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Abstract

This work details a multigrid-accelerated cut-cell Cartesian mesh

methodology for the solution of a single partial differential equation

set that describes incompressible as well as compressible flow. The

latter includes sub-, trans- and supersonic flows. Cut-cell technology

is developed which furnishes body-fitted meshes with an overlapping

Cartesian mesh as starting point, and in a manner which is insensitive

to surface definition inconsistencies. An edge-based vertex-centred fi-

nite volume method is employed for the purpose of spatial discreti-

sation. Further, an alternative dual-mesh construction strategy is

developed and the standard discretisation scheme suitably enhanced.

Incompressibility is dealt with via a locally preconditioned artificial

compressibility algorithm, and stabilisation is in all cases achieved

with scalar-valued artificial dissipation. In transonic flows, shocks are

captured via pressure switch-activated upwinding. The solution pro-

cess is accelerated by the use of a full approximation scheme (FAS)

multigrid method where coarse meshes are generated automatically

via a volume agglomeration methodology. The developed modelling

technology is validated by application to the solution of a number

of benchmark problems. The standard discretisation as well as the

alternative method are found to be equivalent in terms of both accu-

racy and computational cost. Finally, the multigrid implementation

is shown to achieve decreases in CPU time of between a factor two to

one order of magnitude. In the context of cut-cell Cartesian meshes,

the above work has resulted in the following novel contributions: the

development of an alternative vertex-centred discretisation method;

the use of volume agglomerated multigrid solution technology and the

use of a single equation set for both incompressible and compressible

flows.
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Chapter 1

Introduction

1.1 Background and Project Motivation

Computational fluid dynamics (CFD) is a growing field which is focused on ob-

taining approximate solutions, via numerical means, to a set of equations that

describe the motion of a fluid on a macroscopic or continuum level. The aforemen-

tioned numerical solution strategy has become essential for engineering related

flow systems where analytical methods are not at present adequate. The use of

these numerical techniques is impractical without the aid of a computer and as

a result, it was only in the 1970’s that CFD came into its own as a field. Since

then, with the massive advances in computer technology and advances in solu-

tion algorithms, CFD has become an important tool in the design of vehicles,

buildings and other structures and devices that interact in some way with a fluid.

At this time however, the accuracy of solutions to problems with complex flows

is not, as a general rule, of sufficient quality to accurately quantify all flow fea-

tures found in a field such as aeronautics. It does however hold great promise to

describe the pressure field around arbitrary streamlined bodies in regions where

flow break-away or separation is not present. This is of practical value when

screening potential aerodynamic design concepts to obtain estimates of lift and

the positions of certain shocks.

The study group under which this work was completed, was approached by

DENEL Aerospace systems to develop an in-house tool that could replace or

supplement the analytical / empirical codes currently employed for concept phase

1
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1.2 Overview

screening. Typical aerodynamic systems of relevance are geometrically complex

streamlined bodies which range from subsonic unmanned aerial vehicles (UAV’s)

to supersonic missiles. The technology to be developed is a CFD code which is

capable of quantifying physics such as out-of-boundary layer flows as well as body

surface pressure distributions. This is to be done over complex geometries while

being a precursor to more expensive and detailed CFD analyses which include

viscous flow effects.

1.2 Overview

As discussed in the previous section, the aim of this project is to design a CFD

tool that can be used effectively in the concept phase of an aerodynamic design.

The development of this tool starts with the selection of the governing equations.

The equation set that is most accepted to describe the fluid flows under con-

sideration is generally referred to as the Navier-Stokes equations1. Ideally one

would like to solve these equations directly but this is prohibitively expensive to

do on complex aerodynamic geometries at the current time. The terms in the

Navier-Stokes equations that require the most computational resources are the so

called viscous terms. When these terms are omitted, the so-called Euler equations

result. For globally attached flow at large Reynolds numbers, it has been shown

that the Euler equations predict the out-of-boundary layer flows as well as body

surface pressure distributions with reasonable accuracy [2]. As a consequence,

in this work, these equations will be in essence solved. The classic form of the

equations will be altered such that incompressible and compressible flow may be

modelled with the same equation set. This is the focus of Chapter 2.

Once the governing equations are chosen, it remains to solve them in an effi-

cient and accurate manner. This solution process is the major focus of this work.

There are many ways to solve the Euler equations over complex domains. Most

methods begin by dividing the domain of interest into smaller non-overlapping

volumes and solving for the equations on each volume. The aforementioned pro-

cess is called mesh generation and is the subject of Chapter 3. In this work

1Note that this is a misnomer, as the Navier-Stokes equations in reality refer to the mo-

mentum equations only.

2
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1.2 Overview

non-conforming cut-cell Cartesian meshes are used as they can be generated with

great efficiency on complex geometries [3]. This is ideal for the concept design

process, particularly where minor inconsistencies exist in CAD geometry surfaces

(known as “dirty” geometries). In the case of the latter, it can take more time

to generate the mesh, via body-fitted type mesh generation techniques, than to

solve the actual flow problem [4].

Once the domain has been decomposed into small non-overlapping volumes,

the Euler equations need to be “discretised” on each. This process involves trans-

forming the analytical equations into weak form and generating approximate al-

gebraic expressions which may be solved numerically. This process is the subject

of Chapter 4. As the solver developed in this work is to be started from scratch,

it was deemed an ideal opportunity to test alternative discretisation and stabili-

sation options. In this work therefore, the vertex-centred finite-volume technique

is used whereas most investigators use the cell-centred discretisation. The for-

mer technique should be competitive with the latter scheme and it has not been

extensively investigated in the context of Cartesian meshes. The vertex-centred

discretisation requires the construction of a so called dual mesh. In this work,

an alternative dual mesh construction is proposed in addition to the standard

method. These algebraic equations are stabilised using the artificial dissipation

scheme of Jameson et al. [1]. This scheme is also at present not popular in the

context of Cartesian meshes.

Following on from the spatial discretisation, the equations produced by the

discretisation process have to be solved. In this work only the steady state so-

lution to the Euler equations is sought. This is achieved through an iterative

solution procedure in which the governing equation transient term is manipu-

lated to render a Jacobi like process. Although this process is superbly memory

efficient, many iterations are required in order to reach a converged solution. For

this reason, in this work, solution acceleration is effected through the use of the

multigrid procedure of Brandt [5] in its nonlinear form vis. Full Approximation

Scheme (FAS) multigrid. This method requires the generation of successive coarse

meshes for which the agglomerated grid coarsening strategy of Lallemand et al.

[6] is employed. The description of the discretisation of the temporal term in

3
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1.3 Publication List

the Euler equations as well as the subsequent acceleration of the solution process

using volume agglomerated multigrid is the subject of Chapter 5.

The developed solver is then evaluated by applying it to a variety of test cases

that encompass the entire flow range of interest, vis. from incompressible sub-

sonic flow right through to compressible supersonic flow. The solutions obtained

are compared to either analytical solutions or published results of others. Grid

convergence studies are performed in all cases to ensure rigorous evaluation, while

the speed-ups obtained through the use of the agglomerated Multigrid method

are documented. The evaluation process is detailed in Chapter 6.

The work done as well as the most important findings are documented in

Chapter 7. Further, recommendations are also made for future work.

1.3 Publication List

The publications forthcoming from the research follow1:

1.3.1 Journal Papers

• Pattinson, J., Malan, A.G. & Meyer, J.P. (2006). An agglomerated

FAS multigrid accelerated cut-cell non-collocated Cartesian mesh method

for incompressible and compressible flow. South African Journal of Science,

Under review.

• Pattinson, J., Malan, A.G. & Meyer, J.P. (2006). A cut-cell non-

collocated Cartesian mesh method for compressible and incompressible flow.

International Journal for Numerical Methods in Engineering , Under re-

view.

1.3.2 Conference Papers

• Malan, A.G., Pattinson, J. & Meyer, J.P. (2005). Modelling incom-

pressible flow on cut-cell Cartesian meshes. 4th International Conference

1The full text versions of these publications can be found in the CD attached to this thesis.
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1.3 Publication List

on Heat Transfer, Fluid Mechanics, and Thermodynamics, HEFAT2005,

Cairo, Egypt.

• Malan, A.G., Pattinson, J. & Meyer, J.P. (2006). An edge-based

methodology for modelling incompressible flow on cut-cell non-collocated

Cartesian meshes. 5th SA Conference on Computational and Applied Me-

chanics, SACAM06, Cape Town, South Africa.

• Pattinson, J., Malan, A.G. & Meyer, J.P. (2006). An edge-based

methodology for modelling compressible flow on cut-cell non-collocated

Cartesian meshes. 5th SA Conference on Computational and Applied Me-

chanics, SACAM06, Cape Town, South Africa.

1.3.3 Technical Reports

• Malan, A.G., Pattinson, J. & Meyer, J.P. (2004). Development of a

fast non-conforming Cartesian mesh Euler solver for application to missile

design: Preliminary literature survey: Discretization and solution strategy.

for Denel Aerospace Systems (Pty) Ltd , Report number 0403, 1–18.

• Malan, A.G., Pattinson, J. & Meyer, J.P. (2004). Development

of a fast non-conforming Cartesian mesh Euler solver for application to

missile design: Preliminary report on the discretization: Developed 2-D

mesh-cutting and CFD capabilities. for Denel Aerospace Systems (Pty)

Ltd , Report number 0405, 1–21.

• Pattinson, J., Malan, A.G. & Meyer, J.P. (2005). Development of a

fast non-conforming Cartesian mesh Euler solver for application to missile

design: Multigrid solution acceleration: Developed solver technology. for

Denel Aerospace Systems (Pty) Ltd , Report number 0503, 1–8.

• Pattinson, J., Malan, A.G. & Meyer, J.P. (2005). Development of a

fast non-conforming Cartesian mesh Euler solver for application to missile

design: Multigrid solution acceleration: Mesh agglomeration technology.

for Denel Aerospace Systems (Pty) Ltd , Report number 0504, 1–11.
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• Pattinson, J., Malan, A.G. & Meyer, J.P. (2005). Development

of a fast non-conforming Cartesian mesh Euler solver for application to

missile design - Multigrid solution acceleration: Further results. for Denel

Aerospace Systems (Pty) Ltd , Report number 0506, 1–17.

• Pattinson, J., Malan, A.G. & Meyer, J.P. (2006). Development of a

fast non-conforming Cartesian mesh Euler solver for application to missile

design: Developed 3D preprocessor. for Denel Aerospace Systems (Pty)

Ltd , Report number 0602, 1–10.

1.4 Purpose of Study

To summarise, the purpose of this study is to develop a CFD tool that can be

used effectively in the concept phase of an aerodynamic design. To do this a

solver for the compressible and incompressible Euler equations is to be developed

in which alternative methods, not currently in widespread use in the context

of Cartesian meshes, for discretisation and stabilisation are to be investigated.

Further, the solver is to employ an explicit solution method accelerated with non-

linear multigrid and using volume agglomeration to generate the coarse meshes.
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Chapter 2

Problem Formulation

2.1 Introduction

The aim of this project is to model, to engineering accuracy, the steady-state

out-of-boundary layer flow patterns and pressures around complex geometries

subject to sub-, trans- and supersonic flow conditions. To do this efficiently,

current researchers [7, 8, 9, 10, 11, 12, 13] employ a subset of the Navier-Stokes

equations: the time-dependent compressible Euler equations1. The application

of these equations to model both compressible and purely incompressible flow in

a meaningful manner is the subject of this chapter.

2.2 Governing Equations

2.2.1 Euler Equations

The system of partial differential equations that describes the inviscid flow of an

incompressible or compressible fluid, contains relations that enforce the principles

of mass, momentum and energy conservation. The governing system of equations,

with artificial compressibility implemented, may be written for a Cartesian coor-

1Note that as per many others, the steady state solution of the Euler equations is obtained

by solving the transient system of governing equations from a given initial condition.
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2.2 Governing Equations

dinate system in the following non-dimensional conservative form

∂W

∂Q

∂Q

∂t
+

∂Fj

∂xj
= 0 (2.1)

where

W =













ρ

ρu1

ρu2

ρE













, Q =













p

u1

u2

ηT













, Fj =













ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

η(ρE + p)uj













(2.2)

and t is time, ρ is the density; uj the velocity component in direction xj, E is the

specific total energy (as given below), T is temperature, and p is the pressure.

Further, δij refers to the Kronecker delta function while η switches compressible

flow specific terms on and off as:

η =

{

1 for Compressible Flow

0 for Incompressible Flow
(2.3)

In the case of incompressible flow, the above definition results in the isothermal

form of the equations in which the energy equation plays no role. The artificial

compressibility preconditioning matrix ∂W
∂Q

is defined as

∂W

∂Q
=













1
c2

0 0 0

auu1

c2
ρ 0 0

auu2

c2
0 ρ 0

E
c2

ρ
2

ρ
2

ρCp













(2.4)

where Cp denotes specific heat at constant pressure and au is the generalised

artificial compressibility preconditioning coefficient. For compressible flow, au is

1 while for incompressible flow au is calculated in its localised form as proposed

by Malan et al. [14] as

au = 2(1− Ap) (2.5)
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2.2 Governing Equations

where Ap is a pressure sensor. In one dimension where p(x) is the pressure and

xm is a point in space, the latter is defined as

Ap = lim
x→xm+

|∇p(xm)−∇p(x))|
|∇p(xm)|+ |∇p(x))| (2.6)

where

∇p(xm) = lim
x→xm−

p(x)− p(xm)

x− xm
(2.7)

This definition results in au varying from 2 in smooth regions to nearly 0 in

regions with high gradients. The acoustic velocity c is calculated as follows:

c = η
√

γRT + (1− η)cτ (2.8)

where γ is the ratio of specific heats and R is the gas constant. Also, cτ is the

pseudo-acoustic velocity as defined by Malan et al. [14]:

cτ =

{

εcτ if |u| ≤ εcτ

|u| if |u| > εcτ

(2.9)

where |u| =
√

ujuj and εcτ is typically set to 10−5Vmax with Vmax being the

maximum velocity magnitude in the field. εcτ is defined in this manner to ensure

that the pseudo-acoustic velocities do not go to zero at stagnation points.

