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Abstract

The main purpose of the natural immune system is to protect the body against any unwanted for-
eign cells that could infect the body and lead to devastating results. The natural immune system
has different lymphocytes to detect and destroy these unwanted foreign patterns. The natural
immune system can be modeled into an artificial immune system that can be used to detect any
unwanted patterns in a non-biological environment. One of the main tasks of an immune sys-
tem 1s to learn the structure of these unwanted patterns for a faster response to future foreign
patterns with the same or similar structure. The artificial immune system (AIS) can therefore be
seen as a pattern recognition system. The AIS contains artificial lymphocytes (ALC) that clas-
sify any pattern either as part of a predetermined set of patterns or not. In the immune system,
lymphocytes have different states: Immature, Mature, Memory or Annihilated. Lymphocytes in
the annihilated state needs to be removed from the active set of ALCs. The process of mov-
ing from one state to the next needs to be controlled in an efficient manner. This dissertation
presents an AIS for detection of unwanted patterns with a dynamical active set of ALCs and
proposes a threshold function to determine the state of an ALC. The AIS in the dissertation uses
evolutionary computation techniques to evolve an optimal set of lymphocytes for better detec-
tion of unwanted patterns and removes ALCs in the annihilated state from the active set of ALCs.
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Opsomming

Die hoofdoel van die biologiese immuun stelsel is om die liggaam te beskerm teen enige ongewen-
ste vreemde selle wat die liggaam kan binnedring en sodoende skade aan die liggaam veroorsaak.
Die immuun stelsel in die menslike liggaam het verskillende limfosiete wat die ongewenste selle
raaksien en vernietig. Dit is moontlik om die biologiese immuun stelsel te modeleer as *n kun-
smatige immuun stelsel wat gebruik kan word om enige ongewenste patrone in *n nie-biologiese
omgewing raak te sien. Een van die hoof funksies van die biologiese immuun stelsel is om die
struktuur van die ongewenste selle aan te leer om sodoende ’n vinniger immuun reaksie teenoor
moontlike toekomstige ongewenste selle met naastenby of presies dieselfde struktuur te hé. Die
kunsmatige immuun stelsel (KIS) kan dus gesien word as 'n patroonherkenningstelsel. Die KIS
gebruik kunsmatige limfosiete (KLS) wat enige patroon kan klassifiseer as deel van 'n vooraf-
bepaalde stel patrone al dan nie. In die immuun stelsel het die limfosiete verskillende toestande:
Onvolwasse, Volwasse, Geheue en Vernietig. Die KILS’e wat in die vernietig-toestand is, moet
van die aktiewe stel van KLS’e verwyder word. Die proses om van een toestand na ’n ander
toestand oor te gaan moet op ’n doeltreffende wyse bepaal en beheer word. Die verhandeling 1&
'n KIS voor om ongewenste patrone met ’n dinamiese aktiewe stel van KLS’e te herken en stel
'n toestands-veranderingsfunksie voor om die toestand van *n KLS te bepaal. Die KIS in die ver-
handeling maak gebruik van evolusionére komputasie tegnieke om n optimale stel van KLS’e te
evoleer wat ongewenste patrone beter kan herken, en verwyder KLS’e in die vernietig-toestand
vanuit die aktiewe stel van KLS’e.

Studieleier: Prof. A.P. Engelbrecht
Departement Rekenaarwetenskap

Graad: Magister Scientiae
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Chapter 1
Introduction

Classification is the process to orderly separate a group of similar patterns into classes according
to structure or characteristics common to each class. Various classification models have been
developed, which can be broadly divided into two classes of algorithms. The first class of algo-
rithms include decision trees [70], rough sets [58, 61] and rule induction [83], while the second
class includes algorithms that model a natural process. Examples of these are the artificial neural
network that models the biological neural network in the brain [6], evolutionary computation
techniques that model the natural evolution of organisms [1] and swarm intelligence that mod-
els the behavior of a structured collection of interacting organisms to solve a global objective
[47]. The modeling of natural processes has also proven to be successful in classification prob-
lems, optimisation problems, control, pattern matching and data mining. These computational
techniques are usually trained with negative and positive examples that have been pre-classified
according to a specific concept or rule. This training method is known as supervised learning
and the trained model must be able to correctly predict or classify any pattern not seen before.
Classification models have also been developed using unsupervised learning algorithms where
the training process consists of automatically discovering similar patterns in data without relying
on an external teacher [51].

Recently, artificial immune systems (AIS) have been developed as an alternative classification
algorithm. An AIS is modeled after the natural immune system (NIS) to detect foreign patterns
in a non-biological environment. The NIS has the ability to not only learn valid patterns and
recognise foreign patterns (or anomalies), but also has the ability to memorise general foreign
pattern structures [56, 63]. Contrary to standard classification algorithms, the AIS can be trained

on positive patterns alone. After training on positive patterns, the artificial immune system can
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detect or distinguish negative patterns from the positive patterns. The AIS can thus be used as a
classification algorithm where one class (the positive patterns) is separated from all other classes

(the negative patterns).

The AIS has mostly been used in anomaly pattern detection where detectors are trained with
negative selection using a set of positive patterns [16, 28, 29, 37, 39, 40, 49, 50, 74, 75]. The
detectors are randomly initialised or constructed from a genetic library [38]. The patterns rep-
resented by the trained detectors can also be used as training data for other classification algo-
rithms [16]. The detectors can also be trained with a training set of positive and negative patterns
[38, 64].

The AIS proposed in this thesis uses a set of mature artificial lymphocytes (ALCs) to detect
negative patterns. An ALC in the AIS becomes mature after the ALC has been trained on a set of
positive patterns. This set must represent a good distribution of positive patterns or a complete
representation of positive patterns. The ALCs can be trained with negative or positive selection.
The ALCs with poor detection of negative patterns need to be distinguished from the ALCs with
a good detection of negative patterns. It is important to distinguish between these types of ALCs
to remove the ALCs with poor detection of negative examples from the set of ALCs, i.e. to
guarantee an optimal set of ALCs with a high probability to detect negative patterns. This dis-
sertation has as its main objective to develop an AIS where an optimal initial set of ALCs are
evolved using a genetic algorithm (GA). The goal of the GA is to evolve individual ALCs with
the least overlap with existing ALCs in the set and with the maximum space coverage of possible
negative examples. The GA was chosen as optimisation method since the GA guarantees local
optimum solutions. With each new ALC that must be added to the set of existing ALCs, the
least overlap restriction forces the GA to explore different regions in the search space that are not
yet covered by the existing set of ALCs. These evolved ALCs are then trained using positive or
negative selection, and it is determined how well the trained set of ALCs perform on a number of
classification problems. As a sub-objective, the dissertation proposes a method to dynamically
determine the status of an ALC, which can be annihilated, mature or memory. The status of
an ALC is determined based on the number of negative patterns detected, the space covered by
the ALC and the number of patterns presented to the ALC to classify. The status of an ALC
indicates the detection performance of the ALC. Annihilated ALCs are poor detectors and are
removed from the ALC set.
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The rest of the dissertation is organised as follows:

Chapter 2 introduces the natural immune system and explains how the natural immune
system protects the body against viruses, bacteria and any pathogenic material that can
damage the body. The different types of lymphocytes and the life cycle of a lymphocyte

are discussed.

Chapter 3 gives an overview of evolutionary computation. The chapter presents the differ-
ent recombination operators, selection methods and also gives a summary of the different
evolutionary computation (EC) paradigms. Sufficient background on EC is provided only

to support the development of the approach to evolve a set of ALCs.

Chapter 4 gives background on existing artificial immune system models or models that
originated from ideas from immunology. Applications of the artificial immune system are

also discussed.

Chapter 5 explains how artificial lymphocytes cover the non-self space and how their re-
ceptors are initialised. The training of an artificial lymphocyte is explained. The require-
ments for classifying a non-self pattern are also presented, and the hit ratio function is
introduced. The three status types that artificial lymphocytes can assume in the artificial
lymphocyte’s life cycle are prioritised into low, medium and high. The life counter thresh-

old function, that determines an artificial lymphocyte’s state, is presented and explained.

Chapter 6 explains how one of the evolutionary computation paradigms (as discussed in
chapter 3) will be used in the proposed genetic artificial immune system (GAIS) to evolve
an initial set of ALCs.

Chapter 7 presents experimental results to illustrate and to discuss the behavior of GAIS
on different classification problems which were collected from the UCI Machine Learning
Repository [7]. The influence of the GAIS parameters on its performance is also investi-
gated.

Chapter 8 concludes this dissertation and presents ideas relating to possible future work.
Appendix A lists the publications derived from this dissertation.
Appendix B lists and defines the symbols used throughout this dissertation.

Appendix C lists and defines the abbreviations used throughout this dissertation.
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Chapter 2
The Natural Immune System

“While lions pounce on zebras and robins peck at worms,
the leukocytes in our own body devour invading germs”

- Perspective in Biology and Medicine 32:61, 1988.

The body has many defense mechanisms, among others are the skin of the body, the membrane
that covers the hollow organs and vessels and the immune system. The immune system reacts
to a specific foreign body material or pathogenic material (referred to as antigen). During these
reactions a ‘memory’ is built up of regular encountered antigen. The obtained memory speeds
up and improves the reaction of the immune system to future exposure to the same antigen. Due
to this reason defense reactions are divided into three types: non-specific defense reactions, in-
herited defense reactions and specific defense reactions [56]. The immune system forms part
of the specific defense reactions. The classical view of the immune system is that the immune
system distinguishes between what is normal (self) and foreign (non-self or antigen) in the body.
The recognition of antigens leads to the creation of specialised activated cells which inactivate
or destroy these antigens. The natural immune system mostly consists of lymphocytes and lym-
phoid organs. These organs are the tonsils and adenoids, thymus, lymph nodes, spleen, Peyer’s
patches, appendix, lymphatic vessels and bone marrow. Lymphoid organs are responsible for the
growth, development and deployment of the lymphocytes in the immune system. The lympho-
cytes are used to detect any antigens in the body. The immune system works on the principle of
a pattern recognition system, recognising non-self patterns from the self patterns [63]. Recently
Matzinger [54, 55] introduced the danger theory. The main idea of the danger theory is that the
immune system distinguishes between what is dangerous and non-dangerous in the body. The

danger theory differs from the classical view in that the immune system does not respond to all
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foreign cells, but only to those foreign cells that are harmful or dangerous to the body. The rest of
this chapter explains the development of the different cell types in the immune system, antigens
and antibodies, immune reactions and immunity types and the detection process of foreign body
material.

2.1 Antibodies and Antigens

Within the natural immune system, antigens are material that can trigger immune response. An
immune response is the body’s reaction to antigens so that the antigens are eliminated to prevent
damage to the body. Antigens can be either bacteria, fungi, parasites and/or viruses [71]. An
antigen must be recognised as foreign (non-self). Every cell has a huge variety of antigens in
its surface membrane. The foreign antigen is mostly present in the cell of micro-organisms and
in the cell membrane of ‘donor cells’. Donor cells are transplanted blood cells obtained through
transplanted organs or blood. The small segments on the surface of an antigen are called epi-
fopes (as shown in Figure 2.1). Epitopes trigger a specific immune response and antibodies bind
to these epitopes [56].

Antibodies are chemical proteins. In contradiction to antigens, antibodies form part of self and
are produced when lymphocytes come into contact with antigen (non-self). An antibody has a Y-
shape (as shown Figure 2.1). Both arms of the Y consist of two identical heavy and two identical

light chains. The chains are distinct into heavy and light since the heavy chain contains double
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Bone Marrow

Figure 2.2: White Cell types

the number of amino-acids than the light chain. The tips of the arms are called the variable re-
gions and vary from one antibody to another [71]. The variable regions enable the antibody to
match antigen and bind to the epitopes of an antigen. After a binding between an antibody and
an antigen’s epitope, an antigen-antibody-complex is formed, which results into the de-activation
of the antigen [56]. There are five classes of antibodies: IgM, IgG, IgA, IgE, IgD [56].

2.2 The White Cells

All cells in the body are created in the bone marrow (as illustrated in Figure 2.2). Some of
these cells develop into large cell- and particle-devouring white cells known as phagocytes [71].
Phagocytes include monocytes, macrophages and neutrophils. Macrophages are versatile cells
that secretes powerful chemicals and plays an important role in T-Cell activation. Other cells

develop into small white cells known as lymphocytes.

2.2.1 The Lymphocytes

There are two types of lymphocytes: the T-Cell and B-Cell, both created in the bone marrow. On
the surface of the T-Cells and B-Cells are receptor molecules that bind to other cells. The T-Cell
binds only with molecules that are on the surface of other cells. The T-Cell first become mature
in the thymus, whereas the B-Cell is already mature after creation in the bone marrow. A T-Cell
becomes mature if and only if it does not have receptors that bind with molecules that represent
self cells. It is therefore very important that the T-Cell can differentiate between self and non-
self cells. Both T-Cells and B-Cells secrete lymphokines and macrophages secrete monokines.
Monokines and lymphokines are known as cytokines and their function is to encourage cell

growth, promote cell activation or destroy target cells [71]. These molecules on the surface of a
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cell are named the Major Histocompatibility Complex Molecules (MHC-molecules). Their main
function is to bring to light the internal structure of a cell. MHC-molecules are grouped into two
classes: Type I and Type II. MHC-molecules of Type I is on the surface of any cell and MHC-
molecules of Type II mainly on the surface of B-Cells [63]. There are two types of T-Cells: The
Helper-T-Cell and Natural-Killer-T-Cell. Each of these types of lymphocytes are described in
detail below.

2.2.1.1 The B-Cell

The B-Cells are created in the bone marrow with monomeric IgM-receptors on their surfaces.
A monomeric receptor is a chemical compound that can undergo a chemical reaction with other
~ molecules to form larger molecules. In contrast to T-Cells, B-Cells leave the bone marrow as ma-
ture lymphocytes. B-Cells mostly exist in the milt and tonsils. It is in the milt and tonsils that the
B-Cells develop into plasma cells after the B-Cells came into contact with antigens. After devel-
oping into plasma cells, the plasma cells produce antibodies which are effective against antigens
[56]. The B-Cell has antigen-specific receptors and recognises in its natural state the antigens.
When contact is made between B-Cell and antigen, clonal proliferation on the B-Cell takes place

and is strengthened by Helper-T-Cells (as explained in section 2.2.1.2). During clonal prolifer-
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ation two types of cells are formed: plasma cells and memory cells. The function of memory
cells is to proliferate to plasma cells for a faster reaction to frequently encountered antigens and
produce antibodies for the antigens. A plasma cell is a B-Cell that produces antibodies.

2.2.1.2 The Helper-T-Cell (HTC)

When a B-Cell’s receptor matches an antigen, the antigen is partitioned into peptides (as shown
Figure 2.3). The peptides are then brought to the surface of the B-Cell by an MHC-molecule of
Type II. Macrophages also break down antigen and the broken down antigen is brought to the sur-
face of the macrophage by an MHC-molecule of Type II. The HTC binds to the MHC-molecule
on the surface of the B-Cell or macrophage and proliferates or suppresses the B-Cell response to
the partitioned cell, by secreting lymphokines. This response is known as the primary response.
When the HTC bounds to the MHC with a high affinity, the B-Cell is proliferated. The B-Cell
then produces antibodies with the same structure or pattern as represented by the peptides. The

production of antibodies is done after a cloning process of the B-Cell.

When the HTC does not bind with a high affinity, the B-Cell response is suppressed. Affin-
ity is a force that causes the HTC to elect a MHC on the surface of the B-Cell with which the
HTC has a stronger binding to unite, rather than with another MHC with a weaker binding. A
higher affinity implies a stronger binding between the HTC and MHC. The antibodies then bind
to the antigens’ epitopes that have the same complementary structure or pattern. Epitopes are the
portions on an antigen that is recognised by antibodies. When a B-Cell is proliferated enough,
i.e. the B-Cell frequently detects antigens, it goes into a memory status, and when it is suppressed
frequently it becomes annihilated and replaced by a newly created B-Cell. The immune system
uses the B-Cells with memory status in a secondary response to frequently seen antigens of the
same structure. The secondary response is much faster than the primary response, since no HTC
signal or binding to the memory B-Cell is necessary for producing antibodies [63].

2.2.1.3 The Natural-Killer-T-Cell (NKTC)

The NKTC binds to MHC-molecules of type I (as illustrated in Figure 2.4). These MHC-
molecules are found on all cells. Their function is to bring to light any viral proteins from a
virally infected cell. The NKTC then binds fo the MHC-molecule of Type I and destroys not
only the virally infected cell but also the NKTC itself [63].
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Figure 2.4: Macrophage and NKTC

2.3 The Cloning Process of the Lymphocyte

The cloning process is more generally known as clonal selection, which is the proliferation of
the lymphocytes that recognise the antigens. The interaction of the lymphocyte with an antigen
leads to an activation of the lymphocyte where upon the cell is proliferated and grown into a
clone. Lymphocytes in a clone produce antibodies if it is a B-Cell and secrete growth factors
(lymphokines) in the case of an HTC. Since antigens determine or select the lymphocytes that
need to be cloned, the process is called clonal selection [56]. The fittest clones are those that
bind to antigen best. For the process to be successful, the receptor molecule repository needs to

be as complete and diverse as possible to recognise any foreign shape [63].

2.4 Learning the Antigen Structure

Learning in the immune system is based on increasing the population size of those lymphocytes
that frequently recognise antigens. The immune system learns from experience the shape of the
frequently encountered antigens and moves from a random receptor creation to a repertoire that
represents the antigens more precisely. Since the total number of lymphocytes in the immune
system is regulated, the increase in size of some clones decreases the size of other clones. This

leads to the immune system forgetting previously learned antigens. When a familiar antigen is
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detected, the immune system responds with larger cloning sizes. This response is referred to as
the secondary immune response [63]. Learning is also based on decreasing the population size
of those lymphocytes that seldom or never detect any antigens. These lymphocytes are removed

from the immune system.

2.5 Immunity Types

Immunity can be obtained either naturally or artificially. In both cases immunity can be active or
passive. This section discusses the different types of immunity.

Active naturally-obtained immunity: Due to memory-cells, active naturally-obtained immu-
nity is more or less permanent. It develops when the body gets infected or receives foreign red

blood cells and actively produces antibodies to deactivate the antigen [56].

Passive naturally-obtained immunity: Passive naturally-obtained immunity is short-lived

since antibodies are continuously broken down without creation of new antibodies. New antibod-
ies are not created because the antigens did not activate the self immune system. The immunity
type develops from IgG-antibodies that are transplanted from the mother to the baby. The se-
creted JgA-antibodies in mothers-milk are another example of this immunity type and protect the

baby from any antigens with which the mother came into contact [56].

Active artificially-obtained immunity: Active artificially-obtained immunity develops when
dead organisms or weakened organisms are therapeutically applied. The concept is that special

treated organisms keep their antigens without provoking illness-reactions [56].

Passive artificially-obtained immunity: Passive artificially-obtained immunity is obtained
when a specific antibody which was produced by another human or animal, is injected into
the body for an emergency treatment. Immunity is short-lived, since the immune system is not
activated [56].

2.6 Conclusion

This chapter explained the working of the natural immune system and how the immune system

protects the body against viruses, bacteria and any pathogenic material that can damage the body.
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The different types of lymphocytes and molecules in the immune system were discussed. From
this discussion it can be summarised that lymphocytes have different states: Immature, Mature,
Memory and Annihilated (Figure 2.5 illustrates the life cycle of lymphocytes). The next chapter
gives an overview of evolutionary computation (EC). An evolutionary algorithm (EA) is used
in the Genetic Artificial Immune System (GAIS) developed in this dissertation (chapter 6) to
evolve lymphocytes that can match non-self patterns with a higher affinity in a non-biological

environment.
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Chapter 3
Evolutionary Computation

“survival of the fittest” -
The Origin of Species
by Charles Darwin, 2001

This chapter gives an overview of evolutionary computation (EC) [2]. The different recombina-
tion operators, selection methods and mutation are explained. The chapter also summarises the
different EC paradigms. Section 3.1 provides a summary of a general evolutionary aléérithm
(EA), while succeeding sections provide a more detailed discussion of aspects of evolutionary
computation. In these sections the focus will be on genetic algorithms, since this EC paradigm
is used in the GAIS classifier to evolve a set of ALCs.

Evolutionary computation mimics natural evolution in biological organisms. Evolutionary algo-
rithms (EA) are stochastic search algorithms where the search for an optimal solution is guided
by the principle of survival of the firtest and mathematical models of genetic and behavioral
inheritance. A population of candidate solutions (or individuals) is evolved for a number of gen-
erations through application of a number of operators such as crossover, mutation and selection
until an optimal, or best individual is found as solution to the optimisation problem. The four
most common specific paradigms of EC are [72]: Genetic Algorithms (GA), Genetic Program-
ming (GP), Evolutionary Programming (EP) and Evolutionary Strategies (ES). These paradigms
use the same general evolutionary algorithm.

13
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3.1 A General Evolutionary Algorithm

The following pseudo-code algorithm summarises a general evolutionary algorithm. Although
all operator types are included in the algorithm, different EC paradigms use different operators
and different representations of the chromosome. The differences between the most popular EC

paradigms are discussed in section 3.2.

General EA:

1. setthe generation counter, g=0
2. initialise a population of K chromosomes
3. while no convergence

(a) evaluate the fitness of each chromosome in the population
(b) perform crossover

i. select parents

ii. produce offspring from the selected parents
(c) perform mutation

i. select a candidate chromosome

ii. mutate selected candidate
(d) select the survivors to form the next generation

(e) evolve the next generation (g=g+1)

Several aspects of the general algorithm above need to be explained in more detail, for example
the initialisation of the population, the fitness of a chromosome, the crossover operator and mu-
tation on chromosomes, the selection of survivors for the next generation and the convergence in
the population. These aspects are discussed in sections 3.3 to 3.8. First, the differences between

EC paradigms are discussed in section 3.2.

3.2 EC Paradigms

This section outlines the main differences between the most popular EC paradigms. Other
paradigms include differential evolution [66], cultural evolution [42] and co-evolution [25].
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3.2.1 Genetic Algorithms (GA)

Genetic algorithms were first introduced by Alex Fraser [32], while Holland laid down the ba-
sic principles in 1975 [41]. The genetic algorithm mimics genetic evolution [4]. Chromosomes
are in genotype-space and are mostly bit-strings. Continuous-valued variables are usually coded
into a binary representation. A drawback of bit-string chromosomes is the occurrence of Ham-
ming cliffs [26], which is addressed by using Hamming bit-string representations. The genetic
algorithm uses recombination operators, mutation and selection methods to evolve to the best
solution [26, 72].

3.2.2 Genetic Programming (GP)

Genetic programming also models genetic evolution but the chromosomes represent executable
programs in a tree structure. Genetic programming was developed by Koza [52]. The goal of the
genetic programming algorithm is to evolve the best executable program in a problem domain
that performs (or executes) best. Therefore the fitness function measures how well a chromo-
some executes in the problem domain. Crossover is implemented by swapping subtrees between
selected parents to produce offspring. Mutation can be implemented as randomly changing a
node, expanding (growing) the tree to a larger depth, truncating the tree or randomly replace a
terminal node [26, 72].

3.2.3 Evolutionary Programming (EP)

Different from genetic algorithms, evolutionary programming models behavioral evolution and
chromosomes represent solutions in phenotype-space. EP was developed by Fogel [27]. EP does
not use crossover, since each individual in the population generates one offspring through the
mutation operator. The offspring compete against the chromosomes of the previous generation
for survival to the next generation. The EP uses elitism as replacement scheme [26, 72].

3.2.4 Evolutionary Strategies (ES)

Evolutionary strategies model the evolution of evolution [67, 73]. That is, ES is concerned
with optimising the evolutionary process itself [26, 68]. Chromosomes present solutions in both
genotype- and phenotype-space, but the fitness of the chromosomes is the behavior of the individ-
ual in phenotype-space. The chromosome consists of genetic material and strategy parameters.

The ES algorithm evolves the chromosome’s strategy parameters, and the strategy parameters is
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used to evolve the genetic material of the chromosome. The ES algorithm also uses mutation as
operator and a mutated chromosome is only accepted if mutation has improved the fitness of the
individual [26, 72]. The ES uses different crossover, mutation and selection techniques [26].

3.3 The Chromosome

An evolutionary algorithm makes use of a population of chromosomes, or individuals. Each
chromosome represents a potential solution to the problem that needs to be optimised. A chro-
mosome consists of the set of parameters to the problem or function that needs to be optimised.
The parameters are known as genes and represent values in the same space as the function being
optimised (referred to as phenotype-space). Each gene consists of alleles. Alleles are specific

values from the domain of the corresponding parameter assigned to the gene.

There are different chromosome representation schemes. Some of these are binary string rep-
resentations where the binary values are discretised real numbers or boolean values, trees that
represent programs, or the chromosome can represent real-valued variables. The chromosomes
converge in the limit and the best chromosome is chosen as a solution or an approximate solution
to the problem. Parameter-values are usually mapped to an intermediate space, referred to as
genotype-space. This mapping from phenotype-space to genotype-space is known as coding and

the inverse mapping is known as decoding [72].

When the problem that needs to be optimised is a mathematical function, then the chromosome
will represent the real-valued variables of that function. For a more complex problem like the
optimisation of the execution of a program, the chromosomes will represent different programs
using a tree-structure. The coding mappings can influence the global behavior of the EA al-
gorithm. It is important to include all necessary parameters in the chromosome representation
to prevent evolution to a less optimal solution. Operations on the chromosome produces off-
spring to widen the search space of solutions. The chromosome’s genotypes are evaluated on the
corresponding phenotype to determine the chromosome’s fitness. At each generation, the chro-
mosome’s fitness is calculated and only the fittest chromosomes survive to the next generation.

The next section discusses the fitness function, followed by methods of offspring creation.
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3.4 Calculating the Fitness

The fitness function maps the chromosome’s representation into a scalar value. The scalar value
of the chromosome indicates how close a chromosome is to the optimal solution. The fitness
function therefore provides a quantification of the quality of the chromosome. It is the fitness
of a chromosome that determines whether the chromosome will be selected to produce offspring
and quantifies its chances for survival among the other chromosomes in the population to the next
generation. The probability to mutate a chromosome is usually a function of the chromosome’s
fitness. Chromosomes with high scalar fitness values should preferably not be mutated.

The fitness function is problem-specific. The function can either be a unimodal function or a
multi-modal function. A unimodal function has a single optimal solution where a multi-modal
function has multiple optima. The standard optimisation methods only find a single solution and
for local optimisation algorithms this solution is either a local minimum or local maximum, thus
not necessarily the best solution [9]. Global optimisation algorithms find the best solution. A
technique known as niching has been developed to find multiple solutions in multi-modal func-
tions. GAs have been successfully applied with niching, with the effect that individuals converge
to different solutions, or niches [43, 53]. The best individual per riche is one of the solutions to
the problem. Niching can be done in two ways: Parallel and sequential niching. Parallel niching
concurrently finds niches in the search space through strategies that identify and refine poten-
tially good solutions over time [335, 43, 53, 57]. Sequential niching develops niches over time, in
sequence. After each discovered niche, individuals are repelled from the area around the niche

to focus on unexplored areas in the search space [3].

Some problems have several objectives which are represented as sub-objectives in a multi-
objective function. In most cases the sub-objective functions are in conflict, i.e. the reduction
of one objective results in the increase of another objective. Multi-objective optimisation tech-
niques find solutions with a good trade-off between the conflicting sub-objectives. Multi-modal
functions and multi-objective problems have the same goal of finding multiple solutions for the
optimisation problem. Multi-objective optimisation techniques find multiple solutions for a num-
ber of sub-objectives as niching has the objective to find multiple solutions for a single objective
for a multi-modal problem. It is of utmost importance to include all necessary objectives in the
fitness function, to prevent evolving a less optimal solution for the problem. For more informa-
tion on multi-objective optimisation, the reader is referred to [13].
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Before the fitness of a chromosome can be calculated, the chromosome’s representation first
needs to be decoded to phenotype-space if the domain of the fitness function is in phenotype-
space. If the fitness function is too complex to evaluate, an approximate function evaluation can
be used, which approximately gives the same value as the “true” fitness function in less time
[12]. Penalty functions have also been considered in the evaluation of fitness, penalising a chro-
mosome for an invalid or “bad” solution to the problem or a chromosome that violates a certain
set of restrictions [34, 69].

