Chapter 7

Experimental Results

"No amount of experimentation can ever prove me right, a single experiment can prove me wrong"

- Albert Einstein

This chapter presents experimental results to analyse the behavior of the GAIS model on different classification problems. The performance of GAIS is investigated under different control parameter values. The data sets were collected from the UCI Machine Learning Repository [7]. The patterns in each data set were discretised and converted to binary strings (as explained in section 6.2.1). For each experiment, one of the classes in a data set is selected as the self set. The self set is then used to train the ALCs with the adapted negative selection and the positive selection methods. The other classes in the data set represent the non-self patterns.

All experiments used a 30-fold cross validation self set. The self set was randomly divided into thirty disjoint sets. The ALCs were trained on 29 of these self sets and were tested with a test set that consisted of the remaining self set (the training set that was left out during training) and the unseen non-self patterns. In each experiment the initial population size in the GA was set to 100 chromosomes (I = 100) and the rate of elitism was set to 30% (e = 0.3). The window size in the GA and GAIS was set to 4.0 (WindowSize = 4.0) and $\mu_T = 0.01$ to test for convergence in the population and ALC set respectively. These values were found empirically to deliver good performance. All experimental results in this chapter are averages over 30 simulations with the selected self class in *italic* print. The best parameter settings are printed in **bold** in each table.

The results in each table, starting with the leftmost column, are the iteration size (IS) and param-

eter $w_1 * 100\%$ (W1) in the fitness function of the GA (recall that $w_2 = 1.0 - w_1$). The following results are the averages after the ALC set in GAIS has converged and all patterns were classified: the average number of ALCs in the active set (#ALCs), the average number of ALCs in the active set with memory status (#MemALCs), the average number of false positives (#fPos), the average number of false negatives (#fNeg), the average affinity distance threshold in the active set (ADT) and the average hamming distance between ALCs in the active set (HD). The average HD indicates the average hamming seperation among ALCs in the active set to cover non-self space. A higher value of HD indicates less overlap. The standard deviation is given in parentheses. A pattern from the self class that is falsely classified as non-self is referred to as a *false positive*. A pattern that is not from the self class and is falsely classified as self is referred to as a *false negative*. The average number of misclassified patterns for each parameter setting in each table is calculated as follows:

$$\#Misclassified = falsePositives + falseNegatives$$

Note that the accuracy is the average over all iterations. The interval-values for IS were calculated by

 $IS = \frac{is}{100} * \text{Size of data set}, is \in [25, 50, 75, 100]$

The total number of iterations that GAIS executes is therefore equivalent to $\frac{\text{Size of the data set}}{IS}$. The selected values for w_1 were calculated by

$$w_1 = \frac{W1}{100}, W1 \in [25, 50, 75, 100]$$

Some of the tables are accompanied by figures that illustrate the results with the best parameter settings. These figures are the average number of ALCs in the active set, the average fitness of the ALCs in the active set and/or the average number of misclassified patterns at each iteration of GAIS. The figure that illustrates the average number of misclassified patterns, illustrates the average number of misclassified patterns after classifying *IS* patterns at each iteration. The number of patterns that was classified in the last iteration is less or equal to *IS*, i.e. the remaining patterns in the test set. The sum of the average number of misclassified patterns per iteration will correspond to the calculated number of misclassifications for the specific parameter settings in the corresponding tables.

Section 7.1 to section 7.5 discuss the results obtained from the GAIS model to classify the classes

in the Iris data set, Wisconsin breast cancer data set, Mushroom data set, Glass data set, and the Car evaluation data set respectively with different parameter settings. The results of each of these data sets are concluded in their respective sections and a comparison with C4.5 is given in section 7.6.

7.1 Iris

The iris data set contains three classes of fifty instances each, where each class refers to a type of iris plant. The setosa class is linearly separable from the versicolor class and the virginica class. The versicolor class and the virginica class are not linearly separable. The dataset consists of 150 patterns, evenly distributed among the three classes (33.3% each). Each pattern consists of four continuously valued attributes. The patterns were converted to binary strings of length 20.

7.1.1 Setosa

As a first experiment, setosa was selected as self. The results for training the ALCs with negative selection on patterns of the setosa class as self after convergence are summarised in table 7.1. Most of the parameter settings in table 7.1 had an average false negative classification of 0.000. The overall best result among the parameter settings with 0.000 false negative classification, is with IS=37 and W1=50 since the average number of ALCs in the active set of ALCs (#ALCs = 16.427) and the false positive classification (fPos = 0.500) are the lowest. This gives a number of 0.500 patterns misclassified (#Misclassified = 0.500 + 0.000 = 0.500) and a correct classification of 99.666%. The number of ALCs with memory status in the active set was on average 12.980. Figure 7.1 shows that the active set of ALCs started with an initial average size of 16.566 ALCs in the active set and then decreased over five iterations to an average number of 16.233 ALCs in the active set. The average fitness of the ALC set decreased over the iterations from 9.452 to 9.428. There was a decrease in misclassification over the iterations with an increase at iteration four.