In all of the above equations, non-dimensional quantities are related to their

dimensional counterparts (depicted with superscript ∗) through the following re-

lations

t = t∗U∗

∞

L∗
uj =

u∗

j

U∗

∞

p = p∗

ρ∗
∞

U∗2
∞

T = T ∗

U∗2
∞

/Cp

ρ = ρ∗

ρ∗
∞

xj =
x∗

j

L∗
E = E∗

U∗2
∞

(2.10)

where t, L and T are respectively time, the characteristic length and temperature.

Further, the subscript ∞ denotes free-stream conditions with U∞ being the free-

stream velocity.
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2.2 Governing Equations

2.2.2 Constitutive Equations

For the case of compressible flow, closure to the above formulation is obtained by

assuming the gas to be ideal. The implication is that the following relations hold

p∗ = ρ∗RT ∗ (2.11)

where R is the gas constant given by R = Cp − Cv where Cv is specific heat at

constant volume. In this project it is assumed that the ratio of specific heats γ

is constant. Thus

γ =
Cp

Cv
(2.12)

which results in

R = Cp
(γ − 1)

γ
(2.13)

The resulting gas law written in terms of non-dimensional variables follows

ρ =
p

T

γ

γ − 1
(2.14)

Further, the specific total energy is given by

E =
T

γ
+

ujuj

2
(2.15)

where the first term on the right-hand-side embodies internal energy. The corre-

sponding non-dimensional expression for total specific enthalpy is

H =
T

γ
+

p

ρ
+

ujuj

2
(2.16)

Finally, the dimensional acoustic velocity is given by

c∗ =
√

γRT ∗ (2.17)

or in terms of non-dimensional relations

c =
√

(γ − 1)T (2.18)
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2.2 Governing Equations

where c = c∗/U∞. The above description of the physical system is only valid

for media which may be accurately described as a continuous medium, and is as

a result not applicable to rarefied gas (low densities) such as would be the case

at the outer bounds of the atmosphere. It is further assumed that heat transfer

through radiation is negligible and that no chemical reactions take place in the

gas. Finally, gravitational body-forces have been assumed negligible, which is a

reasonable assumption in the case of convection dominated flows [15].

2.2.3 Boundary Conditions

For a unique solution to the Euler equations, appropriate boundary conditions

are to be prescribed. These include the application of artificial boundary condi-

tions to the outer boundary which represents a truncated version of the spatial

domain. In the context of this work, two types of boundaries are encountered

vis. solid walls and far-field boundaries. In the case of the latter, characteristic

type boundary conditions are employed (this is to account for the truncation of

the domain).

The application of boundary conditions on the far-field of a domain depends

on the local Mach number (or pseudo Mach number in the case of incompressible

flow) and whether the flow is leaving or entering the domain. The four cases that

are encountered in this work are as follows: supersonic inlet, supersonic outlet,

incompressible as well as compressible subsonic in- and outlet conditions. At

the supersonic inlet, free stream conditions are prescribed, while at the outflow

all the flow variables are extrapolated from the interior of the domain via the

method described in Section 4.7. At a subsonic inlet, three flow characteristics

must enter the domain and one must leave, while at a subsonic outflow three

characteristics must leave and one must enter the domain. To determine which

characteristics must enter the domain and which must leave, an altered charac-

teristic type analysis based on one-dimensional Riemann invariants [7] is used.

The alteration is required to extend the method’s applicability to incompressible

flow systems. The procedure is outlined next.

Riemann invariants G, based on the free-stream and extrapolated values are

calculated as:
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2.2 Governing Equations

G∞ = u∞ · n−
2c∞
γ − 1

(2.19)

Ge = ue · n +
2ce

γ − 1
(2.20)

The subscript e denotes values determined from the extrapolated primitive vari-

ables (Section 4.7) and n denotes the boundary outward pointing normal unit

vector. The sonic velocities for both compressible and incompressible flows are

calculated as follows:

c∞ = η
√

(γ − 1)T∞ + (1− η)×max (
√

aru∞ · u∞, cτ ) (2.21)

ce = η
√

(γ − 1)Te + (1− η)c∞ (2.22)

Note that the above sonic velocities in the incompressible case are calculated as

shown in the interest of consistency with the artificial compressibility solution

method. Further, in this work the artificial compressibility related parameter, ar,

is set to 1.2. Finally, γ in Equation (2.20) is calculated as

γ = γairη +

(

c2
∞

T∞
+ 1

)

(η − 1) (2.23)

where in the case of incompressible flow T∞ = 1.0.

From the above, the sonic velocity at the boundary is now calculated as follows

cb = 0.25η(γ − 1)(Ge −G∞) + (1− η)c∞ (2.24)

and the magnitude of the velocity normal to the boundary is found by

un = 0.5(Ge + G∞) (2.25)

Using the normal velocity the velocity at the in- and outflow boundaries are

calculated as:

ub = u∞ + (un − u∞ · n) · n and ub = ue + (un − ue · n) · n (2.26)
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2.3 Conclusion

respectively. The temperature at the in- and outflow boundaries follow from

Tb = T∞

(

c2
b

c2
∞

)

and Tb = Te

(

c2
b

c2
e

)

(2.27)

respectively. Finally, the pressure at the boundary is determined by applying the

ideal-gas constant-entropy relations at the inflow and outflow conditions respec-

tively:

pb = p∞

(

Tb

T∞

)
γ

γ−1

and pb = pe

(

Tb

Te

)
γ

γ−1

(2.28)

The above relations hold for both compressible and incompressible flow systems.

At the surface of the aerodynamic object, a symmetry or slip boundary con-

dition is employed. Here the component of the velocity normal to the boundary

is set to zero i.e.

u · n = 0 (2.29)

while zero gradients in density and specific energy are applied as Neumann type

boundary conditions:

∂ρ

∂xj

nj =
∂E

∂xj

nj = 0 (2.30)

where the nomenclature is as previously defined.

2.3 Conclusion

In this chapter the mathematical description of the physics being modelled is

given. The governing equations are presented in a form appropriate for the solu-

tion of fully incompressible as well as fully compressible flows. The latter includes

sub-, trans-, and supersonic systems. Closure to the aforementioned system is

given by the definition of appropriate constitutive relations and boundary condi-

tions.
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Chapter 3

Mesh Generation

3.1 Introduction

The finite volume technique used in this work may be used to effectively solve

systems of coupled non-linear partial differential equations over arbitrary spatial

domains. It is however a prerequisite that the spatial domain be decomposed into

a number of discrete non-overlapping regions. This process is commonly known

as mesh-generation. A host of techniques have been devised by which to do this

as summarised by Baker [16].

The requirements for CFD computations during the concept design phase

poses strict limits on the choice of mesh generation technique. It is required that

the overall time taken to generate the mesh be short, while being insensitive to

surface definition inconsistencies and thus facilitate short total analysis times.

The amount of user input in the mesh and geometry generation is the major

factor in determining the speed at which these tasks are performed (which has

been shown can take more time to generate the mesh than model the flow [4]).

It is therefore required above all that the mesh be generated automatically and

with speed around complex geometries with as little user input as possible. At

present, this criterion leaves one with only two realistic choices of mesh generation

strategy:

• Unstructured triangular in 2D or tetrahedral meshes in 3D.
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3.1 Introduction

• Cartesian meshes consisting of mainly quadrilaterals in 2D and hexahedra

in 3D.

The unstructured meshes are generated by either the Delaunay triangulation

or the advancing front method. They have been used extensively in solving prob-

lems of all types [17, 18, 19, 20]. Indeed most of the solution technologies used in

this work were first conceived for use on this type of mesh. The main hindrance

in generating such meshes is the need for a consistent or “clean” CAD geome-

try. The latter is essential for surface triangulation, and is often not naturally

available during the initial phase of an aerodynamic design. As automatic tools

to resolve inconsistencies in CAD geometry do not always work effectively, the

desired water-tight geometry is only achieved by direct user intervention. The

latter is a tedious and human resource intensive exercise.

Cartesian meshes do not suffer from the requirement of a consistent CAD

geometry to the same degree as unstructured body-fitted meshes. They can

further be generated with great efficiency on complex geometries. This is demon-

strated by Aftosmis et al. [3] who shows that the complexity of the method is

O(N log N) where N is the number of cells. Cartesian mesh generation is also

known to be highly amenable to automation as has been reported by several

authors [3, 10, 12, 21, 22] but do however have two main drawbacks, viz. the

boundary of a Cartesian mesh is by definition a stair-step one1, and the cells are

refined as a rule in a two to one ratio. Related to the fixed refinement ratio is the

formation of so called hanging nodes (also referred to as non-conforming nodes).

These drawbacks can have unwanted accuracy implications if not appropriately

dealt with.

The choice between the above two competing mesh generation strategies de-

pends entirely on the intended application. For the solution of the Euler equa-

tions, anisotropic meshes are not required and in addition the quality of a Carte-

sian mesh is theoretically superior to that of a tetrahedral mesh of the same

grid resolution in all areas except at the boundary and where hanging nodes are

present [23]. This superior quality over a large part of the domain significantly

reduces the computational complexity as shown by Aftosmis et al. [3]. Berger

1Also, and perhaps more commonly known as a Cartesian mesh with embedded geometry.
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3.2 Cartesian Mesh Generation

et al. [21] has shown that the higher mesh quality and local regularity can also

improve the cache and parallel performance of the solver if written to take ad-

vantage of this feature. A further advantage of Cartesian mesh generation is the

ease with which mesh refinement can be done. Adaptive mesh refinement is not

implemented in this work but has been shown to work on these meshes by Popinet

[24]. In the related area of moving body problems, Cartesian meshes have further

been used with success by Yang et al. [25] and Murman et al. [10]. For these

reasons it was decided that the Cartesian method is the superior option for the

application under consideration.

This chapter will cover aspects related to the generation and preparation of

the mesh in anticipation of the chosen discretisation strategy. The focus will

be on the processes pertaining to furnishing the cut-cell mesh using a stair-step

Cartesian mesh as a starting point.

3.2 Cartesian Mesh Generation

The focus of this work is not on the generation of Cartesian meshes and therefore

commercial packages were used for this purpose. Harpoon [26] was the primary

package employed, although Gambit [27] (from Fluent software) was also used

in the early stages of the work. As both packages are unable to generate 2D

Cartesian meshes, code was written to extracts the latter from a 3D mesh.

Cartesian meshes contain geometric planes that run through the mesh without

intersecting any elements. These planes are made up of faces of 3D elements and

are therefore similar to a 2D Cartesian mesh. It is one of these planes that is used

to create the 2D mesh. Note that the planes only occur naturally throughout the

domain on meshes where no 3D cell cutting has been performed. This is why the

latter feature, which is available in Harpoon, was not used for the 2D cases and

it was opted to develop it. This is detailed next.

3.3 Redefinition of the Boundary

Overlapping stair-step Cartesian meshes are not optimal for computational use

as the accuracy of the solution on the boundary is compromised. They are thus
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3.3 Redefinition of the Boundary

altered to obtain a body conforming mesh. Two techniques are available for this.

The technique used by most groups is the so called cut-cell approach (Murman

et al. [11], Yang et al. [12], Aftosmis et al. [28], Coirier & Powell [8] and Ingram

et al. [4]). Here, the cells that intersect the boundary are cut so that their bound-

ary conforms to the local domain boundary. The other technique, as devised by

Koh et al. [29], involves using a least squares mesh-less method to address the

mesh boundary - geometry boundary interface. In this work the cut-cell approach

was selected as the latter technique is not inherently conservative. Both 2- and

3D cases are considered. As noted previously, the mesh generator Harpoon is

capable of furnishing a 3D cut-cell mesh which is why cut-cell technology only

needed to be developed for 2D cases.

3.3.1 Cell Cutting Algorithm

The code developed to effect the cell-cutting requires as input an overlapping

Cartesian mesh together with a representation of the geometry (see Figure 3.1).

Detail on the representation of the geometry and supported geometry file formats

is provided in Appendix B.2. It is desired that this cell-cutting algorithm robustly

and automatically furnish the solver with a mesh that conforms to the geometry

supplied, while maintaining a tolerance to “dirty” geometries.

The cell cutting algorithm commences by visiting all boundary nodes and

checking the attached edges for an intersection with the geometry. If no inter-

section is found, the checked edges are deleted (as these are located inside the

geometry) and the boundary redefined. If an intersection is found the edge is

marked for cutting. The procedure is then repeated until all edges completely

interior to the geometry have been deleted and all edges that intersect the bound-

ary found (which is the case when at least one edge attached to each boundary

node intersects the boundary). All boundary nodes are then deleted and the

new boundary is defined by creating nodes at edge-geometry intersections and

connecting these nodes with edges.

It is important to note that the above algorithm only works in isolation on

meshes that completely overlap the boundary. The generation of the 2D mesh

from a 3D one sometimes results in meshes where this is not so i.e. containing
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3.3 Redefinition of the Boundary

Reversed search
directions

Boundary

Non-overlapping mesh

Mesh

Figure 3.1: Examples of overlapping Cartesian mesh test-cases (with body geom-

etry definition) employed for testing of the developed preprocessor (cell cutting

and merging technology).

“voids”. An example of this can be found in Figure 3.1 (bottom right).

To address this, code has been written to find these voids and fill them with

triangles or quadrilaterals.

The above code has proven to be robust and generic in furnishing body-

conforming meshes. No information on the type of boundary element nor what

type of intersection the element has with the boundary is required. The algorithm

has also proven to be insensitive to “dirty” geometries because, for the redefinition

of an element, the intersections of only two edges with the boundary is all that is

required. The chances that either of these edges penetrate the geometry through
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3.3 Redefinition of the Boundary

a geometric inconsistency is small.

