the
available predictions.

the predictions. The safety score is also the output from a logistic regression model and

signifies the probability that the prediction will not exceed the purchase price by more

than 10%. This means that the safety score should give the neural network an indication

of whether the prediction is considered to be excessively low or excessively high. This is

also valuable information which can be used in the neural network. To show the effect

of the safety score, we will also divide the safety scores into bands and categorise each of

the predictions for the various safety score bands. The results are given in table 3.3 for

the RS predictions, in table 3.4 for the CS predictions and in table 3.5 for the COMB

predictions.

172

> 30% under 20-30% under 10-20% under 0-10% under
[0; 50) 3,27 3,47 6,77 9,66
[50; 60) 5,51 6,49 10,50 14,25

Safety [60; 70) 8,10 7,71 12,12 17,21
score band [70; 80) 10,99 10,29 15,75 19,62

[80; 90) 16,87 12,15 18,23 20,71
[90; 100) 32,37 13,83 17,83 18,55

0-10% over 10-20% over 20-30% over > 30% over
[0; 50) 13,54 16,92 14,61 31,75
[50; 60) 18,62 17,28 11,31 16,04

Safety [60; 70) 19,10 16,11 9,27 10,39
score band [70; 80) 18,47 12,53 6,25 6,08

[80; 90) 16,78 8,58 3,64 3,05
[90; 100) 12,04 3,72 0,98 0,67

Table 3.3: Percentage of repeated sales model predictions categorised into different clas-
sifications according to various safety score bands (these percentages are interpreted as
row percentages)

> 30% under 20-30% under 10-20% under 0-10% under
[0; 50) 5,94 4,38 7,07 10,94
[50; 60) 7,94 6,23 9,28 13,95

Safety [60; 70) 9,02 8,49 12,02 17,56
score band [70; 80) 10,60 10,09 14,79 20,27

[80; 90) 14,63 11,66 18,10 22,58
[90; 100) 22,36 13,84 22,51 23,40

0-10% over 10-20% over 20-30% over > 30% over
[0; 50) 12,85 15,00 12,64 31,19
[50; 60) 16,38 15,61 10,72 19,91

Safety [60; 70) 18,25 13,30 8,99 12,37
score band [70; 80) 18,10 11,93 6,92 7,30

[80; 90) 17,63 8,82 3,52 3,06
[90; 100) 13,07 3,78 0,66 0,39

Table 3.4: Percentage of comparable sales model predictions categorised into different
classifications according to various safety score bands (these percentages are interpreted
as row percentages)

173

> 30% under 20-30% under 10-20% under 0-10% under
[0; 50) 5,56 4,84 9,47 11,43
[50; 60) 8,82 6,46 11,85 15,71

Safety [60; 70) 9,80 9,06 12,68 17,38
score band [70; 80) 11,55 9,77 15,03 19,88

[80; 90) 14,78 11,58 17,75 21,98
[90; 100) 14,88 13,61 21,42 27,11

0-10% over 10-20% over 20-30% over > 30% over
[0; 50) 15,45 17,10 12,67 23,48
[50; 60) 17,68 15,20 9,13 15,16

Safety [60; 70) 17,32 13,29 8,31 12,16
score band [70; 80) 17,65 12,18 6,59 7,34

[80; 90) 17,48 9,18 3,56 3,68
[90; 100) 18,48 5,32 0,89 0,28

Table 3.5: Percentage of combined model predictions categorised into different classifica-
tions according to various safety score bands (these percentages are interpreted as row
percentages)

174

Standard errors of the predictions

The next variables to consider are the standard errors of the predictions. Intuitively one

would feel that the standard error of the predictions will give a good indication of the

variability in the estimate and hence will be a measure of how reliable the estimate is,

with a smaller standard error indicating a more stable and hence better estimate. The

histograms of the standard errors of the three predictions can be found in figure 3.21. We

see that the distribution of these variables are very skew and therefore we would need

to transform these variables in order to use them in the neural network. A logarithmic

transformation will be done on the variables and the result can be found in figure 3.22.

We see from the histograms that the transformed variables are more symmetrical and will

be better suited for use in the neural network.

Figure 3.21: Histogram of sigma rs (top left), variable sigma cs (top right) and
sigma comb (bottom).

The problem with the standard errors are that they don’t seem to add any useable infor-

mation. If we do a plot of the transformed standard error against the percentage error

made for each of the predictions we get the plots in figure 3.23. We see from this fig-

ure, that there does not seem to be any pattern which will add useable information to

175

Figure 3.22: Histogram of lsigma rs (top left), lsigma cs (top right) and lsigma comb
(bottom).

the model for example a lower standard error which leads to a better estimate. From

the scatterplots we see many cases where a prediction with a low standard error has a

large error, both positive and negative, and vice versa. This variable will however not be

just discarded and we will test this variable in the neural network to see if it improves

performance or not.

176

Figure 3.23: Scatterplot of the transformed standard error of each prediction against the
percentage error made for that prediction

177

Modelling segments

Lightstone categorises properties into 16 different segments. These segments differ with

respect to the value of the property and then also the location of the property and whether

the property is freehold or sectional title. For the repeated sales model, a model is built

for each of these segments. This means that the repeated sales model already account

for the differences in segments. This is also true for the comparable sales model, since a

property will only be a candidate for a comparable sale if the properties fall into the same

segment. Therefore, we may not get a significant improvement by including the variable

mod seg into our neural network, but it may still be worthwhile to include this as an input

to the neural network and see if we get a better result.

If we construct boxplots of the error percentages of the three predictions according to

the various modelling segments, we obtain the results presented in figure 3.24. The +

sign in each of the boxes indicate the mean, and the width of the boxes indicate the

number of observations within that modelling segments relative to the other modelling

segments. We see that there is variability of the errors for each prediction between the

modelling segments. For example, for segment A, which corresponds to townships, we

see that median error made by the repeated sales model is smaller than zero while the

median error made by the comparable sales model is very close to zero. This may give

extra information to the neural network and may signify that for a large number of cases

in segment A, the comparable sales model performs better than the repeated sales model.

Therefore, mod seg should be tested as an input to the neural network.

The variable ssflag gives an indication whether a property is a freehold or a sectional title

property and although this variable is contained within the mod seg variable it might still

be worthwhile to test on its own as well.

178

Figure 3.24: Boxplots of the error percentages of each prediction, according to mod seg.

179

The variables csflag, flag used, comp num used and churn

The two variables, csflag and flag used, give information on how the properties were

chosen to arrive at a comparable sales model prediction. In a nutshell, csflag gives info on

whether we used this own EA’s/Sectional Scheme’s sales or whether we had to combine the

sales with an adjacent EA or Sectional Scheme (remember the comparable sales are done

differently for freehold properties, sectional schemes and estates). The variable flag used

gives information on whether the last three years’ comparable sales were used or whether

we had to resort to using the last five years’ sales because there was not sufficient data

within the last three years. The variable comp num used is the number of properties that

was used to arrive at a comparable sales prediction. Churn is also closely related to these

variables because if an area has a higher churn rate, it means that the houses are bought

and sold relatively quickly. This implies that there should be many recent comparable

sales in the area and this may help the comparable sales model.

The logic behind why we must look at including these variables is that if we have an area

where all the properties are relatively homogenous and there were many recent sales of

these properties, the comparable sales model should give a very good prediction. To give

an example of this, if we have a sectional scheme where all the units within this scheme are

relatively similar, and we have a large number of sales which occurred recently (within

the last year or two), then we should get a very good idea of the market value of out

subject property by looking at these comparable sales. On the other hand, if there is not

enough comparable sales within this sectional scheme and we have to resort to the adjacent

scheme, but the adjacent scheme are all duplexes where the scheme under consideration

are simplexes, we would intuitively feel that the comparable sales prediction might not

be as accurate in this case.

Therefore these variables will also be tested as inputs to the neural network to see if this

180

gives any improvement in the performance of the neural network. It should be noted that

csflag and flag used are categorical variables with 19 and 3 possible categories respectively

and that comp num used and churn are discrete and continuous variables respectively.

The variable newmonthdiff

Recall that the repeated sales model works by inflating a previous sales price of the

property from sales data, up to any date in the future using the coefficients from the

repeated sales modelling. Now the way in which the repeated sales prediction is calculated

for a specific property, is by using the previous sale price of the property and inflating

the price from that previous sales date, up to a current estimate of the value of the

property. The variable newmonthdiff denotes the timespan, measured in months, between

the previous sale date and the date up to which we inflate to. This current date will

correspond to the date at which the query for the value of the property is received, since

we want an estimate of the value of the property at that specific time.

A reason why we might look to include this variable into the neural network is because,

the longer the time span between the date from which we inflate from, to the date which

we inflate to, the more variability there usually is in the repeated sales prediction. Of

course, we should remember that this is not always the case but it is still a worthwhile

variable to test in the neural network.

3.6.2 Method followed for building the neural network model

The challenge that we are facing with this problem is that we are not certain which inputs

should be used to the neural network. It is also difficult to do an in-depth exploratory

181

study to determine the variables because we are working with a very large data set and

this makes it difficult to look at basic descriptive statistics like correlations and basic

graphs like scatterplots. If a sample size is sufficiently large like the one considered here,

extremely small differences and correlations can be found to be statistically significant but

these variables may not be practically significant to include in the neural network. For

example, if we test whether the mean error percentage for the repeated sales model differs

from segment to segment (mod seg), the result would most likely be highly statistically

significant, even though the mean percentages between the segments differ very little. This

is directly related to the large sample size. Therefore, we can see that it is not sufficient

to just look at the exploratory statistics when deciding which variables to include in the

neural network’s inputs and therefore we would need an approach to get around this

problem.

The approach that we are going to follow to try and get around this problem is as follows:

We will start by including the basic inputs which should logically be included in each of

the two neural networks. This will basically consist of only the accuracy and safety scores

of the predictions since they are directly related to the confidence we have in the accuracy

of each of the predictions. Then we will start adding some variables to see if the variables

significantly increase performance or not. In the end, we will have trained a number of

neural networks for both the combining and the picking of the prediction and therefore

we can then make comparisons between the networks by looking at various benchmarks

that will be defined in section 3.7. This should give us a clear view of the variables that

are of practical significance in the neural network and which are to be used in the final

neural network.

In section 2.3.5 it was mentioned that the initial values influences to which minimum the

neural network will converge to if backpropagation is used. Therefore, we will train five

neural networks for each set of inputs, and only report the performance of the best neural

182

network obtained from these five independent runs. One would benefit from doing more

than five runs, but because we are working with such a large data set and training is quite

slow on such large data sets, we will only use five runs.

The neural networks to be trained will have a relatively large number of hidden neurons in

the single hidden layer. The approach that will be followed will be similar to the approach

described in section 3.3 where we divide the neural network into a modelling and testing

set and then doing the modelling and testing concurrently for each epoch to arrive at the

best neural network as tested on the testing set. The weights from this neural network

will then be used for modelling on the whole data set, and the performance measures that

are obtained from this neural network will be stated in the results.

The stopping criterion that is to be used for these neural networks differ from the normal

neural network methods that are usually used in neural network applications. In our sim-

ulations (cf. section 3.3) we used the neural network which gave the lowest sum of squares

error as measured on the testing data set for the regression case. For the classification

neural network, we used the neural network that gave the lowest missclassification rate as

measured on the testing data set. These are the most common measures which are used.

For the neural networks that we are using, our main aim is to optimise the percentage of

predictions that lie within 20% of the actual purchase price of the property. Therefore,

this will be used as our stopping criterion. We will select the weights from the neural

network, both in the classification and regression case, that give the highest percentage

of predictions that are within 20% of the purchase price as measured on the independent

testing set. For the classification case it is still possible to use this stopping criteria since

the classification from the neural network signifies which of the RS, CS or COMB predic-

tion should be used, and we can then still determine if this chosen prediction lies within

20% of the purchase price. This will not be possible when we are using a neural network

in a typical statistical classification application.

183

All the continuous inputs to the neural network will be standardised and the categorical

inputs will be coded using the 1-of-K coding. A small learning rate of α = 0, 005 will

be used for training and we will also include a momentum term of η = 0, 4 (cf. section

2.3.5). We will use a neural network with 40 hidden nodes in one single hidden layer and

the network will be trained for 1 000 epochs. In the next two sections (cf. sections 3.6.3

& 3.6.4), the neural networks that are to be trained specifically for the classification and

regression case will be discussed in more detail.

All the neural networks that are to be trained will be coded using SAS IML. The code is

similar to the code that was used to train the backpropagation neural neural networks for

the simulations in section 3.3 but SAS IML was chosen in this instance for its speed and

ability to handle large amounts of data. Lightstone also uses SAS for all their analyses

and therefore the neural network will have to be trained using SAS if the network is to

be implemented in Lightstone’s environment.

3.6.3 Neural network for picking correct prediction

The aim of the neural network in this instance is to classify each observation into a class,

where this class will correspond to the best prediction for that observation. This means

that the dependent variable of the neural network in this case will be categorical and will

be able to take on the values RS, CS or COMB where each of these values signify which

of the predictions for that observation is considered to be optimal. Hence we basically

want the neural network to choose the best one of the possible predictions.

The first thing we need to do is to create a new variable which will contain the optimal

prediction for each observation. The way in which this is going to do be done is rather

simple but does seem to be effective. We will take the prediction that is the closest to

184

the purchase price in absolute value and that prediction will be considered the optimal

prediction. To illustrate this, we will look at an example.

Purchase Price ŷRS ASRS SSRS ŷCS ASCS SSCS

250 000 200 000 0,64 0,89 290 000 0,62 0,40

ŷCOMB ASCOMB SSCOMB

220 000 0,71 0,87

ŷRS, ŷCS and ŷCOMB denotes each of the three predictions. AS refers to the accuracy

score, while SS refers to safety score with the subscripts in each case stating to which

prediction the scores relates to. From this observation, we see that RS model under

predicts by 50 000, the CS model over predicts by 40 000 and the COMB prediction is

under by 30 000. We will make no distinction between underpredicting and overpredicting

and just try to get a prediction that is as close to the 250 000 as possible and in this case

it will be the COMB prediction.

A new variable called optimal will be created using this approach. Although we use a fairly

simple way to define the dependent variable, the expectation is that the neural network

will fit the underlying structure in the data and get to see the hidden patterns between

the accuracy scores, safety scores and all the other inputs which will be considered. This

should then lead to a model, which can be used to classify new observations in the future.

If however this neural network does not perform as well as we anticipate, the definition

of the dependent variable will be a good place to start to search for improvement. The

reason for this, will also be illustrated with an example. Suppose we have the following

observation:

185

Purchase Price ŷRS ASRS SSRS ŷCS ASCS SSCS

270 000 254 153 0,64 0,81 245 211 0,62 0,85

ŷCOMB ASCOMB SSCOMB

249 778 0,71 0,87

We see from this record, that the RS prediction is the closest to the purchase price of

270 000, but the CS & COMB predictions are not that far off. If we consider that we are

working with values of a property, it would seem that there is actually not a significant

difference between these predictions and we can consider the predictions as equal. Here,

one can use many creative ways to define the dependent variable and also try to influence

the neural network model. For example we can divide the predictions into different error

bands and say that if two predictions fall into the same error band, the optimal prediction

should be the one with the highest accuracy score. This is perhaps something to pursue in

the future to improve the performance of the neural network. More topics to be researched

in the future will be discussed in section 3.12.

If we do a frequency count on the newly created variable optimal we find:

Value of optimal Frequency Percentage
RS 17 756 39,90
CS 19 430 43,66

COMB 7 312 16,43

Table 3.6: Frequency table on dependent variable used in neural network

For the purpose of picking the correct classification I will train a few neural networks,

each with a different number of inputs and then compare the performance. The neural

networks that will be trained are given in table 3.6.

As was stated in the previous section, we will train five neural networks for each set of

inputs, each time choosing different initial values. The results from the best one of these

five neural networks will be quoted.

186

Neural network Inputs chosen
1 ASRS, SSRS, ASCS, SSCS ASCOMB, SSCOMB

2 ASRS, SSRS, ASCS, SSCS ASCOMB, SSCOMB,
ŷRS, ŷCS, ŷCOMB

3 ASRS, SSRS, ASCS, SSCS ASCOMB, SSCOMB,
ŷRS, ŷCS, ŷCOMB, mod seg

4 ASRS, SSRS, ASCS, SSCS ASCOMB, SSCOMB,
ŷRS, ŷCS, ŷCOMB, mod seg, log(σ2

RS),
log(σ2

CS), log(σ2
COMB)

5 ASRS, SSRS, ASCS, SSCS ASCOMB,
SSCOMB, ŷRS, ŷCS, ŷCOMB, mod seg,
log(σ2

RS), log(σ2
CS), log(σ2

COMB), churn,
comp num used, csflag, flag used, newmon-
thdiff query

6 ASRS, SSRS, ASCS, SSCS ASCOMB,
SSCOMB, ŷRS, ŷCS, ŷCOMB, mod seg,
churn, comp num used, csflag, flag used,
newmonthdiff query

Table 3.7: Table showing the different neural networks that will be trained and the inputs
to each of the different neural networks for the selection of the optimal prediction.

3.6.4 Neural network for combining predictions

In the previous section we discussed how a neural network will be used to select one of the

existing predictions that are already in the data set, namely the RS prediction, the CS

prediction and the COMB prediction. In this part we will discuss a neural network with

the goal to combine the repeated sales prediction and the comparable sales prediction

to arrive at a new combined prediction, where this combined prediction should be an

optimal prediction. In its basic form, our aim is to give the neural network the RS and

CS predictions and their respective accuracy and safety scores, and the neural network

should assign weights to each of these inputs to arrive at a combined prediction which

will always be optimal.

187

This neural network is an example of a neural network which can be used for regression

purposes. The dependent variable for this neural network is the variable Purchase Price

which is a continuous variable. As with the previous neural network, we will again choose

a few sets of inputs, train five different neural networks for each set of inputs, and quote

the performance of the best run to see which of the neural networks perform the best.

Table 3.6.3 gives an indication of the neural networks that will be trained for combining

the RS and CS predictions. From this table, we see that we will again start with a basic

set of inputs, and then add some extra inputs to see if it makes any difference to the

performance of the neural network.

Neural network Inputs chosen
1 ASRS, SSRS, ASCS, SSCS, ŷRS, ŷCS

2 ASRS, SSRS, ASCS, SSCS, ŷRS, ŷCS,
log(σ2

RS), log(σ2
CS)

3 ASRS, SSRS, ASCS, SSCS, ŷRS, ŷCS,
log(σ2

RS), log(σ2
CS), mod seg

4 ASRS, SSRS, ASCS, SSCS, ŷRS, ŷCS,
log(σ2

RS), log(σ2
CS), mod seg, churn,

comp num used, csflag, flag used, new-
monthdiff query

Table 3.8: Table showing the different neural networks that will be trained and the inputs
to each of the different neural networks for the combining the RS and CS predictions.

3.7 Results

In this section we will have a look at the results that were obtained from the neural

networks that were specified in sections 3.6.3 & 3.6.4. The best result from both the

neural network for picking the best observation, and the neural network that is used for

combining will be compared with the results from the method that Lightstone currently

188

uses.

The performance of the current method and the neural networks will be measured by

looking at the percentage of predictions that are within certain ranges from the actual

purchase price. Specifically we will look at the following categories:

• Percentage of predictions within 5% of purchase price

• Percentage of predictions within 10% of purchase price

• Percentage of predictions within 20% of purchase price

• Percentage of predictions within 30% of purchase price

One of the most important performance measures for Lightstone is the percentage of pre-

dictions that are within 20% of the purchase price. This is the measure that is reported

when giving an indication of the performance of the automated valuation model. There-

fore, this will also be the single most important performance measure for us, and this will

primarily be used to decide which neural network gives the best performance.

We will also analyse the results in more detail by looking at the nature of the predictions,

i.e. by how much the predictions are over or below the actual sales price. These measures

will be used to determine whether the neural network is suitable for implementation into

the Lightstone environment. The reason why this is important is that the banks would

generally prefer to undervalue a property than overvalue it. If a property is severely

overvalued and a bank grants a loan based on this prediction it poses a very high risk to

the bank. Therefore we should also investigate the chosen neural networks to assess the

nature of the predictions arising from these neural networks with respect to whether the

models tend to overpredict or underpredict too severely.

189

3.7.1 Benchmark results

We will start by giving the results of the method that Lightstone currently uses. This will

give us a benchmark against which we can compare the neural networks. The performance

of the method that is currently in use is given in table 3.9. From this table, we see that our

ultimate goal would be to train a neural network that will be able to perform substantially

better than the 66,04% that is given in the table for the percentage of observations that

are within 20% of the purchase price.

Within 5% Within 10% Within 20% Within 30%
Percentage of observations 20,26 39,03 66,04 81,34

Table 3.9: Performance of current Lightstone method

If we look at the percentage of predictions that are below or above the given purchase

price we obtain:

Frequency Percent
OVER 18 488 41,55

UNDER 26 010 58,45

Table 3.10: Table displaying the number of predictions that are above and below the
purchase price

From table 3.10 we can clearly see the tendency of Lightstone to rather make sure that the

prediction given to the banks is never too high. This is also where the safety score is used

extensively, since it will attach a confidence level to a prediction not being too high. If we

categorise the predictions according to the percentage overpredicting or underpredicting

we obtain the results in table 3.11.

If we look at the percentages obtained in table 3.11 we see that more than 50% of the

predictions are within 0-20% under the purchase price or 0-10% over the purchase price.

This is also what we would want from the neural networks. Also note the relatively low

190

Frequency Percent
Over by > 30% 3 115 7,00
Over by 21-30% 2 446 5,50
Over by 11-20% 4 886 10,98
Over by 0-10% 8 041 18,07

Under by 1-10% 9 328 20,96
Under by 11-20% 7 128 16,02
Under by 21-30% 4 364 9,81
Under by > 30% 5 190 11,66

Table 3.11: Prediction categories for the current Lightstone predictions

number of predictions that are over by more than 20%. This is also a characteristic which

the neural network should exhibit. If we do a frequency check on which of the available

predictions Lightstone uses we obtain the following:

Prediction used Frequency Percentage

RS 2 881 6,47

CS 3 559 8,00

COMB 38 058 85,53

From this frequency table we see that Lightstone uses the COMB prediction for the

majority of the cases as it is their policy to use the COMB prediction unless there is good

evidence that this prediction is not reliable and one of the other two predictions should

be used. This evidence can be in the form of a very low safety or accuracy score, which

will indicate that the confidence in the prediction is low. The classification rule used in

the neural network for picking the optimal prediction will probably also be modified to

mimic this pattern in that the COMB prediction should be used unless there is enough

reason to use one of the other predictions.

