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Abstract

This dissertation provides a brief theoretical introduction to the Malliavin
calculus leading to a particular application in finance. The Malliavin cal-
culus concepts are used to aid in the simulation of the Greeks for financial
contingent claims. Particular focus is placed on creating efficiency in the
more exotic type option simulations, where no closed solution pricing for-
mulae exist.
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Chapter 1

Introduction

1.1 Overview

This dissertation’s intention is to provide an overview of the latest meth-
ods in optimising the convergence rates of Monte Carlo and Quasi Monte
Carlo methods, particularly the use of the Malliavin calculus approach, in
estimating sensitivities of derivatives on financial contingent claims. These
sensitivities are more commonly known as the “Greeks”.

To this end, a basic overview of the Malliavin calculus will be elaborated
upon, exposing its required useful properties.

The modern finance industry has induced an emphasis on risk management,
hence, as more advanced and sophisticated financial instruments are de-
veloped, so the need arises to develop efficient methods to quantify their
sensitivities. Not only are these “Greeks” useful in risk management, they
also aid in hedging strategies and help provide price quotes for the derivative
product, since bid-ask spreads are usually a percentage of some “Greek”.

In many cases, due to the complexity of the product (particularly those
with a discontinuous pay-off function and payoff parameters with unknown
densities), these measures of risk cannot be expressed as a closed form and
numerical methods such as Monte Carlo are required.

The most recent major work in the field was the concept of Malliavin weight-
ing functions by Fournié et al. [6], however Broadie and Glasserman [8] have
also provided an excellent method namely the Likelihood Ratio method, for
more restrictive situations.

To overcome poor Monte Carlo convergence, many methods have been sug-
gested, such as:

e Broadie and Glasserman [8] differentiate the density function, resulting
in the Likelihood Ratio method
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e Fournié et al. [6] suggested smoothing the function to be estimated,
using integration-by-parts. The results are similar to those of Elworthy
[5], who shifted the differential operator from the payoff function to
the diffusion kernel, introducing the weighting function. This work
implies that the “Greeks” can be expressed as the expected value of a
discounted payoff multiplied by a weighting function:

Greek = Ep |e™ Iy () - weight]

1.2 Layout

The layout of this document will include an overview of the Malliavin calcu-
lus, its setting and a discussion of the associated properties of the method.
Finally, an application of the Malliavin calculus to the “Greeks” will be ex-
plained in conjunction with the Monte Carlo methods used to optimise the
sensitivity estimation.

1.3 What is the Malliavin calculus?

The Malliavin calculus is an infinite dimensional differential calculus on the
Wiener Space. It is also known as the Stochastic Calculus of Variations.

1.3.1 History

The original Stochastic Calculus of Variations, now called the Malliavin
calculus, was developed by Paul Malliavin in 1976.

The theory was further developed by Bismut [3], Stroock [13], Ustiinel [14]
and Watanabe [15] amongst others. It was originally designed to study the
smoothness of the densities of solutions of stochastic differential equations.
One of its striking features is that it provides a probabilistic proof of the
celebrated Hormander theorem, which gives a condition for a partial differ-
ential operator to be hypoelliptic. This illustrates the power of this calculus.
In the following years many probabilists worked on this topic and the theory
was developed further, either as analysis on the Wiener space or in a white
noise setting.

Since then, the Malliavin calculus has raised increasing interest and subse-
quently many of its applications to finance have been found, such as min-
imal variance hedging and Monte Carlo methods for option pricing. More
recently, the Malliavin calculus has also become a useful tool for studying
insider trading models and some extended market models driven by Lévy
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processes or fractional Brownian motion. The “enlargement of filtration”
technique plays an important role in the modelling of such problems and
the Malliavin calculus can be used to obtain general results about when and
how such filtration enlargement is possible. Moreover, when the additional
information of the insider is generated by adding the information about the
value of one extra random variable, the Malliavin calculus can be used to
explicitly find the optimal portfolio of an insider for a utility optimisation
problem with logarithmic utility.

1.3.2 Key results

One major result is that the adjoint operator of the Malliavin derivative op-
erator, called the Skorohod integral, has the property of being the extension
of the It6 integral for non-adapted processes. One of the most important
points in the theory is the integration-by-parts formula, which relates the
derivative operator on the Wiener Space and the Skorohod extended stochas-
tic integral.

Malliavin calculus was thus seen as a starting point to developing stochastic
calculus for non-adapted processes. This means that stochastic differential
equations can be formulated and described where the solution is not adapted
to the Brownian filtration.

1.3.3 General setting

The aim is to develop a probabilistic differential stochastic calculus over an
infinite dimensional space. This infinite dimensional space will typically be
the classical Wiener Space, (Co[0,T],F, 1).

When looking at the Malliavin calculus one has to consider the theory of
differential operators defined on suitable Sobolev spaces of Wiener function-
als.

Heuristically, Malliavin calculus aims to address quantities such as %, where
F € L? and w € Q. To define such a term over finite dimensional spaces is
relatively straight forward, however, we would like to extend this essentially
classical functional calculus to infinite dimensional spaces like L?(€2, F,P).

Malliavin calculus effectively defines the derivatives of functions on the
Wiener Space and is also considered a theory of integration-by-parts on
the Wiener Space. It further allows us to compute the derivatives of a large
set of random variables and processes, whether or not they are adapted to
the filtration defined on the Wiener Space.

There are two ways of introducing the Malliavin calculus:
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e Using analysis on the Wiener Space describing the Wiener 1t6 chaos
expansion, the n-fold iterated integrals, symmetric functions and the
Hermite relations,

e The basic simple process-simple function method with the extension
of the operator domain by density.

The latter method will be exposed, since the former is more applicable to
the classical notions of the Malliavin calculus and results in areas not needed
to support the application of the Malliavin calculus in finance, which the
latter illustrates effectively and efficiently for this dissertation.

1.3.4 Financial applications

Some known financial applications exist and include: risk management (sen-
sitivity analysis, stochastic volatility models, insider trading and hedging
methods), optimal portfolio theory, conditioning and econometrics. This
dissertation will primarily highlight sensitivity analysis.
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Chapter 2

Malliavin calculus concepts

2.1 The Wiener Space and the Wiener Measure

For simplicity, we will be working in one dimension only - extensions to
higher dimensions follow naturally. In the definition of the Brownian motion
we have assumed that the usual probability space (2, F,P) is arbitrary.
Furthermore, the probability space is very abstract, making differentiation
concepts on it hard to define. We therefore need a sufficient structure and
it is the Wiener Space which has this desired “structure”. To commence
defining this structure, recall the Wiener process, which will form the basis
of all further arguments:

Definition 2.1.1 (Wiener Process). A continuous-time stochastic process
W (t) fort > 0 with W(0) = 0 and such that the increment W (t) — W (s) is
Gaussian with mean 0 and variance t — s for any 0 < s < t, and increments
for non- overlapping time intervals are independent. Brownian motion (i.e.
random walk with random step sizes) is the most common example of a

Wiener process.

Definition 2.1.2 (Wiener Space). Let Q := Cy([0,T]) denote the space

of real continuous functions on [0,T] with the value 0 at time t = 0, i.e.
Q:=Cy([0,T]) ={w:[0,T] - Rlw continuous, w(0) = 0}

Definition 2.1.3 (Wiener Measure). The Wiener Measure is the prob-

ability law on the space of continuous functions, Cy([0,T]), induced by the
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Wiener process.

Proposition 2.1.1 (Norm on the Wiener Space). For a given w €
Co([0,T]) we can define the uniform norm on Cy([0,T])
[@lloe := sup |w(t)]
t€[0,7)
This uniform norm makes Co([0,T]) a Banach space and the dual, Cy([0,T])*
associated with Cy([0,T]) can be identified with M([0,TY]), the space of signed

measures v on [0,T].

Remark 2.1.1. By the Weierstrass approzimation theorem, the polynomials
are dense in C([0,T]) (the space of real-valued continuous functions). Thus,

polynomials with rational coefficients are also dense in C([0,T]).

By considering components, C([0,T]) is a separable Banach space. Since
every subset of a separable metric space is separable, this implies Cy([0,T1])

is separable too. The paths followed by the Wiener process lie in Cy([0,T]).

2.1.1 The Wiener Measure

A more formal way of viewing the Wiener process is as a stochastic process
taking values over the set of all possible trajectories. Let Cy[a, b] be the set
of continuous functions f defined on [a,b] with f(a) = a. Let Q = Cy[0,T]
and F = B(Cy[0,b]), where B(Cy[0,b]) is the o-algebra generated by open
sets (with respect to the sup metric) of Cy[0,7T]. The filtration F; in this
case would be a sequence of sub-o- algebras.

In 1923, Wiener showed that there is a well-defined measure p on this mea-
sure space, known as the Wiener measure. Elements of Cy[0,T] under the
Wiener measure correspond to the sample paths of the Brownian motion,
and the probability space (Cy[0, T, F, i) is called the classical Wiener space.

Construction

The construction process is based on a variation of Einstein’s probabilistic
formula. Let the location of a particle at time ¢ be represented by z = x(t).
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Figure 2.1: Paths starting at ug at time a and passing within the interval

(v, B] at time ¢

We know that

2
e du

Pla <a(t) <p}] = \/ﬁ

(0 t) density

We temporarily fix ¢ such that a < ¢t < b. Suppose —0 < a < < +o0.
Considering a particle originating at ug at time a, we then have, as depicted
in Figure 2.1:

B
Pl{a < alt) < 8l(0) = o}l = | plusuo,t — a)du
where

1 _w—up?
p(uaUOat):\/ﬁe x

Clearly, p(u,ug,t — a) is the N(ug,t — a) density function.