PSfrag replacements

Boundary

Overlapping mesh

PSfrag replacements

Original cut-cell mesh

Merged mesh

Figure 3.2: Shown is an example (left) of an overlapping Cartesian mesh generated

with the Harpoon software and (right) the mesh resulting after applying cell-

cutting (denoted “original cut-cell mesh”) and cell-merging.

3.3.2 Cell Merging Operation

Pure cutting of the edges and filling of voids, as described above, may result

in minuscule elements being created at the boundary. These elements are often

many times smaller than adjacent elements, and can seriously impair the accuracy

and stability of the solution scheme as well as result in long solution times. To

deal with this, offending elements are merged into their neighbours.

Cell-merging commences by performing a loop over all boundary elements.

If an edge attached to a particular element is smaller than the largest edge of

that specific element by more than a certain factor (in this work a factor of 2

was found to yield acceptable results for the cases tested), the edge is collapsed.

Of the two nodes attached to the edge to be collapsed, the node that does not

lie on the boundary is omitted. If both nodes lie on the boundary, then either

is selected for deletion. Finally, a second loop is performed over the boundary

elements and those that contain less than three nodes removed. An example of

the resulting cell-merged mesh is shown together with the original overlapping

mesh in Figure 3.2 (right).
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3.4 Conclusion

Note that the above algorithm does not, in most cases, explicitly collapse edges

within the small elements themselves. This is as all the edges in these elements

are often of similar lengths. Small elements are however destroyed from within

their neighbours. This means that the programmer does not have to choose the

neighbouring element in which to merge the small element. The aforementioned

makes for a robust and generic cell-merging operation.

Once again this algorithm does not require any information about the type

of element to be merged or the type of element that borders it. In this, it is

completely generic.

3.4 Conclusion

This chapter was concerned with the chosen mesh generation method viz. cut-cell

non-conforming Cartesian meshes. Technology developed to furnish 2D body-

conforming meshes from 3D ones was documented. In the following chapters the

resulting Cartesian meshes will be employed for the purpose of the discretisation

and solution of the system of governing equations previously detailed.
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Chapter 4

Spatial Discretisation

4.1 Introduction

The coupled non-linear partial differential equation set, which describes the flow

under consideration, is not at present solvable via analytical means over complex

domains. Their solution by numerical means is a viable alternative, with the

methods of weighted residuals being well suited. Two popular techniques are the

finite volume methods and the finite element methods. The former is currently

the most popular scheme when solving the Euler equations on unstructured grids.

In particular, the cell centred finite volume method is used almost exclusively in

the context of cut-cell Cartesian meshes [4, 7, 8, 9, 10, 12, 13, 21, 22, 23, 24, 28,

30, 31, 32, 33]. This is attributed in part due to the cell-centred method being

applicable in an unaltered state to non-conforming meshes (i.e. meshes containing

hanging nodes) [23]. The work of French [34] is, to the authors knowledge, the

only previous application of the vertex-centred method to Cartesian grids.

In this work, a vertex-centred edged based finite volume approach is employed,

primarily to evaluate and promote such technology in the context of Cartesian

meshes. This method is expected to be competitive with the cell centred variant

as it offers similar accuracy vs. computational cost [14] while allowing Dirichlet

boundary conditions to be enforced more directly (no extrapolation or ghost cell

generation is required). It also works in an unaltered form at hanging nodes,

but it is expected to reduce to first order accuracy here. For this reason, an

alternative implementation is in addition investigated as part of this research.
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4.2 Finite Volume Discretisation of the Euler Equations

The vertex-centred edged based finite volume method constitutes a notionally

second-order accurate (central difference) type method, which is known to exhibit

a tendency for odd-even decoupling of the solution. To suppress this tendency,

stabilisation has to be added. Stabilising such schemes without the loss of second

order accuracy is a major concern in the field of computational fluid dynamics

[35]. This has led to the development of various stabilising methods by researchers

such as Beam & Warming [36], Jameson et al. [1] and MacCormack & Baldwin

[37]. One such class of scheme is termed artificial viscosity or artificial dissipation,

and involves the addition of a biharmonic operator to the system of equations in

the regions devoid of discontinuities. A harmonic operator (first order accurate

upwinding) is to be added in the vicinity of shocks in order to render a stable

non-physical oscillation-free method [35]. Another class of method employed

to suppress non-physical oscillations is the so called upwind schemes (Godunov

type / Riemann solver). In the context of Euler flow on unstructured Cartesian

meshes, these schemes are the most popular [4, 8, 11, 13, 21, 23, 28, 30, 33] and

the artificial dissipation methods do not at present feature. Due to the latter, as

well as to in addition evaluate its applicability to Cartesian meshes, the Jameson,

Schmidt & Turkel [1] variant of artificial dissipation will be employed in this

work.

4.2 Finite Volume Discretisation of the Euler

Equations

The governing equations presented in Chapter 2 (Equation (2.1)) may be written

in non-dimensional integral form, on a three-dimensional Cartesian domain, by

integration over an arbitrary volume V ∈ R
3 enclosed by bounding surface A as:

∫

V

∂W

∂Q

∂Q

∂t
dV +

∫

A

FjnjdA = 0 (4.1)

The cell-centred and the vertex-centred finite-volume methods differ in the

manner in which the finite volume is constructed on a mesh. In the case of the

former, the cells generated during mesh generation constitute the finite volumes,

in each of which a node is placed at its geometric centre. The vertex-centred
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4.3 Dual Mesh Construction

method differs in that computational nodes are placed at the vertexes, around

which finite volumes are then constructed in order to furnish the so-called dual

mesh.
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Figure 4.1: Schematic of the standard median-dual-mesh construction methodol-

ogy (left) and the alternative scheme (right). Solid lines represent the computa-

tional edges and filled circles depict the nodes. The hatched region denotes the

finite volumes Vm (red) and Vo (blue). Note that both dual-mesh constructions

are derived from exactly the same mesh.

4.3 Dual Mesh Construction

As noted earlier, dual mesh construction is the process that produces the compu-

tational volumes employed by the vertex-centred scheme. In this work both the

standard dual mesh construction of Vahdati et al. [38] as well as a new alternative

method will be employed. The following sections describe each in detail.

4.3.1 Standard Dual Mesh Construction

This procedure will be discussed with reference to Figures 4.1 (left) and Figure 4.2.

In 2D, dual-mesh bounding surface facets (lines) are constructed by connecting
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Figure 4.2: Schematic of the standard dual-mesh construction methodology in

3D. Black lines denote the inactive edges, while thick red lines are the active

edges. The hatched regions are dual volume bounding surface facets.

edge centres (stars in Figures 4.1) with element centroids (open circles). These

facets are then joined to form an enclosed volume around a node (filled circles) as

shown schematically for a node o in the figure. The dual-mesh is constructed in

3D, by the definition of finite volume bounding facets formed by connecting edge

centres (stars) with face-centroids (open circles) and element centroids (triangles

in Figure 4.2). Two of the resulting facets for an edge s-t are shown in the figure

as the blue hatched surfaces. Further, the completed 3D volume around node s

is shown from various perspectives in Figure 4.3.

The above construction made use of surface and volume centroids. It is clear

from the respective figures that these calculations are to be made on arbitrarily
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4.3 Dual Mesh Construction

Figure 4.3: Two different views of the constructed dual-mesh volume for the

node indicated by the black circle. The figures on the left do not show any

hidden detail.

shaped elements and faces. These calculations are now discussed. A face centroid

(in 3D) or an element centroid (2D) refers the area weighted centroid of a 2D

element or a 3D element face. In order to ensure generic applicability, these are

calculated by a two step process. First an estimate of the centroid is obtained by

performing the vector average of all the nodal coordinates xi on the face as:

x∗
est =

∑N
i=1 xi

N
(4.2)

where N is the number face vertexes. By connecting all face vertexes to x∗
est,

a series of non-overlapping triangles are formed. The centroid of the face is

then calculated by performing the area weighted average of the centroids of these
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4.3 Dual Mesh Construction

triangles as:

x∗ =

∑N
i=1 x∗

i Ai
∑N

i=1 Ai

(4.3)

Here x∗ is the centroid of the face and x∗
i denotes the centroid of triangle Ai. The

latter is calculated simply by the averaged vector sum of the triangles coordinates

(which gives the exact centroid).

The above centroid calculation is valid for all convex faces and slightly concave

ones. It is invalid however, if all the nodes of the face do not lie in a plane. These

so-called “skew” faces are encountered in the 3D case as depicted in Figure 4.4. It

was found that all such skew faces, generated by Harpoon, contain a maximum of

four nodes while the “skewness” is limited to 40 degrees (user setting in Harpoon).

The centroid of this face is therefore approximated by the mid-point of the line

joining either of the opposing corners. To maintain the conservative nature of the

discretisation scheme, the same set of opposite corners used to find the centroid

must be used for this face whenever it is visited. Note that it is expected that

skew faces containing exactly four nodes is not likely to be universal to Cartesian

meshes, rather it is thought to be a product of the mesh generator and settings

used in this work.
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Figure 4.4: An example of a skew face. The two possible positions of the approx-

imate centroid are indicated.

The calculation of element centroid in 3D (the volume centroid of an arbitrary

3D element), again involves a two step process. Firstly, an estimate of the centroid

of the element is obtained by the sum of the nodal coordinates. The element is
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4.3 Dual Mesh Construction

then divided into tetrahedra by triangulating each face of the element and joining

the resulting vertexes to the aforementioned centroid (two such tetrahedra are

shown in Figure 4.2).

The actual element centroid is then calculated as the volume weighted average

of the centroids of the tetrahedra as:

x∗ =

∑N
i=1 x∗

i V
tet
i

∑N
i=1 Vtet

i

(4.4)

where xi is the centroid of the tetrahedron i (calculated from the average

vector sum of the vertexes) and Vi is the volume of the latter. This is calculated

as:

V
tet
i =

1

6

∣

∣

∣

∣

∣

∣

∣

∣

x1
1 x1

2 x1
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1 x2
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2 x3
3 1

x4
1 x4

2 x4
3 1

∣

∣

∣

∣

∣

∣

∣

∣

(4.5)

where xj
i refers to the coordinates of each node j in the tetrahedron. Now that

the above geometric entities have been defined the construction of the dual mesh

is continued.

The volume associated with a node m is designated Vm and the bounding

surfaces by Am and AmB
. The latter denote internal (dual) and computational

boundary surfaces respectively. To compute fluxes between nodes, the faces that

make up the boundary surface of the control volume have to be expressed math-

ematically. This is effected in an edge based manner through the definition of so

called edge coefficients. An edge coefficient is defined as the area of the bounding

surface of a computational volume associated with a particular edge multiplied

by the unit normal vector of that face. This is expressed for an edge between

nodes m and n as

Cmn =
∑

Amnq∈Amn

nmnqAmnq (4.6)

where Amnq refers to a facet of this surface and nmnq is the unit normal vector

to Amnq (in this work the normal vector is chosen to point from the smaller to

the larger node number). For the case shown in Figure 4.1, the edge coefficient
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4.3 Dual Mesh Construction

is formed from two surfaces q = 1 and q = 2. For the case shown in Figure 4.2,

the edge coefficient for the edge s-t is formed from four facets of which the two

corresponding to q = 1 and q = 2 are shown.

The calculation on the boundary is similarly performed for an edge m-p:

Bmp =
∑

AmpBq ∈AmpB

nmpBq

AmpBq (4.7)

where B refers to a boundary edge coefficient and nmnBq

is the outward pointing

normal vector to AmnBq . For the 2D case shown in the figure q is not required as

the edge coefficient is made up of only one facet labelled AmpB
. For the 3D case

shown in the figure for edge m-p, q = [1, 2] as depicted.

As Cmn = −Cnm, only one internal edge coefficient need be stored per edge.

This is where edge-based schemes are considerably more efficient than element

based methods. With respect to the boundary edge coefficient, two values are

stored at a node to ensure general applicability with regards to the dimension

of the problem (In 3D Bmp 6= Bpm ). The additional storage and computational

cost is negligible as this is only needed for boundary edges.

4.3.2 Alternative Dual Mesh Construction

It is evident from the previous section that, at hanging nodes, the standard

procedure results in dual-mesh volumes with geometric centres which are con-

siderably removed from the node. This has serious accuracy implications. In an

attempt to circumvent this, an alternative scheme was developed wherein nodes

are placed in the centroids of the mesh elements, and the elements then consti-

tute the dual-mesh or finite volumes. This is shown schematically in Figure 4.1

(right). The edges are then constructed between these nodes. The boundary vol-

ume is however to be given special treatment. As opposed to previously, a node

is not placed in the centroid of the element, but rather on the boundary. More

specifically, it is placed at the centre of the boundary edge (of the element). This

enables the boundary conditions to be applied as per the standard variant of the

vertex-centred scheme.
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Having defined the dual mesh, edge coefficients are calculated as before.

Equation (4.6) again applies to edge Υmn as does Equation (4.7) to edge Υmp.

As in the standard scheme internal edge coefficients are stored once per edge

as Cmn = −Cnm. This is not possible for the boundary edge coefficients as

AmpB
6= ApmB

even in 2D. On this account, two boundary edge coefficients need

to be stored. This however results in no alteration to the above methodology.

Importantly, the furnished dual-mesh fundamentally differs from that of the

standard vertex-centred scheme in that volume bounding surfaces may no longer

be assumed to intersect edges midway between nodes. In order to ensure spatial

accuracy on the new dual-mesh, the standard edge-based vertex-centred discreti-

sation scheme is to be accordingly generalised. This is detailed in Section 4.4.

The scope of this work was limited to the application of this alternative scheme

to 2D only. The method is however not limited to 2D, and is expected to be easily

extensible to 3D.

