
Automatic clustering with application to
time dependent fault detection in chemical

processes

by

P.J. Labuschagne

A dissertation submitted in partial fulfillment

of the requirements for the degree

Master of Engineering (Control Engineering)

in the

Department of Chemical Engineering
Faculty of Engineering, the Built Environment and Information

Technology

University of Pretoria
Pretoria

1 December 2008

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Automatic clustering with

application to time dependent

fault detection in chemical

processes

P.J. Labuschagne

 
 
 



Automatic clustering with application to time
dependent fault detection in chemical processes

Author: P.J. Labuschagne

Date 1 December 2008

Supervisor: Carl Sandrock

Department: Department of Chemical Engineering

University of Pretoria

Degree: Master of Engineering (Control Engineering)

Synopsis

Fault detection and diagnosis presents a big challenge within the petrochemical industry.

The annual economic impact of unexpected shutdowns is estimated to be $20 billion.

Assistive technologies will help with the effective detection and classification of the faults

causing these shutdowns.

Clustering analysis presents a form of unsupervised learning which identifies data with

similar properties. Various algorithms were used and included hard-partitioning algorithms

(K-means and K-medoid) and fuzzy algorithms (Fuzzy C-means, Gustafson-Kessel and

Gath-Geva). A novel approach to the clustering problem of time-series data is proposed.

It exploits the time dependency of variables (time delays) within a process engineering

environment. Before clustering, process lags are identified via signal cross-correlations.

From this, a least-squares optimal signal time shift is calculated.

Dimensional reduction techniques are used to visualise the data. Various nonlinear

dimensional reduction techniques have been proposed in recent years. These techniques

have been shown to outperform their linear counterparts on various artificial data sets

including the Swiss roll and helix data sets but have not been widely implemented in a

process engineering environment. The algorithms that were used included linear PCA

and standard Sammon and fuzzy Sammon mappings.

Time shifting resulted in better clustering accuracy on a synthetic data set based on

than traditional clustering techniques based on quantitative criteria (including Partition

Coefficient, Classification Entropy, Partition Index, Separation Index, Dunn’s Index and

Alternative Dunn Index). However, the time shifted clustering results of the Tennessee

Eastman process were not as good as the non-shifted data.

Keywords: fault detection, time delay estimation, dimensional reduction, clustering

algorithms
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CHAPTER 1

Introduction

The role of plant operators has shifted in the last few years from being active participants

in the control of a plant, to a broader supervisory role. Modern chemical processing plants

produce large amounts of data. This data presents various opportunities for analysis in

fault detection, gross error detection etc. Much of this information is not used due to the

complexities in extracting useful information. To ease this process, it would be useful if

the data could be categorised in terms of the quality of operation, which would enable

drilling down further to detect possible causes for concern. Figure 1.1 gives a summary of

the primary methods to detect possible faults.

Fault Detection and 
Diagnosis
Methods

Parity Space

Observers

Causal Models Fault Trees

Qualitative Physics

Diagraphs

Qualitative
Qualitative Trend 

Analysis

Expert Systems

Abstraction 
Hierarchy

Functional

Structural

Qualitative Models

Quantitative

Statistical Methods

Neural Networks

Statistical Classifiers

Statistical Process 
Control Charts

Principal 
Components 

Analysis

Process History 
Based

Quantitative Models

Figure 1.1: Fault detection methods. Adapted from Phillpotts (2007).
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CHAPTER 1. INTRODUCTION 2

Frank (1990) defines a fault as “any kind of malfunction in the actual dynamic system,

the plant, that leads to an unacceptable anomaly in the overall system performance.

Such malfunctions may occur either in the sensors (instruments), or actuators, or in

the components of the process. With respect to the different sectors where the faults

can occur, one distinguishes between instrument fault detection (IFD), actuator fault

detection (AFD), and component fault detection (CFD).”

1.1 Model based vs. Data based fault detection

Many fault detection techniques detect faults based on differences between actual and

expected behaviour. Quantitative models rely on analytical redundancy of explicit models

of the system to diagnose the fault. Observer based systems use a set of mathematical

observers implemented in a model. Each observer is sensitive to a subset of faults while

remaining insensitive to the remaining faults. This makes the diagnosis of multiple faults

possible. Parity space relations are generally rearranged variants of input-output models

of a plant. Residuals of these relations are used to detect faults. The structure of the

model can be used to diagnose or isolate the fault (Phillpotts, 2007)(Frank, 1990). These

processes are shown in figure 1.2.

In contrast to model based techniques, process data techniques only require large

quantities of process data. This makes data based methods ideally suited to processes that

are well instrumented but complex to model, as is characteristic of most modern chemical

plants. These data have the potential to provide information for product and process

design, monitoring and control. This is especially important in many practical applications,

where first-principles modeling of complex “data-rich and knowledge-poor” systems are

not possible (Abonyi et al., 2005). Extraction of features or characteristic of the process

data can be done in one of two ways (Venkatasubramanian et al., 2003). Qualitative

methods include expert systems and trend analysis, unlike quantitative methods can be

further classified into neural and statistical methods (Phillpotts, 2007). Data clustering

techniques are one of the statistical methods that can be used to detect faulty data.

1.1.1 Statistical Clustering

Humans excel at finding patterns both in everyday life and in data. A set of similar

objects can be grouped together. MacKay (2007) gives the following example. Throughout

the years, biologists have found that most objects in the natural world belong to two groups.

Those who are green and don’t run away and those who are brown and do run away. The

act of grouping objects together is called clustering and in this case two clusters have

been identified; plants and animals.

MacKay (2007) lists several motivations for clustering data.
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Figure 1.2: General architecture of fault detection and isolation. Adapted from Frank (1990).

 
 
 



CHAPTER 1. INTRODUCTION 4

1. A good clustering has predictive power. When a biologist encounters something

“green” he has never seen before, he can automatically make some form of prediction

as to what it is. This is due to the internal model built in previous encounters

with such objects. This internal model of plants and animals fills in attributes of

this green objects just observed. Will it bite me? Will it graze or sting me? The

underlying cluster labels are meaningful and will enable better and more efficient

description of the data. This type of clustering is referred to as “mixture density

modeling”.

2. Clusters can aid communication. The biologist can give directions based on ob-

servations made in the field, for example move towards the fifth tree on the left,

turn left towards the third apple tree. Contrast this with move towards the green

thing with red berries and left towards another green thing with green balls on the

sides. For this reason, clustering is popular in compression algorithms, especially

lossy image compression, as the purpose of the algorithm is to convey as few bits as

possible as to reconstruct a reasonable reproduction of the image. A common way

of doing this is to divide the image up in N small patches and find a close match

to a list of K image-templates. After this, a list of labels of matching templates,

k1, k2, ..., kN , is sent to the picture. The process in which the image-templates are

formed is equivalent to finding a set of cluster centres. This type of clustering is

referred to as “vector quantization”.

3. A failure in the cluster model could highlight important objects that deserve special

attention. If a vector quantizer is trained to compress images of brain scans,

distortions of these images may be unwanted growths within the brain. If the

biologist sees a green object running away, this misfit in his internal model should

be accounted for by allowing brown as well as green object to be animals.

Clustering algorithms present an important unsupervised learning problem. According

to Güngör & Ünler (2008), data clustering is an NP-complete problem.1 It is concerned

with finding groups in heterogeneous data by minimising some measure of dissimilarity,

in other words, the ultimate goal of these algorithms is to find an underlying structure

within a given unlabelled data set. Refer to figure 1.3 for a graphical depiction of the

process.

Clustering is a challenging field of research, partly because the clustering application

is dependant on the specific need of the user. Han & Kamber (2006: p385-386) lists the

following criteria with regards to clustering:

1NP-complete problems are the hardest problems to solve. NP-complete problems are those problems
who’s solutions implies solution of all problems in NP.
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Figure 1.3: The clustering process (adapted from Güngör & Ünler (2008)).

Scalability Normally, a smaller data set produces better clustering results (this is true

for many clustering algorithms). Small data sets are however the norm, with some

data sets containing millions of entries. For this reason, clustering large data sets

may yield biased results. Highly scalable clustering algorithms are needed.

Attribute handling Many algorithms are designed to cluster normal data, i.e. interval

based data, normally numerical data. Different applications may require clustering

of different types of data like binary, categorical, ordinal data or a combination of

these.

Arbitrary shape detection Many clustering algorithms use Euclidean or Manhattan

distance norms. These norms tend to identify spherical groupings with similar size

and density. Clusters have many shapes and for this reason it is important to

develop algorithms that can detect arbitrary shapes.

Requirements of domain knowledge to determine input parameters The major-

ity of clustering algorithms require the user to input a variety of parameters, such

as the number of clusters. Clustering results are often very sensitive to these input

parameters. Clustering quality can be compromised by the choice of parameters and

these are difficult to determine in some cases, especially those with high dimensional

data sets.

Noisy data handling Real world data sets contain outliers, unknown, missing or erro-

neous data. Many clustering algorithms are quite sensitive to this fact and yield

poor results.

Insensitivity to the sequence/ordering of input records Some clustering algorithms

cannot incorporate new data into the existing clustering structures. These struc-

tures would then be recalculated. Also, many algorithms are sensitive to the input

sequence/ordering of the data. In other words, if the algorithm processes the data

in different sequences, dramatically different results may be obtained. Incremental

algorithms that are insensitive to the sequence/ordering of input data are therefore

important.
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High dimensionality Databases often contain data with various attributes. Many

clustering algorithms are adept at handling low dimensional (two or three) data

sets. It is easy for a human eye to judge the quality of such a clustering. Clustering

in higher dimensions becomes difficult when these data sets are sparse or skewed.

Constrained clustering Real-world applications for clustering algorithms may require

constraints. It is a challenging task to find groups of data with good clustering

behaviour that satisfy specified constraints.

Interpretability and usability Clustering results must be interpretable, comprehen-

sive and usable. That is, clustering may be tied to specific semantic interpretations

and applications. It is important to study how an application goal may influence

the selection of clustering features and methods.

There are many clustering algorithms currently available. Some of these algorithms

have been used quite extensively in the fields of marketing, biology, earth sciences and

more.

1.2 Time Series Clustering

Real-life time series can be taken from physical, social and behavioural science, business,

economics, engineering, etc. Abonyi et al. (2005) poses the clustering problem as follows:

“Given a time-series, T , find a partitioning of T into c segments that

are internally homogeneous. Depending on the application, the goal of the

segmentation is to locate stable periods of time, to identify change points, or to

simply compress the original time-series into a more compact representation.”

Although there is a large number of clustering methods and applications, only a few

applications have been reported that cluster multivariate time-series data. Singhal &

Seborg (2005) summarises some of the most promising work with respect to time-series

clustering:

General probabilistic models The authors proposed clustering sequential data using

these models, but their approaches were restricted to the use of univariate data.

Some work included clustering sequential data by using polynomial regression models

but it has limited application to industrial time series data due to the non-linear

nature of these data sets.

Probabilistic approach and expectation maximisation algorithms This method

involved the estimation of the probability distributions of the steady-states of a

system in the multidimensional space. However, this approach is difficult to extend
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to dynamic systems because the process dynamics blur the distinction between

different operating regions.

Data unfolding Multivariate time-series data for a simulated fluid catalytic cracking unit

were clustered. The data were clustered by unfolding the multivariate data set into

a long row vector and then using the individual elements as features. This method

requires that each data set contain the same number of observations, otherwise

different data sets contain different amounts of features. This limits the application

of this method where the durations of different data sets differ.

Conceptual clustering This method generates “conceptual knowledge” about major

variables and projects the data to a specific operational state. Principle components

of the data are used to represent the dynamic trends. The data sets are clustered

using 2-dimensional plots of the first two principle components. This method requires

user input and can become tedious for large data sets.

Wavelet analysis Wavelets, an expectation maximisation algorithm and K-means clus-

tering was used to group univariate time-series data sets. The data set was de-

composed using the wavelet transform and clustered the resulting wavelets. This

approach was promising, but constrained to univariate data sets.

PCA similarity factors The combination of Euclidean distances and PCA similarity

factors were used to cluster different modes of operation for a fluidised catalytic

cracker unit. The PCA similarity factors were used to determine the similarity of

transitions between plant modes.

Hidden-Markov models These are probabilistic models that not only capture the

dependencies between variables, but also the serial correlation in the measurements.

For this reason they are well suited for modeling multivariate time series data sets.

Although this approach is suitable for multivariate time series clustering, building

these models requires an assumed probability distribution or vector quantization.

In spite of this, it provides a promising approach to the clustering problem.

Some aspect of all the methods above provide a limitation to either the ease of

implementation of the method or the usefulness of the results obtained. Keogh et al.

(2003) state that clustering streaming data is “meaningless”. Singhal & Seborg (2005)

agree with this to a certain extent and states that “the transients appear to blur the

distinction between operating conditions and result in either too many of too few clusters”.

Their results are therefore based on steady-state operation periods. At this point, it is

important to distinguish between two different types of time clustering methods. In the

one case, similar patterns in a single signal are identified while the other identifies similar

 
 
 



CHAPTER 1. INTRODUCTION 8

regions in various signals. This is illustrated in figure 1.4. In this project we focus on the

latter.

Time

Similar 
patterns

Time

Separate 
regions

C
lustering direction

Clustering direction

Figure 1.4: Different approaches to clustering time series data. The top approach tries to
identify similar patterns within a single signal. The bottom approach tries to
identify separate regions within multiple signals.

It is intuitive to consider some form of causal link between process data. Therefore, if

a fault originates from some part of the processing plant, it propagates through all the

measurements that are linked in some causal way. This fault “event” (or the effect of

it) can therefore be detected in these measurements at certain times after the original

fault occurred (also referred to as process lags). If these time delays can accurately be

determined, and the relevant signals shifted in such a way that the effects coincide in time

with the original event, a clustering algorithm may be more effective in distinguishing

different operating regions in the data set. The goals of this investigation are therefore to:

• Develop an accurate method to determine the optimal time shifts of signals that

are causally linked.

• Cluster the “time-shifted” data set making use of clustering techniques that are

easy to implement. This is important as part of the focus of this investigation

is to develop assistive-technologies for plant operators, which are not necessarily

scientifically inclined.

• Evaluate different dimensional reduction techniques that would assist the user in

identifying different periods of operation which would in turn assist in fault detection.
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The remaining chapters of the dissertation is structured in as follows.

Data I define the attributes of data sets. We then define the two data sets that will be

used in this project: a synthetic data set and the Tennessee Eastman Plant-wide

Industrial Control Problem simulation data.

Data Clustering I define relevant literature pertaining to data clustering including

various clustering algorithms and validity metrics to evaluate the relevance of each

clustering result. We then define dimensional reduction techniques to visualise the

resulting higher dimensional clusters.

Time Delay Estimation I define the concept of Multiple Signal Time Delay Estimation

(MSTDE). We develop this algorithm from existing cross-correlation and correlation

techniques and combine it with recently published statistical thresholding methods

to determine the significance of signal correlations. We then show how linear algebra

can be used to solve for a single set of time shifts by either minimising the norm

of the time shifts (for a rank deficient system) or the norm of the residual (excess

rank).

Results: Naive Clustering The clustering algorithms defined in section 3.2 are applied

to various data sets. I define benchmarks for perfectly separate clusters and totally

random values. I then compare the synthetic data set and the Tennessee Eastman

data set to these and quantify the performance of the clustering algorithms on a

normal time series data set.

Results: Time Delay Estimation I show that a simple weighting function can increase

the performance of the algorithm when complex systems are used. The goal of

this section is to calculate a single set of optimum shifts that would increase the

performance of the clustering algorithm.

Results: Time Shifted Clustering I combine the results of the previous two chapters.

The data is shifted by the optimal calculated shift and then clustered by the K-means

and K-medoid clustering algorithms. The optimal number of cluster centers for each

data set is calculated as before.

Conclusions, Recommendations and Future Work I draw conclusions based on

the results obtained in this project. We also discuss possible future work that

would contribute towards refining the techniques used in this project.

 
 
 



CHAPTER 2

Data

We define the attributes of data sets. We then define the two data sets that will be

used in this project: a synthetic data set and the Tennessee Eastman Plant-wide

Industrial Control Problem simulation data.

Clustering techniques can be applied to data that are quantitative (numerical), quali-

tative (categorical), or a mixture of both. The data are typically observations of some

physical process like persons, houses or documents etc. (Han & Kamber, 2006: 386).

Each observation consists of n measured variables, grouped into an n-dimensional col-

umn vector xk = [xk1, xk2, ..., xkn]T ,xk ∈ Rn. A set of N observations is denoted by

X = {xk|k = 1, 2, ..., N}, and is represented as an n×N matrix (refer to equation 2.1).

X =


x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

. . .
...

xn1 xn2 . . . xnN

 (2.1)

In pattern recognition terminology, the columns of X are called patterns or objects,

the rows are called the features or attributes, and X is called the pattern matrix. In this

work, X is often referred to simply as the data matrix. The meaning of the columns and

rows of X depends on the context. In medical diagnosis, for instance, the columns of

X may represent patients and the rows could be symptoms or laboratory measurements.

When clustering is applied to the modelling and identification of dynamic systems, the

columns of may X contain samples of time signals and the rows could be physical variables

observed in the system (position, velocity, temperature, etc.). In order to capture the

system’s dynamic behaviour, past values of the variables are typically included in X.

Clustering is used to find relationships between independent system variables and future

10
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values of dependent variables. However, relationships revealed by clustering are merely

casual associations between the data vectors, and as such do not constitute a predictive

model of the given system. Additional steps are needed to obtain such a model.