Table 7.2 summarises the results for training the ALCs with positive selection on patterns from the setosa class as self. The positive selection also has different parameter settings for which a false negative classification of 0.000 was obtained. When IS=37 and W1=50 the lowest misclassification was achieved (#Misclassified = 0.567 + 0.000 = 0.567) with the least average number of ALCs in the active set of ALCs (#ALCs = 17.420). This gives a correct classification of 99.622%. The average number of ALCs with memory status in the active set of ALCs

Table 7.1: Setosa - Negative selection

IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD
37	25		14.727	0.767	0.167	9.423	9.393
31	23	20.067				(±0.139)	(±0.213)
	50	(±6.285)	(±5.004)	(±1.995)	(± 0.531)	10.874	8.012
	50	16.427	12.980	0.500	0.000		
		(±5.187)	(±4.203)	(±1.306)	(±0.000)	(±0.180)	(±0.188)
	75	21.900	17.520	0.633	0.033	11.946	6.138
		(± 4.664)	(± 3.731)	(±2.189)	(± 0.183)	(± 0.131)	(±0.253)
	100	26.667	21.333	0.567	0.133	12.099	5.191
		(± 9.932)	(± 7.946)	(± 1.478)	(± 0.434)	(± 0.110)	(± 0.311)
74	25	19.511	12.000	0.767	0.233	9.328	9.518
		(± 5.504)	(± 3.614)	(± 1.995)	(± 0.626)	(± 0.167)	(± 0.097)
	50	17.844	11.711	0.633	0.000	10.929	8.011
	7	(± 3.963)	(± 2.652)	(± 1.829)	(± 0.000)	(± 0.200)	(± 0.191)
	75	23.567	15.711	0.667	0.000	11.946	6.164
		(± 5.117)	(± 3.411)	(± 1.826)	(± 0.000)	(± 0.178)	(± 0.273)
	100	23.733	15.822	0.633	0.567	12.102	5.148
V		(± 12.273)	(± 8.182)	(± 2.008)	(± 1.135)	(± 0.123)	(± 0.377)
112	25	20.933	9.883	0.733	0.300	9.182	9.616
		(± 6.147)	(± 3.183)	(± 1.999)	(± 0.702)	(± 0.215)	(± 0.057)
	50	16.933	8.400	0.567	0.000	10.878	8.035
		(± 4.017)	(± 2.061)	(± 1.478)	(± 0.000)	(± 0.163)	(± 0.178)
	75	23.233	11.617	0.767	0.000	11.946	6.131
		(± 6.207)	(± 3.104)	(± 2.176)	(± 0.000)	(± 0.139)	(± 0.209)
	100	27.400	13.700	0.500	0.267	12.107	5.187
		(± 10.627)	(± 5.314)	(± 1.480)	(± 1.048)	(± 0.172)	(± 0.354)
150	25	20.567	0.000	0.733	0.067	9.193	9.618
		(± 4.636)	(± 0.000)	(± 1.999)	(± 0.254)	(± 0.131)	(± 0.052)
	50	17.433	0.000	0.733	0.000	10.895	8.013
He.	Sens :	(± 3.540)	(± 0.000)	(± 2.363)	(± 0.000)	(± 0.184)	(± 0.173)
	75	21.667	0.000	0.700	0.000	11.956	6.138
	W.F.	(±5.616)	(± 0.000)	(± 1.643)	(± 0.000)	(± 0.154)	(± 0.268)
	100	23.433	0.000	0.467	0.400	12.083	5.151
		(±11.820)	(± 0.000)	(± 1.479)	(± 0.724)	(± 0.129)	(± 0.352)

Figure 7.1: Setosa - Negative selection with IS=37 and W1=50

 (± 11.083)

 (± 0.000)