4.4 Discretisation of Convective Term

To benefit from the edge-based nature of the numerical procedure employed, the

convective term ∂Fj

∂xj
is discretised as

∫

Am

F ijnjdA ≈
∑

Υmn∩Vm

F
ij

mnCj
mn +

∑

ΥB
mn∩Vm

F ij
mBj

mn (4.8)

where Υmn denotes the edge connecting nodes m and n, and Fmn is the averaged

flux along the edge. The standard method employed to calculate the latter [14,

38, 39, 40] is

F
ij

mn =
1

2

(

F ij
m + F ij

n

)

(4.9)

On a finite difference mesh the above is thought of as formally second-order

accurate, which is however not the case [41]. In the case of the standard dual-

mesh construction methodology, this deficiency may be rectified by employing
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the following relation:

F
j

mn =









ρmnujmn

ρmnu1mnujmn + pmnδ1j

ρmnu2mnujmn + pmnδ2j

η(ρmnEmn + pmn)ujmn









(4.10)

where the over-line quantities are calculated for a scalar field φ as

φmn =
(φm + φn)

2
(4.11)

with φm and φn denoting the nodal (vertex) values.

It is implicitly implied in Equation (4.11) that the dual mesh bounding surface

at which the flux is being calculated midway between the nodes. In the case of

the proposed new dual-mesh construction procedure this is not always the case,

and Equation (4.11) is to be generalised as:

φmn = (1− rmn)φm + rmnφn (4.12)

where

rmn =

√

∑N
i (xmi

− xAi
)2

√

∑N
i (xmi

− xni
)2

(4.13)

Here xAi
denotes the Cartesian co-ordinate i of the spatial position where the

bounding surface of volume Vm, namely Am, intersects edge m− n. Further, δjj

is the Kronecker delta.

To ensure the overall computational efficiency of the numerical scheme, the

above edge-based flux calculation procedure is employed in both forms shown viz.

Equation (4.11) and (4.12). The latter, which is more costly to compute, is only

used in the irregular parts of the cut-cell Cartesian mesh i.e. where rmn 6= 1
2
.

4.5 Stabilisation: Artificial Dissipation

As noted in the introduction to this chapter, the equations will be stabilised

without the loss of second-order accuracy by using the scalar valued dissipation
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4.5 Stabilisation: Artificial Dissipation

(JST) model developed by Jameson et al. [1]. This method, which does not yet

feature in Cartesian mesh solvers, is suited to solving both compressible as well

as incompressible flows via the proposed single equation methodology. Further,

it has proven very effective when applied to complex flows [42] while offering a

balance between accuracy and computational efficiency [43].

As per Sørensen et al. [40], artificial dissipation is implemented in conjunction

with first-order accurate upwinding so as to avoid non-physical spurious oscilla-

tions across discontinuities in field variables i.e. across supersonic shocks. The

resulting stabilising term to be added to the right-hand-side of the discretised

governing equation is as follows

Dm = ηDsc
m + DJST

m (4.14)

where Dsc
m and DJST

m denote the shock-capturing and artificial dissipation terms

respectively. The shock-capturing or upwinding term is detailed first. It may

be calculated at each node via a scaled approximation of a Laplacian operator

similar to Mavriplis [18]:

Dsc
m =

∑

Υmn∩Vm

ε2ΛmnPmn (Wn −Wm) (4.15)

where ε2 is an empirical constant, the value of which is to be determined for each

problem through numerical experimentation (the objective is to use the smallest

possible value to stabilise and eliminate spurious oscillations). Further, Λmn is

the edge-based interpolated scaling factor and Pmn is the pressure switch. The

former scaling factor is calculated in an edge-wise manner at each node as

Λm =
∑

Υmn∩Vm

|umn ·Cmn|+ cmn |Cmn| (4.16)

where |Cmn| denotes the Euclidean norm of Cmn and c is the non-dimensional

acoustic velocity. In the case of the standard edge-based finite volume method,

all edge-averaged quantities (over-line) are calculated as the average of the two

nodal values. For the new alternative dual-mesh construction strategy with as-

sociated proposed edge-based flux averaging procedure, the over-line quantities
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4.5 Stabilisation: Artificial Dissipation

are however to be calculated via Equation (4.12). This is in the interest of con-

sistency.

The pressure switch is tasked with sensing large pressure gradients, and scal-

ing the above upwinding term accordingly. It is calculated in a similar way to

Mavriplis [18] for an edge m− n as follows

Pmn = max [|∆pm|, |∆pn|] (4.17)

where

∆pm =
√

12

∑

Υmn∩Vm
(pm − pn)

∑

Υmn∩Vm
(pm + pn)

(4.18)

The above term is large across a shock and tends to zero in smooth fields. The

result is that the numerical scheme is reduced to first-order accuracy in the vicin-

ity of shocks while the above upwinding term tends to zero away from shocks. In

these regions the JST stabilisation term is employed to effect stability and ensure

high resolution accuracy (notionally second-order accurate).

The JST stabilising term is constructed on a cut-cell Cartesian grid through

the use of a biharmonic operator as proposed by Mavriplis [18]. This involves

conducting two loops over edges, where the first loop entails the construction of

a harmonic operator. In the interest of computational efficiency, this is approxi-

mated for both compressible and incompressible flows as follows:

∇2Wm ≈ (1− η)
∑

Υmn∩Vm

∂W

∂Q

∣

∣

∣

∣

mn

(Qn −Qm) + η
∑

Υmn∩Vm

(Wn −Wm) (4.19)

where summation is performed over all edges connected to node m, and W and

Q denote the dependent variable vectors. The preconditioned relation employed

above for incompressible flow, is due to Malan et al. [14].

The biharmonic operator is constructed by essentially repeating the above

procedure as follows

DJST
m =

∑

Υmn∩Vm

−max [0, (ε4 − ηε2Pmn)] Λmn

(

∇2Wn −∇2Wm

)

(4.20)

where ε4 is an empirical constant to be determined similar to ε2.
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The calculation of DJST
m is known to be problematic on a boundary. The pro-

cedure used in this work to calculate this term is that proposed by Mavriplis [18].

The contribution from an internal edge mn (see Figure 4.5) in Equation (4.19),

is approximated by replacing wn −wm with wn′ −wm. Here wn′ is the projec-

tion of the value of wn on to the boundary edge. If a normal gradient of zero is

assumed, it can be shown that the contribution from edge mn in Equation (4.19)

is equal to C(wo − wm), where C is a constant. Note that the assumption of a

zero normal gradient here is consistent with the boundary condition applied at

slip boundaries. The calculation of the biharmonic operator (Equation (4.20)) is

unaffected.

wn

wm
w

′

n

wo

Figure 4.5: Calculation of artificial dissipation term on the boundary

4.6 Semi-Discrete Equation

The semi-discrete form of the governing equations (Equation (2.1)), that results

from the vertex-centred discretisation process described above now follows:
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4.7 Boundary Conditions

∂W

∂Q

∂Q

∂t
≈

∑

Υmn∩Vm

F
ij

mnCj
mn +

∑

ΥB
mn∩Vm

F ij
mBj

mn

+η
∑

Υmn∩Vm

ε2ΛmnPmn (Wn −Wm) +

∑

Υmn∩Vm

−max [0, (ε4 − ηε2Pmn)] Λmn

(

∇2Wn −∇2Wm

)

(4.21)

where the second and third terms on the right-hand-side are the convective part of

the equations. The last two terms are the stabilisation terms. The discretisation

of the temporal term on the left-hand-side is detailed in the next chapter.

4.7 Boundary Conditions

This section details the numerical implementation of the characteristic boundary

conditions described in Section 2.2.3. These characteristic far-field boundary con-

ditions require that an extrapolation be made from the interior of the domain to

the boundary. Unfortunately this is not as simple as it seems in the case of a su-

personic outflow. Here it is necessary that no reflection of downstream boundary

effects is propagated back into the domain. Two methods of extrapolation were

investigated to ensure this viz. the method of linear least squares and the method

of inverse distance weighting of Watson [44] (see Appendix C for a detailed ex-

planation). Both of the aforementioned methods require a minimum of three non

co-linear points in order to get a meaningful approximation. It has been found

that the selection of these points is crucial to ensure minimum reflection.

Figure 4.6 depicts a typical far field boundary on a Cartesian mesh. The

algorithm to find the points to be used in the extrapolation proceeds as follows.

Using stored local connectivity information around the boundary node of interest

(coloured red in the figure), the nearest internal node is found. In the figure it

is coloured blue. Again using local connectivity information all internal nodes

attached to this node are found (shown in green). These nodes, together with the

closest node, constitute the body of nodes from which information is extracted

for the purposes of extrapolation. If the boundary is a subsonic outflow, all the
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PSfrag replacements

a

bc

Figure 4.6: Selection of points for boundary condition extrapolation.

nodes are employed. To prevent reflection of the boundary information in the

case of a supersonic outflow, only nodes that are upstream of the current node

are used in the approximation.

To identify upstream nodes for the supersonic case, the local velocity vector

on the boundary node itself is used. As an example of this we consider node c in

Figure 4.6. If the flow is parallel to the green arrow, then any node to the left

of the constructed perpendicular line (green dashed line) may be used (of which

there are three in this case). If however the local velocity at node c is in the

direction indicated by the red arrow, one can see that only one of the identified

nodes can be selected. As this solitary node is insufficient for extrapolation

purposes, its local connectivity is queried to find more upstream nodes. These

nodes are coloured pink. To alleviate difficulties in finding sufficient numbers of

nodes in close proximity to the boundary node, downstream nodes that were less

than 3◦ from the perpendicular (dashed) line were also used in this work. Note

that boundary nodes are naturally never selected.

Both of the two chosen extrapolation methods were tested in this work. The

method of inverse distance weighting is computationally less expensive than the

least squares method and was found to work better for all the test cases presented.

35

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPaattttiinnssoonn,,  JJ  ((22000077))  

./Chapter4/Chapter4Figs/boundary_points_selection.eps


4.8 Conclusion

It was thus used as the method of preference.

4.8 Conclusion

In this section the procedure employed to discretise the governing equations on

Cartesian meshes is presented. To summarise, the vertex-centred finite volume

method is employed with two different definitions of the dual mesh viz. the

standard method of Vahdati et al. [38] and a newly developed alternative. To

account for the latter, the discretisation scheme is accordingly enhanced. A vari-

ant of the Jameson, Schmidt & Turkel [1] artificial dissipation scheme is used for

stabilisation purposes. Finally, the implementation of the characteristic far-field

boundary conditions is presented. In the following chapter, the procedure used

to solve the resulting semi-discrete equation set is discussed.
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Chapter 5

Temporal Discretisation and

Solution Procedure

5.1 Introduction

The previous chapters described the set of spatially discretised governing equa-

tions used in this work. What remains is to discretise the temporal term ( ∂Q

∂t

in Equation (2.1)), followed by the simultaneous solution of the resulting set of

discrete equations. This is the subject of this chapter.

The two main temporal discretisation strategies which may be employed for

the work under consideration are explicit and implicit. Implicit methods can

be loosely defined as those methods that may require matrix inversions to be

performed, while explicit methods naturally do not [20]. The main advantage of

the basic explicit method is that the memory cost is O(N), where N denotes the

number of unknowns to be solved for. The disadvantage is that there is a severe

time-step size restriction (Courant-Friedrichs-Lewy number), which results in the

need for a large number of time-steps (iterations) in order to reach the steady-

state (converged) solution. The basic implicit method does not pose the same

time-step restriction, but requires the setting up of a matrix, the storage cost

of which may be O(N 2). Further, the computational cost of iterative matrix-

inverters is O(N 2).

Due to the disadvantages of the basic explicit and implicit solution strategies,

they are rarely used to model flow on unstructured Cartesian meshes. To cir-
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cumvent the aforementioned disadvantages, more advanced methods have been

developed, and a summary of these in the context of Cartesian meshes now fol-

lows.

An implicit-time integration scheme currently in use on unstructured Carte-

sian meshes, which solves a matrix without storing it, is the so-called Lower-upper

Symmetric Gauss-Seidel (LU-SGS) as implemented by Ogawa [22]. In the cited

work this method is used in conjunction with a variant of the Full Approximation

Storage (FAS) multigrid method in order to ensure acceptable computational cost

(solution times) in addition to low storage. Another implicit method employed in

recent relevant research is a block-lower-upper symmetric Gauss-Seidel method

used by Wang & Chen [23] and Zhang & Wang [33]. The LU-SGS (BLU-SGS)

method requires less memory than the fully implicit scheme, while involving a

comparable amount of iterations. Finally, a semi-implicit method is used by Ham

et al. [9]. This involves decomposing the system of discrete equations into a num-

ber of one-dimensional problems that can be solved directly by inverting a set of

tridiagonal matrices.

The majority of authors using Cartesian meshes use explicit schemes. These

vary from multi-stage time-stepping (Coirier & Powell [8]), to employing Runge-

Kutta relaxation in conjunction with FAS-multigrid solution acceleration (Aftosmis

et al. [28] and Murman et al. [45]. The memory cost of these techniques is optimal

(O(N)), while computational cost tends toward O(N). The split type (functional

step) method developed by Popinet [24] (developer of GERRIS), employs a point-

relaxation scheme (mathematically analogous to explicit time-stepping), which is

again accelerated via FAS-multigrid.

It is clear from the above that, in the context of unstructured Cartesian mesh

based solvers, both implicit and explicit type temporal discretisation methods

are currently in use. Implicit methods range from block-implicit to matrix-free

LU-SGS used in conjunction with multigrid solution acceleration. The drawback

of the aforementioned methods is that the memory cost still far exceeds that of

explicit type schemes. Further, implicit methods require linearisation due to the

non-linear nature of the system of PDEs being solved, which notably adds to

computational cost. Explicit methods which are employed in conjunction with

Runge-Kutta relaxation and FAS- multigrid, are on the other hand found to be
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5.2 Jacobi Iterative Scheme

very promising. The required memory and solution cost is exceptional while no

linearisation is required. However, the cited explicit multigrid methods employ a

complex unstructured Cartesian-mesh data structure with which to generate the

course meshes. This data structure also limits the applicability of the solver to

Cartesian meshes.