Various synthetic data sets exist in literature. These sets are used to benchmark

various clustering and dimensional reduction techniques. Some of these sets are given

below (Maszczyk & Duch, 2008) and can also be found at various data repositories

including Merz & Murphy (2008).

Parity 8 8-bit parity dataset (8 binary features and 256 vectors).

Heart Disease This set consists 270 samples, each described by 13 attributes. 150 cases

belongs to group “absence” and 120 to “presence” of heart “disease”.

Wisconsin breast cancer This set contains 699 samples collected from patients. Among

them, 458 biopsies are from patients labeled as “benign”, and 241 are labeled as

“malignant”.

Leukaemia This set consists of micro-array gene expressions for two types of leukaemia

(ALL and AML), with a total of 47 ALL and 25 AML samples measured with 7129

probes. Visualization is based on 100 best features from simple feature ranking

using FDA index.

For the purposes of this project, we are concerned with time-series data that is typically

found on chemical processing plants. The remaining sections describe the data sets that

were used in this project.

2.1 Synthetic Data Set

Bauer & Thornhill (2008) state that an oscillatory time series’ time delay is periodic with

the same frequency as the oscillation and this may cause ambiguities because of phase

wrapping. The synthetic data set is constructed to provide a signal which will pass all

the relevant criteria with regard to maximum correlation threshold and the directionality

index threshold defined by Bauer & Thornhill (2008) (and discussed in chapter 4).

The data set contains 9 signals, paired into 3 groups. Each of the 3 groups have

co-prime frequencies. Each of the 3 sets within the data set has an associated time delay.

Table 2.1 shows the properties of the different signals.

To construct the signal, the sine wave shown in figure 2.1(a) (with the properties

described in table 2.1) was added to a repeating sequence stair as shown in figure 2.1(b),

to insure asymmetric waves. The values of this function were [1, 1, 1, 1, 1, 0,−1,−1, 0].

This resulted in a signal as shown in figure 2.1(c). Although there are some asymmetrical

features on this signal, we still expect some cyclical behaviour.
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Table 2.1: Synthetic signal properties.

Frequency (Hz) Time Delay

Set 1 Wave 1 0,03 0
Wave 2 0,03 10
Wave 3 0,03 5

Set 2 Wave 1 0,011 0
Wave 2 0,011 12
Wave 3 0,011 7

Set 3 Wave 1 0,017 0
Wave 2 0,017 13
Wave 3 0,017 9

(a) Sine Wave

+

(b) Repeating Stair

↓
(c) Combined Signal

Figure 2.1: How the synthetic signals are constructed. Note that the combined signal shows
an example of an additional time delayed signal.

2.2 Tennessee Eastman Process

The Tennessee Eastman Plant-wide Industrial Control Problem (TE process) was proposed

to test new control and optimisation strategies for continuous chemical processes (Downs

& Vogel, 1993). Figure 2.2 shows the flow diagram for the TE process. This diagram

includes the primary control loops for the process.

The process consists of the following:

• The coordination of four unit operations including

– An exothermic two-phase reactor which produces two products from four

reactants. Also present in the system are an inert and a byproduct making a

total of eight components. For the purposes of the problem, they are named

as A, B, C, D, E, F, G and H. The reactions are:

A(g) + C(g) + D(g) �G(l), Product 1,

A(g) + C(g) + E(g) �H(l), Product 2,

A(g) + E(g) �F(l), Byproduct,

3D(g) �2F(l), Byproduct.
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Figure 2.2: Flow diagram of the Tennessee Eastman Plant-wide Industrial Control Problem.
Adapted from Ricker (1996).
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All the reactions are irreversible and exothermic.

– A flash separator,

– A reboiled stripper and

– A recycle compressor.

• There are 41 measurements with added noise

• There are 12 manipulated variables. These include 11 valves and the reactor agitation

speed. Because the agitation speed stays constant for the purposes of this project,

it is ignored.

• There are 19 composition measurements, which are sampled at two different rates

and include pure time delay.

We recommend the papers presented by Downs & Vogel (1993) and Ricker (1996) for

more information on the processes and control layouts. For the purposes of this project,

only the simulation data is required to test the various algorithms. Downs & Vogel (1993)

provides table 2.2, which contains all the possible process disturbances for this simulation

model. Ricker (1996) developed the control strategy and accompanying code.

Table 2.2: Various control challenges within the Tennessee Eastman process.

Variable
Number

Process variable Type

IDV(1) A/C feed ratio, B composition constant (stream 4) Step
IDV(2) B composition, A/C ratio constant (stream 4) Step
IDV(3) D feed temperature (stream 2) Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet temperature Step
IDV(6) A feed loss (stream 1) Step
IDV(7) C header pressure loss - reduced availability (stream 4) Step
IDV(8) A, B, C feed composition (stream 4) Random variation
IDV(9) D feed temperature (stream 2) Random variation
IDV(10) C feed temperature (stream 4) Random variation
IDV(11) Reactor cooling water inlet temperature Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking

For the purposes of this project, the IDV(3), IDV(13) and IDV(14) data sets were

used. These data sets are concerned with temperature disturbances and should test the

capabilities of the algorithms well. Also, they were combined to form one continuous data

set with three operating regions. The actual data contained in these sets were obtained

from Ricker (2008). Table 2.3 shows all the data present in the data set.
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Table 2.3: Manipulated and measured variables for the Tennessee Eastman process. Adapted
form Downs & Vogel (1993).

Variable name Variable
Number

Base Case
value (%)

Low
Limit

High
Limit

Units

D feed flow (Stream 2) XMV (1) 63,053 0 5 811 kgh−1

E feed flow (stream 3) XMV (2) 53,980 0 8 354 kgh−1

A feed flow (stream 1) XMV (3) 24,644 0 1,017 kscmh−1

A and C feed flow (stream 4) XMV (4) 61,302 0 15,25 kscmh−1

Compressor recycle valve XMV (5) 22,210 0 100 %
Purge valve (stream 9) XMV (6) 40,064 0 100 %
Separator pot liquid flow (stream 10) XMV (7) 38,100 0 65,71 m3h−1

Stripper liquid product flow (stream 11) XMV (8) 46,534 0 49,10 m3h−1

Stripper steam valve XMV (9) 47,446 0 100 %
Reactor cooling water flow XMV (10) 41,106 0 227,1 m3h−1

Condenser cooling water flow XMV (11) 18,114 0 272,6 m3h−1

A feed (stream 1) XMEAS (1) 0,250 52 – – kscmh−1

D feed (stream 2) XMEAS (2) 3 664,0 – – kgh−1

E feed (stream 3) XMEAS (3) 4 509,3 – – kgh−1

A and C feed (stream 4) XMEAS (4) 9,347 7 – – kscmh−1

Recycle flow (Stream 8) XMEAS (5) 26,902 – – kscmh−1

Reactor feed rate (stream 6) XMEAS (6) 42,339 – – kscmh−1

Reactor pressure XMEAS (7) 2 705,0 – – kPag
Reactor level XMEAS (8) 75,000 – – %
Reactor temperature XMEAS (9) 120,40 – – ℃
Purge rate (stream 9) XMEAS (10) 0,337 12 – – kscmh−1

Product separator temperature XMEAS (11) 80,109 – – ℃
Product separator level XMEAS (12) 50,000 – – %
Product separator pressure XMEAS (13) 2 633,7 – – kPag
Product separator underflow (stream 10) XMEAS (14) 25,160 – – m3h−1

Stripper level XMEAS (15) 50,000 – – %
Stripper pressure XMEAS (16) 3 102,2 – – kPag
Stripper underflow (stream 11) XMEAS (17) 22,949 – – m3h−1

Stripper temperature XMEAS (18) 65,731 – – ℃
Stripper steam flow XMEAS (19) 230,31 – – kgh−1

Compressor work XMEAS (20) 341,43 – – kW
Reactor cooling water outlet temperature XMEAS (21) 94,599 – – ℃
Separator cooling water outlet temperature XMEAS (22) 94,599 – – ℃

 
 
 



CHAPTER 3

Data Clustering

We define relevant literature pertaining to data clustering including various clus-

tering algorithms and validity metrics to evaluate the relevance of each clustering

result. We then define dimensional reduction techniques to visualise the resulting

higher dimensional clusters.

3.1 Cluster Partition

According to Balasko et al. (2005), clusters can be seen as subsets of the original data

set. These clusters can be classified as hard (crisp) or fuzzy. Hard clustering techniques

are quite common and are based on classical set theory which states that an object either

belongs to a specific cluster or not. This results in a number of mutually exclusive subsets

of the original data set X. Fuzzy clustering techniques on the other hand allow objects

to belong to different clusters simultaneously with various degrees of membership. This

idea applies intuitively to clustering processes, as objects seldom belong to only one

cluster (Filippone et al., 2008). It allows objects on the boundary between different classes

to belong all of these classes. This fuzzy membership can be indicated by a membership

degree between 0 and 1. The structure of the partition matrix, U , is given in equation 4.11

(Wang & Zhang, 2007).

U =


µ11 µ12 . . . µ1c

µ21 µ22 . . . µ2c

...
...

. . .
...

µN1 µN2 . . . µNc

 (3.1)

where c is the number of clusters

16
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Hard Partitioning

The objective of a hard clustering algorithm is to partition a given data set, X, into

c clusters. The number of clusters should be known beforehand either through prior

knowledge of the data or choosing a trial value.

Hard partitions can be defined as a family of subsets {Ai ⊂ X},≤ i ≤ c using classical

sets. Equations 3.2, 3.3 and 3.4 define its properties (Balasko et al., 2005) (Wang &

Zhang, 2007).

c⋃
i=1

Ai = X (3.2)

Ai ∩ Aj = ∅ for 1 ≤ i 6= j ≤ c (3.3)

Ai 6= ∅ for 1 ≤ i ≤ c (3.4)

In short, this means:

• The subsets, Ai, contain all the data in X.

• The subsets are disjoint.

• None of these subsets are empty or contain all the data in X.

It can also be expressed in terms of membership functions and these are shown in

equations 3.5, 3.6 and 3.7.

c∨
i=1

µAi
= 1 (3.5)

µAi
∧ µAj

= 0 for 1 ≤ i 6= j ≤ c (3.6)

0 ≤ µAi
≤ 1 for 1 ≤ i ≤ c (3.7)

As already mentioned, hard partitioning results in either a 0 or 1 membership function.

This is contained within µAi
and is a characteristic function of Ai. Balasko et al. (2005)

recommends the use of an adapted notation to simplify the original notations, hence µi is

used instead of µAi
and µik replaces µi(xk).

A N × c matrix U = [µik] represents the hard partition if its elements satisfy equa-

tions 3.8, 3.9 and 3.10.

µik ∈ {0, 1} for 1 ≤ i ≤ N and 1 ≤ k ≤ c (3.8)

c∑
k=1

µik = 1 for 1 ≤ i ≤ N (3.9)
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0 <
N∑

i=1

µik < N for 1 ≤ k ≤ c (3.10)

Definition 3.1 (Hard partitioning space) Let X = [x1,x2, . . . ,xN ]T be a finite set

and let 2 ≤ c < N be an integer. The hard partitioning space for X is the set

Mhc = {U ∈ RN×c|µik ∈ {0, 1}∀i, k;
c∑

k=1

µik = 1∀i; 0 <
N∑

i=1

µik < N∀k} (3.11)

Fuzzy Partitioning

In the many cases, the data will not fall precisely within one cluster or another. For this

reason, it is useful to define a fuzzy partition. The fuzzy partition space can be seen as a

generalised version of the hard partition that it allows µik to attain values between 0 and

1 (Wang & Zhang, 2007; Filippone et al., 2008).

An N × c matrix U = [µik] represents the fuzzy partitions and its conditions are given

by similar equations to that of the hard partitioning (Equations 3.12, 3.13 and 3.14.

µij ∈ [0, 1] for 1 ≤ i ≤ N and 1 ≤ k ≤ c (3.12)

c∑
k=1

µik = 1 for 1 ≤ i ≤ N (3.13)

0 <
N∑

i=1

µik < N for 1 ≤ k ≤ c (3.14)

Definition 3.2 (Fuzzy partitioning space) Let X = [x1,x2, . . . ,xN ]T be a finite set

and let 2 ≤ c < N be an integer. The fuzzy partitioning space for X is the set

Mfc = {U ∈ RN×c|µik ∈ [0, 1]∀i, k;
c∑

k=1

µik = 1∀i; 0 <
N∑

i=1

µik < N∀k} (3.15)

Therefore, the i-th column of U contains the values of the membership functions of

the i-th fuzzy subset of X. Equation 3.9 constrains the summation of each column to 1

(probabilistic constraints). For this reason the total membership of xk in X is one.
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3.2 Clustering Algorithms

3.2.1 K-means and K-medoid algorithms

The K-means and medoid algorithms are some of the simplest unsupervised learning

algorithms that can be used to cluster a given data set (Kao et al., 2008). According

to Wu et al. (2008), the K-means algorithm has been discovered by several researchers

over the years including Lloyd (1957,1982), Forgey (1965) and McQueen (1967) among

others and refined to include the K-medoid algorithm. Also, Gray & Neuhoff (1998) places

the K-means algorithms in context with other hill climbing algorithms1.

Given N data points in an n dimensional space, the algorithm assigns these data

points to c clusters (the number of clusters is determined beforehand by the user).

Richard & Dean (2007: 696) give a rudimentary explanation of how the algorithm

works. It starts off with the initiation of c seed points from which the clusters will evolve.

The algorithm selects points from the data set and assigns a data point to a cluster

if the cluster’s centroid is the closest to the data point. Now the cluster centroids are

recalculated for clusters losing and gaining data points. This process continues until no

more reassignments take place.

Implementation of algorithm

MacKay (2007: 285-286) gives a formal definition of the algorithm. Each cluster is defined

by a vector v which corresponds to the centroids of the cluster. The algorithm is as

follows:

1. Initialization: Initialize with randomly selected cluster centroids.

2. Assignment step: Each data point, N , is assigned to the closest cluster centroid.

The distances of data points from the centroids are calculated through a distance

metric. Equation 3.16 shows an example of such a metric.

J(X,V ) =
c∑

i=1

∑
xk∈Ai

‖xk − vi‖2 (3.16)

3. Selection: The data points that are closest to the centroid of a particular cluster

are included within that cluster.

4. Update Step: The new centroids are calculated using equation 3.17, taking into

account the newly added data points from the previous step.

1Hill climbing is a mathematical optimisation technique which belongs to the local search family.
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vi =
1

Ni

Ni∑
xk∈Ai

xk (3.17)

5. Repeat the assignment and update steps until these assignments do not change.

Altough the K-means algorithm is computationally efficient (Park & Jun, 2008; Fil-

ippone et al., 2008; Wu et al., 2008), it is very sensitive to outliers. For this reason, the

K-medoid algorithm is used. Representative objects called medoids are considered instead

of centroids (or means). Therefore, the cluster centers are the nearest objects to the mean

of data in one cluster (Balasko et al., 2005: 8). It can be represented mathematically

by equation 3.18. Park & Jun (2008) goes on to discuss the developments of various

implementations of this algorithm.

V = {vi ∈ X|1 ≤ i ≤ c} (3.18)

From this point on, the K-means and K-medoid algorithms are considered to be the

same, with the exception of sensitivity to outliers and the implementation of the code.

There are several limitations when using the K-means group of algorithms (Wu et al.,

2008; Filippone et al., 2008). The K-means algorithm is a limiting case of fitting data by

a mixture of k Gaussians. These Gaussians have identical, isotropic covariance matrices

(F = σ2I). So it will fail whenever the data is not well described by hyper-spheres

(i.e. non-convex shaped clusters in the data) considering that soft assignments of data

points to mixture components are hardened to allocate each data point to the most likely

component. A possible solution is to scale the data before clustering. This “whitens” the

data. Also, using distance measures more appropriate to the given data set could have a

positive effect on the results.

Wu et al. (2008) suggest pairing the K-means algorithm with one that describes

the non-convex clusters. This could include obtaining a large number of clusters by

using K-means on the initial data set. These groups are then agglomerated into larger

clusters using single link hierarchical clustering, which can detect complex shapes. One

of the advantages to this procedure is that it makes the solutions less dependent in the

initialization step in the algorithm. Initialization could be problematic due to local minima

on the E(X) surface (Filippone et al., 2008; Kao et al., 2008).

The cost of the optimal solution decreases with an increase in the number of clusters

(c). This continues until the number of clusters equal the number of data points in the

data set. This complicates both the direct comparison of solutions with different numbers

of clusters and finding the optimum c.

To improve the solution generated by the K-means algorithm and address some of

the issues mentioned above, it can be “kernalised”. This retains the linear boundaries
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between the clusters in the higher dimensional space, but can become non-linear when

projected back to the original input space.

Figures 3.1 and 3.2 are examples of these hard clustering techniques. Three cluster

centers were used in this clustering process and it is evident from these figures that there

are errors in the clusters. This highlights the hard nature of these algorithms. Note that

different clusters may be formed every time the algorithm is implemented due to the

random seeds that are generated to start the process.
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Figure 3.1: Result of the K-means algorithm by using a synthetic overlapping data set.

3.2.2 Fuzzy C-Means algorithm

The Fuzzy C-Means (FCM) algorithm is based on the minimisation of the C-means

functional objective function to find V . The objective function is defined by equa-

tion 3.19 (Filippone et al., 2008; Balasko et al., 2005).