Now that we have a good idea of how the current Lightstone prediction method performs

we can analyse the data from the two best neural networks in more detail to see if the

neural network approach can match or outperform the Lightstone method.

191

3.7.2 Results and discussion for neural network used for picking

best observation

We will start by giving the results for the six neural networks that were specified in section

3.6.3 which were used to select the best prediction out of the three available prdictions in

the data. For each of the five runs that were done, for each set of inputs, we will report

the results of the run that had the highest percentage of predictions within 20% of the

actual purchase price, when compared against each other. These results for each of the

five different neural networks are given in table 3.12. The complete detailed results for

each of the runs that were conducted can be found in appendix A.5. In section 3.8.1 we

will analyse the predictions from the best model as chosen here.

An interesting observation is that the neural networks did not seem to be influenced by the

effect of multicollinearity in the data. In section 3.4, we showed that the COMB prediction

is a combination of the RS prediction and the CS prediction, where the weights attached

to each of the predictions are determined by the standard errors of each of the predictions

respectively. It was shown that the standard error of the COMB predicion is also derived

from the standard errors of the RS and CS predictions. In neural network number four

and five, we have included the RS, CS and COMB predictions and the standard errors

of each of the predictions. Therefore there is definitely multicollinearity present in the

data, and the performance from those neural networks does not seem to be negatively

influenced. This finding seems to be in-line with findings in the literature which also

state that neural network does not seem to be influenced by multicollinearity (Carpio and

Hermosilla (2001); De Veaux and Ungar (1994b)).

192

NN # Input variables Within 5% Within 10% Within 20% Within 30%
1 ASRS, SSRS, ASCS,

SSCS ASCOMB,
SSCOMB

20,38 38,70 65,06 80,95

2 ASRS, SSRS, ASCS,
SSCS ASCOMB,
SSCOMB, ŷRS, ŷCS,
ŷCOMB

20,88 39,57 66,07 81,50

3 ASRS, SSRS, ASCS,
SSCS ASCOMB,
SSCOMB, ŷRS, ŷCS,
ŷCOMB, mod seg

21,32 40,14 66,65 81,71

4 ASRS, SSRS, ASCS,
SSCS ASCOMB,
SSCOMB, ŷRS, ŷCS,
ŷCOMB, mod seg,
log(σ2

RS), log(σ2
CS),

log(σ2
COMB)

21,30 40,06 66,31 81,40

5 ASRS, SSRS, ASCS,
SSCS ASCOMB,
SSCOMB, ŷRS, ŷCS,
ŷCOMB, log(σ2

RS),
log(σ2

CS), log(σ2
COMB)

, mod seg, churn,
comp num used,
csflag, flag used,
newmonthdiff query

22,41 41,22 67,47 82,27

6 ASRS, SSRS, ASCS,
SSCS ASCOMB,
SSCOMB, ŷRS,
ŷCS, ŷCOMB,
mod seg, churn,
comp num used,
csflag, flag used,
newmonthdiff query

22,05 40,97 67,21 82,02

Table 3.12: Performance comparison of neural network used for picking correct prediction
(classification)

193

3.7.3 Results from neural network used for combining

Now we will present the results for the neural network that was used in a regression

context, i.e. to use each of the RS & CS predictions and other associated characteristics

and combine these predictions to form a new optimal combined prediction. The results for

the best run out of the five runs conducted, for each of the four different neural networks,

can be found in table 3.13. The complete detailed results for each of the runs that were

conducted can be found in appendix A.5.

From table 3.13, we see that the simplest of the neural networks that were considered,

namely neural network number one, seem to perform the best. The inputs to this neural

network is the RS & CS prediction and each of the associated accuracy and safety scores.

It is quite interesting to note that the more inputs we included, the more the performance

of this neural network degraded. The predictions from neural network one will be saved

and these predictions will be further analysed in section 3.8.1.

NN # Input variables Within 5% Within 10% Within 20% Within 30%
1 ASRS, SSRS, ASCS,

SSCS, ŷRS, ŷCS

20,77 39,63 67,08 82,36

2 ASRS, SSRS, ASCS,
SSCS, ŷRS, ŷCS,
log(σ2

RS), log(σ2
CS)

20,97 39,78 66,96 82,34

3 ASRS, SSRS, ASCS,
SSCS, ŷRS, ŷCS,
log(σ2

RS), log(σ2
CS),

mod seg

20,77 39,89 66,84 82,39

4 ASRS, SSRS, ASCS,
SSCS, ŷRS, ŷCS,
log(σ2

RS), log(σ2
CS),

mod seg, churn,
comp num used,
csflag, flag used,
newmonthdiff query

20,62 39,53 66,75 81,94

Table 3.13: Performance comparison of neural network used for combining (regression)

194

3.8 Performance of fitted neural networks

In this section we will have a look at each of the best neural networks from the two

different approaches. We will start by doing a post hoc analysis for each of the chosen

neural networks for the selection of the best prediction and also the combining of the

predictions. We will also discuss some of the problems that were found while we were

building these two different neural networks and then we will discuss how neural networks

like these can be implemented in Lightstone’s environment for use.

For convenience, we will display the performance characteristics of the current Lightstone

approach, together with performance measures from the best neural network for combining

and the neural network for selection the best prediction in table 3.14.

Approach Within 5% Within 10% Within 20% Within 30%
Current Lightstone 20,26 39,03 66,04 81,34

Combining NN (Nr.1) 20,77 39,63 67,08 82,36
Selection NN (Nr.5) 22,41 41,22 67,47 82,27

Table 3.14: Performance comparison neural network approaches against the current Light-
stone approach.

Our next task would be to give a more in-depth analysis of the results from the two

different chosen neural networks respectively. We will also look at whether the neural

networks are more prone to picking predictions which are too high or too low.

3.8.1 Post-hoc analysis

We will continue to do a post hoc analysis of the neural networks under consideration.

The reason why this is important is that before we can implement a black box prediction

model into a business environment like Lightstone, we should first try to see exactly what

195

the different consequences from the neural network will be when presented with different

scenarios. This is a little easier to do for the classification neural network in this case than

it is for the regression neural network. For the classification neural network, we can have

a look at a few of the observations that were misclassified and try to get an understanding

why these observations are not correctly classified, but for the regression neural network

this is not possible since the output is a continuous value which is a highly non-linear

combination of all the inputs. For this reason, we will start with a small post hoc analysis

of the regression neural network before we continue with a more in-depth study for the

classification neural network.

Post hoc analysis of neural network used for combining the predictions

From the results that were presented in table 3.13, we see that neural network number one

seems to perform the best. This neural network takes the RS & CS prediction together

with each of their associated accuracy and safety scores respectively, and combines all

these inputs to form a continuous output which can be used as the predicted value of the

property. We see that the 67,08 percent of neural network predictions that are within 20%

of the purchase price compares quite favourably to the 66,04% that Lightstone currently

achieves (table 3.9). We see that the neural network outperforms the current approach

based on the other performance measures as well.

If we categorise the predictions according to whether we are underpredicting or overpre-

dicting we obtain the results in table 3.15 and the more detailed categories can be found

in table 3.16. We see from table 3.15 that the predictions from the neural network are

generally higher compared to the Lightstone predictions in table 3.10. In table 3.16 we

can clearly see how the predictions shifted upwards with quite an increase in overpredic-

tions compared against the Lightstone method for which the results are given in table

196

3.11. This is a disadvantage of this method, but we will need to investigate further before

any conclusions can be made with regards to this neural network.

Frequency Percent
OVER 21 796 48,98

UNDER 22 702 51,02

Table 3.15: Table displaying the number of predictions from the neural network that are
above and below the purchase price

If we plot the predicted values from this neural network against the purchase price of the

property we obtain the plot in figure 3.25. The 45 degree line is also displayed in this plot

to make comparisons easier. The first problem we encounter is that some of the predicted

values seem to be negative which is impossible for a value of a property. This is not a

major concern as there can be many ways to work around this problem. One of these is

to revert back to the old combined prediction when a prediction from the neural network

is negative. Generally we see that the neural network seems to underpredict as the bulk

of the predictions lie below the 45 degree line. This is not a bad thing since the banks

would generally prefer to underpredict on a property than overpredict to avoid granting

too high loan to a client. If we focus on the area for predictions with a purchase price of

between 0 and 5 000 000 we obtain the plot presented in figure 3.26.

In figure 3.26, we can more clearly see the underpredicting nature of the neural network.

Frequency Percent
Over by > 30% 4 253 9,56
Over by 21-30% 3 170 7,12
Over by 11-20% 5 747 12,92
Over by 0-10% 8 262 19,39

Under by 1-10% 8 977 20,17
Under by 11-20% 6 379 14,34
Under by 21-30% 3 674 8,26
Under by > 30% 3 672 8,25

Table 3.16: Prediction categories for predictions obtained from neural network used for
combining the RS and CS predictions

197

Figure 3.25: Scatterplot of Predicted value against Purchase Price. The 45 degree line is
also displayed.

Figure 3.26: Scatterplot of Predicted value against Purchase Price where Purchase Price
∈ (0, 5000000). The 45 degree line is also displayed.

198

There are also quite a few observations, where the predicted value from the neural network

is very low when compared to the purchase price. It is well known that a neural network

does not extrapolate well to observations which are not in the range of the inputs that

were used to train the neural network (Haley and Soloway, 1992). These observations

may well be examples of this.

Before we are able to use this neural network in practice (cf. section 3.9), we will also

need to build scoring models which will enable us to attach a confidence and safety score

to each of these prediction from the neural network. This will enable us to revert back to

one of the other available predictions when the predicion from the neural network does

not seem to be reliable. This should increase the accuracy of this combined approach

even more.

Figure 3.27: Scatterplot of Predicted value against predval final where Purchase Price
∈ (0, 5000000). The 45 degree line is also displayed. Green dots indicate observations
where the Predicted Value is closer to the purchase price than what predval final is and
blue dots indicate where predval final is closer.

A plot of the predicted value from this neural network against the final prediction from

199

the current Lightstone approach is presented in figure 3.27. We will again only look at a

contained range of values as this makes it easier to see what is going on in the plot. The

green dots indicate the observations where the predicted value from the neural network is

closer to the actual purchase price than the final prediction from the Lightstone approach

and vice versa for the blue dots. We see that generally the prediction from the neural

network and the prediction from Lightstone’s approach do not differ that much. Keep in

mind that the Lightstone final prediction (predval final), already contains rules which will

pick the best of the three available observations, i.e. will already pick the best of RS, CS

or COMB predictions and therefore the prediction from the neural network does compare

quite well.

It will be too risky to employ a neural network like this one on its own in a business en-

vironment. The best approach will probably be to use it as an alternative to the current

combined value from Lightstone. This will involve building scoring models for the predic-

tions and also using rules to revert back to one of the other predictions if the prediction

from the neural network is deemed to be unreliable. The issue of implementation will be

further discussed in section 3.9. However, if we construct a plot to compare the predic-

tions against the current combined value from Lightstone (predval comb) as in figure 3.28,

we see that the predicted value from the neural network can be a good substitute in the

place of the traditional combined value, although generally the predicted value from the

neural network seem to be higher than the COMB prediction.

Post hoc analysis of neural network used for picking optimal prediction

We will now discuss the results from the neural network that was trained to select the best

prediction from the available RS, CS & COMB predictions. From table 3.14 we see that

the neural network that performed the best for this specific task was the neural network

200

Figure 3.28: Scatterplot of Predicted value against predval comb where Purchase Price
∈ (0, 5000000). The 45 degree line is also displayed. Green dots indicate observations
where the Predicted Value is closer to the purchase price than what predval comb is and
blue dots indicate where predval comb is closer.

which made use of all the available inputs (neural network number five in table 3.12). The

percentage of observations which are within 20% of the actual purchase price for this neural

network is 67.47 and this is a notable increase from the 66.04 which Lightstone currently

achieves. Before we can continue to think about how to implement this model, we should

first conduct an analysis of some of the results from this neural network. Because we are

aiming to implement the model in a very sensitive environment, we should try to see why

certain predictions are classified wrongly and what the impact of the missclassification is.

We will start by giving a frequency table on the outputs from this network which can be

found in 3.26.

Lightstone’s current approach is to choose the combined prediction except if there is

enough evidence that the combined prediction is not reliable. This evidence can be based

201

Value of predicted class Frequency Percentage
RS 15 977 35,90
CS 22 348 50,22

COMB 6 173 13,87

Table 3.17: Frequency table for predicted classes from neural network

on the accuracy and safety score of the COMB prediction being too low. We see from

the frequency table that very few of the observations are classified to the COMB predic-

tion, which is contrary to what Lightstone is currently doing. Therefore we will propose

the following modification to the neural network and in particular the classification rule

used. Recall from section 2.4.3 that a neural network which is trained using the softmax

output activation function, like this neural network under consideration, approximates

the posterior probabilities of an observation belonging to a specific class. Currently an

observation is classified to the class which has the largest posterior probability. To be

more in agreement with what Lightstone is currently doing, this classification rule will be

changed to use the COMB prediction except if there is enough evidence that the RS or

CS predictions should be used.

Since we are working with posterior probabilities, we will only use the RS or CS predictions

if either of their posterior probabilities are relatively high, i.e. we can say with a high

confidence that the RS or CS prediction is better than the COMB prediction. The new

classification rule that is going to be used is as follows:

predicted class =


RS if P (RS|x) > 0.5

CS if P (CS|x) > 0.5

COMB otherwise

(3.19)

P (RS|x) and P (CS|x) denotes the estimated posterior probability from the neural net-

work for RS and CS respectively. The performance results from this neural network with

202

the modified decision rule can be found in table 3.18. We see that this approach gives

a quite favorable increase in the percentage of predictions that are within 20% of the

purchase price.

Within 5% Within 10% Within 20% Within 30%
Percentage of observations 22,25 41,38 67,75 82,45

Table 3.18: Performance of neural network using for classification using modified decision
rule

This neural network with the modified classification rule gives the best performance of all

the neural networks considered so far. If we do a frequency check on the classifications

from this new classification rule we find:

From this frequency table we see that we are using the COMB prediction for the majority

of observations which is closer to what we want. The results to show the number of over

and underpredictions and also how much the predictions are over or under can be found

in tables 3.20 and 3.21:.

Comparing the results from tables 3.20 & 3.21 to the Lightstone results found in tables 3.10

& 3.11 we see that this neural network does compare quite well to the current Lightstone

method with regards to the number of overpredictions, underpredictions and also the

severity of the over and underpredictions. We see that the percentage of predictions that

are over by more than 20% is lower than that of the Lightstone method while we have a

good increase in the number of predictions that are within 10% of the purchase price. This

means that this neural network can at least match what the current Lightstone method

Value of predicted class modified Frequency Percentage
COMB 20 068 45,10

CS 14 464 32,50
RS 9 966 22,40

Table 3.19: Table displaying the frequencies of the categories for predictions obtained
from neural network used for combining the RS and CS.

203

Frequency Percent
OVER 18 856 42,37

UNDER 25 642 57,63

Table 3.20: Table displaying the number of predictions from the neural network that are
above and below the purchase price

Frequency Percent
Over by > 30% 3 054 6,86
Over by 21-30% 2 438 5,48
Over by 11-20% 4 907 11,03
Over by 0-10% 8 459 19,01

Under by 1-10% 9 687 21,77
Under by 11-20% 6 960 15,64
Under by 21-30% 4 200 9,44
Under by > 30% 4 793 10,77

Table 3.21: Prediction categories for predictions obtained from neural network used for
combining the RS and CS predictions

achieves in terms of the number of underpredictions and overpredictions and also increase

the accuracy of the predictions.

If we plot the values of the chosen prediction from this neural network with the modified

classification rule against the actual purchase price we obtain the plot in figure 3.29.

From the plot in figure 3.29 we see that the predictions that this neural network have

chosen are very good. The overpredictions are clearly in the minority. Also note that when

an accurate prediction is not chosen, the chosen prediction would more likely to be below

the purchase price than above. Therefore we see that this neural network has a tendency

to choose predictions which are lower than the purchase price. This is a good property if

we are looking to implement this neural network in the Lightstone environment.

In the plot in figure 3.30 we zoomed in on the plot in figure 3.29 to make it clearer. Here

we can see that the neural network with the modified classification rule does a great job

of picking the best prediction. We see that the neural network is in most cases relatively

204

Figure 3.29: Scatterplot of Predicted value against Purchase Price. This predicted value
is from the neural network with the modified classification rule found in 3.19. The 45
degree line is also displayed.

accurate and that the predictions are never too high and more prone to be smaller than

the purchase price which is a favourable property of this neural network.

We would however still need to investigate some of the cases that are not correctly classi-

fied. What will be of particular interest is the observations for which the neural network

predicts that either the RS or CS prediction should be used when the COMB is in fact

the best prediction. The missclassifications that happen as a consequence of choosing the

COMB prediction rather than the RS or CS predictions are not as severe since the COMB

does overall give the best available prediction with the highest stability.

We find that 2 466 out of the 44 498 predictions, or 5,54% of the predictions are wrongly

classified as either the CS or RS prediction when the COMB prediction is in fact the best

prediction. If we classify these wrongly classified predictions into categories to see the

extent to which the neural network overpredicts and underpredicts on these records we

205

Figure 3.30: Scatterplot of Predicted value against Purchase Price where Purchase Price
∈ (0, 5000000). The 45 degree line is also displayed.

obtain the results in table 3.22.

Frequency Percent
OVER 1 921 77,90

UNDER 545 22,10

Table 3.22: Table displaying the nature of the predictions from the neural network which
are misclassified as either a RS or CS prediction when the COMB seemed to be the
optimal prediction

Table 3.22 shows that for the majority of these observations, the prediction that was

chosen was higher than the actual purchase price. If we have a look at the extent to

which these predictions overpredict or underpredict we find the results in table 3.23.

Table 3.23 shows that a large majority of these misclassified predictions fall within 10%

of the purchase price and although most of these predictions are higher than the purchase

price, they still lie within an acceptable range and therefore this will still be an acceptable

risk for the banks. We see that more than 60% of these observations that are misclassified

206

Frequency Percent
Over by > 30% 151 6,12
Over by 21-30% 162 6,57
Over by 11-20% 521 21,13
Over by 0-10% 1 087 44,08

Under by 1-10% 442 17,92
Under by 11-20% 77 3,12
Under by 21-30% 17 0,69
Under by > 30% 9 0,36

Table 3.23: Table displaying the extent to which the predictions are under or above the
purchase price for the predictions from the neural network that was wrongly classified as
either CS or RS when COMB seemed to be the optimal prediction

as either RS or CS are still within 10% of the purchase price and more than 80% of

these observations are within 20% of the purchase price. This means that although these

observations are misclassified they are still accurate and can be used.

If we plot the percentage of observations that are within 20% of the actual purchase price

across the different modelling segments for the neural network approach and also the

current Lightstone approach we obtain the plot in figure 3.31. From this plot we see that

the accuracy of the neural network is better than that of the current Lightstone approach

across all the modelling segments except for segment G2, for which it is only a little lower

but still very close to the Lightstone method.

Figure 3.31: Comparison of accuracy of current Lightstone approach against the neural
network approach across the modelling segments.

For the next plot, we will divide the accuracy score of the chosen Lightstone prediction

207

and also the accuracy score of the chosen neural network prediction into categories. This

is done to construct a graph which can be used for comparison purposes. We will la-

bel these categories as High for an accuracy score above 0,75, Medium for an accuracy

score between 0,5 and 0,75, and Low for an accuracy score of below 0,5. If we plot the

percentage of predictions that are within 20% or more of the purchase price for both

the current Lightstone approach and the neural network approach, according to accuracy

score categories for the predictions arising from each of the two approaches, we obtain the

plot in figure 3.32. From this plot, we see that the neural network method outperforms

the current Lightstone method when the confidence in the chosen Lightstone prediction is

Medium or Low. This can help when implementing the neural network in the Lightstone

environment, since we can still use the current Lightstone method when the confidence

in the prediction is high, otherwise we can use the prediction from the neural network

method and thus minimising the risk from using the neural network alone, but still getting

the benefits that the neural network has to offer.

The results achieved from this neural network are very good. Overall it seems that

this neural network does perform better than what Lightstone currently achieves. The

encouraging result is that it does not seem to use predictions which are too high and

in fact decreases the number of predictions which are over the purchase price by 20%

of more. This approach of using a neural network to choose the best of the available

predictions definitely works better than the regression approach that was also discussed.

Therefore we will use this approach and discuss how this approach can be implemented

into the Lightstone environment in the next section.

208

Figure 3.32: Comparison of accuracy of current Lightstone approach against the neural
network approach split according to the accuracy score of the Lightstone prediction and
the accuracy score of the neural network chosen prediction. For example, the plot in the
top left hand corner of the figure, indicates the percentage of predictions that are within
20% of the purcase price for the Lightstone approach on the left and the neural network
approach on the right, where the accuracy scores of the predictions from the Lightstone
approach and also the chosen neural network predictions are high.

3.9 Implementation

The Lightstone environment is very sensitive in the sense that the accuracy of the pre-

dictions from Lightstone directly influences the risk of the banks that use the Lightstone

AVM system. Therefore any new methodology should be tested very thoroughly before

it can be implemented into the system. The specific area of usage for this neural network

means that it can have a major impact on the quality of the predictions that Lightstone

209

gives and therefore this method should be tested for a few months to assess the effect.

In this section, we will discuss a few of the issues which should be concentrated on when

implementing this neural network and also some of the testing that should be done. The

results that were given in the previous section (cf. section 3.8.1) were encouraging and

suggested that the neural network which was used for picking the best prediction could

outperform the current approach that Lightstone employs. In this part we will also look

at some results on a new independent data set using the previously trained neural network

which will already give us an idea of how the neural network will perform in practice.

Implementing the neural network into AVM system

The best neural network which was trained to pick the optimal prediction is the neural

network which will be used to test for implementation into the Lightstone AVM system.