Due to the above, a multigrid acclerated explicit temporal discretisation was

selected for the work under consideration. This ensures optimal memory effi-

ciency, such that large meshes, which may contain millions of elements, may

be solved on a standard desktop personal computer. Next, Runge-Kutta time-

stepping is employed in conjunction with FAS-multigrid to effect fast solution

times, which is again required when dealing with large meshes. Further, as the

discretisation scheme discussed in Chapter 4 is generically applicable to any mesh

type, it is undesirable and unnecessary to employ a Cartesian mesh specific data

structure for multigrid accleration. Rather a more generic FAS agglomerated

multigrid technique similar to that recently used by Sørensen et al. [40] (which

was applied to hybrid unstructured body-fitted meshes) will be employed.

5.2 Jacobi Iterative Scheme

As noted previously, an explicit multi-stage Runge-Kutta temporal discretisation

is employed. This is to ensure the matrix free nature of the system and hence

optimal memory efficiency. The solution is advanced from time t to t + ∆t via

a four stage Runge-Kutta method designed for application to partial differential

equations (Tannehill et al. [46]) as follows:

Q0
fm

= Qt
m

Qk
fm

= Q0
fm

+ αk
∂W
∂Q

−1
∆tk−1(RHSk−1

m ) for k = 1 to 3

Qtfτ +∆tτ
m = Q4

fm

(5.1)

where the coefficients αk are taken as 0.11, 0.2766, 0.5 and 1 as per Lallemand

et al. [6]. RHS constitutes all terms to the right of the equal sign in Equa-

tion (4.21). To save computational time, local time stepping is employed in
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addition to the stabilising terms (upwinding and artificial dissipation) being cal-

culated only at the first and third stages [41].

The maximum allowable time-step size is calculated at a node m such that

stability is ensured as:

∆tτm =
CFL ∆χm

|um|+ cm
(5.2)

where CFL is the Courant-Friedrichs-Lewy number (typically set to between 1.5

and 2) and ∆χm is a measure of the spatial cell / element size. The latter is

calculated as

∆χm =

√

(

1

∆xj∆xj

)−1

∣

∣

∣

∣

∣

∣

m

(5.3)

where ∆xj is the smallest distance in the xj direction to an adjacent node. This

time-step calculation procedure is similar to that used in finite difference elec-

tromagnetic wave propagation problems [47] and analogous to the effective ele-

ment size used in explicit finite element computational fluid dynamics calculations

(Zienkiewicz & Taylor [48]). The methodology may be implemented at a node m

in an edge-based manner as follows

∆tm = min

{

Υmn ∩ Vm

[

CFL ∆χm

|umn|+ cmn

]}

(5.4)

where the over-line quantities denote edge averaged quantities.

5.3 FAS Multigrid

Multigrid is a solution acceleration algorithm that has the potential of reduc-

ing the number of floating point operations required to simultaneously solve an

N × N system of equations, in a matrix free manner, from O(N 3) when the

Jacobi iterative method is used (which is the current basic method discussed in

the previous section), to O(N). This implies a significant potential reduction

in computational times. An explanation of the basic multigrid methodology is

detailed by Brandt [5], and more recently by Briggs et al. [49] and Sørensen [20].
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The underlying concept is relatively simple. When using an iterative scheme like

Jacobi or Gauss-Seidel, only high frequency errors are eliminated at each iter-

ation. This is because the nodes are only strongly connected with their direct

neighbours and it takes time for information to propagate through the mesh.

In the multigrid procedure, successive levels of coarse grids1 are generated and

information is passed between these grids allowing information to pass between

nodes that are far apart from each other relatively quickly. This means that low

frequency errors are eliminated more rapidly which enhances the overall solution

scheme convergence rate.

There are a number of different types of non-linear multigrid. They essentially

differ in the method used to generate the coarse grids. Algebraic multigrid uses

a mathematical operator that gives the effect of the coarse grids. The geometric

multigrid methods use the actual geometry and generate new meshes for each

coarse mesh level. Agglomerated multigrid methods are a mix between the afor-

mentioned two methods. Here, coarse meshes are generated by agglomerating

computational cells followed by the appropriate redefinition of volumes and edge

coefficients. In this work, the agglomerated multigrid method was selected as it

is possible to automate the agglomeration process and it is generally applicable

to any type of mesh.

5.3.1 Mesh Agglomeration Procedure

The strategy employed to generate the agglomerated or coarse mesh levels de-

pends on the type of mesh that is used. Structured finite-difference type meshes

lead very naturally to coarsening viz. by simply removing major grid lines. Com-

plex unstructured meshes need to be dealt with in a more sophisticated geometric

manner. Cut-cell Cartesian meshes fall somewhere in between. These grids con-

tain structured type regions but also decidedly unstructured areas. Examples of

the latter are boundaries and areas where hanging nodes are present.

The approaches prevalent in the literature when dealing with cut-cell un-

structured Cartesian meshes is essentially of the structured type [9, 28, 50]. This

1Note that the term “coarse grids” will be used to refer to both the geometric multigrid

form and its matrix-based algebraic multigrid equivalent.
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method makes use of the hierarchical nature of unstructured Cartesian meshes.

There is an obvious parent-child relationship in these meshes in which a par-

ent cell can consist of up to four children (conversely, four small quadrilateral

elements can be viewed as constituting one large quadrilateral element). The ag-

glomeration strategy involves identifying children cells and agglomerating them

into their parent cell. The child cells may be identified via either a tree based

data structure (such as that used in the generation of the mesh) or by an unstruc-

tured approach using space filling curves (as per Aftosmis et al. [28]). Examples

of agglomeration strategies using a tree based data structure can be found in the

work of Charlton [50] and Ham et al. [9].

An alternative coarse mesh generation strategy, which currently does not fea-

ture in the context of cut-cell unstructured Cartesian meshes, is the completely

unstructured type. This approach does not rely on the structured nature of the

mesh at all, and is therefore in principle, applicable to any type of mesh. The

method hinges on employing the local connectivity of the mesh, whereby nodes

that surround a so called super-node are agglomerated into one another. This

scheme has been successfully applied to body-conforming unstructured-hybrid

meshes in two and three dimensions by a number of researchers viz. Lallemand

et al. [6], Sørensen [20], Hannemann [51], Mavriplis & Venkatakrishnan [52]. Due

to its generic applicability, it not requiring a specific data structure, as well as it

being novel in the context of Cartesian meshes, the unstructured mesh agglom-

eration method will be used in this work.

5.3.2 Implemented Agglomeration Strategy

The selected agglomeration procedure (Hannemann [51]) commences by selecting

a so called super-node from the fine cut-cell mesh. A super-node is selected

according to one of the following four user-selected strategies:

• The “simple” strategy. This is the most simple of the strategies, where in

any instance, the first possible node is selected. With this strategy the first

super node would be the first node in the node table.
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• The “closest node” strategy. In this strategy the selected node will always

be the one in the list that is closest to a user defined spatial point.

• The “furtherest node” strategy. The chosen node will always be the fur-

therest node from a user specified spatial point.

• The “finite difference” strategy. In this strategy a node numbering scheme is

assumed such that the resulting coarse mesh would still be a finite difference

mesh if the fine mesh was one. It was developed for debugging purposes

but has been found to work on the Cartesian meshes under consideration.

Once a super-node has been found, its neighbours are fused into it (by means

of combining dual mesh volumes) in the following manner: First a loop is per-

formed over all the attached edges to identify the so called direct neighbours

(see Figure 5.1). The direct neighbours that have not already been fused with

a super-node, are fused to the super-node being dealt with. If there are four

or less direct neighbours attached to a specific super-node, a loop is in addition

performed over the edges attached to all non-fused direct neighbours, and indi-

rect neighbours identified. An indirect neighbour is a node that is connected to

two direct neighbours of a specific current super-node, as depicted in Figure 5.1.

Identified indirect neighbour-nodes are then fused to the super-node if they have

not already been fused. Note that indirect neighbours are only fused if there are

already direct neighbours in the fused set.

Once the above procedure has been completed for a specific super-node, a

front of nodes is defined. This consists of all direct neighbours of the nodes

that have just been fused to the super-node under consideration, with the added

criteria that they have not already been fused to a super-node. From this front,

a new super-node is chosen according to the following criteria (listed in order of

descending preference):

1. It is a boundary node on a corner in the domain e.g. trailing edge or corner

of the mesh.

2. It is a boundary node on the geometry.

3. It is a far-field boundary node
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4. The node is chosen using one of the user selected strategies described pre-

viously

In the case where a specific super-node does not contain a front (all its neigh-

bours have already been fused), the node table is traversed and a super-node

selected based on the user-selected strategy. This procedure continues until all

nodes in a specific mesh are either super-nodes or have been fused to one.

Edges

Current Node

Direct neighbour

Indirect neighbour

Figure 5.1: Direct and indirect neighbours as identified via edge-connectivity.

Once the above procedure has been completed, a loop is performed over all

super-nodes and those that are not agglomerated to at least one other node are

merged to a neighbouring super-node. This ensures that there is not an overly

large disparity between adjacent volume sizes in the new mesh.

On completion of the above procedure, coarse mesh edges are constructed by

connecting adjacent super-nodes. Adjacent super-nodes are defined as nodes that

share an agglomerated super volume boundary. These shared volume bound-

aries are identified by finding fine mesh edges that join nodes which are fused

into neighbouring super-node groups. The portion of the agglomerated or coarse

mesh volume bounding surface between two neighbouring super-nodes is math-

ematically expressed as the sum of the edge coefficients of the overlapping fine
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5.3 FAS Multigrid

mesh edges. This can be expressed in mathematical form for the edge coefficient

associated with the coarse mesh edge, Υ2h
mn between super-nodes m and n as

C2h
mn =

∑

Υh
mn∩A2h

mn

Ch
mn (5.5)

where Υh
mn refers to the fine mesh edges that overlap the boundary between the

super-node volumes denoted A
2h
mn. Edge coefficients of fine mesh edges that do

not overlap coarse mesh boundaries do not form part of the new mesh and are

ignored.

Boundary edge coefficients, which express the boundary of the domain, are

never ignored and all are added to their respective coarse mesh edges1

The above edge coefficient calculations apply to both discretisation schemes.

In the case of the alternative scheme, it remains to define the ratio rmn (Equation

4.13) on the coarse meshes. This is approximated using the following relation:

r2h
mn =

∑

Υ2h
mn∩V2h

m
rh
mn|Ch

mn|
∑

Υ2h
mn∩V2h

m
|Ch

mn|
(5.6)

where h and 2h refer to fine and coarse mesh entities respectively.

An example of the agglomeration process on a simple Cartesian type grid is

depicted in Figure 5.2. Shown in the top left figure is the red node that has been

selected as a super-node. Its direct and indirect neighbours which will be fused

into it are coloured green. In the background of this, the dual mesh is indicated

with the red dashed lines. Some of the volumes have been greyed out to help

identify them. In the top right figure the nodal front is constructed around the

fused nodes (coloured blue). In the bottom left figure the new agglomerated

coarse volumes are depicted. Here the fine mesh edges are divided into two

groups viz. the dashed edges which do not cross the new volume boundaries, and

the solid edges that do. Remember that only the edges that cross over coarse

mesh volume boundaries contribute their edge coefficients to the new coarse edge

coefficients. The final figure (bottom right) depicts the agglomerated (coarse)

dual-mesh shown.

1Note that to determine which edges these are, it is required that one determine to which

side of the super-node the fine mesh edge lies and to which adjacent super-node it is closest to.

45

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPaattttiinnssoonn,,  JJ  ((22000077))  



5.4 Formulation of FAS Multigrid

Having completed the agglomeration exercise, a check is performed on the

new coarse mesh to ensure its integrity. This involves the summing of edge

coefficients around super-nodes. These should sum to zero and this sum gives a

good indication of whether there are holes in the mesh or edges that are missing.

The above algorithm has been successfully implemented and is completely

automatic and robust. It can, in principle, be applied to any conceivable mesh

as it operates only on the data structure of the fine mesh.

Super nodes

Un-fused fine mesh nodes

Fused fine mesh nodes

Nodal front

Fine mesh edges

Dual mesh

Coarse mesh edges

Contributing fine mesh edges

Non-contributing fine mesh edges

Figure 5.2: The implemented course mesh generation strategy.

5.4 Formulation of FAS Multigrid

A description of the FAS Multigrid method can be found in Briggs et al. [49].

Only the final result as applied in this work is presented here. The discretised
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Euler equations to be solved (see Section 2.2) can be written in the following

non-linear algebraic form:

Ah(φ) = 0 (5.7)

where φ is the solution to the problem on the finest grid represented by the

superscript h, and A is the coefficient matrix. When an iterative solution method

is used, the above expression can be written as

Ah(v) ≈ 0 (5.8)

where v denotes the latest approximation to φ. The multigrid solution process

commences by performing a number of iterations or relaxation sweeps (employing

the multi-stage Runge-Kutta (RK) method as detailed in Section 5.2) on the finest

mesh. An improved approximate solution v is thus obtained. Next an altered

form of the above discrete equation is solved on a coarser grid. The discrete

equation solved for on the next coarser grid reads as

A2h(v2h) = τ 2h
h (5.9)

where the superscript 2h denotes the next coarser grid’s values and expressions

and the coarse grid correction term (also referred to as the source term). τ 2h
h is

calculated as:

τ 2h = A2h(I2h
h vh)− I2h

h Ah(vh) (5.10)

Here I2h
h represents the so-called restriction operator which is defined in Sec-

tion 5.4.2. To aid in the discussion later and to prevent confusion, I2h
h vh is from

this point forward, referred to as u2h. Equation (5.9) is relaxed on the coarse

grids to give a new approximation to v2h (an approximate solution to the altered

algebraic equation on the course mesh). Following on from the above, Equa-

tion (5.9) is set-up and solved for on all generated coarse meshes. Note that

boundary conditions are not applied on coarse grids explicitly.
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After having traversed all meshes (from finest to coarsest), the error calculated

on each course mesh is passed back (formally known as prolongation) down to

the next finer grid. On a generic coarse grid this error is calculated as:

e2ih = v2ih − u2ih (5.11)

from which the flow solution on the next finer mesh is updated as follows:

v2i−1h = v2i−1h + I2i−1h
2ih e2ih (5.12)

where I2i−1h
2ih is the prolongation operator that will be defined in Section 5.4.3.