J(X;U, V ) =
c∑

i=1

N∑
k=1

(µik)
m‖xk − vi‖2 (3.19)

The parameter m controls the fuzziness of the memberships (Filippone et al., 2008). The

normal value for this parameter is 2. For higher values of m, the algorithm tends to set all

the memberships equal, whereas a value of 1 results in the K-means algorithm discussed

in section 3.2.1.

Balasko et al. (2005) notes that equation 3.19 could be considered of a total variance

measure of xk from vi.

Minimisation of equation 3.19 is a non-linear optimisation problem which can be solved
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Figure 3.2: Result of the K-medoid algorithm by using a synthetic overlapping data set.

with methods including grouped coordinate minimisation, simulated annealing, genetic

algorithms and many more. Balasko et al. (2005) found the most popular method to be

a simple Picard iteration through the first-order conditions for the stationary points of

equation 3.19. This is known as the FCM algorithm. Abonyi et al. (2002) notes that

although the classical FCM algorithm is able to detect groups of data, it is not organised

and for this reason it makes interpretation of the model difficult.

Derivation

The stationary points of the C-means functional in equation 3.19 can be determined by

adjoining the constraint found in equation 3.13 to J by means of Lagrange multipliers.

This is shown in equation 3.20 (Filippone et al., 2008).

J̄(X,U, V, λL) =
c∑

i=1

N∑
k=1

(µik)
mD2

ikB +
N∑

k=1

λLk

(
c∑

i=1

µik − 1

)
(3.20)

where

D2
ikB = ‖xk − vi‖2 = (xk − v)TB(xk − vi) (3.21)

After this, the derivatives of J̄ with respect to U and V are set equal to zero. If

D2
ikB > 0∀i, k and m > 1, then (U, V ) ∈ Mfc × Rn×c will minimise equation 3.19 if and

only if equations 3.22 and 3.23 hold true.

1

µik

=
c∑

j=1

(
DikB

DjkB

) 2
(m−1)

,∀1 ≤ i ≤ c, 1 ≤ k ≤ N (3.22)
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vi =

N∑
k=1

(µik)
mxk

N∑
k=1

(µik)
m

,∀1 ≤ i ≤ c (3.23)

This solution satisfies the remaining constraints given in equations 3.12 and 3.14.

Equation 3.23 gives vi as the weighted mean of the data items that belong to a cluster.

These weights are merely the membership degrees. The FCM algorithm becomes a simple

iteration through equations 3.22 and 3.23.

An important limitation to this algorithm is the fact that it makes use of the standard

Euclidean distance norm. This produces hyper-spherical clusters and for this reason it can

only detect clusters with the same shape. This is due to the common choice of the norm

inducing matrix, B = I (Balasko et al., 2005; Abonyi et al., 2002; da Silva et al., 2008).

This matrix can also be chosen as a n × n diagonal matrix that accounts for different

variances in the directions of the coordinate axes of X. This is shown in equation 3.24.

B =



(
1
σ1

)2

0 . . . 0

0
(

1
σ2

)2

. . . 0
...

...
. . .

...

0 0 . . .
(

1
σn

)2

 (3.24)

B can also be defined as the inverse of the n × n covariance matrix, B = F−1. This is

shown in equation 3.25. In this instance, B induces the Mahalanobis norm on Rn (Balasko

et al., 2005; Liu & Xu, 2008).

F =
1

N

N∑
k=1

(xk − x̄)(xk − x̄)T (3.25)

Implementation of algorithm

Given a data set X, choose the number of clusters, c, so that 1 ≤ c ≤ N , the weighting

exponent m, so that m > 1 as well as the termination tolerance, ε > 0 and the norm

inducing matrix B. Then initialise the partition matrix, such that U (0) ∈Mfc (Balasko

et al., 2005) quoting (Bezdek, 1981).

Repeat for l = 1, 2, . . .

1. Compute the cluster centers by means of equation 3.26.

v
(l)
i =

∑N
k=1(µ

(l−1)
ik )mxk∑N

k=1(µ
(l−1)
ik )m

,∀1 ≤ i ≤ c (3.26)
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2. Compute the mutual distances using equation 3.21.

3. Update the partition matrix with equation 3.27.

1

µ
(l)
ik

=
c∑

j=1

(
DikB

DjkB

) 2
(m−1)

,∀1 ≤ i ≤ c, 1 ≤ k ≤ N (3.27)

4. Steps (1) - (3) are repeated until ‖U (l) − U (l−1)‖ < ε.

Figure 3.3 gives an example of the output from the FCM algorithm. As mentioned

earlier, the FCM algorithm can only detect clusters with circular shapes. For this

reason, the algorithm struggles to detect the linear group of data at the bottom of the

figure. Balasko et al. (2005) notes that the FCM algorithm is a very good initialisation

tool for more sensitive algorithms like the Gath-Geva algorithm discussed in section 3.2.4.
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Figure 3.3: Result of the Fuzzy C-Means algorithm by using a synthetic overlapping data
set. The gradient lines presented on the figure are linear representations of the
partitioning between different clusters.

3.2.3 Gustafson-Kessel algorithm

Following from the FCM algorithm, the Gustafson-Kessel (GK) algorithm applies the

same reasoning but employs an adaptive distance norm. This enables the algorithm to

detect different geometric shapes in one data set (Balasko et al., 2005; da Silva et al., 2008).

Each of the clusters has its own norm-inducing matrix Bi, which yields the inner-product

norm contained in equation 3.28.
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D2
ikBi

= ‖xk − vi‖ = (xk − v)TBi(xk − vi) (3.28)

In this algorithm, the norm-inducing matrices are used as optimization variables in

the C-means functional. This allows each cluster to adapt the distance norm to take the

topological structure of the data into account.

Derivation

Let B denote a c-tuple of the norm inducing matrices: B = (B1, B2, . . . , Bc). The

objective function of the GK algortihm is defined in equation 3.29.

J(X,U, V,B) =
c∑

i=1

N∑
k=1

(µik)
mD2

ikBi
(3.29)

It follows from this equation that if B is kept constant, the fuzzy partition criteria

given in equations 3.12, 3.13 and 3.14 can be applied. However, since equation 3.29 is

linear in terms of Bi, it cannot be minimised directly with respect to Bi. J can be made

as small as possible by merely making Bi as small as possible. For this reason, Bi should

be constrained in some way. da Silva et al. (2008) recommend that the determinants of

Bi be constrained. Allowing Bi to vary while their determinants are fixed, allows for the

shape of the cluster to be optimised while the volume remains constant. This is shown in

equation 3.30.

‖Bi‖ = bi (3.30)

with bi fixed for each cluster. Equation 3.31 is obtained by using the Lagrange multiplier

method. The fuzzy covariance matrix, for the i-th cluster is given in equation 3.32

Bi = [bi det(Fi)]
1
nF−1

i (3.31)

Fi =

∑N
k=1(µik)

m(xk − vi)(xk − vi)
T∑N

k=1(µik)m
(3.32)

The combination of equations 3.31,3.32 and equation 3.28 yields a generalised squared

Mahalanobis norm between xk and the cluster mean vi where the covariance is weighted

by the membership degrees in U .

Implementation of algorithm

Given a data set X, choose the number of clusters such that 1 < c < N , the weighting

exponent such that m > 1, the termination tolerance ε > 0 and the norm inducing matrix

B. Now, initialise the partition matrix, such that U (0) ∈Mfc (Balasko et al., 2005).
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Repeat for l = 1, 2, . . .

1. Compute the cluster centers by means of equation 3.33.

v
(l)
i =

∑N
k=1(µ

(l−1)
ik )mxk∑N

k=1(µ
(l−1)
ik )m

,∀1 ≤ i ≤ c (3.33)

2. Compute the cluster covariance matrices by using equation 3.34.

F
(l)
i =

∑N
k=1(µ

(l−1)
ik )m(xk − v

(l)
i )(xk − v

(l)
i )T∑N

k=1(µ
(l−1)
ik )m

,∀1 ≤ i ≤ c (3.34)

Add a scaled identity matrix by adjusting the value of γ in equation 3.35. The

reason for this addition is for cases where the clusters are extremely extended in

the direction of the largest eigenvalues. The computed covariance matrix cannot

estimate the underlying data distribution.

Fi := (1− γ)Fi + γ(F0)
1
n I (3.35)

Extract the eigenvalues (λij) and the eigenvectors (ωij) of F and find the maximum

eigenvalue (λi,max). Set λi,max =
λij

β
,∀j for which

λi,max

λij
≥ β. The introduction of

β is due to condition number problems with respect to the covariance matrix (in

some cases it becomes nearly singular). For this reason, the maximum and minimim

eigenvalue ratio should be constrained to a predefined threshold, i.e. β. Reconstruct

Fi by making use of equation 3.36.

Fi = ΩΛΩ−1 (3.36)

where Λ is a diagonal matrix containing all the eigenvalues and Ω contains all the

eigenvectors.

3. Compute the distances by using equation 3.37.

D2
ikBi

(xk,vi) =
(
xk − v

(l)
i

)T [
(ρi det(Fi))

1
nF−1

i

] (
xk − v

(l)
i

)
(3.37)

4. Update the partition matrix with equation 3.38.

1

µ
(l)
ik

=
c∑

j=1

(
DikBi

(xk,vi)

DjkBi
(xk,vj)

) 2
(m−1)

,∀1 ≤ i ≤ c, 1 ≤ k ≤ N (3.38)

5. Repeat steps (1) - (4) until ‖U (l) − U (l−1)‖ < ε.
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Figure 3.4 shows the clusters found by this algorithm on a synthetic overlapping

data set. When figure 3.4 is compared to figure 3.3, it is seen that the GK algorithm

performs slightly better with clustering the elongated data at the bottom of the figure. As

mentioned earlier, this is due to the fact that the algorithm makes provision for different

shapes with respect to the clusters.
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Figure 3.4: Result of the Gustafson-Kessel algorithm by using a synthetic overlapping data
set. The gradient line presented on the figure are linear representations of the
partitioning between different clusters.

3.2.4 Gath-Geva clustering algorithm

The fuzzy maximum likelihood estimates (FMLE) clustering algorithm makes use of an

FMLE distance norm (Balasko et al., 2005). This norm is shown in equation 3.39.

Dik(xk,vi) =

√
det(Fi)

αi

exp

(
1

2
(xk − vi)

TF−1
i (xk − vi)

)
(3.39)

This distance norm includes an exponential term, which means that the distance norm

decreases faster than the inner-product norm found in the Gustafson-Kessel algorithm.

Derivation

Let Fi denote the fuzzy covariance matrix of the i-th cluster. This is given by equation 3.40.
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Fi =

N∑
k=1

(µik)
m(xk − vi)(xk − vi)

T

N∑
k=1

(µik)
m

,∀1 ≤ i ≤ c (3.40)

Balasko et al. (2005) notes that the normal weighting for the FMLE algorithm is

m = 1. In cases where m = 2 is used, the partition becomes more fuzzy to compensate for

the exponential term of the distance norm. The difference between the Gustafson-Kessel

algorithm’s Fi and that of Gath-Geva is that the latter can be weighted.

αi is a factor related to the prior probability of selecting cluster i. This is given by

equation 3.41.

αi =
1

N

N∑
k=1

µik (3.41)

The membership degrees, µik, are interpreted as the posterior probabilities of selecting

the i-th cluster given a data point xi. This algorithm is able to detect clusters of varying

sizes, densities and shapes (Balasko et al., 2005) but unfortunately is less robust in the

sense that it needs good initialization. This is due to the exponential term within the

distance norm which leads to convergence near a local minimum.

Implementation of algorithm

Given a data set, X, specify c and choose a weighting exponent m > 1 as well as a

termination tolerance ε. Initialise the partition matrix.

Repeat for l = 1, 2, . . .

1. Compute the cluster centers by means of equation 3.42.

v
(l)
i =

N∑
k=1

(µ
(l−1)
ik )mxk

N∑
k=1

(µ
(l−1)
ik )m

,∀1 ≤ i ≤ c (3.42)

2. Compute the cluster covariance matrices by using equation 3.43. The distance to

the prototype is calculated based on the fuzzy covariance matrices of the cluster.

F
(l)
i =

N∑
k=1

(µ
(l−1)
ik )m(xk − v

(l)
i )(xk − v

(l)
i )T

N∑
k=1

(µ
(l−1)
ik )m

,∀1 ≤ i ≤ c (3.43)
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The distance function is shown in equation 3.44 (Balasko et al., 2005).

Dik(xk,vi) =

√
det(Fi)

αi

exp

(
1

2
(xk − v

(l)
i )TF−1

i (xk − v
(l)
i )

)
(3.44)

with αi given by equation 3.41.

3. Update the partition matrix with equation 3.45.

1

µ
(l)
ik

=
c∑

j=1

(
Dik(xk,vi)

Djik(xk,vj)

) 2
(m−1)

,∀1 ≤ i ≤ c, 1 ≤ k ≤ N (3.45)

4. Steps (1) - (3) are repeated until ‖U (l) − U (l−1)‖ < ε.

Figure 3.5 shows the output of this algorithm.
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Figure 3.5: Result of the Gath-Geva algorithm by using a synthetic overlapping data set. The
gradient line presented on the figure are linear representations of the partitioning
between different clusters.

3.3 Cluster Validation

Cluster validation refers to the question of how well a particular clustering algorithm

clusters the particular data. Given a data set and the associated parameter set of the

algorithm, it will always attempt to find the optimal geometric cluster fit of the data.

This does not guarantee that the best fit would result in something meaningful. Problems

with clustering may be due to an inefficient number of clusters or to cluster shapes not

corresponding the underlying data structure (Wang & Zhang, 2007).
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Either the number of clusters might not be in the correct quantity or the cluster shapes

might not correspond to the underlying group structure of the data. Therefore, we define

the following two concepts (Wang & Zhang, 2007; Bensaid et al., 1996):

Compactness This defines the closeness of the cluster elements. A typical implemen-

tation is the variance between the elements. The variance gives an indication of

how different the members are. Therefore, a smaller variance indicates closer cluster

elements.

Separation This gives an indication of how distinct clusters are. It makes use of the

distance between clusters. This measure’s computational efficiency has led to its

wide application.

Two of the most common courses of action to determine the appropriate number of

clusters for the given data set are listed below.

• Starting of with a sufficiently large number of clusters, successively reduce the

number by merging clusters that are similar. The “goodness” of fit is determined

with some predefined criteria. This is also known as compatible cluster merging.

• Cluster the data set with varying values for c. Assess the “goodness” of fit by

making use of different validity measures. Balasko et al. (2005) provides two options

for this process.

The first approach defines a validity function which evaluates the complete partition.

An upper limit to the number of clusters to be tested for should be selected (cmax).

The desired clustering algorithm is then run with c ∈ {2, 3, . . . , cmax}. This results

in a validity measure for each number of c which can be individually compared to

the others.

The second approach relies on the definition of a validity function that evaluates

individual clusters of a cluster partition. As with the first approach, cmax needs to

be estimated and the cluster analysis has to be carried out for cmax. The resulting

clusters are compared to each other on the basis of a validity function. Similar

clusters are collected in one cluster and very bad clusters are eliminated. This

reduces the number of clusters and can be repeated until only well defined clusters

remain.

Many scalar validity measures exist. Wang & Zhang (2007) found that no one validation

index could accurately determine the optimum number of clusters with all the data sets

they used. Pal & Bezdek (1995) stated, “no matter how good your index is, there is a

data set out there waiting to trick it (and you)”. For this reason, more than one will be

used as validity functions in every clustering.
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The Partition Coefficient (PC) and Classification Entropy (CE) (also known as Par-

tition Entropy) are some of the first validity indices (χ) to be associated with fuzzy

clustering algorithms.

χPC(U) =
1

N

c∑
i=1

N∑
j=1

(µij)
2 (3.46)

χCE(U) =
1

N

c∑
i=1

N∑
j=1

µij log µij (3.47)

These indices measure the fuzziness of the cluster partition or the overall average overlap

between pairs of fuzzy subsets (Xie & Beni, 1991). Pal & Bezdek (1995) showed that in

the case of a hard partition clustering algorithm, these values would take their maximum

and minimum respectively at U = 1/c
.
= U of Mfc. U is the fuzziest partition since it

assigns every point in X, to all c classes with equal membership values 1/c. When the

clustering algorithm produces a partition U that is close to U , it is not finding a well

defined substructure in X. This could be because the clustering algorithm is at fault, or

there’s no well defined substructure within X. Consequently, the minimum in χPC and

maximum in χCE is helpful in deciding when no structure is found, but yields no clear

indication of the substructure when U approaches Mhc. Since χPC = 1 and χCE = 0 for

every U in Mhc, that is in a hard partition, it is incorrect to assume that when χPC = 1

and χCE = 0, U is a good clustering of X (Pal & Bezdek, 1995). Xie & Beni (1991) warn

that these validity measures lack a direct connection to the data. The Partition Index

(SC) is the sum of the ratio between the compactness and separation of the clusters. The

Separation Index (S), also known as the Xie and Beni index, differs from the SC only in

the denominator.

χSC(U, V,X) =

c∑
i=1

N∑
j=1

(µij)
m‖xj − vi‖2

Ni

c∑
k=1

‖vk − vi‖
(3.48)

χS(U, V,X) =

c∑
i=1

N∑
j=1

(µij)
2‖xj − vi‖2

N min
i6=k

‖vk − vi‖
=


σ

N
sep(V )

 (3.49)

Bensaid et al. (1996) notes two important differences when comparing the SC and the S.