3.5 Reproduction

Reproduction is the process of producing new offspring from selected individuals through -
crossover or mutation. The reproduction step consists of a selection step where parents are se-
lected and a crossover step where genetic material of individuals are exchanged to form offspring.

These operators are discussed in more detail in this section.

3.5.1 Selection

This section describes the most popular selection methods that can be used to select chromo-
somes as parents for crossover, individual chromosomes for mutation or the chromosomes that
survive to the next generation. Usually, chromosomes with high fitness are selected for crossover
to converge faster to a best solution. Highly fit chromosomes should not be selected for mutation
to prevent the danger of diverging from “good” solutions in the search space. Therefore chromo-

somes with low fitness are usually selected for mutation.

All selection methods are based on the fitness of the chromosomes [10]. Certain selection meth-
ods allow selection of a chromosome more than once, resulting in clones of the selected chro-
mosome. An advantage of clones is that more chromosomes with high fitness form part of the
population, while a disadvantage is the probability of less diversity in the search space. When se-
lecting chromosomes to survive to the next generation, either all offspring are selected to replace
some or all parents from the previous generation, or chromosomes from both the offspring and
the parents from the previous generation are considered for selection. Offspring can only replace
parents if the offspring has a higher fitness than the parents. Goldberg and Deb [36] compared
many of these selection methods. The most popular selection techniques are listed below:



University of Pretoria etd — Graaff A J (2003)

CHAPTER 3. EVOLUTIONARY COMPUTATION 19

Random Selection: All the individuals in the population have an equal chance to be selected
with no reference to their individual fitness.

Proportional Selection: The probability of an individual to be selected is based on the in-

 dividual’s fitness proportional to the summed fitness of all the individuals in the population. A
drawback of this selection method is that an individual may dominate the production of offspring
which results in a limited diversity among individuals in the new population. This drawback can
be overcome by limiting the number of offspring the selected individual may produce.

Rank-Based Selection: The individuals in the population are sorted according to their fitness.
The rank ordering of the individuals in the sorted set determines the probability to select an
individual. Selection is thus not based on the magnitude of an individual’s fitness. As such,
ranking has the advantage that a highly fit individual will not dominate the selection process. An
alternative approach is to assign survival probabilities to the individuals in the sorted set using
an exponential function with the rank as parameter to the exponential function. This results in a
higher selection intensity with the disadvantage of less diversity which could lead to suboptimal

solutions.

Tournament Selection: A random sample of i individuals is selected from the population to
take part in a tournament of selecting the individual with the best fitness. The sample may be
taken with or without replacement. It is therefore possible that an individual can combine with
itself to produce offspring or a parent can be selected more than once to produce offspring. An
advantage of tournament selection is that the individuals with worst fitness will not be selected
and as long as sampling is done with replacement, the best individual will not dominate the

reproduction process.

Elitism: This selection method is used to select a set of the best individuals from the previous
population that will survive to the next generation. The number of individuals in the selected set
is known as the generation gap, ¢. These chromosomes are not mutated. If ¢ = 0, then the new
generation consists entirely out of new individuals. If ¢ > 0, then ¢ individuals survive to the
next generation. These ¢ selected individuals are either the ¢ best individuals to ensure that the
maximum fitness in the population does not decrease or ¢ individuals selected with one of the

selection methods explained above.
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3.5.2 Crossover

The crossover operator exchanges genetic material between two or more selected parents to
produce offspring. The main idea of the crossover operator is to recombine genetic material
between fit chromosomes from previous generations with a certain probability, p., to produce
even fitter offspring. The crossover process is described by the following general algorithm:

1. generate E~U(0,1)
2. select parents A and B
3. if € > p. then crossover is not performed and A and B are returned, otherwise goto step 4

4. exchange genetic material between A and B according to one of the crossover operators
(described below) '

5. return the produced offspring

The following section explains how the crossover operator is applied to chromosomes with dif-

ferent representations.

3.5.2.1 Continuous-valued Chromosomes

Arithmetic crossover can be used if genes are continuous-valued [5]. A number of arithmetic

operators have been developed, for example:

e Average - take the arithmetic average of the genes in parents A and B as the new value for
the gene in the offspring O. That is, O; = 4%(;%, where i is the index to the i-th gene in the

chromosome.

e Geometric mean - take the square-root of the product of the two gene-values in parents A
and B as the new value for the gene in the offspring O. That is, O; = \/A; * B;, where i is

the index to the i-th gene in the chromosome.

e Extension - take the difference between the two gene-values in parents A and B, add the
difference to the higher of A or B, or subtract the difference from the lower of A or B. That
is,

0; = Max(A;,Bi) +y
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Figure 3.1: One-point crossover
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Figure 3.2: Two-point crossover
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ed genes is a special case, where the set of values contains only two values. Pop-

over operators include [26]:
nt crossover (illustrated in Figure 3.1): A random position, j, is selected in both

A and B. The tail of parent A is swapped with the tail of parent B, producing two off-

oint crossover (illustrated in Figure 3.2): Two random positions, j and k, are selected
both parents A and B. The selected segment between j and & in parent A is swapped with the
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>nt in parent B, producing two offspring.

over (illustrated in Figure 3.3):  Uniform crossover uses a randomly gener-
it has the same size as the number of genes in the chromosomes. The gene in
‘has a value of one indicates that the specific genes have to be swapped between
d B, producing two offspring. =

revents the evolutionary process to randomly search for the optimaﬂ solution. A high
in premature convergence to suboptimal solutions. If p. is too low, the evolutionary
' tend to have low diversity in the search space. This may restrict the possibility to
. al solution in the search space. ‘

tive of mutation is to introduce diversity into a population of chromosomes with a
bility p,;. The mutation operator randomly changes the genetic representation of the
hromosome to ensure diversity and to cover larger parts of the search space. Mutation
1 certain EC paradigms, where it is considered as a background operator. In these
(excluding EP), mutation operates on offspring that have been produced by the
rator. The following algorithm summarises mutation:

ct a chromosome D to mutate

-

- each gene in D generate E~U(0,1)

if € > p,, then do not mutate the gene, otherwise goto 2.(b)
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e the gene by using one of the mutation operators (described below)

mutated chromosome D

inuous-valued Chromosomes

tation can be used if the genes of the chromosome are continuous-valued [5].
tion has been implemented in the following ways:

replacement, which replaces the value of a gene with a new random value that is
1 the domain of the variable.

utation, where a small random value is added or subtracted from the value of a

ribution is used with a zero mean. To obtain a small value a small variance is used. The
 of the distribution is usually a function of the fitness of the individual that needs to be
dividual with a high fitness will be mutated less than an individual with a lower

ill be mutated more.

mutation operators for nominal-valued genes are [26]:

te (illustrated in Figure 3.4): Random genes in the chromosome are selected
value is replaced with its complement or a new random value (with probability
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der Mutate (illustrated in Figure 3.5): Two random positions, / and m, are selected in
romosome and only genes between these positions are considered for replacement using
n mutation.

Pm causes large diversity in the search space, since new genetic material is more rapidly
iced. A large mutation rate may cause good genetic material to be lost. A high mutation
ever beneficial in situations where more rapid coverage of the search space is needed.
one starts with a large initial mutation rate, decreasing it over time. A high mutation
asically results in a random search.

.

The Initial Population

| 3

tial population is generated by randomly selecting valid values for the genes from the
 the corresponding variables. Random selection ensures that the initial population
somes has a good uniform coverage of the search space. Domain knowledge of the

ace can be used to initialise the values of the genes, using heuristics to bias the initial
jon to potentially good solutions. The drawback of using domain knowledge is that the
| good areas in the search space are missed. A better solution may exist in the missed
he size of the initial population influences the convergence speed of the algorithm. With
pulation size, the search space is well covered. The larger diversity may result in less
s with longer time per generation to converge to the best solution. The consequence of
 population size is less diversity in the search space. The small population may take more

ons to converge but with less time per generatidn. To explore a larger search space with
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a small population size, an initial large, but decaying mutation rate can be used. The individuals
will then initially be mutated with a large p,,, exploring a larger search space. As generations
pass by the individuals are mutated with a smaller p,, until the population converges to an optimal
solution.

3.8 Convergence

An evolutionary algorithm (EA) is an iterative process which continues until a convergence cri-
terion is satisfied. Several methods have been developed to test if an EA should terminate. Some

of the most frequently used criteria are summarised below:

e The EA terminates when a maximum number of generations is exceeded. When the max-
imum number of generations is too small, the EA might not have evolved an optimal solu-
tion yet, i.e. no convergence in the population. When the maximum number of generations
is too high, the population in the EA might have already converged to an optimal solution

before reaching the maximum number of generations, thus wasting computational effort.

o The desired, or an acceptable best chromosome evolves. When the optimum solution to a
problem is known, it can be used as a measure to determine when a suitable or satisfying
solution has evolved.

» The average fitness of the population and the variance of the population’s fitness do not
change over a certain number of generations. This indicates that the fitness of the popula-
tion has stabilised. '

3.9 Conclusion

This chapter gave an overview on evolutionary computation (EC). The chapter presented the
different recombination operators, selection methods and also gave a summary of the different
EC paradigms. EC methods require only the values of the function that needs to be optimised.
This fact makes EC methods stochastic, which can potehtially find the global optimum of the
objective function. EC methods search in parallel for a global solution to the problem. A disad-
vantage of EC methods is the computational cost, since a large number of function evaluations
must be performed to find a satisfying result. The choice of evolutionary operators, chromosome
representation and fitness function have a critical impabt on the performance of EC methods.
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e stochastic in nature there is no guarantee of convergence to the optimum
ve method to solve complex problems is the artificial immune system.

» background on existing artificial immune system models and their ap-
ical environments. An artificial immune system is a dynamic distributed
o0 learn and recognise patterns. The AIS is robust, scalable and tolerant to
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Chapter 4
The Artificial Immune System

The artificial immune system (AIS) is a computational system which is applied to problem do-
mains. The AIS mimics the models of the natural immune system’s immune functions and
principles. In chapter 2 of this dissertation, the natural immune system (NIS) was discussed.

~~ ~The NIS is a very complex system that is capable of learning the structure-of normal cells (self

patterns) and classifying foreign cells (non-self patterns). The NIS also builds up a ‘memory’ of
frequently seen non-self patterns to ensure a faster secondary immune response to non-self pat-
terns with identical or similar structure. Although the NIS is not yet fully understood, research
has shown that the NIS consists of mature T-Cells and B-Cells that co-operate to detect any for-
eign cell in the body (as explained in section 2.2.1). The B-Cells produce antibodies through a
process known as clonal selection (as discussed in section 2.3).

The capabilities of the NIS to distinguish between normal cells and foreign cells (with only
having knowledge on what is normal) and learning the non-self cells’ structure, inspired the
modeling of the NIS into an AIS for application in non-biological environments. A major ad-
vantage of the AIS is that the model only needs to be trained on positive examples (knowledge
on the self patterns) to detect or classify non-self patterns in a non-biological environment. A
drawback is that a limited knowledge of positive examples or a bad representation of positive
examples can lead to misclassification of non-self patterns.

This chapter provides some background information on the different existing artificial immune

system models, as well as models inspired by immunology and applications of the artificial im-
mune system.

2,
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few theories surrounding the structure and functioning of the NIS due to its biological
. The NIS has many different lymphocytes that form part of the immune response to
cell. Two of these lymphocytes - the T-Cell and B-Cell - have been clearly defined and
anctioning in the NIS identified (as explained in section 2.2.1). In the NIS it is mainly the
king and co-operation between the mature T-Cells and B-Cells that is responsible for
retion of antibodies as an immune response to antigens. The T-Cell becomes mature in the
. mature T-Cell is self-tolerant, i.e. the T-Cell does not bind to self cells. The mature
ability to discriminate between self cells and non-self cells makes the NIS capable of
-self cells. When a receptor of the B-Cell binds to an antigen, the antigen is parti-
d then brought to the surface with an MHC-molecule. The receptor of the T-Cell binds
in affinity to the MHC-molecule on the surface of the B-Cell. The affinity can be seen
ement to the number of lymphokines that must be secreted by the T-Cell to clonally
the B-Cell into a plasma cell that can produce antibodies. The memory of the NIS
tly detected antigen is built-up by the B-Cells that frequently i)réliferates into plasma
Thus, to model the proposed artificial immune system, there are a few basic concepts that

e are trained detectors (artificial lymphocytes) that detect non-self patterns with a
in affinity.

e affinity between an ALC and a pattern needs to be measured. The measured affinity
can indicate to what degree an ALC detects a pattern.

e To be able to measure affinity, the representation of the patterns and the ALCs need to have
the same structure.

¢ artificial immune system has memory that is built-up by the artificial lymphocytes that
frequently detect non-self patterns. -
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casured degree of affinity between an ALC and a pattern needs to exceed a certain de-

ts. The Euclidean distance between an ALC and a pattern was used as a measure of
ity. De castro and Von Zuben [21] used binary strings to represent patterns. The affinity
n an ALC and a pattern was measured using the hamming distance. The above mentioned
ments indicate the similarity between an ALC and the pattern. A lower value calculated
he above measurements indicates a stronger affinity between an ALC and the pattern. Hunt
Cooke [44] used the same representation of binary strings, but like Forrest et al. [30] the
rement of affinity was done with the r-continuous matching rule. The r-continuous match-
le is-a partial matching rule: An ALC detects a pattern if there are r-continuous or more
in the corresponding positions. 7 is the degree of affinity for an ALC to detect a pattern.
-value of  indicates a stronger affinity between an ALC and the pattern.

proposed AIS has a set of ALCs that is used to detect non-self patterns. The ALC set is
ed with a training set that consists of self lﬁattems, non-self patterns or self and non-self
ms. Each pattern in the training set has been labeled as self or non-self. The ALCs can be
to become self-tolerant like a mature T-Cell or to detect non-self patterns with a higher
g. The trained ALC set is then used to detect non-self patterns. Hightower ef al. [38] and
ea [60] used a training set that consisted of non-self patterns. A genetic algorithm was used
ve ALC sets with a larger detection ratio of non-self patterns in the training set. Forrest et
] used a technique known as negative selection to train ALCs to become self-tolerant. The
ing set consisted of self patterns represented by nominal valued attributes or binary strings.
_Cs are randomly generated and tested against the training set of self patterns. If the ALC
ot detect any of the self patterns in the training set, it is added to the ALC set. The train-
is monitored by continually testing the ALC set against the training set for changes. A
ve selection method to train an ALC with continuously-valued self patterns are presented
onzalez et al. [37]. The continuously-valued negative selection method evolves ALCs that
furthest away from the training set of self patterns and that are separated to maximise the
If space coverage. A randomly generated ALC that is trained with negative selection does
it a pattern in non-self space, but not necessarily an antigen. A different approach is pro-
d by Kim [49] where ALCs are not randomly generated and tested with negative selection,
ut an evolutionary process is used to evolve ALCs towards non-self and to maintain diversity
enerality among the ALCs. The model by Potter and De Jong [64] applies a co-evolutionary
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gorithm to evolve ALCs towards the selected class of non-self patterns in the training
her away from the selected class of self patterns. Once the fitness of the ALC set
_point where all the non-self patterns and none of the self patterns are detected, the
sent a description of the concept. If the training set of self and non-self patterns is
ALC set will be evolved until most of the non-self patterns are detected and as few
e self patterns are detected. The evolved ALCs can discriminate between examples
unter-examples of a given concept. Each class of patterns in the training set is selected
If and all other classes as non-self to evolve the different concept in the training set.
e selection method used in the proposed AIS, evolves ALCs that are binary-valued to
e maximum non-self space with the furthest distance from the training set of self patterns
least overlap among the evolved ALCs.

election of the immune system was modeled by an algorithm proposed by de Castro
e presented algorithm, CLONALG, performs machine-learning and pattern recogni-
ks. The training set consists of non-self patterns. The ALCs in the ALC set are randomly
‘and the ALCs that recognised the selected non-self pattern in the training set with
ghest affinity, are cloned. The clones are mutated and then a new population of ALCs are
from the mutated clones and the previous ALCs, according to their affinity with the
on-self pattern in the training set. A selection of ALCs with high affinity go into the
pool. New randomly initialised ALCs are inserted into the set of ALCs for the next
training pattern to be recognised. The algorithm can also be used to solve complex
, eg. multi-modal function optimisation.

ntroduced the concept of artificial recognition balls (ARBs) in a resource limited ar-
e system [78]. An ARB has the same representation as an ALC, but stands for a
dentical AL.Cs. Thus, each ARB allocates a number of resources based on its stim-
The total number of resources of the system is bounded. Watkins adopted the
ARB’s [81]. To be able to identify a memory cell, a training set of antigens (non-self

101y cells. Each of the remaining non-self training patterns are then matched against the
cells. The memory cell with the closest match to a specific non-self training pattern is
d to form an ARB. The level of cloning is determined by the strength of the affinity be-
e;n'o'n—self pattern and the memory cell. The newly created ARB is then added to a pool
g ARBs of the same class. Resources are allocated to an ARB depending on the affinity
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een the ARB and the presented non-self pattern as well as the class of the non-self pattern.
ARBs are clonally expanded until the average stimulation level of the ARBs is above a cer-
threshold. When the limit for available resources has been reached by the ARBs, resources
moved from the ARBs with the lowest affinity until the limit is no longer exceeded. The
Bs with bad performance will have no resources allocated to them and are removed from the
. The ARBs in the pool are evaluated on their affinity with a non-self pattern. If the best
iching ARBs in the pool have a higher affinity with the presented non-self pattern than the
t matching memory cell in the memory pool, then the ARBs are added to the memory pool.
ly the memory pool is used to classify non-self patterns in the test set.

the above models are supervised training methods except the work by de Castro.and the
by Timmis, which are unsupervised. CLONALG and AINE were both algorithms for clus-
ng. The training sets consist either of self patterns, non-self patterns or both. The following
n introduces the network theory of interconnected B-Cells in the natural immune system.

4.2 The Network Theory

" theory of Jerne is- that the B-Cells are interconnectedto form a network of cells [45, 62].
hen a B-Cell in the network respond to a foreign cell, the activated B-Cell stimulates all the
ther B-Cells to which it is connected in the network. Work that has been done in AISs on the
network theory of B-Cells can be found in [77, 79, 80]. Timmis [77] implemented the network
theory with interconnected ARBs. When two ARBs have a high affinity between them, a link is
established between them. Therefor, a network of ARBs is formed based on the similarity and
nity among the ARBs. In the network of ARBs, closely related ARBs form clusters that rep-
nt clusters in the data set. This model resulted in a successful unsupervised training method
1o visualise data. Another unsupervised approach to cluster data was done by de Castro and Von
Zuben [19]. In this model, named aiNet, the B-Cells formed part of an edge-weighted graph.
me of the B-Cells were connected with edges, with a weight (connection strength) assigned to
each edge. Thus, the graph is not necessarily fully connected. The network is trained by repre-
senting non-self patterns to the interconnected B-Cells. The distance between B-Cells with the
1est affinity for the non-self pattern are then decreased. The immune network theory has also

‘been successfully developed and applied to optimise multi-modal functions [17].
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The Genetic Artificial Immune System

rithm proposed in this dissertation, named GAIS - Genetic Artificial Immune System,
nts all patterns in space as binary vectors and uses the hamming distance as affinity mea-
ent. A GA is used to evolve ALCs with maximum non-self space coverage and minimum
among existing ALCs (as explained in chapter 6). The ALCs are trained with an adopted
ve selection method (as explained in section 5.2.2.1) or with positive selection (as ex-
in section 5.2.2.2). The affinity threshold of an ALC is used to determine a match with
If pattern. With the adopted negative selection method the affinity threshold is deter-
d by the distance to the closest self pattern from the ALC. The algorithm is supervised with
raining set that consists of self patterns. GAIS is different from existing AIS models in that
: ,:doés not evolve ALCs towards non-self patterns (as in the model of Kim [49]), neither
'vcivc ALCs with a larger detection ratio of non-self patterns in the training set (as in
els of Hightower et al. [38] and Oprea [60]). The GA in GAIS evolves ALCs with a
ximum non-self space coverage and a minimum overlap with existing ALCs. The main goal
us to evolve mature ALCs to detect non-self patterns that have not been presented to GAIS
aining. Surely all evolved ALCs will cover non-self space, but not all ALCs will detect
-self patterns. Therefor, a proposed transition function, the life counter function (as explained
ion 5.3), determine an ALC’s status (as defined in section 5.2.1). ALCs with annihilated
are removed in an attempt only to have mature and memory ALCs with optimum classifi-
tion of non-self patterns. GAIS has the advantage to classify patterns in a problem space where
y i@bﬁ_dsitive patterns are available for training.

Applications and Other Models

tificial immune system has been successfully applied to many problem domains. Some
ese domains range from network intrusion and anomaly detection [16, 28, 29, 37, 39, 40,
50, 74, 75] to data classification models [65, 82], (the model of Pramanik et al. [65] bridges
odels of [59] and [48]), virus detection [30], concept learning [64], data clustering [19],
[46, 80], pattern recognition and data mining [11, 44, 77, 79]. The AIS has also been
d to the initialisation of feed-forward neural network weights [23], the initialisation of cen-
“a radial basis function neural network [22] and the optimisation of multi-modal functions
3]. The interested reader is referred to [15, 18, 20] for more information on AIS applica-
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lusion

vackground overview on the existing theories of the functioning of the natural
 and the modeling thereof, as well as the successful applications of the AIS in
vironments. The next chapter will explain the modeling of the T-Cell and B-
ymphocytes in the AIS. The different states in the life cycle of an artificial
discussed. The next chapter also presents a threshold function that is used to
e of an artificial lymphocyte.
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Chapter 5
The Artificial Lymphocyte Life Counter

- “As a first approximation, I define "belief " not as the object of believing but as the subject’s
investment in a proposition, the act of saying it and considering it as true.”
- Thomas Carlyle

‘This chapter explains how artificial lymphocytes (ALCs) cover the non-self space, how their
eptors are initialised and how their affinity distance thresholds are trained. The discrimination
‘between self and non-self space is defined. The life cycle of an ALC is discussed and the life
counter threshold function is introduced. The life counter threshold function determines in which
state an ALC is in its life cycle. The requirements and the training of an ALC to classify a pattern

as non-self, are also explained.

5.1 Introduction

The natural immune system has mature or memory lymphocytes with receptors on each lym-
phocyte’s surface that function as pattern detectors or classifiers. These receptors distinguish
tween self (normal cells) and non-self (antigens) patterns by only binding to non-self patterns,
the mature or memory lymphocyte does not bind to any self (normal cell). The receptors
d to the non-self pattern with a certain affinity. A lymphocyte binding with a higher affinity
than another indicates that the lymphocyte has a better detection of the non-self pattern. The
task of the artificial lymphocyte (ALC) is to be able to classify any pattern as self or non-self
detecting only non-self patterns and leave known self patterns undetected. In the context of
mputational pattern recognition, self, S, represents all patterns in a finite space, U, that is legit-
ate in a non-biological environment and non-self, S, represents all patterns that is not in self.

34
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o detect a non-self pattern, the receptor of the ALC must match the non-self pattern

f the AIS is to create an optimal set of ALCs that can detect and classify non-
(without detecting self) and to remove ALCs that do not classify any patterns
probability to detect any non-self patterns. The AIS creates AL Cs by randomly
‘receptors and sets the affinity distance threshold by using a known self set of
ntee that created ALCs do not detect any of the self patterns in the known self
the set of ALCs is static. The ALCs are randomly initialised and their receptors are
training set that consists of non-self and self patterns using negative selection or
ion, i.e. supervised learning. The negative selection method selects patterns that
If. The static set of trained ALCs is then tested to determine classification perfor-
set of trained ALCs results in better classification and a too small set of trained
‘worse classification. The unsupervised approach to train the ALCs with positive
e selection also uses a static set of randomly initialised ALCs during training. A larger
mly initialised ALCs classifies the training set better than a smaller set of randomly
. The clusters formed by the ALCs are then tested with a test set. It is assumed
rtation that the receptor of an ALC is a binary vector and that all patterns that need
led are in binary format. It is also assumed that the AIS has a static incomplete self
3. That is, incremental learning is not considered.

is chapter describes the architecture of the artificial lymphocyte (ALC). The sec-
introduce the different states in the ALC’s life cycle and discusses the different
chniques to train an ALC. A threshold function, the Life Counter (LC), is also pre-
influence of the parameters on the function is explained. The threshold function
the status of an artificial lymphocyte within the lymphocyte life cycle. The AIS uses
ALC to determine if the ALC must be removed from the set of ALCs.
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Artificial Lymphocyte

tion 5.1, the purpose of an ALC is to detect and classify non-self patterns from
ice the B-Cell has receptors on its surface to bind to antigen and the T-Cell
 on its surface to match viral proteins that are represented by MHC-molecules as

B-Cell and T-Cell lymphocytes are modeled into a general artificial lymphocyte
o receptor. The receptor has a length k, equal to the length of a self and non-self
receptor has an affinity-distance threshold (ADT) that must be met to detect non-
In other words, the affinity of an ALC to a pattern must be greater than or equal
1atch to occur, in which case the pattern is considered as non-self. Section 5.2.3
e of the ADT in detecting non-self patterns. The artificial lymphocyte’s receptor
match a non-self pattern with an affinity that is greater than the size of the pattern,
< k. The receptor of an ALC is randomly initialised to represent any pattern in
e. That is, before an ALC can detect non-self patterns, it needs to be trained not
elf patterns. Training is done by measuring the receptor of an ALC against the static
self set to determine the ALC’s affinity-distance threshold, as discussed in section
s guarantees that the ALC will not overlap with any of the known self patterns, and
’s initial status is mature. The ALC’s status is determined by a threshold function
Life Counter (LC), which is explained in section 5.3. The status of an ALC indicates
he ALC must be replaced with a newly constructed or evolved ALC, or be given higher
: r other ALCs.

-

Life Cycle of the Artificial Lymphocyte

n introduces and explains the different states an ALC can have during its life cycle.
s of an ALC, which can be memory, mature or annihilated, determines its priority in a
Cs. The status of a trained ALC can be one of three stages:

d (Low priority): An ALC with this status has either been mutated to detect a self
t has not detected any patterns as non-self and is then declared as obsolete in the group
AL ‘“ﬁ‘;:Annihilated ALCs must be removed from the group of ALCs.
ture (Medium priority): The mature-ALC detects non-self patterns on a regular basis. An
the mature status will be demoted to annihilated status if the ALC starts to detect no non-
mms. If the ALC starts to detect non-self patterns more frequently it will be promoted to
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High priority): Memory-ALCs detect non-self patterns more frequently than mature-
mory-ALCs are given higher priority than other ALCs by evaluating an incoming pat-

re other ALCs, resulting in a faster non-self detection. These ALCs are not mutated

d by any newly constructed ALC. An ALC in memory status cannot be annihilated

st needs to be demoted to mature status. This happens when an ALC in memory status

frequently detect non-self patterns as before, resulting in demotion to mature status.

with immature status has not yet been trained by the AIS and can therefore not be
ect any non-self patterns. ALCs with annihilated status (low priority) have a higher
to be removed from the set of ALCs than ALCs with mature status (medium priority).
an ALC has memory status (high priority), the ALC will never be removed from the
’s, since the memory ALC has a higher probability in classifying a pattern than an
mature status or even annihilated status. Therefore it is important to determine, at any
ich ALCs are in memory status. The LC threshold function is used to determine the
| ALC, and to translate an ALC from one state to another (as is discussed in section

ing the ALC to Cover Non-Self Space

can be trained with one of two selection methods: negative selection or positive se-
th negative and positive selection methods determine the best ADT for the ALC. A
pattern can be incorrectly classified by an ALC as a self pattern. This misclassification
) as a false negative. A self pattern can also be incorrectly classified by an ALC as a
pattern. This misclassification is known as a false positive. For purposes of training,
plete static self set is used and the bit-string receptor is randomly initialised. The two
 methods are described next.