Wiener wanted to demonstrate the existence of a countably additive prob-
ability measure p = pqp on Co([a, b)) such that if

a=ty <tp..<tn <b
and if a;; and f3; are extended real numbers so that
—00 < ;< fj<+ooforj=12..,n

Then,



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Figure 2.2: Wiener paths starting at 0 at time ¢ and passing through the

interval (o, 3;] at times ¢;, for j = 1,2,3

p({z € Co(la,b]) : aj < z(tj) < Bj,7=1,2,...,n})

Bn B2 b
/ / / u1,0 tl —a) (UQ,’ul,tQ —tl) p(un,un 1,t tn,l)dul...dun

This can also be written as

_ /j /j [(2)" (1 — @)ewa(tn — to1)]

A case of the above scenario is depicted in Figure 2.2 for n = 3.

g Gyowo?
< e J=12(;=t;_1) duy...du,,

N

Definition 2.1.4. For any topological space T, B = B(T), the Borel class
of T is the o-algebra generated by the open subsets of T. We are interested
in B(Cy([a,b))).

Remark 2.1.2. The Wiener measure will be a measure defined on a o-
algebra containing the “Borel class” of Cy([a,b]).

The collection of subsets of Cy([a, b]) will be denoted by I and will be called
intervals.
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I = I(tl,...,tn : (O{l,ﬁl] X (Ckg,,@g] X ... X (O{n,,@n])
= {iE € CO([GH b]) e < iE(t]) < 18]7.7 = 1,2,...,”1}

The collection of all such intervals (also called cylinder sets) will be denoted
as Z. Wiener wanted to develop a Lebesgue type integral over the infinite
dimensional space Cy([a,b]), hence being able to use Lebesgue theory. It
can be shown that 7 is a semi-algebra and u is well defined and countably-
additive on Z and further that o(Z) = B(Cy([a, b])).

The measure space (Co([a, b]), B(Co([a,b])), p) can be completed, producing
S, the o-algebra of Wiener measurable sets and the complete measure space
(Co([a,b]), S, ). The above process is known as the Carathéodory extension
process.

When considering the interval [0, T'], we can clearly understand the reasoning
for defining 2 = Cy([0,T]), as the Wiener space.

We can visualise each path

t— W(t,w)
of the Wiener process starting at 0 as an element w of Cy([0, T']), the subspace
of real continuous functions. We can thus identify W (¢, w) with the value
w(t) at time ¢ of an element w € Cy([0,T]), by way of the coordinate map:
W(t,w) = w(t)

With this identification, the Wiener process merely becomes the space {2 =
Cy([0,T]) and the probability measure P of the Wiener process becomes the
measure p defined on the cylinder sets of {2 by

M ({w : w(tl) € Fi, ...,w(tk) € Fk}) = P({W(tl) € Fi,..., W(tk) € Fk})

= / p(t1, o, x1)p(te — t1,21,22)...p(ty — tk—1, Tk 12)dT1...dT
F1><...><Fk

where F; CRforv=1,2,..,k ;0 <1 <ty <.. <t and
1

27t

e~ 3le=yl

p(t,z,y) =

The measure p is called the Wiener measure on . We will write L2(Q) for
L?(p) and L2([0,T] x Q) for L?(\ x p) where X is the Lebesgue measure on
[0, 7]
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A verbal construction of the Wiener measure

Let (Z,G,v) be a probability space and let 8 = (B);c[o,r] be a Brownian
motion with respect to the probability measure v. G is the natural filtration
generated by the Brownian motion f such that G = Gy where G, := (3]0 <
s <t).

Since Brownian motion is continuous, it can then be regarded as a mapping
from = into © (the Wiener Space as defined before) via the mapping of £
from E to the continuous function

§xt— Bi()-

We now equip €2 with the o-algebra F generated by the finite-dimensional
cylinder set

{wlw(t) € A1, .yw(ty) € Ap} , 0<t; < ...<t, <T and Ay, Ag,..., A, € B

where B is the Borel o-algebra on R.

Now the Brownian motion, £ — () can be regarded as a measurable
mapping from
(E,G,v) to (4, F)

and at the same time inducing a probability measure PP on (Q, F) given by
]P({w|w(t1) € Ala 7w(tn) € An}) =V (5151 € Ala "'7ﬁtn € An) :
This measure is called the Wiener Measure.

Defining the coordinate mapping process

Bt Q- R
on the Wiener Space by
Bt(w) = (U(t),
we now note that the process
B = (By)cpo,m

has the same distribution under P as

B = (5t)te[0,T]
has under v.

Hence, B = (Bt)¢jo,r] is a Brownian motion on (€2, F,P). Further to this,
F = Fr, where F := o(Bs|0 < s < t) is the o-algebra generated by the
Brownian motion, B = (Bt)c[0,17-

10
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e In essence the coordinate mapping on the Wiener Space becomes a
Brownian motion under the Wiener measure.

e Hence, when needing to work with Brownian motion, one can use the
coordinate mapping on the Wiener Space instead of some arbitrary
abstract probability space.

2.2 Malliavin calculus setting

For simplicity, only the one dimensional case is considered as extensions are
clear for higher dimensions.

Let (Q, F,P) be a complete probability space and L?(Q2, F,P) denote the set
of square integrable random variables on this space. Furthermore the space
is equipped with the filtration (F;) generated by one-dimensional Brownian
motion, W.

2.2.1 Functionals of Brownian motion and their spaces

The objective is to differentiate functionals of Brownian motion of the form:

F:QQ—=R

or at least those of a certain “nice” subclass of functions.

Let L%([0,T]) denote the Hilbert space of deterministic square integrable
functions h : [0,T] — R. For h € L?([0,T]) we define the following random
variable

T
W(h) = /0 h(t)dW,

the usual It6 integral with respect to Brownian motion. Note that W (h) is
a Gaussian random variable with E[W (h)] = 0 and by the It6 isometry,

EW W) = [ A@e0a = (o) oy
Definition 2.2.1. A stochastic process, W = {W(h),h € L%([0,T])}, de-
fined on a complete probability space (2, F,P) is called an isonormal Gaus-
sian process (on L%([0,T])), if W is a centred Gaussian family of random

variables, such that

(W(h),W(g))a = (h,9) 20,

11
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for all h,g € L2([0,T])

The closed subspace H; C L?(2) of such random variables is then isometric
to L2([0,T]) and is called the space of zero-mean Gaussian random variables.
Definition 2.2.2. Let C;°(R") denote the set of infinitely differentiable
functions (smooth functions) f : R* — R, such that f and all its partial

derivatives of all orders have polynomial growth.

We denote by S the class of random variables (functionals), of the form

F=f(W(h1),.... W(hn))

where f € C°(R™) and hy,...h, € L*([0,T)).
Note that S is then a dense subspace of L?(£2).

The general context then becomes one consisting of a probability space,
(Q, F,P) and a Gaussian subspace H1, of L?(Q, F,P).

2.2.2 Differentiation on the Wiener Space

As stated before we wish to develop an infinite dimensional differential cal-
culus on a measure space like L?(€2, F,P).

It is known that Brownian motion is nowhere differentiable with respect to
time. One can, however, define the concept of differentiation of random
variables with respect to perturbations in the underlying Brownian motion.

We will first consider the directions of the above mentioned perturbations.

The Cameron Martin space

We should recall that the sample space €2 can be identified with the space
of continuous functions (the classical Wiener Space). We can then consider
the subspace

1 _ L ¢ 2
H —{’yEQ.’y—/ h(s)ds,h € L*([0,T])},
0

or

H! = {h € Cy[0,T) : b € L*([0,T))}

12
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namely, the space of continuous functions with square integrable derivatives.
This space is isomorphic to L?([0,T]) and is called the Cameron-Martin
space.

We equip H!' with an inner product defined by

T
(9 W1 = / W (t)g' (£)dt

The Stone Weierstrass theorem, provides a reason for H! being dense in
Cy[0,T.

Definition 2.2.3 (Cameron Martin subspace directions). Let h €
L2([0,T)) be a deterministic, square integrable function with respect to the
Lebesgue measure A(dt) = dt on [0,T]. We will consider directions of the

form
t
(1) :/ h(s)ds
We see that t — ~(t) is continuous on [0,T] and y(0) = 0. Hence v € Q

(the Wiener Space) and will therefore be a valid direction.

It turns out that obtaining a theory for derivatives in all directions is still
an open problem, hence we will define directional derivatives of random
variables in the directions of elements of the Cameron-Martin subspace. This
will generalise allowing derivatives in the directions of isonormal Gaussian
processes which will be sufficient for our needs. We will now apply the idea
of the Fréchet derivative to the classical Wiener Space (Cy[0,T], F, i), where
1 is the Wiener measure.

Definition 2.2.4 (Fréchet derivative in the strong sense). Let F :
Q — R be a random wvariable. The directional derivative (in the strong
sense) of F in the all the directions of vy(t) = f(f h(s)ds with h € L?([0,T])

(elements making up the Cameron Martin subspace) at the point w is defined

by:

.. Flwtey)-Flw) d
D,F := ;1_1)1(1) . =7 [Flw + 7).

if the limit exists in L?(€2).

13
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If there exists a 1 (t,w) € L2([0,T] x ) such that

T
D, F(w) = /0 D(t, w)h(t)dt

then F' is said to be differentiable and the derivative of F' is defined to be

D F = 1(t,w) € L%([0,T] x Q)

The set of all differentiable random variables is denoted by D o

Another view of differentiating F' comes via the following definition:

Definition 2.2.5. Following from Definition 2.2.2. For F € S we define

the stochastic process

DiF =Y gf (W (Rt ), oo W () i (8)

T
It can be shown that DF € L?([0,T] x Q)

Since D operates on functions in the form of partial derivatives, general
properties of chain rule, product rule and linearity are shared.

We now have two “D” operators:

D F = 4(t,w) € L*([0,T] x Q)

DiF := il g}i (W (hy), ..., W (hy))hi(t) € L*([0,T] x Q)

For both definitions we have obtained a linear operator

D:S cC L*(Q) — L*([0,T] x Q)

D: Dy C L*(Q) — L*([0,T] x Q)

To extend the domains of linear operators D and D (S and D; 5 respec-
tively), we now introduce the following norm, || - |12

[Fll2 = 1Fll2) + 1DeF 2 oryxey, FES

14
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[Fll2 = 1 Fll2@) + IDeFllzqorixe)s  F € Dig
We define Dy 5 as the closure of S in the norm || - |1 2. Then
D:Dyy C L3(Q) — L2([0,T] x Q)
is a closed unbounded operator with dense domain Dy . This will be elab-

orated on further later.