1. A good (U, V ) pair should produce a small value of σ because µij is expected to

be large when ‖xj − vi‖ is low. Well separated vis will result in a high value of

sep(V ). Therefore, when χS(U1, V1, X) < χS(U2, V2, X), it is considered to be a

better partition of the data Pal & Bezdek (1995). Experiments showed that this

feature may be useful when searching for the right number of clusters. It does not
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seem to be as useful when comparing different partitions having an equal number of

clusters. This criterion favours the creation of a set of clusters that are maximally

separate from each other. This will minimise the fuzziness in assignments that are

close to each other.

2. SC is the sum of the individual cluster validity measures, normalised through division

by the fuzzy cardinality, Ni =
∑c

k=1 µik, of each cluster. This normalisation is aimed

at making the Partition Index more insensitive to variations in cluster sizes, a

desirable property not shared by the clustering objective function, J . This validity

measure is designed to complement the objective function.

Dunn’s Index (DI) is based on geometrical considerations in that it is designed to

identify sets of clusters that are compact and well separated. Bezdek & Pal (1995) defines

it as follows: Let S and T be non-empty subsets in Rn, and let Rn × Rn 7→ R+ be any

metric. The standard definitions of the diameter, ∆, of S and the set distance, δ between

S and T are shown in equations 3.50 and 3.51.

∆(c) = max
x,y∈S

{d(x, y)} (3.50)

δ(S, T ) = min
x∈S,y∈T

{d(x, y)} (3.51)

For any partition U ↔ X = X1 ∪ . . . Xi ∪ . . . Xc, Dunn defined the separation index

of U as shown in equation 3.52.

χDI(U,X) = min
i∈c

 min
j∈c,i6=j

 δ(Xi, Xj)

max
k∈c

{∆(Xk)}


 (3.52)

Here, δ(Xi, Xj) measures the distance between clusters directly on the points in the

clusters and ∆(Xk) measures the scatter volume for cluster Xk. Large values in χDI

indicate good clusters.

To make the calculation of ∆ simpler, Balasko et al. (2005) propose that is be replaced

by δG = max
x,y∈S

|d(y, vj)− d(x, vj)|, where vj is the cluster center of the j-th cluster. This is

known as the alternative Dunn Index (ADI)

χADI = min
i∈c

 min
j∈c,i6=j

 δA(Xi, Xj)

max
k∈c

{∆(Xk)}


 (3.53)

Singhal & Seborg (2005) suggest a completely different approach to determine the optimum

number of clusters. It should be noted that they clustered different data sets and not one,

continuous data set. The number of clusters, c, is increased to the total number of data

sets, Q.
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For each iteration, they calculate a pre-defined dissimilarity 2. The resulting dissimi-

larity sequence, J(c) is then used to estimate the optimal number of clusters. They note

that it is typical to find that J decreases with an increase in c. However, the optimum

number of clusters can be found when J(c) changes significantly. With this in mind, they

defined the following property,

ψ(c) = sign[dJ(c+ 1)− dJ(c)], c = 1, 2, 3, . . . (3.54)

where

dJ(c) =
|J(c+ 1)− J(c)|

J(c)
× 100%, c = 1, 2, 3, . . . (3.55)

The value for which dJ(c) reaches a minimum or is close to zero, is referred to as the

‘knee’ of the sequence. The values where the plot of J(c) has a knee are possible values

for the optimum number of clusters. For this reason, the sign of the difference between

successive values of dJ(c) is used to estimate the locations of the ‘knees’. The values for

c which changes the sign of ψ(c) from negative to positive are considered as optimum

values. Singhal & Seborg (2005) suggests that the first knee is usually selected as the

optimum.

For the purposes of this project, their dissimilarity index was not used as they were

clustering data sets instead of observations. For this reason, it is replaced with the normal

euclidean dissimilarity or distance.

3.4 Dimensional Reduction

The topics discussed in this section can also be referred to as feature extraction techniques.

Dimensional reduction is an important task in machine learning as it facilitates classifi-

cation, compression and visualisation of high dimensional data by mitigating undesired

properties of high dimensional spaces. These techniques consists of mapping input vectors

(of observations [x ∈ Rn], e.g. PV’s, CV’s) onto a new feature space which is more suitable

for a given task (y ∈ Ro).

3.4.1 Principal component analysis

Principal component analysis (PCA) is a tool which reduces the dimensionality of the

problem by defining a series of new axes called principal components, along the directions

of the maximum variation in the data. It should be noted that this is a linear process,

therefore the new vectors are a linear combination of the original variables. These vectors

are also orthogonal to each other (Martin & Morris, 1996). Franc & Hlavac (2004) also note

2Singhal & Seborg (2005) defined their dissimilarity function in terms of a PCA calculated using the
k largest principal components
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that PCA is an unsupervised learning algorithm. Equation 3.56 shows the decomposition

according to Martin & Morris (1996)

X = TP T =
m∑

i=1

tip
T
i (3.56)

The results of a PCA analysis can be broken up into the following:

• The first principal component is that which describes the most variability.

• The loadings (pi) defines the directions of most variability.

• The score vector (ti) provides the relationship of the projection of each principal

onto pi.

• The second principal component is orthogonal to the first and represents the second

most variability in the data. This process continues until n principal components

are obtained.

PCA has found wide application in industry, including facial recognition, coin classifi-

cation and seismic series analysis (van der Maaten et al., 2007).

3.4.2 Sammon Mapping

Both PCA and Sammon Mappings are global techniques for dimensionality reduction.

These techniques attempt to preserve global properties of the data. The main difference

between PCA and Sammon Mapping is that it is capable of constructing nonlinear

transformations between the high dimensional and low dimensional spaces. Phillpotts

(2007) found that kernel-PCA techniques did not perform as well as linear PCA.

Sammon mapping is a nonlinear mapping algorithm which has been found highly

effective in the analysis of multivariate data. This mapping technique is based upon a

point mapping of the N n-dimensional vectors from the n-space to a lower dimensional

space such that the inherent structure of the data is approximately preserved under the

mapping (Sammon, 1969).

The Sammon algorithm is well known for its ability to find good lower dimensional

representations of X. There are however a few limiting factors to this algorithm.

• The algorithm solves N × n simultaneous, coupled nonlinear equations making it

computationally intensive (Bezdek & Pal, 1995).

• By making use of the gradient based procedure to search for the minimum Sammon

stress (or Sammon error function), a local minimum on the error surface could be

reached Lerner et al. (1998). Therefore, a significant number of experiments with
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different random initialisations may be required. Methods that attempt to solve

this problem include basing the initialisation on information obtained from the data

such as the first and second norms of the feature vectors or the principal axes of

the covariance matrix of the data.

• When a new point has to be mapped, the whole mapping procedure has to be

repeated. This would make it impractical for real-time data mining (Feil et al.,

2007).

Derivation

Suppose we have N vectors in an n-space designated xi, i = 1, 2, 3...N . We also define N

vectors in a o-space designated Yi, i = 1, 2, 3...N . Let the distance between the vectors

xi and xj be defined by d∗ij = dist[xi,xj] and the corresponding distance in the lower

dimensional space be defined as dij = dist[yi,yj]. At this point it is worth mentioning

that any distance metric could be used. However, if no before hand knowledge of the data

is known, there is no reason not to use the Euclidean distance metric.

The o-space configuration is calculated by projecting the L-dimensional data orthogo-

nally onto the o-space spanned by o original coordinates with the largest variation. This

configuration is shown in equation 3.57.

y1 =


y11

...

y1d

y2 =


y21

...

y2d

y3 =


yN1

...

yNd

 (3.57)

When this is complete, all the o-space inter-point distances are calculated which is used to

calculate an error, E. This represents how well the N points in the o-space fits N points

in the n-space. This is shown in equation 3.58.

E =
1∑

i<j

d∗ij

N∑
i<j

|d∗ij − dij|2

d∗ij
(3.58)

The final step is to change Y , or equivalently, the o-space configuration to minimise

the error. The minimisation of E is an optimisation problem in o×N variables ypq, p =

1, . . . , N and q = 1, . . . , d. The steepest descent3 method is used to search for a minimum

error (Sammon, 1969). Equation 3.59 shows the minimisation problem at the t-th iteration.

ypq(t+ 1) = ypq(t)− θ

[ ∂E(t)
∂ypq(t)

∂2E(t)
∂ypq(t)2

]
(3.59)

3This algorithm performs a line search in the direction of the steepest decent of the function at the
current location. This is done at each iteration.
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where the partial derivatives are shown in equations 3.60 and 3.61.

∂E(t)

∂ypq(t)
= − 2

m

N∑
j=1,j 6=p

[
d∗pj − dpj

dpjd∗pj

]
(ypq − yjq) (3.60)

∂2E(t)

∂ypq(t)2
= − 2

w

N∑
j=1,j 6=p

1

dpjd∗pj

[
(d∗pj − dpj)−

(ypq − yjq)
2

dpj

(
1 +

d∗pj − dpj

dpj

)]
(3.61)

where w is the constant
∑N

i<j d
∗
ij in equation 3.58.

3.4.3 Fuzzy Sammon Mapping

To overcome the problem of re-mapping a complete data set every time a new data point

is added to the data set, Feil et al. (2007) tailored the original Sammon mapping for

visualisation of fuzzy clustering results.

When using fuzzy clustering algorithms, only the distance between the data points

and the cluster centers are considered to be important. Unlike the Sammon mapping,

the fuzzy Sammon mapping maps the clusters and data points such that the distances

between the cluster centers and the data is preserved (Yu et al., 2006). This is weighted by

the fuzzy membership function and the modified error function is shown in equation 3.62.

Efuzz =
c∑

i=1

N∑
k=1

(µki)
m(d(xk, ηi)− d∗ki)

2 (3.62)

where d(xk, ηi) represents the distance between the xk data point and the ηi cluster center

in the original dimensional space, while d∗ki = d∗(yk, zi) represents the Euclidean distance

between the projected cluster center zi and the projected data yk. The consequence of

this is that in the projected space, every cluster is represented by a single point, regardless

of the form of the original cluster prototype (Feil et al., 2007).

The computational procedure for the fuzzy Sammon mapping is shown below (Feil

et al., 2007) (Yu et al., 2006):

1. Initialise the projected data points by yk by PCA based projection of xk, and

compute the projected cluster centers by using equation 3.23. After this, compute

the distances, D∗, with the use of these projected points.

2. Compute the partial derivatives shown in equations 3.60 and 3.61 and update ypq

in equation 3.59.

3. Recalculate the projected cluster centers, zi and update the projected distance

matrix, D∗.
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4. Compute Efuzz with equation 3.62 while using equations 3.60 and 3.61 as the

derivatives.

5. Continue until either the maximum number of iterations are reached or when Efuzz <

ε.

Feil et al. (2007) claim that resultant two dimensional plot is easily interpretable since

it is based on a normal Euclidean distance measure between the cluster centers and the

data points.

3.4.4 Dimensional reduction metrics

Of course the resulting two dimensional plot will only approximate the original higher

dimensional data. To get a qualitative estimation of how well the dimensional reduction

algorithms projected the data to the lower dimensional space, the mean square error of

the original and the recalculated membership functions can be calculated (Feil et al.,

2007). This is shown in equation 3.63.

p = ‖U − U∗‖ (3.63)

There are many other tools to qualify the quality of the clusters mappings. The validity

measures defined in section 3.3 could be used to calculate the cluster validity before and

after the mappings.

Figure 3.6 illustrates the dimensional reduction techniques discussed above. The

Wisconsin Breast Cancer data set was used together with two cluster centers. The

performance metric, p, of each dimensional reduction technique is also shown. From this,

the fuzzy Sammon mapping performs the best, followed by the original Sammon mapping

and lastly the principal component analysis.
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(a) PCA, p = 0.1422
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(b) Sammon, p = 0.1182
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(c) Fuzzy Sammon, p = 0.0163

Figure 3.6: Examples of dimensional reduction techniques. The Wisconsin Breast Cancer data
set was used together with the fuzzy C-means clustering algorithm with c = 2.
The associated performance metric is also given.

 
 
 



CHAPTER 4

Time Delay Estimation

We define the concept of Multiple Signal Time Delay Estimation (MSTDE). We

develop this algorithm from existing cross-correlation and correlation techniques

and combine it with recently published statistical thresholding methods to deter-

mine the significance of signal correlations. We then show how linear algebra can

be used to solve for a single set of time shifts by either minimising the norm of the

time shifts (for a rank deficient system) or the norm of the residual (excess rank).

Chemical processes can be large and complex systems with many measurements and

control actions. A process fault or disturbance could appear in many places on a plant.

These faults and disturbances propagate through the plant due to a causal link. A sudden

loss of the steam pressure in a distillation column’s boiler will affect several variables

including the plate temperatures, the liquid level in the condenser drum and the top

composition. Although there is only one root cause, the effects are visible in many of the

measurements made (Bauer & Thornhill, 2008).

If there is a strong causal relationship between these variables, it is intuitive to assume

that these events will be detected at certain times after the initial event has occurred.

These times are known as the process dead times or lags and are illustrated in figure 4.1

Problem Statement: Determine whether and by how much a set of signals should

be shifted to aid a clustering algorithm, given the causal links between the signals.

4.1 Time delay estimation

Time Delay Estimation (TDE) refers to the calculation of a time delay between a pair of

signals and its detection poses a challenge. TDE has many applications including sonar

and radar (Knapp & Carter, 1976), in wide-band wireless communication systems (Liu

39
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Figure 4.1: Example of casual process measurements and their associated time delays. Note
that not all the inter-signal time delays are shown.

et al., 2008), sensor networks (Ash & Moses, 2005) and many more. Knapp & Carter

(1976) pose the problem as follows: A signal emanating from a remote source (with its

associated noise) and monitored at different spatial positions can be modelled as shown

in equation 4.1,

x1(t) = s1(t) + n1(t)

x2(t) = αs1(t+D) + n2(t)
(4.1)

where s1(t), n1(t), and n2(t) are real, jointly stationary random processes. It is important

to note that s1(t) is assumed to be uncorrelated with the noise present in the system.

This system differs from a typical chemical process. In a chemical processes, various state

variables (i.e. pressure, temperature etc.) are measured and deviations in some of these

variables could be due to one or more independent sources.

4.1.1 Cross Correlation Function (CCF)

Knapp & Carter (1976) showed that for a certain choice of the weighting function, the

cross-correlation function method of determining signal delays is equivalent to that of

more complex processors including the maximum likelihood estimator, Eckart filter etc.

The advantages of using the cross-correlation function is:

• Ease of implementation.

• Familiarity of the function among practising engineers (Bauer & Thornhill, 2008).

• Noise tolerance (Bauer, 2005).
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The cross correlation function between two, wide-sense stationary signals is shown in

equation 4.2 (Bauer & Thornhill, 2008; Barkat, 1991: p.74-76).

φxy[κ] =
1

N − κ

+N∑
i=−N

x̂iŷi+κ (4.2)

where x̂ and ŷ are mean centred and variance scaled derivatives of the original signals

x and y and κ is the CCF time delay. The cross correlation function is not symmetrical

or commutative (Bauer, 2005).

To calculate the inter-signal time delays, we follow the following procedure for each

pair of signals as described by Bauer & Thornhill (2008) and Bauer (2005).

1. Record both the minimum and maximum values obtained from the cross-correlation

function.

φmax = max
κ
{φxy[κ]},

φmin = min
κ
{φxy[κ]},

(4.3)

where φmax and φmin are positive and negative respectively. The corresponding time

delays (κmax and κmin) are also recorded. Bauer (2005) states that φmax will always

be positive and φmin will always be negative.

2. Assign the actual time delay for the particular signals. The choice depends on the

absolute values of φmax and φmin.

τij =

κmax, φmax + φmin ≥ 0,

κmin, φmax + φmin < 0.
(4.4)

The result of this is a time delay matrix (∆) which yields the same information as figure

4.1 and contains a comprehensive set of delays (τ) between all the relevant signals. This

is shown in equation 4.5.

S T3 T2 T3 C

0 τST1 τST2 τST3 τSC S

0 τT1T2 τT1T3 τT1C T1

∆ = 0 τT2T3 τT2C T2

0 τT3C T3

0 C

(4.5)
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4.1.2 Statistical significance and weighting

Bauer & Thornhill (2008) developed empirical formulae to test the significance of correla-

tion values and signal directionality. These formulae are based on hypothesis testing as

well as the number of samples in a time series. To determine the statistical significance

for a pair of signals, we use the following procedure:

The cross-correlation function of a finite signal has a maximum and minimum value

even when no time delay exists. For this reason it is necessary to establish whether there

is a statistical significance between xi and yi+τ . The maximum time delayed correlation

between two time series is

ρ = max{φmax, |φmin|}. (4.6)

This is tested against a threshold value, ρth. The correlation threshold is

ρth(N) = 1.85N−0.41 + 2.37N−0.53. (4.7)

where N is the number of samples in the given data set.

The CCF of a time delayed harmonic oscillation is periodic with the same frequency

as the oscillation. Certain ambiguities arise form this behaviour due to phase warping.

For this reason, no estimate of the time delay should be offered. For harmonic time

series, φmax and φmin of the CCF are of equal magnitude. Therefore, one failure of the

directionality test is the presence of an oscillation. Directionality can only be inferred

in a time delayed oscillation if some additional dynamic features are present (Bauer &

Thornhill, 2008). In order to confirm directionality, the magnitudes of φmax and φmin

have to differ significantly. A directionality index is introduced.