Adapted Negative Selection

d negative selection method (refer to Figure 5.1) trains an ALC to have a maximum
ce threshold, @y, that does not overlap with the self set. All patterns with a ham-
nce from the ALC that is less than ay,,, are detected as non-self. To guarantee a
na: -::.;mju with no overlap with self, a,., is set to the hamming distance of the nearest self
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false
positives

self false self
negatives

Figure 5.1: Venn-diagram of Adapted Negative Selection ALC

 to the ALC. Figure 5.1 shows that, with the adapted negative selection, the self pattern
e smallest hamming distance to the ALC is used to determine the maximum @.g.

.~ Positive Selection

positive selection method (refer to Figure 5.2) trains an ALC to have a minimum affinity-
threshold, ap,s, that does overlap with the self set. All patterns with a hamming distance
n the ALC that is greater than apos. are detected as non-self. To guarantee a minimum dpos
overlap with self, a0 is set to the hamming distance of the self pattern furthest from the
. Figure 5.2 shows that, with positive selection, the self pattern with the biggest hamming
ance to the ALC is used to determine the minimum apos. |

es 5.1 and 5.2 illustrate the drawback of false positives and false negatives when the re-
ive selection methods train the ALCs. These drawbacks are due to an incomplete static
et. The known self is the incomplete static self set that is used to train the ALCs and the
wn self is the self patterns that are not known during training. The unknown self can also
esent self patterns which are outliers to the set of known self patterns.

Matching a Non-Self Pattern

natural immune system, a B-Cell that regularly detects antigen goes into a memory status.
memory B-Cell is used in a secondary response to detect antigen faster than the primary
nse. It is therefore important to keep record of the number of non-self pattern matches (or
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Figure 5.2: Venn-diagram of Positive Selection ALC

tions) made by an ALC to determine the ALC’s matching ratio after classifying a number
n-self patterns. The Hit Counter (HC) of an ALC is updated to keep record of the number
atches. The hamming distance between a pattern and the ALC receptor can be used to
determine if the ALC detects a non-self pattern, defined as follows:

i<k
¥(x,1) = X;X OR (x;,7;)

i=
e X is the bit-string of the pattern that needs to be classified, r is the bit-string of the receptor,
JR is the exclusive-or between the bits of the two bit-strings, 7 is the bit-index and k is the size
a pattern. Section 5.2.3.1 and Section 5.2.3.2 describe the requirements for an ALC to detect
n-self pattern and how the HitCounter of the ALC is updated for negative and positive
tion respectively.

.1 Adapted Negative Selection Hit Counter

iscussed in section 5.2.2.1, for an ALC trained using the adapted negative selection to de-
 non-self pattern, the following relation must hold: Y(X,T) < e, i.€. the non-self pattern
s to be closer to the ALC than the closest self pattern to that ALC. A smaller value of Y(x,r)
cates a more exact match to the pattern of the receptor. Then, %;:) is the difference ratio

pattern with the receptor. The complement of YE‘X—R;:), which is 1.0 — X55) g the similarity

Qneg *

o between a pattern and the receptor. The HC of an ALC that matches a non-self pattern
exact (ie. y(x,xr)—0, 1.0— %l — 1.0) than an ALC where Y(X,T) — dne,, must be in-
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ented (rewarded) more. After a pattern has been classified as non-self, the HC of the ALC
nted with 1.0 (for detecting the non-self pattern) and then rewarded by the similarity
%%:l The HC is calculated as follows:

¥(x,1)

neg

s initial value of HC = 0.

Positive Selection Hit Counter

ussed in section 5.2.2.2, for an ALC trained using positive selection to detect a non-self
m, the following relation must hold: Y(X,r) > @pos = Y(X,T) — apos > 0.0, i.e. the non-
ttern needs to be further away from the ALC than the furthest self pattern to that ALC.
r value of y(x,r) indicates a less exact match to the pattern of the receptor. Since dpos
the maximum ADT to a self pattern, the complement k—a pos, indicates the maximum

non-self pattern. Then, ﬁ—’,i’%ffﬂ is the difference ratio of a pattern to the receptor.
HC of an ALC that matches a non-self pattern less exact (i.e. y(x,r) — k) than an ALC
X,T) — dpos, is incremented (rewarded) more. After a pattern has been classified as
the HC of an ALC is incremented with 1.0 (for detecting the non-self pattern) and then

d by the difference ratio %ﬁ:&. The HC is calculated as follows for positive selection:

Y(X,x)~ Apos

HC=HC+1.0+ (=7~
~—Ypos

),0< apes <k

e initial value of HC = 0.

The Hit Ratio

itRatio (HR) calculates the ratio at which an ALC matched non-self patterns. The hit ratio
ALC is calculated after a specified number of patterns has been classified,

terationSize (IS). A HitRatio (HR) is then calculated with parameters HC and IS as follows:
HC

HR(HC,IS) = —

R is calculated to determine an ALC’s detection ratio of non-self patterns in an iteration,
yumber of non-self patterns that were detected or matched by an ALC during an iteration.
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The Life Counter

d earlier, the life counter (LC) determines in which state an ALC is at any given time.
¢ three states in which an ALC can be, prioritised into low, medium and high (as de-
section 5.2.1). The LC is used to map the states to a continuous range (0,1) (i.e.
ow,medium, high} — (0,1)). A life counter value closer to 1.0 indicates that the ALC
er priority than an ALC with a life counter value close to 0.0. The LC value of an ALC
culated at specified time steps. The time step can be set to a constant iteration size (IS) of
g patterns. The value of the LC depends on the ALC’s HR, the minimum matching ratio
e of non-self space) of an ALC, and the IS.

mple, consider an ALC A with a = 10 and ALC B with a = 5 (assume that both A and B
itialised with the adapted negative selection). Let k = 15. A covers more non-self space than
as > ap. Therefore, it can be expected that A must have a higher HR than B. Suppose B
er HR than A, then B has a higher probability to gain memory status than A. For A to
e the sainc status as B, HR4 = 2 * HRp since ay = 2 ap. Therefore, an ALC converges to
ory status if the number of classified non-self patterns is greater than the number of patterns
non-self space covered by the ALC. An ALC converges to annihilated status if the number
sified non-self patterns is less than the number of patterns in the non-self space covered
LC.
minimum matching ratio of an ALC to detect a non-self pattern also influences the sta-
1e ALC. The minimum matching ratio, f3, is calculated as follows:

e For an ALC trained with the adapted negative selection,

Aneg
=1.0— 2%

e For an ALC trained with positive selection,

_ %pos
ﬁpas = k

1 IS patterns, the ALC’s life counter is re-calculated to determine the ALC’s state using
counter threshold function (as explained below).
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Figure 5.3: Hyperbolic Tangent Function and Sigmoid Function

Life Counter Threshold Function

' threshold function, T, determines the status of an ALC based on the HR, B and IS of the
The t-value of the ALC is calculated after a number of patterns, IS, has been classified.
equirement for 7 is that T € (0, 1), thus a function with range of (0, 1) is needed, i.e..

1(1S) — (0,1)

must be a continuous function and monotonic increasing from mature to memory status,
d monotonic decreasing from memory to mature or mature to annihilation. The sigmoid func-
(dashed line in Figure 5.3),

1

{0 e(—ls;'gmoid X XSigmoid ) |

g (Asigmoid: XSigmoid) =

e Asigmoia controls the steepness of 8(Asigmoid» Xsigmoid)> satisfies these requirements. For
vidXSigmoid) t0 be a monotonic increasing function, Asigmoiq > 0 and for 8(Asigmoids Xsigmoid)
monotonic decreasing function, Asigmeia < 0. Thus,

©(IS) = g(Asigmoia;1S)

¥

The steepness of g(Asigmoid, [S) represents the rate at which an ALC must converge to memory
nnihilated status. As explained in section 5.2.3.3, the HR of an ALC calculates the ratio at
ich an ALC matched non-self patterns. Thus, the HR of an ALC determines the convergence
at which an ALC must converge to memory or annihilated status. An increasing HR implies
easing Asigmoid>» Which results in faster convergence of an ALC from mature to memory
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A decreasing HR implies a decreasing Agjgmoid> Which results in faster convergence of an
Tom memory to mature or mature to annihilated status.

0 then Agiemoiq > 0 for T(IS) to be a monotonic increasing function, implying con-
to memory. If HR < 0 then Agjemoia < 0 for T(IS) to be a monotonic decreasing func-
plying convergence to annihilation. If HR = 0 then Agjgmoiq = O for T(IS) to be a linear

ve this, the steepness of the status transition function must be a function of AR with a
(—1,1). The rate at which an ALC’s status moves from one state to the next is influ-
the minimum matching ratio . For increasing P the rate of a state transition should be
than for a smaller 3. A faster transition rate is obtained with a steeper gradient of the state
n function, which is achieved with Agigmeig > 0. On the other hand, a slower transition
er B) is obtained by using a Agjgmeig < 0. To achieve these effects, Asigmoid can be a

2

A 0 = ¥
f( Hyper;*Hyper ) jue e(—;‘-H}'perxxH}'Pe")

> Ayper controls the steepness of f(AgypersXHyper). Thus, Asigmoia can be defined as

?LSigmoid = f(B:HR)

L= Ll
1+ e(-BxHR)

the above, B controls the steepness of the hyperbolic tangent function. A large value of 3
a higher rate of change of f(B,HR), which ensures an increasing slope for the state
n function g. A smaller value of f3 caus@s a lower rate of change of f(B,HR), which
es a decreasing slope for the state transition function. Values of HR > 0 will cause a positive
tfor (B, HR), which ensures a monotonic increasing state transition function. On the other
d HR < 0 will cause a negative output for f(B,HR), which ensures a monotonic decreasing
- transition function.

'C(IS) = g(hSigmoid:IS)
= g(f(l?),HR),IS)



University of Pretoria etd — Graaff A J (2003)

PTER 5. THE ARTIFICIAL LYMPHOCYTE LIFE COUNTER 44

1
1+ e(—F(B.HR) xI5)

e f(B,HR) = H—e(-‘%n—m =1

HR defined in section 5.2.3.3 will always have a positive value, since IS > 0 and HC > 0.
jth HC > 0 and B > 0, £(B, HR) > 0. This results in the fact that g will always be a monotonic
reasing function. This means that the function g will always converge to 1.0 and all ALCs will
jer stay in the mature status or transolve to the memory status. To prevent all the ALCs to con-

to memory, a constant detection ratio can be subtracted from HR. The constant detection
is called the expected matching ratio (EMR) and is explained in the following section.

The Expected Matching Ratio

The expected matching ratio (EMR) is the detection ratio of non-self patterns expected from an
2. The EMR needs to be updated so that after each iteration, the EMR represents a more
ect rate of non-self patterns that can be expected to be detected by an ALC. If 1, is the
ber of non-self patterns detected in the current iteration, then 7% calculates the matching rate
on-self patterns per iteration. A proposed function to update the EMR for the next iteration
take the average over the current matching ratio and the current iteration’s EMR, i.e.

EMR;,+ 7%

EMRp+1=—>3,

vhere EMRy,. 1 is the calculated expected matching ratio for the next iteration. The HR function
s redefined to be also dependent on the EMR:

HC
HR(HC,IS,EMR) = — — EMR

From the above equation it can be concluded that if an ALC detects less patterns as expected
IR > fII—g) then HR < 0, resulting in a monotonic decreasing g. If EMR < % then HR > 0,
ch results in a monotonic increasing g. With the redefined HR, not all the ALCs will converge
mory, and those that match less non-self patterns as expected, move toward annihilated
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ipter explained how ALCs cover non-self space and how their receptors are initialised.
1ing of an ALC, using the adapted negative selection or positive selection, was explained.

e three types of status were prioritised into low, medium and high. Then the life
eshold function was presented and explained. In the next chapter, the use of evolu-
omputation techniques to evolve ALCs are discussed.
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Chapter 6
| Evolving Artificial Lymphocytes

This chapter proposes an approach to evolve an optimal initial set of ALCs using a genetic al-
gorithm (GA). An optimal set of ALCs can be defined as a set of trained ALCs with the largest
non-self space coverage and with minimum overlap among the ALCs in the set. Thus, the prob-
lem that needs to be optimised is multi-objective. GAIS (Genetic Artificial Immune System)
uses a GA to search the problem space for solutions to these objectives. Figure 6.1 (page 50)
illustrates the flow layout of the GAIS algorithm and the function of the GA within GAIS. GAIS
has an initial empty set of ALCs. The set is populated by evolved ALCs which are obtained from
the GA one-by-one (sequentially), until the set of ALCs has converged. The converged ALC set
is used to classify any pattern as non-self or self. Therefor the GAIS algorithm has two phases:

e The evolutionary process to evolve the best ALC using a GA.

e The detection process of non-self patterns.

The first phase forms part of the training process of the ALCs. The role of the GA in GAIS
is explained in section 6.1. After training, the evolved ALC set is used to classify any pattern as

self or non-self. The classification process is discussed in section 6.2.

6.1 Genetic Algorithm to Evolve an ALC

~ The success and efficiency of GAIS is mainly influenced by the quality of the ALCs used to
detect non-self patterns. An ALC is randomly initialised and trained with either the adapted
negative selection method or positive selection method. The trained ALC usually forms part of
a static set of trained ALCs which is used to detect non-self patterns. This section shows how a

GA can be used to evolve a dynamic set of ALCs. The main objective of the GA is to evolve an

46
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ALC to be added to the existing active ALC set such that the evolved ALC maximises its ADT
(if the ALC was trained with the adapted negative selection method) or minimises its ADT (if the
ALC was trained with the positive selection method) and to minimise the average overlap with
existing ALCs in the active ALC set. In the case of the adapted negative selection, an ALC with
the maximum hamming distance from the set of self patterns implies that the maximum non-self
space is covered by the ALC without overlapping with the self set. In the case of positive se-
lection, an ALC with the minimum hamming distance from the set of self patterns implies that
the similarity between the evolved ALC’s receptor and the set of self ﬁatterns needs to be max-
imised for maximum non-self space coverage. Additionally, the GA also maximises the distance
between the new ALC and the ALCs in the active ALC set. Maximising the distance between
the new ALC and the active ALC set guarantees that the evolved ALC has the lowest average
overlap with the existing set of ALCs, and this forces greater coverage of non-self space. Thus,
a GA is used in GAIS to optimise a multi-objective goal. The purpose of the GA is to evolve one
optimal ALC to be added to the active set of ALCs.

The GA has an initial population of / ALCs. The initial population is randomly initialised (as
shown in figure 6.1). The fitness of each ALC in the population is calculated to be proportional
to the ADT and overlap with other ALCs (refer to section 6.1.3). The evolutionary process stops

“as soon as the maximum number of generations is reached or the fitness of the ALC population
has converged. The fittest ALC in the population is then selected to be added to the active ALC
set.

The following is the pseudo-code summary for the GA in phase 1 to evolve an ALC:

1. set g=0 (g counts the number of generations)
2. randomly initialise / chromosomes as population H,

3. while no convergence in H,

(a) evaluate the fitness of each chromosome in H, using equation (6.1) or (6.2)
(b) apply cross-over
1. select two parents

ii. produce offspring from the two selected parents and add them to the offspring
set

(c) apply mutation
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i. select a candidate chromosome from the offspring set

1. mutate the selected candidate
(d) select the new generation from the previous generation and the offspring set

) g=¢g+1

The operators and other design aspects of the algorithm are explained in more detail below.

6.1.1 ALC as Chromosome

As explained in section 3.3, each chromosome represents a potential solution and consists of the
set of parameters (genes) to the problem that needs to be optimised. Alleles are specific values

from the domain of the corresponding parameter assigned to the gene.

As explained in Section 5.2, each ALC has a receptor that is a bit-string of fixed length k. These
bit-strings are used to detect or match patterns as explained in section 5.2.3. Therefor all patterns
that need to be classified by an ALC must first be coded to a bit-string. A technique known
as binning is used to discretise patterns with floating-point values. Binning calculates the valid
interval of values for each attribute c in the data set. The interval is calculated by subtracting the
minimum value of the attribute from the maximum value of the attribute. The calculated interval
of each attribute is then divided into b bins. Each bin represents a group of values. To determine
into which group a value of the specific attribute falls, the following calculation is used

Xe,j — Mile=1,..C {xc,j}

maxe=1..c {xc,j} —Mife=1,_C {xc,j} ;

Glxe,j) = b
where x. ; is the floating-point value x of attribute ¢ in pattern j and C is the number of attributes

in a pattern.

The floating-point value in the pattern is now in nominal form. To code patterns from nomi-
nal to binary, the number of groups or bins an attribute can have is used to determine the number
of bits necessary to represent an attribute’s values. The number of bits is calculated as N = %
bits. Then the nominal value in each attribute can be coded to binary using standard binary

encoding. The binary encoded chromosome in effect represents the receptor of an ALC.
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6.1.2 The Initial Population

The receptor of an ALC is randomly initialised. The initial population of the GA is a set of
these randomly initialised ALCs. Random selection ensures that the initial population of chro-
mosomes has a good uniform coverage of the search space. The size of the population, 7, is static
throughout the evolutionary process.

6.1.3 Evaluating the Chromosome’s Fitness

The ALCs in the AIS can be trained with one of two selection methods (as explained in section
5.2.2). There are two objectives that need to be optimised by the GA. The first objective to
be optimised is to evolve an ALC with the largest average hamming distance, y,(D,r), from
an existing set of ALCs. This objective ensures that the GA evolves an ALC with the lowest
average overlap with an existing set of ALCs. The average hamming distance from an existing
set of ALCs is calculated as follows

YEtv(dyr)

wD,x) = =27

where D is the active ALC set, P is the number of ALCs in the active set D, d; is the receptor of
the I-th ALC in the active set and r is the receptor of the ALC from which the average hamming
distance must be calculated. 7y is the hamming distance between d; and r, defined as

i<k

v(d;,x) = ) XOR(dy,r)
=1

where X OR is the exclusive-or between the bits of d; and r, i is the bit-index and k is the size of
the receptor.

The second objective that needs to be optimised by the GA is to evolve an ALC with an op-
timised affinity distance threshold. The second objective differs for each selection method as
explained below.

6.1.3.1 Adapted Negative Selection Fitness

In the case of the adapted negative selection, the GA needs to evolve an ALC that has the max-
imum affinity distance threshold a,e,. This objective ensures that the GA evolves an ALC with
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the maximum hamming distance from the set of self patterns. An ALC with maximum hamming
distance from the set of self patterns implies that a maximum non-self space is covered by the
ALC without overlapping with the self set.

The fitness function V., for the adapted negative selection is then defined as

Uneg = Wi1lneg + WZX,(Dv I‘) (6 1)

with w1 +wy, = 1.0 where wy, wa € [0, 1]. w; and w; are weights that determine the influence that
aneg and (D, r) have on the fitness of an ALC, respectively. Since there is no conflict between
aneg and (D, r), the sub-objectives are only weighted with wq and w,. With wy = 1.0, x(D,r)
has no influence on the ALC’s fitness and the fitness is determined only by apee. With wa = 1.0,
Gneg has no influence on the ALC’s fitness and the fitness is determined by % (D, r). The value of
wy is calculated as wo = 1.0 — wq, and the value of wy is problem dependent, obtained through
cross-validation.

6.1.3.2 Positive Selection Fitness

In the case of positive selection, the GA needs to evolve an ALC that has the minimum affinity
distance threshold apes. This objective ensures that the GA evolves an ALC with the minimum
hamming distance from the set of self patterns. This objective implies that the similarity between
the evolved ALC’s receptor and the set of self patterns needs to be maximised. The similarity
between two patterns is calculated by the complement of their hamming distance, i.e. k— apos
where £ is the length of the receptor and a5 the ADT.

The fitness function Vs for positive selection is defined as

Vs = W1 (k — apos) +w2X(D,r) (6.2)

where wi and w; have the same meaning as for the adapted negative selection.

6.1.4 Parent Selection

The chromosomes that are selected for crossover to produce a set of offspring is randomly se-
lected from an elitist set of chromosomes (elitism is discussed in section 3.3.3.). The generation

gap 1s calculated as
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c=1Ixe

where e is the rate of elitism, with e € (0, 1].

A small value of e results in more diversity among the individuals for the next generation. If e
is too big there will be less diversity among individuals for the next generation. After the elitist
set has been created, the GA applies uniform crossover (as explained in section 3.3.1.2) between
the randomly selected parents with probability, p., to produce offspring. The produced offspring
forms part of the offspring set for the current generation. The crossover probability, p., decreases

with an increase in the number of generations, 1.e.

8

Pe=1.0~= G

where g is the completed number of generations and G is the maximum allowed number of

generations. With initial value g = 0, p, will have an initial value equal to 1.0, implying a high

probability of crossover. As the population evolves and becomes fitter, the need to exchange

genetic material between fit individuals decreases. Thus the probability of crossover decreases
as the population evolves.

6.1.5 Mutation

The offspring created through the uniform crossover operator (as explained above), is randomly
selected for mutation. The GA applies random mutation (as explained in section 3.3.2.2) on
the selected individual with probability, p,,. The probability, p.,, is calculated for each selected
individual using LA
—x(D,x

S
where k is the length of the ALC’s receptor and ¥ (D, r) is the average hamming distance between
the ALC and the existing set of ALCs. k_x—,(cD’r) gives the average similarity rate between the
ALC’s receptor and the existing set of ALCs. Since one of the objectives is to ensure that the
GA evolves an ALC with the lowest average overlap with an existing set of ALCs, the similarity
rate should determine p,,. A high similarity rate implies that the ALC needs to be mutated with
a high probability (mutation rate) to evolve a mutated ALC with the lowest average overlap with
an existing set of ALCs. A low similarity rate implies that the ALC has a low average overlap

with an existing set of ALCs and thus the rate of mutation must be low.
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6.1.6 Selection of the New Population

The new population is selected from the parents of the current population and the offspring. All
individuals (parents) in the elitist set survive to the next generation to ensure that the maximum
fitness in the population does not decrease. The remainder of the new population is filled with
the fittest offspring, determined using linear ranking (as explained in section 3.3.3).

6.1.7 Convergence of the GA

In the above GA algorithm, convergence in step 4 is reached when the maximum numbe'r of
generations is reached or when the difference in the 2-point moving average between the fitness
of the new population and the fitness of the previous generation’s population is less than ur. The
2-point moving average is calculated as follows

o ﬂ(Hgfl) +P(Hg)
He = 2.0

where u(H,_1) is the average fitness of population H,_1, u(Hg) is the average fitness of popu-
lation H,, and g is the current generation number. g is calculated after each generation. The
population H, has converged if | g1 — Hg| < ur for g =1,....,WindowSize. A small difference
in moving average, i.e. less than ur, implies that the reproduction and selection operators on
the population H, resulted in a minor change on the average fitness of the population and thus

further evolution is unnecessary.

6.2 The GAIS Algorithm

This section explains the classification process of GAIS. The GA in phase 1 is repeatedly applied
until the evolved active ALC set has converged (convergence of the active ALC set is explained
in section 6.2.2). The ALCs in the converged active set, Dy, are then trained with one of the
selection methods (as explained in section 5.2.2). After training, the EMR is set to 0.0 and GAIS
tries to detect a set of patterns equal to the iteration size, IS, as non-self patterns using Dz. When
a pattern is detected as non-self, the hit counter, HC, of each ALC that detected the non-self pat-
tern is updated (as explained in section 5.2.3). If a pattern is not detected as non-self, the ALCs
in the annihilated set is used to find a match. If a match is found, the annihilated ALC becomes
mature and is moved to Dy. After all the patterns in an iteration have been classified, the life
counter, T(IS), of each ALC in the active set Dy, is calculated to determine in which state an ALC
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is. The ALCs that have annihilated status are removed from the active set Dy and inserted into
the annihilated set which contains all previously annihilated ALCs. The EMR is then updated
(as explained in section 5.4). The next set of patterns equal to IS is then classified by GAIS until
all the patterns have been classified.

The GAIS algorithm is summarised below:

Beginning of phase 1
1. Initialise the active ALC set, Dg to contain no ALCs.

2. While no convergence in Dy,

(a) L=L+1
(b) Add evolved ALC from GA to Dy,

End of phase 1

Beginning of phase 2
1. Set the expected matching ratio = 0.0 (EMR = 0.0)

2. While not all patterns have been classified

(a) fori=0,....,15-1
i. if a non-self pattern is not detected by active set Dy
A. Try to detect the non-self pattern with annihilated set A
B. Move annihilated ALCs that detected non-self patterns from A to Dy,
ii. Update HC of each ALC in Dy, that detected the non-self pattern
(b) for =0, ...., |Dr|-1
i. Calculate the LC of ALC;
ii. Calculate x(D, d;) , where d; is the receptor of ALC;
(c) Move all ALCs with annihilated status from Dy, to A.

(d) Update the EMR (as explained in section 5.4)
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End of phase 2

Several aspects of the above algorithm need to be explained in more detail, for example the
 initialisation process of D in phase 1 and the convergence of D in phase 1, step 2. These aspects
are discussed in the following sections.

6.2.1 Initialisation of the ALC Set

The initial ALC set is defined as the empty set Do ={}. |D| increases after the best ALC as
determined by the GA is added to D, i.e. Dy = Dy U{ALC;} where ALC] is the evolved
BIEC and L =10,...... ,L. L is the number of ALCs evolved by the GA before the active ALC set
converged. For each [ > 0, the existing active set Dy is used by the fitness function to ensure that
the newly evolved ALC; is on average the furthest away from the existing active ALC set Dry.

6.2.2 Convergence of the ALC Set

In the above GAIS algorithm, convergence in phase 1, step 2 is reached when the difference in
the 2-point moving average between the fitness of Dy_; and Dy is less then yr. The 2-point
moving average is calculated as follows

u(Dr—1) +u(Dr)
2.0

HL =

where u(Dy.—1) is the average fitness of set Dy_; and u(Dy) is the average fitness of set Dy. yy, is
calculated after each evolved ALC is added to Dy 1. The set Dy, has converged if |11 — | < ur
for I = L — WindowSize,....,L. After the ALC set has converged, all the ALCs in the active set
are trained with one of the selection methods (as explained in section 5.2.2).

6.3 Conclusion

This chapter showed how a GA can be used to evolve an optimal set of ALCs using the proposed
operators. The initialisation of a population, the selection operator, reproduction operators and
the fitness function of the GA were discussed. The GAIS algorithm was presented and the ini-
tialisation of the ALC set were discussed. There are many other operators that can be considered
when implementing the GA (as discussed in chapter 3), but the chosen operators have satisfying
results (presented in the next chapter). Finding the best operators for the evolutionary process

falls outside the scope of this dissertation. The focus is on classifying non-self patterns from seen
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self patterns with a set of ALCs that consists solely of ALCs with mature and memory status.
The next chapter presents and analyses the results obtained from the GAIS classifier.
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Chapter 7
Experimental Results

“No amount of experimentation can ever prove me right,
a single experiment can prove me wrong”
- Albert Einstein

This chapter presents experimental results to analyse the behavior of the GAIS model on dif-
ferent classification problems. The performance of GAIS is investigated under different control
parameter values. The data sets were collected from the UCI Machine Learning Repository [7].
The patterns in each data set were discretised and converted to binary strings (as explained in
section 6.2.1). For each experiment, one of the classes in a data set is selected as the self set.
The self set is then used to train the ALCs with the adapted negative selection and the positive

selection methods. The other classes in the data set represent the non-self patterns.