5.4.1 The V-cycle

The solution process outlined above in which meshes are traversed from fine to

coarse and then back to fine is known as a V-cycle. This method is similar to

work done in the field by other researchers [6, 19, 20, 53]. The V-cycle has been

implemented in this work in the recursive form outlined by Briggs et al. [49]. In

a concise form the recursive V-cycle can be represented by:

v2i−1h ← V 2i−1h(v2i−1h, τ 2i−1h) (5.13)

which implies that given the approximations v2i−1h and τ 2i−1h the V-cycle function

denoted V will return a new approximation v2i−1h to the current mesh level. The

V-cycle function V 2i−1h is defined as:

1. Iterate (relax) A2i−1h(v2i−1h) = τ 2i−1h, v1 times. Note that on the finest

grid τ 2i−1h = 0

2. If 2i−1h represents the coarsest grid then go to step 3.

Else

• Calculate I2ih
2i−1hA

2i−1h(v2i−1h) and I2ih
2i−1hv

2i−1h

• Compute A2ih(I2ih
2i−1hv

2i−1h) on the next coarse grid.

• Calculate the correction source term τ 2ih = A2ih(I2ih
2i−1hv

2i−1h)−
I2ih
2i−1hA

2i−1h(v2i−1h)
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• Set as an initial approximation on the coarse grid v2ih = I2ih
2i−1hv

2i−1h

• Evaluate this function again on the next mesh v2ih ← V 2ih(v2ih, τ 2ih)

• Compute the error e2ih = v2ih − u2ih

• Update v2i−1h = v2i−1h + I2i−1h
2ih e2ih

3. Iterate A2i−1h(v) = τ 2i−1h, v2 times.

where v1 and v2 denote the number of relaxation sweeps performed on a mesh.

Note that this definition of V is recursive because the function V is called from

within itself (part of step 2). The optimal choice of v1 and v2 in the procedure has

been found to be flow regime dependent, i.e. sub-, trans- or supersonic. Typical

values used for v1 and v2 in this work range from as little as v1 = v2 = 1 on

supersonic cases to, v1 = v2 = 10 for subsonic cases. The values used for each of

the test cases is presented with the results (Chapter 6).

5.4.2 Restriction Operator

The restriction operator I2ih
2i−1h on the interior nodes of an agglomerated coarse

mesh is computed as a volume weighted interpolation. The restriction of v2i−1h

is computed as follows:

u2ih = I2ih
2i−1hv

2i−1h =

∑n
p=0 v2i−1h

p V 2i−1h
p

V 2ih
(5.14)

where n refers to the total number of fine mesh volumes fused into the coarse mesh

volume V 2ih. The restriction of the A2i−1h(v2i−1h) term is performed similarly.

5.4.3 Prolongation Operator

The prolongation operator I2i−1h
2ih presents a challenge on unstructured agglomer-

ated grids. This is as there is no obvious way in which to pass the errors between

meshes in an accurate and efficient manner. To guarantee efficient convergence

rates, the order of accuracy of the prolongation and restriction operators should

satisfy the following relation [54]:

mr + mp > m (5.15)
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where mr and mp are defined as the highest degree plus one of the polynomials

that can be exactly interpolated by the restriction and prolongation operators

respectively. Further m is the order of the partial differential equation to be

solved, which for the Euler equations is one. As the order of restriction operator

defined in the previous section is one, mr equals 2 and the relation is satisfied

with a prolongation operator of order zero. The order zero prolongation operator

can be written as

v2i−1h
p = v2ih (5.16)

for any p. This implies that the value on the coarse mesh node is applied to all

the fine mesh nodes (that make up that coarse mesh node). In this work it was

found that this operator was not sufficient and that improvements in convergence

could be realised if a higher order accurate prolongation operator was employed.

As a result, two different higher order operators were tested. These are the

inverse distance weighting operator of Watson [44] and the linear least squares

method as documented by Blazek [53]. After experimentation, the linear least

squares operator was found to result in superior multigrid performance and was

subsequently employed for all the cases presented in this report. Note that the

least squares method is presented in Appendix C.

5.4.4 Stabilisation

The stabilisation terms, described in Section 4.5, form part of the coefficient ma-

trix A in the FAS Multigrid scheme. As the final solution on the fine mesh is not

influenced by the solution on the coarser meshes, first order accurate schemes are

sufficient here [53]. Therefore, on coarse meshes first order accurate stabilisation

can be employed with the higher order stabilisation only used on the finest mesh.

This tactic has been employed with success previously by Mavriplis & Venkatakr-

ishnan [19] and Lallemand et al. [6]. In this work, it was found that it was only

necessary to use this on the compressible cases.
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5.5 Conclusion

In this chapter methods are presented by which to solve the discrete equations

derived in the previous chapter. As the basic Jacobi method is slow to converge,

a FAS multigrid method is employed. This method uses coarse grids generated

by volume agglomeration. In the following chapter the developed modelling tech-

nology will be evaluated in terms of accuracy and computational cost.

51

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPaattttiinnssoonn,,  JJ  ((22000077))  



Chapter 6

Results

6.1 Introduction

The preceding chapters detailed the mathematical development of a Cartesian

mesh-based solver for the efficient modelling of inviscid incompressible and com-

pressible flow. It now remains to evaluate the developed technology in terms of

accuracy and computational cost. For this purpose, the solver was applied to a

number of benchmark test cases from the literature, which span the entire scope of

flow regimes. These are: incompressible flow over a cylinder and a Van de Vooren

aerofoil at an angle of attack; sub- and transonic flow over a NACA0012 aerofoil

at an angle of attack; and a double wedge under supersonic flow conditions. The

results obtained using the solver are compared to the analytical solutions (where

they exist) or the solutions of others. For the purposes of evaluation, the following

comparisons are made:

• The predicted flow via both the standard and alternative schemes are com-

pared to that of a benchmark solution.

• The improvement in CPU time obtained from multigrid is assessed for each

discretisation method.

• The two discretisation methods are compared in terms of accuracy, as well

as computational cost.
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6.1 Introduction

In the interest of a rigorous investigation, a mesh convergence study was

performed for each test case using the grid convergence index (GCI) method of

Roache [55] (this procedure is detailed in Appendix A). The GCI error bound

obtained is quoted in all cases along with the ratio that indicates whether, in

each case, asymptotic convergence has been achieved. Further, actual CPU times

are quoted where computational performance is documented. The analyses were

performed on a PC with 3GHz CPU and 2GB of 400MHz DDR RAM.
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Figure 6.1: Cylinder incompressible flow test case - standard dual-mesh construc-

tion scheme: The fine mesh (top left) and corresponding first, second and fourth

coarse dual meshes.
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Figure 6.2: Cylinder incompressible flow test case - alternative dual-mesh con-

struction scheme: The fine mesh (top left) and corresponding first, second and

fourth coarse dual meshes.

6.2 Incompressible Flow: Cylinder in cross flow

The incompressible cross flow over a cylinder case poses a severe test for numerical

schemes, as no natural physical dissipation effects are present [56]. Further, the

problem contains two stagnation points while the analytical solution exists for

validation purposes. The chosen case therefore provides a strict test for both

the spatial discretisation accuracy as well as stabilisation aspects of a numerical

scheme.
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Figure 6.3: Cylinder incompressible test case: Cylinder surface pressures and

velocities (top) where the lines denote the analytical solution and symbols are the

calculated counterparts via the standard (std.) and alternative (alt.) schemes;

and convergence plots (bottom). In the figure, θ is the angular position on the

cylinder measured from the leading stagnation point in a clockwise direction.
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Figure 6.4: Pressure contours of cylinder test case.

The computational domain extends 10 diameters away from the cylinder. At

the far-field boundaries characteristic boundary conditions (Section 2.2.3) are ap-

plied while at the cylinder surface, slip conditions are employed. Various meshes

were generated for the purpose of the grid convergence study. A close-up view of

the finest meshes employed are depicted in Figures 6.1 and 6.2 (top left). These

meshes contained 27, 070 and 25, 886 computational nodes (cells) for the standard

and alternative schemes respectively. The finest three meshes produced results

which gave asymptotic convergence ratios of 1.033 and 1.06 for the standard and

alternative discretisation methods respectively. These results indicate that for

both discretisation schemes asymptotic convergence has indeed been achieved.

The finest mesh produced a solution with a GCI error bound of 0.95% for the

standard scheme, and 1.15% in the case of the alternative method (the error

bounds are calculated by comparing the analytical and predicted pressures on

the surface of the cylinder).

Five and four multigrid coarse meshes were employed for the standard and

alternative schemes respectively (depicted in Figures 6.1 and 6.2). The closest

node agglomeration strategy was used in the generation of these meshes. The

node-based coarsening ratios achieved were between 3.6 and 4.5 for all successive
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Figure 6.5: Van de Vooren test case - standard scheme: The fine mesh (top left)

and corresponding first, second and third coarse dual meshes.

levels of mesh coarsening. The number of relaxation iterations in the up- and

downward sweeps of the V-cycle (v1 and v2 from Equation 5.13) were set to 10

and 15 respectively.

The solution obtained and convergence plots are presented in Figure 6.3, with

pressure contours plotted in Figure 6.4. As shown, both alternative and standard

schemes resulted in similar solutions and at comparable multigrid computational

cost. The speed-up achieved via multigrid for the standard scheme was 12, and

6 for the alternative. Note however, that although there is a reasonable disparity

in speed-ups between the two schemes, the accelerated CPU times are almost
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Figure 6.6: Van de Vooren test case - alternative scheme: The fine mesh (top

left) and corresponding first, second and third coarse dual meshes.

identical.

6.3 Incompressible Flow: Van de Vooren Aero-

foil

The second numerical example involves the incompressible flow over a Van de

Vooren aerofoil with 15% thickness at 2◦ angle of attack. Once again this prob-

lem is purely convective and contains two stagnation points. An analytical solu-
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Figure 6.7: Van de Vooren test case - Solution (left) and convergence plot (right).

Here std. and alt. denote the standard and alternative discretisation schemes

respectively.

tion to this problem is also available. Similar to the previous test-case, slip type

boundary conditions were applied at the surface of the aerofoil while characteris-

tic conditions were prescribed at the outer boundary (15 chord lengths from the

profile). The computational meshes employed for the standard and alternative

dual-mesh construction strategies together with each set of multigrid agglomer-

ated meshes, in the vicinity of the aerofoil, are shown in Figures 6.5 and 6.6

respectively. The fine meshes in each case contain 15, 420 and 14, 748 compu-

tational points. For the multigrid run, three coarse meshes, generated with the

finite difference strategy, were used throughout. Node based coarsening ratios of

between 3.8 and 4.6 were achieved. The V-cycle relaxation settings v1 and v2

were both set to 10.

Figure 6.7 compares the aerofoil surface pressure coefficients predicted via the

various scheme variants to the analytical solution. From the convergence plot in

the figure it is clear that the alternative method only marginally out-performs the

standard form in terms of computational cost. Multigrid speed-ups of 35.46 and

30.49 are obtained for the standard and alternative cases respectively. The GCI

error bound, based on the error between the computed and analytical solutions,

is 0.22% for the standard case and 0.36% for the alternative case. Asymptotic

convergence ratios of 0.996 and 1.11 were achieved for both cases respectively.
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Figure 6.8: NACA0012 test cases - standard scheme: The fine mesh (top left)

and corresponding first, second and fourth coarse dual meshes.

6.4 Subsonic Compressible flow: NACA0012

The first compressible test case presented here involves subsonic flow over a

NACA0012 aerofoil at M = 0.63 and 1◦ angle of attack. The cut-cell meshes

in the vicinity of the aerofoil resulting from the standard dual-mesh construction

scheme and accompanying agglomerated coarse meshes (closest node agglomera-

tion strategy) are depicted in Figure 6.8. A similar plot, Figure 6.9, shows that

resulting from the new dual-mesh construction scheme. Four coarse meshes were

used for this problem, with resulting coarsening ratios of between 4.0 and 4.8
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Figure 6.9: NACA0012 test cases - alternative scheme: The fine mesh (top left)

and corresponding first, second and fourth coarse dual meshes.

for both schemes. The meshes extend 15 chord lengths away from the aerofoil

surface. In the case of the standard dual-mesh construction strategy, the com-

putational mesh contains 12, 819 nodes, while the developed dual-mesh strategy

results in 12, 160 nodes.

Figure 6.10 compares the solution of Sørensen [20] to the predicted pressure

coefficient on the surface of the aerofoil. For this test case, the standard and newly

developed finite volume methodologies once again resulted in similar solutions,

and at comparable computational cost. The GCI error bound, based on the

computed lift coefficient, is 0.41% for the standard scheme, and 0.39% for the
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Figure 6.10: Solution (left) and convergence plot (right) for the subsonic test

case. Here std. and alt denote the standard and alternative discretization schemes

respectively.
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Figure 6.11: Solution (left) and convergence plot (right) for the transonic test

case. Here std. and alt. denote the standard and alternative discretisation schemes

respectively.

alternative method. Asymptotic convergence was achieved as indicated by GCI

ratios of 1.001 and 1.02 for the standard and alternative schemes respectively.