ψ = 2
|φmax + φmin|
φmax + |φmin|

(4.8)

If the index is small, then no decision can be made because φmax and φmin have

the same magnitude. In a similar fashion to the correlation threshold, a directionality

threshold value is calculated and ψ is tested against ψth. The directionality threshold is

ψth(N) = 0.46N−0.16. (4.9)

If ψ ≥ ψth and ρ ≥ ρth, then the delay is statistically significant.

4.1.3 Optimal signal time delay

To determine a single signal shift from ∆, we propose the following conjecture.

Conjecture 1 (Optimal signal shift) If ∆ij gives an accurate estimate of the inter-
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signal time delays, and if the time delays are sufficiently described by M input or output

lags, where M is the number of signals, then we can write

lj − li = ∆ij,∀i = 1..M, j > i.

Noticing that this is a linear system, the problem can be defined as follows:

Al = L∗

In a large data set there are uncorrelated signals. If the linear set of equations are

solved, each signal, irrespective of its contribution towards the causality, is weighted

equally. A weighting function assigns weights to the individual equations (with respect

to their contribution towards the causality as determined from the CCF in this case) to

ensure prominence to more important signals in the algorithm. This could also reduce

the number of equations that need to be solved, ensuring an even better efficiency for the

algorithm.

Using the maximum correlation threshold and the directionality threshold, together

with the actual correlation coefficients, we propose the following weighting function for

the multiple signal time delay estimation (MSTDE) algorithm:

wi =

[ρij, j = i+ 1 . . . N, i = 1 . . . N ] , ψ ≥ ψth and ρ ≥ ρth,

0, ψ < ψth and ρ < ρth

(4.10)

where ρij is the correlation between signals i and j. The weight function becomes,

W =


w1 0 . . . 0

0 w2 . . . 0
...

...
. . .

...

0 0 . . . wN

 (4.11)

The problem is now defined as shown in equation 4.12.

WAl = WL∗ (4.12)

In general, WA is not square, as there are M(M−1)
2

permutations of the M variables

that have to be considered. Also, A is not invertible, as there is not enough independent

equations to guarantee a unique solution. To compensate for this, we add one equation,

l1 = 0 and solve in a least-square sense. Therefore, the pseudo-inverse is used to

• minimise |l| for a rank deficient system or

• minimise the residual, |W (Al − L∗)|, for rank excess.
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The solution is tested by calculating the resulting residual norm. This would ideally be as

close to zero as possible. After calculating the shifts with l1 = 0, we define l̂ = l −min
i
li

to obtain strictly positive shifts. Algorithm 1 shows implementation of the MSTDE

algorithm.

Algorithm 1 MSTDE Algorithm

Require: N signals, xi, ∆ij = 0, i ≤ j
1: for i = 1 . . . N − 1 do
2: for j = i+ 1 . . . N − 1 do
3: Calculate φmax, φmin, κmin and κmax . equation 4.3
4: Calculate ∆ij . equation 4.4
5: Calculate ρ and ρth . equations 4.6 and 4.7
6: Calculate ψ and ψth . equations 4.8 and 4.9
7: r = (i− 1)N + j − i
8: Ar,i = −1
9: Ar,j = 1

10: L∗r = ∆ij

11: wr =

{
ρij, ψ ≥ ψth and ρ ≥ ρth,

0, ψ < ψth and ρ < ρth

12: end for
13: end for
14: diag(W ) = w
15: l = A†W †WL∗ . A† and W † constitute the Moore-Penrose pseudo-inverse
16: l̂ = l −min

i
(li)

Illustrative Example

Consider the simplified system shown in figure 4.2.

l1

l2
l3

1

2

3

3

2

1

Figure 4.2: Illustrative example of the optimal time shift for an arbitrary set of signals

Here follows the individual steps to calculate the optimal time shift.
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1. From figure 4.2, we can easily construct the time delay matrix assuming all delays

are significant. This is shown in equation 4.13.

∆ =

S1 S2 S3

0 1 −1 S1

0 −2 S2

0 S3

(4.13)

2. The A matrix is constructed as shown in equation 4.14.


−l1 l2 0

−l1 0 l3

0 −l2 l3

l1 0 0

 =


−1 1 0

−1 0 1

0 −1 1

1 0 0


 l1

l2

l3

 = Al (4.14)

3. L∗ is then constructed form the time delay matrix (∆). This is shown in equa-

tion 4.15.

L∗ =


∆12

∆13

∆23

0

 =


1

−1

−2

0

 (4.15)

4. Solving l = A−1W−1WL∗ yields l (refer to equation 4.16), assuming W = I for this

example. This shift is also shown in figure 4.2.

l = l̂ =

 2

0

1

 (4.16)

where l = l̂ in this case.

The results of this algorithm – using the synthetic and Tennessee Eastman data sets –

is discussed in chapter 6.

 
 
 



CHAPTER 5

Results: Näıve Clustering

The clustering algorithms defined in section 3.2 are applied to various data sets.

We define benchmarks for perfectly separate clusters and totally random values.

We then compare our synthetic data set and the Tennessee Eastman data set to

these and quantify the performance of the clustering algorithms on a normal time

series data set.

5.1 Synthetic data

5.1.1 Optimal number of clusters

The number of clusters should be known before the partitioning. This is seldom the case

as the underlying structure of the data is not known. To identify the optimal number of

clusters, metrics for values of c between 2 to 15 were compared.

Because no validation index is reliable by itself, they should be compared with one

other in order to find the optimal number of clusters. The actual values of the indices

are not of importance at this point and therefore they were normalised with respect to

the largest value of each. This gives a qualitative perspective of the optimal number of

clusters.

Figures 5.1(a) and 5.1(b) show the validation indices when the K-means and K-medoid

algorithms are applied to the synthetic data set.

It is clear that no optimal number of clusters exist for the K-means and K-medoid

algorithms. As mentioned in section 3.3, the PC and CE indices are 1 and 0 respectively

when the partitioning is hard. This indicates a high probability that neither the K-means

nor K-medoid algorithms can find substructures within the data. For this reason, no

conclusion can be made regarding the quality of the clustering. The Partition Index (SC)

46
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Figure 5.1: Validation indices for the optimal number of clusters using the using the K-
means, K-medoid, Gustafson-Kessel and Fuzzy C-means algorithms, applied to the
Synthetic data set. The values are normalised with respect to the maximum value.
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and Separation Index (S) decrease monotonically but S seems to flatten after c = 4, which

indicates that there is little improvement in the ability of the clustering algorithm to

identify well separated substructures within the data. Dunns Index (DI) fluctuates right

through the cluster range for K-means. The alternative Dunn Index (ADI) shows a sharp

drop when c ≥ 6. This would suggest that the minimal distance between the clusters is

now sufficiently small while the dispersion between data points is large, resulting in a

near zero.

Figure 5.1(c) shows the result for the validation indices when the Gustafson-Kessel

algorithm is used. Here the lack of direct connection to the data structure for both PC and

CE is evident . They are monotonically increasing and decreasing respectively (Xie & Beni,

1991). Therefore, no information regarding a possible optimum number of clusters can be

derived from them. The remaining indices all fluctuate through the cluster range. As with

figures 5.1(a) and 5.1(b), we find SC and S decrease with an increase in c (there are slight

upward tendencies at higher values, but the overall trend is decreasing). This also suggests

that the clustering algorithm, Gustafson-Kessel in this case, struggles to identify unique

substructures within the data. The total separation of the clusters increases, where the

variation within the clusters decrease as c increases. This is more prominent in figure 5.4.

Both the DI and ADI yield lower values at large numbers of cluster centres. These are

not feasible solutions, as the model will become complex and will not result in anything

meaningful.

As with the GK algorithm, the PC and CE indices show no clear optimum as they are

monotonically decreasing and increasing respectively. As with all the previous clustering

algorithms, the SC and S indices show a decreasing tendency with intermittent spikes

as c increases. The values for all the other indices follow the same trend as shown in

figure 5.1(c), with the ADI being the exception. It falls away completely at c ≥ 7. This

result aligns it with the K-medoid algorithm.

The GG algorithm is very unstable and difficult to implement. This is due to the small

distances, |xk − vi|, used in equation 3.39 combined with the inversion of this equation.

This algorithm could not be used on more than 2 cluster centers without running into

numerical problems, so it will not be discussed further.

From these results it is clear to see that there is no conclusive optimal number of

clusters for this data set. The internal structure of the data set is complex due to the

time dependency of the data, so algorithms cannot separate different operating regions.

As mentioned in section 3.3, Singhal & Seborg (2005) developed a method to determine

the optimal number of clusters using of a pre-defined cost function. In their case they

defined a cluster dissimilarity cost function, but for the purposes of this project, the cost

functions would be the same those as discussed in sections 3.2.1 to 3.2.4.

Figure 5.2 shows the resultant “knee” plot obtained by evaluating the second derivative

of the cost functions.
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Figure 5.2: Second derivative ‘Knee’ plot from the cost functions of the respective clustering
algorithms.

Singhal & Seborg (2005) states that the location of the first “knee” in this series

(where the sign changes from negative to positive) is a good indication of the optimum

number of clusters to be used for the particular clustering algorithm. The optimum for all

the clustering algorithms except GK is at c = 3, where GK is at c = 4. The combination of

the validity indices, from which no conclusive optimum could be found, with the method

described by Singhal & Seborg (2005), yields tangible results and for the remainder of

this section, the number of clusters to be used in each clustering algorithm would be same

as mentioned above.

5.1.2 Results with a fixed number of clusters

Validity Indices

To establish a base case to which our results can be related, we created two base case

data sets.

1. A time series data set which contains 3 signals with no noise as well as 3 pre-defined

clusters. This will be the best case scenario. Figure 5.3(a) shows the result of the

K-means, K-medoid and Fuzzy C-means clustering algorithms. Figure 5.3(b) shows

the result of the Gustafson-Kessel algorithm. It is clear that the algorithms find the

three clusters. The Gustafson-Kessel algorithm however struggles to find 3 unique

clusters. This result is unexpected as the Fuzzy C-means algorithm found the three

clusters without any problems. The resulting validity indices are shown in table 5.1.

 
 
 



CHAPTER 5. RESULTS: NAÏVE CLUSTERING 50
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(a) K-means, K-medoid and Fuzzy C-means
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Figure 5.3: Time series clusters for “best case” data set. The color bar at the bottom indicates
the degree to which cluster 1 to 3 belongs to a certain time.

Table 5.1: Validity indices for various clustering algorithms using a random data set.

K-means K-medoid Fuzzy C-means Gustafson-Kessel

PE 1 1 0,62 1
CE 0 0 0,58 0
SC 0 0 0 0
S 0 0 0 0
DI inf inf inf inf
ADI 0 0 0 0
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This result agrees with the expected result when the clusters are extremely well

separated with no overlapping and no variance within the cluster itself.

2. A time series set of 9 random signals with the same mean and variances as the

synthetic data defined in section 2.1. This will be the worst case scenario as all

the signals are uncorrelated. Table 5.2 shows the result for the random data. We

Table 5.2: Validity indices for various clustering algorithms using a random data set.

K-means K-medoid Fuzzy C-means Gustafson-Kessel

PE 1 1 0,333 3 0,333 3
CE 0 0 1,098 6 1,098 6
SC 1,077 5 0,687 4 104 514 945 33 049 295
S 0,001 1 0,000 9 128 582 40 915
DI 0,110 2 0,086 9 0,09 0,093 6
ADI 0,006 1 0,008 3 0,011 0,013 5

see excessive values when comparing the SC and S indices to the other indices,

for the fuzzy clustering techniques. The reason for these high values is due to the

small separation of the clusters as well as the high variance within each cluster, as

indicated by equations 3.48 and 3.49. The fuzzy algorithms cannot separate the

data points into different clusters, and for this reason, the cluster centers are very

close to each other. These values are substantially smaller for the hard partitioning

algorithms when compared to the fuzzy results. The values for PC and CE give no

indication of cluster goodness for the hard partitions, as they are at their maximum

and minimum values respectively. This would suggest a lack of structure within the

data. The fact that these values decrease and increase monotonically respectively,

when using fuzzy clustering techniques, makes them of little use in the interpretation

(Pal & Bezdek, 1995).

Table 5.3 compares the validity indices obtained by the different clustering algorithms

when a noise-free synthetic time series data set is used.

When comparing the indices for the K-means (figure 5.1(a)) and K-medoid (fig-

ure 5.1(b)) algorithms, we see that the PC and CE indices are the same (1 and 0

respectively). This gives no indication which algorithm is superior in terms of identifying

separate clusters. The SC, S and DI indices show that the K-medoid algorithm is superior

to the K-means algorithm. The ADI shows that the K-means algorithm performs better

than the K-medoid algorithm, but this result is ignored as the 3 indices mentioned earlier

show otherwise. It is also worth mentioning that the PE and CE for the Gustafson-Kessel

indices are the same for the synthetic data and the random data sets. The validity indices
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Table 5.3: Validity indices for various clustering algorithms using noise free data.

K-means K-medoid Fuzzy C-means Gustafson-Kessel

PE 1 1 0,389 3 0,333 3
CE 0 0 1,013 5 1,098 6
SC 0,297 7 0,257 5 1,031 2 420 582
S 0,000 3 0,000 4 0,001 4 669,21
DI 0,096 6 0,069 2 0,082 0,067 2
ADI 0,018 9 0,002 0 0,032 9 0,047 4

for the Gustafson-Kessel algorithm (table 5.3) shows a marked spike in both the SC and

S indices. This result will become apparent in figure 5.4, where the algorithm cannot find

a suitable set of clusters for the data.

These values agree with those of the random data set. This suggests that the time

series data is equivalent to random noise for the Gustafson-Kessel algorithm. The indices

for the Fuzzy C-means algorithm are substantially better than that of the Gustafson-Kessel

algorithm. This is the same when comparing it to the random data set.

We find that most of the clustering algorithms are at least able to find some structure

in the synthetic time series plot, when compared to random time series values. Some of

the validity indices are questionable. The ADI performs better in the case of the random

data set, when the fuzzy algorithms are used and does not represent the truth as we know

it should perform worse. The PE and CE indices also offer little value, as they are either

1 or 0, or decreasing and increasing monotonically. For these reasons, we are discarding

these indices in the work to come.

Visual Clustering

The clustering algorithm, combined with a suitable dimensional reduction technique,

should provide the user with a clear separation of the data clusters. The dimensional

reduction performance values represented for each clustering algorithm and the respective

dimensional reduction techniques are shown in table 5.4.

When p = ‖U − U∗‖ is small, the dimensional reduction technique is considered to be

good. This is because the difference between U (the original distances between the data

points and the cluster centers) and U∗ (the distances between the projected data and the

projected cluster centers) is small.

The fuzzy Sammon mapping performed the worst except when using the hard partition

clustering algorithms. It is evident from table 5.4 that PCA performed the best, while the

Sammon mapping came second. This is also visible in figure 5.4, where a clear distinction

between the different clusters is seen with minimal overlap, while using the K-means

algorithm. The K-medoid algorithm does show some overlap and this is confirmed by the
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Table 5.4: Performance indicators for various clustering and dimensional reduction algorithms.

Clustering Dim. Red. p = ‖U − U∗‖
∑N

k=1 µ
2
k

∑N
k=1 µ

2∗
k

K-means PCA 0,151 7 1,000 0 0,663 9
Sammon 0,170 9 1,000 0 0,630 5
Fuzzy Sammon 0,238 4 1,000 0 0,591 5

K-medoid PCA 0,226 5 1,000 0 0,595 3
Sammon 0,212 3 1,000 0 0,608 4
Fuzzy Sammon 0,285 0 1,000 0 0,506 3

Fuzzy C-means PCA 0,098 1 0,389 3 0,515 5
Sammon 0,087 2 0,389 3 0,497 3
Fuzzy Sammon 0,040 6 0,389 3 0,410 8

Gustafson-Kessel PCA 0,000 2 0,333 3 0,333 3
Sammon 0,000 2 0,333 3 0,333 3
Fuzzy Sammon 0,000 1 0,333 3 0,333 3

S index in table 5.3, where it performed slightly worse than the K-means algorithm.

The Fuzzy C-means algorithm produces three distinct cluster lobes. We see similar

values for all three dimensional reduction techniques. This is also evident in figure 5.4,

where the differences between different techniques are negligible.

The Gustafson-Kessel algorithm performs the worst of the clustering algorithms. This

is evident from both figure 5.4 and table 5.3 where no meaningful clusters could be

detected with large values in both the SC and S indices. This algorithm scores so well

with respect to the dimensional reduction (table 5.4) because there is little difference

between the distances in the higher and reduced dimensional spaces.

It is clear that the time-series data produces spherical clusters, which aids the perfor-

mance of the hard partitioning cluster algorithms. This negates the possible advantages

of the fuzzy algorithms where they could detect clusters of various shapes.

Figures 5.5(a) to 5.5(d) represent the same information as that in figure 5.4. These

figures show the clusters on a time series plot. It is important to note that in the Fuzzy

C-means and Gustafson-Kessel cases, the resulting partition is fuzzy. For this reason, a

specific data point in time cannot be allocated to only one cluster, as it belongs to every

cluster (with varying percentages). Therefore, the shaded areas only represent the cluster

with which a specific data point is most associated.