Remark 2.2.1. At this point we desire two things:

e A general concept of a derivative in more general measure spaces

e Hope that D o is a Sobolev space under the || - ||1,2 norm.

Howewver, derivatives in the sense of Fréchet derivatives provide neither.
The reason being that we will be interested in random wvariables, F' that are

defined P-a.s.

The Fréchet derivative is implicitly dependent on the continuity of F. We
therefore need to adapt our notion of a derivative, to one that is independent
of the topological structure of Q, hence, we need a derivative that acts in the
weak sense. When working with the classical Wiener Space, it is clear that
the existence of the Fréchet derivative of a random wvariable F, depends on
the existence of a continuous version of F. There are random variables F

that do not posses a continuous version.
This shows that D1 2 is not complete and therefore cannot be a Sobolev Space.

To finalise the point, the Fréchet derivative is not sufficient to enable the
extension of the theory to a more general setting. The solution involves the
introduction of the Malliavin derivative, which is merely the generalisation
of the Fréchet derivative defined in the weak sense. The Malliavin derivative
provides the solution to both problems previously encountered above.
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Remark 2.2.2. A good analogy of the situation between Fréchet and Malli-
avin derivatives for a random wvariable F, is the comparison between Rie-
mann and Lebesque integration for some function f. Riemann and Fréchet
provide both a theoretical foundation and intuitive understanding, but both
methods suffer from the same problem of domains being incomplete spaces.

Lebesque and Malliavin’s work served to solve this problem.

At this stage it is not clear whether D, 5 is closed under the defined norm.
In other words, whether a || - || 2-Cauchy sequence in D; 5 converges to an
element of Dy 2. To overcome this problem, we analyse the family of random
variables, § (Wiener polynomials), further:

Remark 2.2.3 (S is dense in L?(f2)). From the martingale convergence
theorem and the monotone class theorem, it follows that the set of random

variables,

{f(WtU-'-ath);ti € [OaT]af € CI?O(RH)}

is dense in L?(12).

C°(R™), denotes the space of infinitely differentiable rapidly decreasing func-

tions on R".

From the above and the Fourier transform, the linear span of the set

{exp </0T hydW, — %/OT hzds) he LQ([O,T])}

is dense in L*(Q)). Due to the analyticity of the characteristic function of
the Wiener measure, the elements of the above set can be approzrimated by

polynomials, hence the polynomials are dense in L?(Q).

By virtue of the chain rule, the family of Wiener polynomials is differentiable,
ie. SC DLQ.

16
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Lemma 2.2.1. Let F(w) = p (g ha()dWy, [} ha(Q)aWi, ..., [} hu(t)dW;) €

S. Then F € Dy and

a‘iz_p </0Th1(t)Wt,/0Th2(t)th,...,/OThn(t)th) hi(?)

By letting 0; = fo (t)dWy this can be rewritten as:

n

D/ F(w) =)

=1

n
d
i=1

Proof. Let

Za—xzp 01,02,...,0 )hz(t)

Since

sup E[|W(s)|Y] < oo NeN
s€[0,T7

We can now look at:

LR+ &) — F(w)]

Recall that (¢ fo s)ds for some g € L?([0,T]). Let us first consider

F(w+ ey).

Flw+ey)=p /OThl d(w +£7), .. /OT hn(t)d(w—i-m))

(
=p <01 + /OT Yd(ey), ey O + /UT hn(t)d(sfy))
(

—» (0, +e/0 (3)9()ds, .. O +6/0Thn(s)g(3)ds)

=D (01 + 6(h17g)a 70n + E(hnag))

Now let us look at D, (6;) for i =1,...,n

17
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So
dp Jp . 2
D’YF(U‘)) — —(91, 7071) D’Y(el) +.o..t+ —(91, 7071) D’Y(eﬂ) in L (Q)
o0x1 oxy,
ase —0
Hence,

T
D, F(w) :/0 P(t,w)g(t)dt

O

Definition 2.2.6. Dy o is defined to be the closure of the family S with
respect to the norm || - ||1,2.
Then Iy 5 consists of all F' € L?(Q) for which there exists F,, € S such that
F, — Fin L*(Q) as n — 00
and
{D,F,}2, is convergent in L([0,T] x ).
In this case it is tempting to define

D,F := lim D,F,

n—00

However, for this to work, we need to ensure that this representation defines
D F uniquely. In other words, if there exists another sequence G,, € S such
that

G, — F in L?(Q) as n — o0
and

{D:G,}5°, is convergent in L?([0,T] x Q),

18
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does it follow that
n—oo

n—oo

This can be answered by considering the difference H, = F, — G, and
proving the closability of the operator Dj.

Theorem 2.2.2. (Closability of the operator Dy)

Suppose {Hp}>2; C S has the properties:
H, — 0 in L*(R) as n — oo
and
{DH,}%2, is convergent in L*([0,T] x Q).

Then

lim D;H, =0

n—oo

The proof uses the integration-by-parts result.

Lemma 2.2.3. (Integration-by-parts)

Suppose F € D12, € D1 and v(t) = fgg(s)ds with g € L2([0,T)). Then

T
ED,F -] =E [F Q- / gdW] —E[F-D,y]
0
Proof: See [11] Section 4.8 and later in the chapter.

By the Lemma

T
E[D,H, - ¢] Z]E[Hnw-/ gdW] — E[Hy, - D,y
0

—0asn—o0 forallpeS
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Since {D,Hy,}52, converges in L*(Q) and S is dense in L*(Q), we then

conclude that D H, — 0 in L*(2) as n — oc.
Since this holds for all (t) = fg gds, we find that

D:H, — 0 in L*([0,T] x Q)
O

Definition 2.2.7 (Malliavin Derivative). Let F € Dy 2 so that there

ezists a {Fp} C S such that
F, = F in L*(Q) as n — oo
and
{DF,}%°, is convergent in L*([0,T] x Q)

Then we define
DtF = lim DtFn
n—o0
and

T
D F = / DyF - g(t)dt
0

for all y(t) = fgg(s)ds with g € L*([0,T))

‘ We will call DiF the Malliavin Derivative of F‘

Remark 2.2.4. At this stage we have two apparently different definitions

for the derivative of F:

1. The derivative D¢ F of F' € D; 2

2. The Malliavin derivative DiF of F' € Dy o
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The next result will show that the two derivatives coincide for F' € D1 2Ny 9

Lemma 2.2.4. Let F € D12 N Do and suppose that {F,} C S has the

properties
F, — F in L*(Q) as n — oo and {DF,}°, is convergent in L([0,T] x Q)

Then

DtF = lim DtFn

n—0o0

Hence
DtF = DtF fO’I" Fe Dl,Q N DLQ

Proof. We are effectively given that D, F,, converges in L?(Q) for each (t) =
fotg(s)ds where g € L%([0,T]). Using the integration-by-parts lemma we

obtain

E[(D,F, —D,F)- ¢ =E [(Fn —F)p- /OngW] —E[(F, — F)-D,y]
—0forallpes
Hence D, F,, — D, F in L?(Q2) and we then have
DF = nll)rgo D.F,

O

By definition, § C Iy o C L?(f2). Since the closure of S with respect to the
norm || - ||1.2 is equal to L?((2), it is tempting to conclude that Dy 5 = L?*(Q)
as well. However, it can be shown that Do G L?(Q) such that the two
norms are not equivalent.

For elements in D » we can now define a derivative at the limit of D;F),.
This is the so called Malliavin derivative. Since the derivatives coincide for
F € D1pN D2 we will use the notation D, F for the directional derivative
and D, F for the derivative of such random variables.
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2.3 Differentiation Rules

Proposition 2.3.1 (The Chain rule). Let F € D13 and let f : R - R

be a differentiable function. Then f(F(w)) € D12 and
Dyf(F(w)) = f'(F(w)) D¢ F (w)
Proof. Using the key definition of the directional derivative we get

D, f(F(w)) = lim ~ [f(F(w + 7)) — [(F())]

g [JE@+ 7)) = f(FW)  F(w+ey) -~ F(w)
e—0 F(w -+ 5/}/) _ F(w) -
= ['(F(w)) D, F(w)

Since F € D; 2 we know that D;F(w) will exist in L?([0,T] x Q), so we may

write
D, f(F(w)) = f'(F(w))Dy F(w)
T
- F(FW)) /0 Dy F(w)h(t)dt
T
- /0 F(F (@) Dy P (w)h(t)dt

Hence f(F) € D19 and D, f(F(w)) = f'(F(w))DiF(w)
]

Proposition 2.3.2 (The Product rule). If F,G € D13 then FG € D
and

Dy(F(w)G(w)) = (DiF(w))G(w) + F(w)(DiG(w))

Proof. Using the key definition of the directional derivative again, we get
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Dy (F(w)G(w))

iy Fw+e0)Gw + ey) — Fw)G(Ww))
e—0 3

iy F@ )G Wt ey) — F)Gw + e7) + Fw)G(w + e7) — F(w)G(w))
e—0 £

. [Fw+ey) — F(w)]Gw+ey) + F(w) [G(w + e7) — G(w)]
e—0 3

_ glg(l) <F(w + 6’? — F(w)G(w ben) + F(w)G(w + 676) — G(w))

= (DyF(w))G(w) + F(w)(DyG(w))

Since we were given that F,G € D; o we get

Dy (F(w)G(w)) = (DyF(w))G(w) + F(w)(D,G(w))
T T
= / (D F(w))h(t)dt - G(w) + F(w) / (D,G(w))h(t)dt
0 0

T
_ /0 (D F ()G (w) + F(w)(DyG(w))] h(t)dt

Hence,
Dy(F(w)G(w)) = (D F (w))G(w) + F(w) (DG (w))

O

Proposition 2.3.3. Let F' € D5 be Fs-adapted. Then DiF will be F;-

adapted such that for t > s we will have:
DF =0

Proof. The result will be proved for a special case. Consider a random

variable of the form

Fw) = exp ( /0 ), % / ' h2(u)du) (2.3.1)

0
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where h € L2([0,T]) is deterministic. Notice that the Novikov condition is

satisfied, implying that F' is an exponential martingale.