This neural network which was used to pick the best prediction performed better than the

neural network which was used for combining of predictions. One of the important reasons

why we would rather want to use the neural network for classification than the regression

case is because of the extrapolating features of a neural network. It is well known that a

neural network does not extrapolate well and therefore the regression neural network is

more risky to use, since it can arrive at totally incorrect values when extrapolating (Haley

and Soloway, 1992). The neural network which is used for picking the optimal prediction

will almost certainly do better in this case, especially with the modified classification rule

given in (3.19) since it is more restricted and cannot as easily give a way-out value as in

the case of the regression neural network.

The way in which this neural network is going to be used in the AVM system is to pool

a couple of months’ data and then train the neural network on that data, much like

it was done throughout this section when the neural network was trained on mortgage

210

application data for January 2009 to May 2009. The neural network that was trained on

this data will then be used on the next month’s data to select the best prediction. At

this stage we used five month’s data for the training of the neural network but this may

also be experimented with by adding more data or using fewer data. At this stage we will

stay with using five months’ data. In practice this neural network will also need to be

retrained every month on the last five months’ data, for it to be used for the next month.

Fortunately we have access to the mortgage application data for June 2009 and therefore

the available trained neural network can be tested on totally independent data. This will

allow us to see the performance of the neural network if it were to be implemented in the

Lightstone system. This data set for June 2009 which will be used for testing contains 1

863 observations. This data set is not cleaned in any way since we are not modelling on

this data and would like to get an accurate as possible measure of performance when the

neural network is used in the AVM system. The current performance measures on this

data set using the Lightstone approach is as follows:

Within 5% Within 10% Within 20% Within 30%
Percentage of observations 20,02 36,50 62,43 77,78

Table 3.24: Performance of current Lightstone method on mortage application data for
June 2009

The percentage of predictions that are below or above the given purchase price and also

the categories are given in tables 3.25 and 3.26 respectively.

Frequency Percent
OVER 754 40,47

UNDER 1 109 59,53

Table 3.25: Table displaying the number of predictions that are above and below the
purchase price for June 2009 data for the current Lightstone method

If we train a neural network on the January 2009 - May 2009 data with inputs corre-

sponding to neural network number 5 in table 3.12, and use this neural network to pick

211

Frequency Percent
Over by > 30% 163 8,75
Over by 21-30% 87 4,67
Over by 11-20% 197 10,57
Over by 0-10% 307 16,48

Under by 1-10% 373 20,02
Under by 11-20% 286 15,35
Under by 21-30% 199 10,68
Under by > 30% 251 13,47

Table 3.26: Prediction categories for the current Lightstone predictions on June 2009 data

the best available prediction by using the modified classification rule

predicted class =


RS if P (RS|x) > 0, 5

CS if P (CS|x) > 0, 5

COMB otherwise

(3.20)

which was first presented in (3.19), we obtain the following results on the June 2009 data:

Within 5% Within 10% Within 20% Within 30%
Percentage of observations 19,97 36,50 63,39 78,69

Table 3.27: Performance of optimal neural network used to choose the best prediction on
mortage application data for June 2009

If we look at the percentage of predictions that are below or above the given purchase

price we obtain:

Frequency Percent
OVER 817 43,85

UNDER 1 046 56,15

Table 3.28: Table displaying the number of predictions that are above and below the
purchase price for June 2009 data

Comparison of the results from the neural network to the current Lightstone method

is very interesting. We see that percentage of predictions which are within 20% of the

212

Frequency Percent
Over by > 30% 166 8,91
Over by 21-30% 100 5,37
Over by 11-20% 234 12,56
Over by 0-10% 317 17,02

Under by 1-10% 362 19,43
Under by 11-20% 268 14,39
Under by 21-30% 185 9,93
Under by > 30% 231 12,40

Table 3.29: Prediction categories for optimal neural network on June 2009 data

purchase price is higher for the neural network than for the current Lightstone method.

The increase is from 62,43% for the Lightstone method up 0,96% to 63,39% for the neural

network. This is a sizeable increase in the accuracy. If we have a look at the percentage of

overpredictions we see that this number is up from 40,47% for the Lightstone method to

43,85% for the neural network. If we look at the distribution of these predictions for the

neural network into various error bands we see that the big increase was in the percentage

of predictions that lie within 0-20% above the purchase price. This is acceptable as these

final predictions are quite accurate albeit above the purchase price.

Next we will modify the classification rule of the neural network. The new classification

rule is as follows:

predicted class =


RS if P (RS|x) > 0, 6

CS if P (CS|x) > 0, 6

COMB otherwise

(3.21)

The classification rule in (3.21) implies that the large majority of observations will use

the COMB prediction unless the posterior probability is relatively high indicating that

one of the other two predictions should be used. A cutoff value of greater 0,6 was also

experimented with but did not yield any major improvement over the current chosen value

213

of 0,6. The results on the June 2009 data when using this classification rule are displayed

in table 3.30.

Within 5% Within 10% Within 20% Within 30%
Percentage of observations 20,34 37,20 63,88 79,12

Table 3.30: Performance of neural network, with classification rule give in (3.21), used to
choose the best prediction on mortgage application data for June 2009.

If we look at to percentage of predictions that are below or above the given purchase price

we obtain:

Frequency Percent
OVER 788 42,30

UNDER 1 075 57,70

Table 3.31: Table displaying the number of predictions that are above and below the
purchase price for June 2009 data.

Frequency Percent
Over by > 30% 153 8,21
Over by 21-30% 95 5,10
Over by 11-20% 223 11,97
Over by 0-10% 317 17,02

Under by 1-10% 376 20,18
Under by 11-20% 274 14,71
Under by 21-30% 189 10,14
Under by > 30% 236 12,67

Table 3.32: Prediction categories for neural network, with classification rule give in (3.21),
on June 2009 data

We see from the results just presented that this neural network compares even better

to the current Lightstone method with a 1,45% percent increase in the percentage of

predictions that are within 20% of the purchase price over the current Lightstone method.

The overpredictions are also just slightly up from the Lightstone method and overall the

accuracy is better than that of the Lightstone method. This can clearly be seen by

comparing table 3.24 to the results in table 3.30.

If we plot the percentage of predictions that are within 20% of the purchase price across

214

the modelling segments for the current approach as well as the neural network (figure

3.33) we see that for the Township (A) and Poor (B) modelling segments, the accuracy of

the neural network is much higher than the current approach. This is a very encouraging

sign as those two segments are currently the segments in which Lightstone performs the

worst as they are very difficult markets to predict in. We see that for the Comfortable

segments, the neural network also gives an increase in accuracy. For the other segments

the accuracy of the current and Lightstone approaches are very similar. Segments Z1

and Z2 are not a big worry as these segments usually contain very few observations (Z1

contains 13 observations in this example) and therefore accurate comparisons cannot be

made.

Figure 3.33: Comparison of accuracy of current Lightstone approach against the neural
network approach across the modelling segments.

If we divide the accuracy score of the combined prediction into different categories and

then analyse the accuracy of the two methods within each of these bands we find the

plot that is represented in figure 3.35. The reason why we look at this is because the

current Lightstone approach chooses the combined prediction unless there is evidence

215

that this prediction should not be used, then it reverts to one of the other predictions.

This graph can give us insight to see if the neural network perhaps performs better when

we have a low confidence in the combined prediction. This is then another way in which

the neural network can be implemented, by always choosing the combined prediction,

unless the accuracy of the combined prediction is below a certain level in which case we

will then revert to the neural network prediction. From the graph in figure 3.34 we see

that the neural network does perform better than the current Lightstone approach when

the accuracy score of the combined prediction is relatively low (below 60%). This may

very well be a way in which the neural network can be implemented in the Lightstone

environment.

Figure 3.34: Comparison of accuracy of current Lightstone approach against the neural
network approach for different values of the accuracy score of the combined prediction.

An interesting observation arises when we plot the accuracy score from the Lightstone

prediction against the accuracy score of the neural network prediction and then have

a look at those records for which one of the predictions are within 20% of the actual

purchase price but the other prediction is not. The plot can be found in figure 3.31. From

216

this graph we see that there are a relatively high number of observations for which the

accuracy score from the Lightstone prediction is higher than that of the neural network,

but the prediction from the neural network is within 20% and the Lightstone prediction is

not. This indicates to us that accuracy score alone cannot be used for choosing between

predictions and this is where the neural network can improve the current approach.

Figure 3.35: Plot of accuracy score of current Lightstone approach against the accuracy
score from the neural network prediction for records where the one prediction is within
20% of the purchase price but the other prediction is not. The green circles indicate the
records for which the prediction from the neural network is within 20% of the purchase
price but the prediction chosen by the current Lightstone approach is not and the blue
circles signifies the opposite. The 45 degree line is also indicated to make comparisons.

The neural network with the modified classification rule as given in (3.21) will still need

to be tested for another couple of months before a final conclusion can be made. Testing

should be done similarly to what was done in this section, i.e. by pooling a couple of

217

months’ data into one data set, training and arriving at the optimal neural network on

this data and then doing independent testing on a new month’s data which was not part

of the training of the neural network. From the testing that was done in this section, it

seems that the neural network can outperform the current Lightstone method, especially

with the classification rule as given in (3.21). It is definitely worthwhile testing this neural

network for a few more months as this neural network can replace the current Lightstone

method and can be used as a standalone method without the need for any additional

rules.

3.10 Difficulties experienced

In this section we will focus on some problems that were encountered while building the

neural network that was used for the Lightstone application. We will discuss some of the

problems relating to the neural network and neural network methodology and also some

of the issues encountered on the problem and the data for which the neural network was

used. These issues will be presented in list form and are in no particular order:

• The commercial packages which include neural networks often have various short-

comings. One of the shortcomings which were experienced was the lack of a sufficient

method to stop training the neural network. Most of the packages stop training when

the weights converged, i.e. the weights do not differ a lot from epoch to epoch. This

usually results in a suboptimal neural network model. The error from these packages

are usually reported on an independent testing set but the testing set is not used

in the training itself. This is where the neural network that was used and coded

in this dissertation provides a clear benefit in that the training and testing of the

neural network occurs concurrently and that optimal neural network as calculated

218

on the testing set is used to arrive at the final neural network. On average the

neural network which was used for picking the optimal prediction on the Lightstone

data improved with 3% on the percentage of predictions within 20% of the purchase

price when compared to the neural networks which was trained using some of the

commercial software packages.

• Backpropagation training is very slow. SAS IML was used as the software of choice

because it is relatively fast with matrix and algebra computations and even with this

software running on a very powerful server the neural network still took a long time

to train. For the neural networks which were specified in section 3.6.3 we found that

the first neural network with the smallest number of inputs took on average around

1 hour and 15 minutes to complete 1 000 epochs while neural network number five,

which has the most inputs, took on average around 6 hours to complete 1 000 epochs.

This shows that a neural network is very computer intensive especially when the

training data set is fairly large.

• The Lightstone problem that was used in this dissertation for application of neural

networks is quite a unique problem and is not a typical statistical problem which one

often finds. Some of the variables in this problem like the RS and CS predictions

and also the accuracy and safety scores are predictions from underlying models

themselves and are not measured values like in most common statistical applications.

These predictions are already subject to error and then by using these variables as

independent variables in a statistical model means that the error gets compounded.

The problem with this is that the neural network can only be as good as the data

allows it to be and therefore the underlying models which provide the inputs to the

neural network also need to be as accurate as possible for the best possible results

from the neural network.

• If we look at the percentage of observations where we have a prediction that is within

20% of the purchase price on the data set that was used to train the neural network,

219

we find that the theoretical maximum is 78,09%. This means that potentially we

could get almost 80% of the observations from Lightstone within 20% of the purchase

price. However, this is a very misleading and over optimistic number. This point

will be further illustrated with an example that is taken from the actual data. For

this example, we will keep things as simple as possible and only work with the

relevant predictions and their accuracy and safety scores. Consider the following

record:

Purchase Price ŷRS ASRS SSRS ŷCS ASCS SSCS

600 000 601 007 0,64 0,55 501 660 0,80 0,98

ŷCOMB ASCOMB SSCOMB

528 293 0,80 0,97

From this record, we see that the RS prediction is almost spot on with the purchase

price but if we look at the accuracy score of the RS prediction we might conclude

that it is safer to go with the COMB prediction which has a relatively high accuracy

score. The neural network that was trained also predicted that for this record the

COMB prediction is the best prediction. Even though the COMB prediction is still

within the reasonable 20% range of the purchase price, we could have been a lot

more accurate had we chosen the RS prediction. There are two main reasons which

can explain records like this one. The first was already touched on in the previous

point in that the accuracy and safety score are also predictions from models and

are already subject to error. The second reason is that a property value is a very

subjective thing and also extremely difficult to determine exactly. There are various

factors which influence the price for which a property sells for. If a buyer is in a bad

financial position and quickly needs to sell his property, he is more likely to accept

a lower price for the property than someone who is not a desperate seller. A willing

buyer may also be prepared to buy a property for more than it is worth. Therefore

each property has its own price distribution and a property can sell anywhere on

that distribution depending on the circumstances of both the buyer and the seller.

220

For the record that is presented above, the 528 293 may be a very accurate value for

that property, but the seller has put it in the market for a higher price and was in

the position to wait until he got the price that he asked, which reflects in the higher

purchase price. Therefore although we had a prediction for this property which was

almost spot on with the purchase price, there was no information to tell the neural

network that this was indeed the better prediction.

This leads us to the point that we have to make a distinction between the theoretical

maximum accuracy on this data set, and what is possible in practice. The record in

the example is not the most extreme example of this as all the predictions still fall

within the 20% of the purchase price and there are other cases where only one of

the predictions fall within 20% of the purchase price but there is no information to

tell the model that this is indeed the best prediction. For these records the neural

network will often choose the best prediction given the input data, although this

prediction will often not be the closest to the purchase price. Unfortunately it is not

a simple task to calculate the maximum accuracy that can be attained in practice

on this data set.

• For the neural network that was used to pick the correct prediction we had to

calculate the optimal prediction by using the data we had at hand. This posed a

problem because the dependent variable influences the fitted neural network and

there were quite a few approaches which could be followed to calculate the optimal

dependent variable. We opted for the easiest method in that we used the prediction

that was closest to the purchase price which seemed to work quite well. However, if

we have a look at the frequency table of the dependent variable in the neural network

(cf. figure 3.6) and compare this against the frequency table for the predicted outputs

from the neural network (cf. table 3.17) we see that the priors probabilities and the

output class probabilities differ. This may give an indication that the dependent

variable is not entirely correctly specified and this is something which can be looked

into when trying to increase the performance of the neural network (cf. section

221

3.12). This issue is closely related to the previous point in that the actual value

of the property and the purchase price of the property can differ quite significantly

because of various factors, which in turn can make it difficult to assign the correct

prediction to each observation.

3.11 Final remarks

In this section we will share thoughts and experiences while using neural networks. Most

of these remarks will come from a statistical point of view and this section will closely

tie in with the next section where I discuss some future research opportunities for neural

networks, also from a statistical point of view. Some of my thoughts regarding neural

networks from a theoretical and practical point of view are:

• Coming from a statistical background and trying to use a neural network in the same

manner as a regression analysis is quite a challenge, but can be very rewarding in

terms of the performance that a well trained and carefully planned neural network

can produce.

• Building an efficient neural network which can be used for predictive inference is not

an easy task. There is always an element of uncertainty when using neural networks

since it is a black-box model and it is difficult to explain why certain predictions

occur the way they do.

• Deciding on the relevant inputs to include in a neural network is not easy. The

problem is that one cannot entirely proceed to do an exploratory analysis phase

like in a statistical regression, since the sample sizes for neural network data sets

are often very large with lots of variables. Therefore it is difficult to distinguish

between statistical significance and practically significance. The reason for this is

222

that if one only looks at correlations between variables in these large data sets,

because of their large size, very small correlations between the variables will turn

out to be statistically significant although they may not be of practical importance

or may not add anything useful to a neural network model.

• Neural networks are very sensitive to the input data. The old saying of garbage in,

garbage out has never been so true as it is with neural networks. Therefore, one

should put considerable time and effort into choosing the relevant input variables

and also cleaning data by removing outliers. This is where statistical knowledge can

be very advantageous.

• Neural networks’ predictive ability does not seem to be influenced by multicollinear-

ity. This seem to be in line with what Carpio and Hermosilla (2001); De Veaux and

Ungar (1994b) found, although more work is necessary on this topic before any

conclusions can be made.

• Neural networks need tweaking to get the best predictive ability from them. For

this dissertation, we started by using a few of the commercial software packages that

include neural networks and none of them could even get close to the performance

that was obtained from the one coded in IML. Although the coded one was a

lot simpler than the neural networks in the software packages, it could also be

customised more. The one customisation that improved performance was the change

of the stopping criterion which we made specific to the problem at hand. This can

of course not be done with a commercial software package.

• When neural networks first arrived on the scene, lots of exaggerated claims where

made that they can be used to model any process without the need of any sta-

tistical knowledge. From the experience with building the neural networks in this

dissertation, I believe that this is very far from the truth and that a neural network

should in no case be used as a blackbox model without at least analysing some of

the results and trying to understand the underlying process. Statistical knowledge

223

is still very much needed with the use of neural networks and may very well prove to

be the difference between a neural network that performs poorly and is unreliable

and a neural network that performs very well.

• Statisticians should get involved in neural networks. Many of the issues in neural

networks are closely related to statistics and many of the shortcomings of neural net-

works at this stage will need to be researched by a person with a strong knowledge of

statistical theory. If statisticians do get involved in research in neural networks, neu-

ral networks can potentially become one of the most powerful predictive modelling

tools that a statistician can have available, especially in this era where statisticians

are often confronted by very large data sets.

3.12 Future work

This section will be used to give ideas of what can be done in the future to improve the

performance of this particular neural network and also future research ideas for neural

networks from a statistical point of view. These future research ideas will be based on

my own experience that I had while building the neural network that is presented in this

dissertation. I will give the difficulties that I encountered while using neural networks.

For some of these difficulties I could find no satisfactory answer in the literature and it

could be worthwhile to research some of these topics more. A list of topics for this is:

• One of the first things I noticed when starting with this problem was the importance

of standardising the inputs when using backpropagation. For the first of the simula-

tion programs that were written, observations from two perfectly linearly separable

groups were simulated and the aim was to train a neural network to classify each of

the observations. Now with the groups being perfectly separable, one expects that

224

a classification method should obtain a zero percent misclassification rate. None

of the neural networks that were trained could classify every single observation

correctly. The inputs were then standardised and the result was that the neural

network classified all the observations correctly. The same problem was then taken

to a commercial software package and the same problem occurred. No answer to

this could be found in the literature and most of the literature just state that it is

a good idea to standardise the inputs without specifying why. It seemed that the

neural network was more prone to converge to a suboptimal local minimum when

the inputs were not standardised. It might be worthwhile to research this and see

exactly why this is.

• The Lightstone problem of picking the best possible prediction of those given is

quite an unique problem and not typically a common statistical problem. Research

should be done on other methods, both statistical and nonstatistical, which can be

used to solve a problem like this. A decision tree may also be considered as an

alternative method to this problem that might work well.

• In section 3.10 it was mentioned that the Lightstone problem does not actually

fit the typical statistical application in the sense that the independent variables

are predicted values themselves and also subject to prediction error. It might be

worthwhile to research methods that are more suited to this type of problem or

otherwise research how statistical methods can be used to handle problems like this

with a special emphasis on statistical inference on data of this nature.

• Another statistical technique which might be worthwhile to try on this specific prob-

lem is the nonparametric technique called multivariate adaptive regression splines

(MARS). This technique is also nonparametric but the coefficients obtained from

this technique are interpretable since the basis function used to fit the splines have

a specific form. This might help give a better understanding of the process.

• We could consider increasing the number of hidden layers for the neural network

225

that was used to pick the best prediction to see if there is any improvement.

• We could also use other types of learning rules for this problem to see if there is any

performance gain, both in speed and in predictive ability of the neural network.

• If one looks at the tables in appendix A.5 which contain the performance of each

of the five runs conducted we see that the different starting points can have a huge

impact on the performance of the neural network. There ought to be a better way

to choose these starting points than just randomisation to small numbers. This can

be included in future research.

• We could also experiment with different ways of calculating the dependent variable

to be used in the neural network for picking the best prediction. The issues around

this were discussed in section 3.10.

• A modification which may increase the performance on this specific problem is to

use a varying learning rate instead of a fixed learning rate. This is something which

will need to be included in the SAS IML program that was used for training the

neural network and although it is conceptually an easy modification, it is not so

easy to bring it into the program and this will also need to be experimented with

to see what works the best.

226

Chapter 4

Conclusion

In this dissertation is was shown how a neural network can be used as a tool for statistical

regression and classification purposes. The methodology was explained in a manner which

is familiar to persons with a statistical background. The necessary background knowl-

edge of nonlinear optimisation in a nonlinear regression context and also nonparametric

regression was given to make it easier to see how a neural network will fit into a regression

framework.

A neural network can be described as a flexible nonparametric regression method which

can be used for both regression and classification applications. The major difference

between conventional statistical regression techniques and a neural network model is in

the way the weights are estimated. An extensive literature study was conducted into

how a neural network can be expressed as a regression model and how it can be used for

modelling purposes. A two-layer neural network can be explained as a two step regression,

where the first regression takes the original independent variables and combines them in

a nonlinear way to arrive at derived features. The second regression takes these derived

features and then performs another nonlinear regression on these variables to arrive at

227

the output. This whole process functions as a single unit and backpropagation is an easy

way to calculate the weights of this regression.

After the literature study we used a neural network in an application. We started with

simulations to show what the function of the hidden nodes is. Simulations were also used

to show the most effective way to train a neural network. The approach that was followed

was to split the training data into a modelling and testing data set and do the training

and testing concurrently while training a neural network with a relatively large number

of hidden nodes. This ensures that the neural network is complex enough to fit all the

nonlinearities in the data while limiting the effect of overfitting.

A neural network was also used for a very interesting practical application. The problem

for which the neural network was used is not a typical statistical application. One of the

major differences of this problem to a normal statistical is that some of the independent

variables that are considered for this problem are predictions from models and not mea-

sured values. These predictions are also subject to prediction error and this compounds

the error in the model. This made me reflect on how one should actually approach prob-

lems like these and whether normal statistical methods can be used in such applications.

This is still an unanswered question and opens up a wide field of research.