From a practical point of view, it seems that the K-means algorithm results in the

most consistent time series representation when the different shading is observed. The

clusters seem to occur with minimal interruption from other clusters. This could be a

contributing factor when we look at the K-means PCA combination in figure 5.4, where

the different states of the signals are clearly clustered. We see that the active cluster plot
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Figure 5.4: Visual representation of the K-means (top row), K-medoid (second from top), Fuzzy
C-means (second from bottom) and Gustafson-Kessel (bottom row) algorithms.
The columns represent the different dimensional reduction techniques, starting
with PCA (first column), Sammon mappings (second column) and fuzzy Sammon
mappings (third column). All the axes are normalised from −1 to 1, with the tick
on each axis indicating zero. Four clusters centers were used in all but the Fuzzy
C-means algorithm. These are indicated by the sideways triangles.
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below the time series plot shows a definite set of stairs throughout the time range with

respect to the active clusters. In other words, there is a certain number of continuity, or

cyclical behaviour, with respect to the sequence in which the clusters are active. It starts

at cluster no. 2, then works its way up to cluster no. 1, where after the sequence starts

over again at 3. This is not a 100% consistent right through, but this would suggest that

the clustering algorithm identifies the reoccurring time events.
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(b) K-medoid
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(c) Fuzzy C-means
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Figure 5.5: Time representation of the different clustering algorithms using the Synthetic data
set. The solid lines on the main plot represent the 9 process signals. They are
shaded with different shades of gray to indicate to which cluster they belong at
that point in time. The partial figure at the bottom indicates which cluster is
“active” at that specific point in time.

The time series clusters of the K-medoid algorithm, as shown in figure 5.5(b), are more

irregular than those seen in figure 5.5(a). The continuity of these clusters are not as good

as in the previous case, resulting in a large number of small time increment clusters that

belong to a given time. This translates to clusters that overlap as is evident in figure 5.4.
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We find a similar pattern when looking at the time cluster plot of the Fuzzy C-Means

algorithm, as shown in figure 5.5(c). The shaded areas only represent the cluster to which

a data point belongs most to in with respect to time. The “active” cluster plot does

however show the relative percentages to which a data point at a specific point in time

belongs to a cluster. The fuzziness of the partition could be the cause of the lower scores

in table 5.3 when compared to the K-medoid algorithm. The variance between the data in

a cluster seems to be larger when these two are compared in figure 5.4, resulting in larger

values for the SC and S indices. We also find that cluster 2 seems under-represented.

Figure 5.5(d) shows different clusters are active at different times in the figure. This

should however be contrasted with the actual values of the “active” cluster plot, which

does not vary significantly. This confirms the result obtained in figure 5.4, where no clear

clusters formed. The reason for this behaviour is not clear. No meaningful information

can be extracted form figure 5.5(d).

The K-means and K-medoid clustering algorithms provided the best results when

clustering a synthetic time series data set, therefore, the Fuzzy C-means and Gustafson-

Kessel algorithms are not investigated further. The PE, CE and ADI indices were found

lacking (for various reasons), and are also discarded for the remainder of this project.

5.1.3 Influence of noise on clustering performance

In the previous section, the data were free of any noise. The clustering results of the

random values data set showed a definite decrease in the performance of the clustering

algorithms.

The noise power (height of the power spectrum density (PSD)) was increased from

0,001 to 10 in factors of 10. It is important to note that each signal had its own source

of noise and these in turn had different “seed” values. Figure 5.6 show the results of

the remaining validity indices. The K-means algorithm’s validity indices show a steady

increase up to a power of 10−1, where after it reduces again. The effect of noise up to

10−1 decreases the ability of the clustering algorithm to obtain structure within the data.

This is an intuitive result. However, it is counter intuitive to find the indices reduce in

magnitude after a power of 10−1. It stands to reason that high values for noise explicitly

introduce structure within the data, but this cannot be confirmed.

The K-medoid clustering algorithm seems less sensitive to the effects of noise, as

both SC and S reduce as the noise increases. The DI does however increase, but only

marginally.
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Figure 5.6: The influence of noise on clustering performance

5.2 Tennessee Eastman Data

5.2.1 Optimal number of clusters

As with the synthetic data set, the number of clusters were varied from 2 to 15 in a step

wise fashion.

Figure 5.7 shows the results for the validation indices when the K-means and K-medoid

algorithms are applied to the Tennessee Eastman data set.
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Figure 5.7: Validation indices for the optimal number of clusters using the K-means and K-
medoid algorithms applied to the Tennessee Eastman data set. The values are
normalised with respect to the maximum value.

As in section 5.1.1, the normalised values for the indices yield contradictory results
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with respect to the optimal number of clusters. In figure 5.7(a), the SC and S indices

show a sharp decline at c = 3, then remain relatively constant. The DI shows a minimum

at c = 2, indicating a possible optimum. A similar situation occurs when the K-medoid

algorithm is used. The SC and S indices obtain minima at c = 3 while DIs minimum

occurs at c = 15, but this is not conclusive result, as the number of clusters is limited to

15. The internal data structure is much more complex than that of the synthetic data

set. There are many more transient states, which blur the distinction between different

operating regions. The knee plot, shown in figure 5.8, suggests that the optimum occurs

at c = 4. This is comparable with the optimal number of clusters obtained with the

validation indices.
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Figure 5.8: Second derivative “Knee” plot from the cost functions of the respective clustering
algorithms using the Tennessee Eastman data.

5.2.2 Results with a fixed number of clusters

In the previous section, the optimal number of cluster centers were found to be c = 4.

These results are implemented in this section.

Validity indices

Table 5.5 shows the reduced number of validity indices for both the K-means and K-medoid

clustering algorithms.

All three the indices show similar values for both the clustering algorithms. The SC

and S indices are substantially smaller than those obtained from the synthetic data set

(refer to table 5.3), While the DI is marginally higher. In this case, the cluster separation

is larger than in the case of the synthetic data set (in the higher dimension). Although
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Table 5.5: Validity indices for various clustering algorithms while using the Tennessee Eastman
data.

K-means K-medoid

SC 0,074 6 0,084 4
S 0,000 1 0,000 1
DI 0,139 8 0,083 5

the variance could be higher, the actual cluster distances offset this and results in smaller

values for both the SC and S indices.

Visual Clustering

Figure 5.9, shows the clustering results for the Tennessee Eastman data set. It is im-

mediately evident that the Sammon and Fuzzy Sammon mappings perform the worst.
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Figure 5.9: Visual representation of the K-means (top row) and K-medoid (second from top)
algorithms. The columns represent the different dimensional reduction techniques,
starting with PCA (first column), Sammon mappings (second column) and fuzzy
Sammon mappings (third column).All the axes are normalised from −1 to 1, with
the tick on each axis indicating zero. Four clusters centers were used. These are
indicated by the sideways triangles.

The Fuzzy Sammon mapping succeeds in separating one cluster from the rest, for both

the K-means and the K-medoid clustering algorithms. From figures 5.10(a) and 5.10(b),

it is evident that these are the largest clusters in the time series. However, they arent able

to distinguish between the smaller clusters, making this technique redundant. Table 5.6
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does suggest that the Fuzzy Sammon mapping yields a better result in terms of preserving

the original projection with respect to the other dimensional reduction techniques, as the

difference between the original and projected distances are very small (as it forces the

lower dimensional inter point distances to be the same as those in the higher dimension).

When these results are compared to those in table 5.4, we find that the Fuzzy Sammon

mapping performs better for the more complex Tennessee Eastman data set.

The Sammon mapping does not succeed in separating the data. It yields to a single

group of data points with no way of distinguishing between the different clusters. This is

also reflected in the relatively high values of P . The Sammon mapping performs worse

when compared to the synthetic data set.

The PCA results in the best visual representation of the data in the lower dimensional

space. The clusters are separated with minimal overlapping in this space. The results for

the K-means algorithm are comparable with the more computationally expensive Fuzzy

Sammon mapping. However, the K-medoid algorithm’s PCA projection is not very good.

It performs worse than in the case of the Synthetic data set (refer to table 5.4).

Table 5.6: Performance indicators for various clustering and dimensional reduction algorithms.

Clustering Dim. Red. p = ‖U − U∗‖
∑N

k=1 µ
2
k

∑N
k=1 µ

2∗
k

K-means PCA 0,067 5 1 0,797 8
Sammon 0,259 4 1 0,464 4
Fuzzy Sammon 0,051 5 1 0,890 5

K-medoid PCA 0,285 7 1 0,428 6
Sammon 0,203 9 1 0,729 8
Fuzzy Sammon 0,163 1 1 0,577 3

Figures 5.10(a) and 5.10(b) show the time series interpretation of figure 5.9.

The K-means algorithm identifies 2 operating regions. The first, and largest is repre-

sented by the green sections (or cluster). It is evident that these sections differ substantially

from the middle section with respect to the shape of the signals. The three real regions

in the data are not identified, but an operator would be aware of the different periods of

operation.

The K-medoid algorithm yields a similar result than that of the K-means algorithm.

The main difference lies in the first and last sections (the two green sections in the K-means

result). Where the K-means algorithm was only able to distinguish these sections from the

middle section, we see that the K-medoid algorithm imparts 2 clusters for these sections

(red and magenta). From an assistive technology point of view, this would not help the

operator to distinguish between different operating regions.
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Figure 5.10: Time representation of the different clustering algorithms using the Tennessee
Eastman data set. The solid lines on the main plot represent the process signals.
They are shaded with different shades of gray to indicate to which cluster they
belong at that point in time. The partial figure at the bottom indicates which
cluster is “active” at that specific point in time.

 
 
 



CHAPTER 6

Results: Time Delay Estimation

We show that a simple weighting function can increase the performance of the

algorithm when complex systems are used. The goal of this section is to calculate a

single set of optimum shifts that would increase the performance of the clustering

algorithm.

6.1 Synthetic Data

The synthetic data set consists of 3 groups of 3 signals. The time delays of these signals

were selected in an arbitrary fashion. As discussed in section 4.1, the multiple signal time

delay estimation (MSTDE) algorithm relies on both the correlation coefficients of the

signals as well as the cross correlation time delays to estimate the true time delay of the

system.

Figure 6.1(a) shows the correlation coefficients for the 9 signals.

The diagonal elements are equal to 1, as the signal correlates 100% with itself over

time. Because signals 1-3, 4-6 and 7-9 form groups in this set, we would expect some

block diagonal structure to form off the diagonal, but this is not the case. Although the

signals’ frequencies are co-prime, there is still some correlation between them.

The results of the cross correlation lags are shown in figure 6.1(b). It is clear that

there is a large variety of lags present in the system. These lags are related to one another

by some form of causal structure, but we need to reduce it further to have any practical

application. The results of the MSTDE algorithm is shown in table 6.1.

This results compare 100% with the actual pre-defined time delays. The algorithm

identifies subgroups within the data. This is indicated by the 3 zero values in table 6.1.

The norm of the residual is very small , |Al − L∗| = 1,4× 10−14, which indicates that the

result of the optimisation is consistent.

62

 
 
 



CHAPTER 6. RESULTS: TIME DELAY ESTIMATION 63

Signal

S
ig

na
l

 

 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9 −0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Correlation Coefficients

Signal

S
ig

na
l

 

 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9
−20

−10

0

10

20

30

40

(b) Cross Correlation Lags

Figure 6.1: Correlation coefficients and Cross-Correlation Lags for the synthetic data set.

Table 6.1: Results of the MSTDE algorithm applied to the synthetic data set.

Signal 1 2 3 4 5 6 7 8 9

Shift 0 10 5 0 12 6 0 13 9

When the correlation coefficients are used as weights in the optimisation algorithm,

the results are similar. The optimal time shifts are the same as in table 6.1, but the norm

of the residual is smaller, |WAl −WL∗| = 4,9× 10−15.

The threshold weighting function (refer to section 4.1) also yields the same results as

shown in table 6.1 with |WAl −WL∗| = 1,05× 10−14.

Two different interpretations can result form table 6.1:

1. The algorithm suggests that signals 1, 4 and 7 are the base signals and the remainder

are shifted. In other words, signals 2 and 3 will be shifted in relation with signal 1

and so on.

2. The algorithm does not find any significant correlation between signals 1, 4, and

7 to the rest of the data. Therefore, while the other signals are shifted to align

themselves better with each other, signals 1, 4, and 7 are not shifted as they are

unrelated.

This issue can be addressed by taking the correlation matrix into account to confirm

the inter-signal uncorrelatedness.

Figure 6.2 shows the effect before and after the shift of the signals. The shifted signals

are truncated after shifting to retain consistent start and end times for the data set.
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Figure 6.2: Results of time shifting the synthetic data set. The shifted signals align perfectly.

6.1.1 Effect of Noise in the MSTDE algorithm

Figure 6.3 shows the resiliency of the MSTDE algorithm to noise with the various weighting

functions. It is clear that the “No weighting” solution has the largest residual norm. The

norms for both the correlation coefficient weighting (“Corr Coef”) and the Threshold

weighting solutions are relatively small right through the range of noise1.
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Figure 6.3: The norm of the residual as well as the average percentage fault per signal time
delay.

1The residual norm cannot be compared between the different weighting functions, as it is application
specific. However, it does give insight into the change of each weighting function norm over a noise range.
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The average deviation was calculated by calculating the deviation from the known

delay for all 9 signals. The average deviation is then reported at every noise power. It is

counter-intuitive to find that the correlation weighting function made the largest gross

errors in calculating the time delays when compared to no weighting at all. The threshold

weighting function did not yield results above noise levels of 10−1. The reason for this

lies in the fact that the maximum correlation and correlation directionality values for the

signals are all smaller than the threshold values. This essentially results in a weighting

function of zero. This is a preferred result, as we do not want the algorithm to shift the

signals if they are not statistically correlated.

6.2 Tennessee Eastman Data

Because the Tennessee Eastman process is very complex, the threshold weighting method

is used in the MSTDE algorithm. Figure 6.4(a) shows the correlation coefficients for the

33 signals described in table 2.3. It is evident that there are some highly correlated signals.

We also see some blocks forming. These are most prominent at signal 5 (compressor

recycle valve), signal 9 (stripper steam valve) and signal 20 (reactor temperature). This

result is also visible in figure 6.4(b). The range of the calculated time delays is very large,

and we see that the afore-mentioned signals contain the highest time delays. Bauer &

Thornhill (2008) states that when using the cross-correlation function to determine the

process lags, the user cannot expect useful lags larger than N
4
, and this is indeed what

has happened. Combined with the thresholding methods described in section 4.1, we find

that these signals (and others) are neglected in the optimisation process by setting the

associated weight equal to zero. Figure 6.4(c) shows the signals that are statistically valid

(according to the threshold values).

Table 6.2 shows the result of the MSTDE algorithm. We find relatively small time

shifts compared to the magnitudes seen in figure 6.4(b). Because signal 9 (stripper steam

valve) and signal 5 (compressor recycle valve) was not correlated with any other signals

other than themselves in the correlation matrix (figure 6.4(a)), we do not expect a shift

in any way. This is indeed the case and is shown in table 6.2.

Due to our prior knowledge of the construction of the data set, and the fact that it is

a combination of three individual data sets, we would like to investigate them separately.

The cross-correlation function will calculate a better time delay matrix for each subset

of the large set due to the fact that there are different disturbances in the large data set.

Each subset contains only one disturbance, and this would have beneficial effects on the

calculated time shifts.

The first subset contains the IDV(3) disturbance (Step in D feed temperature). Fig-

ures 6.5(a) and 6.5(b) show the time delay matrix and the statistically valid signals

respectively. The statistically valid signal matrix is much more sparse than in the previous
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Figure 6.4: Correlation coefficients and Cross-Correlation Lags for the synthetic data set.
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Table 6.2: Results of the MSTDE algorithm applied to the Tennessee Eastman data set.

Variable Name Variable number Shift Normalised Shift

Product separator level XMEAS (12) −9,3 0,0
Reactor cooling water outlet temperature XMEAS (21) −6,2 3,1
Stripper level XMEAS (15) −6,1 3,2
Reactor temperature XMEAS (9) −5,8 3,5
Reactor cooling water flow XMV (10) −5,8 3,5
Stripper pressure XMEAS (16) −5,4 3,9
Separator cooling water outlet temperature XMEAS (22) −5,4 3,9
Product separator pressure XMEAS (13) −5,3 4,0
Purge rate (stream 9) XMEAS (10) −5,2 4,1
Compressor work XMEAS (20) −5,1 4,2
Reactor pressure XMEAS (7) −5,1 4,2
Purge valve (stream 9) XMV (6) −4,9 4,4
E feed flow (stream 3) XMV (2) −4,8 4,5
E feed (stream 3) XMEAS (3) −4,7 4,6
Condenser cooling water flow XMV (11) −4,4 4,9
Reactor level XMEAS (8) −4,3 5,0
Stripper liquid product flow (stream 11) XMV (8) −3,6 5,7
Stripper underflow (stream 11) XMEAS (17) −3,6 5,7
Stripper temperature XMEAS (18) −3,4 5,8
Stripper steam flow XMEAS (19) −3,1 6,2
Product separator temperature XMEAS (11) −3,0 6,3
Reactor feed rate (stream 6) XMEAS (6) −2,8 6,5
Recycle flow (Stream 8) XMEAS (5) −2,4 6,9
Product separator underflow (stream 10) XMEAS (14) −1,8 7,5
Separator pot liquid flow (stream 10) XMV (7) −1,7 7,6
D feed (stream 2) XMEAS (2) −0,4 8,8
A feed (stream 1) XMEAS (1) −0,2 9,0
A feed flow (stream 1) XMV (3) −0,2 9,1
Compressor recycle valve XMV (5) 0,0 9,3
Stripper steam valve XMV (9) 0,0 9,3
D feed flow (Stream 2) XMV (1) 0,0 9,3
A and C feed flow (stream 4) XMV (4) 41,1 50,3
A and C feed (stream 4) XMEAS (4) 41,1 50,3
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case with blocks forming in the matrix. This will result in a larger residual norm, and

this is indeed the case, with |Al − L∗| = 44,65. The time shift results of the MSTDE

algorithm (with threshold weighting) is shown in table 6.3.