In terms of multigrid performance, the number of relaxation iterations in the

up- and downward sweeps of the V-cycle found to produce best performance was

10 in both directions. The improvement in computational time achieved using

multigrid, based on a drop in residual of 6 orders of magnitude, are circa 19 times
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Figure 6.12: Pressure contours of the NACA0012 transonic test case.
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Figure 6.13: The effect of the choice of agglomeration strategy the NACA0012

transonic test case.
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Figure 6.14: Supersonic test case - standard discretisation scheme: The fine and

coarse dual meshes.

better than the Jacobi scheme for both discretisation schemes.

6.5 Transonic Compressible flow: NACA0012

The second compressible example is concerned with the transonic flow over a

NACA0012 aerofoil at M = 0.8 and 1.25◦ angle of attack. The same computa-

tional meshes used for the previous test case are once again employed (Figures 6.8

and 6.9). The solutions obtained are compared to the benchmark solution in Fig-

ure 6.11. The GCI error bound for the standard scheme is 0.737%, and for the

alternative scheme 0.835%. Asymptotic convergence was once again obtained as

indicated by calculated ratios of 0.999 for both cases. Once again these values

are based on the computed lift coefficient. The aforementioned is an indication

of the equivalence in accuracy between the two schemes employed. As further

shown in the figure, similar computational costs and multigrid speed-ups were
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Figure 6.15: Supersonic test case - alternative discretisation scheme: The fine

and coarse dual meshes.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

PSfrag replacements

CPU time [minutes]

L2(Residual)

std. single grid

std. multigrid

alt. single grid

alt. single grid

std. single grid

std.& alt. multigrid

alt. multigrid

top

bottom

std. scheme
alt. scheme

analytical

C
p

Coord

θ [rad]

p [Pa] / u [m/s]

std. u1 [m/s]

std. u2 [m/s]

std. p [Pa]

alt. u1 [m/s]

alt. u2 [m/s]

alt. p [Pa]

Single grid

Multigrid

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0  0.5  1  1.5  2  2.5  3  3.5  4

PSfrag replacements

CPU time [minutes]

L
2
(R

es
id

u
a
l)

std. single grid

std. multigrid

alt. single grid

alt. single grid

std. single grid

std.& alt. multigrid

alt. multigrid

top

bottom

std. scheme

alt. scheme

analytical

Cp

Coord

θ [rad]

p [Pa] / u [m/s]

std. u1 [m/s]

std. u2 [m/s]

std. p [Pa]

alt. u1 [m/s]

alt. u2 [m/s]

alt. p [Pa]

Single grid

Multigrid

Figure 6.16: Supersonic test case: Solution (left) and convergence plots (right).

achieved. The latter was circa 3 in CPU time for a drop in residual of 6 orders

of magnitude. In this case, the number of relaxation iterations was set to 4 on

both up- and downward sweeps. A contour plot of the predicted non-dimensional
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6.6 Supersonic Compressible flow: 10◦ Double Wedge

pressure around the aerofoil is presented in Figure 6.12. The shocks on both

upper and lower surfaces of the aerofoil are clearly visible.

Finally, as the transonic test case contains subsonic regimes as well as shocks,

(being representative of a range of flow regimes) it was selected to evaluate the

various coarsening strategies. The CPU times resulting from each are depicted

in Figure 6.13. What is clear from the figure is that all but the “furtherest node”

option resulted in similar CPU times. The latter was inferior to the others, which

is expected due to it generating coarse meshes which are least representative of

the fine mesh.

6.6 Supersonic Compressible flow: 10◦ Double

Wedge

For the supersonic flow test case, the 10◦ double-wedge benchmark problem at

M = 2.0 was modelled. The angle of attack for this problem is 0◦ and super-

sonic in- and outflow boundary conditions were employed to allow shocks to cross

the computational domain boundaries. The fine mesh for the standard and new

dual-mesh construction schemes is shown together with a selection of their ag-

glomerated coarse meshes in Figures 6.14 and 6.15. The fine mesh on the standard

scheme contains 16, 237 nodes and the alternative scheme, 15, 770 nodes. The fi-

nite difference agglomeration scheme was used to generate the coarse meshes.

Node-based coarsening ratios of between 3.7 and 4.3 were achieved and a single

relaxation sweep on each leg of the V-cycle was found to yield best convergence.

The solution is compared to the analytical solution in Figure 6.16. The GCI

error bound for the standard scheme is 1.333% and the alternative scheme 1.264%,

with GCI convergence ratios of 1.022 and 0.998 for the standard and alternative

schemes respectively. These results are based on the error between the analytical

and computed solutions. As per the previous test cases, the two discretisation

schemes resulted in comparably accurate solutions and comparable computational

cost and multigrid speed-ups.

Finally, this test case further provides a strict test for the far-field boundary

conditions. This is as strong supersonic shocks cross this boundary. The calcu-
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Figure 6.17: Mach number contours of the supersonic test case indicating the

success of the non reflecting boundary conditions.

lated Mach number contours over the domain are presented in Figures 6.17 and

6.18. As shown, the shock clearly crosses the far field boundaries indicating the

efficiency of the boundary modelling technology.

6.7 Spatial Convergence of Artificial Dissipation

The stabilisation scheme used in this work is not popular in the context of Carte-

sian meshes, which is thought to be due to the scheme being better suited to

meshes with less dramatic mesh stretching ratios i.e. not a factor 2 or more.

Although overall asymptotic convergence is achieved in the test cases presented,

it is therefore of interest to quantify the influence of the artificial dissipation

terms. Of interest here is firstly, if the dissipation terms are showing asymptotic

convergence behaviour (these terms should tend towards zero), and secondly the

relative magnitude of these terms as compared to the discretised spatial (convec-

tive) term. It is proposed to obtain a measure of this by comparing the spatial

and the dissipation’s contribution to the converged residual, to one another.
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6.7 Spatial Convergence of Artificial Dissipation
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Figure 6.18: Mach number contours on supersonic test case.

For the purpose of this exercise, the subsonic case is considered as it does not

contain any shock regions. This is so that the artificial dissipation can be assessed

without the influence of the shock capturing (first order accurate) term. The Eu-

clidean norm of the spatial contribution towards the residual as well as that of

the dissipation terms, for various meshes, is shown in Figure 6.19. It can be seen

from the figure that in the case of the standard scheme, the dissipation over the

finest three meshes shows asymptotic like convergence to the same extent as the

spatial terms. Further, the dissipation is always considerably smaller than the

spatial terms. However, in the case of the alternative scheme, the aforementioned

convergence is not evident, which is to the detriment of solution accuracy. This is

thought to be due to the off-centre face positions (with regard to placing on the

edges) being accounted for in the discretisation of the convective term, but not

when calculating dissipation. This is the case as artificial dissipation does not

naturally lend itself to account for off-centre face positions (apart from affecting

the dissipation scaling parameter Λ (Equation 4.16)). It may therefore be advan-

tageous to employ a high-resolution upwinding flux limiter in conjunction with

the alternative discretisation method (that does explicitly account for off-centre

face positions).
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6.8 Results discussion
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Figure 6.19: Spatial convergence of artificial dissipation terms on the NACA0012

subsonic test case.

6.8 Results discussion

Table 6.1 summarises all the numerical results presented in this chapter. In

the first column, the number of nodes that the fine meshes contain is listed.

Looking first at solution accuracy, the GCI error bound for all cases is less than

2% and there is little difference between the standard and alternative schemes.

The ratio that indicates asymptotic convergence, denoted rasym, is again in all

instances comparably close to one. At this point a comment on the GCI process

is necessary. The definition of the characteristic length parameter used for the

evaluation of the GCI error bound and asymptotic convergence on a Cartesian

mesh, is not obvious. In this work three definitions were investigated as described

in Appendix A viz. r = N1

N2

1/D
; r = E1

E2
and where r is the smallest uncut edge in

the mesh (not on a cut cell). Unfortunately, it was found that the GCI process

is very sensitive to which definition is employed. It was found that the smallest

edge length parameter resulted in GCI error bounds which appeared the most

consistent with the actual error trend (difference between predicted and actual
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6.9 Conclusions

solution) and it was therefore selected for the purposes of the study. Other

concerns about this process stem from the ideal requirement of a refinement ratio

of circa 2. This is not always achievable with the meshes under consideration

due to limitations in generating very fine meshes (memory cost) and accuracy

concerns with very coarse meshes. It is important to note however that despite

the aforementioned limitations, consistent convergence data is obtained from this

study and that the GCI process does serve as an indicator of spatial convergence.

In terms of multigrid, near optimal average node coarsening ratios (rcoarse)

were achieved for all cases. The multigrid speed-ups in CPU time range between

a factor 2 and one order of magnitude. The speed up is seen to be flow regime

dependent with the best performance achieved when no shocks are present. This

may be alleviated by applying more advanced relaxation operators[20]. Unfortu-

nately, a comparison of the multigrid performance to others was not possible in

a quantitative sense, as little 2D multigrid accelerated results on Cartesian grids

have been published. A result found in the literature, that is qualitatively com-

parable, is the 5 times speed-up achieved by Aftosmis et al. [28] on a 3D ONERA

M6 wing transonic case. This is of similar order to that found in this work.

Finally, in the interest of completeness the CPU/time per node is given in the

last column. This value is based on the time taken for the multigrid accelerated

solution process to reach a residual of 1 × 10−6 (drop in residual of circa 5 or-

ders). As opposed to multigrid speedup the worst performing case was that of

the incompressible flow over a cylinder. This may be a flow / mesh related effect,

but further investigation is in order.

6.9 Conclusions

The modelling technology presented in this work has been validated by applica-

tion to incompressible and compressible sub-, trans- and supersonic flow prob-

lems. It is demonstrated that the new dual-mesh construction strategy with en-

hanced discretisation scheme, offers the same accuracy as the standard scheme.

Both methodologies were found to have similar computational cost and conver-

gence characteristics. Achieved multigrid speed-ups ranged from one order of

magnitude for subsonic flow, to a factor 2 for the supersonic case.
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Test Case Finest

mesh size

(nodes)

GCI rasym rcoarse Multigrid

speed-up

CPU-time/Node

(sec/node)

Incompressible

Cylinder std. 27, 070 0.95% 1.033 3.81 11.8 0.059

Cylinder alt. 25, 886 1.15% 1.06 3.87 6.0 0.081

Van de Vooren aerofoil std. 15, 420 0.22% 0.996 3.87 35.46 0.0033

Van de Vooren aerofoil alt. 14, 748 0.36% 1.11 3.89 30.49 0.0047

Compressible

NACA0012 subsonic std. 12, 819 0.41% 1.001 3.92 12.21 0.0127

NACA0012 subsonic alt. 12, 160 0.39% 1.02 3.87 14.04 0.0105

NACA0012 transonic std. 12, 819 0.74% 0.999 3.92 3.08 0.0168

NACA0012 transonic alt. 12, 160 0.84% 0.999 3.87 2.94 0.0204

Double wedge supersonic std. 16, 237 1.333% 1.022 4.11 1.35 0.0053

Double wedge supersonic alt. 15, 770 1.264% 0.998 4.05 1.23 0.0058

Table 6.1: Summary of results. Here rasym refers to the ratio that indicates

asymptotic convergence and rcoarse refers to the average node based coarsening

ratio between coarse grid levels.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The aim of this project was to develop an in-house CFD tool that could be

used effectively in the concept phase of an aerodynamic design. This tool solves

the Euler equations for compressible and incompressible flows through the use

of a single equation set. These equations are bounded though the application

of characteristic far-field boundary conditions that have been extended in their

application to incompressible problems.

Non-conforming cut-cell Cartesian meshes are employed for numerical solu-

tion purposes. These meshes can be generated with great efficiency on complex

geometries and have a high tolerance for so-called “dirty” geometries. Commer-

cial mesh generators are employed to generate these meshes but are limited to

generating 3D meshes only. Thus code was developed to extract a 2D mesh from

a 3D one. Related to this was the development of a cell cutting algorithm to

furnish a body conforming mesh using an overlapping grid (that results from the

aforementioned extraction) as input. This algorithm was developed such that it

retains the innate tolerance for “dirty” geometries in Cartesian meshes.

As the CFD tool developed in this work was started from scratch, alternative

techniques, which are not at present popular in the context of cut cell Cartesian

meshes, were investigated. The foremost of these are the single equation set used

to model both incompressible (via artificial compressibility) and compressible

flow and the use of the vertex-centred finite volume discretisation strategy. This
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strategy operates in an unaltered form in the cut cell and hanging node regions

of the mesh and should prove competitive with the cell centred scheme prevalent

in the context of cut cell Cartesian meshes. As the accuracy of the scheme in the

region of hanging nodes was expected to be reduced to first order, an alternative

dual mesh construction strategy was developed and the discretisation suitably

enhanced. The scope of this study was limited to applying this alternative strat-

egy to 2D problems only, but it is expected that it will easily extend to 3D. To

prevent the odd-even decoupling of the solution known to occur with this type

of discretisation, the Jameson, Schmidt & Turkel [1] artificial dissipation scheme,

which is novel in the context of Cartesian meshes, was employed.

Explicit multi-stage Runge-Kutta temporal discretisation is employed to ob-

tain the steady-state solution to the discretised governing equations. This is

coupled with FAS multigrid to accelerate convergence. The coarse grids used

in the multigrid process were generated through a generic volume agglomeration

technique. This method of generating the coarse grids is novel in the context of

Cartesian meshes.

The developed modelling technology was evaluated by applying it to suit-

able test cases that cover the entire flow range of interest. The accuracy of the

scheme is evaluated by comparing the predicted flows to published or analytical

solutions. The multigrid solution acceleration strategy employed in this work

has been shown to provide reductions in the CPU time needed for a converged

solution of between circa two and twenty. It is also noted that the standard and

alternative dual mesh construction strategies provide similar results with similar

convergence characteristics. In an attempt to provide a scientific validation pro-

cess, a grid convergence study, based on the calculation of the GCI error bound,

was performed for all test cases. Overall asymptotic grid convergence was ob-

tained throughout, with error bounds of less than 2% for all cases. To further

evaluate the method and to test the influence of the dissipation scheme, a study

was performed on the grid related convergence of the latter. It was found that al-

though the dissipation was behaving appropriately when employed together with

the standard dual mesh construction, it was not in the case of the alternative

scheme. This is suspected to be due to the dissipation scheme not naturally
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lending itself to account for off-centre face positions that occur with the alterna-

tive construction. It is believed that this should be further investigated by the

application of a more compact stabilisation method.