IS	W1	#ALCs	#MemALCs	#fPos	selection #fNeg	ADT	HD
37	25	19.653	14.433	0.700	0.233	10.525	9.387
		(± 5.572)	(± 4.506)	(± 1.643)	(± 0.774)	(± 0.136)	(± 0.176)
Min.	50	17.420	13.760	0.567	0.000	9.043	7.948
- A	as its	(± 4.409)	(± 3.524)	(± 1.478)	(± 0.000)	(± 0.196)	(± 0.209)
	75	23.833	19.067	0.767	0.000	8.087	6.212
		(± 5.093)	(± 4.074)	(± 1.995)	(± 0.000)	(± 0.154)	(± 0.277)
rkee	100	26.200	20.953	0.567	0.133	7.900	5.183
er w	ALC	(± 9.279)	(± 7.426)	(± 1.832)	(± 0.434)	(± 0.126)	(± 0.384)
74	25	21.667	13.578	0.667	0.300	10.662	9.546
in di	51.56	(± 5.049)	(± 3.369)	(± 1.826)	(± 0.915)	(± 0.172)	(± 0.069)
	50	17.711	11.633	0.700	0.000	9.105	8.038
		(± 4.846)	(± 3.308)	(± 2.003)	(± 0.000)	(± 0.164)	(± 0.121)
muur	75	21.700	14.467	0.667	0.033	8.080	6.214
		(± 5.453)	(± 3.635)	(± 2.006)	(± 0.183)	(± 0.141)	(± 0.274)
est c	100	27.133	18.089	0.400	0.567	7.900	5.044
		(± 14.063)	(± 9.375)	(± 1.476)	(± 1.006)	(± 0.131)	(± 0.468)
112	25	20.400	9.533	0.833	0.167	10.873	9.641
	-5 Day	(± 5.090)	(± 2.566)	(± 2.350)	(± 0.531)	(± 0.192)	(± 0.047)
	50	18.333	9.067	0.700	0.000	9.102	8.037
	16.25	(± 3.889)	(± 1.915)	(± 2.003)	(± 0.000)	(± 0.153)	(± 0.185)
	75	22.500	11.250	0.600	0.033	8.071	6.085
		(± 6.279)	(± 3.140)	(± 1.831)	(± 0.183)	(± 0.128)	(± 0.303)
	100	27.400	13.700	0.633	0.333	7.910	5.236
		(± 11.828)	(± 5.914)	(± 1.650)	(± 1.124)	(± 0.137)	(± 0.311)
150	25	21.833	0.000	0.733	0.233	10.778	9.615
		(± 5.072)	(± 0.000)	(± 1.999)	(± 0.626)	(± 0.148)	(± 0.042)
.7.5	50	18.100	0.000	0.600	0.000	9.086	8.060
		(± 4.196)	(± 0.000)	(± 2.010)	(± 0.000)	(± 0.183)	(± 0.203)
	75	21.300	0.000	0.733	0.033	8.082	6.187
	The same of	(± 5.227)	(± 0.000)	(±1.818)	(± 0.183)	(± 0.125)	(± 0.218)
SEL SA	100	26.833	0.000	0.633	0.233	7.889	5.136
		1 2 W 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.22.22.2	The second of th	TO BE THE PROPERTY.		

 (± 0.679)

 (± 1.829)

 (± 0.136)

 (± 0.313)

is 13.760. Figure 7.2 shows that the active set of ALCs had an initial average size of 17.6 and decreased over five iterations to an average number of 17.266. The average fitness also decreased over the iterations from 9.458 to 9.446 and the average misclassification increased from iteration one to two, and then decreased to iteration five.

7.1.2 Versicolor

The classification results for training the ALCs with negative selection on patterns of the versicolor class as self are shown in table 7.3. The lowest misclassification (#Misclassified = 0.967 + 3.333 = 4.300) was achieved with IS=37 and W1=75. This gives a correct classification of 97.133% with an average number of 21.567 ALCs in the active set of ALCs. The average number of ALCs with memory status in the active set was 17.220. Figure 7.3 shows that their was no change in the size of the active set over all iterations and the constant size is an average number of 21.566 ALCs. The average fitness of the ALC set was constant at 9.908 and the average number of misclassification increased from iteration one to iteration three and then decreased to iteration five.

The best classification result shown in table 7.4, is achieved with IS=37 and W1=50 when training the ALCs with positive selection on the patterns of the versicolor as self. The misclassification of 4.5 patterns (#Misclassified = 1.167 + 3.333 = 4.5) gives a correct classification of 97.000%. The average number of ALCs in the active set of ALCs was 20.333 and an average number of 16.253 of these had memory status. Figure 7.4 shows that the average number of ALCs in the active set of ALCs was constant at 20.333 over all iterations. The average number of misclassification increased from iteration one to three and then decreased to iteration five.

7.1.3 Virginica

Table 7.5 shows that with IS=150 and W1=75 the lowest misclassification of 8.100 patterns (#Misclassified = 1.200 + 6.900 = 8.100) was achieved when training the ALCs with negative selection on patterns of the virginica class as self. This gives a correct classification of 94.600% with an average number of 23.533 ALCs in the active set. An average number of 0.000 of the ALCs in the active set had memory status, since IS = 150 (which is the size of the data set) which implies that there was only one iteration. Since an ALC's status is evaluated after an iteration, the active set of ALCs in the first and only iteration cannot contain ALCs with memory status.