There are more unsifted signals (as indicated by the zero shift) than in the original

data set. This is due to the sparse weighting function shown in figure 6.5(b), which

indicates that the signals are not correlated to each other.

The second subset contains the IDV(13) disturbance (slow drift of the reaction kinetics).

Figures 6.6(a) and 6.6(b) show the time delay matrix and the statistically valid signals

respectively. As with the original data set, we find very large delays in the time delay

matrix. They are associated with signals 5 (compressor recycle valve), 9 (stripper steam

valve) and 15 (A and C feed [stream 4]). These signals are removed from the optimisation

algorithm by the threshold weighting function. The time shift results of the MSTDE

algorithm (with threshold weighting) is shown in table 6.4. The norm of the residual is

smaller than in the IDV(3) case, being |Al − L∗| = 31,65. This is due to a less sparse

weighting matrix.

The third subset contains the IDV(14) disturbance (sticking reactor cooling water

valve). Figures 6.7(a) and 6.7(b) show the time delay matrix and the statistically valid

signals respectively. Although the statistically valid signal matrix is sparse (as in the

IDV(3)) case, the norm of the residual is smaller, |Al − L∗| = 35,07. When these two

matrices are compared, we find that the rank of the IDV(14) subset is 28 while that of

the IDV(3) is 27. This could explain the difference in the resulting norm. The time shift

results of the MSTDE algorithm (with threshold weighting) is shown in table 6.5.

6.3 Causality from time shifts?

Bauer & Thornhill (2008) developed the methods used in the previous sections (as

described in section 4.1 as part of a causality inference system. It should be noted that

this does not form part of the core of the project, but the unsubstantiated results will

be highlighted in this section. For the purposes of this section, only the IDV(14) subset –

sticky reactor cooling valve – will be considered.

Figure 6.8 shows the Tennessee Eastman process and can be read together with

table 6.5 with regards to the propagation of a fault. We find that the reactor cooling

water valve is at the top of the shift list, indicating that it may be the origin of the fault.

This is followed by the general reactor region.

There are however some strange signals within this reactor region which seem out

of place. They include the “Product separator pressure”, “Stripper pressure” and the

”Condenser cooling water flow”. Upon closer inspection (using figures 6.7(a) and 6.7(b)),

the following becomes apparent:
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Figure 6.5: Time delay matrix and statistically valid signals for the IDV(3) subset.

Table 6.3: Results of the MSTDE algorithm applied to the Tennessee Eastman data set with
a step in the D feed temperature.

Variable Name Variable number Shift Normalised Shift

Condenser cooling water flow XMV (11) −18,9 0,0
Compressor work XMEAS (20) −18,7 0,2
Separator cooling water outlet temperature XMEAS (22) −17,5 1,4
Product separator temperature XMEAS (11) −17,1 1,9
E feed (stream 3) XMEAS (3) −16,7 2,2
Stripper steam flow XMEAS (19) −16,2 2,7
Stripper temperature XMEAS (18) −16,0 2,9
Separator pot liquid flow (stream 10) XMV (7) −14,6 4,3
E feed flow (stream 3) XMV (2) −12,5 6,5
Product separator underflow (stream 10) XMEAS (14) −11,2 7,8
Stripper level XMEAS (15) −6,8 12,1
Reactor cooling water outlet temperature XMEAS (21) −5,6 13,3
A feed (stream 1) XMEAS (1) −5,6 13,4
A feed flow (stream 1) XMV (3) −5,4 13,6
A and C feed flow (stream 4) XMV (4) −5,3 13,6
A and C feed (stream 4) XMEAS (4) −5,3 13,6
Reactor pressure XMEAS (7) −5,1 13,8
Stripper pressure XMEAS (16) −5,1 13,8
Product separator pressure XMEAS (13) −5,1 13,8
Purge rate (stream 9) XMEAS (10) −3,7 15,3
Purge valve (stream 9) XMV (6) −3,7 15,3
Product separator level XMEAS (12) −3,2 15,7
Reactor cooling water flow XMV (10) −3,0 15,9
Stripper liquid product flow (stream 11) XMV (8) −0,9 18,0
Compressor recycle valve XMV (5) 0,0 18,9
Stripper steam valve XMV (9) 0,0 18,9
Recycle flow (Stream 8) XMEAS (5) 0,0 18,9
Reactor feed rate (stream 6) XMEAS (6) 0,0 18,9
Reactor level XMEAS (8) 0,0 18,9
Reactor temperature XMEAS (9) 0,0 18,9
Stripper underflow (stream 11) XMEAS (17) 0,0 18,9
D feed flow (Stream 2) XMV (1) 0,0 18,9
D feed (stream 2) XMEAS (2) 0,0 18,9
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Figure 6.6: Time delay matrix and statistically valid signals for the IDV(13) subset.

Table 6.4: Results of the MSTDE algorithm applied to the Tennessee Eastman data set with
slow drifting in the reaction kinetics.

Variable Name Variable number Shift Normalised Shift

Reactor cooling water outlet temperature XMEAS (21) −6,0 0,0
Reactor cooling water flow XMV (10) −5,9 0,0
Product separator level XMEAS (12) −5,5 0,5
Reactor pressure XMEAS (7) −5,3 0,6
Product separator pressure XMEAS (13) −5,3 0,7
Stripper pressure XMEAS (16) −5,3 0,7
Separator cooling water outlet temperature XMEAS (22) −5,2 0,8
Compressor work XMEAS (20) −4,6 1,4
Purge rate (stream 9) XMEAS (10) −4,6 1,4
Reactor temperature XMEAS (9) −4,6 1,4
Purge valve (stream 9) XMV (6) −4,2 1,8
Condenser cooling water flow XMV (11) −4,1 1,9
Stripper temperature XMEAS (18) −3,9 2,1
Stripper level XMEAS (15) −3,5 2,5
Stripper steam flow XMEAS (19) −3,3 2,6
E feed (stream 3) XMEAS (3) −3,0 3,0
Product separator temperature XMEAS (11) −2,9 3,1
Stripper underflow (stream 11) XMEAS (17) −2,7 3,3
Recycle flow (Stream 8) XMEAS (5) −2,1 3,9
Reactor feed rate (stream 6) XMEAS (6) −2,1 3,9
Stripper liquid product flow (stream 11) XMV (8) −1,9 4,1
E feed flow (stream 3) XMV (2) −1,6 4,4
Product separator underflow (stream 10) XMEAS (14) −1,2 4,8
Reactor level XMEAS (8) −1,1 4,9
Separator pot liquid flow (stream 10) XMV (7) −0,9 5,1
D feed (stream 2) XMEAS (2) −0,9 5,1
Compressor recycle valve XMV (5) 0,0 6,0
Stripper steam valve XMV (9) 0,0 6,0
D feed flow (Stream 2) XMV (1) 0,0 6,0
A feed (stream 1) XMEAS (1) 1,6 7,6
A feed flow (stream 1) XMV (3) 1,7 7,7
A and C feed (stream 4) XMEAS (4) 30,0 35,9
A and C feed flow (stream 4) XMV (4) 30,0 35,9
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Figure 6.7: Time delay matrix and statistically valid signals for the IDV(14) subset.

Table 6.5: Results of the MSTDE algorithm applied to the Tennessee Eastman data set with
a sticky reactor cooling water valve.

Variable Name Variable number Shift Normalised Shift

Reactor cooling water flow XMV (10) −25,4 0,0
Reactor temperature XMEAS (9) −25,4 0,0
Product separator pressure XMEAS (13) −25,4 0,0
Reactor pressure XMEAS (7) −25,4 0,0
Reactor cooling water outlet temperature XMEAS (21) −25,4 0,0
Condenser cooling water flow XMV (11) −25,4 0,0
Stripper pressure XMEAS (16) −25,4 0,0
Compressor work XMEAS (20) −25,0 0,3
Separator cooling water outlet temperature XMEAS (22) −22,3 3,1
E feed (stream 3) XMEAS (3) −21,1 4,3
Stripper steam flow XMEAS (19) −20,2 5,2
Stripper temperature XMEAS (18) −20,1 5,3
Product separator temperature XMEAS (11) −19,5 5,9
Separator pot liquid flow (stream 10) XMV (7) −18,3 7,1
E feed flow (stream 3) XMV (2) −17,1 8,3
Product separator underflow (stream 10) XMEAS (14) −14,2 11,2
Stripper level XMEAS (15) −9,6 15,8
Stripper liquid product flow (stream 11) XMV (8) −3,6 21,8
Compressor recycle valve XMV (5) 0,0 25,4
Stripper steam valve XMV (9) 0,0 25,4
Recycle flow (Stream 8) XMEAS (5) 0,0 25,4
Reactor feed rate (stream 6) XMEAS (6) 0,0 25,4
Reactor level XMEAS (8) 0,0 25,4
Stripper underflow (stream 11) XMEAS (17) 0,0 25,4
D feed flow (Stream 2) XMV (1) 0,0 25,4
D feed (stream 2) XMEAS (2) 0,0 25,4
Purge valve (stream 9) XMV (6) 29,1 54,5
Purge rate (stream 9) XMEAS (10) 29,1 54,5
A and C feed flow (stream 4) XMV (4) 32,7 58,0
A and C feed (stream 4) XMEAS (4) 32,7 58,0
A feed (stream 1) XMEAS (1) 32,7 58,0
A feed flow (stream 1) XMV (3) 32,7 58,1
Product separator level XMEAS (12) 34,8 60,2
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Figure 6.8: Flow diagram of the Tennessee Eastman Plant-wide Industrial Control Problem
indicating causality.
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• Product separator pressure: This signal (24, XMEAS(13)) is statistically cor-

related to signals 18 (reactor pressure, XMEAS(7)) and 20 (reactor temperature,

XMEAS(9)). The equivalent correlation values are 0,91 and 0,58 respectively. These

are highly correlated signals and for this reason, the MSTDE algorithm groups them

together, in the region of the sticky reactor valve.

• Stripper pressure: This signal is statistically correlated to signals 18 (reactor

pressure, XMEAS(7)), 20 (reactor temperature, XMEAS(9)) and 24 (product sepa-

rator pressure, XMEAS(13)). The equivalent correlation values are 0,91, 0,58 and

0,92 respectively. We see a similar result as in the first case, and for this reason this

signal is also grouped in the region of the sticky valve.

• Condenser cooling water flow: This signal is statistically correlated to signals

10 (reactor cooling water flow, XMV(10)), 20 (reactor temperature, XMEAS(9))

and 32 (reactor cooling water outlet temperature, XMEAS(21)). The equivalent

correlation values are 0,52, 0,62 and −0,61 respectively. These values are not as large

as the other cases but large in comparison with the rest of the signal correlations

which explains the observed result.

It is up to the user to decide whether or not the “Product separator pressure”, “Stripper

pressure” and the “Condenser cooling water flow” signals are of any relevance to the

problem at hand. As with all the techniques used in this project, the result is not supposed

to be taken as the absolute truth, but should rather assist the user in making a decision

regarding the problem at hand.

Most of the measurements are under regulatory control, which influences the causal

structure, and could yield counter-intuitive results. In addition, the original zeros (in the

“Shift” column of table 6.5) could indicate be separate source signals as in the case in the

synthetic data. For these reasons extreme caution should be taken when these results are

interpreted.

All the zeros in the original shift column are as result of a statistically insignificant

contribution towards the explained lags. This can be seen in figure 6.7(b), where signals

1 (D feed flow, XMV(1)), 13 (D feed stream, XMEAS(2)), 16 (Recycle flow, XMEAS(5)),

17 (reactor feed rate, XMEAS(6)), 19 (reactor level, XMEAS(8)), 28 (stripper underflow,

XMEAS(17)) are neglected in the weighting function.

Signals 5 (compressor recycle valve, XMV(5)) and 9 (Stripper steam valve, XMV(9))

are zero for a different reason: they are correlated only to one another. For this reason

they are grouped together and have no influence on the rest of the system.

 
 
 



CHAPTER 7

Results: Time Shifted Clustering

We combine the results of the previous two chapters. The data is shifted by

the optimal calculated shift and then clustered by the K-means and K-medoid

clustering algorithms. The optimal number of cluster centers for each data set is

calculated as before.

7.1 Synthetic data

7.1.1 Optimal number of clusters

As in sections 5.1.1 and 5.2.1, the number of cluster centers, c, were increased from 2 to

15 in a step wise fashion. Figures 7.1(a) and 7.1(b) show the results for the validation

indices when the K-means and K-medoid algorithms are applied to the optimally shifted

synthetic data set. Note that these values are normalised with respect to the maximum

value in the vector.

The validity indices follow the same trend as in sections 5.1.1 and 5.2.1. In both

figures 7.1(a) and 7.1(b), the SC and S indices decrease after the initial spike in the values.

There are local minima at c = 4 when using the K-medoid algorithm. This would suggest

that there is some form of substructure in the data when c = 4. The profiles for both the

SC and S indices are similar. The SC index is less sensitive to cluster size variations than

the S index (refer to section 3.3). This suggests that the cluster sizes stay relatively equal

as the number of cluster centers increase. The shapes of figures figures 7.1(a) and 7.1(b)

suggest no optimal number of cluster centers, the same as in section 5.1.1.

Figure 7.2 shows the knee plots for both the K-means and K-medoid algorithms.

Both the cost functions indicate that the optimal number of clusters for the synthetic

data set is c = 3, where the first knee appears. This result is comparable with that found
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Figure 7.1: Validation indices for the optimal number of clusters using the K-means and K-
medoid algorithms applied to the optimally shifted synthetic data set. The values
are normalised with respect to the maximum value.
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Figure 7.2: Second derivative knee plot from the cost functions of the respective clustering

algorithms while using the optimally time shifted synthetic data.

 
 
 



CHAPTER 7. RESULTS: TIME SHIFTED CLUSTERING 76

in section 5.1.1, where the number of cluster centers was the same, c = 3. The DI for

both the non-shifted and shifted data sets is at, or near, its maximum at the optimal

number of clusters as determined with the knee plot (refer to figures 5.1 and 7.5).

7.1.2 Results with a fixed number of clusters

Validity Indices

The validity indices for the K-means and K-medoid algorithms are shown in table 7.1.

When we compare these values to those obtained in section 5.1.2, where the synthetic

data set was not shifted, we see that the values for both SC and S are smaller while that

of the DI is slightly larger – for both the clustering algorithms.

Table 7.1: Validity indices for various clustering algorithms while using the time shifted syn-
thetic data.

K-means K-medoid

SC 0,163 0,189
S 0,000 29 0,000 33
DI 0,098 2 0,137 9

This would suggest that the time shifting imparts more structure to the data set. The

time shifting results in a data set that approaches the “best case” data set described in

section 5.1.2. This is also evident when we consider the principal components. Figure 7.3

shows the variance explained by the principal components for the non-shifted and shifted

data sets respectively.
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(a) No time shift.
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(b) Time shifted data.

Figure 7.3: PCA: Variance explained by the principal components (synthetic data set).

The synthetic data set consists of 9 signals, divided into 3 groups of 3 signals. After

the MSTDE algorithm has shifted the data set, we find that the 3 signals within each
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group align perfectly. Although there are 9 signals, the algorithm effectively reduced the

number of signals to 3, of which the rest are just copies. This is evident from figure 7.3,

where we find that all the signals contribute to the explained variance for the non-shifted

data set, while only the first 3 contribute to the variance in the time-shifted data set.

This can also be used to evaluate the effectiveness of the MSTDE algorithm. The more

the variance is moved to the lower dimensional components, the better the signals are

aligned in time.

Visual Clustering

In table 7.2, the dimensional reduction performance values for the respective clustering

algorithms and dimensional reduction techniques are shown.

Table 7.2: Performance indicators for various clustering and dimensional reduction algorithms
using the optimal time shifted synthetic data set.

Clustering Dim. Red. p = ‖U − U∗‖
∑N

k=1 µ
2
k

∑N
k=1 µ

2∗
k

K-means PCA 0,140 1 1 0,682 2
Sammon 0,140 9 1 0,681 1
fuzzy-Sammon 0,240 8 1 0,603 1

K-medoid PCA 0,212 2 1 0,599 4
Sammon 0,213 3 1 0,605 3
fuzzy-Sammon 0,263 5 1 0,589 4

The PCA technique performs the best for both the clustering algorithms. The Sammon

mapping’s performance is very close to the PCA’s and is evident in figure 7.4. Both of these

techniques seem to distinguish between different regions in the reduced dimensional space.

The fuzzy Sammon mapping technique is the worst performer of the three techniques.

This result is consistent with those obtained with the non-shifted data (refer to section

5.1.2). The fuzzy Sammon mapping shares some characteristics with the fuzzy clustering

techniques where only the distance between the data points and the cluster centers are

considered to be important refer to section 3.4.3). In section 5.1, we found that the fuzzy

clustering algorithms were not successful at identifying proper substructures in the data.

This also applies to the fuzzy Sammon dimensional reduction technique. This result is

intuitive as these algorithms (fuzzy clustering and fuzzy dimensional reduction) share the

same premise.