7.2 Future Work

The scope of this study was limited to the solution of the 2D Euler equations. A

3D preprocessor, to implement the standard vertex-centred discretisation strat-

egy, was developed but the alternative form was not implemented. The following

are recommended extensions of this work:

• First and foremost, is the extension of the solver to 3D as well as the imple-

mentation of the alternative discretisation scheme into the 3D preprocessor.

• As discussed the artificial dissipation does not work well together with the

alternative dual mesh construction scheme. It is recommended that a more

modern stabilisation scheme be implemented and the alternative dual mesh

construction re-evaluated. Here it is important that the stabilisation scheme

selected be capable of taking into account the off-centre face positions in

the dual mesh.

• In this work, grid independent solutions were obtained by brute force i.e.

generating a mesh, obtaining a solution and then refining the mesh man-

ually where necessary. This method is not practical in the context of a

concept screening tool and a more elegant solution could be obtained by

the implementation of a grid adaption routine.
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Appendix A

Verification and Validation of

Code

A.1 Introduction

In this work the results of the code are verified using the techniques presented

by Slater [57] in his tutorial. This tutorial follows published AIAA Guidelines

[58]. It should be noted here that there is no set standard for the verification and

validation of CFD software. Indeed there is, according to Slater [57], “professional

disagreement” on the exact procedures for this.

A.2 Convergence Analysis

Two types of convergence are assessed in this study. The first, iterative con-

vergence, is a concerned with how much a solution changes per iteration. The

second, spatial or grid convergence, deals with how much a solution changes when

the grid is refined. An iterative convergence study for each test case can be found

the relevant sections in Chapter 6. Here, solutions in which the Euclidean norm
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A.2 Convergence Analysis

of the residual (all terms on the right hand side of Equation 4.21) drops below

1e− 6 are said to have converged.

The procedure for verifying spatial grid convergence is based on the calculation

of three parameters that indicate if grid convergence has been achieved. These

parameters are; fexact an estimate of the solution at zero grid spacing, the so-

called Grid Convergence Index (GCI) which is an estimated error bound for the

spatially converged solution, and rasym which indicates if asymptotic convergence

is achieved. These parameters are calculated from the results of three successively

refined meshes, differentiated by the definition of a characteristic length.

No standards exist for determining the characteristic length of a Cartesian

mesh and in this work three different characteristic lengths are defined. The first

is the physical length of the one side of the smallest Cartesian cell in the mesh

i.e. not a cut-cell. A further characteristic length based on the total number of

nodes is defined as per the tutorial as

r =
N1

N2

1/D

(A.1)

where r is the grid refinement ratio, N the total number of nodes from a mesh

and D is the mesh dimension. Note that N1 > N2. The final parameter used is

based on the number of edges in the mesh and is defined as simply

r =
E1

E2
(A.2)

where E is the number of edges in the mesh. Similar to the above convention,

E1 > E2. All three characteristic lengths are used in the following stages and

the results are compared. To obtain accurate results it is desired that the char-

acteristic lengths of successive grids vary by a ratio of 2 or as close as possible to

this. In other words if a grid has a spacing of h then the finer grid would have a

spacing of approximately h
2
.

All three of the parameters to be calculated depend on an estimate of the

order of convergence of the scheme. To find this value, denoted p, it is instructive

to look at the error in any numerical method. The error e is defined as the
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A.2 Convergence Analysis

difference between the actual solution φ and the estimated solution v and can be

written as

e = φ− v = Chp + Higher order terms (A.3)

where C is a constant. This can further be rewritten as a function of a charac-

teristic parameter of the solution, such as lift, denoted f from here on,

E = fexact − fh = Chp + Higher order terms (A.4)

There are three unknowns in this equation and thus it can be solved with the

solutions of three successively refined grids. To this end the above equation is

rewritten in the following form.

f 4h − f 2h

f 2h − fh
− 1− r

p

1
rp−1

= 0 (A.5)

This equation is solved for p using the bisection method [59]. It has been previ-

ously stated that the discretisation used in the work is notionally second order

accurate. This means that, in this work, p ≈ 2.

Given the value of p the first of the three parameters, fexact can be calculated.

This parameter, an estimation of the exact solution of a numerical problem at

zero grid spacing, is calculated using a Richardson extrapolation as suggested by

Roache [55]:

fexact = fh +
fh − f 2h

rp − 1
(A.6)

The second parameter, the GCI, is now calculated, for each pair of meshes as:

GCI0 = Fs ∗

∣

∣

∣

f2h−fh

fh

∣

∣

∣

rp − 1
GCI1 = Fs ∗

∣

∣

∣

f4h−f2h

f2h

∣

∣

∣

rp − 1
(A.7)

where Fs is a factor of safety. In this work the value of 1.25 was used. Using this

information the third parameter can now be calculated,

rasym =
GCI1

2pGCI0
(A.8)
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A.2 Convergence Analysis

This convergence parameter provides information on whether asymptotic conver-

gence has been achieved. Asymptotic convergence is said to have been achieved

when it is evident that further levels of refinement will not change the value of p.

This is indicated by the value of rasym which will tend to one, once asymptotic

convergence has been achieved.
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Appendix B

Preprocessor

B.1 Introduction

The major parts of the preprocessing phase of a run are covered in Chapter 3. In

this section a brief description of how the preprocessor interprets the geometry

for the cell-cutting algorithm will be given. Further, the method employed to

change the element based data structure of the mesh from the mesh generator to

the edge based data structure used in the solver is discussed.

The preprocessor and the preprocessing phase of any run is responsible for

taking the mesh generated by a mesh generator and delivering it in a form suitable

for the solver i.e. to perform all computations on the mesh that do not change per

iteration in the solver. This phase includes the extraction of a 2D mesh from a 3D

mesh, cell-cutting, marking boundaries for the application of boundary conditions

and applying the discretisation strategy.

This phase is to be performed on meshes that may contain, in 3D, hexahedron

(brick), tetrahedron, prism (wedge) and pyramid type elements and in 2D trianglar

and quadrilateral type elements. Further these meshes will contain hanging nodes.

The preprocessor should also be fast and exhibit O(N) complexity, where N is

the number of nodes and should be able to interpret the chosen mesh generators

file format (Gambit neutral file format).
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B.2 Geometry Interpretation

B.2 Geometry Interpretation

A multitude of geometry definitions are available. These range from very simple

systems such as STL (which is just a surface triangulation), to complex NURBS

format such as STEP. There also are a number of propriety formats available, with

an associated licence fee. Aftosmis [60] uses a surface triangulation approximation

of the CAD geometry. This triangulated geometry is then interpreted by the

preprocessor. Charlton [50] uses a parametric representation of the geometry. In

this work it was decided that the geometry be interpreted by the following existing

geometry protocols STL (used by Harpoon), STEP and IGES. OpenCASCADE

[61] open source C++ libraries were employed for this purpose as it contains all

the necessary file readers and geometry functions.

B.3 Mesh Data Structure Manipulations

In this work the preprocessor was separated into two separate codes for the 2D

and 3D cases respectively. This is not strictly necessary but it was found that

many of the algorithms used in the 2D work did not simply scale to 3D. This is

particularly noticeable in the algorithms used to change the element-based data

structure into an edge-based one.

A mesh generated using a typical mesh generator consists of a numbered

node table containing node coordinates and an element table consisting of node

numbers that make up individual elements. Other information such as boundary

nodes is communicated differently in the various formats but typically a list of two

dimensional boundary elements is stored. This is the case with the Gambit generic

mesh file format that the chosen mesh generator [26] is capable of generating. This

is what is referred to as the element based format. The construction of the edge-

based vertex-centred dual-mesh requires the addition of, among other things, an

edge table to this existing format.

The mesh from the mesh generator is made up of four very specific 3D element

types and two, 2D element types. Boundaries between elements are not explicitly

defined and it is possible for elements of different types to lie next to one another.
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B.3 Mesh Data Structure Manipulations

This results in both duplicate edges as well as overlapping faces. As the latter two

are mathematically unacceptable entities, they are removed by the preprocessor.

A graphical view of some of these discrepancies encountered in the various meshes

is presented in Figure B.1. This process will now be described.

To aid the discussion of the removal of these discrepancies it is necessary to

first mention the data structure of both 2 and 3D elements. It is obvious that in

removing these inconsistencies one can no longer retain the specific element types

used by the mesh generator and that a more generic format must be developed.

The format chosen in this work requires that three data-tables be constructed for

each element. The three tables are:

• A list of nodes. A numbered list of nodes that form the element.

• A face table. This contains a list of all faces in the element in terms of local

node number as defined by the above list.

• An edge table. This table lists all the edges in the element, once again in

terms of local node numbers.

All elements contain these tables but in the case where an element is of a

standard type, it is unnecessary to store the face table and edge table more than

once for the whole mesh. In 2D and for the 2D boundary element table in the

3D case the face and edge tables are redundant. Instead nodes are stored in the

element’s node list consecutively such that each node is connected with an edge

to its neighbours in the table.

The procedure for removing these discrepancies is divided into two phases,

detection and removal. In the 2D case the only discrepancies that occur are

those surrounding hanging nodes. To detect hanging nodes in this case a table of

all elements in which a node appears is created. As hanging nodes only occur in

Cartesian mesh regions one can correctly assume that an interior hanging node is

only surrounded by two neighbouring elements1. On the boundary any existing

hanging nodes are detected because they are those boundary nodes that occur in

only one element.

1Note. This step is performed after the splitting of the 3D mesh into a 2D mesh and before

the cell-cutting occurs.
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B.3 Mesh Data Structure Manipulations
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Figure B.1: Face discrepancies in element-based data structure. In this figure

adjacent elements have been moved apart to reveal the adjacent element faces

(coloured). It is then evident that the edges on the blue face on the left are not

duplicated exactly on the right. This implies duplicate edges and is corrected by

splitting up the blue face on the left to reflect the coloured faces.
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B.4 Speed

The discrepancies caused by internal hanging nodes are removed by finding the

missing neighbouring element and adding the hanging node to its node table. To

reduce searching in the mesh, these elements are found using the node-element

table.

In 3D the procedure is different as mesh discrepancies are caused by mis-

matched faces as opposed to mismatched edges. These mismatches are not only

caused by hanging nodes but also by different elements types neighbouring each

other. An algorithm based on numbers of elements connected to a node is bound

to fail as there is no clear-cut criterion here. Instead discrepancies in the mesh

are detected by checking if every face in every element has a neighbouring face

in another element1. Should a face not match any of its neighbouring faces, that

face is then marked. A search is then conducted of all unmatched faces to find

faces that should be combined. These will be faces that are co-planar with- and

completely contained within another unmatched face. If one is looking for neigh-

bours of a small face that lie within a large face, this condition will not be met.

This is however, of no concern as the link will be made from the larger face.

Once the mismatched faces have been found, they are described consistently

in the large element by adding faces to that elements face table. As this process

then invalidates other faces the procedure is performed again to fix those faces. It

has been found that only two loops are necessary to fix any mesh although this is

not assumed in the program and this procedure will be repeated until no further

inconsistencies have been found. This procedure has been found to be robust and

capable of redefining all inconsistent faces encountered to date. Having removed

all these discrepancies an edge table is built for the dual mesh construction.

B.4 Speed

To compliment the speed of mesh generation and solution process it is important

to make the preprocessing step as fast as possible. In this work we seek to ensure

1Note that this holds even on the boundary as all boundary faces are duplicated in a 2D

boundary element table. Thus each boundary element should match with the corresponding

face in its neighbouring 3D element.
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B.4 Speed

the computational cost of preprocessing a mesh varies linearly with the number

of nodes in the mesh. That this has been obtained is clear from Figure B.2 for

the 2D preprocessor and Figure B.3 for the 3D preprocessor.
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Figure B.2: Performance of the 2D preprocessor in terms of time on three

NACA0012 test cases.
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Figure B.3: Performance of the 3D preprocessor in terms of time on three

NACA0012 test cases.
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Appendix C

Extrapolation and Interpolation

Procedures

For the application of the characteristic boundary conditions and the prolonga-

tion operators extrapolation and interpolation operators are needed. Two such

operators have been employed. These are the method of linear least squares and

the method of inverse distance weighting of Watson [44].

The method of linear least squares attempts to generate a planar approxima-

tion to the values at the selected points. This plane is then used to provide an

approximation to the value at a particular point of interest . To determine the

coefficients of the plane P(x0, x1) = a0 + a1x0 + a2x1 the following equation must

be solved,





∑M
i=1 Pi

∑M
i=1 x1iPi

∑M
i=1 x0iPi



 =





M
∑M

i=1 x0i

∑M
i=1 x1i

∑M
i=1 x1i

∑M
i=1 x2

1i

∑M
i=1 x0ix1i

∑M
i=1 x0i

∑M
i=1 x0ix1i

∑M
i=1 x2

0i









a0

a1

a2



 (C.1)

where x0 and x1 are the coordinate directions, P refers to the value of interest at

each selected point. M is the total number of selected points. A direct Gauss-

elimination solver [59] was coded to solve this equation.
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The method of inverse distance weighting computes a weighted average of all

selected points to provide an estimate of the value at a point of interest. The

following equation is used

Pboundary =

∑M
i=1

Pi

di
∑M

i=1
1
di

(C.2)

where di =
∑M

i=1(xboundary − xi)
2 i.e. the shortest distance between the each of

the selected nodes and the current boundary node.
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