The practical application that was considered here is currently handled with a rules-based

approach. We used a neural network approach to this problem and two main types of

neural networks, each with a different goal in mind, were used. The first is an example

of a neural network with a continuous output. This type of neural network will typically

be used for regression in statistical applications. The second kind of neural network was

used to calculate posterior probabilities of classification. This type of neural network

will typically be used for discriminant analysis applications in statistics. Both of these

approaches were considered on the Lightstone data. The challenge was to determine the

228

optimal variables to use as inputs to the neural networks. We considered different subsets

of inputs variables to determine what worked the best.

The final regression neural network that was used did perform better than the current

Lightstone approach with regards to the percentage of predictions that are within 20% of

the purchase price. The problems that were encountered with this approach is that the

neural network had the tendency to overpredict much more than the current approach

of Lightstone, which is not ideal. The other problem with this neural network is that

a neural network does not extrapolate well. This means that some of the predictions

from the regression neural network can be far off, especially if the input observation looks

different to the training data. Therefore it is recommended that this approach should be

used to augment the current Lightstone approach in some way, rather than substituting

the current approach.

The neural network which was used to pick the best prediction performed better than

the current Lightstone approach and although the number of overpredictions increased

slightly, the neural network is still accurate enough to be considered as an alternative

to the current Lightstone approach. This neural network was tweaked to fit the specific

application for which it will be used. The two tweaks that brought about the greatest

improvement in accuracy was modification of the stopping criterion used in training so as

not to give the lowest misclassification rate, but rather the highest accuracy in terms of

the number of chosen predictions that are within 20% of the actual value. This application

is a rather unique case and this change in the stopping criterion increased the accuracy of

the predictions from this neural network quite significantly. The second change we made

to the neural network was that we used posterior probabilities that were output from the

neural network and changed the classification rule according to what will work the best

in the Lightstone environment.

229

This neural network was also tested on a new month’s data which was not part of the

training process. On this new independent data set we also had an increase in per-

formance over the current Lightstone approach. This test gives a good indication if the

neural network will work in practise in Lightstone and the results that were obtained were

encouraging and indicated that the neural network is indeed viable for implementation in

the Lightstone AVM.

In this dissertation it was shown how a neural network can be used for statistical regression

or statistical classification tasks. It was also shown that a lot of effort goes into building

a neural network that will perform optimally. Statistical knowledge is very advantageous

when building a neural network as one can approach the neural network in a similar

fashion as when building a regression model. We have also discussed the problems that

big data sets create on normal statistical tests and therefore one should also test various

neural networks to decide which works better.

Overall we conclude that a neural network can improve the performance of the Lightstone

AVM. We also made a few recommendations with regard to topics that can be looked at

in future research. These topics include research in neural networks from a statistical

point of view and also specific aspects of the network that can be experimented with to

increase the performance of the neural network to be used in the Lightstone AVM.

230

Bibliography

Anderson, J., Rosenfeld, E., 1988. Neurocomputing: Foundations of Research. MIT Press.

Bailey, M., Muth, R., Nourse, H., 1963. A regresion method for real estate price index

construction. Journal of the American Statistical Association. 58 (304), pp.933–942.

Basheer, I., Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing,

design and application. Journal of Microbiological Methods 43, pp3–31.

Battiti, R., 1992. First- and second-order methods for learning: Between steepest descent

and newton’s method. Neural Computation 4, pp.141–166.

Beale, R., Jackson, T., 1990. Neural Computing: An Introduction. Institute of Physics

Publishing.

Berka, P., Rauch, J., Zighed, D., 2009. Data Mining and Medical Knowledge Management.

Medical Information Science Reference.

Bishop, C. M., 1995. Neural networks for pattern recognition. Oxford.

Boden, M., 2001. A guide to recurrent neural networks and backpropaga-

tion. [online] <URL: http://www.ctan.org/tex-archive/macros/latex/contrib/custom-

bib/merlin.pdf> [Accessed on 2009.07.12].

Bowman, A., Azzalini, A., 1997. Applied Smoothing Techniques for Data Analysis: The

Kernel Approach with S-Plus Illustrations. Oxford: Oxford University Press.

231

Bridle, J., 1989. Probalistic interpretation of feedforward classification network outputs,

with relationships to statistical pattern recognition. In: Fogleman-Soulie, F., Herault,

J. (Eds.), Neuro-computing: Algorithms, Architectures and Applications. New York:

Springer.

Bryson, A., Ho, Y. C., 1969. Applied Optimal Control: Optimization, Estimation, and

Control. Blaisdell, New York.

Carpio, K., Hermosilla, A., 2001. On multicollinearity and artificial neural networks.

Cherkassky, V., Friedman, J., Wechsler, H., 1994. From Statistics to Neural Networks.

Springer-Verlag.

College, W., Veaux, R. D. D., Veaux, R. D. D., 1995. A guided tour of modern regression

methods.

Cristianini, N., Shawe-Taylor, D., 2000. An introduction to Support Vector Machines and

other kernel-based learning methods. Cambridge University Press.

De Veaux, R., Ungar, L., 1994a. A brief introduction to neural networks.

De Veaux, R., Ungar, L., 1994b. Multicollinearity: A tale of two nonparametric regres-

sions.

DiNardo, J., Tobias, J., 2001. Nonparametric density and regression estimation. The

Journal of Economic Perspectives 15(4), pp.11–28.

Draper, N. R., Smith, H., 1998. Applied Regression Analysis. Wiley.

Dreiseitl, S., Ohno-Machado, L., 2002. Logistic regression and artificial neural network

classification models: a methodology review. Journal of Biomedical Informatics 35,

pp.352–359.

Duda, R., Hart, P., 1973. Pattern classification and scene analysis. New York : Wiley.

Eubank, R., 1988. Spline smoothing and nonparamteric regresion. New York and Basel.

232

Fahlman, S., 1988. An empirical study of learning speed in back-propagation networks.

Tech. Rep. CMU-CS-88-162, Carnegie Mellon University.

Fausett, L., 1994. Fundamentals of Neural Networks. Prentice Hall.

Fiesler, E., Beale, R., 1997. Handbook of Neural Computation. IOP Publishing and Ox-

ford University Press.

Fleming, W., 1965. Functions of Several Variables. Addison-Wesley.

Fletcher, L., 2002. Statistical modelling by neural networks. Ph.D. thesis, University of

South Africa.

Fox, J., 2000. Nonparametric Simple Regression: Smoothing Scatterplots. Thousand Oaks

CA:Sage.

Fox, J., January 2002. Nonparametric regression. Appendix to An R and S-Plus Com-

panion to Applied Regression.

Frank, I., 1995. Modern nonlinear regression methods. Chemometrics and Intelligent Lab-

oratory Systems 27, pp.1–9.

Friedman, J., Stuetzle, W., 1981. Projection pursuit regression. Journal of American

Statistical Association 76, pp 817–823.

Gallant, A. R., 1975a. Nonlinear regression. The American Statistician 29, pp.73–81.

Gallant, A. R., 1975b. Seemingly unrelated non-linear regressions. Journal of Economet-

rics 3, pp.35–50.

Gallant, A. R., 1987. Nonlinear statistical models. Wiley.

Green, P., Silverman, B., 1994. Nonparametric regression and generalized linear models.

Chapman & Hall New York.

233

Haley, P., Soloway, D., 1992. Extrapolation limitations of multilayer feedforward neural

networks. International Joint Conference on Neural Networks 4, pp.25–30.

Hand, D., 1981. Discrimination and Classification. Wiley.

Hartley, H., 1961. The modified gauss-newton method for fitting of non-linear regression

functions by least squares. Technometrics 3 (2), pp.269–280.

Hassoun, M., 1995. Fundamentals of Artificial Neural Networks. MIT Press.

Hastie, T., Tibshirani, R., Friedman, J., 2001. The elements of statistical learning.

Springer.

Hebb, D., 1949. The Organization of Behaviour. New York: John Wiley & Sons.

Hertz, J., Krogh, A., Palmer, R., 1991. Introduction to the theory of neural computation.

Addison-Wesley.

Hill, T., Lewicki, P., 2006. Statistics: methods and applications: a comprehensive refer-

ence for science, industry, and data mining. Statsoft Ltd.

Hopfield, J., 1982. Neural networks and physical systems with emergent collective com-

putational abilities 79.

Hornik, K., 1991. Approximation capabilities of multi-layer neural networks. Neural Net-

works 4 (2), pp.251–257.

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are uni-

versal approximators. Neural Networks 2, pp.359–366.

Hosmer, D., Lemeshow, S., 1989. Applied Logistic Regression. John Wiley and Sons.

Hwang, J.-N., Lay, S.-R., Maechler, M., Martin, D., Schimert, J., 1994. Regression model-

ing in back-propagation and projection pursuit learning. IEEE Transactions on neural

networks 5, pp.342–353.

234

Ildiko, F., 1995. Modern nonlinear regression methods. Chemometrics and Intelligent

Laboratory Systems 27, pp.1–9.

Jennrich, R., 1969. Asymptotic properties of non-linear least squares estimators. The

Annals of Mathematical Statistics 40, pp.633–643.

Johnson, R., Wichern, D., 2002. Applied Multivariate Statistical Analysis. Prentice Hall.

Kennedy, W. J., Gentle, J. E., 1980. Statistical Computing. New York and Basel.

Kolen, J., Pollack, J., 1991. Backpropagation is sensitive to initial conditions. Advances

in Neural Information Processing Systems 3, pp.860–867.

Levenberg, K., 1944. A method for the solution of non-linear problems in least squares.

Quarterly journal of Apllied Mathematics 2 (2), pp.164–168.

Malinvaud, E., 1966. Statistical Methods of Econometrics. Rand McNally and Company.

Malinvaud, E., 1970. The consistency of nonlinear regressions. The Annals of Mathemat-

ical Statistics 41, pp956–969.

Marquardt, D., 1963. An algorithm for least-squares estimation of non-linear parameters.

Journal of the Society of Industrial and Applied Mathematics 11 (2), pp.431–441.

McClelland, J., Rumelhart, D., 1986. Parallel Distributed Processing: Explorations in the

Microstructure of Cognition: Foundations. Cambridge: MIT Press.

McClelland, J., Rumelhart, D., 1988. Explorations in the Parallel Distributed Processing.

Cambrige: MIT Press.

McCullagh, P., Nelder, J., 1983. Generalized Linear Models. Chapman & Hall.

McCulloch, W., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics 5, pp.115–133.

235

Meese, R., Wallace, N., 1997. The construction of residential house price indices: A

comparison of repeat-sales, hedonic-regression and hybrid approaches. Journal of Real

Estate Finance and Economics 14:1-2, pp.51–74.

Michie, D., Spiegelhalter, D., Taylor, C., 1994. Machine Learning, Neural and Statistical

Classification. NY: Ellis Horwood.

Minsky, M., Papert, S., 1969. Perceptrons: An Introduction to Computational Geometry.

MIT Press.

Parker, D., 1985. Learning logic. Tech. Rep. TR–47, Center for Computational Research

in Economics and Management Science, Massachusetts Institute of Technology, Cam-

bridge, MA.

Ratkowsky, D. A., 1983. Nonlinear Regression Modeling. New York and Basel.

Richard, M., Lippmann, R., 1991. Neural network classifiers estimate a-posteriori proba-

bilities. Neural computation 3 (4), pp.461–483.

Ripley, B., 1994. Neural networks and related methods for classification. Journal of Royal

Statistical Society 56 (3), pp.409–456.

Ripley, B., 1996. Pattern Recognition and Neural Networks. Cambridge University Press.

Rosenblatt, F., 1958. The perceptron: A probalistic model for information storage and

organization in the brain. Psychological Review 65(6), pp.386–408.

Rosenblatt, F., 1962. Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Spartan Books.

Rumelhart, D., Hinton, G., Williams, R., 1986. Learning representations by back-

propagating errors 323, 533–536.

Sarle, W., 1994. Neural networks and statistical models. In: Proceedings of the Nineteenth

Annual SAS Users Group International Conference.

236

Sarle, W., 1997. Neural network FAQ: Periodic posting to the usenet newsgroup

comp.ai.neural-nets. [online] <URL: ftp://ftp.sas.com/pub/neural/FAQ.html> [Ac-

cessed on 2008.07.03].

Schalkhoff, R., 1992. Pattern Recognition: Statistical, Structural and Neural approaches.

John Wiley and Sons Inc.

Schumacher, M., Reinhard Rossner, R., Vach, W., 1996. Neural networks and logistic

regression: Part I. Computational Statistics and Data Analysis 21(6), pp.661–682.

Seber, G. A. F., Wild, C. J., 1989. Nonlinear regression. Wiley.

Shewchuk, J. R., 1994. An introduction to the conjugate gradient method without the ago-

nizing pain. [online] <URL: http://www.cs.cmu.edu/ quake-papers/painless-conjugate-

gradient.pdf> [Accessed on 2008.06.18].

Stern, H., 1996. Neural networks in applied statistics. Technometrics 38 (3), pp.205–214.

Svozil, D., Kwasnivcka, V., Posp’ichal, 1997. Introduction to multi-layer feed-forward

neural networks. Chemometrics and Intelligent Laboratory Systems 39, pp.43–62.

Thisted, R. A., 1988. Elements of statistical computing. Chapman and Hall.

Vapnik, V., 1996. The Nature of Statistical Learning. Springer-Verlag.

Wang, F., Zorn, P., 1997. Estimating house price growth with repeat sales data: What’s

the aim of the game? Journal of Housing Economics 6, pp.93–118.

Warner, B., Misra, M., 1996. Understanding neural networks as statistical tools. The

American Statistician. 50(4), pp.284–293.

Waugh, S., Adams, A., 1997. A practical comparison between quickprop and back-

propagation. Tech. rep., Artificial Neural Network Research Group Department of Com-

puter Science University of Tasmania.

237

Werbos, P., 1974. Beyond regression: New tools for prediction and analysis in the behav-

ioral sciences. Ph.D. thesis, Harvard University.

White, H., 1989. Learning in artificial neural networks: a statistical perspective. Neural

Computation 1 (4), pp.425–464.

White, H., 1992. Artificial Neural Networks: Approximation and Learning Theory. Ox-

ford, UK: Blackwell.

Widrow, B., Hoff, M., 1960. Adaptive switching circuits. Pages 96-104 of: 1960 IRE

Western Electric Show and Convention (WESCON) Record.

Zhang, G., 2000. Neural networks for classification: A survey. IEEE Transactions on

systems, man, and cybernetics. 30 (4), pp.451–462.

238

Appendix A

Appendix

A.1 Comparison of neural network literature termi-

nology and statistical literature terminology

239

Neural network literature term Statistical term
Training, learning, adaption Estimation or optimisation of parame-

ters in model
Supervised learning Both independent variables and re-

sponse is present like in a regression
Unsupervised learning, Self-
organisation, Competitive learning

Only independent variables are present
like in cluster analysis or principal com-
ponent analysis

Mapping, function approximation Regression
Classification Discriminant analysis
Training set Training sample
Test set Hold-out sample
Features Variables
Inputs Independent variables, predictors, re-

gressors, explanatory variables
Outputs Response, predicted values or fitted

values
Target values Response variables, dependent vari-

ables or observed values
Weights Coefficients (Regression coefficients) or

parameter estimates
Bias term Intercept or constant term
Binary (0/1), Bipolar(−1/1) Binary, dichotomous
Training pair, exemplar or pattern Observation containing dependent and

independent variables
Errors Residuals
Noise Error term
Cost function or error function Estimation criterion
Generalising from noisy data Statistical inference
Backpropagation An optimisation method similar to the

method of steepest descent
Activations Value of a particular variable
Epoch Iteration, Cycle through all the train-

ing data
Weight decay Shrinkage method, Ridge regression

Table A.1: Comparison of terminology in the neural network literature and statistical
literature (Sarle, 1997)

240

A.2 Notation used to describe multilayer neural net-

works

A description of the notation that is going to be used in this dissertation will be given here.

This notation is the same as was used in the literature review but a complete summary

of the notation will be given to make things easier. We will start with the weights: The

weights that connect the input units to the hidden units will be denoted by w1jm where

j = (1, . . . , p) and m = (1, . . . ,M). The 1 specifies that the weight occurs in the first layer

of adaptive weights, the j subscript specifies the neuron from which the weight connect

and the subscript m denotes the unit to which the weight connects. The weights in the

second layer are denoted by w2mk where m = (1, . . . ,M) and k = (1, . . . , K), and this

follows the same methodology as those in the first layer. The i-th observation is denoted

by (xi, yi), where xi = (xi1, . . . , xip) are the independent variables and y
i

= (yi1, . . . , yiK)

denote the dependent variables for this particular observation. When working with a

two-layer network, we have that the weighted sum of the inputs form the net input into

the hidden unit which are denoted by zin−m. For observation i, this is written as

zin−im =
M∑
j=0

w1jmxij

Remember that x0 = 1 denotes the bias term. The net-input is passed through the

activation function, denoted by fm(·), for this specific node and produces output

zim = fm

(
M∑
j=0

w1jmxij

)

241

Following the same principle as above we have that the output ŷik, when the neural

network is presented with input xi is given by

ŷik = g

(
M∑
m=0

w2mkf

(
p∑
j=1

w1jmxij

))

To keep the notation simple, I will generally not specify the number of the observation

that is presented to the neural network, i.e. subscript i will be dropped from the notation.

This means that the output ŷk, when the neural network is presented with an input x

from the training sample is given by

ŷk = gk

(
M∑
m=0

w2mkf

(
p∑
j=0

w1jmxj

))

The aim is to keep the notation as simple as possible. If we have a look at the notation, we

will see that the subscript i is always used to refer to the observation number, subscript

j is always used to refer to an input unit or variable, subscript m is used to denote a

hidden unit and subscript k is used to refer to an output unit. The weights always follow

the convention in which the first subscript denotes the number of the layer of adaptive

weights in which the weight occurs, the second subscript denotes the input unit from

which the weight connects and the last subscript denotes the output unit to which the

weight connects. When there is only one output unit, which is often the case when the

neural network is to be used for regression, then the subscript k is dropped from all the

notation in the network. This means that the network output is then denoted by ŷ1 = ŷ

and the weights which connect the hidden-layer to the output-layer are denoted by w2m.

Similarly if we have a neural network with only one layer, we can drop the appropriate

subscripts to simplify the notation. For example, we can drop the number which indicates

the number of the layer in which the weights occur. This means that the weight, which

connects input node j with output node k will be denoted by wjk. It can be seen that

the notation is chosen in such a way that each subscript has a specific meaning and hence

242

can easily be dropped when it is not needed without any confusion to what the remaining

subscripts mean.

243

A.3 R programs used for simulations

A.3.1 R program to illustrate overfitting in regression case

Neural network for regression simulations - Used to illustrate

underfitting and overfitting

Simulate the x and y values

x <- seq(0,15,by=1)

y <- 1 + +sin(0.5*x) + rnorm(length(x),mean=0,sd=0.2)

train.epochs <- 1000000 # Maximum number of epochs to be used for training

Plot the true underlying distribution, together with the simulated data

x.underlying <- seq(0,15,by=0.1)

y.underlying <- 1 + sin(0.5*x.underlying)

plot.new()

title(main="Simulated data",col.main="black",font.main =4)

axis(1,labels=F,tick=F)

axis(2,tick=F,labels=F)

par(new=T)

plot(x,y)

lines(x.underlying,y.underlying,col=’blue’)

Put the x and y values together in a matrix with each row representing

one observation

244

xdat <- cbind(x,y)

colnames(xdat) <- c(’x’,’y’)

Calculate the mean and standard deviation of the x-values

mean.x <- mean(xdat[,1])

sd.x <- sd(xdat[,1])

Standardize the x-values

prepared.data <- cbind((xdat[,1] - mean.x)/sd.x,y)

Obtain the x and y values that will be used for training

modelling.x <- prepared.data[,1]

modelling.y <- prepared.data[,2]

n.epoch = 0 # Denotes the number of the current epoch

n.obs = length(modelling.x) # Number of training observations

n.input = ncol(modelling.x) # Number of neural network inputs

n.output = ncol(modelling.y) # Number of outputs from neural network

n.hidden = 3 # Number of hidden nodes

alpha = 0.25 # Learning rate parameter

wtrange = 0.1 # The range around zero to which the initial weights are

randomized to

momentum = 0.3 # Momentum parameter

cat("Starting training of neural network with the following parameters:","\n")

cat("Number of training observations:",n.obs,"\n")

cat("Number of inputs:",n.input, "\n")

cat("Number of hidden nodes:", n.hidden, "\n")

245

cat("Number of outputs:", n.output, "\n")

cat("Learning rate:", alpha, "\n")

cat("Momentum term:", momentum, "\n")

Define matrix in which the result of each epoch will be stored

result.mat <- NULL

Matrix that will be used to give indication of how long training

will take

time.mat <- NULL

Initialize the weight matrices in the neural network

bias.ih <- matrix(runif(1*n.hidden,min=-wtrange,max=wtrange),

nrow=1,ncol=n.hidden)

wt.ih <- matrix(runif(n.input*n.hidden,min=-wtrange,max=wtrange),

nrow=n.input,ncol=n.hidden)

bias.ho <- matrix(runif(1*n.output,min=-wtrange,max=wtrange),

nrow=1,ncol=n.output)

wt.ho <- matrix(runif(n.hidden*n.output,min=-wtrange,max=wtrange),

nrow=n.hidden,ncol=n.output)

Initialize the delta weights to be used for momentum in the NN training

delta.wt.ih.prev <- matrix(0,nrow=n.input,ncol=n.hidden)

delta.bias.ih.prev <- matrix(0,nrow=1,ncol=n.hidden);

delta.wt.ho.prev <- matrix(0,nrow=n.hidden,ncol=n.output)

delta.bias.ho.prev <- matrix(0,nrow=1,ncol=n.output)

This matrix will be used in training. This will be used such that

the training data is presented in a random order at each epoch

246

sequence <- matrix(0,nrow=n.obs,ncol=1)

for (i in 1:n.obs){

sequence[i] <- i

}

cat("Initial weights and biases","\n")

cat("Bias Input-->Hidden:",bias.ih,"\n")

cat("Weights Input-->Hidden:",wt.ih,"\n")

cat("Bias Hidden-->Output:",bias.ho,"\n")

cat("Weights Hidden-->Output:",wt.ho,"\n")

Start the training process

for (n.epoch in 1:train.epochs){

This function is to give an indication of the time remaining for

training the neural network

A <- Sys.time()

temp <- n.epoch/1000

if ((temp - floor(temp)) == 0){

cat("Performing epoch number",n.epoch,"out of",train.epochs,"\n")

rem.time <- (train.epochs-n.epoch)*mean(time.mat)

cat(floor(rem.time/60),"minutes",

round(rem.time-floor(rem.time/60)*60),"seconds remaining","\n")

}

Little function that will ensure the observations are presented

to the neural network in a random order at each epoch

for (i in n.obs:2){

247

a <- floor(runif(1)*i + 1)

b <- sequence[i]

sequence[i] <- sequence[a]

sequence[a] <- b

}

Cycle through the whole training set

for (i in 1:n.obs){

obs.nr <- sequence[i] # Get observation number to present to NN

input <- modelling.x[obs.nr,] # Get current input

output <- modelling.y[obs.nr,] # Get current output

Calculate the net input to the hidden nodes

z.in <- bias.ih + input%*%wt.ih

Pass this net input through the hidden node activation function

to produce the outputs from the hidden nodes.