Figure 7.2: Setosa - Positive selection with IS=37 and W1=50

Table 7.3: Versicolor - Negative selection

		Ta	ble 7.3: Versica	olor - Negati	ive selection		t-
IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD
37	25	19.747	13.660	1.033	5.100	8.951	9.454
		(± 4.979)	(± 3.953)	(± 2.684)	(± 4.436)	(± 0.158)	(± 0.148)
	50	16.753	12.887	1.233	5.000	10.105	8.315
		(± 4.979)	(± 4.001)	(± 3.014)	(± 2.983)	(± 0.148)	(± 0.187)
	75	21.567	17.220	0.967	3.333	10.943	6.805
		(± 4.337)	(± 3.483)	(± 2.883)	(± 1.918)	(± 0.117)	(± 0.243)
7.7	-100	18.133	14.507	1.033	7.667	11.049	5.666
		(± 12.074)	(± 9.659)	(± 3.057)	(± 4.436)	(± 0.117)	(± 0.476)
74	25	19.856	11.556	1.067	5.100	8.773	9.587
	P _a	(± 5.372)	(± 3.546)	(± 2.677)	(± 3.356)	(± 0.140)	(± 0.098)
	50	18.422	11.989	1.300	4.533	10.090	8.407
		(± 4.239)	(± 2.828)	(± 3.564)	(± 2.161)	(± 0.201)	(± 0.168)
	75	19.900	13.267	0.967	4.467	10.962	6.799
	::	(± 4.957)	(± 3.305)	(± 2.883)	(± 2.240)	(± 0.147)	(± 0.283)
	100	21.600	14.400	0.867	5.867	11.050	5.877
	han 6.	(± 10.981)	(± 7.321)	(± 2.161)	(± 3.674)	(± 0.146)	(± 0.313)
112	25	20.267	9.250	1.133	5.167	8.547	9.708
		(± 5.717)	(± 3.036)	(± 2.474)	(± 3.842)	(± 0.250)	(± 0.042)
	50	16.867	8.367	0.967	4.300	10.073	8.364
		(± 3.721)	(± 1.934)	(± 2.512)	(± 2.215)	(± 0.165)	(± 0.172)
	75	20.200	10.100	1.133	4.000	10.947	6.850
		(± 5.006)	(± 2.503)	(± 2.849)	(± 1.965)	(± 0.133)	(± 0.229)
4	100	22.700	11.350	1.033	7.033	11.077	5.587
		(± 11.870)	(± 5.935)	(± 3.243)	(± 6.457)	(± 0.129)	(± 0.442)
150	25	20.133	0.000	0.967	5.200	8.603	9.708
	PLAN.	(± 5.387)	(± 0.000)	(± 2.327)	(± 3.428)	(± 0.197)	(± 0.041)
	50	16.367	0.000	1.067	4.133	10.028	8.440
	S 10	(± 3.222)	(± 0.000)	(± 2.490)	(± 2.193)	(± 0.164)	(± 0.134)
	75	19.867	0.000	1.067	3.600	10.936	6.859
		(± 6.252)	(± 0.000)	(± 2.864)	(± 2.044)	(± 0.122)	(± 0.252)
	100	18.200	0.000	0.933	7.400	11.074	5.628
		(± 9.956)	(± 0.000)	(± 3.073)	(± 6.268)	(± 0.155)	(± 0.501)

Figure 7.3: Versicolor - Negative selection with IS=37 and W1=75

 (± 9.497)

		Ta	able 7.4: Versic	olor - Positi	ve selection		
IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD
37	25	17.780	12.160	1.133	5.300	11.039	9.348
		(± 5.001)	(± 4.066)	(± 2.662)	(± 4.078)	(± 0.177)	(± 0.330)
1	50	16.473	12.607	0.967	4.067	9.875	8.277
		(± 3.780)	(± 3.018)	(± 2.512)	(± 1.999)	(± 0.165)	(± 0.226)
	75	20.333	16.253	1.167	3.333	9.041	6.757
		(± 4.700)	(± 3.750)	(± 2.842)	(± 1.768)	(± 0.118)	(± 0.256)
	100	21.133	16.887	1.033	6.067	8.919	5.784
		(± 9.916)	(± 7.942)	(± 3.429)	(± 4.025)	(± 0.137)	(± 0.400)
74	25	22.011	13.100	1.167	4.100	11.223	9.624
		(± 4.683)	(± 3.131)	(± 3.217)	(± 2.295)	(± 0.125)	(± 0.083)
	50	17.022	11.033	1.033	4.600	9.928	8.410
	1	(± 3.529)	(± 2.455)	(± 2.498)	(± 1.940)	(± 0.192)	(± 0.173)
	75	20.433	13.622	1.067	3.833	9.070	6.802
		(± 3.636)	(± 2.424)	(± 3.051)	(± 1.642)	(± 0.134)	(± 0.257)
	100	19.133	12.756	0.900	7.233	8.951	5.601
		(± 10.224)	(± 6.816)	(± 2.708)	(± 5.104)	(± 0.123)	(± 0.488)
112	25	20.700	9.483	1.133	5.467	11.404	9.710
		(± 5.676)	(± 2.740)	(± 3.411)	(± 5.178)	(± 0.196)	(± 0.038)
	50	16.433	8.050	0.900	4.433	9.946	8.417
		(± 4.523)	(± 2.175)	(± 1.788)	(± 2.373)	(± 0.179)	(± 0.205)
· · · · · ·	75	18.600	9.300	0.967	3.800	9.022	6.743
		(± 4.515)	(± 2.258)	(± 3.068)	(± 1.883)	(± 0.150)	(± 0.283)
	100	20.833	10.417	0.767	6.600	8.945	5.823
		(± 8.623)	(± 4.311)	(± 1.813)	(± 4.141)	(± 0.113)	(± 0.377)
150	25	20.433	0.000	1.200	5.633	11.376	9.685
		(± 6.585)	(± 0.000)	(± 3.585)	(± 4.359)	(± 0.208)	(± 0.049)
7	50	17.367	0.000	1.033	4.667	9.982	8.429
	-1-	(± 6.178)	(± 0.000)	(± 2.684)	(± 2.264)	(± 0.139)	(± 0.144)
	75	21.367	0.000	1.267	3.300	9.085	6.894
		(± 4.522)	(± 0.000)	(± 3.383)	(± 2.136)	(± 0.160)	(± 0.284)
	100	20.500	0.000	1.033	7.033	8.930	5.784
		(10 105)	(10000)		(11051)	(10 4 54)	(1 0 0 0 0 0 0 0)