All experiments used a 30-fold cross validation self set. The self set was randomly divided
into thirty disjoint sets. The ALCs were trained on 29 of these self sets and were tested with a
test set that consisted of the remaining self set (the training set that was left out during training)
and the unseen non-self patterns. In each experiment the initial population size in the GA was set
to 100 chromosomes (I = 100) and the rate of elitism was set to 30% (e = 0.3). The window size
in the GA and GAIS was set to 4.0 (WindowSize = 4.0) and ur = 0.01 to test for convergence in
the population and ALC set respectively. These values were found empirically to deliver good
performance. All experimental results in this chapter are averages over 30 simulations with the

selected self class in ifalic print. The best parameter settings are printed in bold in each table.
The results in each table, starting with the leftmost column, are the iteration size (IS) and param-
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eter w1 * 100% (W1) in the fitness function of the GA (recall that wy = 1.0 —w1). The following
results are the averages after the ALC set in GAIS has converged and all patterns were classified:
the average number of ALCs in the active set (#ALCs), the average number of ALCs in the active
set with memory status (#MemALCs), the average number of false positives (#fPos), the average
number of false negatives (#fNeg), the average affinity distance threshold in the active set (ADT)
and the average hamming distance between ALCs in the active set (HD). The average HD in-
dicates the average hamming seperation among ALCs in the active set to cover non-self space.
A higher value of HD indicates less overlap. The standard deviation is given in parentheses. A
pattern from the self class that is falsely classified as non-self is referred to as a false positive.
A pattern that is not from the self class and is falsely classified as self is referred to as a false
negative. The average number of misclassified patterns for each parameter setting in each table
is calculated as follows:

#Misclassified = falsePositives + falseNegatives

Note that the accuracy is the average over all iterations. The interval-values for IS were calculated
by

Is= % « Size of data set, is € [25, 50, 75, 100]

The total number of iterations that GAIS executes is therefore equivalent to Size of ﬂ}? data set

The selected values for w; were calculated by

w1

= T55» 1 € [25,50,75, 100]

w1

Some of the tables are accompanied by figures that illustrate the results with the best parameter
settings. These figures are the average number of ALCs in the active set, the average fitness of
the ALCs in the active set and/or the average number of misclassified patterns at each iteration
of GAIS. The figure that illustrates the average number of misclassified patterns, illustrates the
average number of misclassified patterns after classifying /S patterns at each iteration. The num-
ber of patterns that was classified in the last iteration is less or equal to IS, ie. the remaining
patterns in the test set. The sum of the average number of misclassified patterns per iteration will
correspond to the calculated number of misclassifications for the specific parameter settings in .
the corresponding tables. |

Section 7.1 to section 7.5 discuss the results obtained from the GAIS model to classify the classes



University of Pretoria etd — Graaff AJ (2003)

CHAPTER 7. EXPERIMENTAL RESULTS 59

in the Iris data set, Wisconsin breast cancer data set, Mushroom data set, Glass data set, and the
Car evaluation data set respectively with different parameter settings. The results of each of these

data sets are concluded in their respective sections and a comparison with C4.5 is given in section
7.6.

7.1 Iris

The iris data set contains three classes of fifty instances each, where each class refers to a type of
iris plant. The setosa class is linearly separable from the versicolor class and the virginica class.
The versicolor class and the virginica class are not linearly separable. The dataset consists of 150
patterns, evenly distributed among the three classes (33.3% each). Each pattern consists of four
continuously valued attributes. The patterns were converted to binary strings of length 20.

7.1.1 Setosa

As a first experiment, setosa was selected as self. The results for training the ALCs with negative
selection on patterns of the setosa class as self after convergence are summarised in table 7.1.
Most of the parameter settings in table 7.1 had an average false negative classification of 0.000.
The overall best result among the parameter settings with 0.000 false negative classification, is
with IS=37 and W1=50 since the average number of ALCs in the active set of ALCs (#ALCs =
- 16.427) and the false positive classification (fPos = 0.500) are the lowest. This gives a number
~ of 0.500 patterns misclassified (#Misclassified = 0.500+0.000 = 0.500) and a correct classifi-
cation of 99.666%. The number of ALCs with memory status in the active set was on average
12.980. Figure 7.1 shows that the active set of ALCs started with an initial average size of 16.566
ALCs in the active set and then decreased over five iterations to an average number of 16.233
ALCs in the active set. The average fitness of the ALC set decreased over the iterations from
9.452 to 9.428. There was a decrease in misclassification over the iterations with an increase at

iteration four.

Table 7.2 summarises the results for training the ALCs with positive selection on patterns from
the setosa class as self. The positive selection also has different parameter settings for which
a false negative classification of 0.000 was obtained. When IS=37 and W1=50 the lowest mis-
classification was achieved (#Misclassified = 0.567 +0.000 = 0.567) with the least average
number of ALCs in the active set of ALCs (#ALCs = 17.420). This gives a correct classifica-
tion of 99.622%. The average number of ALCs with memory status in the active set of ALCs
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Table 7.1: Setosa - Negative selection

IS | W1 | #ALCs |#MemALCs | #fPos #Neg ADT HD

57 .25 20.067 14.727 0.767 0.167 9.423 9.393
(£6.285) (£5.004) | (£1.995) | (£0.531) | (£0.139) | (£0.213)

50 16.427 12.980 0.500 0.000 10.874 8.012
(+5.187) (+4.203) | (£1.306) | (£0.000) | (£0.180) | (£0.188)

75 21.900 17.520 0.633 0.033 11.946 6.138
(4.664) (£3.731) | (£2.189) | (£0.183) | (£0.131) | (£0.253)

100 | 26.667 21.333 0.567 0.133 12.099 5.191
(=9.932) (£7.946) | (£1.478) | (=0.434) | (£0.110) | (£0.311)

74 | 25 19.511 12.000 0.767 0.233 9.328 9.518
(£5.504) (£3.614) | (£1.995) | (£0.626) | (£0.167) | (£0.097)

50 17.844 I LE 0.633 | 0.000 10.929 8.011
(£3.963) (£2.652) | (£1.829) | (£0.000) | (=0.200) | (£0.191)

75 23.567 15.711 0.667 0.000 11.946 6.164
(£5.117) (£3.411) | (£1.826) | (£0.000) | (£0.178) | (£0.273)

100 | 23.733 15.822 0.633 0.567 12.102 5.148
(£12273) | (£8.182) | (£2.008) | (:£1.135) | (£0.123) | (£0.377)

112:| 25 20.933 9.883 0.733 0.300 9.182 9.616
(£6.147) (£3.183) | (£1.999) | (£0.702) | (£0.215) | (£0.057)

50 16.933 8.400 0.567 0.000 10.878 8.035
(+£4.017) (£2.061) | (£1.478) | (£0.000) | (£0.163) | (£0.178)

75 23.233 11.617 0.767 0.000 11.946 6.131
(£6.207) (£3.104) | (£2.176) | (£0.000) | (£0.139) | (£0.209)

100 | 27.400 13.700 0.500 0.267 12307 5.187
(£10.627) | (£5.314) | (£1.480) | (£1.048) | (£0.172) | (=0.354)

150 | 25 20.567 0.000 0.733 0.067 0.193 9.618
(+4.636) (£0.000) | (£1.999) | (£0.254) | (£0.131) | (£0.052)

50 17.433 0.000 0.733 0.000 10.895 8.013
(£3.540) (£0.000) | (£2.363) | (£0.000) | (=0.184) | (£0.173)

73 21.667 0.000 0.700 0.000 11.956 6.138
(£5.616) (£0.000) | (£1.643) | (£0.000) | (£0.154) | (£0.268)

100 | 23.433 0.000 0.467 0.400 12.083 5.151
(£11.820) | (£0.000) | (£1.479) | (£0.724) | (£0.129) | (=0.352)
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-Table 7.2: Setosa - Positive selection

#ALCs

IS | W1 #MemALCs | #fPos #fNeg ADT HD

37 W25 19.653 14.433 0.700 0.233 10.525 9.387
(£3:572) (+4.506) | (£1.643) | (£0.774) | (£0.136) | (£0.176)

50 17.420 13.760 0.567 0.000 9.043 7.948
(£4.409) (£3.524) | (=1.478) | (£0.000) | (£0.196) | (=0.209)

75 23.833 19.067 0.767 0.000 3.087 6.212
(£5.093) (+4.074) | (£1.995) | (£0.000) | (£0.154) | (£0.277)

100 | 26.200 20.953 0.567 0.133 7.900 5.183
(£9.279) (£7.426) | (£1.832) | (£0.434) | (£0.126) | (=0.384)

74 [ 25 21.667 13.578 0.667 0.300 10.662 9.546
(£5.049) (+£3.369) | (£1.826) | (£0.915) | (0.172) | (£0.069)

50 17511 11.633 0.700 0.000 9.105 8.038
(£4.846) | (£3.308) | (£2.003) | (£0.000) | (£0.164) | (£0.121)

75 21.700 14.467 0.667 0.033 8.080 6.214
(£5.453) (£3.635) | (£2.006) | (£0.183) | (£0.141) | (£0.274)

100 [ 127.133 18.089 0.400 0.567 7.900 5.044
| (£14.063) | (£9.375) | (£1.476) | (£1.006) | (£0.131) | (0.468)

112 | 25 20.400 0533 0.833 0.167 10.873 9.641
(£5.090) (£2.566) | (£2.350) | (£0.531) | (£0.192) | (+0.047)

50 18.333 9.067 0.700 0.000 Q.15 8.037
(£3.889) (£1.915) | (£2.003) | (£0.000) | (£0.153) | (£0.185)

i 22.500 11.250 0.600 0.033 8.071 6.085
(£6.279) (£3.140) | (£1.831) | (£0.183) | (£0.128) | (+0.303)

100 | 27.400 13.700 0.633 0.333 7.910 5.236
(£11.828) | (£5.914) | (£1.650) | (£1.124) | (£0.137) | (£0.311)

150 | 25 21.833 0.000 0.733 0233 10.778 9.615
(£5.072) (£0.000) | (£1.999) | (£0.626) | (£0.148) | (£0.042)

50 18.100 0.000 0.600 0.000 9.086 8.060
(£4.196) (40.000) | (£2.010) | (£0.000) | (£0.183) | (0.203)

15 21.300 0.000 0.733 0.033 8.082 6.187
(E=2:227) (£0.000) | (+1.818) | (£0.183) | (£0.125) | (£0.218)

100 | 26.833 0.000 0.633 0.233 7.889 5.136
(£11.083) | (£0.000) | (£1.829) | (£0.679) | (£0.136) | (£0.313)
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is 13.760. Figure 7.2 shows that the active set of ALCs had an initial average size of 17.6 and
decreased over five iterations to an average number of 17.266. The average fitness also decreased
over the iterations from 9.458 to 9.446 and the average misclassification increased from iteration
one to two, and then decreased to iteration five.

7.1.2 Versicolor

The classification results for training the ALCs with negative selection on patterns of the ver-
sicolor class as self are shown in table 7.3. The lowest misclassification (#Misclassified =
0.967 +3.333 = 4.300) was achieved with IS=37 and W1=75. This gives a correct classification
of 97.133% with an average number of 21.567 ALCs in the active set of ALCs. The average
number of ALCs with memory status in the active set was 17.220. Figure 7.3 shows that their
was no change in the size of the active set over all iterations and the constant size is an average
number of 21.566 ALCs. The average fitness of the ALC set was constant at 9.908 and the aver-
age number of misclassification increased from iteration one to iteration three and then decreased
to iteration five.

The best classification result shown in table 7.4, is achieved with IS=37 and W1=50 when train-
ing the ALCs with positive selection on the patterns of the versicolor as self. The misclassifi-
cation of 4.5 patterns (#Misclassified = 1.167 + 3.333 = 4.5) gives a correct classification of
97.000%. The average number of ALCs in the active set of ALCs was 20.333 and an average
number of 16.253 of these had memory status. Figure 7.4 shows that the average number of
ALCGs in the active set of ALCs was constant at 20.333 over all iterations. The average number

of misclassification increased from iteration one to three and then decreased to iteration five.

71.3 Virginica

Table 7.5 shows that with IS=150 and W1=75 the lowest misclassification of 8.100 patterns
(#Misclassified = 1.200 + 6.900 = 8.100) was achieved when training the ALCs with negative
selection on patterns of the virginica class as self. This gives a correct classification of 94.600%
with an average number of 23.533 ALCs in the active set. An average number of 0.000 of the
ALCs in the active set had memory status, since IS = 150 (which is the size of the data set) which
implies that there was only one iteration. Since an ALC’s status is evaluated after an iteration,

the active set of ALCs in the first and only iteration cannot contain ALCs with memory status.
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IS | W1 | #ALCs | #MemALCs | #fPos #fNeg ADT HD

37 | 25 19.747 13.660 1.033 5.100 8.951 9.454
(£4.979) (£3.953) | (£2.684) | (:=4.436) | (£0.158) | (£0.148)

50 16.753 12.887 1.233 5.000 10.105 8.315
(+4.979) (£4.001) | (£3.014) | (£2.983) | (£0.148) | (£0.187)

75 21.567 17.220 0.967 3.333 10.943 6.805
(+4.337) (+3.483) | (£2.883) | (£1.918) | (£0.117) | (£0.243)

100 | 18.133 14.507 1.033 7.667 11.049 5.666
(£12.074) | (£9.659) | (£3.057) | (£4.436) | (£0.117) |. (£0.476)

74 | 25 19.856 11.556 1.067 5.100 8.773 9.587
(£5.372) (£3.546) | (£2.677) | (£3.356) | (£0.140) | (£0.098)

50 18.422 11.989 1.300 4.533 10.090 8.407
(+£4.239) (£2.828) | (£3.564) | (£2.161) | (£0.201) | (£0.168)

75 19.900 13.267 0.967 4.467 10.962 6.799
(+4.957) (+£3.305) | (£2.883) | (£2.240) | (£0.147) | (£0.283)

100 | 21.600 14.400 0.867 5.867 11.050 5.877
(+£10.981) | (£7.321) | (£2.161) | (£3.674) | (£0.146) | (£0.313)

112 | 25 20.267 9.250 12133 5.167 8.547 9.708
(5717 (£3.036) | (£2.474) | (£3.842) | (£0.250) | (£=0.042)

50 16.867 8.367 0.967 4.300 10.073 8.364
(£3.721) (£1.934) | (£2.512) | (E2.215) | (EBIBS) | (0.172)

75 20.200 10.100 1.133 4.000 10.947 6.850
(£5.006) (£2.503) | (£2.849) | (£1.965) | (£0.133) | (£0.229)

100 | 22.700 11.350 1.033 72033 11.077 5.587
(£11.870) | (£5.935) | (£3.243) | (£6.457) | (£0.129) | (0.442)

150 | 25 20.133 0.000 0.967 5.200 8.603 9.708
(45.387) (£0.000) | (£2.327) | (£3.428) | (£0.197) | (£0.041)

50 16.367 0.000 1.067 4.133 10.028 8.440
(£3.222) (£0.000) | (£2.490) | (£2.193) | (£0.164) | (£0.134)

75 19.867 0.000 1.067 3.600 10.936 6.859
(46.252) | (40.000) | (£2.864) | (£2.044) | (£0.122) | (£0.252)

100 | 18.200 0.000 0.933 7.400 11.074 5.628
(£9.956) (£0.000) | (£3.073) | (£6.268) | (£0.155) | (£0.501)
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Table 7.4: Versicolor - Positive selection
IS | W1 #ALCs | #MemALCs | #fPos #fNeg ADT HD
37 1 25 17.780 12.160 1:133 5.300 11.039 9.348
(£5.001) (£4.066) (£2.662) | (£4.078) | (£0.177) | (£0.330)
50 16.473 12.607 0.967 4.067 9.875 8.277
(43.780) (£3.018) (£2.512) | (£1.999) | (£0.165) | (+0.226)
75 20.333 16.253 1.167 3.333 9.041 6.757
(+4.700) (+3.750) (£2.842) | (£1.768) | (+0.118) | (+0.256)
100 215183 16.887 1.033 6.067 8.919 5.784
(£9.916) (£7.942) (£3.429) | (£4.025) | (£0.137) | (£0.400)
74 | 25 22.011 13.100 1.167 4,100 11.223 9.624
(£4.683) (£3.131) (£=3.217) | (£2295) |- (£0:125) | (=0.083)
50 17.022 11.033 1.033 4.600 9.928 8.410
(£3.529) (£2.455) (£2.498) | (£1.940) | (£0.192) | (£0.173)
5 20.433 13.622 1.067 3.833 9.070 6.802
(4+3.636) (£2.424) (£3.051) | (£1.642) | (£0.134) | (£0.257)
100 19.133 12.756 0.900 7.233 8.951 5.601
(+=10.224) (+£6.816) (£2.708) | (£5.104) | (£0.123) | (+0.488)
112 | 25 20.700 9.483 15133 5.467 11.404 9.710
(£5.676) (£2.740) (£3.411) | (£5.178) | (£0.196) | (£0.038)
50 16.433 8.050 0.900 4.433 9.946 8.417
(+4.523) (*2.175) (£1.788) | (£2.373) | (£0.179) | (£0.205)
75 18.600 9.300 0.967 3.800 9.022 6.743
(+4.515) (£2.258) (£3.068) | (£1.883) | (£0.150) | (£0.283)
100 20.833 10.417 0.767 6.600 8.945 5.823
(£8.623) (+4.311) (£1.813) | (£4.141) | (£0.113) | (£0.377)
150 | 25 20.433 0.000 1.200 5.633 11.376 9.685
(4:6.585) (+0.000) (£3.585) | (£4.359) | (£0.208) | (£0.049)
50 17.367 0.000 1.033 4.667 9.982 8.429
(£6.178) (+0.000) (£2.684) | (£2.264) | (£0.139) | (£0.144)
75 21.367 0.000 1.267 3.300 9.085 6.894
(+4.522) (+0.000) (£3.383) | (£2.136) | (£0.160) | (£0.284)
100 20.500 0.000 1.033 7.033 8.930 5.784
(£9.497) (£=0.000) (£3.057) | (+4.351) | (0.151) | (0.370)
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Table 7.5: Virginica - Negative selection

IS | W1 | #ALCs | #MemALCs | #Pos #Neg ADT HD
37 |1:25 17.293 9.873 1.067 15.000 7.859 9.604
(£5.395) (£3.835) | (£3.051) | (£10.342) | (£0.155) | (=0.249)
50 13.667 1973 0.967 15.967 8.327 9271
(:3.770) (£2.565) | (£2.883) | (£7.327) | (£0.189) | (+0.214)
75 19.420 12.920 1.300 8.467 8.688 9.020
(£6.566) (=4.881) | (£3.186) | (£6.962) | (£0.144) | (+0.278)
100 | 26.527 171993 1133 10.800 8.814 8.055
(£6.502) (=4.725) | (£3.224) | (£9.845) | (£0.156) | (+0.414)
74 | 25 18.289 9.222 1.100 18.067 7.812 9.823
(£4.930) (£2.807) | (£3.231) | (£10.110) | (0.150) | (0.068)
50 15.767 8.356 0.967 14.933 8.323 9.466
(£3.177) (£2.192) | (£3.253) | (£6.913) | (£0.137) | (+0.117)
75 20.811 11.911 1.200 9.267 8.672 9.082
(£4.900) (2.979) || (=£3:398) | (£5:159) | (X0.134) | (0:250)
100 | 27.522 16.122 1.200 12.300 8.786 8.059
(=10.981) | (£7.005) | (£3.210) | (£11.274) | (£0.172) | (£0.383)
112 | 25 17.633 7.367 1.000 19.667 7.749 9.881
(£5.391) (£2.619) | (£2.505) | (£11.312) | (£0.182) | (4-0.038)
50 16.133 7.183 1.067 13.267 8.313 9559
(£3.170) (£1.517) | (£3.237) | (£5.831) | (+0.144) | (£=0.0883)
75 20.700 9.817 1.167 7.633 8.670 Di55
(£5.510) (£2.490) | (£3.217) | (£4.335) | (£0.142) | (£0.158)
100 | 29.233 13.333 1.067 12.067 8.780 8.079
(£7.807) (£3.724) | (£3.051) | (£14.453) | (£0.143) | (3-0.428)
150 | 25 19.733 0.000 1.033 17.200 7.731 9.896
(£5.401) (£0.000) | (£3.243) | (£8.438) | (£0.217) | (£0.029)
50 17.338 0.000 1.100 14.067 8.292 9.564
(+4.054) (==0.000) | (£3.044) | (£8.952) | (£0.151) | (£0.065)
75 23.533 0.000 1.200 6.900 8.634 9.179
(£5.198) (£0.000) | (£3.210) | (£3.942) | (+0.162) | (£0.197)
100 | 29.067 0.000 1.300 11533 8.754 8.067
(£7.061) (£0.000) | (£3.375) | (£8.525) | (£0.143) | (£0.713)
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Table 7.6: Virginica - Positive selection

IS | W1 | #ALCs | #MemALCs | #fPos #Neg ADT HD
374 251" 16280 9.207 1.033 16.767 12.128 9.605
(+£4.784) | (£3.385) | (£3.057) | (£11.548) | (£0.186) | (£0.181)
50 | 13.373 7.887 1.067 14.633 11.620 0.273
(£3.344) | (£2.432) | (£2.864) | (£7.531) | (£0.163) | (£0.170)
75 | 20.453 13.367 1.033 9.767 11.342 9115
(£6.202) | (£4.763) | (£3.057) | (£7.890) | (£0.129) | (£0.207)
100 | 24.087 15.860 1.033 13.967 11.207 7.976
(£7.786) |  (£5.445) | (£3.057) | (£12.505) | (0.168) | (£0.695)
74 | 25 18.011 8.711 0.900 17.533 12.192 9.799
(£5.426) | (£2.904) | (£2.893) | (£11.116) | (£0.157) | (£0.090)
50 | 16.622 9.056 1.067 14.600 11.681 9.520
(£3.675) | (£2.370) | (£3.051) | (£7.166) | (£0.144) | (£0.092)
75 | 20.178 11367 1.100 8.833 117875 9.150
(£5.935) | o(£3:187) | (£2:857) | (£5.565) | (£0.143) | (+0.180)
100 | 26.578 15.211 1.167 14.033 1175 7.933
(£9.091) | (£5.456) | (£3.405) | (£13.265) | (£0.141) | (£0.525)
112 | 25 19.733 8.267 1.200 16.833 12.264 9.890
(£5.626) | (£2.605) | (£3.210) | (£11.946) | (£0.183) | (£=0.038)
50, |,+15i633 6.850 1.167 14.833 11.695 9.529
(£3.168) | (£1.549) | (£3.030) | (£7.235) | (£0.169) | (£0.102)
75 | 23.833 11.083 1.267 6.800 11.342 9.171
(£4.793) | (£2.271) | (£3.194) | (£4.552) | (+0.127) | (£0.172)
100 | 28.000 13.033 1.167 11.033 11.234 8.129
(£8.208) | (£3.859) | (£3.030) | (£7.073) | (£0.165) | (+0.309)
150 {25 | 21700 0.000 1.100 13.133 12.195 9.895
(£5.292) | (£0.000) | (£2.857) | (£10.884) | (£0.158) | (£0.025)
50 | 15.900 0.000 1.167 14.367 11.702 9.557
(£3.836) | (£0.000) | (£3.217) | (£5.295) | (£0.193) | (£0.093)
75 | 20.400 0.000 1.167 7.967 11.337 9.157
(£5.184) | (£0.000) | (£3.030) | (£5.449) | (£0.167) | (£0.163)
100 | 28.933 0.000 1.233 11.500 221 8.105
(£9.161) | (£0.000) | (£3.202) | (£10.875) | (£0.149) | (£0.325)
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Table 7.6 shows that the best classification is achieved with IS=112 and W1=75 when training
the ALCs with positive selection. These parameter settings gave the lowest misclassification
of 8.067 patterns (#Misclassified = 1.267 + 6.800 = 8.067) with an average number of 23.833
ALCs in the active set of ALCs that had an average of 11.083 ALCs with memory status. This
gives a correct classification rate of 94.622%. The size of the active set of ALCs was constant on
an average of 23.833 over time. The size of the active set of ALCs was constant on 23.833 over

all iterations and the average fitness of the ALC set was constant.

7.1.4 Conclusion: Iris

With setosa or versicolor as the self class, training the ALCs with the negative selection method
resulted in better classification than training with the positive selection method. When patterns
of the virginica class was used as the self set the ALCs trained with positive selection had better
classification than the ALCs trained with negative selection. There is also a decrease or constant
average number of ALCs in the active set of ALCs for both negative and positive selection
methods with the different classes as self. The decrease or constant average number of ALCs in
the set results in the decrease or constant average fitness of the ALC set.

7.2 Wisconsin Breast Cancer

The Wisconsin breast cancer data set consists of 699 patterns that are distributed between 2
classes, namely benign and malignant. Each pattern consists of 9 attributes with values in the
range [1,10]. The tenth attribute is the pattern’s sample code number and uniquely identifies the
pattern in the data set. The sample code number was left out in the training and testing of the
AIS model. There are 16 missing attribute values for the bare nuclei attribute in the data set.
458 patterns are of the benign class and 241 patterns of the malignant class. The patterns were
converted to binary strings of length 36. The missing values were represented by binary strings
as straight 1’s.

7.2.1 Benign

Table 7.7 shows the results for classifying the Wisconsin breast cancer data set with patterns of
the benign class as the self set. The ALCs were trained with the negative selection method. The
best classification result was achieved when 1S=524 and W1=25. An average number of 34.567
ALCs formed part of the active set of ALCs. An average number of 16.867 of the ALCs in the
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Table 7.7: Benign - Negative selection

IS | W1 | #ALCs |#MemAILCs | #fPos #Neg ADT HD

175 | 25 32.492 22.367 1.333 7.400 16.159 17.417
(£5.587) (£4.342) | (£0.922) | (£7.859) | (£0.154) | (£0.102)

50 21.858 16.058 1133 14.900 18.052 15.659
(£5.735) (£4.415) | (£0.973) | (£7.685) | (£0.195) | (=0.268)

75 29.400 22.033 1.067 9.633 19.377 18516
(£7.342) (£5.521) | (£1.048) | (£3.746) | (£0.135) | (£0.254)

100 | 37.633 28.217 1.200 127967 19.764 12.226
(£121936) | (E9.924) |(£1.031).| 722000 M=L0:121) | (2-0.328)

350 | 25 33.400 16.300 1.233 7.033 16.060 17.503
(£5.190) (£2.531) | (£1.006) | (£4.605) | (Z0.134) | (£0.036)

50 21.367 10.583 0.767 13.167 17.989 15.786
(£5.385) (£2.678) | (£0.774) | (£6.422) | (£0.183) | (£0.186)

75 27.500 13.750 0.933 11.567 19.384 13:516
(£7.960) (£3.980) | (£0.740) | (£6.021) | (£0.171) | (£0.342)

100 | 36.100 18.050 1:233 11267 19.779 12.271
(£11.678) | (£5.839) | (£1.040) | (£7.012) | (£0.132) | (£0.492)

524 | 25 34.567 16.867 1.367 6.267 16.061 17.499
(£5.029) (£2.526) | (£1.189) | (£5.219) | (20.188) | (£0.053)

50 20.967 10.400 1.000 13.667 17.963 15743
(£5.021) (£2.558) | (£0.871) | (£5.785) | (£0.163) | (£0.142)

75 29.167 14.583 1.033" . 9.933 19.390 13.508
(£8.550) (£4.275) | (£0.890) | (£5.675) | (£0.158) | (£0.270)

100 | 39.167 19.583 0.933 10.367 19.795 12.204
(£11.908) | (£5.954) | (£0.785) | (£8.109) | (£0.156) | (£0.598)

699 | 25 33.100 0.000 1.400 8.067 16.023 17.506
(£6.467) (£0.000) | (£0.932) | (£10.945) | (£0.233) | (£0.050)

50 20.867 0.000 1.200 12.433 17991 15.764
(£5.419) | (£0.000) | (£1.031) | (£5.643) | (£0.203) | (£0.211)

75 27.933 0.000 0.933 10.567 19.390 13.503
(£8.440) (£0.000) | (0.868) | (£4.150) | (£0.136) | (+0.233)

100 | 37.467 0.000 1.200 11.700 19.773 12.193
(£13.405) | (£0.000) | (£1.031) | (£7.274) | (20.136) | (40.443)
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Figure 7.5: Benign - Negative selection with IS=524 and W1=25

active set had memory status. The ALCs classified 6.267 patterns falsely as benign and 1.367 as
maiignant. This gives a misclassification of 7.634 patterns (#Misclassified = 6.267+1.367 =
7.634) and a correct classification of 98.907%. The size of the active set of ALCs was constant
on 34.567 over all iterations and thus the average fitness of the ALC set was constant. Figure 7.5

shows a decrease in the average number of misclassification over the iterations.