The logistic function is used as activation function here.

z <- (1+exp(-z.in))**(-1)

Calculate the net input to the output node

y.in <- bias.ho + z%*%wt.ho

Pass this net input through the output activation function

to obtain a predicted value from the neural network. The linear

activation function is used in this case.

y.hat <- y.in

248

Compare the predicted value from the neural network to the

output value and calculate the error made

error <- output - y.hat

Calcuate the deltas for the output nodes

delta.2 <- error

Use these deltas to calculate the weight adjustments for the

weights connecting the hidden and the output units

delta.wt.ho <- alpha*t(z)%*%delta.2 + momentum*delta.wt.ho.prev

delta.bias.ho <- alpha*delta.2 + momentum*delta.bias.ho.prev

Calculate the deltas for the hidden nodes

delta.1 <- (z*(1-z))*t(wt.ho%*%t(delta.2))

Use these deltas to calculate the weight adjustments for the

weights connecting the input and the hidden units

delta.wt.ih <- alpha*t(input)%*%delta.1 + momentum*delta.wt.ih.prev

delta.bias.ih <- alpha*delta.1 + momentum*delta.bias.ih.prev

Use the weight adjustments to update the weights

bias.ih <- bias.ih + delta.bias.ih

wt.ih <- wt.ih + delta.wt.ih

bias.ho <- bias.ho + delta.bias.ho

wt.ho <- wt.ho + delta.wt.ho

Store the current weight updates for use in the momentum term

of the next epoch

249

delta.bias.ih.prev <- delta.bias.ih

delta.wt.ih.prev <- delta.wt.ih

delta.bias.ho.prev <- delta.bias.ho

delta.wt.ho.prev <- delta.wt.ho

}

testing.results <- NULL

testing.results <- matrix(0,nrow=n.obs,ncol=3)

Test the model on all the observations in the training set

for (i in 1:n.obs){

Present each observation to the neural network

input <- modelling.x[i,]

output <- modelling.y[i,]

Calculate the predicted value from the neural network for each

observation

z.in <- bias.ih + input%*%wt.ih

z <- (1+exp(-z.in))**(-1)

y.in <- bias.ho + z%*%wt.ho

y.hat <- y.in

error <- output - y.hat

Save each observation and the error made on that observation

testing.results[i,] = c(input,output,error)

}

250

Calculate the sum of squared errors

total.sse <- sum(testing.results[,3]^2)

Save the epoch number and the SSE

result.mat <- rbind(result.mat,c(n.epoch,total.sse))

This code will save the network obtained from the epoch with

the lowest SSE.

if (nrow(result.mat) > 1){

if (result.mat[n.epoch,2] < min(result.mat[-n.epoch,2])){

best.iteration <- n.epoch

best.error <- total.sse

best.bias.ih <- bias.ih

best.wt.ih <- wt.ih

best.bias.ho <- bias.ho

best.wt.ho <- wt.ho

}

}

B <- Sys.time()

time.iteration <- B-A

time.mat <- c(time.mat,time.iteration)

}

Print a summary of the training results and the best neural network

cat("Total number of epochs:",n.epoch,"\n")

cat("Epoch with lowest error:", best.iteration,"\n")

cat("Error for best epoch:",best.error,"\n")

251

cat("Input-->Hidden Bias",best.bias.ih,"\n")

cat("Input-->Hidden Weight Matrix",best.wt.ih,"\n")

cat("Hidden-->Output Bias",best.bias.ho,"\n")

cat("Hidden-->Output Weight Matrix",best.wt.ho,"\n")

name1 = c("Epoch","SSE")

colnames(result.mat) <- name1

Make a grid of values to display the fitted neural network

Get a range of x-values, that can be used to predict a y-value

from the trained neural network

min.x <- min(modelling.x)-0.1

max.x <- max(modelling.x)+0.1

grid.x <- NULL

grid.x <- seq(min.x,max.x,by=0.01)

grid.data <- matrix(0,nrow=length(grid.x),2)

Present each of these x-values to the neural network and obtain

a predicted y-value

for (i in 1:length(grid.x)){

input <- grid.x[i]

z.in <- best.bias.ih + input%*%best.wt.ih

z <- (1+exp(-z.in))**(-1)

y.in <- best.bias.ho + z%*%best.wt.ho

y.hat <- y.in

252

grid.data[i,] <- cbind(input,y.hat)

}

Unstandardize the inputs to display on a graph

grid.data[,1] <- grid.data[,1]*sd.x + mean.x

Plot the simulated data and the fitted neural network on one graph

plot.new()

axis(1,labels=F,tick=F)

axis(2,labels=F,tick=F)

par(new=T)

plot(xdat[,1],xdat[,2],xlim=c(0,15),ylim=c(-0.25,2.25),xlab="x",ylab="y")

par(new=T)

plot(grid.data[,1],grid.data[,2],type=’l’,

xlim=c(0,15),ylim=c(-0.25,2.25),xlab="x",ylab="y",lwd=2)

lines(x.underlying,y.underlying,col=’blue’,lty=3,lwd=0.8)

R program to illustrate use of modelling and testing set in regression neural

network

Neural network for regression simulations - Used to illustrate

the effect of splitting the data into a training and testing

set and doing the training and testing concurrently

Simulate the x and y values

x <- runif(150,0,15)

y <- 1 + +sin(0.5*x) + rnorm(length(x),mean=0,sd=0.2)

253

train.epochs <- 1000000 # Maximum number of epochs to be used for training

Plot the true underlying distribution together with the simulated data points

x.underlying <- seq(0,15,by=0.1)

y.underlying <- 1 + sin(0.5*x.underlying)

plot.new()

title(main="Simulated data",col.main="black",font.main =4)

axis(1,labels=F,tick=F)

axis(2,tick=F,labels=F)

par(new=T)

plot(x,y)

lines(x.underlying,y.underlying,col=’blue’)

Put the x and y values together in a matrix with each row representing one

observation

xdat <- cbind(x,y)

colnames(xdat) <- c(’x’,’y’)

Calculate the mean and the standard deviation of the inputs (x)

mean.x <- mean(xdat[,1])

sd.x <- sd(xdat[,1])

Standardize the x-values

prepared.data <- cbind((xdat[,1]-mean.x)/sd.x,y)

Get a training and testing set

sample <- sample(1:nrow(prepared.data))

254

per.testing <- 0.2 # Specify the percentage of values in the testing set

modelling <- sample[1:((1-per.testing)*length(sample))]

testing <- sample[-(1:((1-per.testing)*length(sample)))]

Get the independent and dependent variable for the training data

modelling.x <- matrix(prepared.data[modelling,1],ncol=1)

modelling.y <- matrix(prepared.data[modelling,2],ncol=1)

Get the independent and dependent variable for the testing data

testing.x <- matrix(prepared.data[testing,1],ncol=1)

testing.y <- matrix(prepared.data[testing,2],ncol=1)

n.epoch = 0 # Denotes the number of the current epoch

n.obs = length(modelling.x) # Number of training observations

n.input = ncol(modelling.x) # Number of inputs into NN

n.output = ncol(modelling.y) # Number of outputs from NN

n.hidden = 20 # Number of hidden nodes

alpha = 0.2 # Learning rate parameter

wtrange = 0.1 # The range around zero to which the initial weights are

randomized to

momentum = 0.5 # Momentum rate parameter

Print a few initial statistics about the neural network to be trained

cat("Starting training of neural network with the following parameters:","\n")

cat("Number of training observations:",n.obs,"\n")

cat("Number of inputs:",n.input, "\n")

cat("Number of hidden nodes:", n.hidden, "\n")

cat("Number of outputs:", n.output, "\n")

255

cat("Learning rate:", alpha, "\n")

cat("Momentum term:", momentum, "\n")

result.mat <- NULL

time.mat <- NULL

Intialize the weight matrices to be used in the neural network

bias.ih <- matrix(runif(1*n.hidden,min=-wtrange,max=wtrange),

nrow=1,ncol=n.hidden)

wt.ih <- matrix(runif(n.input*n.hidden,min=-wtrange,max=wtrange),

nrow=n.input,ncol=n.hidden)

bias.ho <- matrix(runif(1*n.output,min=-wtrange,max=wtrange),

nrow=1,ncol=n.output)

wt.ho <- matrix(runif(n.hidden*n.output,min=-wtrange,max=wtrange),

nrow=n.hidden,ncol=n.output)

Initialize the delta weights to be used for momentum in the NN training

delta.wt.ih.prev <- matrix(0,nrow=n.input,ncol=n.hidden)

delta.bias.ih.prev <- matrix(0,nrow=1,ncol=n.hidden);

delta.wt.ho.prev <- matrix(0,nrow=n.hidden,ncol=n.output)

delta.bias.ho.prev <- matrix(0,nrow=1,ncol=n.output)

This matrix will be used in training. This will be used such that the training

data is presented in a random order at each epoch

sequence <- matrix(0,nrow=n.obs,ncol=1)

for (i in 1:n.obs){

sequence[i] <- i

}

256

cat("Initial weights and biases","\n")

cat("Bias Input-->Hidden:",bias.ih,"\n")

cat("Weights Input-->Hidden:",wt.ih,"\n")

cat("Bias Hidden-->Output:",bias.ho,"\n")

cat("Weights Hidden-->Output:",wt.ho,"\n")

Start training of the neural network

for (n.epoch in 1:train.epochs){

This function is to give an indication of the time remaining for training

the neural network

A <- Sys.time()

tss <- 0

temp <- n.epoch/1000

if ((temp - floor(temp)) == 0){

cat("Performing epoch number",n.epoch,"out of",train.epochs,"\n")

rem.time <- (train.epochs-n.epoch)*mean(time.mat)

cat(floor(rem.time/60),"minutes",

round(rem.time-floor(rem.time/60)*60),"seconds remaining","\n")

}

Little function that will ensure that the observations are presented in a

random order when training the neural network

for (i in n.obs:2){

a <- floor(runif(1)*i + 1)

b <- sequence[i]

sequence[i] <- sequence[a]

257

sequence[a] <- b

}

Cycle through the whole training dataset

for (i in 1:n.obs){

obs.nr <- sequence[i] # Get the number of the observation that will next

be used for training

Get the input for the chosen observation/data point

input <- modelling.x[obs.nr,]

Get the output for that observation

output <- modelling.y[obs.nr,]

Calculate the net input into the hidden nodes from this input,incl bias

z.in <- bias.ih + input%*%wt.ih

Pass the net input through the activation function to get the output from

the hidden nodes. The logistic function is used as activation function

z <- (1+exp(-z.in))**(-1)

Use the outputs from the hidden nodes to calculate the net input into the

output nodes

y.in <- bias.ho + z%*%wt.ho

Calculate the outputs from the neural network by passing the net input to

the outputs through the output activation function. The output activation

function used here is a linear activation function.

y.hat <- y.in

258

Calculate the error made on each of the outputs by comparing the

predicted value from the neural network to the desired/actual output

error <- output - y.hat

Calculate the deltas for the output units

delta.2 <- error

Use these deltas to calculate the weight adjustments for the weights

which connect the hidden units and the output units

delta.wt.ho <- alpha*t(z)%*%delta.2 + momentum*delta.wt.ho.prev

delta.bias.ho <- alpha*delta.2 + momentum*delta.bias.ho.prev

Calculate the deltas for the hidden nodes

delta.1 <- (z*(1-z))*t(wt.ho%*%t(delta.2))

Use these deltas to calculate the weight adjustments for the weights

which connect the input units and the hidden units

delta.wt.ih <- alpha*t(input)%*%delta.1 + momentum*delta.wt.ih.prev

delta.bias.ih <- alpha*delta.1 + momentum*delta.bias.ih.prev

Use the calculated weight adjustments to update the weights

bias.ih <- bias.ih + delta.bias.ih

wt.ih <- wt.ih + delta.wt.ih

bias.ho <- bias.ho + delta.bias.ho

wt.ho <- wt.ho + delta.wt.ho

Store the current weight updates for use in the momentum term of the

next iteration

259

delta.bias.ih.prev <- delta.bias.ih

delta.wt.ih.prev <- delta.wt.ih

delta.bias.ho.prev <- delta.bias.ho

delta.wt.ho.prev <- delta.wt.ho

}

testing.results <- NULL

testing.results <- matrix(0,nrow=nrow(testing.x),ncol=3)

Will now use the testing set to test the prediction error of the current NN

Cycle through all the testing observations

for (i in 1:(nrow(testing.x))){

Present each testing observation to the network one at a time

input <- testing.x[i,]

output <- testing.y[i,]

Calculate the predicted value from the neural network

z.in <- bias.ih + input%*%wt.ih

z <- (1+exp(-z.in))**(-1)

y.in <- bias.ho + z%*%wt.ho

y.hat <- y.in

error <- output - y.hat

Save each observation and the error made on that observation

testing.results[i,] = c(input,output,error)

}

Calculate the sum of squared errors for all observations in the testing set

260

testing.sse <- sum(testing.results[,3]^2)

Save each epoch number and the SSE for that epoch

result.mat <- rbind(result.mat,c(n.epoch,testing.sse))

Here we will compare the SSE calculated on the testing set for this epoch

against all those obtained from the previous epochs. We will then keep the

best network, where the best is measured on the testing set

if (nrow(result.mat) > 1){

if (result.mat[n.epoch,2] < min(result.mat[-n.epoch,2])){

best.iteration <- n.epoch

best.error <- testing.sse

best.bias.ih <- bias.ih

best.wt.ih <- wt.ih

best.bias.ho <- bias.ho

best.wt.ho <- wt.ho

}

}

B <- Sys.time()

time.iteration <- B-A

time.mat <- c(time.mat,time.iteration)

}

Print a summary of the training results and the best neural network

cat("Total number of epochs:",n.epoch,"\n")

cat("Epoch with lowest error:", best.iteration,"\n")

cat("Error for best epoch:",best.error,"\n")

261

cat("Input-->Hidden Bias",best.bias.ih,"\n")

cat("Input-->Hidden Weight Matrix",best.wt.ih,"\n")

cat("Hidden-->Output Bias",best.bias.ho,"\n")

cat("Hidden-->Output Weight Matrix",best.wt.ho,"\n")

name1 = c("Epoch","SSE")

colnames(result.mat) <- name1

Make a grid of values to display the fitted neural network

Get a range of x-values, that can be used to predict a y-value

from the trained neural network

min.x <- min(modelling.x)-0.1

max.x <- max(modelling.x)+0.1

grid.x <- NULL

grid.x <- seq(min.x,max.x,by=0.01)

grid.data <- matrix(0,nrow=length(grid.x),2)

for (i in 1:length(grid.x)){

Present each of these values from this grid to the neural network and

get a predicted value y_hat

input <- grid.x[i]

z.in <- best.bias.ih + input%*%best.wt.ih

z <- (1+exp(-z.in))**(-1)

y.in <- best.bias.ho + z%*%best.wt.ho

y.hat <- y.in

Save the input and the predicted value

grid.data[i,] <- cbind(input,y.hat)

262

}

Unstandardize the inputs

grid.data[,1] <- grid.data[,1]*sd.x + mean.x

Plot the simulated data points and the fitted neural network on one graph

plot.new()

title(main=’Neural network simulation indicating the effect of a testing set’

, col = ’black’, font.main = 4)

axis(1,labels=F,tick=F)

axis(2,labels=F,tick=F)

par(new=T)

plot(xdat[modelling,1],xdat[modelling,2],

xlim=c(0,15),ylim=c(-0.25,2.25),xlab="x",ylab="y",pch=20)

par(new=T)

plot(xdat[testing,1],xdat[testing,2],

xlim=c(0,15),ylim=c(-0.25,2.25),xlab="x",ylab="y",pch=4)

par(new=T)

plot(grid.data[,1],grid.data[,2],type=’l’,

xlim=c(0,15),ylim=c(-0.25,2.25),xlab="x",ylab="y",lwd=2)

lines(x.underlying,y.underlying,col=’blue’,lty=3,lwd=0.8)

R program to illustrate overfitting in classification case

Neural network for classification simulations - Used to illustrate

underfitting and overfitting

263

library(MASS)

train.epochs <- 100000 # Maximum number of epochs used for training the network

ng <- 100 # Number of observations in each of the different groups

Simulate the the data from the different groups

X.1 <- mvrnorm(n=ng,mu= c(40,50),Sigma= matrix(c(100,0,0,100),2,2))

X.2 <- mvrnorm(n=ng,mu= c(60,90),Sigma= matrix(c(100,0,0,100),2,2))

X.3 <- mvrnorm(n=ng,mu= c(100,80),Sigma= matrix(c(100,0,0,100),2,2))

X.4 <- mvrnorm(n=ng,mu= c(80,40),Sigma= matrix(c(100,0,0,100),2,2))

X.5 <- mvrnorm(n=ng,mu= c(70,65),Sigma= matrix(c(50,0,0,50),2,2))

Put all the data from the different groups together in one matrix and give a

y-value to each group (in this case I just numbered each group to indicate

which group each observation belongs to)

G.1 <- cbind(X.1,1)

G.2 <- cbind(X.2,2)

G.3 <- cbind(X.3,3)

G.4 <- cbind(X.4,4)

G.5 <- cbind(X.5,5)

name1 <- c("x1","x2","y")

xdat <- rbind(G.1,G.2,G.3,G.4,G.5)

colnames(xdat) <- name1

Calculate the mean and the standard deviation of the inputs (x1 and x2)

mean.x <- colMeans(xdat[,1:2])

sd.x <- c(sd(xdat[,1]),sd(xdat[,2]))

Standardize the inputs and use 1-of-K coding scheme for the dependent variable

264

prepared.data<-cbind((xdat[,1]-mean.x[1])/sd.x[1],(xdat[,2]-mean.x[2])/sd.x[2],

1*(xdat[,3]==1),1*(xdat[,3]==2),1*(xdat[,3]==3),1*(xdat[,3]==4),1*(xdat[,3]==5))

Obtain the independent variables (x1,x2) and the dependent variables (y1-y5)

that will be used for training

modelling.x <- prepared.data[,1:2]

modelling.y <- prepared.data[,3:7]

n.epoch = 0 # Denotes the number of the current epoch

n.obs = nrow(modelling.x) # Number of training dataset observations

n.input = ncol(modelling.x) # Number of inputs (independent variables)

n.output = ncol(modelling.y) # Number of outputs (5 in this case)

n.hidden = 3 # Number of hidden nodes

alpha = 0.2 # Learning rate parameter

wtrange = 0.1 # The range around zero to which the initial weights are

randomized to

momentum = 0.4 # Momentum parameter

Print some initial statistics on the neural network to be fitted

cat("Starting training of neural network with the following parameters:","\n")

cat("Number of training observations:",n.obs,"\n")

cat("Number of inputs:",n.input, "\n")

cat("Number of hidden nodes:", n.hidden, "\n")

cat("Number of outputs:", n.output, "\n")

cat("Learning rate:", alpha, "\n")

cat("Momentum term:", momentum, "\n")

result.mat <- NULL

265

time.mat <- NULL

Initialize the weight matrices in the neural network

bias.ih <- matrix(runif(1*n.hidden,min=-wtrange,max=wtrange),

nrow=1,ncol=n.hidden)

wt.ih <- matrix(runif(n.input*n.hidden,min=-wtrange,max=wtrange),

nrow=n.input,ncol=n.hidden)

bias.ho <- matrix(runif(1*n.output,min=-wtrange,max=wtrange),

nrow=1,ncol=n.output)

wt.ho <- matrix(runif(n.hidden*n.output,min=-wtrange,max=wtrange),

nrow=n.hidden,ncol=n.output)

Initialize the delta weights to be used for momentum in the NN training

delta.wt.ih.prev <- matrix(0,nrow=n.input,ncol=n.hidden)

delta.bias.ih.prev <- matrix(0,nrow=1,ncol=n.hidden);

delta.wt.ho.prev <- matrix(0,nrow=n.hidden,ncol=n.output)

delta.bias.ho.prev <- matrix(0,nrow=1,ncol=n.output)

This matrix will be used in training. This will be used such that the training

data is presented in a random order at each epoch

sequence <- matrix(0,nrow=n.obs,ncol=1)

for (i in 1:n.obs){

sequence[i] <- i

}

cat("Initial weights and biases","\n")

cat("Bias Input-->Hidden:",bias.ih,"\n")

cat("Weights Input-->Hidden:",wt.ih,"\n")

266

cat("Bias Hidden-->Output:",bias.ho,"\n")

cat("Weights Hidden-->Output:",wt.ho,"\n")

Start the training process

for (n.epoch in 1:train.epochs){

This function is to give an indication of the time remaining for training

the neural network

A <- Sys.time()

temp <- n.epoch/1000

if ((temp - floor(temp)) == 0){

cat("Performing epoch number",n.epoch,"out of",train.epochs,"\n")

rem.time <- (train.epochs-n.epoch)*mean(time.mat)

cat(floor(rem.time/60),"minutes",

round(rem.time-floor(rem.time/60)*60),"seconds remaining","\n")

}

Little function that will ensure that the observations are presented in a

random order when training the neural network

for (i in n.obs:2){

a <- floor(runif(1)*i + 1)

b <- sequence[i]

sequence[i] <- sequence[a]

sequence[a] <- b

}

Cycle through the whole training dataset

for (i in 1:n.obs){

267

obs.nr <- sequence[i] # Get the number of the observation that will next

be used for training

Get the inputs of the chosen observation/datapoint

input <- matrix(modelling.x[obs.nr,],nrow=1,ncol=2)