We also have from the chain rule and the below example, that
D,F = Fh(t)

Now,

D(E[F|Fs] = Dyexp (/OS h(u)dW, — % /Os h?(u)du>
— Dy exp ( /0 ()10 ()W, % /0 ) h2(u)du>
~ exp ( /0 " h(w)dW, — % /0 i h?(u)du> h(t) 10,4 ()
= B[FIE] h{t)10.4(1)
= E[Fh(t)[Fs] 10,5 (%)

= E[DtFU:s] 1[0,3] (t)

In the above computation we have used the fact that F' is a martingale, the
chain rule and example (2.3.6). The above result can be extended to the
linear span of random variables of the form (2.3.1). Since this linear span
is dense in L2(Q) it would seem reasonable that the result would hold true
for more general random variables. Clearly the result would not hold for
all F € L?(R) since it involves the Malliavin derivative of F, which does
not exist for all F/ € L(). In Nualart [10] and QOksendal [11] the result is

proved for the more general F' € ID; 5.

In particular if F' € Dy o is Fs-adapted we get
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D.,F = D,E[F|F;]

= E[DtF|fs]1[0,s} (t)

So D, F is Fs-adapted and Dy F =0 if t > s.
O

The final result in this differentiation section is a representation of the inte-
grand from Itd’s representation theorem. See QOksendal [11] Theorem. 4.3.3.
This theorem is the cornerstone of the martingale approach to optimal port-
folio choice, where the integrand represents the optimal investment strategy.
Since the representation theorem only gives the existence of such an invest-
ment strategy, the following proposition is an important financial application
of the Malliavin calculus. The result has been used to solve optimal portfolio
problems in complete markets with Monte-Carlo simulation.

Proposition 2.3.4 (The Clark-Ocone formula). Let F' € Dy o be Fr-

adapted. Then
T
F(w):E[F]+/O E[Dy F|Fr)(w)dw(t) (2.3.2)

Proof. The proof, again, will be for the special exponential martingale case
as represented by (2.3.1). This proof is very similar to the proof of Ito’s

integral representation. Let us define the stochastic process F; by:

Fi(w) = exp < /0 h(w)aw, — % /0 t hz(u)du) (2.3.3)

and let F':= Fp. We now introduce the auxiliary process

t 1 t
Z ::/ h(u)qu——/ R (u)du
0 2 Jo

equivalently

1
dZ; == h(t)dW; — §h2(t)dt
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This allows us to represent the dynamics of F}, given by 1t0’s lemma when

letting f(z) = €*, as

1
dF, = F,dZ; + §Ft(dZt)2
1 2 1 2
= F; ( h(t)dW; — 5h (t)dt | + 5 Fih (t)dt

= F,h(t)dW,

We also know

E[DF|F] = E[Fh(t)|F]
— E[FIF] b1

= Fyh(t)

The dynamics of F' in integral form is equivalent to

T
F = F, —|—/ Fth(t)th
0

T
=1+ / Fyh(t)dw,
0

It is now clear that E[F] = 1 and we have shown E[D,F|F;] = F;h(t), hence
T
F = E[F| + / E[D,F| 7] dW,
0

The result has been shown for a special case. By linearity, the representation
holds for linear combinations of exponentials of the form (2.3.3). In the

general case, any random variable F in L%(Q, Fr,P) can be approximated
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in mean square by a sequence F), of linear combinations of exponentials of

the form (2.3.3) and hence F' € I; 5. See Nualart [10] for a full proof.

O
2.3.1 Examples
Example 2.3.5. Let F(w) = Wi(w) = w(t). Then
F(w+ey) = w(t) +ey(t)
so that
F - F
D, F(w) = lim (w+ey) = Flw)
e—0 £
=(t)
t
= / h(s)ds
0
T
= /0 1j0,9(s)h(s)ds
So from the Malliavin derivative definition
DWWy = 1[0,t}(5)
O

The Malliavin derivative should be considered as a perturbation of the un-
derlying Brownian motion. For Brownian path changes at time s < ¢, the
entire future path will also change. For times s > ¢ no change has occurred
at time ¢, hence the use of the indicator function.

Example 2.3.6. Let F(w) = fOTf(s)dWs(w) = fOTf(s)dw(s) where f €

L?([0,T)) is a deterministic function. We then have

T
Flw+ey) = /0 F(8)d(w(s) + x(s))
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Now we can consider the directional derivative

D, F(w) = lim * [P+ ) - F)]

s [[ st [ o]
- / F()d(s)
- /OTf(s)h(s)ds

t
since we know that the directions are of the form ~y(t) = / h(s)ds
0

Now wusing the definition link between directional and Malliavin derivatives

Notice that if we chose f(s) = 1jo(s) we would be dealing with F(w) =

Wi(w) = w(t) leading to the result
DW= 1j9,4(s)
O

Example 2.3.7. Let F(w) = f(Wi(w)) = f(w(t)) where f is differentiable.

By the chain rule and example 2.5.5 we then have
DsF(w) = f'(Wi(w)) 1[0,5(%)
O

Example 2.3.8. Let F(w fo w))dW, = fo w(t) then we

have

T
Flwtey) = / F((t) + ex(t))d(w(t) + (1)
T
:/ F(@(t) + e () dt +e/ F((t) + () dy ()
0
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Hence the directional derivative is as follows:

D, F(w)

— gli%% [F(w+ey) — F(w)]

1
:lim—/f )+ ey(t))dw(t —i—e/f )+ ey(t /f
e—=0 €
.1
= lim — / [f(w(t) +ev(t )] dw(t —|—6/ flw(t) +ey(t )]
e—0 ¢
1
= lim — / [f(w(t) 4+ ev(t flw(?)) dwt]—i—/ fw(t))dy(t)
e=0¢ 0

/ f(w /Tf( (£))dy (1
- [ o) (/0 te) ot + [ st
:/0T</5Tf’(w(t dwt)hsds—i—/o Flw(s))h(
= [ ([ #etnast + s e

-/ ! (/ L W)W ) + FOV.(@) ) s

Now using the standard definition of the Malliavin derivative we have that

T T
D, / f(Wi(w))dW; = / F(We(w))dW, + f(W;(w))
0 s

2.4 Integration on the Wiener Space

2.4.1 Integration-by-parts on the Wiener Space

Proposition 2.4.1 (Integration-by-parts). Let F,G € Do and define
fo s)ds for h € L*([0,T]) then

E [ /0 T(DtF)htdt] =E [F /0 ' htth] (2.4.1)
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Proof. From the definition of the directional derivative we get

]E[ /0 T(DtF)htdt] = /Q D, F(w)dP(w)

= /Q lim = [F(w+ey) — F(w)] dP(w)

e—0 €

o1
= lim —
e—0 €

/Q [F(w+ e7) — F(w)] dB(w)

e—0 € 0

.1
= lim — /QF(w—l—&y)d]P)(w) —/ F(w)dP(w)

e

K

Since h € L%([0,T)), eh will satisfy Novikov’s condition which ensures that

t 1 t
M, = exp <—5/ hedW, — —52/ hfds)
0 2 0

is a P-Martingale. By the Girsanov theorem
~ t
Wt = Wt +6/ hst
0

is a Brownian motion under the measure P defined by

Now reconsider x in the above calculations
T —
/F(w + ey)dP(w) = / F(w)exp <5/ hsdWg(w) —
9 Q 0

_ /Q F(w)exp <s /0 " had W, () —
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Hence,
E [ /0 T(DtF)htdt]
— ;1_1)1(1& [/ﬂF(w + e7)dP(w) — /QF(w)dP(w)]
= }ij%% ) F(w) [exp <g /0 ! hsdWis(w) — %8 /0 ' hfds) - l] dP(w)

o e i1 )
et w1 f ) ]
_ /Q [F(w) /0 Thdes(w)] dP(w)

T
=K [F/ htth]
0

O

Corollary 2.4.2. Let F,G € D1y and define y(t) = fot hsds for h €

L2([0,T]). Then
T T T
E[G/ (DtF)htdt] :]E[FG/ htth] —]E[F/ (DtG)htdt]
0 0 0
Proof. From the product rule we have F'G € D; » and
D\ FG) = FD\G+ GD,F

Using the integration-by-parts proposition with “F'G” replacing F' we get

E [FG /0 ' htth] :E[ /0 T(Dt(FG))htdt]

E[F /0 T(DtG)htdt] +E[G /0 T(DtF)htdt]
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An alternative proof of the integration-by-parts result from Friz [7] is in the
form of a lemma:

Lemma 2.4.3 (Integration-by-parts). Let h € H = L*([0,T]), F € S
and we also have W (h) = fOT hdW

Then
T
M@Wﬁﬁkﬂ%F/ MW] (2.4.2)
0
Proof. By homogeneity and without loss of generality, we can set ||h| =
1. Also, we can find an f such that F = f(W(h1),..., W(hy)), with (h;)

orthonormal in H and having h = h;. Then using the standard integration-

by-parts:

E[(DF,h)g] =E

Z Oif W (ha), .o, W (ha)) B - h]

=E

Z Oif (W (h), e, W (han)) (B h>]

However, all h;’s are orthonormal by assumption, such that, (h;, h;) = 0,

Vi # j. Hence we are left with:

E(DF,hyu] = E[D\ f - (h1,h)]
=E[0,f -||h]|]] since hy =h
=

= OLf(z)(2m) " 2e 2 dx
Rn

Consider (R, \). Let f be smooth with compact support, then by the trans-

lation invariance of the Lebesgue measure:

/f@+hMA:/f@MA

Dividing by A and letting h — 0 we have:

/jﬂx:o

32



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Let f = fg then:

[ raix=— [ sgax

This implies that integration-by-parts is the infinitesimal expression of a
measure invariance.
Continuing with the Lemma proof:

E[(DF,h)g] = . o1 f(x)(zw)—%e—@dx
z|?