Table 7.8 shows the results when the ALCs were trained with the positive selection method. The
best classification result was achieved when IS=524 and W1=25. An average number of 33.800
AICs formed part of the active set of ALCs. An average number of 16.467 of the ALCs in the
active set had memory status. The ALCs classified 6.900 patterns falsely as benign and 1.500 as
malignant which gave a misclassification of 8.400 patterns (#Misclassified = 6.900 + 1.500 =
8.400) and a correct classification rate of 98.798%. The number of ALCs in the active set of
AICs was constant on 33.800 over all iterations with a constant average fitness.

7.2.2 Malignant

The results for training the ALCs with the negative selection method is shown in table 7.9.

The patterns of the malignant class was used as the self set. The best classification result was
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Table 7.8: Bernign - Positive selection

IS | W1 | #ALGCs |#MemALCs | #fPos #Neg ADT HD

1751 25 31.358 21.442 1.333 9.767 19.863 17.401
(£6.647) (£5.110) | (£1.124) | (£9.001) | (£0.155) | (£0.089)

50 21.992 16.092 1.300 11.567 17.935 15.701
(£7.139) (£5.411) | (£1.022) | (£6.268) | (£0.174) | (£0.204)

75 26.433 19792 1.033 11.167 16.644 13.530
(£6.146) (£4.614) | (£0.850) | (£4.480) | (£0.154) | (0.324)

100 | 32.800 24.583 0.900 12.667 16.308 12.256
(£11.361) | (£8.516) | (£0.803) | (£6.504) | (£0.131) | (£0.250)

350 | 25 31.900 15.500 1.367 9.100 19.956 17.485
(£5.641) | (£2.907) | (£1.217) | (£10.496) | (£0.201) | (=0.054)

50 21.667 10.800 0.933 13.600 17.960 15.694
(£7.448) (£3.732) | (+0.868) | (£8.046) | (£0.180) | (£0.185)

75 28.600 14.300 1.267 10.267 16.622 13.507
(£6.667) (£3.334) | (£0.907) | (£3.956) | (£0.145) | (£0.249)

100 | 34.967 17.483 0.700 11.867 16.245 12.262
(£12.524) | (£6.262) | (£0.750) | (£6.942) | (£0.141) | (£0.321)

524 | 25 33.800 16.467 1.500 6.900 19.922 17.490
(£3.398) (£1.756) | (£1.075) | (£3.284) | (£0.117) | (£0.044)

50 21.867 10.917 1153 13.833 18.001 15,755
(£5.619) (£2.801) | (£0.937) | (£7.027) | (£0.149) | (=0.164)

75 29.367 14.683 1.067 10.000 16.619 13.429
(£7.388) (£3.694) | (£0.907) | (£5.675) | (£0.140) | (£0.312)

100 | 38.133 19.067 1.200 11.767 16.214 12.168
(£12.875) | (£6.438) | (£1.031) | (£10.061) | (£0.207) | (£0.424)

699 | 25 32.900 0.000 1.600 9.733 19.958 17.477
(£6.989) (£0.000) | (£1.404) | (£14.064) | (£0.258) | (£0.044)

50 21.400 0.000 1.100 11.467 17.964 15.710
(£5.302) (£0.000) | (£0.995) | (£5.710) | (£0.153) | (£0.183)

3 27.200 0.000 1.000 10.467 16.637 13.512
(E7:179) (=0.000) | (£0.983) | (£4.439) | (£0.175) | (£0.353)

100 | 38.433 0.000 1.100 11.500 16.234 12125
(£14.943) | (£0.000) | (£0.960) | (£8.228) | (£0.144) | (£0.451)
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Table 7.9: Malignant - Negative selection

IS | W1 | #ALCs | #MemALCs | #fPos #Neg ADT HD

1757 23 23.342 6.758 2.633 146.100 13.923 16.963
(£3.960) (£1.864) | (£1.189) | (£98.744) | (£0.162) | (£0.355)

50 15.108 5.650 1.867 98.533 15.024 15.835
(£3.566) (£1.666) | (£1.074) | (£69.563) | (£0.158) | (=0.420)

75 19.133 0.733 1.833 46.333 15.954 14.249
(£4.832) (£2.683) | (£1.367) | (£47.790) | (£0.138) | (=0.318)

100 |-« 25.875 13.975 1535 62.200 16.276 12.756
(£9.360) (£5.936) | (£1.042) | (£71.823) | (£0.132) | (=0.663)

350 |. 25 31.000 7.867 2.067 117.633 13.530 17739
(=£5.8535) (£2.432) | (£1.437) | (£95.248) | (£0.217) | (£0.038)

50 21.033 7.300 1.967 115.100 14.842 16.663

(£6.856) (£2.507) | (£1.326) | (£83.162) | (£0.159) | (£0.144) |

75 23.200 9.500 1.733 46.500 15910 14.664
(£5.209) (£2.338) | (=0.980) | (£24.221) | (£0.114) | (=0.234)

100 | 34.900 14.067 1.700 52.200 16.271 13.010
(zE13:510)" " '(=5'889) “1'(==1.393)"|" (52.346) | (0.139) | (£0.397)

524 | 25 30.800 8.683 2.300 149.900 13.563 17.735
(£6.885) (£2.329) | (£1.418) | (=89.560) | (£0.165) | (=0.037)

50 20.667 7.750 1.800 108.633 14.799 16.710
(£5.726) (£2.586) | (£1.297) | (£89.016) | (£0.169) | (£0.188)

73 25.133 10.917 1.967 60.367 15.918 14.620
(£6.709) (£3.235) | (£1.129) | (+48.565) | (£0.130) | (0.336)

100 | 32.300 14.133 1.633 49.833 16.255 13.002
(£13.018) | (£5.810) | (£1.273) | (£54.484) | (=0.137) | (=0.463)

699 | 25 32.433 0.000 2.567 112.500 13.597 17932
(£5.137) (£0.000) | (£1.382) | (£68.027) | (£0.134) | (£0.037)

50 20.500 0.000 1.933 90.533 14.848 16.685
(£5.036) (£0.000) | (£1.337) | (£66.951) | (£0.122) | (£0.163)

75 24.133 0.000 1.800 45.133 15,927 14.613
(£6.163) (£0.000) | (£1.243) | (£25.962) | (£0.126) | (£0.295)

100 | 33.033 0.000 1.767 44.400 16.267 13.041
(£10.791) | (£0.000) | (£1.251) | (£36.541) | (£0.136) | (=0.587)
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achieved when IS=699 and W1=100 which gave an average number of 33.033 ALCs in the active
set of ALCs. An average number of 0.000 of the ALCs in the active set have memory status since
there is only one iteration. The ALCs classified 44.400 patterns falsely as malignant and 1.767 as
benign giving a misclassification of 46.167 patterns (#Misclassified = 44.400+41.767 = 46.167)
which gives a correct classification rate of 93.395%.

Table 7.10 shows the results when the ALCs were trained with the positive selection method. The
best classification result was achieved when IS=175 and W1=75 which gave an average number
of 22.308 ALCs in the active set of ALCs. An average number of 11.525 of the ALCs in the active
set had memory status. The ALCs classified 40.333 patterns falsely as malignant and 1.967 as
benign which gives a misclassification of 42.300 patterns (#Misclassified = 40.333 4 1.967 =
42.300) and a correct classification rate of 93.948%. Figure 7.5 shows that the initial number of
ALCs in the active set of ALCs was on average 26.566 and decreased over four iterations to an
average of 15.333. Therefor the average fitness of the ALC set decreased over all iterations from
15.588 to 15.458. The average number of misclassification increased from iteration one to two
and then decreased to iteration four.

7.2.3 Conclusion: Wisconsin Breast Cancer

In conclusion, the ALCs trained on the benign class with negative selection had a correct classi-
fication of 98.907% with an average number of 34.567 ALCs that had an average HD of 17.499.
The ALCs that had been trained with positive selection on the benign class as self had a correct
classification of 98.798% with an average number of 33.800 ALCs that had an average HD of
17.490. Comparing these results shows that there is neither a major difference in correct clas-
sification between the two different training methods nor in the average number of ALCs or
HD with the same parameter settings (IS=524, W1=25), though negative selection does have a
slightly better correct classification than positive selection. With the patterns from the malignant
class as the self set the negative selection method had a correct classification of 93.395% with
an average number of 33.033 ALCs that had an average HD of 13.041. The positive selection
method had a correct classification of 93.948% with an average number of 22.308 ALCs that
had an average HD of 14.322. These results conclude that when the patterns of the malignant
class is used as the self set, different parameter settings are necessary to achieve similar correct
classification results for both the selection methods and that the average number of ALCs for
negative selection is higher than the average number of ALCs for positive selection. The dif-

ference in, the average number of ALCs indicates that the patterns from the benign class have a
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Table 7.10: Malignant - Positive selection

IS | W1 | #ALCs |#MemALCs | #fPos #Neg ADT HD

175 | 25 22:538 6.350 25767 126.000 22.037 16.800
(+4.240) (£1.637) | (£1.695) | (£90.812) | (£0.151) | (=0.360)

50 16.275 6:375 1.367 106.167 21.053 15.923
(45.096) (£2.677) |(£1.217) || &£76.795) | E=0.181) | (0.420)

75 22.308 11.525 1.967 40.333 20.043 14.322
(£5.555) (£3.397) | (£1.377) | (£19.752) | (£0.121) | (£-0.267)

100 | 26.117 13.933 1.467 62.733 19.680 12.643
(£8.666) (£5.283) | (£1.456) | (£75.871) | (£0.129) | (£0.633)

350 | 25 31.833 7.950 2.000 126.500 22.419 17.741
(£6.701) (£2.291) | (£1.259) | (£99.243) | (£0.100) | (£0.043)

50 21.100 6.967 2.000 98.167 21.190 16.696
(+£4.708) (£1.857) | (£1.390) | (£60.796) | (£0.136) | (£0.169)

75 24.667 9.733 1.967 60.800 20.111 14.685
(£6.315) (£2.693) | (£1.564) | (£47.323) | (£0.109) | (£0.309)

100 | 28.867 11.817 2.067 61.400 19.798 13.080
(£13.577) | (£5.759) | (£1.530) | (£50.348) | (£0.169) | (£0.439)

524 | 25 32.500 8.933" 1.933 109.667 22.407 17.741
(£4.524) (£1.973) | (£1.437) | (£61.938) | (£0.097) | (£0.034)

50 20.400 7.300 2.033 115.767 21.225 16.698
(£6.414) (£2.753) | (£1.217) | (£86.717) | (£0.177) | (£0.148)

75 25.700 11.167 1.967 54.600 20.026 14.581
(£6.944) (£3.049) | (£0.928) | (£41.608) | (£0.104) | (£0.303)

100 F=32.267 14.200 1.933 55.100 19.752 12.931
(£14.350) | (£6.504) | (£1.437) | (£61.477) | (£0.140) | (£0.530)

699 | 25 28.600 0.000 1.867 .164.033 22.505 17.723
(-9:227) (£0.000) | (£1.408) | (£105.704) | (£0.209) | (£0.049)

50 19.800 0.000 2.000 114.900 21.182 16.669
(£5.054) (£0.000) | (£1.114) | (£79.443) | (£0.106) | (£0.125)

75 26.867 0.000 1.800 45.800 20.093 14.733
(£4.939) (£0.000) | (£1.095) | (£21.815) | (£0.135) | (£0.294)

100 | 29.333 0.000 1.667 60.900 19.712 13.016
(£10.908) | (£0.000) | (£1.241) | (£64.088) | (£0.143) | (£0.481)

Fi7}



University of Pretoria etd — Graaff A J (2003)

CHAPTER 7. EXPERIMENTAL RESULTS

ALCSel size

156

15855

155

15.48

15.4

1535

| 3
| 1555761841 |
Iteration

Fitness 15,58882058 |

AMisclossified

| 12.05686857 | 11.33333333 [ 3.165556867
lteration

#Pattems

Figure 7.6: Malignant - Positive selection with IS=175 and W1=75
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larger distribution in non-self space than patterns from the malignant class, thus more ALCs is
necessary to cover the non-self space with negative selection than ALCs with positive selection
that only needs to cover the self space. These results also show that with patterns from the ma-
lignant class as self, the positive selection method is a better training method not only for better
correct classification but also for less average number of ALCs in the set.

7.3 Mushroom

The data set contains descriptions of hypothetical samples corresponding to 23 species of gilled
mushrooms in the Agaricus and Lepiota Family. Each pattern in the data set represents a specie
that is classified as definitely edible, definitely poisonous or of unknown edibility and not rec-
ommended. The latter class was combined with the poisonous class. There are 8124 patterns in
the data set and each pattern consists of 22 nominally valued attributes. There are 2480 patterns
with missing values for the stalk-root attribute. 4208 patterns are of the edible class and 3916
patterns of the poisonous class. The patterns were converted to binary strings of length 57. The
missing values were represented by binary strings as straight 1’s.

7.3.1 Edible

The classification results for training the ALCs with negative selection on patterns of the edi-
ble class as self is shown in table 7.11. The lowest misclassification of 932.667 patterns falsely
as edible and 1.400 falsely as poisonous (#Misclassified = 932.667 4 1.400 = 934.067) was
achieved with IS=4062 and W1=25. This gives a correct classification of 88.502% with an av-
erage number of 46.267 ALCs in the active set of ALCs. The average number of ALCs with
memory status in the active set was 19.850. There was no change in the size of the active set of

ALCs or the average fitness over all iterations and the constant size was an average number of
46.267 ALCs.

The best classification result shown in table 7.12, is achieved with IS=8124 and W1=25 when
training the ALCs with positive selection on the patterns of the edible class as self. The misclassi-
fication of 1019.333 patterns falsely as edible and 1.200 falsely as poisonous (#Misclassified =
1019.333 + 1.200 = 1020.533) gives a correct classification of 87.438%. The average number
of ALCs in the active set of ALCs was 43.933 and an average number of 0.000 of these had

memory status since there was only one iteration.
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Table 7.11: Edible - Negative selection
IS | W1 | #ALCs | #MemALCs | #fPos #Neg ADT HD

2031 | 25 37.925 17.675 0.967 949.867 25.682 27.475
(£4.890) (£3.150) | (£1.351) | (£195.539) | (£0.183) | (£0.100)

50 26.333 13.625 1.100 1376.800 28.627 24.874
(+£8.039) (£4.860) | (£2.023) | (£448.271) | (£0.148) | (£0.252)

f 34.125 19.583 1.267 1276.367 30.695 21.749
(£11.146) | (£7.072) | (£2.180) | (£274.065) | (£0.232) | (£0.330)

100 | 63.800 39.900 1.867 1172.033 31.466 20.162
(£18.449) | (£12.374) | (£2.738) | (£290.378) | (£0.193) | (£0.337)

4062 | 25 46.267 19.850 1.400 932.667 25.520 27.698
(£3.999) (£2.297) | (£2.222) | (£196.295) | (+0.131) | (£0.063)

50 28.067 13.017 1.167 1451.367 28.554 25.009
(+8.358) (£4.128) | (£1.704) | (£449.082) | (£0.239) | (£0.222)

75 43.833 20.783 1.700 1224.100 30.706 21.845
(£11.641) | (£5.640) | (£2.996) | (£359.480) | (£0.160) | (£0.361)

100 | 74.733 35.467 2767 1083.733 31.449 20.224
(£18.221) | (£8.684) | (£4.368) | (£186.907) | (£0.144) | (£0.251)

6093 | 25 45.033 19.350 2.000 1021.633 25.510 27.704
(£4.390) (£2.327) | (£3.373) | (£216.756) | (£0.161) | (£0.051)

50 26.767 12.667 1.067 1300.867 28.534 25.041
(£8.097) (+£4.022) | (£1.552) | (£314.306) | (£0.214) | (£0.204)

75 45.800 21.933 1.467 1221.583 30.687 21.879
(£9.568) (+4.686) | (£2.417) | (£253.926) | (£0.136) | (£0.249)

100 | 63.733 30.500 2.667 1171.700 31.391 20.303
(£17.416) | (£8.270) | (£3.994) | (£202.250) | (£0.137) | (£0.296)

8124 | 25 45.333 0.000 1.533 981.233 25.498 27.709
(=4.011) | (£0.000) | (£1.943) | (£314.111) | (£0.154) | (£-0.064)

50 29.267 0.000 1.267 1387.433 28.609 24.960
(£9.836) | (£0.000) | (£1.856) | (£541.728) | (£0.276) | (£0.251)

75 42.733 0.000 1.900 1244.667 30.701 21.909
(£10.544) | (£0.000) | (£2.987) | (£262.081) | (£0.213) | (0.369)

100 65.867 0.000 1.967 1120.867 31.451 20.197
(£17.702) | (£0.000) | (£3.023) | (£187.307) | (£0.132) | (£0.283)
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Table 7.12: Edible - Positive selection
IS | W1 | #ALCs |#MemALCs | #fPos #Neg ADT HD

2031 |,.25 39.417 18.500 1.600 1041.067 31.348 27.516
(£3.322) (£2.310) | (£2.647) | (£208.822) | (£0.167) | (£0.116)

50 23317 THTS8 0.667 1459.433 28.467 24.794
(£7.704) (£4.421) | (£1.028) | (£482.058) | (£0.209) | (£=0.324)

75 40.308 23.492 1.600 1175.733 26.284 21.788
(£10.520) | (£7.175) | (£2.568) | (£267.085) | (£0.164) | (£0.329)

100 | 60.367 37.025 2.333 1147.567 25.501 20.128
(£16.348) | (£11.319) | (£4.205) | (£263.109) | (£0.204) | (£0.386)

4062 | 25 42.733 LA, 1.500 1146.200 31.546 27.681
(£9.487) (£4.211) | (£1.996) | (£454.393) | (£0.217) | (£0.082)

50 27.300 12.633 1.367 1470.900 28.449 25.036
(+£8.408) | (£3.792) | (£2.356) | (£403.862) | (£0.218) | (£0.246)

75 46.833 22.333 1.567 1164.233 26.275 21.882
GEIL.293) | (£5.284) * |'(£2.112) | (£292382) | (+0.176) | (£0:323)

100 | 62.367 29.683 2,233 1149.600 25535 20.176
(£17.824) | (£8.405) | (£3.645) | (£241.385) | (£0.169) | (£0.290)

6093 | 25 44.033 19.450 1.300 1098.233 31.574 | 27.707
(£7.323) (£3.539) | (£1.705) | (£398.745) | (£0.260) | (£0.051)

50 28.367 13.350 0.867 1437.400 28.416 25.027
(+8.344) (+£4.067) | (£1.634) | (£409.499) | (£0.225) | (£0.218)

75 44 467 21.367 1.967 1212.500 26.388 22.012
(£11.073) | (£5.597) | (£2.942) | (£264.740) | (=0.214) | (£0.394)

100 | 68.067 32.583 3133 1205.900 | 25.643 20.350
(£18.431) | (£8.747) | (£4.547) | (£229.452) | (£0.176) | (£0.327)

8124 | 25 43.933 0.000 1.200 1019.333 | 31.502 | 27.690
(£7.506) (=0.000) | (£1.495) | (£373.054) | (£0.153) | (=0.059)

50 29.533 0.000 1.100 1322.200 28.340 24.925
(+8.464) | (£0.000) | (£2.040) | (£332.097) | (£0.202) | (£0.238)

75 39.200 0.000 1.800 1250.800 26.322 21.865
(£10.584) | (£0.000) | (£2.809) | (£308.670) | (£0.187) | (0.361)

100 | 71.133 ~ 0.000 2.167 1205.633 23.335 20.159
(£20.669) | (4+0.000) | (£3.064) | (£283.299) | (£0.158) | (£0.339)
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7.3.2 Poisonous

The results for training the AL Cs with the negative selection method on patterns of the poisonous
class as self is shown in table 7.13. The best classification result was achieved when IS=8124
and W1=25 which gave an average number of 45.033 ALCs in the active set of ALCs. An
average number of 0.000 of the ALCs in the active set had memory status since there is only one
iteration. The ALCs classified 1591.933 patterns falsely as poisonous and 1.700 as edible giving
a misclassification of 1593.633 patterns (#Misclassified = 1591.9334-1.700 = 1593.633) which

gives a correct classification rate of 80.383%.

The best classification result shown in table 7.14, was achieved with IS=2031 and W1=100 when
training the ALCs with positive selection on the patterns of the poisonous class as self. The
misclassification of 1695.000 patterns falsely as poisonous and 2.467 falsely as edible patterns
(#Misclassified = 1695.000+2.467 = 1697.467) gives a correct classification of 79.105%. The
average number of ALCs in the active set of ALCs was 50.717 and an average number of 17.242
of these had memory status. Figure 7.6 shows that the initial number of ALCs in the active
set of ALCs was on average 64.033 and decreased over four iterations to an average of 26.166,
but different from the previous experiments the average fitness of the ALC set increased over
four iterations from 31.278 to 31.429. The average number of misclassification increased from

iteration one to two and then decreased to iteration four.

7.3.3 Conclusion: Mushroom

Comparing the different selection methods with patterns from the edible class as the self set, it
can be concluded that the negative selection method has a slightly better correct classification
.__than the positive selection method. Both the selection methods have a value of 25 for W1 but
different values for IS to obtain the best classification results. The same value of 25 for W1
indicates that the fitness of the ALCs in the GA for both selection methods is more influenced by
their HD than by their ADT. The HD of both selection methods differ with 0.008 and indicates
that the amount of overlap is more or less the same for both selection methods. When patterns
from the poisonous class is used as the self set then the negative selection method has a better
classification performance than the positive selection method since not only does the negative
selection method have better correct classification results but also has on average less ALCs than
the positive selection method to classify the patterns. These results indicate that the negative

selection method has better classification performance than the positive selection method with
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Table 7.13: Poisonous - Negative selection
IS | W1 | #ALCs | #MemALCs | #Pos #Neg ADT HD

2031 | 25 34.925 10.383 2.100 1876.300 25.609 27:371
(£5.412) (£2.183) | (£2.928) | (£529.147) | (£0.222) | (£0.191)

50 23.858 7.158 1.833 2239.167 28.477 24.864
(£5.654) (£2.091) | (+1.949) | (£530.783) | (=0.266) | (£0.365)

75 33.575 11217 2.033 1917.000 30.609 21.728
(£10.097) | (£3.987) | (£3.243) | (£458.657) | (£0.199) | (£0.389)

100 | 52.792 - 18.042 3.033 1833.933 31.269 20.342
(£14.391) | (£5.996) | (£4.687) | (£425.009) | (£0.158) | (£0.285)

4062 | 25 | .46.333 17277 1.400 1834.900 25.535 222
(£2.551) (£1.804) | (£1.754) | (£382.288) | (£0.113) | (£0.048)

50 28.533 11.350 1.200 2254.333 28.446 25.154
(£8.245) | . (£3.462) | (£1.375) | (£527.809) | (£0.209) | (0.184)

75 44.300 17.167 1.867 1825.600 30.529 22.074
(£11.928) | (£4.652) | (£2.460) | (£342.097) | (£0.156) | (£0.263)

100 | 66.400 24.617 2.833 1686.100 31.288 20.340
(£21.888) | (£8.242) | (£3.505) | (£474.694) | (£0.197) | (£0.378)

6093 | 25 44700 18.967 1.767 1823.233 25530 27.718
(£7.498) (£3.704) | (£1.478) | (£527.523) | (£0.187) | (0.059)

50 29.933 13.517 1.300 2236.967 28.499 25.094
(£9.025) (£4.419) | (£2.020) | (£462.290) | (£0.210) | (£0.282)

75 40.800 18.183 1.433 1952.600 30.487 22.035
(£10.610) | (£4.700) | (£1.813) | (£474.423) | (£0.139) | (£0.308)

100 | 63.867 28.167 2.467 1746.633 31.280 20.370
(£17.338) | (£7.863) | (£2.956) | (£462.588) | (£0.120) | (£0.224)

8124 | 25 45.033 -~ 0.000 1.700 1591.933 25.523 27.729
(=4.582) (£0.000) | (2.003) | (£382.550) | (£=0.142) | (£0.049)

50 2F567 0.000 1.367 2218.267 28.509 25.052
(£8.736) (£0.000) | (£1.608) | (£498.915) | (=0.218) | (=0.235)

75 42.167 0.000 1.533 1889.133 30.488 22.089
(£13.099) | (£0.000) | (£1.925) | (£391.633) | (£0.152) | (£0.289)

100} - 57:633 0.000 1.867 1940.833 31267 20.275
(£24.102) | (£0.000) | (£2.460) | (£569.112) | (£0.228) | (£0.522)
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Table 7.14: Poisonous - Positive selection :
IS | W1 | #ALCs | #MemALCs | #fPos #Neg ADT HD

2031 | 25 36.433 11.075 2.033 1748.767 31.338 27.385
(£3.570) (£1.670) | (£2.580) | (£335.773) | (£0.188) | (+0.114)

50 25.033 7.850 1.567 2095.600 28.493 24.844
(£6.828) (£2.505) | (£1.888) | (£464.683) | (£0.265) | (£0.284)

75 32.792 10.558 1.500 1989.933 26.487 21.843
(£9.468) (£3.776) | (£1.796) | (£504.108) | (£0.214) | (£0.372)

100 | 50.717 17.242 2.467 1695.000 25.665 20.201 |

(£13.291) | (£5.158) | (£3.391) | (=401.959) | (==0.178) | (0.336)

4062 | 25 43.867 15.967 1.700 1813.733 31.556 27937
(£8.025) (£3.181) | (£2.395) | (£587.445) | (£0.340) | (+0.067)

50 28.333 11.117 0.867 2281.133 28.611 25.177
(£9.060) (£4.023) | (£1.306) | (£449.601) | (£0.219) | (£0.212)

75 41.200 15.867 1.867 1949.633 26.460 22.024
(£9.477) (+4.013) | (£2.330) | (£311.235) | (£0.177) | (£0.287)

100 | 59.900 22.067 2.600 1773.900 25.779 20.377
(£17.574) | (£6.700) | (£3.058) | (£491.493) | (£0.162) | (£0.287)

6093 | 25 45.400 19.517 1.933 1712.333 31.506 2TT27
(£6.946) (£3.158) | (£2.067) | (=479.901) | (=0.246) | (+0.054)

50 27.100 12.100 1.233 2221.867 28.526 25.096
(+8.763) (£4.229) | (£2.096) | (+541.412) | (£0.235) | (£0.252)

75 39.667 17.783 1.700 2069.133 26.489 .21.993
(£11.133) | (£5.051) | (£1.784) | (£343.100) | (£0.188) | (£0.394)

100 | 68.233 30.267 2.467 1704.767 25.748 20.400
(£21.837) | (£9.868) | (£3.137) | (£562.829) | (£0.198) | (£0.382)

8124 | 25 45.733 0.000 1.967 1843.533 31.480 20725
(£3.741) (£0.000) | (£2.632) | (£334.025) | (£0.125) | (£0.049)

50 31.700 0.000 1.500 2111.500 28.498 25.163
(£7.996) (£0.000) | (£2.662) | (=360.474) | (£0.178) | (£0.213)

75 I 39.867 0.000 =533 1886.267 26.526 22.101
(£11.365) | (£0.000) | (£2.097) | (£496.066) | (£0.172) | (£0.386)

100 | 68.100 0.000 3.100 1729.967 25.787 20.445
(£18.054) | (£0.000) | (£3.595) | (£474.410) | (£0.198) | (£0.302)
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Figure 7.7: Poisonous - Positive selection with IS=2031 and W1=100



University of Pretoria etd — Graaff A J (2003)

CHAPTER 7. EXPERIMENTAL RESULTS 86

patterns from the edible class as self or patterns from the poisonous class as self.

74 Glass

The glass data set consists of 214 patterns that are distributed between 7 glass types (classes).
70 patterns are of the building windows float proéessed type, 17 are of the vehicle windows float
processed type, 76 are of the building windows non-float type and O are of the vehicle windows
non-float type. The other patterns are divided into the non-window glass type: 13 patterns are of
the container type, 9 of the tableware type and 29 of the headlamps type. Each patterns consists
of 9 continuously valued attributes. The patterns were converted to binary strings of length 45.