Get the outputs

output <- matrix(modelling.y[obs.nr,],nrow=1)

Calculate the net input into the hidden nodes from this input,incl bias

z.in <- bias.ih + input%*%wt.ih

Pass the net input through the activation function to get the output from

the hidden nodes. The logistic function is used as activation function

z <- (1+exp(-z.in))**(-1)

Use the outputs from the hidden nodes to calculate the net input into the

output nodes

y.in <- bias.ho + z%*%wt.ho

Calculate the outputs from the neural network by passing the net input to

the outputs through the output activation function. The output activation

function used here is the softmax function.

y.hat <- exp(y.in)/sum(exp(y.in))

Calculate the error made on each of the outputs by comparing the

predicted value from the neural network to the desired/actual output

error <- output - y.hat

268

Calculate the deltas for the output units

delta.2 <- error

Use these deltas to calculate the weight adjustments for the weights

which connect the hidden units and the output units

delta.wt.ho <- alpha*t(z)%*%delta.2 + momentum*delta.wt.ho.prev

delta.bias.ho <- alpha*delta.2 + momentum*delta.bias.ho.prev

Calculate the deltas for the hidden nodes

delta.1 <- (z*(1-z))*t(wt.ho%*%t(delta.2))

Use these deltas to calculate the weight adjustments for the weights

which connect the input units and the hidden units

delta.wt.ih <- alpha*t(input)%*%delta.1 + momentum*delta.wt.ih.prev

delta.bias.ih <- alpha*delta.1 + momentum*delta.bias.ih.prev

Use the calculated weight adjustments to update the weights

bias.ih <- bias.ih + delta.bias.ih

wt.ih <- wt.ih + delta.wt.ih

bias.ho <- bias.ho + delta.bias.ho

wt.ho <- wt.ho + delta.wt.ho

Store the current weight updates for use in the momentum term of the

next iteration

delta.bias.ih.prev <- delta.bias.ih

delta.wt.ih.prev <- delta.wt.ih

delta.bias.ho.prev <- delta.bias.ho

delta.wt.ho.prev <- delta.wt.ho

269

}

testing.results <- NULL

testing.results <- matrix(0,nrow=n.obs,ncol=4)

Test the model on all the observations in the training set

for (i in 1:n.obs){

Present each observation to the neural network

input <- matrix(modelling.x[i,],nrow=1)

output <- matrix(modelling.y[i,],nrow=1)

Calculate the predicted value from the neural network for each observation

z.in <- bias.ih + input%*%wt.ih

z <- (1+exp(-z.in))**(-1)

y.in <- bias.ho + z%*%wt.ho

y.hat <- exp(y.in)/sum(exp(y.in))

Classify the actual outputs to one of the five possible categories

category.y <- which.max(output)

Classify the output from the neural network to one of the five possible

categories

category.y.hat <- which.max(y.hat)

Save the input, the correct output category and also the predicted category

testing.results[i,] = c(input,category.y,category.y.hat)

}

name2 <- c("x1","x2","y","y hat")

colnames(testing.results) <- name2

270

Calculate the missclassification rate for this network

miss.class <- 1*(testing.results[,3]!=testing.results[,4])

mcr <- mean(miss.class)

Save the epoch number and the missclassification rate

result.mat <- rbind(result.mat,c(n.epoch,mcr))

Keep the best network i.e. the one with the lowest mcr as calculated on the

training dataset

if (nrow(result.mat) > 1){

if (result.mat[n.epoch,2] < min(result.mat[-n.epoch,2])){

best.iteration <- n.epoch

best.error <- mcr

best.bias.ih <- bias.ih

best.wt.ih <- wt.ih

best.bias.ho <- bias.ho

best.wt.ho <- wt.ho

}

}

B <- Sys.time()

time.iteration <- B-A

time.mat <- c(time.mat,time.iteration)

}

Print a summary of the training results and the best neural network obtained

cat("Total number of epochs:",n.epoch,"\n")

cat("Epoch with lowest missclassification rate:", best.iteration,"\n")

271

cat("Missclassification rate for best epoch:",best.error,"\n")

cat("Input-->Hidden Bias",best.bias.ih,"\n")

cat("Input-->Hidden Weight Matrix",best.wt.ih,"\n")

cat("Hidden-->Output Bias",best.bias.ho,"\n")

cat("Hidden-->Output Weight Matrix",best.wt.ho,"\n")

name1 = c("Epoch","MCR")

colnames(result.mat) <- name1

Create a grid to display the classification areas fitted by the neural network

Again, get a range of x-values, which can be presented to the neural network

to obtain a predicted value, and hence classify that specific point to a group

min.x1 <- min(modelling.x[,1])-0.1

max.x1 <- max(modelling.x[,1])+0.1

min.x2 <- min(modelling.x[,2])-0.1

max.x2 <- max(modelling.x[,2])+0.1

step.x1 <- seq(min.x1,max.x1,by=0.01)

step.x2 <- seq(min.x2,max.x2,by=0.01)

grid.x <- NULL

for (a in step.x1){

for (b in step.x2){

grid.x <- rbind(grid.x,c(a,b))

}

}

grid.data <- matrix(0,nrow=nrow(grid.x),3)

Present each of the x-values to the neural network and classify the input

272

to one of the five groups

for (i in 1:nrow(grid.x)){

input <- grid.x[i,]

z.in <- best.bias.ih + input%*%best.wt.ih

z <- (1+exp(-z.in))**(-1)

y.in <- best.bias.ho + z%*%best.wt.ho

y.hat <- exp(y.in)/sum(exp(y.in))

y.hat.class <- which.max(y.hat)

grid.data[i,] <- c(input,y.hat.class)

}

Unstandardize the inputs to display it on a graph

grid.data[,1] <- grid.data[,1]*sd.x[1]+mean.x[1]

grid.data[,2] <- grid.data[,2]*sd.x[2]+mean.x[2]

Plot the grid of values and the predicted values from the best neural network

together with simulated data on one graph

plot.new()

title(main="Effect of overfitting",

sub="Network with 3 hidden nodes trained for 100000 epochs"

,col.main="black",font.main =4)

axis(1,labels=F,tick=F)

axis(2,labels=F,tick=F)

par(new=T)

plot(grid.data[,1],grid.data[,2],col=grid.data[,3],

pch=20,cex=2,xlim=c(20,110),ylim=c(20,110),xlab="x1",ylab="x2")

par(new=T)

273

plot(xdat[,1],xdat[,2],col=xdat[,3]+10,

pch=16,cex=1,xlim=c(20,110),ylim=c(20,110),xlab="x1",ylab="x2")

R program to illustrate use of modelling and testing set in classification neural

network

Neural network for classification simulations - Used to illustrate

the effect of incorporating a testing set into the learning algorithm

library(MASS)

train.epochs <- 10000 # Maximum number of epochs used for training the network

ng <- 100 # Number of observations in each of the different groups

Simulate the the data from the different groups using bivariate normal

X.1 <- mvrnorm(n=ng,mu= c(40,50),Sigma= matrix(c(100,0,0,100),2,2))

X.2 <- mvrnorm(n=ng,mu= c(60,90),Sigma= matrix(c(100,0,0,100),2,2))

X.3 <- mvrnorm(n=ng,mu= c(100,80),Sigma= matrix(c(100,0,0,100),2,2))

X.4 <- mvrnorm(n=ng,mu= c(80,40),Sigma= matrix(c(100,0,0,100),2,2))

X.5 <- mvrnorm(n=ng,mu= c(70,65),Sigma= matrix(c(50,0,0,50),2,2))

Put all the data from the different groups together in one matrix and give a

y-value to each group (in this case I just numbered each group to indicate

which group each observation belongs to)

G.1 <- cbind(X.1,1)

G.2 <- cbind(X.2,2)

274

G.3 <- cbind(X.3,3)

G.4 <- cbind(X.4,4)

G.5 <- cbind(X.5,5)

name1 <- c("x1","x2","y")

xdat <- rbind(G.1,G.2,G.3,G.4,G.5)

colnames(xdat) <- name1

Calculate the mean and the standard deviation of the inputs (x1 and x2)

mean.x <- colMeans(xdat[,1:2])

sd.x <- c(sd(xdat[,1]),sd(xdat[,2]))

Standardize the inputs and use 1-of-K coding scheme for the dependent variable

prepared.data <-cbind((xdat[,1]-mean.x[1])/sd.x[1],(xdat[,2]-mean.x[2])/sd.x[2],

1*(xdat[,3]==1),1*(xdat[,3]==2),1*(xdat[,3]==3),1*(xdat[,3]==4),1*(xdat[,3]==5))

Split the data into a modelling and testing dataset

sample <- sample(1:nrow(prepared.data))

per.testing <- 0.2 # Percentage of observations assigned to testing set

modelling <- sample[1:((1-per.testing)*length(sample))]

testing <- sample[-(1:((1-per.testing)*length(sample)))]

Assign the modelling and testing inputs and outputs of the neural network

modelling.x <- prepared.data[modelling,1:2]

modelling.y <- prepared.data[modelling,3:7]

testing.x <- prepared.data[testing,1:2]

testing.y <- prepared.data[testing,3:7]

n.epoch = 0 # Denotes the number of the current epoch

275

n.obs = nrow(modelling.x) # Number of training dataset observations

n.input = ncol(modelling.x) # Number of inputs (independent variables)

n.output = ncol(modelling.y) # Number of outputs (5 in this case)

n.hidden = 1 # Number of hidden nodes

alpha = 0.2 # Learning rate parameter

wtrange = 0.1 # The range around zero to which the initial weights are

randomized to

momentum = 0.4 # Momentum parameter

Print some initial statistics on the neural network to be fitted

cat("Starting training of neural network with the following parameters:","\n")

cat("Number of training observations:",n.obs,"\n")

cat("Number of inputs:",n.input, "\n")

cat("Number of hidden nodes:", n.hidden, "\n")

cat("Number of outputs:", n.output, "\n")

cat("Learning rate:", alpha, "\n")

cat("Momentum term:", momentum, "\n")

result.mat <- NULL

time.mat <- NULL

Initialize the weight matrices in the neural network

sequence <- matrix(0,nrow=n.obs,ncol=1)

bias.ih <- matrix(runif(1*n.hidden,min=-wtrange,max=wtrange),

nrow=1,ncol=n.hidden)

wt.ih <- matrix(runif(n.input*n.hidden,min=-wtrange,max=wtrange),

nrow=n.input,ncol=n.hidden)

bias.ho <- matrix(runif(1*n.output,min=-wtrange,max=wtrange),

276

nrow=1,ncol=n.output)

wt.ho <- matrix(runif(n.hidden*n.output,min=-wtrange,max=wtrange),

nrow=n.hidden,ncol=n.output)

Initialize the delta weights to be used for momentum in the NN training

delta.wt.ih.prev <- matrix(0,nrow=n.input,ncol=n.hidden)

delta.bias.ih.prev <- matrix(0,nrow=1,ncol=n.hidden);

delta.wt.ho.prev <- matrix(0,nrow=n.hidden,ncol=n.output)

delta.bias.ho.prev <- matrix(0,nrow=1,ncol=n.output)

This matrix will be used in training. This will be used such that the training

data is presented in a random order at each epoch

for (i in 1:n.obs){

sequence[i] <- i

}

cat("Initial weights and biases","\n")

cat("Bias Input-->Hidden:",bias.ih,"\n")

cat("Weights Input-->Hidden:",wt.ih,"\n")

cat("Bias Hidden-->Output:",bias.ho,"\n")

cat("Weights Hidden-->Output:",wt.ho,"\n")

Start the training process

for (n.epoch in 1:train.epochs){

This function is to give an indication of the time remaining for training

the neural network

A <- Sys.time()

277

temp <- n.epoch/1000

if ((temp - floor(temp)) == 0){

cat("Performing epoch number",n.epoch,"out of",train.epochs,"\n")

rem.time <- (train.epochs-n.epoch)*mean(time.mat)

cat(floor(rem.time/60),"minutes",round(rem.time-floor(rem.time/60)*60),

"seconds remaining","\n")

}

Little function that will ensure that the observations are presented in a

random order when training the neural network

for (i in n.obs:2){

a <- floor(runif(1)*i + 1)

b <- sequence[i]

sequence[i] <- sequence[a]

sequence[a] <- b

}

Cycle through the whole training dataset

for (i in 1:n.obs){

#i <- 1

obs.nr <- sequence[i] # Get the number of the next observation that will be

used for training

Get the inputs of the chosen observation/datapoint

input <- matrix(modelling.x[obs.nr,],nrow=1)

Get the outputs

output <- matrix(modelling.y[obs.nr,],nrow=1)

278

Calculate the net input into the hidden nodes from this input,incl bias

z.in <- bias.ih + input%*%wt.ih

Pass the net input through the activation function to get the output from

the hidden nodes. The logistic function is used as activation function

z <- (1+exp(-z.in))**(-1)

Use the outputs from the hidden nodes to calculate the net input into the

output nodes

y.in <- bias.ho + z%*%wt.ho

Calculate the outputs from the neural network by passing the net input to

the outputs through the output activation function. The output activation

function used here is the softmax function.

y.hat <- exp(y.in)/sum(exp(y.in))

Calculate the error made on each of the outputs by comparing the

predicted value from the neural network to the desired/actual output

error <- output - y.hat

Calculate the deltas for the output units

delta.2 <- error

Use these deltas to calculate the weight adjustments for the weights

which connect the hidden units and the output units

delta.wt.ho <- alpha*t(z)%*%delta.2 + momentum*delta.wt.ho.prev

delta.bias.ho <- alpha*delta.2 + momentum*delta.bias.ho.prev

279

Calculate the deltas for the hidden nodes

delta.1 <- (z*(1-z))*t(wt.ho%*%t(delta.2))

Use these deltas to calculate the weight adjustments for the weights

which connect the input units and the hidden units

delta.wt.ih <- alpha*t(input)%*%delta.1 + momentum*delta.wt.ih.prev

delta.bias.ih <- alpha*delta.1 + momentum*delta.bias.ih.prev

Use the calculated weight adjustments to update the weights

bias.ih <- bias.ih + delta.bias.ih

wt.ih <- wt.ih + delta.wt.ih

bias.ho <- bias.ho + delta.bias.ho

wt.ho <- wt.ho + delta.wt.ho

Store the current weight updates for use in the momentum term of the

next iteration

delta.bias.ih.prev <- delta.bias.ih

delta.wt.ih.prev <- delta.wt.ih

delta.bias.ho.prev <- delta.bias.ho

delta.wt.ho.prev <- delta.wt.ho

}

testing.results <- NULL

testing.results <- matrix(0,nrow=nrow(testing.x),ncol=4)

Will now use the testing set to calculate the misclassification rate of

the current NN

Cycle through all the testing observations

280

for (i in 1:nrow(testing.x)){

Present each testing observation to the network one at a time

input <- matrix(testing.x[i,],nrow=1)

output <- matrix(testing.y[i,],nrow=1)

Calculate the predicted category from the neural network

z.in <- bias.ih + input%*%wt.ih

z <- (1+exp(-z.in))**(-1)

y.in <- bias.ho + z%*%wt.ho

y.hat <- exp(y.in)/sum(exp(y.in))

error <- output - y.hat

category.y <- which.max(output)

category.y.hat <- which.max(y.hat) # Classify to the category with the largest

posterior probability

Save each observation together with the predicted category from the NN

testing.results[i,] = c(input,category.y,category.y.hat)

}

name2 <- c("x1","x2","y","y hat")

colnames(testing.results) <- name2

Compare the predicted category against the true category to see which

observations are missclassified

miss.class <- 1*(testing.results[,3]!=testing.results[,4])

#Calculate the missclassification rate

mcr <- mean(miss.class)

281

Save the epoch number and the missclassification rate

result.mat <- rbind(result.mat,c(n.epoch,mcr))

Keep the best network i.e. the one with the lowest mcr as calculated on the

independent testing set

if (nrow(result.mat) > 1){

if (result.mat[n.epoch,2] < min(result.mat[-n.epoch,2])){

best.iteration <- n.epoch

best.error <- mcr

best.bias.ih <- bias.ih

best.wt.ih <- wt.ih

best.bias.ho <- bias.ho

best.wt.ho <- wt.ho

}

}

B <- Sys.time()

time.iteration <- B-A

time.mat <- c(time.mat,time.iteration)

}

Print a summary of the training results and the best neural network obtained

cat("Total number of epochs:",n.epoch,"\n")

cat("Epoch with lowest missclassification rate:", best.iteration,"\n")

cat("Missclassification rate for best epoch:",best.error,"\n")

cat("Input-->Hidden Bias",best.bias.ih,"\n")

cat("Input-->Hidden Weight Matrix",best.wt.ih,"\n")

cat("Hidden-->Output Bias",best.bias.ho,"\n")

cat("Hidden-->Output Weight Matrix",best.wt.ho,"\n")

282

name1 = c("Epoch","MCR")

colnames(result.mat) <- name1

Create a grid to display the classification areas fitted by the neural network

Get a range of x-values, which can be presented to the neural network

to obtain a predicted value, and hence classify that specific point to a group

min.x1 <- min(modelling.x[,1])-0.1

max.x1 <- max(modelling.x[,1])+0.1

min.x2 <- min(modelling.x[,2])-0.1

max.x2 <- max(modelling.x[,2])+0.1

step.x1 <- seq(min.x1,max.x1,by=0.01)

step.x2 <- seq(min.x2,max.x2,by=0.01)

grid.x <- NULL

for (a in step.x1){

for (b in step.x2){

grid.x <- rbind(grid.x,c(a,b))

}

}

grid.data <- matrix(0,nrow=nrow(grid.x),3)

Present each of the x-values in the grid to the neural network and classify

the input to one of the five groups

for (i in 1:nrow(grid.x)){

input <- grid.x[i,]

283

z.in <- best.bias.ih + input%*%best.wt.ih

z <- (1+exp(-z.in))**(-1)

y.in <- best.bias.ho + z%*%best.wt.ho

y.hat <- exp(y.in)/sum(exp(y.in))

y.hat.class <- which.max(y.hat)

grid.data[i,] <- c(input,y.hat.class)

}

Unstandardize the inputs to display it on a graph

grid.data[,1] <- grid.data[,1]*sd.x[1]+mean.x[1]

grid.data[,2] <- grid.data[,2]*sd.x[2]+mean.x[2]

Plot the grid of values and the predicted values from the best neural network

together with simulated data on one graph

plot.new()

title(main="Effect of underfitting",

sub="Network with 1 hidden nodes trained for 100000 epochs",

col.main="black",font.main =4)

axis(1,tick=F,labels=F)

axis(2,tick=F,labels=F)

par(new=T)

plot(grid.data[,1],grid.data[,2],col=grid.data[,3],

pch=20,cex=2,xlim=c(20,110),ylim=c(20,110),xlab="x1",ylab="x2")

par(new=T)

plot(xdat[modelling,1],xdat[modelling,2],col=xdat[modelling,3]+10,

pch=20,cex=1,xlim=c(20,110),ylim=c(20,110),xlab="x1",ylab="x2")

par(new=T)

plot(xdat[testing,1],xdat[testing,2],col=xdat[testing,3]+10,

284

pch=’*’,cex=2,xlim=c(20,110),ylim=c(20,110),xlab="x1",ylab="x2")

285

A.4 SAS programs used for Lightstone application

/* Neural network for picking the optimal Lightstone prediction available */

/* Assign the necessary libraries */

libname neural "C:\Personal\M_Verandeling\Programs";

libname data_jan "L:\Lightstone\System Testing\System Testing 17 Jan 2009";

libname data_feb "L:\Lightstone\System Testing\System Testing 18 Feb 2009";

libname data_mar "L:\Lightstone\System Testing\System Testing 19 Mar 2009";

libname data_apr "L:\Lightstone\System Testing\System Testing 20 Apr 2009";

libname data_may "L:\Lightstone\System Testing\System Testing 21 May 2009";

libname data_jun "L:\Lightstone\System Testing\System Testing 22 Jun 2009";

/* Use the logistic6 files from Jan-May 09 */

/* Flagcompare is used for data cleaning purposes, to ensure the purchase price entered from */

/* the system is reliable and can be used as the purchase price of a property */

data neural.logistic6_jan;

set data_jan.logistic6;

where flagcompare = "COMPARE";

run;

data neural.logistic6_feb;

set data_feb.logistic6;

where flagcompare = "COMPARE";

run;

data neural.logistic6_mar;

set data_mar.logistic6;

where flagcompare = "COMPARE";

run;

data neural.logistic6_apr;

set data_apr.logistic6;

286

where flagcompare = "COMPARE";

run;

data neural.logistic6_may;

set data_may.logistic6_may;

where flagcompare = "COMPARE";

run;

data neural.logistic6_jun;

set data_jun.logistic6;

where flagcompare = "COMPARE";

run;

/* Make one big file from the past few month’s logistic6 files */

data neural.logistic6_augmented (keep= property_id my ssflag mod_seg purchase_price

predicted_value

IPURCHDATE flag_used comp_num_used csflag

churn newmonthdiff_query

predval_RS p_ab_rs p_90_rs null_RS

predval_CS p_ab_cs p_90_cs null_CS

better

sigma1_sq sigma2_sq

predval_comb sigma_comb p_ab_comb p_90_comb

pred_method

predval_final p_ab_final p_90_final choice right

best_pred

);

set neural.logistic6_jan neural.logistic6_feb neural.logistic6_mar

neural.logistic6_apr neural.logistic6_may;

if predval_cs ^= . & predval_rs ^= .;

*Neural network will only be trained on records for which we have a RS and CS pred;

run;

/* Prepare the file */

287

data neural.logistic6_keep;

set neural.logistic6_augmented;

length optimal optimal2 optimal3 optimal4 optimal5 $4;

length overunder $10;

length overun $40;

ipurchdate_date =mdy(substr(put(ipurchdate,8.),5,2),

substr(put(ipurchdate,8.),7,2),substr(put(ipurchdate,8.),1,4));

diff = intck(’month’,ipurchdate_date,my);

error_cs = predval_cs - purchase_price;

error_rs = predval_rs - purchase_price;

error_comb = predval_comb - purchase_price;

per_error_cs = (predval_cs/purchase_price)*100;

per_error_rs = (predval_rs/purchase_price)*100;

per_error_comb = (predval_comb/purchase_price)*100;