=— [ fl@)@n) e 2 (~z1)de
Rn

member on ") we have a n-dimension ussian measur
Remember on the space (R", »") we have a n-dimensional Gaussian measure,

2

dv"(z) = (271’)_%6_%d$
So,
BUDF, )] = [ f(hards® = EIF W ()] = B{F - W (1)

Now, letting F,G € S and applying equation (2.4.2) to smooth functionals
FG, we then have:

E[(D(FG),h) ] = E[F(DG,h)y] + E[G(DF),h)y] = E[FGW (h)]
(2.4.3)
O

2.4.2 The Skorohod Integral and its properties

The Skorohod integral of a stochastic process can be constructed from the
Wiener It6 chaos expansion. It is apparent that the Skorohod integral coin-
cides with the adjoint operator of the Malliavin differential operator. For a
Skorohod integrable process h; and a Malliavin differentiable random vari-
able F', the Skorohod integral, S(h), is defined as

(FyS(h))r2(0) = (DiF, h) r2(0,1)x0)

where (-,-) defines the inner product. The following definition omits the
technical conditions for a process to be Skorohod integrable.
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Definition 2.4.1 (Nualart Definition 1.3.1 [10]). If h is Skorohod inte-
grable, we define the Skorohod integral of h, as the element S(h) := fOT h oWy €

L?(2) that satisfies

B[FS(h)] = E [ /0 T(DtF)htdt]

for all F € Dy o

Proposition 2.4.4. If hy is Fi-adapted, the Skorohod integral coincides with

the Ito integral when it is defined. In other words

T T
/ ht(SWt = / htth
0 0

Proof. The result will only be proved for deterministic functions hy € L2([0,TY).
We let F,G € D2 be two Malliavin differentiable random variables. Now,
using the definition of the Skorohod integral and the proved integration-by-

parts property in Corollary 2.4.2, we have

r pT
E[GS(Fh)] = E _ /0 (DtG)thdt]
r T
—E|F /0 (DtG)htdt]
=F :GF /0 ! htth] —E [G /0 T(DtF)htdt]

=F :G <F /OT hydW, — /OT(DtF)htdt>]

Since this must hold for all G € ID; 2, an inner product argument will give

T T
S(Fh) = F / hydW, — / (D, F)hydt
0 0

If we let F' =1 we can see that the 1t6 and Skorohod integrals coincide for

deterministic L2([0,7]) functions h;.
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Clearly, S(1-h) = 1- [ hydW; — [(D;1)hydt so that S(h) = [ hdW,.

If we take F' to be an Fs-measurable random variable and hy = 1,4

we then obtain

T T
S(Fh) = F / hydW, — / (DyF)hydt
0 0

:F/ th—/ (DyF)dt

= F(W, — W) — 0

The reason for DyF = 0 for £ > s is due to F' being F;-measurable.

We can further write
Fh;=0- 1[0,5](t) + F- 1(s,u](t) +0- 1(u,T](t)

We can see that F' is an elementary process, hence

T
/ FhdWy = 0 (Wy — Wo) + F - (W — Wa) +0 - (Wr — W)
0
=F- (W, — W)
So, in this case, the It6 and Skorohod integral coincide as well
T
S(Fh) = / FhdW,
0

To show the result for any Fj-adapted process h; € L2([0,T] x ), one can

use an approximation argument.

O

Proposition 2.4.5 (Alternative approach to already proved result).

Let F be a Malliavin differentiable random variable, then
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T T T
/ FhyW, = F / hySW; — / (DyF)hydt
0 0 0

where hy is Skorohod integrable. Furthermore, if hy is Fy adapted we have

T T T
/ FhW,=F / hydW, — / (D F)hydt
0 0 0

Proof. Let G be a Malliavin differentiable random variable. Now, using the

product rule and the integration-by-parts property, we get:

T T
E[ /0 (DtG)thdt]:E /0 [(DUGF)) — G(DiF)] hdt

~/

~~

L Product Rule

- T T
=E / Dy(GF)hydt — G / (DtF)htdt]
/0 0

Now, using the definition of the Skorohod integral

E[FS(h)] =E [ /0 T(DtF)htdt] =E [F /0 ' ht(SWt]

We have

E [ /0 T(DtG)thdt] =E [GF /0 ! hsW;, — G /0 T(DtF)htdt]

:IE[G [F /0 ThtéWt - /0 T(DtF)htdt”

Using the definition of the Skorohod integral again, we can rewrite the left

hand side of the above equation as:

E[G/UT thawt] =E [G [F /OT hyS W, — /OT(DtF)htdt”

However, we were given that h; is Skorohod integrable and that h; was

Fi-adapted such that fOT hioW; = fOT hidW; so that
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]E[G/OT thth] —E [G [F /OT hy6W; —/OT(DtF)htdt”

and because this should be true for all G, again the result follows from an

inner product argument.

2.4.3 Integration examples

Example 2.4.6. If we let hy = W; we have

T T
/ Wt5Wt:/ WidW;
0 0
1

1
= _W2—- =T
27T 9

since Wy is Fy-adapted and in this case the Skorohod integral coincides the

1t6 integral.

Example 2.4.7. It we let hy = 1 and F = Wyp. Using the result of the
integration-by-parts proposition, where F s a Malliavin differentiable ran-

dom wvariable:

T T T
/ FhoW,=F / hySW, — / (D, F)hydt,
0 0 0

then

T T T
/ WrdW; = WT/ oWy — / (DyWp)dt
0 0 0
T
= WT(WT — Wg) — / 1[0,T} (t)dt
0
=W7-T

Note that for specific applications to finance, to follow, the following ad-
junction shorthand notation will be used:
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T
/ ht5Wt = D*(Ut)
0

for u; F; adapted or not.

2.5 Malliavin calculus application to It6 processes

This section focusses on finding the Malliavin derivatives of classical pro-
cesses. These processes are diffusions, i.e. solutions of the following stochas-
tic differential equation:

dXt = b(t, Xt)dt + O'(t, Xt)th
X() =

where W; is a standard Brownian motion, b and o are, for existence and
uniqueness, continuously differentiable, globally Lipschitz with bounded first
derivatives and linear growth. In integral form, the stochastic differential
equation can be written as:

t t
Xi=xz+ / b(s, Xs)ds +/ o(s, Xs)dWs
0 0

Now, with the above process we associate its first variation process, (Y;);>0 =
a . N
5 Xt

dyvt = bl(t, Xt)Ytht + O',(t, Xt)Y'tth
Y, =1
Theorem 2.5.1 (The Malliavin Derivative of an Ité6 Process). For
all t >0 and X; € Dy 2 the Malliavin derivative of X; is given by:
DXy =YY, o(s, Xs) <y

Proof. X; € Dy 2 according to Nualart (Theorem 2.2.1) [10], by a limit of

simple processes argument.

Recall the properties of commutation between Malliavin derivatives and in-

tegrals:

For any u; adapted:
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L] -Ds (fUT Utth) = ug + fsT Dsutth

o D, (fUT utdt> = fsT Dgudt

Then,

D,X, = D, </0t a(u,Xu)qu) + D, (/Ot b(u,Xu)du>

t t
:a(s,Xs)+/ Dsa(u,Xu)qu—l—/ Dyb(u, X, )du
S S

t

t
:a(s,Xs)—I—/ a'(u,Xu)Dququ—l—/ b (u, Xy ) Ds Xy du

S S

That is,

t o2 t
DXy =o(s, Xs)exp {/ <b' — 7) du —|—/ O'Iqu}
S S

So (DsX¢)¢>0 is a solution of the same stochastic differential operator as
Y; with a different initial condition., D;X; = o(s, X5). There is also the
added constraint that DsX; = 0 for s > ¢. This means that D;X; and

Yi1(4<4 are proportional with a constant of proportionality given by the

initial conditions quotient U(S{/—fs)

Hence

DXy =YY 'o(s, Xo)1(5<p

Differentiation of the Black Scholes process

In the Black Scholes case, the diffusion process is characterised with b(¢, X;) =
bX; and o(t, X;) = 0X;. Also due to the solution of the future asset price:

0 d X
— _:Eeut-I—UWt — At

Y,=—X
P02t o x

t\3|qM
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We thus have:

Dth = Uth{sgt}
O

The above results will be heavily used in the Malliavin calculus application
to finance chapter.
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Chapter 3

Malliavin calculus applied to
finance

To demonstrate an application of the Malliavin calculus in finance, this
dissertation will now expose its power in helping to speed up calculations
of risk management sensitivity measures (the Greeks) for options with non-
closed analytical pricing functions, as is the case with most exotic options,
where prices may depend on the entire price path.

3.1 Vanilla and Exotic Options

An option is a financial instrument that gives the holder the right to receive
certain cash payoffs under certain conditions. For this privilege, the holder
pays a premium to the writer of the option. Traditional options have been
traded for hundreds of years and are fairly well understood. Whether Eu-
ropean or American expiry, they are sometimes called “vanilla” options. In
contrast, “exotic” options such as Asian, Barrier, Lookback and Binary are
much more recent innovations. While a vanilla option pays off depending on
the price of the underlying asset, the payoff of an exotic option typically de-
pends on some function of the price of the underlying asset, or a relationship
between several underlying assets.

3.2 Option sensitivities

3.2.1 Delta hedging

Derivative positions are “Delta hedged”, by combining the option position
with a position in the underlying asset to form a portfolio, where portfolio
value does not change in reaction to changes in the price of the underlying
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over a short period of time. If the portfolio is continuously dynamically
hedged, it will earn the risk free rate of interest.

Since changes in the underlying are the primary source of risk in a deriva-
tives portfolio, the first order relationship between underlying value change
and derivative value change as well as the associated convexity (second order
relationship) adjustment are crucial to maintain the delta hedge. Further
consideration of changes in the derivative value to changes in volatility, time
to maturity and interest rate changes should also be factored in to pro-
duce an efficient total hedge. When an investor has a short position in
derivatives, significant exposure to changes in volatility exists. Invariably, a
Delta-Gamma-Vega hedge would require the volatility offset to be achieved
with offsetting options. For the above reasons, the sensitivities of derivative
values to changes in a parameter are of paramount risk importance.

3.2.2 The Greeks

Setting and option pricing

The economy is modeled on a complete probability space (2, F,P) with
continuous trading over the time horizon ¢ € [0,7]. Information evolves
according to the adapted filtration {F;,¢ € [0,T]} generated by the standard
one dimensional Wiener process (W¢);c[0,1]

The price of a contingent claim with expiry at time 7', is traditionally calcu-
lated as the expected value of the discounted payoff value in a risk neutral
probability measure-uniquely defined in complete markets with no arbitrage.