7.4.1 Building-window-float

Table 7.15 shows the results for classifying the Glass data set with patterns of the building-
window-float class as the self set. The ALCs were trained with the negative selection method.
The best classification result was obtained for IS=106 and W1=25. An average number of 40.444
ALCs formed part of the active set of ALCs. An average number of 25.233 of the ALCs in the
active set had memory status. The ALCs misclassified an average of 14.167 patterns as building-
window-float and 1.367 as not. Thus, #Misclassified = 14.167 + 1.367 = 15.534 which gives
a correct classification rate of 92.741%. Figure 7.8 shows that the average number of ALCs
decreased from 40.8 to 39.733 over three iterations and that the average fitness of the ALC set
also decreased from 21.796 to 21.770. The average number of misclassification increased from
iteration one to two and then decreased at iteration three.

Table 7.16 shows the results when the ALCs were trained with the positive selection method. The
best classification result was obtained when IS=53 and W1=25. An average number of 39.167
ALCs formed part of the active set of ALCs. An average number of 28.333 of the ALCs in the
active set had memory status. The ALCs misclassified an average of 14.900 patterns as building-
window-float and 1.467 as not. Thus, #Misclassified = 14.900 + 1.467 = 16.367 which gives
a correct classification rate of 92.351%. Figure 7.9 shows a decrease in the average number of
ALCs from 40.666 to 37.266 over five iterations. The average fitness also decreased from 21.790
to 21.722. The average number of misclassifications increased from iteration one to three and
then decreased at iteration five.
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Table 7.15: Building-window-float - Negative selection

IS | W1 | #ALCs | #MemALCs | #fPos #Neg ADT HD

53 ' 25 37.913 27353 1.233 14.967 2129417 21.690
(£4.368) (£3.741) | (£2.144) | (£5.129) | (£0.122) | (£0.065)

50 23.467 16.600 1.033 28.533 24.698 19.175
(£5.185) (£4.251) | (£1.810) | (£9.634) | (£0.210) | (£0.272)

75 36.100 27.433 1.367 26.567 26.454 16.549
(£9.191) (£7.420) | (£1.608) | (£6.956) | (£0.196) | (£0.256)

100 | 56.100 43.087 1:133 23.700 26.953 15.319
(:13.547) |* (£10.538) | (£1.871) | (£7.720) | (£0.169)| (=0.329)

106 | 25 40.444 25.233 1.367 14.167 21.946 21.735.
(£4.020) (£2.644) | (£1.974) | (+4.662) | (£0.146) | (=0.051)

50 | -=25.767 16.289 1.200 27.000 24.675 19.229
' (£6.106)- |- (£4.260) - | (£1.472) 4. (£7.883) | (£0.169) | (£0.130)

75 35.933 23.189 1.400 25.733 26.424 16.597
(+8.158) (£5.389) | (£1.773) | (£8.718) | (£0.184) | (£0.306)

100 | 53.400 34.856 1.200 23.233 26.925 15.334
(£12.041) | (£8.013) | (£1.846) | (£6.095) | (=0.190) | (£0.261)

160 | 25 40.100 19.500 1.433 15.467 21.857 21.762
(+4.318) (£2.125) | (£1.960) | (£4.939) | (£0.141) | (£=0.052)

50 25.667 12.783 1.167 26.867 24.702 19.198
(Z5.996) (£3.019) | E2:019) | (E=10.126)7(=0:237) | (=0.182)

75 35.300 17.633 1.067 28.367 26.436 16.521
(£9.855) (£4.936) | (£1.660) | (£7.522) | (£0.227) | (£0.326)

100 | 56.267 28.117 1.133 23967 26.986 15.280
(£19.490) | (£9.749) | (£1.634) | (£8.736) | (£0.226) { (£0.359)

214 | 25 39.667 0.000 1.367 16.800 21.841 21.778
(£2.832) (£0.000) | (£1.991) | (£4.759) | (£0.185) | (£0.071)

50 24.467 0.000 1.067 28.800 24.702 19.195
(27171 (£0.000) | (£1.639) | (£8.290) | (£0.247) | (£0.218)

75 30.700 0.000 1.167 28.967 26.444 16.493
(£6.914) (£0.000) | (£1.840) | (£8.977) | (£0.219) | (£0.282)

100 | 54.533 0.000 1.367 24.800 26.945 15.332
(£14.498) | (£0.000) | (£1.629) | (£6.150) | (+0.246) | (£0.380)
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Table 7.16: Building-window-float - Positive selection

IS | W1 | #ALCs | #MemALCs | #fPos #fNeg ADT HD
53 | 25 39.167 28.333 1.467 14.900 23.011 21.681
(£3.570) (£2.746) | (£1.978) | (+4.722) | (=0.208) | (==0.099)
50 22.940 16.473 11153 315933 20.258 19.088
(£6.956) (£5.696) | (£1.479) | (£9.882) | (£0.301) | (£=0.308)
75 36.713 28.140 1.033 24.967 18.529 16.533
(=8.640) (£7.063) | (£2:008) | (£7.223) | (=£0:236) | (=0.363)
100 | 56.073 43.020 17133 24.633 18.028 15.330
(£17.161) | (£13.433) | (£1.814) | (6.846) | (£0.211) | (£0.219)
106 | 25 37.678 23.322 1.433 18.400 23.082 21.691
(+£8.418) (£5.558) | (EL.775) | (£12.277) | (£0.174) | (=2:0.187)
50 27.833 17.589 1.100 27.100 20.332 19.225
(£9.739) (£6.859) - | (£1.863) | (£11.009) | (£0.309) | (£0.217)
75 36.667 23.767 1.100 26.433 18.541 16.511
(£10.584) | (£6.988) | (£1.668) | (£7.722) | (£0.219) | (£0.270)
100 | 54.133 35.356 1.367 26.367 17.999 15.271
(£15.301) | (£10.155) | (£1.790) | (£9.294) | (£0.186) | (0.290)
160 | 25 37.533 18.350 1.300 17.367 23.188 21.772
(£7.847) (£3.940) | (£1.664) | (£9.554) | (£0.194) | (£0.063)
50 24.433 12.150 1.067 28.800 20.338 19.214
(£6.285) (£3.184) | (£1.856) | (£8.572) | (£0.224) | (£0.190)
75 33.367 16.667 0.900 26.433 18.599 16.624
(£9.604) (£4.786) | (£1.517) | (£7.243) | (£0.245) | (£0.369)
100 | 54.400 27.183 1.100 24.400 18.036 15.338
(£14.750) | (£7.370) | (£1.845) | (£7.069) | (£0.235) | (£0.278)
214 | 25 38.600 0.000 1.267 15.833 23.165 21.754
(£6.251) (£0.000) | (£1.660) | (£9.692) | (£0.177) | (£0.056)
50 25.167 0.000 1.067 28.733 20.304 19.240
(£7.746) (£0.000) | (£1.799) | (£8.940) | (£0.252) | (=0.213)
75 36.033 0.000 1.367 23.667 18.527 16.512
(£6.651) (£0.000) | (£2.141) | (£5.803) | (£0.238) | (£0.246)
100 | 57.067 0.000 1.167 24.800 18.038 15.369
(£15.432) | (£0.000) | (£2.001) | (£6.718) | (£0.181) | (£0.269)
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Figure 7.9: Building-window-float - Positive selection with IS=53 and W1=25
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7.4.2 Building-window-nonfloat

Table 7.17 shows the results for classifying the Glass data set with patterns of the building-
window-nonfloat class as the self set. The ALCs were trained with the negative selection method.
The best classification result is obtained when IS=160 and W1=25. An average number of 39.700
ALCs formed part of the active set of ALCs. An average number of 18.683 of the ALC:s in the
active set had memory status. The ALCs misclassified an average of 33.200 patterns as building-
window-nonfloat and 1.433 as not. Thus, #M isclassified = 33.200 + 1.433 = 34.633 which
gives a correct classification rate of 83.816%. The average number of ALCs and the average
fitness of the ALC set were constant over the iterations.

Table 7.18 shows the results when the ALCs were trained with the positive selection method.
The best classification result was obtained when IS=160 and W1=25. An average number of
39.800 ALCs formed part of the active set of ALCs. An average number of 18.700 of the ALCs
in the active set had memory status. The ALCs misclassified an average of 31.900. patterns as
building-window-nonfloat and 1.367 as not. Thus, #Misclassified = 31.90041.367 = 33.267
which gives a correct classification rate of 84.454%. The average number of ALCs and the

~ average fitness of the ALC set were constant over the iterations.

7.4.3 Containers

Table 7.19 shows the results for classifying the Glass data set with patterns of the containers
class as the self set. The ALCs were trained with the negative selection method. The best
classification result is obtained when IS=214 and W1=75 with an fNeg value of 0.000. Table
7.19 shows that for other values of IS and W1 the value of fNeg is also 0.000, but IS=214 and
W1=75 is considered the best since the average number of ALCs is the lowest for all IS and W1
with an fNeg value of 0.000. An average number of 35.067 ALCs formed part of the active set of
ALCs and was constant over the iterations. An average number of 0.000 of the ALCs in the active
set had memory status. The ALCs misclassified an average of 0.000 patterns as containers and
0.433 as not. Thus, #Misclassi fied = 0.000+ 0.433 = 0.433 which gives a correct classification
rate of 99.797%.

Table 7.20 shows the results Wh;n the ALCs were trained with the positive selection method. The
best classification result is obtained when IS=53 and W1=25 since the average number of ALCs
is the lowest for all IS and W1 with an fNeg value of 0.000. An average number of 38.013 ALCs
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Table 7.17: Building-window-nonfloat - Negative selection

IS | W1 | #ALCs |#MemALCs | #fPos #Neg ADT HD

53 | 25 36.540 23.720 1.400 33.300 21.246 21.737
(£3.030) (£2.456) | (£1.976) | (£6.115) | (£0.192) | (&=0.109)

50 22.947 15.593 1.167 53.300 23.661 19.449
(£7.384) (£5.863) | (£2.069) | (£13.916) | (£0.219) | (0.264)

i< 33927 28,581 1.367 49.733 25373 16.817
(£9.090) (£6.656) | (£1.991) | (=11.104) | (£0.211) | (=0.352)

100 | 40.500 27.660 1.433 53.467 25.872 15.515
(£13.097) | (£9.356) | (£2.885) | (£12.610) | (0.236) | (£0.331)

106 | 25 38.322 22.178 1.433 34.900 21.159 21.813
(£3:355) (£2.494) | (£2.176) | (£5.851) | (£0.119) | (==0.047)

50 25.211 15.000 1.200 49.233 23.680 19.481
(£6.388) (£4.245) | (£2.340) | (£10.757) | (£0.260) | (0.228)

75 34.389 21.211 1.433 51.933 25.317 16.910
(+8.543) (£5.974) | (£2.501) | (£12.051) | (£0.197) | (£0.280)

100 | 46.400 29.433 1.433 50.900 25.858 15.535
(£17.230) | (£11.321) | (£2.515) | (£15.615) | (£0.202) | (=0.423)

160 | 25 39.700 18.683 1.433 33.200 21.125 21.836
(£3.064) (£1.774) | (£1.794) | (+7.889) | (+0.134) | (0.048)

50 23.333 11317 1.000 52.367 23.595 19.566
(£6.723) (£3.480) | (£1.682) | (£12.417) | (£0.232) | (&=0.209)

15 32.800 16.083 1.267 583.333 25.280 16.939
(£9.722) (£4.657) | (£1.837) | (£9.349) | (£0.202) | (£0.273)

100 | 51.200 25.183 1.400 47.800 25.905 15.534
(£13.793) | (£6.801) | (£2.343) | (£9.729) | (£0.174) | (£0.268)

214 | 25 40.833 0.000 1.667 33733 21.124 21.844
(£3.573) (£0.000) | (£2.073) | (£7.027) | (£=0.148) | (£0.051)

50 24.933 0.000 1.233 49.933 23.640 19.580
(£6.214) (£0.000) | (£1.995) | (£12.261) | (£0.244) | (==0.187)

75 36.900 0.000 1,238 50.133 25.378 16.827
(£10.387) | (£0.000) | (£2.161) | (£10.837) | (£0.181) | (5=0.252)

100 | .'50.533 0.000 1.167 47.300 25.861 15.571
(£17.156) | (£0.000) | (£2.198) | (£10.844) | (£0.206) | (£0.269)
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Table 7.18: Building-window—rianﬂoat - Positive selection

IS | W1 | #ALCs |#MemALCs | #fPos #Neg ADT HD

53 | 25 34.527 22.193 17567 35.800 23.756 21.691
(£6.853) (£5.086) | (£2.473) | (£12.510) | (0.161) | (£0.196)

50 24.107 16.087 1.200 50.900 21993 19.443
(£6.210) (£4.954) | (£1.669) | (£8.747) | (£0.172) | (&=0.203)

5 32.627 22.555 1.200 51.333 19.685 16.858
(£9.969) (£6.964) | (£1.669) | (£10.896) | (0.236) | (£0.284)

100 | 44.360 30.287 1233 51.167 19.056 15.376
(£16.150) | (£11.375) | (£2.528) | (£13.052) | (£0.199) | (£=0.524)

106 | 25 38.889 22.344 1.567 32.267 23.827 21.807
(+4.168) (£2.909) | (£2.674) | (£8.103) | (£0.166) | (£0.056)

50 25.378 15.311 1.300 50.300 21.366 19.552
(£8.316) (£5.013) | (£2.003) | (£12.103) | (£0.221) | (£0.183)

75 36.056 22.333 1.200 48.600 19.634 16.856
(£10.013) | (£6.701) | (£1.690) | (£10.595) | (£0.198) | (+0.326)

100 | 51.867 33.044 1.367 48.533 19.097 15.520
(£15.567) | (£10.076) | (£2.327) | (£11.355) | (£0.206) | (£0.354)

160 | 25 39.800 18.700 1.367 31.900 23.879 21.846
(£3.671) (£1.720) | (£2.157) | (£7.303) | (0.119) | (=0.052)

50 25.567 12.517 1.167 50.400 21.338 19.556
(£7.035) (£3.475) | (£2.379) | (£9.357) | (£0.270) | (£0.264)

75 33.739 16.567 1233 49.367 19.630 16.844
(£8.267) (£3.939) | (£2.192) | (£10.294) | (£0.211) | (£0.312)

100 | 49.067 24.050 1.233 48.500 19.158 15553
(£13.115) | (£6.383) | (£2.029) | (£7.305) | (£0.227) | (=0.320)

214 | 25 39.100 0.000 1.467 32733 23.905 21.853
(£3.854) (£0.000) | (£2.515) | (£8.550) | (£0.163) | (==0.044)

50 24.333 0.000 1.267 53.500 21.399 19.561
(£7.712) (£0.000) | (£2.333) | (£12.500) | (£0.263) | (£0.176)

/= 34.000 0.000 1.167 511233 19.626 16.807
(£10.567) | (£0.000) | (£2.534) | (£12.182) | (£0.210) | (=0.323)

100 | 54.700 0.000 1.600 46.500 19.105 15595
(£15.132) | (£0.000) | (£2.634) | (£7.615) | (£0.164) | (==0.267)
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Table 7.19: Containers - Negative selection

IS | W1 | #ALCs |#MemALCs | #fPos #Neg ADT HD

53 | 25 39.513 29.387 0.433 0.000 23.838 21.753
(+4.375) (+£6.604) | (£2.373) | (£0.000) | (£3.999) | (£0.152)

50 29.800 22.640 0.433 0.100 26.582 19.220
(+8.195) (+7.813) | (£2.373) | (0.403) | (£3.483) | (0.661)

75 35.153 27.773 0.433 0.367 28.298 16.435
(£11.439) | (£9.901) | (£2.373) | (0.928) | (£3.160) | (&1.143)

100 | 55.520 44.227 0.433 0.100 28.874 14.952
(£19.997) | (£16.371) | (£2.373) | (£0.403) | (&3.051) | (+0.817)

106 | 25 39.567 24.644 0.433 0.000 23.780 21.792
(+4.034) (£5.420) | (£2.373) | (£0.000) | (+4.010) | (=0.145)

50 25.189 15922 0.433 0.067 26.503 19.260
(£7:312) (£5.727) | (£2.373) | (£0.254) | (£3.502) | (+0.685)

75 34.400 22.600 0.433 0.133 28.339 16.360
(£9.565) (£7.257) | (£2.373) | (£0.571) | (£3.151) | (£1.197)

100 | 56.767 37.722 0.433 0.000 28.876 14.917
(+18.335) | (£12.550) | (£2.373) | (£0.000) | (3.049) | (£0.517)

160 | 25 40.333 19.167 0.433 0.000 23.758 21.822
(£2.869) (£3.905) | (£2.373) | (£0.000) | (£4.014) | (0.136)

50 24.167 11.517 0.433 0.200 26.518 19.235
(£6.711) (+3.890) | (£2.373) | (£0.761) | (£3.500) | (&0.666)

75 37.433 18.533 0.433 0.167 28.307 16.456
(£10.020) | (£5.578) | (£2.373) | (£0.461) | (£3.158) | (£1.140)

100 | 63.433 31.633 0.433 0.200 28917 14.916
(£22.201) | (£11.334) | (£2.373) | (£0.805) | (£3.042) | (£0.628)

214 | 25 40.900 0.000 0.433 0.000 23.796 21993
(£3.537) (£0.000) | (£2.373) | (£0.000) | (+4.007) | (=0.143)

50 27.200 0.000 0.433 0.167 26.536 | 19.280
(£5.945) (£0.000) | (£2.373) | (£0.592) | (£3.491) | (£0.627)

75 35.067 0.000 0.433 0.000 28.335 16.437
(10.392) | (£0.000) | (£2.373) | (£0.000) | (£3.152) | (x1.157)

100 |« 53533 0.000 0.433 0.000 28.909 14.943
(£18.040) | (£0.000) | (£2.373) | (£0.000) | (£3.042) | (+0.308)
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Table 7.20: Containers - Positive selection
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IS | W1 | #ALCs |#MemALCs | #fPos #fNeg ADT A8 EHD

53|25 38.013 29.113 0.433 0.000 21.125 21.152
(£6.682) (£6.343) | (£2.373) | (£0.000) | (£3.992) | (£3.146)

50 26.620 20.813 0.433 0.067 18.496 18.707
(£9.261) (£7.905) | (£2.373) | (£0.254) | (£3.502) | (£2.693)

75 36.447 29.013 0.433 0.033 16.731 15915
(£10.207) | (£8.476) | (£2.373) | (£0.183) | (£3.165) | (£2.193)

100 | “ 55320 44.133 0433 | 0.333 16.132 14.435
(£22.065) | (£17.802) | (£2.373) | (£1.493) | (&3.053) | (£2.070)

106 | 25 38.622 24.644 0.433 0.000 21.187 21.292
(+5.288) (£5.041) | (£2.373) | (£0.000) | (£4.003) | (£2.606)

50 24.678 15.989 0.433 0.167 18.503 18.801
(£8.022) (£5.940) | (£2.373) | (&0.531) | (£3.500) | (£2.152)

75 36311 24.044 . 0.433 0.433 16.689 15.922
(£13.129) | (£9.009) | (£2.373) | (£1.695) | (£3.159) | (£1.637)

100 | 57.678 38.400 0.433 0.000 16.064 14.492
‘ (£15.944) | (£10.817) | (£2.373) | (£0.000) | (£3.036) | (£1.615)

160 | 25 37.583 18.267 0.433 0.200 21.281 21.418
(£8.404) (£5.273) | (£2.373) | (£0.925) | (£4.025) | (£1.923)

50 24.633 12.033 0.433 0.200 18.492 18.897
(£6.294) (£3.815) | (£2.373) | (£0.610) | (£3.499) | (£1.469)

75 34.767 17.283 0.433 0.300 16.709 16.042
(£12.555) | (£6.533) | (£2.373) | (£0.952) | (£3.163) | (£0.981)

100 | 50.133 25.017 0.433 0.033 16.029 14.439
(£17.459) | (£8.872) | (£2.373) | (£0.183) | (£3.030) | (£1.114)

214 | 25 39.767 0.000 0.433 0.000 21233 21.801
(£3.692) (£0.000) | (£2.373) | (£0.000) | (=4.014) | (=0.142)

50 26.233 0.000 0.433 0.333 18.527 19.334
(£6.806) (£0.000) | (£2.373) | (£1.155) | (£3.504) | (£0.630)

75 33.100 0.000 0.433 0.233 16.721 16.452
(£9.517) (£0.000) | (£2.373) | (0.568) | (£3.164) | (£1.157)

100 | 52.867 0.000 0.433 0.167 16.106 14.900
(£19.158) | (£0.000) | (£2.373) | (£0.747) | (£3.046) | (£0.841)
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formed part of the active set of ALCs. An average number of 29.113 of the ALCs in the active
set had memory status. The ALCs misclassified an average of 0.000 patterns as containers and
0.433 as not. Thus, #Misclassified = 0.000+0.433 = 0.433 which gives a correct classification
rate of 99.797%. Figure 7.10 shows that the average number of ALCs decreased from 39.866 to
36.733 over five iterations with a decreasing average fitness of the ALC set. The average number
of misclassification decreased from iteration one to two, then increased again after iteration two
and decreased at iteration five.

7.4.4 Headlamps

Table 7.21 shows the results for classifying the Glass data set with patterns of the headlamps class
as the self set. The ALCs were trained with the negative selection method. The best classification
result was obtained when IS=53 and W1=25 since the average number of ALCs was the lowest
for all IS and W1 with an fNeg value of 0.367. An average number of 37.693 ALCs formed
part of the active set of ALCs. An average number of 27.133 of the ALCs in the active set had
memory status. The ALCs misclassified an average of 0.367 patterns as headlamps and 0.967 as
not. Thus, #Misclassified = 0.367 +0.967 = 1.334 which gives a correct classification rate of
99.376%. Figure 7.11 shows a decreasing average number of ALCs, from 39.166 t0 35.833 and a
decreasing average fitness of the ALC set from 22.121 to 22.054 over five iterations. The average

number of misclassification increased from iteration one to four and drops to 0.0 in iteration five.

Table 7.22 shows the results when the ALCs were trained with the positive selection method. The
best classification result was obtained when IS=214 and W1=25. An average number of 39.000
ALCs formed part of the active set of ALCs and was constant over the iterations. An average
number of 0.000 of the ALCs in the active set had memory status. The ALCs misclassified
an average of 0.467 patterns as headlamps and 0.967 as not. Thus, #Misclassified = 0.467 +
0.967 = 1.434 which gives a correct classification rate of 99.329%.

7.4.5 Tableware

Table 7.23 shows the results for classifying the Glass data set with patterns of the tableware class
as the self set. The ALCs were trained with the negative selection method. The best classification
result was obtained when IS=53 and W1=50 since the average number of ALCs was the lowest
for all IS and W1 with an fNeg value of 0.000. An average number of 30.220 ALCs formed
part of the active set of ALCs. An average number of 23.280 of the ALCs in the active set had
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Table 7.21: Headlamps - Negative selection

IS | W1 | #ALGCs |#MemALCs | #{Pos #Neg ADT HD

53 | 25 37.693 27.133 0.967 0.367 23.146 21.739
(+4.189) (=6.224) | (£5.295) | (£0.615) | (£4.130) | (£0.160)

50 24.973 18.300 0.967 5.633 25.835 19.205
(£7.100) (£6.504) | (£5.295) | (£7.374) | (£3.624) | (£0.663)

75 36.840 28.833 0.967 3.767 27587 16.659
(£9.887) (+£8.849) | (£5.295) | (£3.329) | (£3.302) | (£1.093)

100 | 54.027 42,747 0.967 4.533 28.031 15.318
(£20.529) | (E16.873) | (£5.295) | (Z£6.917) | (&=5.209) | (£0.736)

106 | 25 38.367 23.556 0.967 0.367 23.096 21.762
(£5.909) (EE5.912) | (=5:298) | (£0:999) | (£2.138) | (H0.151)

50 25.589 16.067 0.967 4.800 25.761 19.361
(£8.129) (£6.281) | (£5:295) | (£5.195) | (£3.643) | (0.628)

75 37.667 24.833 0.967 3.300 27.579 16.575
(£10.819) | (£7.947) | (£5.295) | (£4.170) | (£3.292) | (£1.099)

100 | 49.633 32.956 0.967 4.267 28.108 15.209
(£17.670) | (£12.074) | (£5.295) | (£6.068) | (£3.193) | (£0.889)

160 | 25 38.667 18.283 0.967 0.800 23.043 21.791
(£6.692) (£4.861) | (£5.295) | (£2.747) | (£4.152) | (£0.143)

50 26.100 12.483 0.967 3.867 25993 19.333
(£7.928) (£4.551) | (£5.295) | (£5.138) | (£3.637) | (£0.635)

75 35.267 17.433 0.967 2.467 27513 16.691
(£10.948) | (£5.943) | (£5.295) | (£2.360) | (£3.307) | (£1.102)

- 100 | 48.800 24.300 - 0.967 5.667 28.083 15.107
(£20.863) | (£10.599) | (£5.295) | (£5.604) | (£3.197) | (£0.642)

214 | 25 38.700 0.000 0.967 0.433 23.054 21.812
(£3.456) (£0.000) | (£5.295) | (£0.568) | (£4.147) | (£0.136)

50 28.167 0.000 0.967 2,733 25.860 19.309
(£7.670) (£0.000) | (£5.295) | (£3.523) | (£3.618) | (£0.615)

75 39.333 0.000 0.967 2:533 27.541 16.659
(£12.518) | (£0.000) | (£5.295) | (£2.862) | (£3.302) | (£1.126)

100 | 56.000 0.000 0.967 2:933 28.139 15: 107
(£15.587) | (£0.000) | (£5.295) | (£3.947) | (£3.188) | (£0.750)
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Table 7.22: Headlamps - Positive selection
IS | W1 | #ALCs |#MemALCs | #fPos #Neg ADT HD

53 | '25 36.033 26.713 0.967 2.867 21.806 21.069
(£9.754) (£8.493) | (£5.295) | (£12.417) | (£4.121) | (£3.138)

50 23.960 18.253 0.967 4.267 19.159 18.637
(£7.319) (£6.349) | (£5.295) | (£5.037) | (£3.626) | (+2.683)

75 36.140 28.593 0.967 3.700 17.484 16.066
GEIES28) | (9517 |'(:E5:295) | (£2:996) | (=330 (=2.212)

100 | 52.567 41.680 0.967 4.033 16.916 14.688
(£18.917) | E=15:268) | (£5:295) | (F=4.803) | (£3:199)1[(=2=2.115)

106 | 25 37.633 23.622 0.967 0.767 21.932 21.278
(£7.309) (£6.082) | (£5.295) | (£2.921) | (£4.147) | (£2.604)

50 25.967 16.733 0.967 4.533 19.153 18.756
(£78LT) (£5:955) | (£5295) [ (£5.361) | (E3i625).|(F=2.142)

75 36.333 24.022 0.967 3.233 17.466 16.198
(£8.373) (£5.919) | (£5.295) | (£3.360) | (£3.303) | (=1.685)

100 | 48.378 32.167 0.967 5.583 16.918 14.748
(£20.339) | (£13:682) | (£5295) [ (£6.713) | (£3.199) | (£1.737)

160 | 25 38.450 18.583 0.967 0.600 21.946 21.421
(£5.207) (£4.096) | (£5.295) | (£0.968) | (£4.147) | (£1.923)

50 27.183 13.300 0.967 2.633 19.167 18.966
(£8.278) (£4.739) | (£5.295) | (£3.296) | (£3.625) | (£1.475)

75 36.433 18.000 0.967 4.500 17.452 16.244
(£11.116) | (£6.011) | (£5.295) | (£6.191) | (£3.301) | (£1.026)

100 | 59.067 29.467 0.967 2.767 16.870 14.834
(£20.420) | (£10.347) | (£5.295) | (£2.687) | (£3.190) | (£1.061)

214 | 25 39.000 0.000 0.967 0.467 21.959 21.803
(£2.407) (£0.000) | (£5.295) | (£0.937) | (£4.150) | (£0.144)

50 23.800 0.000 0.967 5.133 19.312 19.401
(£6.687) (£0.000) | (£5.295) | (£5.463) | (£3.655) | (£0.631)

75 34.800 0.000 0.967 4.233 17.425 16.565
(£9.528) (£0.000) | (£5.295) | (£3.812) | (£3.296) | (£1.143)

100 | 54.967 0.000 0.967 3.600 16.960 15.261
(£17.490) | (£0.000) | (£5.295) | (£3.597) | (£3.207) | (£0.643)
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IS | W1 #ALCs | #MemALCs | #fPos #Neg ADT HD

83525 41.153 31.407 0.300 0.000 25355 21.451
(£6.913) (£8.113) | (£1.643) | (£0.000) | (£3.714) | (£0.218)

50 30.220 23.280 0.300 0.000 28.786 18.268
(£7.324) (£7.316) | (£1.643) | (£0.000) | (=3.072) | (=0.824)

75 43.333 34.373 0.300 0.000 30.718 15.494
(£10.996) | (£9.781) | (£1.643) | (=0.000) | (£2.706) | (£1.326)

100 | 68.833 54.933 0.300 0.000 31.425 14.005
(=21.849) | (£17.893) | (£1.643) | (0.000) | (+2.568) | (£1.135)

106 | 25 41.533 26.556 0.300 0.000 25.241 21.519
(£3.652) (£5.616) | (£1.643) | (£0.000) | (£3.735) | (£0.196)

50 26.656 17.022 0.300 0.033 28.732 18.285
(£8.050) (£6.242) | (£1.643) | (£0.183) | (£3.079) | (£0.823)

75 44.400 29.356 0.300 0.033 30.738 15.449
(£14.628) | (£10.400) | (£1.643) | (£0.183) | (£2.698) | (£1.326)

100 | 61.800 41.089 0.300 0.067 31.411 13.934
(£22.884) | (£15.551) | (£1.643) | (£0.254) | (£2.572) | (£0.711)

160 | 25 41.367 19.833 0.300 0.000 25.229 21,521
(£3.102) (=4.075) | (£1.643) | (£0.000) | (=3.737) | (£0.193)

50 27.433 13.200 0.300 0:133 28.732 18.298
(£6.912) (£4.248) | (£1.643) | (£0.346) | (+3.078) | (+0.811)

15 43.900 21.767 0.300 0.000 30.775 15.417
(£10.142) | (£5.741) | (£1.643) | (£0.000) | (£2.691) | (£1.322)

100 | 66.033 32.933 - 0.300 0.000 31.442 13.939
(£19.817) | (£10.181) | (£1.643) | (£0.000) | (£2.564) | (£0.786)

214 | 25 42.267 0.000 0.300 0.000 25211 21.531
(£2.791) (£0.000) | (££1.643) | (£0.000) | (£3.741) | (£0.189)

50 27.000 0.000 0.300 0.067 28.716 18.313
(£9.432) (£0.000) | (£1.643) | (+£0.254) | (£3.085) | (£0.815)

T2 39.400 0.000 0.300 0.000 30.799 15.354
(£10.559) | (£0.000) | (£1.643) | (=0.000) | (£-2.688) | (£+1.333)

1001473733 0.000 0.300 0.000 31.387 14.064
(£24.271) | (£0.000) | (£1.643) | (0.000) | (£2.576) | (£0.924)
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memory status. The ALCs misclassified an average of 0.000 patiems as tableware and 0.300 as
not. Thus, #Misclassified = 0.000+ 0.300 = 0.300 which gives a correct classification rate of
99.85%. Figure 7.12 shows that the average number of ALCs decreased from 30.233 to 30.2
and the average fitness of the ALC set decreased from 23.528 to 23.525 over five iterations.
The average number of misclassifications increased from iteration one to iteration three and then
decreased at iteration five.