 (± 3.057)

 (± 0.000)

 (± 0.151)

 (± 0.370)

 (± 4.351)

Figure 7.4: Versicolor - Positive selection with IS=37 and W1=75

Table 7.5: Virginica - Negative selection

IS	W1	#ALCs	able /.5: Virgin			ADT	TID
37	25	[10] [20] [20] [20] [20] [20] [20] [20] [2	#MemALCs	#fPos	#fNeg	ADT	HD
31	23	17.293	9.873	1.067	15.000	7.859	9.604
	50	(±5.395)	(±3.835)	(±3.051)	(± 10.342)	(±0.155)	(± 0.249)
	50	13.667	7.973	0.967	15.967	8.327	9.271
		(±3.779)	(±2.565)	(±2.883)	(± 7.327)	(±0.189)	(± 0.214)
	75	19.420	12.920	1.300	8.467	8.688	9.020
	100	(±6.566)	(±4.881)	(± 3.186)	(± 6.962)	(± 0.144)	(± 0.278)
	100	26.527	17.993	1.133	10.800	8.814	8.055
F.		(± 6.502)	(± 4.725)	(± 3.224)	(± 9.845)	(± 0.156)	(± 0.414)
74	25	18.289	9.222	1.100	18.067	7.812	9.823
		(± 4.930)	(± 2.807)	(± 3.231)	(± 10.110)	(± 0.150)	(± 0.068)
Tu .	50	15.767	8.356	0.967	14.933	8.323	9.466
		(± 3.177)	(± 2.192)	(± 3.253)	(± 6.913)	(± 0.137)	(± 0.117)
¥	75	20.811	11.911	1.200	9.267	8.672	9.082
		(± 4.900)	(± 2.979)	(± 3.398)	(± 5.159)	(± 0.134)	(± 0.250)
	100	27.522	16.122	1.200	12.300	8.786	8.059
		(± 10.981)	(± 7.005)	(± 3.210)	(± 11.274)	(± 0.172)	(± 0.383)
112	25	17.633	7.367	1.000	19.667	7.749	9.881
		(± 5.391)	(± 2.619)	(± 2.505)	(± 11.312)	(± 0.182)	(± 0.038)
	50	16.133	7.183	1.067	13.267	8.313	9.559
		(± 3.170)	(± 1.517)	(± 3.237)	(± 5.831)	(± 0.144)	(± 0.088)
	75	20.700	9.817	1.167	7.633	8.670	9.155
		(± 5.510)	(± 2.490)	(± 3.217)	(±4.335)	(± 0.142)	(± 0.158)
900	100	29.233	13.333	1.067	12.067	8.780	8.079
		(± 7.807)	(± 3.724)	(± 3.051)	(± 14.453)	(± 0.143)	(± 0.428)
150	25	19.733	0.000	1.033	17.200	7.731	9.896
	11-2	(± 5.401)	(± 0.000)	(± 3.243)	(±8.438)	(± 0.217)	(± 0.029)
	50	17.333	0.000	1.100	14.067	8.292	9.564
		(± 4.054)	(± 0.000)	(± 3.044)	(±8.952)	(± 0.151)	(± 0.065)
	75	23.533	0.000	1.200	6.900	8.634	9.179
		(± 5.198)	(± 0.000)	(± 3.210)	(±3.942)	(± 0.162)	(± 0.197)
	100	29.067	0.000	1.300	11.533	8.754	8.067
		(±7.061)	(± 0.000)	(± 3.375)	(±8.525)	(± 0.143)	(± 0.713)