The PCA and Sammon mapping results in figure 7.4 show the same structures. The

individual clusters are reminiscent of Lissajous figures.

The time series representation of figure 7.4 are shown in figures 7.5(a) and 7.5(b).

When we compare these results with those obtained in figures 5.5(a) and 5.5(b), we find
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Figure 7.4: Visual representation of the K-means (top row) and K-medoid (bottom row)
algorithms. The columns represent the different dimensional reduction techniques,
starting with PCA (first column), Sammon mappings (second column) and fuzzy
Sammon mappings (third column). All the axes are normalised from −1 to 1, with
the tick on each axis indicating zero. Three clusters centers were used. These are
indicated by the sideways triangles.

that the well defined cyclical behaviour has given way to a more sporadic time-cluster

representation. However, cluster 3 and 1 for the K-means and K-medoid algorithms

respectively, contain larger constituents than that of the non-shifted data set – where they

were more uniform with respect to time. This is as result of the signal alignment due to

the MSTDE algorithm. We do find different periods of repetition in the cluster sizes.

Initially, the number of data points in cluster 3 is large for the K-means algorithm.

At t ≈ 50 seconds, the number of data points in cluster 3 reduces but repeats at a higher

frequency. This stops at t ≈ 200 seconds, where the number of data points increase again.

The amount of data points reduce in size again at t ≈ 550 seconds an increase at t ≈ 720.

A similar result is obtained while using the K-medoid algorithm.

Therefore, the cyclical behavior has not disappeared completely, but the relative

amount of data points in the 3 clusters have changed towards a single large grouping in

cluster 3, a medium sized grouping in cluster 2 and a small grouping in cluster 1 (in time).

What is interesting is that the sizes of the data point groupings in figure 7.4 appear to be

the same.
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(a) K-means
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(b) K-medoid

Figure 7.5: Time representation of the different clustering algorithms for the optimally time
shifted synthetic data set. They are shaded with different shades of gray to indicate
to which cluster they belong at that point in time. The partial figure at the bottom
indicates which cluster is “active” at that specific point in time.

7.2 Tennessee Eastman Process

7.2.1 Optimal number of clusters

As in all the previous cases, the number of cluster centers were varied from 2 to 15 in a

step wise fashion. Figures 7.6(a) and 7.6(b) show the resulting validation indices for the

time-shifted Tennessee Eastman data set.
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Figure 7.6: Validation indices for the optimal number of clusters using the K-means and K-
medoid algorithms applied to the optimally shifted synthetic data set. The values
are normalised with respect to the maximum value.

Figure 7.6(a) shows a gradual decline in the SC and S indices as the number of clusters

are increased. The magnitudes of the normalised indices do not decrease as much as those
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of the corresponding K-medoid algorithm (shown in figure 7.6(b)). This suggests that

the K-medoid algorithm finds much better substructures within the data from a much

smaller number of cluster centers. The DI shows sporadic movements right through the

cluster range for both the K-means and K-medoid algorithms as it cannot find structure

within the data. Both the SC and S indices for the K-medoid algorithm would suggest

that the optimal number of cluster centers should be in the region of c = 3, as there is a

sudden decline after c = 2, after which it stays relatively constant. No conclusion can be

drawn from the K-means results.

The resultant knee plot is shown in figure 7.7. The optimal number of clusters for

the K-means algorithm occurs at c = 4, which differs form the non-shifted case (refer to

section 5.2.2). This result suggests that the data substructure is more complex after the

time shift than before the shift. This also becomes apparent in figures 7.10(a) and 7.10(b),

where the resulting time cluster plots show a much more disjoint set of clusters. The

optimal number of clusters for the K-medoid algorithm is at c = 3. This result is confirmed

by the K-medoid validity indices.
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Figure 7.7: Second derivative knee plot from the cost functions of the respective clustering
algorithms using the optimally time shifted Tennessee Eastman data.

7.2.2 Results with a fixed number of clusters

Validity Indices

Table 7.3 show the validity indices for the optimally time-shifted Tennessee Eastman data

set.

Table 7.3: Validity indices for various clustering algorithms while using the time shifted Ten-
nessee Eastman data.

K-means K-medoid

SC 0,285 0,637
S 0,000 5 0,000 95
DI 0,158 0,111
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The SC and S indices are larger when these results are compared to than those

obtained by the non-shifted data set (refer to section 5.2.2). This is an unexpected result,

as the time shifted data should have a better defined substructure. However, the PCA

analysis (figure 7.8) shows that the MSTDE algorithm has shifted the variance to the

lower dimensions as was the case for the synthetic data.
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(a) No time shift.
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(b) Time shifted data.

Figure 7.8: PCA: Variance explained by the principal components (Tennessee Eastman data
set).

Visual Clustering

In table 7.4, the dimensional reduction performance values for the respective clustering

algorithms and dimensional reduction techniques are shown.

Table 7.4: Performance indicators for various clustering and dimensional reduction algorithms
using the optimal time shifted Tennessee Eastman data set.

Clustering Dim. Red. p = ‖U − U∗‖
∑N

k=1 µ
2
k

∑N
k=1 µ

2∗
k

K-means PCA 0,195 1 1 0,536 0
Sammon 0,354 3 1 0,345 1
fuzzy-Sammon 0,303 8 1 0,455 4

K-medoid PCA 0,308 4 1 0,383 1
Sammon 0,353 9 1 0,384 9
fuzzy-Sammon 0,346 1 1 0,369 0

As with the synthetic data set, we find that the PCA dimensional reduction technique

performs best. However, the fuzzy-Sammon mapping performs marginally better than the

Sammon mapping. The overall performance is worse than that of the non-shifted data

(refer to section 5.2.2). This result aligns with that of the previous section.
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The visual representation of the clustering results are shown in figure 7.9. It is clear

that large amounts of overlapping occur for both the K-means and K-medoid algorithms.

This result is also confirmed by the validity indices in table 7.3.
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Figure 7.9: Visual representation of the K-means (top row) and K-medoid (bottom row)
algorithms on the optimally time shifted Tennessee Eastman data. The columns
represent the different dimensional reduction techniques, starting with PCA (first
column), Sammon mappings (second column) and fuzzy Sammon mappings (third
column). All the axes are normalised from −1 to 1, with the tick on each axis
indicating zero. Three cluster and four centers were used for the K-means and
K-medoid algorithms respectively. These are indicated by the sideways triangles.

The Sammon mapping is not able to separate the clusters in either instance. This

appears to be the case for the K-medoid fuzzy Sammon mapping as well, but upon closer

inspection, we find that the dimensionally reduced data lie extremely close to one another.

There is however a marginal distinction between the different data even though they are

far away from their respective cluster centers.

Figures 7.10(a) and 7.10(b) show the time-cluster results for both the K-means and

K-medoid clustering algorithms respectively.

The K-means algorithm does not succeed in identifying the three operating regions as

was the case for the non-shifted data (figures 5.10(a) and 5.10(b)). One of the possible

causes could be due to the increased number of cluster centers. However, it is felt that due

to the fact that the MSTDE algorithm introduced a higher measure of correlation back

into the system – by aligning the signals in time – causing the clustering algorithm to

identify much smaller regions with similar characteristics. This results in a large number

of cluster stripes (and excessive striping).

The K-medoid algorithm produces a similar looking time-cluster plot to that of the

non-shifted data however, table 7.3 suggests that this is not the case.
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(a) K-means.
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(b) K-medoid.

Figure 7.10: Time representation of the different clustering algorithms for the optimally time
shifted Tennessee Eastman data set. The solid lines on the main plot represent
the process signals. They are shaded with different shades of gray to indicate to
which cluster they belong at that point in time. The partial figure at the bottom
indicates which cluster is “active” at that specific point in time.

7.3 Introduction of a Time Vector

In all the previous sections, the time vector of the data was not clustered together with

the data. This makes intuitive sense as it does not contain relevant process data.

From all the time-cluster plots (figures 5.5(a) to 5.5(d), 5.10(a) and 5.10(b), 7.5(a)

and 7.5(b), 7.10(a) and 7.10(b)), it is evident that a degree of striping occurs. Due to

our prior knowledge of the Tennessee Eastman data set, we would expect the clustering

algorithm to identify 3 separate data sets, as they differ with respect to the disturbance

acting in each of them.

The data matrix is altered to include the associated time vector. This is shown in

equation 7.1. The original data set is mean centred and scaled to unit standard deviation.

However, the time vector is not mean centred and scaled to unit variance due to the

nature of the vector. To have some form of control with respect to weight it has in the

clustering algorithm, a scale factor, α, is introduced. This is done to decrease the weight

the original time vector has on the clustering algorithm, due to its inherent large values.

X =


ζt1 x11 x12 . . . x1n

ζt2 x21 x22 . . . x2n

...
...

...
. . .

...

ζtN xN1 xN2 . . . xNn

 (7.1)

Figure 7.11 shows the result when a scaled time vector is added to the clustering process.

In an attempt to obtain the optimal scaling factor, ζ was increased from ζ = 0,02 to
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ζ = 0,2 in steps of 0,01. These bounds were determined visually, as the bottom bound

resulted in the same clustering without the time hyperplane and the top bound resulted

in a distorted view away from reality. Figure 7.11(a) shows this result. Both the SC and

S indices show a minimum at ζ = 0,06, while the DI is sporadic right through the range.

Figure 7.11(b) shows the principal component analysis representation of the data when

ζ = 0,06. When this is compared to the equivalent Tennessee Eastman representation

without the time hyperplane (refer to figure 7.9), we find a much clearer separation of

clusters. This is also confirmed by figure 7.11(c), where the 3 clusters represent the 3

different operating regions.
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(c) Time cluster plot.

Figure 7.11: Addition of a time vector to the clustered data (time shifted Tennessee Eastman
data set). The scale factor is ζ = 0,06.

This result would suggest that the addition of the time hyperplane reduces the effect

of striping (as the impetus is shifted towards the clustering of the time vector itself).
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This is due to the time vector relating data points that are have similar spatial features

that are close to each other in time. However, further work is needed to give meaningful

conclusions.

 
 
 



CHAPTER 8

Conclusions, Recommendations and

Future Work

The ability of the following techniques were investigated on a synthetic data set as well

as modified Tennessee Eastman data:

Multiple Signal Time Delay Estimation (MSTDE) The use of the cross-correlation

function (CCF), combined with statistical thresholding techniques were used to

calculate optimal time shifts for causally linked signals.

Clustering Algorithms The K-means, K-medoid, fuzzy C-means, Gath-Geva and

Gustafson-Kessel were used to cluster these data sets

Dimensional Reduction Techniques The principal component analysis (PCA), Sam-

mon mapping and fuzzy-Sammon mapping techniques were used to enable interpre-

tation of high dimensional clustered data.

8.1 Multiple Signal Time Delay Estimation (MSTDE)

The MSTDE algorithm proved to be a simple yet powerful solution for time delay

estimation problems concerned with multiple signals. Because it is posed as a linear

problem,

• It is numerically and computationally efficient.

• The pseudo-inverse supplies an easy generalisation for the least-squares solution of

non-square inversions.

86
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When a data set contains many signals, some of them will not be correlated to each

other. Bauer & Thornhill (2008) provided a powerful method to determine whether these

signals are statistically correlated or not. This, combined with the correlation coefficients

R, provided an excellent weighting function. It also proved to solve large signal sets the

best by having the smallest residual norm when compared to no weighting and using only

the correlation coefficients.

8.2 Clustering Algorithms

Five clustering algorithms were initially chosen: the K-means, K-medoid, fuzzy C-means,

Gath-Geva and Gustafson-Kessel algorithms. The Gath-Geva algorithm was never used

as a numerically stable solution could never be developed.

To determine the performance of these algorithms, the following cluster validation

metrics were used: the Partition Coefficient (PC), Classification Entropy (CE), Partition

Index (SC), Separation Index (S), Dunn’s Index (DI) and the alternative Dunn Index

(ADI).

These algorithms were evaluated against two base case data sets to evaluate the

clustering abilities of the clustering algorithms and to evaluate the expected ranges of the

performance metrics.

• A best case scenario which included 3 signals and 3 well defined clusters. All the

validation indices except the PE and CE indices yielded intuitive results, being either

0 or inf. The K-means, K-medoid and fuzzy C-means algorithms proved effective

in determining the 3 clusters. The Gustafson-Kessel algorithm also identified 3

clusters, but these were not well defined and resulted no useful information.

• A worst case scenario which included a time series set of 9 random signals with the

same mean and variances as the synthetic data set defined in section 2.1. All the

validation indices yielded values far from the ideal case.

These validity indices showed little promise in identifying the optimal number of clusters.

The optimum number of clusters were found by making use of a “knee” plot (analogues

to the second derivative) of the cost function of each clustering algorithm. This approach

yielded consistent results for both the non-shifted and shifted data sets.

The performance of the clustering algorithms varied for the non-shifted and shifted

data sets.

8.2.1 Non-Shifted

This data set contained all the original data. The synthetic data set yielded good results for

all the clustering algorithms except the Gustafson-Kessel algorithm. The validity indices
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for the GK algorithm resembled those of the random value data set, which indicates that

this clustering algorithm finds no substructure within the data. The remaining algorithms

produced a consistent repeating pattern when the time-series clustering plots are observed.

This suggests that the algorithms find repeating structures in the data.

The influence of noise was also investigated when using the clustering algorithms. The

results indicated that the K-means algorithm’s performance decreased with an increase in

the noise power, up to a noise power of 1× 10−1, after which the indices show a increase

in performance. The K-medoid showed a continual performance improvement throughout

the noise range. Both of these results are counter-intuitive and it seems that high noise

powers impart a certain structure within the data.

The number of clustering algorithms was reduced from the original 5 to 2. The K-means

and the K-medoid algorithms. None of the fuzzy algorithms seem to yield informative

results when using complex data. The number of validity indices was also reduced to 3:

the SC, S and DI metrics. The PC and CE indices only produce monotonically increasing

or decreasing values as the number of cluster centers increase. The ADI did not yield any

useful information.

The K-means algorithm provided good results when clustering the Tennessee Eastman

process data. It was able to distinguish between the three different modes of operation

(evident from the time series cluster plot). This would give the operator insight into

when the plant operated in different regions. However, the K-medoid algorithm was less

successful in identifying the different operating regions. It produced sporadic cluster time

clusters which would not assist the plant operator in identifying different modes of plant

operation.

8.2.2 Shifted

This data set was shifted by making use of the MSTDE algorithm. Consequently, it was

marginally smaller than the original data set due to the shift and trimming of the edges.

The synthetic data set showed comparable results to those obtained without the time

shift. The validity indices were marginally better, suggesting that the optimal time shift

imparts more structure to the data set. This was confirmed when comparing the principal

components of the non-shifted and shifted data sets. The non-shifted data have a greater

variation among the data, hence a larger number of principal components. The shifting

reduced the effective number of signals from 9 to 3, therefore reducing the number of

principal components. Instead of clusters with more or less the same size, the effect

of the MSTDE algorithm increased the size of one of the clusters, while keeping one

approximately the same and reducing the last cluster size. The sequence of the clusters

in the patterns changed, but this does not have any substantial meaning.

The results for the time shifted Tennessee Eastman differed substantially from the
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non-shifted data set. The optimum number of cluster centers were c = 4 for the K-means

algorithm compared to the c = 3 for the K-medoid clustering algorithm. The K-means

time series clustering plots indicate excessive striping when compared to the non-shifted

data set. This suggests that the MSTDE algorithm reduces the structure within the data.

The K-medoid algorithm’s result compares with that obtained in the non-shifted case.

The explicit addition of a time vector in the data yields promising result. The premise

of this method is in the fact that it weights data points that are closer to each other to be

clustered together. This would eliminate the excessive striping that is observed in many

of the time series cluster plots. However, this technique does require more work.

8.3 Dimensional Reduction Techniques

Principal component analysis (PCA) performed the best of all the dimensional reduction

techniques. Feil et al. (2007) proposed that the fuzzy-Sammon mapping performs better

than the Sammon mapping, but our results differed. In most instances the Sammon

mapping performed better than the fuzzy-Sammon mapping.

The fuzzy-Sammon mapping makes use of a fuzzy membership function, Efuzz, similar

to those used in the fuzzy clustering algorithms. It is clear that all the fuzzy clustering

techniques did not perform very well, as it struggled to identify structure within the data.

This seems to be the downfall of the fuzzy-Sammon mapping as well. No clear structure

was apparent in the dimensional reduction plots.

8.4 Future Work

Clustering The effect of time on the clustering algorithm needs to be further investigated.

Either the time needs to be implicitly built into the data set or the algorithm needs

to weight data points that are closer in time to reduce the amount of striping when

a time series cluster plot is observed.

Time Delay Estimation and Causality Bauer & Thornhill (2008) uses the CCF func-

tion as well as the statistical thresholding functions to infer causality from the

resultant time delays. However, their approach is complex and requires matrix

pivoting to determine the sequence of events. Our MSTDE algorithm shows promise

in terms of inferring causality from the resultant time shifts. The linear algebra ap-

proach resolves all the matrix pivoting issues in their method by using pre-optimised

algorithms to handle all the pivoting.

Sliding Time Window It is likely that more than one disturbance will occur in a data

set. As shown in chapter 6, the calculated time delays are not accurate if more
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than one disturbance occurs in a data set. Therefore, a sliding window could be

used to continually monitor the correlation matrix as time passes. If the matrix

changes sufficiently, another disturbance may have entered the system. This would

aid online assistive technologies and TDE algorithms.
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