Table 7.24 shows the results when the ALCs were trained with the positive selection method.
The best classification result was obtained when IS=106 and W1=50 since the average number
of ALCs was the lowest for all IS and W1 with an fNeg value of 0.000. An average number of
26.300 ALCs formed part of the active set of ALCs. An average number of 17.233 of the ALCs
in the active set had memory status. The ALCs misclassified an average of 0.000 patterns as
tableware and 0.300 as not. Thus, #Misclassified = 0.000+0.300 = 0.300 which gives a correct
classification rate of 99.85%. Figure 7.13 shows a decrease in the average number of ALCs and
a decrease in the average fitness of the ALC set. The average number of misclassifications
increased from iteration one to two and then drops to 0.0 in iteration three.

7.4.6 Vehicle-window-float

Table 7.25 shows the results for classifying the Glass data set with patterns of the vehicle-
window-float class as the self set. The ALCs were trained with the negative selection method.
The best classification result was obtained when IS=106 and W1=25. An average number of
39.989 ALCs formed part of the active set of ALCs. An average number of 25.289 of the ALCs
in the active set had memory status. The ALCs misclassified an average of 2.267 patterns as
vehicle-window-float and 0.567 as not. Thus, #Misclassified = 2.267 + 0.567 = 2.834 which
gives a correct classification rate of 98.675%. Figure 7.14 shows a decrease in the average num-
ber of ALCs, a decrease in the average fitness of the ALC set and a decrease in the average

y : . . ~
number of misclassified patterns over all the iterations. R

Table 7.26 shows the results when the ALCs were trained with the positive selection method.
The best classification result was obtained when IS=106 and W1=25. An average number of
39.967 ALCs formed part of the active set of ALCs. An average number of 25.933 of the ALCs
in the active set had memory status. The ALCs misclassified an average of 2.000 patterns as
vehicle-window-float and 0.567 as not. Thus, #Misclassified = 2.00040.567 = 2.567 which

gives a correct classification rate of 98.800%. Figure 7.15 also shows a decrease in the average
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Table 7.24: Tableware - Positive selection
IS | W1 #ALCs | #MemALCs #fPos #Neg ADT HD

53 | 25 40.380 73 0.300 0.000 19.643 20.858
(£6.503) (£6.432) | (£1.643) | (£0.000) | (£3.712) | (£3.091)

50 25.800 20.420 0.300 0.033 16.251 17.656
(£9.114) (£7.743) (£1.643) | (£0.183) | (£3.075) | (£2.496)

75 40.207 32.080 0.300 0.033 14.227 14.791
(£12.660) | (£10.393) | (+1.643) | (0.183) | (£2.693) | (£1.965)

100 65.627 92453 0.300 0.033 13.607 13.558
(£22.403) | (£18.065) | (£1.643) | (£0.183) | (+2.577) | (£1.893)

106 | 25 41.711 27.144 0.300 0.000 19.726 21.005
(£5.808) (£5.492) (£1.643) | (£0.000) | (£3.727) | (£2.552)

50 26.300 17.233 0.300 0.000 16.251 17.786
(£8.422) (£6.229) (£1.643) | (£0.000) | (+3.077) | (4-1.966)

i 43.933 29.156 0.300 0.000 14.256 14.945
(£13.620) | (£9.485) (£1.643) | (£0.000) | (£2.703) | (£1.450)

100 62.144 41.378 0.300 0.033 13.621 13.603
(£21.347) | (£14.384) | (£1.643) | (£0.183) | (£2.577) | (£1.421)

160 | 25 41.233 20.150 0.300 0.000 19.768 21.150
(32113 (+£4.221) (£1.643) | (£0.000) | (£3.735) | (+1.872)

50 24.617 12.033 0.300 0.033 16.301 17.970
(6272 (£3.796) (£1.643) | (£0.183) | (£3.089) | (£1.300)

75 43.150 21.467 0.300 0.000 14.197 14.990
(£12.229) (£6.469) (£1.643) | (£0.000) | (£2.687) | (£0.773)

100 64.267 32.083 0.300 0.000 181555 13.647
(£19.470) (£9.900) | (£1.643) | (£0.000) | (£2.564) | (£0.870)

214 | 25 41.733 0.000 0.300 0.000 19.774 21.535
(£3.629) (£0.000) (£1.643) | (£0.000) | (£3.737) | (0.187)

50 25567 0.000 0.300 0.033 16.203 18.229
(£6.452) (£0.000) (££1.643) | (£0.183) | (£3.070) | (0.842)

75 37.400 0.000 0.300 0.100 14.235 15:331
(£11.610) (£0.000) (£1.643) | (£0.305) | (£2.695) | (£1.349)

100 68.900 0.000 0.300 0.000 13.572. 14.002
(E220.377) (£0.000) (£1.643) | (£0.000) | (£2.567) | (£0.775)
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Table 7.25: Vehicle-window-float - Negative selection

IS | W1 | #ALCs | #MemALCs | #fPos #{Neg ADT HD

53 | 25 38.193 28.560 0.567 3.433 24.000 21.687
(+6.350) (£7.442) | (£3.104) | (£5.563) | (£3.968) | (=0.226)

50 24.580 18.573 0.567 8.667 26.744 19.113
(£7.115) (£6.725) | (£3.104) | (£5.797) | (F3.457) | (£0.693)

75 38.627 30.507 0.567 6.400 28.575 16.350
(+£12.450) | (£10.806) | (£3.104) | (£5.858) | (£3.107) | (£1.163)

100 | 51.967 41.380 0.567 6.200 29.179 15.003
(£20.295) | (£16.570) | (£3.104) | (£3.995) | (£2.994) | (£0.840)

106 | 25 39.989 25.289 0.567 2.267 23.941 21.737
(+3.608) (+£5.337) | (£3.104) | (£1.337) | (£3.980) | (£0.153)

50 28.889 18.456 0.567 7.167 26.798 - 19.191
(£7.405) (£6.039) | (£3.104) | (£4.316) | (£3.442) | (£0.646)

75 37.800 24.933 0.567 7.400 28.554 16.460
(£10.535) | (£7.749) | (£3.104) | (£4.430) | (£3.110) | (£1.138)

100+ |« 161.533 40.900 0.567 5.600 29.105 15.114
(£22.642) | (£15.399) | (£3.104) | (£3.430) | (£3.007) | (£0.733)

160 | 25 38.000 18.217 0.567 3.933 23.823 21.754
(£8.259) (£5.377) | (£3.104) | (£6.432) | (£4.007) | (£0.147)

50 27.100 13.367 0.567 6.267 26.761 19.178
(£7.893) (£4.431) | (£3.104) | (£4.315) | (£3.450) | (£0.622)

75 40.000 19.767 0.567 6.567 28.580 16.440
(£10.641) | (£6.018) | (£3.104) | (£3.390) | (£3.105) | (£1.149)

100 | 55.500 27.667 0.567 5.700 29.088 15.073
(:18.886) | (£9.681) | (£3.104) | (£3.207) | (£3.011) | (£0.531)

214 | 25 39.200 0.000 0.567 3.100 23.884 21.748
(£6.359) (£0.000) | (£3.104) | (+4.894) | (£3.990) | (£0.153)

50 25.833 0.000 0.567 7.567 26.792 19.150
(7. 711) (£0.000) | (£3.104) | (£4.606) | (£3.444) | (£=0.670)

75 34.633 0.000 0.567 7.333 28.549 16.472
(+£10.871) | (£0.000) | (£3.104) | (£4.475) | (£3.113) | (£1.136)

100 | 54.633 0.000 0.567 6.133 29.100 15.081
(£20.054) | (£0.000) | (£3.104) | (£4.142) | (£3.007) | (£0.626)
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Table 7.26: Vehicle-window-float - Positive selection

IS | W1 | #ALCs | #MemALCs | #fPos #fNeg ADT HD

93 1 23 39.720 30.800 0.567 2.800 20.978 21.100
: (£9.075) (£8.253) | (£3.104) | (£3.755) | (£3.965) | (&=3.138)

50 26.887 21.067 0.567 6.400 18.168 18.547
(£7.471) (£6.539) | (£3.104) | (+4.304) | (£3.437) | (£2.661)

3 37.540 29.840 0.567 6.033 16.429 15.877
(£10.544) | (£8.872) | (£3.104) | (£3.577) | (£3.109) | (£2.172)

100 | 56.727 45.260 0.567 6.233 15.861 14.547
(£18.358) | (£14.859) | (£3.104) | (£3.910) | (£3.001) | (2.072)

106 | 25 39.967 25.933 0.567 2.000 21.080 21.239
(£5.840) (£5.424) | (£3.104) | (+1.287) | (£3.983) | (£2.596)

50 25.322 16.489 0.567 6.667 18.224 18.622
(£6.997) (£5.382) | (£3.104) | (£4.611) | (£3.450) | (£2.117)

75 36.767 24.322 0.567 6.467 16.423 151971
(+£9.812) (£7.001) | (£3.104) | (£3.683) | (£3.106) | (£1.629)

100 | 53.178 35.400 0.567 6.700 15.881 14.646
(£20.539) | (£13.828) | (£3.104) | (£4.411) | (£3.005) | (£1.675)

160 | 25 39.250 19.133 0.567 2.367 21.126 21.370
(£5.415) (£4.226) | (£3.104) | (£1.520) | (£3.993) | (£1.913)

50 24.600 12.033 0.567 8.033 18.233 18.762
(+7.623) (£4.363) | (£3.104) | (£5.555) | (£3.448) | (£1.439)

75 34.933 17.367 0.567 7.200 | 16.456 16.024
(£13.746) | (£7.109) | (£3.104) | (£4.937) | (£3.115) | (&=1.007)

100 | 56.733 28.317 0.567 633 15:832 14.666
(£19.142) | (£9.719) | (£3.104) | (£3.170) | (£2.995) | (==1.094)

214 | 25 40.033 0.000 0.567 2.833 21.108 21.758
(£3.388) (£0.000) | (£3.104) | (£1.984) | (£3.989) | (0.146)

50 23.500 0.000 0.567 8.400 18.336 19.264
(£7.624) (£0.000) | (£3.104) | (£6.145) | (£3.472) | (0.658)

75 33.467 0.000 0.567 7933 16.474 16.464
(£10.037) | (&0.000) | (£3.104) | (£4.331) | (£3.115) | (==1.164)

100 | 50.033 0.000 0.567 5933 15.885 15.046
(£19.567) | (£0.000) | (£3.104) | (£2.935) | (£3.005) | (£0.698)
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number of ALCs, a decrease in the average fitness of the ALC set and a decrease in the average

number of misclassified patterns over all the iterations.

7.4.7 Conclusion: Glass

The above results show that in most cases, except in the case of the building-window-float class
as self, the positive selection method had better classification results than the negative selection
method, though the parameter settings for IS and W1 were different for each case. In cases where
the correct classification results were the same, as is the case with containers and tableware as
self sets, the positive selection method had better performance compared to the negative selection
method since the average number of ALCs in the active set was less for positive selection than
for negative selection.

7.5 Car Evaluation

The car evaluation data set was derived from a simple hierarchical decision model that was
developed by [8]. The model evaluates cars according to three concept structures, namely overall
price, technical characteristics and comfort. The overall price concept is related to the buying
price and price of maintenance, technical characteristics is related to the estimated safety of the
car and the comfort which is related to the number of doors, the capacity in terms of persons
to carry and the size of the luggage boot. The car evaluation data set contains examples with
the structural concepts removed and directly relates a car to the six input attributes. All of these
attributes are nominally valued. Since the car database has underlying concept structures, the
database may be particularly useful for testing constructive induction and structure discovery
methods. The car evaluation data set consists of 1728 patterns that are distributed between 4 car
classes. These classes are acceptable, good, unacceptable and very good. 1210 patterns are of
the unacceptable class, 384 are of the acceptable class, 69 are of the good class and 65 are of the

very good class. The patterns were converted to binary strings of length 12.

7.5.1 Acceptable

Table 7.27 shows that with 1S=864 and W1=50 the lowest misclassification of 916.546 patterns
(#Misclassified = 915.113 + 1.433 = 916.546) was achieved when training the ALCs with neg-
ative selection on patterns of the acceptable class as self. This gives a correct classification of
46.959% with an average number of 11.967 ALCs in the active set. An average number of 5.900
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Table 7.27: Acceptable - Negative selection

111

IS | W1 | #ALCs | #MemALCs | #{Pos #{Neg ADT HD

432 | 25 133417 7.675 2933 923.400 3.455 5.900
(£3.522) | (£2.481) | (£3.202) | (£104.966) | (£0.092) | (£0.061)

50 | 12.342 7.083 1.700 920.533 3.696 5.732
(£2.054) | (£1.536) | (£2.322) | (£70.391) | (£0.048) | (£0.063)

75 9.758 5.750 1.533 966.267 3.986 4.950
(£1.281) | (£1.015) | (£2.849) | (£59.436) | (£0.031) | (£0.107)

100 |~ 5.275 2.733 1.733 1114.633 | 3.998 3.979
(£1.794) | (£1.006) | (£2.864) | (£68.419) | (£0.012) | (£0.499)

864 | 25 | 13.533 6.550 1.533 933.167 3.406 5.944
(£3.037) | (£1.642) | (£2.374) | (£79.925) | (£0.083) | (£0.020)

50 | 11.967 5.900 1.433 915.133 3.673 5.747
(+1.520) | . (£0.803) | (£=2.208) | (£49.171) | (£0.048) | (£0.037)

75 9.933 4.967 1.767 981.700 3.990 4.953
(£1.552) | (£0.776) | (£2.921) | (£60.692) | (£0.040) | (£0.100)

100 | 7.000 3.450 1.467 1073.667 3.987 4.184
(£4.068) | (£1.936) | (£2.738) | (£125.141) | (£0.027) | (£0.434)

1296 | 25 | 14.367 7.067 1.733 918.633 3.450 5.949
(£3.429) | (£1.770) | (£2.803) | (£90.002) | (£0.080) | (£0.018)

50 | 12.067 5.983 1.667 933.667 3.684 5.741
(£1.837) | (£0.942) | (£2.708) | (£71.145) | (£0.054) | (£0.058)

75 10.300 5.150 1.500 951.733 3.983 4.967
(£1.512) | (£0.756) | (£2.713) | (£67.284) | (£0.034) | (£0.098)

100 | 5.667 2.833 0.567 1114.000 3.996 3.974
(£2.537) | (£1.269) | (£1.675) | (£101.670) | (£0.017) | (£0.582)

172825 14.700 0.000 1.367 917.200 3.454 5.944
(£3.525) | (£0.000) | (£2.760) | (£90.105) | (£0.092) | (£0.019)

50 | 12.167 0.000 2,167 927.767 3.680 5.747
(£1.931) | (£0.000) | (£3.075) | (£52.138) | (£0.055) | (£0.053)

75 10.167 0.000 2.500 956.000 3.983 4.975
(£1.085) | (£0.000) | (£3.319) | (£57.453) | (£0.035) | (=0.100)

100 | 6.333 0.000 1.067 1078.567 3.991 4.157
(£3.457) | (£0.000) | (£2.449) | (£101.065) | (£0.023) | (£0.520)
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of the ALCs in the active set had memory status.

Table 7.28 shows the results when the ALCs were trained with the positive selection method.
The best classification result was obtained when IS=864 and W1=25. An average number of
15.533 ALCs formed part of the active set of ALCs. An average number of 7.567 of the ALCs
in the active set had memory status. The ALCs misclassified an average of 897.733 patterns as
acceptable and 1.367 as not. Thus, #Misclassified = 897.733 +1.367 = 899.100 which gives a
correct classification rate of 47.968%.

7.5.2 Good

The classiﬁcétion results for training the ALCs with negative selection on patterns of the good
class as self is shown in table 7.29. The lowest misclassification of 230.233 patterns falsely as
good and 0.433 as not (#Misclassified = 230.2334-0.433 = 230.666) was achieved with IS=432
and W1=50. This gives a correct classification of 86.651% with an average number of 17.642
ALCs in the active set of ALCs. The average number of ALCs with memory status in the active
set was 12.675. Figure 7.16 shows that the average number of ALCs decreased over the iterations
from 17.766 to 17.333 and the average fitness of the ALC set also decreased from 5.085 to 5.058
over the iterations. The number of misclassified patterns had an average decrease from 68.433 to
48.9.

Table 7.30 shows the results when the ALCs were trained with the positive selection method.
The best classification result was achieved when IS=1296 and W1=50 which gave an average
number of 16.833 ALCs in the active set of ALCs. An average number of 8.383 of the ALCs in
the active set had memory status. The ALCs classified 243.000 patterns falsely as good and 0.367
as not, which gave a misclassification of 243.367 patterns (#Misclassified = 243.000+0.367 =
243.367) and a correct classification rate of 85.916%.

7.5.3 Unacceptable

Table 7.31 shows that with IS=864 and W1=75 the lowest misclassification of 433.800 patterns -
(#Misclassified = 426.733 +7.067 = 433.800) was achieved when training the ALCs with neg-
ative selection on patterns of the unacceptable class as self. The ALCs misclassified an average of
426.733 patterns as unacceptable and 7.067 as not. This gives a correct classification of 74.895%
with an average number of 11.567 ALCs in the active set. An average number of 5.783 of the
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Table 7.28: Acce

ptable - Positive selection

113

IS | W1 | #ALCs | #MemALCs | #Pos #Neg ADT HD
432 | 25 | 13.508 7550 1.900 927.267 8.537 5.896
(£3.531) | (£2.559) | (£2.510) | (£91.816) | (£0.090) | (+0.063)

50 | 11.908 6.717 1.867 928.567 8315 5.727
(£1.725) | (£1.243) | (£2.825) | (£71.491) | (£0.039) | (£0.063)

75 | 9.508 5375 1.867 965.667 8.008 4.923
(+£1.172) | (4+0.801) | (£2.933) | (£59.833) | (£0.023) | (+0.069)

100 | 5.500 3.008 1.100 | 1075233 | 8.002 3.934
(£2.288) | (£1.505) | (£2.496) | (£84.297) | (£0.008) | (+0.446)

864 | 25 | 15.533 7.567 1.367 897.733 8.542 5.950
(£3.767) | (£1.870) | (£2.157) | (£88.295) | (£0.070) | (£0.012)

50 | 11.667 5.783 1500 | 933.700 83138 5.736
: (£1.373) | (£0.703) | (£2.177) | (£54.525) | (£0.053) | (£0.048)

75 | 10.100 5.050 1.867 944.933 8.027 5.001
(£1.213) | (£0.607) | (£2.886) | (£57.878) | (+0.046) | (£0.139)

100 | 5.667 2.833 1367 | 1108967 | 8.004 3.921
(£2.537) | (£1.269) | (£3.068) | (£95.542) | (£0.017) | (£0.539)

1296 | 25 | 14.333 7.050 7,088 922.100 8.555 5.944
(£3.745) | (+1.882) | (£2.712) | (£92.388) | (£0.089) | (+0.027)

50 | 11.900 5.933 2.367 041.367 8.316 5.750
(£1.494) | (£0.763) | (£3.347) | (£60.738) | (£0.053) | (£0.046)

75 | 10.167 5.083 2.333 941.767 8.008 4.965
(£1.289) | (£0.644) | (£3.336) | (£54.185) | (£0.026) | (£0.092)

100 | 5.000 2.500 0900 | 1135.233 | 8.000 3.840
(+0.000) | (40.000) | (42.074) | (+68.284) | (40.000) | (£0.554)

1728 | 25 | 14.067 0.000 1.633 936.267 8.562 5.943
(£3.463) | (£0.000) | (£2.710) | (£83.779) | (£0.070) | (0.024)

50 | 12.467 0.000 1.633 917.800 8.306 5.750
(4£2.345) | (£0.000) | (£2.619) | (£59.883) | (+0.043) | (+0.053)

75 | 10.300 0.000 1.233 954.300 8.020 4,937
(£1.088) | (£0.000) | (£2.528) | (+48.170) | (££0.041) | (£0.090)

100 | 6.667 0.000 1000 | 1112.967 | 8.011 3.838
(£3.790) | (£0.000) | (£2.729) | (£119.664) | (+0.025) | (£0.672)
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IS | W1 | #ALCs | #MemALCs | #fPos #fNeg ADT HD

432 | 25 | 17.275 10.683 0.467 311.233 4.562 5.725
(£3.736) | (£2.391) | (£1.502) | (£94.128) | (£0.105) | (£0.090)

50 | 17.642 12.675 0.433 230.233 5.320 4.836
(£4.835) | (+3.657) | (£1.832) | (£75.159) | (+0.086) | (+0.135)

75 | 11158 8.358 0.333 378.533 5910 3.291
(£1.765) | (£1.327) | (£1.470) | (£58.707) | (£0.082) | (£0.339)

100 | 8.267 6.200 0.133 495.200 5977 2.614
(+£5.159) | (£3.869) | (£0.730) | (=107.094) | (£0.036) | (£0.304)

864 | 25 | 18.733 9.117 0.467 296.600 4.463 5.853
(£3.759) | (£1.888) | (£1.833) | (£88.853) | (£0.064) | (0.030)

50 | 17.500 8.750 0.400 244.933 5.305 4.870
(£4.265) | (£2.132) | (£1.476) | (£74.043) | (£0.085) | (£0.101)

75 | 10333 5.167 0.367 395.033 5.930 3.232
(£1.729) | (+0.864) | (£1.474) | (£62.126) | (£0.076) | (£0.338)

100 | 7.667 3.833 0.133 555.633 5.982 2511
(£4.498) | (£2.249) | (£0.730) | (£160.979) | (£0.030) | (£0.474)

1296 | 25 | 18.600 9.067 0.433 292.033 4.447 5.850
(£3.001) | (£1.654) | (£1.501) | (£79.156) | (£0.104) | (£0.025)

50 |« 16.733 8.367 0.433 244.467 5.296 4.862
(£4.593) | (£2.297) | (£1.832) | (£75.462) | (£0.086) | (£0.121)

75 | 10.900 5.450 0.367 395.600 S5 3.220
(£1.845) | (40.922) | (£1.474) | (£61.482) | (£0.064) | (£0.305)

100 | 9.000 4.500 0.267 511:267 5973 2.583
(£4.983) | (£2.491) | (£1.461) | (£167.143) | (£0.033) | (£0.498)

1728 | 25 | 18.233 0.000 0.500 300.800 4.453 5.848
(£3.674) | (£0.000) | (£1.526) | (£110.290) | (=0.137) | (£=0.028)

50 | 17.600 0.000 0.533 244.567 5319 4.849
(+£4.546) | (£0.000) | (£1.852) | (£66.496) | (£0.065) | (£0.120)

75 | 10.167 0.000 0.333 409.600 5.948 3.159
(£1.289) | (£0.000) | (£1.470) | (£58.785) | (£0.060) | (£0.287)

100 | 8.000 0.000 0.167 518.967 5.980 2.663
(£4.661) | (£0.000) | (£0.747) | (£140.424) | (£0.031) | (£0.316)
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IS | W1 | #ALCs | #MemALCs | #Pos #Neg ADT Z)
432 | 25 | 17325 10.725 0.500 322.467 7.473 5.775
(43.366) | (2.293) | (£1.834) | (£111.180) | (40.118) | (0.054)

50 | 16.817 11.892 0.500 249.933 6.680 4333
(+4.862) | (£3.695) | (£1.852) | (£74.492) | (£0.085) | (40.103)

75 | 11.317 8.442 0.367 391.133 6.085 3276
(+1.917) | (£1.457) | (£1.474) | (£65.576) | (==0.061) | (+0.290)

100 | 8.133 6.092 0.133 533.267 6.021 2.608
(£4.918) | (£3.677) | (£0.730) | (151.720) | (£0.034) | (£0.415)

864 | 25 | 18.533 9.033 0.300 291.233 7.544 5.846
(3.381) | (£1.810) | (20.837) | (66.657) | (£0.111) | (+0.028)

50 | 16.700 8317 0.367 251.833 6.697 1.8%2
(£4.617) | (£2.291) | (£1.474) | (£53.176) | (=0.078) | (£0.125)

75 | 11.333 5.667 0.433 387.200 6.077 3.257
(1.953) | (£0.977) | (£1.501) | (£70.104) | (0.050) | (£0.307)

100 | 9.667 4833 0.133 506.133 6.031 2.606
(£5.074) | (£2.537) | (£0.730) | (161.635) | (0.034) | (+0.538)

1296 | 25 | 18.100 3.833 0.433 300.700 7.531 5.849
(4£3.155) | (£1.633) | (£1.832) | (£93.412) | (£0.108) | (£0.029)

50 | 16.833 8.383 0.367 243.000 6.701 4.874
(+4.609) | (£2.288) | (£1.474) | (£66.330) | (£-0.088) | (+0.085)

75 | 10.967 5.433 0.300 401.133 6.082 3.238
(£1.377) | (=0.688) | (£1.466) | (£73.913) | (£0.065) | (£0.283)

100 | 7.633 3.817 0.000 530.400 6.018 2.632
(4+4.958) | (£2.479) | (£0.000) | (=144.704) | (0.034) | (£0.392)

1728 | 25 | 17.933 0.000 0.467 280.267 7.538 5.851
(4+3.695) | (4+0.000) | (£1.833) | (£73.541) | (%0.080) | (£0.028)

50 | 15.600 0.000 0.433 265.433 6.731 4.890

| (4.132) | (20.000) | (£1.832) | (+76.867) | (£0.111) | (£0.115)

50T 11567 0.000 0.367 387.133 6.082 3.250
(+1.870) | (£0.000) | (£1.829) | (+56.886) | (0.058) | (£0.321)

100 | 8.000 0.000 0.267 513.600 6.020 2.562
(4.661) | (=0.000) | (£1.461) | (£145.974) | (0.031) | (£0.427)
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IS | W1 | #ALCs | #MemALCs | #Pos #Neg ADT HD

432 1725 7 ~13:033 5533 71:533 450.300 3.042 5.9
(£3.770) | (£1.682) | (£5.734) | (£29.880) | (£0.235) | (£=0.440)

50 | 15.300 7.808 11.667 428.767 3.468 4.672
(£3.723) | (£2.472) | (£5.990) | (£31.704) | (£0.195) | (£0.344)

75 12.008 6.808 6.267 429.033 4.060 2.942
(£4.186) | (£3.145) | (£6.863) | (£32.505) | (£0.212) | (£0.347)

100 | 9.983 5.900 3.600 456.533 4.100 2:.191
(£9.282) | (£6.833) | (£5.512) | (£39.923) | (£0.250) | (+0.457)

864 « | 25e(  AFHBLT 6.733 10.033 443.133 29493 5.602
(£3.854) | (£1.524) | (£5.346) | (£30.016) | (£0.156) | (£0.157)

50 | 14.550 6.517 10.667 432.600 3.342 4.926
(E3LL) | (CEL600) | (4=5.933) | (£34.523) | (£0.179) | (=0.297)

75 | 11.567 5.783 7.067 426.733 4.044 3.005
(+£2.622) | (+1.311) | (£6.746) | (£33.595) | (£0.133) | (£0.241)

100 | 10.600 5.283 3.000 452.867 4.068 2.276
(£9.471) | (£4.728) | (£5.766) | (£44.584) | (£0.227) | (£0.423)

1296 | 25 | 14.883 6.050 8.833 449.067 2.794 5.515
(£4.413) | (£1.945) | (£6.114) | (£33.783) | (£0.177) | (£=0.243)

50 -|==152160 7.083 12.033 435.967 3.325 4.956
(£3.294) | (£1.727) | (£5.887) | (£32.905) | (£0.182) | (£0.249)

75 11.767 5.867 7.133 428.800 4.042 3.034
(+£2.582) | (£1.273) | (£6.872) | (£33.455) | (£0.161) | (£0.284)

100 | 8.867 4.433 3.067 455.600 4.086 2.275
(£8.055) | (£4.027) | (£5.558) | (£46.120) | (£0.215) | (£0.410)

1728 | 25 18.100 0.000 10.767 443.367 2.536 5.854
(£4.413) | (£0.000) | (£6.484) | (£32.557) | (£0.088) | (=0.035)

50. | 14.333 0.000 10.733 438.500 3.230 5:129
(£2.905) | (£0.000) | (£5.789) | (£34.400) | (£0.147) | (£0.181)

75 12.000 0.000 7.167 428.533 4.038 3.033
(£3.151) | (£0.000) | (£6.869) | (+31.059) | (£0.184) | (£0.341)

100 | 8.567 0.000 4.533 456.800 4.076 2.327
(+£7.592) | (£0.000) | (£5.964) | (£43.608) | (£0.199) | (£0.397)
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ALCs in the active set had memory status.