/* Remove some of the unrelaible records */

if predicted_value = 0 then delete;

if null_RS = ’USE’ and null_CS = ’USE’;

if per_error_rs > 210 then delete;

if per_error_cs > 210 then delete;

if comp_num_used > 200 then delete;

sigma_rs = sqrt(sigma1_sq);

sigma_cs = sqrt(sigma2_sq);

lsigma_rs = log(sigma_rs);

lsigma_cs = log(sigma_cs);

lsigma_comb = log(sigma_comb);

/*Defines the prediction that is the closest to the entered purchase price*/

best_error = min(abs(error_cs),abs(error_rs),abs(error_comb));

if best_error = abs(error_comb) then absolute_best = ’COMB’;

else if best_error = abs(error_cs) then absolute_best = ’CS’;

288

else if best_error = abs(error_rs) then absolute_best = ’RS’;

if absolute_best = ’COMB’ then absolute_best_pred = predval_comb;

if absolute_best = ’RS’ then absolute_best_pred = predval_rs;

if absolute_best = ’CS’ then absolute_best_pred = predval_cs;

if 0.8*purchase_price < absolute_best_pred < 1.2*purchase_price then ab_abs = 1;

else ab_abs = 0;

optimal = absolute_best; *Define dependent variable that will be used;

error_percentage_rs = per_error_rs - 100;

error_percentage_cs = per_error_cs - 100;

error_percentage_comb = per_error_comb - 100;

if 0.7*purchase_price <= predval_final <= 1.3*purchase_price then per_curr30 = 1;

else per_curr30 = 0;

if 0.8*purchase_price <= predval_final <= 1.2*purchase_price then per_curr20 = 1;

else per_curr20 = 0;

if 0.9*purchase_price <= predval_final <= 1.1*purchase_price then per_curr10 = 1;

else per_curr10 = 0;

if 0.95*purchase_price <= predval_final <= 1.05*purchase_price then per_curr05 = 1;

else per_curr05 = 0;

right_curr = 0;

if pred_method = ’A: USED COMBINED PREDICTION’ and optimal = ’COMB’ then right_curr = 1;

else if pred_method = ’B: USED RS PREDICTION’ and optimal = ’RS’ then right_curr = 1;

else if pred_method = ’C: USED COMP SALES PREDICTION’ and optimal = ’CS’ then right_curr = 1;

obs_nr = _n_;

if predval_final > purchase_price then overunder = ’OVER’; else overunder = ’UNDER’;

289

if 1*purchase_price <= predval_final < 1.1*purchase_price then overun = ’OVER 0-10%’;

else if 1.1*purchase_price <= predval_final < 1.2*purchase_price then overun = ’OVER 10-20%’;

else if 1.2*purchase_price <= predval_final < 1.3*purchase_price then overun = ’OVER 20-30%’;

else if predval_final > 1.3*purchase_price then overun = ’OVER >30%’;

else if 0.9*purchase_price <= predval_final < 1*purchase_price then overun = ’UNDER 0-10%’;

else if 0.8*purchase_price <= predval_final < 0.9*purchase_price then overun = ’UNDER 10-20%’;

else if 0.7*purchase_price <= predval_final < 0.8*purchase_price then overun = ’UNDER 20-30%’;

else if predval_final <= 0.7*purchase_price then overun = ’UNDER >30%’;

run;

proc freq data=neural.logistic6_keep;

tables optimal;

run;

/* Generate statistics on the performance of the current Lightstone prediction */

proc freq data = neural.logistic6_keep;

tables ab_abs per_curr05 per_curr10 per_curr20 per_curr30 right_curr overunder overun;

run;

/* Get the file ready for use in neural network training in iml, i.e. code all */

/* the relevant variables correctly and keep only the variables that will be used */

data neural.use (keep = purchase_price

predval_rs p_ab_rs p_90_rs

predval_cs p_ab_cs p_90_cs

predval_comb p_ab_comb p_90_comb

lsigma_rs lsigma_cs lsigma_comb

churn comp_num_used newmonthdiff_query

csflag1-csflag19 flag_used1-flag_used3 mod_seg1-mod_seg16

optimal1 - optimal3 obs_nr);

retain purchase_price

predval_rs p_ab_rs p_90_rs

predval_cs p_ab_cs p_90_cs

290

predval_comb p_ab_comb p_90_comb

lsigma_rs lsigma_cs lsigma_comb

churn comp_num_used newmonthdiff_query

mod_seg1-mod_seg16 csflag1-csflag19 flag_used1-flag_used3

optimal1 - optimal3 obs_nr;

set neural.logistic6_keep (drop = optimal2-optimal5);

if substr(mod_seg,1,index(mod_seg,":")-1) = ’A’ then mod_seg1 = 1;

else mod_seg1 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’B’ then mod_seg2 = 1;

else mod_seg2 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’E1’ then mod_seg3 = 1;

else mod_seg3 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’E2’ then mod_seg4 = 1;

else mod_seg4 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’E3’ then mod_seg5 = 1;

else mod_seg5 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’F’ then mod_seg6 = 1;

else mod_seg6 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’G1’ then mod_seg7 = 1;

else mod_seg7 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’G2’ then mod_seg8 = 1;

else mod_seg8 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’G3’ then mod_seg9 = 1;

else mod_seg9 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’H’ then mod_seg10 = 1;

else mod_seg10 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’I’ then mod_seg11 = 1;

else mod_seg11 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’J’ then mod_seg12 = 1;

else mod_seg12 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’K’ then mod_seg13 = 1;

else mod_seg13 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’L’ then mod_seg14 = 1;

291

else mod_seg14 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’Z1’ then mod_seg15 = 1;

else mod_seg15 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’Z2’ then mod_seg16 = 1;

else mod_seg16 = 0;

if csflag = "ADJEA1 FH" then csflag1 = 1; else csflag1 = 0;

if csflag = "ADJEA1 FH TSHIP" then csflag2 = 1; else csflag2 = 0;

if csflag = "ADJEA1 SS" then csflag3 = 1; else csflag3 = 0;

if csflag = "ADJEA2 FH" then csflag4 = 1; else csflag4 = 0;

if csflag = "ADJEA2 FH TSHIP" then csflag5 = 1; else csflag5 = 0;

if csflag = "ADJEA2 SS" then csflag6 = 1; else csflag6 = 0;

if csflag = "ADJEA3 FH" then csflag7 = 1; else csflag7 = 0;

if csflag = "ADJEA3 FH TSHIP" then csflag8 = 1; else csflag8 = 0;

if csflag = "ADJEA3 SS" then csflag9 = 1; else csflag9 = 0;

if csflag = "EST ONLY" then csflag10 = 1; else csflag10 = 0;

if csflag = "FH EA SS" then csflag11 = 1; else csflag11 = 0;

if csflag = "OWN EA FH" then csflag12 = 1; else csflag12 = 0;

if csflag = "OWN EA FH TSHIP" then csflag13 = 1; else csflag13 = 0;

if csflag = "OWN EA FH SS" then csflag14 = 1; else csflag14 = 0;

if csflag = "SP FH" then csflag15 = 1; else csflag15 = 0;

if csflag = "SP FH TSHIP" then csflag16 = 1; else csflag16 = 0;

if csflag = "SP SS" then csflag17 = 1; else csflag17 = 0;

if csflag = "SS ONLY" then csflag18 = 1; else csflag18 = 0;

if csflag = "TSHIP SHRT SP" then csflag19 = 1; else csflag19 = 0;

if flag_used = "A: USED 0506" then flag_used1 = 1; else flag_used1 = 0;

if flag_used = "B: USED 0306" then flag_used2 = 1; else flag_used2 = 0;

if flag_used = "C: USED CHOSEN" then flag_used3 = 1; else flag_used3 = 0;

if optimal = ’COMB’ then optimal1 = 1;

else optimal1 = 0;

if optimal = ’CS’ then optimal2 = 1;

else optimal2 = 0;

292

if optimal = ’RS’ then optimal3 = 1;

else optimal3 = 0;

if purchase_price = . then delete;

if predval_rs = . then delete;

if p_ab_rs = . then delete;

if p_90_rs = . then delete;

if lsigma_rs = . then delete;

if predval_cs = . then delete;

if p_ab_cs = . then delete;

if p_90_cs = . then delete;

if lsigma_cs = . then delete;

if predval_comb = . then delete;

if p_ab_comb = . then delete;

if p_90_comb = . then delete;

if lsigma_comb = . then delete;

if newmonthdiff_query = . then delete;

run;

/*TAKE THE REMAINING DATASET TO IML TO TRAIN THE NEURAL NETWORK*/

ods html close;

proc iml;

/*Function to do standardization*/

start standardize(input_data,cols_to_standardize,standardized_data,mean,std);

mean = input_data[:,cols_to_standardize];

cov=(t(input_data[,cols_to_standardize])*input_data[,cols_to_standardize]

-nrow(input_data)*(t(mean)*mean))/(nrow(input_data)-1);

std = sqrt(vecdiag(cov));

standardized_data=(input_data[,cols_to_standardize]-

shape(mean,nrow(input_data),ncol(mean)))/shape(t(std),nrow(input_data),ncol(mean));

finish standardize;

/* Finish standardize function */

293

use neural.use;

read all into data;

subset = data[1:10,];

print subset;

names = {’PP’ ’PREDVAL_RS’ ’P_AB_RS’ ’P_90_RS’

’PREDVAL_CS’ ’P_AB_CS’ ’P_90_CS’

’PREDVAL_COMB’ ’P_AB_COMB’ ’P_90_COMB’

’LSIGMA_RS’ ’LSIGMA_CS’ ’LSIGMA_COMB’

’CHURN’ ’COMP’ ’MONTHDIFF’

’MOD_SEG1’ ’MOD_SEG2’ ’MOD_SEG3’ ’MOD_SEG4’ ’MOD_SEG5’ ’MOD_SEG6’ ’MOD_SEG7’ ’MOD_SEG8’

’MOD_SEG9’ ’MOD_SEG10’ ’MOD_SEG11’ ’MOD_SEG12’ ’MOD_SEG13’ ’MOD_SEG14’ ’MOD_SEG15’ ’MOD_SEG16’

’CSFLAG1’ ’CSFLAG2’ ’CSFLAG3’ ’CSFLAG4’ ’CSFLAG5’ ’CSFLAG6’ ’CSFLAG7’ ’CSFLAG8’ ’CSFLAG9’

’CSFLAG10’ ’CSFLAG11’ ’CSFLAG12’ ’CSFLAG13’ ’CSFLAG14’ ’CSFLAG15’ ’CSFLAG16’ ’CSFLAG17’

’CSFLAG18’ ’CSFLAG19’

’FLAGUSED1’ ’FLAGUSED2’ ’FLAGUSED3’

’OPTIMAL1’ ’OPTIMAL2’ ’OPTIMAL3’

’OBS_NR’

};

print subset[c=names];

colx = {2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54};

coly = {55 56 57};

X = data[,colx];

Y = data[,coly];

PP = data[,1];

/*STANDARDIZE THE RELEVANT INPUTS*/

call standardize(X,1:15,standardized_inputs,mean,std);

X = standardized_inputs || X[,16:53];

XY = X || Y;

subset = XY[1:10,];

print subset;

294

/*SPLIT INTO A MODELLING AND TESTING DATASET*/

percentage_testing = 0.2;

n = nrow(XY);

u = uniform(J(n,1,0));

do i = 1 to n;

if u[i] <= (1-percentage_testing) then modelling = modelling // i;

else testing = testing // i;

end;

modelling_x = XY[modelling,1:53];

modelling_y = XY[modelling,54:56];

testing_x = XY[testing,1:53];

testing_y = XY[testing,54:56];

testing_pp = PP[testing,1];

/* Define the basic parameters of the neural network */

n_epoch = 0;

n_obs = nrow(modelling_x);

n_input = ncol(modelling_x);

n_output = ncol(modelling_y);

n_hidden = 50;

alpha = 0.005;

wtrange = 0.05;

momentum = 0.4;

print "Starting training a neural network with the following parameters"

"Training observations:" n_obs "Independent variables:" n_input "Hidden nodes:" n_hidden

"Number of output nodes:" n_output "Learning rate:" alpha "Momentum rate:" momentum;

/*Initialize network*/

sequence = shape(0,n_obs,1);

bias_ih = shape(0,1,n_hidden);

wt_ih = shape(0,n_input,n_hidden);

295

bias_ho = shape(0,1,n_output);

wt_ho = shape(0,n_hidden,n_output);

delta_wt_ih_prev = shape(0,n_input,n_hidden);

delta_bias_ih_prev = shape(0,1,n_hidden);

delta_wt_ho_prev = shape(0,n_hidden,n_output);

delta_bias_ho_prev = shape(0,1,n_output);

row_name_wt_ih = t(char(1:n_input));

col_name_wt_ih = char(1:n_hidden);

row_name_wt_ho = t(char(1:n_hidden));

col_name_wt_ho = char(1:n_output);

do i = 1 to n_obs;

sequence[i] = i;

end;

/*Initialize connection weights*/

wt_ih = 2*wtrange*uniform(wt_ih) - J(nrow(wt_ih),ncol(wt_ih),wtrange);

wt_ho = 2*wtrange*uniform(wt_ho) - J(nrow(wt_ho),ncol(wt_ho),wtrange);

bias_ih = 2*wtrange*uniform(bias_ih) - J(1,ncol(bias_ih),wtrange);

bias_ho = 2*wtrange*uniform(bias_ho) - J(1,ncol(bias_ho),wtrange);

print wt_ih[r=row_name_wt_ih c=col_name_wt_ih] wt_ho[r=row_name_wt_ho c=col_name_wt_ho]

bias_ih[c=col_name_wt_ih] bias_ho[c=col_name_wt_ho];

do t = 1 to 1000;

n_epoch = n_epoch + 1;

tss = 0;

do i=n_obs to 2 by -1;

a=int(uniform(0)*i)+1;

b=sequence[i];

296

sequence[i]=sequence[a];

sequence[a]=b;

end;

do i = 1 to n_obs;

pss = 0;

obs_nr = sequence[i];

input = modelling_x[obs_nr,];

output = modelling_y[obs_nr,];

z_in = bias_ih#J(1,ncol(wt_ih),1) + input*wt_ih;

z = (1+exp(-z_in))##(-1);

y_in = bias_ho#J(1,ncol(wt_ho),1) + z*wt_ho;

y_hat = exp(y_in)/sum(exp(y_in));

check = y_hat[,+];

error = output - y_hat;

delta_2 = error;

delta_wt_ho = t(z)*delta_2 + momentum#delta_wt_ho_prev;

delta_bias_ho = delta_2 + momentum#delta_bias_ho_prev;

delta_1 = (z#(1-z))#t(wt_ho*t(delta_2));

delta_wt_ih = t(input)*delta_1 + momentum#delta_wt_ih_prev;

delta_bias_ih = delta_1 + momentum#delta_bias_ih_prev;

wt_ih_old = wt_ih;

wt_ho_old = wt_ho;

delta_wt_ih_prev = delta_wt_ih;

delta_bias_ih_prev = delta_bias_ih;

delta_wt_ho_prev = delta_wt_ho;

297

delta_bias_ho_prev = delta_bias_ho;

bias_ih = bias_ih + alpha#delta_bias_ih;

wt_ih = wt_ih + alpha#delta_wt_ih;

bias_ho = bias_ho + alpha#delta_bias_ho;

wt_ho = wt_ho + alpha#delta_wt_ho;

end;

if ncol(testing_results) > 0 then do;

testing_results = remove(testing_results,1:(nrow(testing_results)*ncol(testing_results)));

end;

do i = 1 to nrow(testing_x);

input = testing_x[i,];

output = testing_y[i,];

z_in = bias_ih#J(1,ncol(wt_ih),1) + input*wt_ih;

z = (1+exp(-z_in))##(-1);

y_in = bias_ho#J(1,ncol(wt_ho),1) + z*wt_ho;

y_hat = exp(y_in)/sum(exp(y_in));

max = max(y_hat);

do k = 1 to ncol(y_hat);

if max = y_hat[k] then classification = k;

end;

do k = 1 to ncol(output);

correct_class = correct_class || (output[,k] = 1)*k;

end;

correct_class = correct_class[,+];

if classification = 1 then prediction = input[,7]*std[7] + mean[7];

else if classification = 2 then prediction = input[,4]*std[4] + mean[4];

else if classification = 3 then prediction = input[,1]*std[1] + mean[1];

298

if prediction >= 0.8*testing_pp[i] & prediction <= 1.2*testing_pp[i] then ab = 1;

else ab = 0;

testing_results = testing_results // (correct_class || classification || ab);

correct_class = remove(correct_class,1);

end;

mcr = 100*(1-(testing_results[,1] = testing_results[,2])[+]/nrow(testing_results));

ab_rate = testing_results[:,3];

n_test = nrow(testing_results);

mcr_mat = mcr_mat // (t || mcr || ab_rate);

if nrow(mcr_mat) > 1 then do;

if ab_rate > max(mcr_mat[1:(nrow(mcr_mat)-1),3]) then do;

best_iteration = t;

best_mcr = mcr;

best_wt_ih = wt_ih;

best_bias_ih = bias_ih;

best_wt_ho = wt_ho;

best_bias_ho = bias_ho;

end;

end;

end;

print "Total number of epocs:" n_epoch;

print "Epoch with lowest mcr:" best_iteration;

print "Input-->Hidden Bias" best_bias_ih;

print "Input-->Hidden Weight Matrix" best_wt_ih;

print "Hidden-->Output Bias" best_bias_ho;

print "Hidden-->Output Weight Matrix" best_wt_ho;

299

/* Use the best weights which is obtained from the independent test sample to give */

/* detailed statistics about the net */

if ncol(testing_results) > 0 then do;

testing_results = remove(testing_results,1:(nrow(testing_results)*ncol(testing_results)));

end;

do i = 1 to nrow(testing_x);

input = testing_x[i,];

output = testing_y[i,];

z_in = best_bias_ih#J(1,ncol(wt_ih),1) + input*best_wt_ih;

z = (1+exp(-z_in))##(-1);

y_in = best_bias_ho#J(1,ncol(wt_ho),1) + z*best_wt_ho;

y_hat = exp(y_in)/sum(exp(y_in));

max = max(y_hat);

do k = 1 to ncol(y_hat);

if max = y_hat[k] then classification = k;

end;

do k = 1 to ncol(output);

correct_class = correct_class || (output[,k] = 1)*k;

end;

correct_class = correct_class[,+];

if classification = 1 then prediction = input[,7]*std[7] + mean[7];

else if classification = 2 then prediction = input[,4]*std[4] + mean[4];

else if classification = 3 then prediction = input[,1]*std[1] + mean[1];

if prediction >= 0.8*testing_pp[i] & prediction <= 1.2*testing_pp[i] then ab = 1;

else ab = 0;

testing_results = testing_results // (correct_class || classification || ab);

correct_class = remove(correct_class,1);

end;

ab_result = testing_results[:,3];

300

mcr = 100*(1-((testing_results[,1] = testing_results[,2])[+]/nrow(testing_results)));

n_test = nrow(testing_results);

print "Testing AB: " ab_result;

print "Misclassification rate is:" mcr "%";

print "Number of testing set observations:" n_test;

/*Now use the trained neural network on the entire dataset*/

do i = 1 to nrow(X);

input = X[i,];

output = Y[i,];

z_in = best_bias_ih#J(1,ncol(wt_ih),1) + input*best_wt_ih;

z = (1+exp(-z_in))##(-1);

y_in = best_bias_ho#J(1,ncol(wt_ho),1) + z*best_wt_ho;

y_hat = exp(y_in)/sum(exp(y_in));

max = max(y_hat);

do k = 1 to ncol(y_hat);

if max = y_hat[k] then classification = k;

end;

do k = 1 to ncol(output);

correct_class = correct_class || (output[,k] = 1)*k;

end;

correct_class = correct_class[,+];

if classification = 1 then prediction = input[,7]*std[7] + mean[7];

else if classification = 2 then prediction = input[,4]*std[4] + mean[4];

else if classification = 3 then prediction = input[,1]*std[1] + mean[1];

if prediction >= 0.7*data[i,1] & prediction <= 1.3*data[i,1] then neural30 = 1;

else neural30 = 0;

if prediction >= 0.8*data[i,1] & prediction <= 1.2*data[i,1] then neural20 = 1;

else neural20 = 0;

301

if prediction >= 0.9*data[i,1] & prediction <= 1.1*data[i,1] then neural10 = 1;

else neural10 = 0;

if prediction >= 0.95*data[i,1] & prediction <= 1.05*data[i,1] then neural05 = 1;

else neural05 = 0;

final_results = final_results //

(correct_class || classification || neural05 || neural10 || neural20 || neural30);

pp = data[i,1];

obs = data[i,58];

record = obs || pp || correct_class || classification || prediction || y_hat;

output_data = output_data // record;

correct_class = remove(correct_class,1);

end;

per05 = final_results[:,3];

per10 = final_results[:,4];

per20 = final_results[:,5];

per30 = final_results[:,6];

mcr = 100*(1-((final_results[,1] = final_results[,2])[+]/nrow(final_results)));

n_all = nrow(final_results);

print "% within 5% " per05;

print "% within 10% " per10;

print "% within 20% " per20;

print "% within 30% " per30;

print "Misclassification rate is:" mcr "%";

print "Number of observations:" n_all;

/* Need to output the weights for future use of the neural network */

std = t(std);

create mean from mean;

append from mean;

302

create std from std;

append from std;

create bias_ih from bias_ih;

append from bias_ih;

create wt_ih from wt_ih;

append from wt_ih;

create bias_ho from bias_ho;

append from bias_ho;

create wt_ho from wt_ho;

append from wt_ho;

names1 = {’OBS_NR’ ’PURCHASE_PRICE’

’CORRECT CLASS’ ’PREDICTED CLASS’ ’FINAL PREDICTION’ "P_COMB" "P_CS" "P_RS"};

create output_bestpick from output_data[c=names1];

append from output_data;

quit;

/* Now that the neural network is trained and the best neural network is saved, */

/* we can do analysis */

proc format;

value preds 1 = ’COMB’

2 = ’CS’