Hence, letting X = X («) be a random variable depending on a parameter
a, the price of the contingent claim at ¢ = 0, is represented as:

Pla) = Ep [@(X(a), a)‘fg] (3.2.1)

where ® (the discounted payoff function at expiry) is generally non-smooth.
This expectation will be conditional to the information available today, de-
scribed by the o-algebra, Fy and is with respect to the risk neutral proba-
bility measure P. Note that all future references to expectation E[-] when
calculating option prices and sensitivities are with respect to the risk neutral
probability measure P.

As an example, the payoff function for a European call option will be

®(S7) = (St — K)™ with K being the strike price. Hence, X(a) = Srt.
The price of the call is given as:

P=E [(IJ(ST)e_ Jo' rsds

Fo| (3.2.2)

42



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

where S; is the underlying asset price process and 7 represents the risk free
rate process. We also assume the underlying asset price process follows a
geometric Brownian motion characterised by the diffusion equation:

ds
2L — rdt + odW, (3.2.3)
St
equivalently
t t
Sy =80+ 7’/ S.ds + O’/ S dW, (3.2.4)
0 0

where r and o are the constant risk free interest rate and volatility respec-
tively. This is the most typical model used to describe asset prices. In finally
solving the differential equation, we have the unique continuous strong so-
lution of (3.2.3) with initial condition Sy = x:

S = geltT+oWr}
where y =1r — %2 and {W;}e(o,7 is the Wiener process.
Then by using the probability density function of S, we obtain the explicit
integral

o0 1 2
rp(x) — / efrT@ (xeTT+U\/Ty*%UZT> \/2_efy7dy (325)
s P

Greek calculation methods and their types

A “Greek”, is a measure of the sensitivity of the option price with respect
to a parameter, so:

IP(«) _ OE[® (X (a),a)] _
Oa Oa

The Greek letters are summarised as follows:

Greek Sensitivity
A (Delta) 0Os
I' (Gamma) 9%
p (Rho) Oy
V (Vega) 0o
0 (Theta) Oy
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3.2.3 The numerical approach to the Greeks

Finite difference method

The main numerical approach to calculating an option price sensitivity is
the finite difference approach, where prices are shifted by small amounts to
approximate the sensitivity metric. As an example, we consider the sen-
sitivity of the contingent claim with respect to the underlying asset price.
The key requirement here is that the option prices, or at least a method to
estimate them accurately, is necessary prior to estimation.

Using a centred difference scheme we have:

Ao Plet+5) =P —3)
. efoT;sq) (s549) ;@ (s7?) .
Tt is clear that
lim ?(s7) e (sr7) = Y p(sy)

Likelihood ratio method

The idea of the likelihood ratio method is to report the derivative of our
payoff function on the density of the parameters of this function using an
integration-by-parts formula. The process begins with switching the expec-
tation and differentiation terms and is well explored in Broadie and Glasser-
man’s [8] work on the subject.

In other words, the aim is to avoid taking the derivative of the payoff func-
tion, by using an integration-by-parts procedure. If ® is a.s. differentiable
with derivatives of polynomial growth, we are allowed to interchange the
integral and differential operators; by virtue of the dominated convergence
theorem.

In its most general case, let X be the parameter of the payoff function ®
and let g be the density function of X. The price of an option is then given
by:

P=Ele o) = [ ¢ Tow)is
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Supposing that the payoff function does not depend on the parameter A, the
derivative of the price of the option with respect to A is given by:

@_ > —rT 8g(x)
A )\

= /000 efTTCI)(:I;)i(9 ln(g(x))g(m)dx

dz

oA
91In(g(X))

=FE [e—’"T@(X) DY

So when we know the distribution of the parameter of our function payoff,
then we can express the Greeks as the expectation of the payoff multiplied
by a weight, which does not depend on the payoff function.

Recalling the case for the European call option, we obtained the explicit
integral for the price of the option from the probability density function of
St

o 1
73(117) :/ efTTé (meTTJrU\/Ty*%UzT) \/ﬂef%dy

: : : ol oL
We can show a proportional relationship between &~ and -

We have

iq) (merT—I—aﬁy— %02T> _ erT—I—a\/Ty— io%T

ox
and
aéq) (xerTer/Ty* %UZT) - 70 TeTT‘FU\/Ty*%UzT
Y
So
g@ (meT‘T'i'U\/Ty_%o'QT) _ 1 Q(I) (xerT+”ﬁy_%U2T>
O zo/T Oy

We can now establish an integration-by-parts result:
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a a 00 —rT T \/T _1 2T ]. _;lﬁ
-~ - 2 P rl'+o Yy (o d
8:1:73 oz </_ooe (:L'e ? >\/27re 2y
* 9 1o 1
—rT v rT+oVTy— 02T -
s (9:1:(1) (me ’ )

=€

—rT
_ ¢ :n/T > ag@ (merT-I-m/fy—%a?T) 1 e—%dy
To —00 9Y
— e:/T_ |:q) (xe'rT-I-a\/Ty—%aZT) 1 e_é]oo
xoVT V2T
e T /OO VTy—Lo2T 1 2
+ (IJ(:Ee’"T"'” Yy=37 ) e 2d
zoVT [ _ooy V2T 4

e T e 1,2 Y v?
— i) (xeTT+0'\/Ty*§U T) e 7d :|
xa\/T [/oo V2T 4

2

00
_ e—rT/ B (merT—I—aﬁy—%a?T) Y e—%dy
oo aV2ro?T

Lognormal Density

2

log(&) — (r . %) T

Lognormal for y — = for x = S
g Y oT o/ T T
e T /oo o (xe'rT-I-a\/Ty—%aZT) Wr e_gdy
— zTo2r
e—rT
=Fp [ WT(IJ(ST)]
zoT
0 e T
—P = W- -P(S 3.2.6
5%, = EP T Wr (St) (3.2.6)

Weight function

That which we set out to achieve has materialised by removing the differ-
ential operator. We have introduced a weight function Z;—T;WT, which is
independent of the payoff function, ® and is straight forward to simulate
using Monte Carlo methods. Now even if the payoff function is not con-
tinuous, the integration-by-parts method smoothes the payoff function with
a weight independent of the payoff function and makes the method more

efficient in general.

The main difference between the Greek simulation method and that of finite
differences, is that the finite difference method requires price simulation
whereas this method merely requires a weight to facilitate the simulation.
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3.3 The Malliavin derivative approach to the Greeks

Assume we wish to calculate E[f’ (X)Y]. X and Y are two random variables.
If the density functions of X and Y are unknown, we would need to remove
the derivative, such that:

E[f'(X)Y] = E[f(X)H]

for some new random variable H.

Montero and Kohatsu-Higa [9], set out a routine to fulfill the above need.
Let Z = f(X) and apply the D operator on Z:

D,Z = f'(X)D,X

Add Y to the expression by multiplying both sides by Y h(s) where h is an
arbitrary process. h could depend on X,Y or both or even another random
variable.

Yh(s)D,Z = f'(X)Yh(s)D, X

Now integrate over s € [0,T]

T T T
/ Yh(s)DsZds = / F(X)Yh(s)DsXds = f'(X)Y / h(s) D, X ds
0 0 0

So,
/ Yh(s _Yh(s)DsZ
fo D Xdv
Hence,
T
E[f (X)Y] = E [ / (D Z)usds]
0
with
Yh( )
fo v) Dy X dv
Now, by applying the duality prlnc1ple,
Yh()
Ef (X)Y]=E|f(X)D* | +——""— 3.3.1
[f(X)Y] (X) <f0 DXdU)] (3.3.1)

Letting,
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H=p M)
ST h(v) Dy X do

leads us to what we set out to achieve.

3.4 “Vanilla” options

3.4.1 European style options

The Greeks will be calculated for a European option, for the key sensitivities
when considering a “Total hedge” i.e. Delta, Gamma and Vega.

Delta
Referring to (3.2.1), let X () = St

e—rT

So

A= iJ]*:[ﬂTcI)(As*T)] —e TR [%@’(ST)] =

/!
= 35, 35 E [®'(S7)ST]

Using the Malliavin integration-by-parts formula, (3.3.1) we get:

* ST
o7 (s

e—rT

A =
So

E

Consider fOT D,Srdv,

Dy St = Dy(Soel"+Wrd) = St - 6D, (Wr) = 0871 g7(u)

Hence

T

/ D,Stdv = oSTT

0

Now for
1
D* TL ZD*< 51 ):D* <—>,
fo D, Sydv oStT oT

using

T T T
/ Futth == F/ Utth - / (DtF)Utdt
0 0 0

with F' = (%T and u; = 1 we can see that
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D* <L) _Wr
oT ol

So

A=¢"TE [(I)(ST) Wr ]

SooT

Vega

Vega (V), an anglo-hellenic term with no true Greek meaning, represents
the sensitivity of the option price with respect to changes in the underlying
volatility. In other words,

V= E]E [e*TT@(ST)] =E [eTT@I(ST)

951
Jo

Jo
Recall

Sp = Soet TN
where y =1 — "2—2 So, % = Sp(Wr —oT), leaving Vega being represented
as:

V=E [efTT(I’I(ST)ST(WT — OT)]

Now using the standard integration-by-parts procedure

V=E|eTe(Sr)D* —ST;WT —o7T)
| fo D, Stdv

_E|eTa(5r)D* <ST(I;I'/§—T;‘71)):|

=E ie""T@(ST)D* (% - 1)]

Now focussing on D* (% - ), we end up with %D*(WT) — Wr, where

D*(Wg) = W2 — T as show in Example 2.4.7, then Vega simplifies to:

V=E [e”’ [zv—j —Wr — %] @(ST)]
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Gamma

Gamma (I"), represents the second order dependence of the price of the
option with respect to values of the underlying.