Table 7.6: *Virginica* - Positive selection

3.087 partenus (Aldineigans field = 1.267 + 6.800 = 8.067) with an avenue number of 23.833

			Table 7.6: Virg	<i>inica</i> - Posit	ive selection		
IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD
37	25	16.280	9.207	1.033	16.767	12.128	9.605
	nedne	(± 4.784)	(± 3.385)	(± 3.057)	(± 11.548)	(± 0.186)	(± 0.181)
	50	13.373	7.887	1.067	14.633	11.620	9.273
		(± 3.344)	(± 2.432)	(± 2.864)	(± 7.531)	(± 0.163)	(± 0.170)
	75	20.453	13.367	1.033	9.767	11.342	9.113
		(± 6.202)	(± 4.763)	(± 3.057)	(± 7.890)	(± 0.129)	(± 0.207)
	100	24.087	15.860	1.033	13.967	11.207	7.976
	bette	(± 7.786)	(±5.445)	(± 3.057)	(± 12.505)	(± 0.168)	(± 0.695)
74	25	18.011	8.711	0.900	17.533	12.192	9.799
	in thi	(± 5.426)	(± 2.904)	(± 2.893)	(± 11.116)	(± 0.157)	(± 0.090)
	50	16.622	9.056	1.067	14.600	11.681	9.520
	T IS DOL	(± 3.675)	(± 2.370)	(± 3.051)	(± 7.166)	(± 0.144)	(± 0.092)
DOLL	75	20.178	11.367	1.100	8.833	11.375	9.150
	disph	(± 5.535)	(± 3.187)	(± 2.857)	(± 5.565)	(± 0.143)	(± 0.180)
	100	26.578	15.211	1.167	14.033	11.175	7.933
		(± 9.091)	(± 5.456)	(± 3.405)	(± 13.265)	(± 0.141)	(± 0.525)
112	25	19.733	8.267	1.200	16.833	12.264	9.890
		(± 5.626)	(± 2.605)	(± 3.210)	(± 11.946)	(± 0.183)	(± 0.038)
Wite	50	15.633	6.850	1.167	14.833	11.695	9.529
		(± 3.168)	(± 1.549)	(± 3.030)	(± 7.235)	(± 0.169)	(± 0.102)
	75	23.833	11.083	1.267	6.800	11.342	9.171
	13. 32	(± 4.793)	(± 2.271)	(± 3.194)	(±4.552)	(± 0.127)	(± 0.172)
gu lu	100	28.000	13.033	1.167	11.033	11.234	8.129
	L Th	(± 8.208)	(± 3.859)	(± 3.030)	(± 7.073)	(± 0.165)	(± 0.309)
150	25	21.700	0.000	1.100	13.133	12.195	9.895
		(± 5.292)	(± 0.000)	(± 2.857)	(± 10.884)	(± 0.158)	(± 0.025)
7	50	15.900	0.000	1.167	14.367	11.702	9.557
	13,	(± 3.836)	(± 0.000)	(± 3.217)	(±5.295)	(± 0.193)	(± 0.093)
	75	20.400	0.000	1.167	7.967	11.337	9.157
	Saniti.	(± 5.184)	(± 0.000)	(± 3.030)	(±5.449)	(± 0.167)	(± 0.163)
	100	28.933	0.000	1.233	11.500	11.221	8.105
	inner	(± 9.161)	(± 0.000)	(± 3.202)	(± 10.875)	(± 0.149)	(± 0.325)

Table 7.6 shows that the best classification is achieved with IS=112 and W1=75 when training the ALCs with positive selection. These parameter settings gave the lowest misclassification of 8.067 patterns (#Misclassified = 1.267 + 6.800 = 8.067) with an average number of 23.833 ALCs in the active set of ALCs that had an average of 11.083 ALCs with memory status. This gives a correct classification rate of 94.622%. The size of the active set of ALCs was constant on an average of 23.833 over time. The size of the active set of ALCs was constant on 23.833 over all iterations and the average fitness of the ALC set was constant.

7.1.4 Conclusion: Iris

With setosa or versicolor as the self class, training the ALCs with the negative selection method resulted in better classification than training with the positive selection method. When patterns of the virginica class was used as the self set the ALCs trained with positive selection had better classification than the ALCs trained with negative selection. There is also a decrease or constant average number of ALCs in the active set of ALCs for both negative and positive selection methods with the different classes as self. The decrease or constant average number of ALCs in the set results in the decrease or constant average fitness of the ALC set.

7.2 Wisconsin Breast Cancer

The Wisconsin breast cancer data set consists of 699 patterns that are distributed between 2 classes, namely benign and malignant. Each pattern consists of 9 attributes with values in the range [1,10]. The tenth attribute is the pattern's sample code number and uniquely identifies the pattern in the data set. The sample code number was left out in the training and testing of the AIS model. There are 16 missing attribute values for the bare nuclei attribute in the data set. 458 patterns are of the benign class and 241 patterns of the malignant class. The patterns were converted to binary strings of length 36. The missing values were represented by binary strings as straight 1's.