3 = ’RS’;

run;

proc sql;

create table results_linked as

303

select a.*,b.predval_rs,b.predval_cs,b.predval_comb,b.predval_final,b.pred_method,mod_seg

from neural.output_bestpick a left join neural.logistic6_keep b

on a.obs_nr = b.obs_nr;

quit;

data neural.results_linked;

set results_linked;

format correct_class predicted_class preds.;

length overunder $10 overun $40;

length predicted_class2 $4;

if 0.8*purchase_price <= final_prediction <= 1.2*purchase_price then ab_neural = 1;

else ab_neural = 0;

if 0.8*purchase_price <= predval_final <= 1.2*purchase_price then ab_curr = 1;

else ab_curr = 0;

/* Modified classification rule which works with the posterior probabilities */

predicted_class_modified = ’COMB’;

if p_rs > 0.5 then predicted_class_modified = ’RS’;

else if p_cs > 0.5 then predicted_class_modified = ’CS’;

predicted_val_modified = predval_comb;

if p_rs > 0.5 then predicted_val_modified = predval_rs;

else if p_cs > 0.5 then predicted_val_modified = predval_cs;

if 0.95*purchase_price <= predicted_val_modified <= 1.05*purchase_price then ab_neural_05 = 1;

else ab_neural_05 = 0;

if 0.9*purchase_price <= predicted_val_modified <= 1.1*purchase_price then ab_neural_10 = 1;

else ab_neural_10 = 0;

if 0.8*purchase_price <= predicted_val_modified <= 1.2*purchase_price then ab_neural_20 = 1;

else ab_neural_20 = 0;

if 0.7*purchase_price <= predicted_val_modified <= 1.3*purchase_price then ab_neural_30 = 1;

else ab_neural_30 = 0;

if predicted_val_modified > purchase_price then overunder = ’OVER’; else overunder = ’UNDER’;

304

if 1*purchase_price <= predicted_val_modified < 1.1*purchase_price

then overun = ’OVER 0-10%’;

else if 1.1*purchase_price <= predicted_val_modified < 1.2*purchase_price

then overun = ’OVER 10-20%’;

else if 1.2*purchase_price <= predicted_val_modified < 1.3*purchase_price

then overun = ’OVER 20-30%’;

else if predicted_val_modified >= 1.3*purchase_price

then overun = ’OVER >30%’;

else if 0.9*purchase_price <= predicted_val_modified < 1*purchase_price

then overun = ’UNDER 0-10%’;

else if 0.8*purchase_price <= predicted_val_modified < 0.9*purchase_price

then overun = ’UNDER 10-20%’;

else if 0.7*purchase_price <= predicted_val_modified < 0.8*purchase_price

then overun = ’UNDER 20-30%’;

else if predicted_val_modified <= 0.7*purchase_price

then overun = ’UNDER >30%’;

run;

/* Look at performance statistics from neural network with the modified classification rule */

proc freq data=neural.results_linked;

tables ab_neural ab_curr ab_neural_05 ab_neural_10 ab_neural_20 ab_neural_30 overunder overun;

run;

/* Test the neural network approach on a totally independent dataset */

data june_sys_data;

set logistic6_jun;

if timestamp >= ’01JUN09’d;

run;

data june_sys_data;

set june_sys_data;

305

length overunder $10;

length overun $40;

if predval_rs ^=. & predval_cs ^= .;

sigma_rs = sqrt(sigma1_sq);

sigma_cs = sqrt(sigma2_sq);

lsigma_rs = log(sigma_rs);

lsigma_cs = log(sigma_cs);

lsigma_comb = log(sigma_comb);

/*Defines the prediction that is the closest to the entered purchase price*/

best_error = min(abs(error_cs),abs(error_rs),abs(error_comb));

if best_error = abs(error_comb) then absolute_best = ’COMB’;

else if best_error = abs(error_cs) then absolute_best = ’CS’;

else if best_error = abs(error_rs) then absolute_best = ’RS’;

if absolute_best = ’COMB’ then absolute_best_pred = predval_comb;

if absolute_best = ’RS’ then absolute_best_pred = predval_rs;

if absolute_best = ’CS’ then absolute_best_pred = predval_cs;

optimal = absolute_best;

OBS_NR = _n_;

if 0.7*purchase_price <= predval_final <= 1.3*purchase_price then per_curr30 = 1;

else per_curr30 = 0;

if 0.8*purchase_price <= predval_final <= 1.2*purchase_price then per_curr20 = 1;

else per_curr20 = 0;

if 0.9*purchase_price <= predval_final <= 1.1*purchase_price then per_curr10 = 1;

else per_curr10 = 0;

if 0.95*purchase_price <= predval_final <= 1.05*purchase_price then per_curr05 = 1;

306

else per_curr05 = 0;

if predval_final > purchase_price then overunder = ’OVER’; else overunder = ’UNDER’;

if 1*purchase_price <= predval_final < 1.1*purchase_price then overun = ’OVER 0-10%’;

else if 1.1*purchase_price <= predval_final < 1.2*purchase_price then overun = ’OVER 10-20%’;

else if 1.2*purchase_price <= predval_final < 1.3*purchase_price then overun = ’OVER 20-30%’;

else if predval_final > 1.3*purchase_price then overun = ’OVER >30%’;

else if 0.9*purchase_price <= predval_final < 1*purchase_price then overun = ’UNDER 0-10%’;

else if 0.8*purchase_price <= predval_final < 0.9*purchase_price then overun = ’UNDER 10-20%’;

else if 0.7*purchase_price <= predval_final < 0.8*purchase_price then overun = ’UNDER 20-30%’;

else if predval_final <= 0.7*purchase_price then overun = ’UNDER >30%’;

if purchase_price = . then delete;

if predval_rs = . then delete;

if p_ab_rs = . then delete;

if p_90_rs = . then delete;

if lsigma_rs = . then delete;

if predval_cs = . then delete;

if p_ab_cs = . then delete;

if p_90_cs = . then delete;

if lsigma_cs = . then delete;

if predval_comb = . then delete;

if p_ab_comb = . then delete;

if p_90_comb = . then delete;

if lsigma_comb = . then delete;

if newmonthdiff_query = . then delete;

run;

/* Performance statistics of the Lightstone method on this new independent testing set */

proc freq data = june_sys_data;

tables per_curr05 per_curr10 per_curr20 per_curr30 overunder overun;

run;

307

data neural.test (keep = purchase_price

predval_rs p_ab_rs p_90_rs

predval_cs p_ab_cs p_90_cs

predval_comb p_ab_comb p_90_comb

lsigma_rs lsigma_cs lsigma_comb

churn comp_num_used newmonthdiff_query

csflag1-csflag19 flag_used1-flag_used3 mod_seg1-mod_seg16

optimal1 - optimal3 obs_nr);

retain purchase_price

predval_rs p_ab_rs p_90_rs

predval_cs p_ab_cs p_90_cs

predval_comb p_ab_comb p_90_comb

lsigma_rs lsigma_cs lsigma_comb

churn comp_num_used newmonthdiff_query

mod_seg1-mod_seg16 csflag1-csflag19 flag_used1-flag_used3

optimal1 - optimal3 obs_nr;

set june_sys_data (drop = csflag2);

if substr(mod_seg,1,index(mod_seg,":")-1) = ’A’ then mod_seg1 = 1;

else mod_seg1 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’B’ then mod_seg2 = 1;

else mod_seg2 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’E1’ then mod_seg3 = 1;

else mod_seg3 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’E2’ then mod_seg4 = 1;

else mod_seg4 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’E3’ then mod_seg5 = 1;

else mod_seg5 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’F’ then mod_seg6 = 1;

else mod_seg6 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’G1’ then mod_seg7 = 1;

else mod_seg7 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’G2’ then mod_seg8 = 1;

308

else mod_seg8 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’G3’ then mod_seg9 = 1;

else mod_seg9 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’H’ then mod_seg10 = 1;

else mod_seg10 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’I’ then mod_seg11 = 1;

else mod_seg11 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’J’ then mod_seg12 = 1;

else mod_seg12 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’K’ then mod_seg13 = 1;

else mod_seg13 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’L’ then mod_seg14 = 1;

else mod_seg14 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’Z1’ then mod_seg15 = 1;

else mod_seg15 = 0;

if substr(mod_seg,1,index(mod_seg,":")-1) = ’Z2’ then mod_seg16 = 1;

else mod_seg16 = 0;

if csflag = "ADJEA1 FH" then csflag1 = 1; else csflag1 = 0;

if csflag = "ADJEA1 FH TSHIP" then csflag2 = 1; else csflag2 = 0;

if csflag = "ADJEA1 SS" then csflag3 = 1; else csflag3 = 0;

if csflag = "ADJEA2 FH" then csflag4 = 1; else csflag4 = 0;

if csflag = "ADJEA2 FH TSHIP" then csflag5 = 1; else csflag5 = 0;

if csflag = "ADJEA2 SS" then csflag6 = 1; else csflag6 = 0;

if csflag = "ADJEA3 FH" then csflag7 = 1; else csflag7 = 0;

if csflag = "ADJEA3 FH TSHIP" then csflag8 = 1; else csflag8 = 0;

if csflag = "ADJEA3 SS" then csflag9 = 1; else csflag9 = 0;

if csflag = "EST ONLY" then csflag10 = 1; else csflag10 = 0;

if csflag = "FH EA SS" then csflag11 = 1; else csflag11 = 0;

if csflag = "OWN EA FH" then csflag12 = 1; else csflag12 = 0;

if csflag = "OWN EA FH TSHIP" then csflag13 = 1; else csflag13 = 0;

if csflag = "OWN EA FH SS" then csflag14 = 1; else csflag14 = 0;

if csflag = "SP FH" then csflag15 = 1; else csflag15 = 0;

if csflag = "SP FH TSHIP" then csflag16 = 1; else csflag16 = 0;

309

if csflag = "SP SS" then csflag17 = 1; else csflag17 = 0;

if csflag = "SS ONLY" then csflag18 = 1; else csflag18 = 0;

if csflag = "TSHIP SHRT SP" then csflag19 = 1; else csflag19 = 0;

if flag_used = "A: USED 0506" then flag_used1 = 1; else flag_used1 = 0;

if flag_used = "B: USED 0306" then flag_used2 = 1; else flag_used2 = 0;

if flag_used = "C: USED CHOSEN" then flag_used3 = 1; else flag_used3 = 0;

if optimal = ’COMB’ then optimal1 = 1;

else optimal1 = 0;

if optimal = ’CS’ then optimal2 = 1;

else optimal2 = 0;

if optimal = ’RS’ then optimal3 = 1;

else optimal3 = 0;

if purchase_price = . then delete;

if predval_rs = . then delete;

if p_ab_rs = . then delete;

if p_90_rs = . then delete;

if lsigma_rs = . then delete;

if predval_cs = . then delete;

if p_ab_cs = . then delete;

if p_90_cs = . then delete;

if lsigma_cs = . then delete;

if predval_comb = . then delete;

if p_ab_comb = . then delete;

if p_90_comb = . then delete;

if lsigma_comb = . then delete;

if newmonthdiff_query = . then delete;

run;

/* Put this testing set through the neural network that was trained on the Jan-May data */

ods html close;

310

proc iml;

use neural.test;

read all into data;

subset = data[1:10,];

print subset;

names = {’PP’ ’PREDVAL_RS’ ’P_AB_RS’ ’P_90_RS’

’PREDVAL_CS’ ’P_AB_CS’ ’P_90_CS’

’PREDVAL_COMB’ ’P_AB_COMB’ ’P_90_COMB’

’LSIGMA_RS’ ’LSIGMA_CS’ ’LSIGMA_COMB’

’CHURN’ ’COMP’ ’MONTHDIFF’

’MOD_SEG1’ ’MOD_SEG2’ ’MOD_SEG3’ ’MOD_SEG4’ ’MOD_SEG5’ ’MOD_SEG6’ ’MOD_SEG7’ ’MOD_SEG8’

’MOD_SEG9’ ’MOD_SEG10’ ’MOD_SEG11’ ’MOD_SEG12’ ’MOD_SEG13’ ’MOD_SEG14’ ’MOD_SEG15’ ’MOD_SEG16’

’CSFLAG1’ ’CSFLAG2’ ’CSFLAG3’ ’CSFLAG4’ ’CSFLAG5’ ’CSFLAG6’ ’CSFLAG7’ ’CSFLAG8’ ’CSFLAG9’

’CSFLAG10’ ’CSFLAG11’ ’CSFLAG12’ ’CSFLAG13’ ’CSFLAG14’ ’CSFLAG15’ ’CSFLAG16’ ’CSFLAG17’

’CSFLAG18’ ’CSFLAG19’

’FLAGUSED1’ ’FLAGUSED2’ ’FLAGUSED3’

’OPTIMAL1’ ’OPTIMAL2’ ’OPTIMAL3’

’OBS_NR’

};

print subset[c=names];

colx = {2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54};

coly = {55 56 57};

X = data[,colx];

Y = data[,coly];

PP = data[,1];

/*STANDARDIZE THE RELEVANT INPUTS*/

use neural.mean;

read all into mean;

use neural.std;

read all into std;

311

standardized_data = (X[,1:15] - shape(mean,nrow(X),ncol(mean)))/shape(t(std),nrow(X),ncol(mean));

X = standardized_data || X[,16:53];

XY = X || Y;

subset = XY[1:10,];

print subset;

use neural.bias_ih;

read all into bias_ih;

use neural.wt_ih;

read all into wt_ih;

use neural.bias_ho;

read all into bias_ho;

use neural.wt_ho;

read all into wt_ho;

do i = 1 to nrow(X);

input = X[i,];

output = Y[i,];

z_in = bias_ih#J(1,ncol(wt_ih),1) + input*wt_ih;

z = (1+exp(-z_in))##(-1);

y_in = bias_ho#J(1,ncol(wt_ho),1) + z*wt_ho;

y_hat = exp(y_in)/sum(exp(y_in));

max = max(y_hat);

do k = 1 to ncol(y_hat);

if max = y_hat[k] then classification = k;

312

end;

do k = 1 to ncol(output);

correct_class = correct_class || (output[,k] = 1)*k;

end;

correct_class = correct_class[,+];

if classification = 1 then prediction = input[,7]*std[7] + mean[7];

else if classification = 2 then prediction = input[,4]*std[4] + mean[4];

else if classification = 3 then prediction = input[,1]*std[1] + mean[1];

if prediction >= 0.7*data[i,1] & prediction <= 1.3*data[i,1] then neural30 = 1;

else neural30 = 0;

if prediction >= 0.8*data[i,1] & prediction <= 1.2*data[i,1] then neural20 = 1;

else neural20 = 0;

if prediction >= 0.9*data[i,1] & prediction <= 1.1*data[i,1] then neural10 = 1;

else neural10 = 0;

if prediction >= 0.95*data[i,1] & prediction <= 1.05*data[i,1] then neural05 = 1;

else neural05 = 0;

final_results = final_results //

(correct_class || classification || neural05 || neural10 || neural20 || neural30);

pp = data[i,1];

obs = data[i,58];

record = obs || pp || correct_class || classification || prediction || y_hat;

output_data = output_data // record;

correct_class = remove(correct_class,1);

end;

per05 = final_results[:,3];

per10 = final_results[:,4];

per20 = final_results[:,5];

per30 = final_results[:,6];

313

mcr = 100*(1-((final_results[,1] = final_results[,2])[+]/nrow(final_results)));

n_all = nrow(final_results);

print "% within 5% " per05;

print "% within 10% " per10;

print "% within 20% " per20;

print "% within 30% " per30;

print "Misclassification rate is:" mcr "%";

print "Number of observations:" n_all;

names1 = {’OBS_NR’ ’PURCHASE_PRICE’’CORRECT CLASS’

’PREDICTED CLASS’ ’FINAL PREDICTION’ "P_COMB" "P_CS" "P_RS"};

create output_bestpicktest from output_data[c=names1];

append from output_data;

QUIT;

/* Link on some of the necessary fields from the original file to do comparative analysis */

proc sql;

create table output_bestpicktest as

select a.*,b.predval_rs,b.predval_cs,b.predval_comb,b.predval_final,b.pred_method,mod_seg

from output_bestpicktest a left join june_sys_data b

on a.obs_nr = b.obs_nr;

quit;

data output_bestpicktest;

set output_bestpicktest;

format correct_class predicted_class preds.;

length overunder $10 overun $40;

if 0.8*purchase_price <= final_prediction <= 1.2*purchase_price then ab_neural = 1;

else ab_neural = 0;

if 0.8*purchase_price <= predval_final <= 1.2*purchase_price then ab_curr = 1;

314

else ab_curr = 0;

predicted_class_modified = ’COMB’;

if p_rs > 0.6 then predicted_class_modified = ’RS’;

else if p_cs > 0.6 then predicted_class_modified = ’CS’;

predicted_val_modified = predval_comb;

if p_rs > 0.6 then predicted_val_modified = predval_rs;

else if p_cs > 0.6 then predicted_val_modified = predval_cs;

if 0.95*purchase_price <= predicted_val_modified <= 1.05*purchase_price then ab_neural_05 = 1;

else ab_neural_05 = 0;

if 0.9*purchase_price <= predicted_val_modified <= 1.1*purchase_price then ab_neural_10 = 1;

else ab_neural_10 = 0;

if 0.8*purchase_price <= predicted_val_modified <= 1.2*purchase_price then ab_neural_20 = 1;

else ab_neural_20 = 0;

if 0.7*purchase_price <= predicted_val_modified <= 1.3*purchase_price then ab_neural_30 = 1;

else ab_neural_30 = 0;

if predicted_val_modified > purchase_price then overunder = ’OVER’; else overunder = ’UNDER’;

if 1*purchase_price <= predicted_val_modified < 1.1*purchase_price

then overun = ’OVER 0-10%’;

else if 1.1*purchase_price <= predicted_val_modified < 1.2*purchase_price

then overun = ’OVER 10-20%’;

else if 1.2*purchase_price <= predicted_val_modified < 1.3*purchase_price

then overun = ’OVER 20-30%’;

else if predicted_val_modified > 1.3*purchase_price

then overun = ’OVER >30%’;

else if 0.9*purchase_price <= predicted_val_modified < 1*purchase_price

then overun = ’UNDER 0-10%’;

else if 0.8*purchase_price <= predicted_val_modified < 0.9*purchase_price

then overun = ’UNDER 10-20%’;

else if 0.7*purchase_price <= predicted_val_modified < 0.8*purchase_price

315

then overun = ’UNDER 20-30%’;

else if predicted_val_modified <= 0.7*purchase_price

then overun = ’UNDER >30%’;

run;

/* Look at the performance measures from the neural network using the */

/* modified classification rule on the independet testing set */

proc freq data=output_bestpicktest;

tables ab_curr ab_neural ab_neural_05 ab_neural_10 ab_neural_20 ab_neural_30

overunder overun;

run;

/**/

316

A.5 Results from neural networks run on Lightstone

application

Run number % Within 5% % Within 10% % Within 20% % Within 30%
1 20,87 39,48 66,39 81,99
2 20,57 39,21 66,86 82,50
3 20,97 39,66 67,04 82,32
4 20,59 39,41 66,63 82,38
5 20,77 39,63 67,08 82,36

Table A.2: Neural network number 1 for combining predictions.

Run number % Within 5% % Within 10% % Within 20% % Within 30%
1 20,68 39,24 66,52 82,42
2 20,96 39,70 66,90 82,26
3 21,16 39,75 66,60 82,21
4 20,76 39,38 66,61 82,10
5 20,97 39,78 66,96 82,34

Table A.3: Neural network number 2 for combining predictions

Run number % Within 5% % Within 10% % Within 20% % Within 30%
1 20,77 39,89 66,84 82,39
2 20,82 39,61 66,77 82,19
3 20,28 38,36 65,60 81,11
4 20,56 38,90 66,21 81,94
5 20,36 38,53 65,89 81,73

Table A.4: Neural network number 3 for combining predictions.

317

Run number % Within 5% % Within 10% % Within 20% % Within 30%
1 20,62 39,53 66,75 82,94
2 19,65 37,95 65,47 82,12
3 20,43 38,86 66,40 81,77
4 20,29 38,13 66,32 81,48
5 20,36 38,74 66,00 81,39

Table A.5: Neural network number 4 for combining predictions.

Run number % Within 5% % Within 10% % Within 20% % Within 30%
1 20,34 38,48 64,97 80,93
2 20,12 38,17 64,80 80,67
3 20,24 38,35 64,51 80,36
4 20,38 38,70 65,06 80,95
5 20,16 38,24 64,78 80,51

Table A.6: Neural network number 1 for picking optimal prediction.

Run number % Within 5% % Within 10% % Within 20% % Within 30%
1 20,61 39,11 65,58 81,14
2 20,88 39,57 66,07 81,50
3 20,69 39,27 65,66 81,01
4 20,77 39,46 65,92 81,37
5 20,78 39,45 65,90 81,37

Table A.7: Neural network number 2 for picking optimal prediction.

Run number % Within 5% % Within 10% % Within 20% % Within 30%
1 21,32 39,92 66,22 81,36
2 21,13 39,75 66,02 81,33
3 21,15 39,81 66,13 81,22
4 21,08 39,64 65,83 81,05
5 21,32 40,14 66,65 81,71

Table A.8: Neural network number 3 for picking optimal prediction.

Run number % Within 5% % Within 10% % Within 20% % Within 30%
1 20,96 39,66 66,12 81,30
2 20,91 39,53 66,16 81,40
3 20,77 39,23 66,03 81,37
4 21,30 40,06 66,31 81,40
5 20,96 39,62 66,05 81,32

Table A.9: Neural network number 4 for picking optimal prediction.

318

Run number % Within 5% % Within 10% % Within 20% % Within 30%
1 22,19 40,89 67,07 81,87
2 21,62 40,13 66,82 81,88
3 22,48 41,15 67,13 81,99
4 22,21 40,73 67,04 81,93
5 22,41 41,22 67,47 82,27

Table A.10: Neural network number 5 for picking optimal prediction.

Run number % Within 5% % Within 10% % 20% % Within 30%
1 21,89 40,76 67,03 81,95
2 22,01 40,83 67,01 81,79
3 22,05 40,97 67,21 82,02
4 21,90 40,82 67,09 81,90
5 21,95 40,54 66,79 81,71

Table A.11: Neural network number 6 for picking optimal prediction.

319