82 —rT eirT 2 ;!
r= 55" [T (Sy)] = T E (579" (Sr)]

Now using the integration-by-parts/duality 3.3.1, with h =1,

®'(Sp)D* (Si%> = %E [@'(ST)D* <f—;)]

fOT Dv STdQ)
We now focus on the stochastic integral D* (5—%), where we again use

efrT
I'=—FE
S8

T T T
/ Futth == F/ Utth - / (DtF)Utdt
0 0 0

letting F' = f—% and u; = 1:

Sr Sy [T 1 /T
D'l — | =— 1dW; — — D¢Stdt
<UT) ol 0 t ol 0 o

_ S M aw - Lors
N ol 0 t OTU T
Wr
= — =1
(o)
We thus have
e’ Wr
=—FE|® — -1
se|vense (57 )
Applying integration-by-parts again:
Wr
efrT ST (O'_T - )
'=—E|®Sp)D" | ———+
Sg (57) ST DySrdv

Again we have to simplify the stochastic integral

NEIC DA IC S
b [ D, Srdv - ol

-l ()
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Furthermore, using the result from Example 2.4.7 again and combining all
the components, we have:

el (W2 1
Ir=E L _wr—-=)3
|:S§OT <O’T Wr O’) (ST)]

Also, comparing the Gamma result to Vega, we notice the following rela-
tionship:

%
r=—
S20T
3.4.2 The explicit analytical computations of the European

Greeks

The Greeks for the European type options can be written as expressions,
since the density function of St has a closed formula, viz.

2
(@)
I) = ———ex

P zV2mo?T P 202T

Recall that the price of the option is given as:

P=E[e"T0(Sy)| = /000 e T (x)p(z)de (3.4.1)

Now obtaining the Greeks is a simple case of partial differentiation with
respect to the parameter concerned. We have to assume that the payoff
function is independent of the parameter we are finding the sensitivity of.
In this case it is obvious that the payoff function ®(z) = (z — K)™ is not
dependent on S.

Explicit European Delta

_ ooe—'rT T (9]9(117) T
A_/O () L) 4

0S50
© o dlogp(x)
_ rT
—/0 e " d(x) D5 p(x)dx
_ dlogp(z)
_ rT
E|e ™ ®(S7) <7aso s
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The last equation looks similar to the Malliavin result, where the derivative

of the payoff function has been effectively removed leaving a suitable weight,

ie., al%giﬁ(@ at x = Sp.

Also, after some calculus:

0log p(x) 1 EA
< 850 z=ST N 800'2T log S() ,U,T z=ST

~ SpoT

Hence we have:

A=E [N%(ST) Wr ]

SooT

which is the same as the result using the Malliavin calculus approach.

Explicit European Vega

Again we have the payoff function ®, being independent of the sensitivity
parameter o.

— * 77‘T® (.’E)
Vv /0 % dz
o0
:/0 _’"T@ alogf( )p(a:)da;

=K

s (22) |

Again, after some calculus:

alogp(x)) 1 1 [ <x) r 1{ <x) ]
— =——+ ——|log| 5 | —uT — —|log ( = | — T
< 0o o=5p o Tgd |8 So a o=y O & So a o=5p

1 W2
=—+4+ —=-W
O’+O'T T

Hence

V=E [e""T@(ST) <Z_V—;‘ — Wy — %)]

which is identical to the expression obtained via the Malliavin calculus.
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Explicit European Gamma

When considering Gamma, a careful use of the chain rule is needed. For

Delta we had the weight as (m%gisi(x)) o Therefore the Gamma weight
=51

is given by:

0 (Ologp(x)\ (0logp(x) 2 N 0? log p(z)
Sy 0S50 B 0S50 053

We then calculate
0dlogp(z) 2 B W%
0S5y N S2o2T?

and

Ologp(z) 0 1 x
ost = o |ser (8 (5) 7]

Wy 1
N SgaT SgazT

Finally, Gamma is as the Malliavin calculus expression before:

el (W2 1
I'=E L _Wr—-=)3
[SgaT <O‘T Wr O') (ST)]

Notice that results from the Malliavin calculus related procedure, are equiv-
alent to the respective partial derivatives (of the probability density func-
tion) of the analytical price of European style options with the Black Scholes
Merton partial differential equation solution.

3.4.3 European numerical results

A plain vanilla European call option will be considered to demonstrate the
Malliavin approach applied to numerical approximations of the Greeks. The
payoff in this case will be

P(X)=(X-K)"

Delta Numerically

From the Black Scholes Merton formula, delta is easily seen as:

AL "2y
= — e 2 €T
vV 27 /;oo
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where

dy(z) = % [log (%) + <7’ + %(72> T]

Suppose we have the following parameters:

r | 0.1
0.2
T 1
So | 100
K | 100

The following MATLAB code is used to perform the Monte Carlo approxi-
mation of the delta for the scenario.

% European Call option Delta Approximation
% using Malliavin calculus

% Set Parameters

clear s_0=100; x=100; r=0.1; t=1; sig=0.2; sim_cnt=10000;
%Assumptions

%input. "t" is in years assume no dividends

%Final Wiener path points at t=T

W_T=normrnd (0,sqrt(t),1,sim_cnt);

%Final Stock price and payoff

final_stock_price=s_0.*exp((r-sig*sig*0.5)*t+sigxsqrt(t)*W_T);
payoff_matrix=vertcat(final_stock_price-x,zeros(1l,sim_cnt));

payoff=max(payoff_matrix);

delta_mallaivin=(1/sim_cnt).*(dot (payoff ,W_T).*(exp(-r*t)/(s_Oxsig*t)));

analytic_delta=BLSDELTA(s_0,x,r,t,sig,0); %=0.7257
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%Plot Malliavin Delta Progression

for i=1:sim_cnt
malliavin_delta_progression(i) =

1/1) .*(dot (payoff(1:1) ,W_T(1:1)) .*(exp(-r*t)/(s_O*sig*t)));

est_variance(i)=var(payoff(1l:i).*W_T(1:1));

end

plot(1l:sim_cnt,malliavin_delta_progression,
1:sim_cnt,BLSDELTA(s_0,x,r,t,sig,0)*ones(sim_cnt,1))
grid on;

axis([0 sim_cnt 0.5 1]);

The exact delta of 0.7257 is well approximated by the Malliavin approach.

Vega Numerically

The explicit formula for Vega is given as

T 412
V=28/—e z
27

with dy (K') given as before. The scenario parameters are the same as those
used previously.

Gamma Numerically
The explicit formula for Gamma is given as

1 _ [d1(2K>12
———¢€
SoV2mo2T

with d;(K) given as before. We will use the same scenario parameters as
before too.

=
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Malliavin Weight Delta estimation for a European Call Option
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Figure 3.1: The Malliavin progression of an estimated of Delta vs the ana-
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Malliavin Weight Vega estimation for a European Call Option
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Malliavin Weight Gamma estimation for a European Call Option
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3.5 “Exotic” options

3.5.1 Asian style options

Asian options are options in which the underlying variable is the average
price over a period of time (path dependent options). Due to this fact,
Asian options have a lower volatility, rendering them cheaper relative to
their European counterparts.

Asian options are commonly traded on currencies and commodity products
which have low trading volumes. They were originally used in 1987 when
Banker’s Trust Tokyo office used them for pricing average options on crude
oil contracts, hence the name “Asian” option.

These options are broadly segregated into three categories; arithmetic av-
erage Asians, geometric average Asians and both of these forms can be
averaged on a weighted average basis, whereby a given weight is applied to
each stock price being averaged. This can be useful for attaining an average
on a sample with a highly skewed sample population.

To elaborate on arithmetic averaging, this is seen as being the sum of the
sampled asset prices divided by the number of samples:

S1+8S+...+ 8,
n

Avgs =
and for geometric averaging, the average value is taken as:

A’UgG: \ ,5’1525”

The payoff functions for Asian options (where the average stock price for
either averaging method is denoted as S) are given as:

For an average price Asian:
V=n(0,5-K)*" fixed strike price
and an average strike Asian:
V =n(0,5r-8)" floating strike price

Where 7 is a binary variable which is set to 1 for a call, and -1 for a put.
Asians can be both European style or American style in exercise.

3.5.2 The Asian delta

We now consider the financial sensitivities of options written on the average
stock price % fOT Sydt (continuous Asian), instead of only the terminal value
St as with the European style options, with respect to the underlying.
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We have to note that the density function of the random variable % fOT Sidt
does not have a known closed formula.

Delta in this case is given by

o T 1 T efrT 1 T 1 T
A=—FE|leT"d (= Ssd = E|d (| = Ssds ) = Sud
e (s = el () s 7, s
(3.5.1)
We now demonstrate the versatility of the Malliavin integration-by-parts
formula in obtaining various expressions for A.

Proposition 3.5.1. Delta as stated by Fournié et al [6] can be shown to be:

(2 f o) (i)

2¢ T

A=
Spo?

E

a2

with p=1r— 5%

Proof. To obtain the result we use 3.5.1 without E;T and

E | f(X)D* (L“)] —E[f(X)Y]

ST h(v) Dy X dv

with X = L [T Sids, V = L [T S,du and hy = S such that

E[@' <l /T S’sds) l/T Sudu]
T Jo T Jo

T LT Sudu- S,
—E @(%/ Ssds> D* | — alll s
0 Iy S@)Dy (4 J Suds) dv

Let us first consider D, (% fOT S 3d3> in the denominator, using the Malliavin

derivative of an Itd process.
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1 T
=~ [ Dy (Soe"*t7"*) ds
T Jo
1 T
= T ; Ss(DyoWy)ds
T
o
= T o Ssl{vfs}ds
T
= % Ssds

Now considering the entire denominator of the fraction on which the adjoint

is operating, we have:

T 1 (T o [T T
/0 S(v)D, <f/0 Ssds) dv = T/O S(v)/v Ssdsdv

Using a version of Fubini’s theorem

/OT S(v) /vT S.dsdy — % </0T S(U)dU)Q

17 \ L7 Sudu- S,
8 [@ (f/o Ssds) P ( i S(SDZ (% Jr Ssds> du)]

T
1/TSds D* fo Sudu-S.
0

We have
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Now, we should consider,

S T T -1
D* Ti = / </ Ssd8> Stth
( I Ssds) 0 0

within the expectation carefully.