7.2.1 Benign

Table 7.7 shows the results for classifying the Wisconsin breast cancer data set with patterns of the benign class as the self set. The ALCs were trained with the negative selection method. The best classification result was achieved when IS=524 and W1=25. An average number of 34.567 ALCs formed part of the active set of ALCs. An average number of 16.867 of the ALCs in the

Table 7.7: Benign - Negative selection

**	*****		Table 1.1: Beni		ALLO STATE OF THE	1.50	TYD
IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD
175	25	32.492	22.367	1.333	7.400	16.159	17.417
		(± 5.587)	(± 4.342)	(± 0.922)	(± 7.859)	(± 0.154)	(± 0.102)
	50	21.858	16.058	1.133	14.900	18.052	15.659
		(± 5.735)	(± 4.415)	(± 0.973)	(± 7.685)	(± 0.195)	(± 0.268)
	75	29.400	22.033	1.067	9.633	19.377	13.516
		(± 7.342)	(± 5.521)	(± 1.048)	(± 3.746)	(± 0.135)	(± 0.254)
	100	37.633	28.217	1.200	12.267	19.764	12.226
	131 = 1	(± 12.936)	(± 9.724)	(± 1.031)	(± 7.220)	(± 0.121)	(± 0.328)
350	25	33.400	16.300	1.233	7.033	16.060	17.503
		(± 5.190)	(± 2.531)	(± 1.006)	(± 4.605)	(± 0.134)	(± 0.036)
	50	21.367	10.583	0.767	13.167	17.989	15.786
		(± 5.385)	(± 2.678)	(± 0.774)	(± 6.422)	(± 0.183)	(± 0.186)
	75	27.500	13.750	0.933	11.567	19.384	13.516
		(± 7.960)	(± 3.980)	(± 0.740)	(± 6.021)	(± 0.171)	(± 0.342)
the section	100	36.100	18.050	1.233	11.267	19.779	12.271
	This	(± 11.678)	(± 5.839)	(± 1.040)	(± 7.012)	(± 0.132)	(± 0.492)
524	25	34.567	16.867	1.367	6.267	16.061	17.499
		(± 5.029)	(± 2.526)	(± 1.189)	(± 5.219)	(± 0.188)	(± 0.053)
Total	50	20.967	10.400	1.000	13.667	17.963	15.773
	CT188	(± 5.021)	(± 2.558)	(± 0.871)	(± 5.785)	(± 0.163)	(± 0.142)
	75	29.167	14.583	1.033	9.933	19.390	13.508
	divinos	(± 8.550)	(± 4.275)	(± 0.890)	(± 5.675)	(± 0.158)	(± 0.270)
	100	39.167	19.583	0.933	10.367	19.795	12.204
	I Kasah	(± 11.908)	(± 5.954)	(± 0.785)	(± 8.109)	(± 0.156)	(± 0.598)
699	25	33.100	0.000	1.400	8.067	16.023	17.506
	and m	(± 6.467)	(± 0.000)	(± 0.932)	(± 10.945)	(± 0.233)	(± 0.050)
1	50	20.867	0.000	1.200	12.433	17.991	15.764
		(± 5.419)	(± 0.000)	(± 1.031)	(± 5.643)	(± 0.203)	(± 0.211)
	75	27.933	0.000	0.933	10.567	19.390	13.503
	consi	(± 8.440)	(± 0.000)	(± 0.868)	(± 4.150)	(± 0.136)	(± 0.233)
	100	37.467	0.000	1.200	11.700	19.773	12.193
	Table.	(± 13.405)	(± 0.000)	(± 1.031)	(± 7.274)	(± 0.136)	(± 0.443)

Figure 7.5: Benign - Negative selection with IS=524 and W1=25

active set had memory status. The ALCs classified 6.267 patterns falsely as benign and 1.367 as malignant. This gives a misclassification of 7.634 patterns (#Misclassified = 6.267 + 1.367 = 7.634) and a correct classification of 98.907%. The size of the active set of ALCs was constant on 34.567 over all iterations and thus the average fitness of the ALC set was constant. Figure 7.5 shows a decrease in the average number of misclassification over the iterations.

Table 7.8 shows the results when the ALCs were trained with the positive selection method. The best classification result was achieved when IS=524 and W1=25. An average number of 33.800 ALCs formed part of the active set of ALCs. An average number of 16.467 of the ALCs in the active set had memory status. The ALCs classified 6.900 patterns falsely as benign and 1.500 as malignant which gave a misclassification of 8.400 patterns (#Misclassified = 6.900 + 1.500 = 8.400) and a correct classification rate of 98.798%. The number of ALCs in the active set of ALCs was constant on 33.800 over all iterations with a constant average fitness.