Table 7.32 shows the results when the ALCs were trained with the positive selection method.
The best classification result was obtained when 1S=1296 and W1=75. An average number
of 12.400 ALCs formed part of the active set of ALCs. An average number of 6.200 of the
ALCs in the active set had memory status. The ALCs misclassified an average of 425.233
patterns as unacceptable and 6.467 as not which gave a misclassification of 431.700 patterns
(#Misclassi fied = 425.233 4 6.467 = 431.700) and a correct classification rate of 75.017%.

7.5.4 Very Good

Table 7.33 shows the results for classifying the Car evaluation data set with patterns of the very
good class as the self set. The ALCs were trained with the negative selection method. The best
classification result was obtained when IS=432 and W1=50. An average number of 17.992 ALCs
formed part of the active set of ALCs. An average number of 13.200 of the ALCs in the active
set had memory status. The ALCs misclassified an average of 129.133 patterns as very good
and 0.333 as not. Thus, #Misclassified = 129.133 +0.333 = 129.466 which gives a correct
classification rate of 92.507%. Figure 7.17 shows a decrease in the average number of ALCs
over the iterations from 18.1 to 17.8. The average fitness of the ALC set also decreased from
5.133 to 5.114. The average number of misclassified patterns decreased from iteration one to
two, but then increased at iteration four.

Table 7.32 shows the results when the ALCs were trained with the positive selection method.
The best classification result was obtained when IS=864 and W1=50. An average number of
18.233 ALCs formed part of the active set of ALCs. An average number of 9.067 of the ALCs
in the active set had memory status. The ALCs misclassified an average of 130.033 patterns as
unacceptable and 0.333 as not. Thus, #Misclassified = 130.033+0.333 = 130.366 which gives
a correct classification rate of 92.455%.

7.5.5 Conclusion: Car Evaluation

The above results show that different parameter settings for IS and W1 are necessary to obtain
the best classification results for different classes as self. When comparing the best results of
the above classes from both negative and positive selection as training methods, the average HD
between the ALCs in the active set for the acceptable class as self is the highest for all the classes
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IS | W1 | #ALCs |#MemALCs | #fPos #fNeg ADT HD

432 | 25 14.917 6.500 9.500 447.200 9.077 5.267
; (£4.141) (£2.121) | (£5.264) | (£30.398) | (£0.176) | (£0.310)

50 13.258 6.417 10.600 436.867 8.577 4.681
(£3.529) (£2.364) | (£6.360) | (£38.115) | (£0.194) | (£0.331)

15 11.283 6.158 - 7.200 429867 1.937 2.982
(£2.683) (£2.148) | (£6.504) | (£33.360) | (£0.178) | (£0.323)

100 | 102082 6.092 3.700 453.167 7.920 2271
(£10.352) | (£7.629) | (£6.221) | (£46.268) | (£0.216) | (£0.412)

864 | 25 15.800 5.300 7133 451.400 9513 5.874.

(£4.656) (£1.648) | (£5.401) | (£28.165) | (£0.111) | (£0.035)

50 15.767 6.767 11.767 433.967 8.770 5.147
(£4.014) (£1.851) | (£6.290) | (£35.004) | (£0.107) | (£0.121)

75 12.067 6.017 5.400 427.800 7-933 2.967
(+£3.999) (£1.941) | (£7.040) | (£32.190) | (£0.203) | (£0.367)

100 9.867 4.933 3.567 459.800 7.900 2.236
(£11.933) | (£5.966) | (£5.685) | (=47.640) | (£0.239) | (£0.399)

1296 | 25 19.633 7.367 10.067 438.133 9.461 5.860
(2=3.961) (£1.676) | (£6.203) | (£31.181) | (=0.099) | (£0.037)

50 15.633 7.100 11.700 430.333 8.769 5.148
(£3.873) (£1.927) | (£6.204) | (£38.301) | (£0.109) | (£0.122)

75 12.400 6.200 6.467 425.233 7.956 3.034
(+=4.407) (£2.203) | (£7.281) | (£36.141) | (30.154) | (0.245)

100 9.500 4.750 3.100 457.100 F903 2.255
(£10.153) | (£5.077) | (£5.592) | (£42.542) | (£0.218) | (£0.409)

1728 | 25 16.833 0.000 8.933 449 467 9.492 5.862
(+£4.836) (£0.000) | (£5.426) | (£32.126) | (£0.103) | (£0.029)

50 15.000 0.000 9.500 431.400 8.743 5.102
(=3.677) (£0.000) | (£6.318) | (£35.091) | (£0.121) | (£0.153)

75 12.167 0.000 6.333 425.467 7.945 2975
(£4.395) (£0.000) | (£6.825) | (£34.767) | (£0.178) | (£0.244)

100 | 10.267 0.000 3.200 449.433 7.937 2.357
(£10.044) | (£0.000) | (£5.561) | (£48.340) | (£0.179) | (£0.340)




University of Pretoria etd — Graaff A J (2003)

CHAPTER 7. EXPERIMENTAL RESULTS 120
Table 7.33: Very Good - Negative selection
IS | W1 | #ALCs | #MemALCs | #fPos #Neg ADT HD

432 | 25 17.650 10.983 0.367 157833 4.750 5.681
(£2.573) | (£1.838) | (£0.928) | (£49.543) | (£0.117) | (£0.088)

50 | 17.992 13.200 0.333 129.133 5.719 4.532
(£5.647) | (£4.251) | (£0.884) | (£45.808) | (£0.113) | (£=0.191)

75 0,633 7.225 0:333 193.900 6.016 3972
(£0.850) | (£0.638) | (£0.922) | (£36.771) | (£0.125) | (=0.174)

100 | 6.667 5.000 0.233 370.933 6.021 3.047
(£4.611) | (£3.458) | (£0.626) | (£125.691) | (£0.156) | (£0.482)

864 | 25 18.683 8.817 0.400 163.433 4.627 5.801
(£3.573) | (£1.836) | (£0.932) | (£48.846) | (£0.108) | (£0.028)

50 17.900 8.950 0.300 129.900 5707 4.562
(£4.581) | (£2.291) | (£0.877) | (£49.694) | (=0.083) | (=0.148)

5 9.700 4.850 0.333 186.200 6.022 3.939
(£0.988) | (£0.494) | (£0.922) | (£31.196) | (£0.170) | (£0.297)

100 | 8.100 4.050 0.300 346.867 6.012 3.240
(£5.695) | (£2.848) | (£0.877) | (£137.375) | (£0.156) | (£0.423)

1296 | -25 18.267 8.833 0.367 165.367 4.620 5.805
(£3.194) | (£1.544) | (£0.928) | (=44.187) | (£0.094) | (£0.025)

50 17.333 8.633 0.333 136.700 5.690 4.575
(£5.128) | (£2.569) | (£0.922) | (£44.319) | (£0.092) | (£0.161)

75 10.200 5.100 0.333 192.967 6.010 3.976
(£1.669) | (£0.835) | (£0.922) | (£36.416) | (£0.124) | (£0.153)

100 | 6.067 3.033 0.133 365.867 6.021 3.109
(£4.354) | (£2.177) | (£0.507) | (£119.465) | (£0.129) | (£=0.460)

1728 | 25 19.600 0.000 0.400 154.400 4.641 S99
(£2.568) | (£0.000) | (£0.932) | (£33.757) | (£0.078) | (£0.029)

50 16.833 0.000 0.333 144.667 5:695 4.572
(£5.004) | (£0.000) | (£0.922) | (£56.804) | (£0.118) | (£0.192)

75 9.967 0.000 0:333 186.300 6.014 3.976
(£1.402) | (£0.000) | (£0.922) | (£40.623) | (£0.126) | (£0.167)

100 | 6.800 0.000 0.200 344.233 6.019 3.300
(£6.588) | - (£0.000) | (£0.805) | (£115.088) | (0.128) | (£0.353)
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Figure 7.17: Very Good - Negative selection with IS=432 and W1=50
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Table 7.34: Very Good - Positive selection
IS | W1 | #ALCs |#MemALCs | #fPos #fNeg ADT HD

432 | 25 18.608 11.767 0.300 150.433 7.254 5.696
(£2.603) | (£1.959) | (0.877) | (£39.753) | (0.088) | (+0.062)

50 | 17.367 12.667 0.467 138.767 6.280 4.524
(£5.042) | (£3.863) | (£0.973) | (£47.089) | (£0.105) | (£0.176)

75 | 10.033 1525 0.267 186.567 5.985 3.970
' (=1.542) | (£1.157) | (£0.868) | (£34.069) | (£0.151) | (+0.218)

100 | 6.733 5.050 0.067 373.933 5.980 3.202
(+4.891) | (£3.669) | (£0.365) | (£107.537) | (£0.151) | (0.386)

864 | 25 | 18.700 8.967 0.367 154.200 7.364 5.794
(£2.521) | (£1.238) | (+0.890) [ (+£41.633) | (+0.117) | (£0.025)

50 | 18.233 9.067 0.333 130.033 6.288 4.553

(£5.399) | (£2.648) . | (£0.922) | (£61.279) | (+0.106) | (+0.181)

73 9.867 4.933 0.333 193.067 5.988 3.978
(£0.973) | (£0.487) | (£0.922) | (£33.165) | (+0.121) | (£0.187)

100 | 6.800 3.400 0.133 360.733 5.980 3.185
| (£5.182) | (£2.591) | (£0.507) | (£118.764) | (£0.147) | (£0.377)

1296 | 25 | 19.133 9.283 0.367 152.967 7.352 5.792
(£2.700) | (£1.436) | (£0.928) | (£32.022) | (£0.109) | (£0.023)

50 | 18.000 8.983 0.367 148.467 6.302 4.566
(£5.736) | (£2.851) | (£0.928) | (£56.144) | (£0.149) | (£0.195)

75°"710.100 5.050 0.300 197.467 5.984 3.970
(+£1.918) | (£0.959) | (£0.877) | (£44.014) | (£0.121) | (£0.150)

100 | 6.133 3.067 0.267 368.267 5.976 3.161
(£4.688) | (£2.344) | (£0.868) | (£105.236) | (+0.146) | (+0.514)

1728 | 25 | 18.867 0.000 0.333 156.367 7.380 5.805
(£3.560) | (£0.000) | (%£0.922) | (+48.000) | (0.089) | (£0.032)

50 | 17.267 0.000 0.400 140.467 6.309 4.573
(£5.126) | (£0.000) | (£0.932) | (£47.051) | (0.116) | (£0.157)

15 | 18033 0.000 0.333 194.867 5.988 3.979
(£1.377) | (£0.000) | (£0.922) | (£27.719) | (£0.136) | (+0.184)

100.]. ., 6:133 0.000 0.333 338.800 5.975 3.248
(£3.511) | (£0.000) | (£0.922) | (£72.831) | (0.165) | (£0.409)




University of Pretoria etd — Graaff AJ (2003)

CHAPTER 7. EXPERIMENTAL RESULTS 123

DATA SET CLASS AS SELF GAIS GAIS E4.5

NEGATIVE POSITIVE
SELECTION SELECTION

IRIS Setosa 99.66% 99.62% 99.3%
Versicolor 97.13% 97.0% 96.0%
Virginica 94.6% 94.62% 97.3%
WISCONSIN Benign 98.907% 98.798% 96.3%
BREAST CANCER | Malignant 93.395% 93.948% 96.3%
MUSHROOM Edible 88.502% 87.438% 99.9%
Poisonous 80.383% 79.105% 99.9%
GLASS Building-window-float 92.741% 92.357% 79.3%
Building-window-nonfloat || 83.816% 84.454% 79.7%
Containers 99.797% 99.797% 95.9%
Headlamps 99.376% 99.329% 94.9%
Tableware 99.85% 99.85% 97.7%
Vehicle-window-float 98.675% 98.8% 91.7%
CAR EVALUATION | Acceptable ' 46.959% 47.968% 95.1%
|| Good ' 86.651% 85.916% 98.7%
Unacceptable 74.895% 75.017% 99.5%

Very Good 92.507% 92.455% 100%

Table 7.35: Summarised results

as the self set. The average ADT in the active set of ALCs with acceptable as the self set is the
lowest with negative selection and the highest with positive selection for all the classes as the self
set. These deductions support the bad classification result with acceptable as the self set, since
the ALCs are widely distributed in problem space (the high average HD) with the lowest space
coverage (the low average ADT for negative selection and the high average ADT for positive
selection). For acceptable or unacceptable as the self set the positive selection method had
better classification results than the negative selection method and for good or very good as the
self set the negative selection method had better classification results than the positive selection
method.

7.6 Comparing the Results

The classification results obtained from GAIS with negative and positive selection is summarised
and compared with C4.5 in table 7.35. C4.5 was trained different from GAIS. The experiments
with C4.5 also used a 30-fold cross validation training set, but the training set consisted out of
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self and non-self patterns. The results show that GAIS had on average better classification than
C4.5 in classifying the Iris data set, except for virginica as self. C4.5 had better classification
for the Mushroom data set and the Car evaluation data set, where GAIS had better classification
with the Glass data set. C4.5 had better classification with malignant as self and GAIS had better
classification with benign as self in classifying the Wisconsin breast cancer data set. The high
misclassification rate of GAIS on the Mushroom and Car Evaluation data sets is due to the low
number of ALCs evolved by the GA. The evolved ALCs are widely distributed in space (refer
to the high average HD) with a low space coverage (refer to the low average ADT for negative
selection and the high average ADT for positive selection). These deductions indicate that better
classification results can be obtained when more ALCs are evolved, but with a higher degree of
average overlap (lower average HD) among the evolved ALCs. GAIS only evolves an optimal
 initial set of ALCs. The initial set is kept static during the training process to determine the status
of each ALC in the set. Classification performance of GAIS could be improved by replacing the
annihilated ALCs with newly evolved ALCs by the GA. When there is overlap among the self
patterns and the non-self patterns, the GA needs to evolve a higher number of ALCs to optimally
cover the highly distributed non-self space between the self patterns. From these results it can be
concluded that depending on the problem that needs to be classified and the selected class as the
self set, there are cases that GAIS performs better then C4.5. This deduction supports the no free
lunch theorem [84].
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Chapter 8
Conclusion and Future Work

“It is wise to keep in mind that neither success nor failure is ever final.”

- Roger Babson

This chapter concludes the dissertation, discusses the findings and presents ideas relating to
possible future work.

8.1 Conclusion

The main objective of this dissertation - to evolve ALCs that have the maximum coverage of non-
self space with the least overlap among the ALCs - is addressed. The dissertation started-off with
an overview of the functioning of the natural immune system (NIS) - the biological system that
protects the body against harmful pathogenic material. The different states of a lymphocyte were
also introduced. The dissertation gave an overview of evolutionary computation, focusing on
genetic algorithms. A new artificial immune system (namely GAIS) was developed for pattern
classification. GAIS uses a genetic algorithm to evolve artificial lymphocytes (ALCs). GAIS
evolved the trained ALCs sequentially. Each evolved ALC was added to the set of existing
ALCs. The GA was forced with the least overlap restriction to explore different regions in the
search space that was not covered by the existing set of ALCs. The evolved ALC was a local
optimum in the search space that was not covered by the existing set of ALCs. The ALCs
were trained with negative or positive selection to ensure that the ALCs did not detect any of
the patterns in the predetermined self set. The active set of evolved ALCs was used to classify
patterns. The status of the ALCs was evaluated at predetermined time steps (IS) using the life
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counter threshold function proposed in chapter 5, achieving the sub objective, i.e. proposing a
method to dynamically determine the status of an ALC. Annihilated ALCs were removed from
the active set of ALCs. Results of GAIS on different data sets were presented in chapter 7 and
compared with C4.5. These results showed that there are cases that GAIS performs better then
C4.5 and that the overlap among self and non-self patterns influences the number of evolved
ALCs and the classification performance of GAIS.

8.2 Future work

In most classification models there are always the danger of overfitting the data during training.
Thus for future work, an investigation into the overfitting characteristics of GAIS is necessary
to determine if the evolved set of ALCs in GAIS and the proposed life counter threshold func-
tion alleviate overfitting of data. An investigation to find the optimal operators in the GA could
improve the performance of GAIS as well as the replacement of an annihilated ALC with an
evolved ALC. As an unsupervised approach, the proposed life counter threshold function might
be used in clustering data to indicate the centroids of the formed clusters. It would also be
worthwhile to investigate and analyse the parameters in GAIS to be able to dynanﬁcally set these
parameters for optimal classification performance and to extent the GAIS algorithm for incre-
mental learning. There are a few observations that need to be more closely examined. Firstly,
since the evolved optimal initial set is kept static during the training process, the classification
performance of GAIS could be improved by replacing the annihilated ALCs with newly evolved
ALCs during training. Lastly, to investigate the influence of IS on the classification performance
of GAIS, since IS determines how frequently the status of an ALC is evaluated. A smaller IS
results in a more frequent removal of annihilated ALCs from the active set of ALCs. Replacing
these annihilated ALCs with newly evolved ALCs, could improve the non-self space coverage
and thus the classification performance of GAIS. A comparative study between GAIS, existing
AIS classification algorithms and machine learning algorithms is currently being conducted by
one of the members in the computational intelligence research group (CIRG).
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Appendix B
Symbols

Tables B.1 and B.2 list and define the symbols used throughout this dissertation.

Table B.1: Table of symbols

Symbol Meaning

Aneg Maximum ADT for an ALC trained with negative selection
Apos Minimum ADT for an ALC trained with positive selection
b The number of bins or groups

c Attribute counter in a pattern

dy [-th ALCin D

dj, Bit i in receptor of d;

e The rate of elitism in the GA

' 3 (}‘-Hypervayper)

g
g(}"Sigmoid:xSigmoid)

k

Hyperbolic Tangent function where Agyper controls
the steepness of f(Arrypers Xayper)

Generation counter in the GA

Sigmoid function where Agigmoiq controls

the steepness of g(Asigmoid Xsigmoid)

Length of an ALC’s receptor
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Table B.2: Table of symbols (continued)

137

Symbol

Meaning

MaXe=1,..C {xc,j }
Mmife=1,..C {Xc,j

Pec

Max(A;,B;)
Min(A;, B;)

_ log(b)
= log2

0;
P
WindowSize

XOR(x;,1;)
B :
¥(x,x)

Hg

HT

u(Dy)
#(Hg)
E~U(0,1)
G

T

Vneg
Vpos

x(D,r)
&)

Maximum value for attribute ¢ in a data set

Minimum value for attribute ¢ in a data set

Crossover probability

Mutation probability

Bit i in receptor r

The weights that influence the objectives in the fitness function
Value of attribute ¢ of pattern j in a data set

Returns the absolute difference between the values of gene i in A and B

Gene i in parent A

Gene i in parent B

Number of attributes in a pattern

Active set of ALCs

ALC set D after adding I-th evolved ALC

Initial active ALC set with L evolved ALCs.

The maximum number of generations in the GA

Assigns an attribute’s value to the correct bin or group
Population in GA at generation g

The number of ALCs in the GA population

Population size in the GA

Returns the chromosome with the highest value in gene i
Returns the chromosome with the lowest value in gene i
Calculates the number of bits necessary to represent b bins-or groups
Gene i in offspring O

The number of ALCs in D

The number of generations to calculate the moving average on
a population’s fitness

Exclusive-or between the i-th bitin x and r

Minimum matching ratio of an ALC(space coverage)
Hamming distance between x and r

The moving average at generation g in the GA

The threshold for the difference in moving averages in the GA
Average fitness of ALC set Dy

The average fitness of population H, in the GA

Random number generated from a Uniform distribution
Generation gap

The life counter threshold function

Negative selection fitness function

Positive selection fitness function

Average hamming distance between r and the set D
Finite search space
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Appendix C

Abbreviations

ADT: Affinity Distance Threshold

AIS: Artificial Immune System

ALC: Artificial Lymphocyte

EA:

EC:

Evolutionary Algorithm

Evolutionary Computation

EMR: Expected Matching Ratio

EP:

ES:

GA:

GP:

HC:

HD:

Evolutionary Programming

Evolutionary Strategies

Genetic Algorithm

Genetic Programming

Hit Counter

Hamming Distance
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HR: Hit Ratio

HTC: Helper-T-Cell

IS: Tteration Size

LC: Life Counter

MHC: Major Histocompatibility Complex

NIS: Natural Immune System

NKTC: Natural-Killer-T-Cell
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Appendix D
Glossary

Affinity: A force that causes the HTC to elect an MHC on the surface of the B-Cell with which
the HTC has a stronger binding to unite, rather than with another MHC with a weaker binding.

Affinity Distance Threshold: The receptor on the lymphocyte must bind with a certain affinity -
to the antigen for the antigen to be detected. This affinity is referred to as the affinity distance
threshold.

Alleles: Specific values from the domain of the corresponding parameter assigned to the gene.
Annihilated: The status of a frequently suppressed lymphocyte.

Antibody: Cell produced by a B-Cell after detecting antigen.

Antigen: Material that can trigger an immune response. Antigens can be either bacteria, fungi,
parasites and/or viruses. '

B-Cell: A lymphocyte that produces antibodies after detecting antigen.
Chromosome: A potential solution to the problem that needs to be optimised.
Clone: Exact copy of a stem cell.

Crossover: Process of exchanging genetic material between two or more selected chromosomes
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to produce offspring.
Cytokines: Encourages cell growth, promote cell activation or destroy target cells.
Donor cells: Transplanted blood cells obtained through transplanted organs or blood.

Epitope: The small segments on the surface of an antigen. Epitopes trigger a specific immune
response and antibodies bind to these epitopes.

Expected Matching Ratio: The detection ratio of non-self patterns expected from an artifi-
cial lymphocyte.

Fitness: Maps the chromosome’s representation into a scalar value. Quantifies the quality of
the chromosome. The scalar value of the chromosome indicates how close a chromosome is to

the optimal solution.

Gene: A parameter in the chromosome’s representation with values in the same space as the
function being optimised (referred to as phenotype-space).

Generation: A population of individuals at a specified time step, evolved from previous popu-
lations at earlier time steps.

Genotype-space: An intermediate space to which parameter-values in the chromosome are
mapped to.

Helper-T-Cell: Strengthens the cloning of a B-Cell into a plasma cell.

Hit Counter: Keeps record of the number of matched non-self patterns by an artificial lym-
phocyte.

Hit Ratio: Calculates the ratio at which an artificial lymphocyte matched non-self patterns.

Immature: A T-Cell that is not self-tolerant.
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Immune response: The body’s reaction to antigens so that the antigens are eliminated to prevent
damage to the body.

Iteration Size: The specified number of incoming patterns before calculating the life counter
of an artificial lymphocyte.

Life counter: A threshold function that determines in which state an artificial lymphocyte is
in its life cycle.

Lymphocyte: Detects any antigens in the body.

Lymphoid organ: Responsible for the growth, development and deployment of the lympho-
cytes in the immune system.

Lymphokines: Known as cytokines.

Macrophages: Are versatile cells that secrete powerful chemicals and plays an important role
in T-Cell activation.

Major Histocompatibility Complex: These molecules are on the surface of a cell and their
main function is to bring to light the internal structure of a cell.

Mature: A T-Cell that does not have receptors that bind with molecules that represent self cells.
Memory: A B-Cell that frequently detects non-self cells. The function of memory cells is to
proliferate to plasma cells for a faster reaction to frequently encountered antigens and produce
antibodies for the antigens.

Minimum matching ratio: The coverage of non-self space by an artificial lymphocyte.

Monocytes: Type of phagocyte.

Monokines: Known as cytokines.
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Monomeric receptor: A chemical compound that can undergo a chemical reaction with other

molecules to form larger molecules.
Multi-modal: Some functions have multiple solutions and are known as multi-modal functions.
Mutation: Randomly changing the genetic representation of a chromosome.

Natural-Killer-T-Cell: Binds to the Major Histocompatibility Complex-molecule and destroys
the virally infected cell.

Negative selection: Specific selection method to train artificial lymphocytes to become self-
tolerant. The trained ALC covers the non-self space.

Neutrophils: Type of phagocyte.

Niching: A technique that has been developed to find multiple solutions in multi-modal func-
tions.

Non-self: Unwanted foreign cells thﬁt is harmful to the body.
Pathogen: Foreign body material (referred to as antigen).

Peptides: The partitions of an antigen.

Phagocytes: Cells that are large cell- and particle-devouring white cells.
Phenotype-space: The domain of the fitness function.

Plasma cell: A B-Cell that produces antibodies.

Positive selection: Specific selection method to train artificial lymphocytes to become self-
tolerant. The trained ALC covers the self space.

Self: Normal functioning cells in the body.
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T-Cell: A lymphocyte that becomes mature in the thymus. There are two types of T-Cell: Helper-
T-Cell and Natural-Killer-T-Cell.