We know that integration-by-parts provides the following relationship:

T T T
/ Xu, dWg = X/ u dW, —/ (DsX)ugds
0 0 0

1
I Spdr

1 T T 1
-Stth:Ti-/ SdeS—/ Dy | =] -5, ds
Jo Skdr Jo 0 Jo Skdk
o1

Ji Skdk

D, (ﬁ) - [ Suax) 0. [ S
- </OT Sndli) - : OT DS, dk
<

Letting the process us be Ss and the random variable X be we then

have

NV

Looking only at

-1

-2

Multiplying by f:zsjz and using the version of Fubini’s theorem fOT Sy fvT Sdsdv =

: (fOT S,,du)2 we get:

62



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Returning to:

/0T</0T8nd/-e> -Stthzm / SdW, — / ( (fo Skdk> &)ds

fo Sndli fo Ssds

1

o
= — SgdWs + —
fUT S.dk /0 2

Finally A can be written as

—rT T SdW
A= _E @(l/ Ssds> 2M +1
S0 T Jo o [IS.ds

Furthermore we know the dynamics of the S; process.
T T
ST = S() + ‘l"/ Stdt + O'/ Stth
0 0

such that

T T
O'/ Stth = O'D*(St) = ST — S() — ‘l"/ Stdt
0 0

Hence
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A=E

o(a so) (3 (™) )|
(i se) (3 (iT;§z>—”;f>]
(1) ()

=E

3.5.3 The continuous Asian delta numerically

Malliavin weighting method

To perform the numerical computation many thousands of asset price paths
are simulated using the given problem parameters. The associated continu-
ous Asian payoffs are calculated

1 (T 1 (T
| = == - K
(T / stdt) (T / Syt ,o)

Proposition 3.5.1 will be used to estimate delta. We therefore also need the
weight:

+

St — 5

fOT S,ds
During the numerical procedure, the integral used in both the payoff and the
Malliavin weight, fOT Ssds, was approximated as the sum of the simulated
paths. A financial year was partitioned into 252 days. Then, for each sample

path a version of Proposition 3.5.1 is calculated. Finally, the expectation of
these values is taken to approximate delta.

Finite difference method

For the finite difference method, a centered difference scheme was used.
Primarily, a price for the Asian option needs to be calculated using the
expectation of the discounted payoff of thousands of sample paths. Then,
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using the same random numbers, the centred difference is taken for the
associated price perturbations to estimate a delta.

Note that the finite difference method shows similar efficiency for the Malli-
avin scheme. The Malliavin scheme is best seen when estimating Gamma
for Asian options and when calculating Greeks on extreme discontinuous
payoff options e.g. Digital options.

Numerical experiment

Consider a fixed strike Asian call with the following parameters

r | 0.1
0.2
T 1
Sy | 100
K | 100

and using 10,000 path simulations.

Figure 3.4 shows a graphical view of the estimates. The value of delta is
approximately 0.6494.

3.5.4 Digital style options

A digital option (also called a binary option) is a cash settled option that
has a discontinuous payoff. Digital options behave similarly to standard
options, but the payout is based on whether the option is in the money, not
by how much it is in the money. Digital options come in many forms, but
the two most basic are cash-or-nothing and asset-or-nothing. Each can be
European or American and can be structured as a put or a call.

We will consider a European cash-or-nothing digital call option, with its
payoff function given as:

Or=Q 15,5k}

Furthermore, a European cash-or-nothing digital pays a fixed amount of
money, (), if it expires in-the-money and nothing otherwise. In other words
a European cash-or-nothing digital call option makes a fixed payment if the
option expires with the underlier above the strike price. It pays nothing if
it expires with the underlier equal to or less than the strike price.

Reiner and Rubinstein’s classic 1991 paper [12], introduced these options
and a set of closed form analytical formulas, which can be applied to the
pricing of these options, giving payoffs within a Black-Scholes framework
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Malliavin Weight vs. Finite Difference Delta estimation
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Figure 3.4: The Malliavin progression of an estimate of an Asian delta vs

the finite difference progression approximation of the same delta.
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shown previously. For standard cash-or-nothing digital options the pricing
formula is simple:

Chigital = € "7 N(ds) and Ppigital = ¢ "7 N(—ds)
where, assuming no dividends are present:

In %2+ (r 4+ )T
dy = —X 2 dy=dy —oVT
1 (T\/T 2 1

Notice that the formula for the call premium resembles the amount of cash
held in the equivalent hedging portfolio for a vanilla call option, namely
—Ke "IN (dy).

The analytical solutions for delta and gamma Greeks of European digital
options, well illustrated by Avellaneda and Lawrence [1], are the following:
e*TTe_é
Apigital = ——F——
SoV2ma?T
e*TTe_é
Ipigital = —W ~dy

Range Digital

A composite option, consisting of two digital option positions will now be
considered. What is known as a range binary is a combination of two digital
options. This option has a payoff of @ - 1f,;), receiving a cash amount
@ at expiration should Sy € [a,b], otherwise the option is worthless at
expiration. More specifically the range digital is a combination of longing a
digital call with strike price ¢ and shorting a digital call with strike price b.
The same payoff can be achieved by longing a digital put with strike price
b and shorting a digital put with strike price a.

To demonstrate the differences between Monte Carlo simulations using fi-
nite difference and the Malliavin weighting scheme (the identical weighting
function as the vanilla call option case is used with the associated payoff
function) we shall use the case of a European range digital option with pay-
offt &7 = 1[1g0,1109]- See Figure 3.5. The following parameters were used:
0=02,T=1,r=0.1 and Sy = 100. Delta and gamma are demonstrated
in Figures 3.6 and 3.7. Vega is easily inferred from its known relationship
with gamma.
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Rate of convergence in numerical methods

Benhamou [2] provides the best work on the numerical approximations of
the Greeks using Malliavin calculus. I refer to his work to observe the
benefit of the Malliavin calculus in terms of the Asian gamma. In the below
depictions, of the comparison between the Digital option delta and gamma
versus the same estimation via finite difference, it is clear the Malliavin
weighted scheme converges to the correct answer quickly with almost no
oscillations.

x 10" Malliavin Weight Delta estimation for a European Digital Option

|
N

-3

4

6} Malliavin weight delta progression
Finite difference delta progression
-7r — Analytical delta value ]

Estimated value of Delta

0 2000 4000 6000 8000 10000
Number of simulations

Figure 3.6: The Malliavin progression of an estimate of a European Digital

Delta vs the finite difference progression approximation of the same Delta
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x 1gMalliavin Weight Gamma estimation for a European Digital Option
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Figure 3.7: The Malliavin progression of an estimate of a European Digi-
tal Gamma vs the finite difference progression approximation of the same

Gamma
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3.6 Monte Carlo simulation and variance reduc-
tion

3.6.1 Simulation routine

The basic Monte Carlo method using the Malliavin weight, is as follows:
For interest rates constant

1. Sample a random path for S; in the risk neutral world

2. Calculate option contingent payoff’s

3. Repeat Step 1 and 2 many times

4. Calculate the mean sample payoff, to approximate the expected payoff

5. Discount the expected payoff multiplied by the Malliavin weight

3.6.2 Variance reduction

The choice of h, used in establishing the Malliavin weight in (3.3.1), helps
reduce the variance within the Monte Carlo simulation. If ® is the payoff
function and 7 is the Malliavin weight then we wish to minimise the variance
of ®(Xy,..., X,) x . This would naturally make Monte Carlo simulations
converge faster.

One has to ask the question as to how to choose the optimal weight. For each
of the Greeks, due to the open choice of h there are infinitely many possible
weights. Therefore, a good idea is to look for the weight which minimises the
variance of the estimator. Since all the payoff functions are Fpr-measurable,
the weight with minimal variance will be given by the projection theorem
as the conditional expectation of any weight function with respect to the
filtration Fr. Elie and Prével [4] provide the following proposition:

Proposition 3.6.1. The weight function with minimal variance denoted by
g 18 the conditional expectation of any weight function © with respect to the
filtration Fr

o = E[n|Fr]

This strong result indicates that the best weighting function is always Fr
measurable. Intuitively, we use only the information we have without adding
any noise, that is why we get the minimal variance payoff. We see that,
in the case of payoff functions which can be expressed in terms of some
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particular points of the Brownian motion trajectory, the best weight function
will be the one expressed in terms of these particular points. However, in
term of implementation, we may prefer to choose a generator which is F;
adapted. In this case, the Skorohod integral can be rewritten as an It6
integral which is much easier to implement. Therefore, it may be more
interesting to choose the minimal variance weight beyond the one generated
by F; adapted generators.

In summary, if 7 depends only on (Xi,..., X,,), then 7 is a variance min-
imising choice. E.g. SVJ;TT the weight in the European call delta case; St is
dependent on Wr.

3.7 Conclusion

The dissertation gave a brief history of the Malliavin calculus, particularly
the initial rationale for the theory and some of the consequences of the
theory.

The major results of the adjoint operator of the Malliavin derivative opera-
tor, called the Skorohod integral, being the extension of the It6 integral for
non-adapted processes was successfully introduced and explored. Further-
more the integration-by-parts formula, which relates the derivative operator
on the Wiener Space and the Skorohod extended stochastic integral was
proved in several ways.

As a bridge to the Malliavin calculus’ use in finance, the derivative of 1t6
processes was shown, particularly the derivative of the Black Scholes process.

Calculation of financial contingent claim sensitivities is shown via a direct
method, likelihood method, finite difference and the Malliavin weighting
scheme. The various methods allowed for strong comparisons to be made,
especially via numerical experiments, between the industry used finite dif-
ference and Malliavin version.

Despite most practical real world cases having sufficient estimation tech-
niques and the need for daunting stochastic calculus and complicated ana-
lytic computation (making the Malliavin method error prone in setting up
and potentially overestimating its value) for the Malliavin alternative-the
application was still a suitable objective to explore the underlying theory.

In summary, this dissertation has shown that the new Malliavin calculus
technique demonstrates extremely powerful alternatives to pricing problems
where no explicit formula is available. The key benefit of the Malliavin
calculus theory is that it imposes few restrictions on the payoff function
and when used correctly, gives very efficient Monte Carlo schemes for the
computation of the Greeks.
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