7.2.2 Malignant

The results for training the ALCs with the negative selection method is shown in table 7.9. The patterns of the malignant class was used as the self set. The best classification result was

		***	Table 7.8: Ben	ign - Positiv	e selection		
IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD
175	25	31.358	21.442	1.333	9.767	19.863	17.401
XT.		(± 6.647)	(± 5.110)	(± 1.124)	(± 9.001)	(± 0.155)	(± 0.089)
	50	21.992	16.092	1.300	11.567	17.935	15.701
		(± 7.139)	(± 5.411)	(± 1.022)	(± 6.268)	(± 0.174)	(± 0.204)
	75	26.433	19.792	1.033	11.167	16.644	13.530
	Y .	(± 6.146)	(± 4.614)	(± 0.850)	(± 4.480)	(± 0.154)	(± 0.324)
	100	32.800	24.583	0.900	12.667	16.308	12.256
		(± 11.361)	(± 8.516)	(± 0.803)	(± 6.504)	(± 0.131)	(± 0.250)
350	25	31.900	15.500	1.367	9.100	19.956	17.485
		(± 5.641)	(± 2.907)	(± 1.217)	(± 10.496)	(± 0.201)	(± 0.054)
	50	21.667	10.800	0.933	13.600	17.960	15.694
		(± 7.448)	(± 3.732)	(± 0.868)	(± 8.046)	(± 0.180)	(± 0.185)
	75	28.600	14.300	1.267	10.267	16.622	13.507
		(± 6.667)	(± 3.334)	(± 0.907)	(± 3.956)	(± 0.145)	(± 0.249)
	100	34.967	17.483	0.700	11.867	16.245	12.262
		(± 12.524)	(± 6.262)	(± 0.750)	(± 6.942)	(± 0.141)	(± 0.321)
524	25	33.800	16.467	1.500	6.900	19.922	17.490
		(± 3.398)	(± 1.756)	(± 1.075)	(± 3.284)	(± 0.117)	(± 0.044)
	50	21.867	10.917	1.133	13.833	18.001	15.755
	1 mile	(± 5.619)	(± 2.801)	(± 0.937)	(± 7.027)	(± 0.149)	(± 0.164)
	75	29.367	14.683	1.067	10.000	16.619	13.429
		(± 7.388)	(± 3.694)	(± 0.907)	(± 5.675)	(± 0.140)	(± 0.312)
	100	38.133	19.067	1.200	11.767	16.214	12.168
		(± 12.875)	(± 6.438)	(± 1.031)	(± 10.061)	(± 0.207)	(± 0.424)
699	25	32.900	0.000	1.600	9.733	19.958	17.477
	A	(± 6.989)	(± 0.000)	(± 1.404)	(± 14.064)	(± 0.258)	(± 0.044)
	50	21.400	0.000	1.100	11.467	17.964	15.710
		(±5.302)	(± 0.000)	(± 0.995)	(± 5.710)	(± 0.153)	(± 0.183)
	75	27.200	0.000	1.000	10.467	16.637	13.512
		(± 7.179)	(± 0.000)	(± 0.983)	(±4.439)	(± 0.175)	(± 0.353)
	100	38.433	0.000	1.100	11.500	16.234	12.125
		(± 14.943)	(± 0.000)	(± 0.960)	(±8.228)	(± 0.144)	(± 0.451)

Table 7.9: Malignant - Negative selection

IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD
175	25	23.342	6.758	2.633	146.100	13.923	16.963
07.16	Show	(± 3.960)	(± 1.864)	(± 1.189)	(± 98.744)	(± 0.162)	(± 0.355)
Tare	50	15.108	5.650	1.867	98.533	15.024	15.835
		(± 3.566)	(± 1.666)	(± 1.074)	(± 69.563)	(± 0.158)	(± 0.420)
1-77	75	19.133	9.733	1.833	46.333	15.954	14.249
Red III	emony	(± 4.832)	(± 2.683)	(± 1.367)	(± 47.790)	(± 0.138)	(± 0.318)
gra de l	100	25.875	13.975	1.533	62.200	16.276	12.756
		(± 9.360)	(± 5.936)	(± 1.042)	(± 71.823)	(± 0.132)	(± 0.663)
350	25	31.000	7.867	2.067	117.633	13.530	17.739
		(± 5.855)	(± 2.432)	(± 1.437)	(± 95.248)	(± 0.217)	(± 0.038)
eke e	50	21.033	7.300	1.967	115.100	14.842	16.663
	15/15	(± 6.856)	(± 2.507)	(± 1.326)	(± 83.162)	(± 0.159)	(± 0.144)
then i	75	23.200	9.500	1.733	46.500	15.910	14.664
		(± 5.209)	(± 2.338)	(± 0.980)	(± 24.221)	(± 0.114)	(± 0.234)
	100	34.900	14.067	1.700	52.200	16.271	13.010
	JOHN.	(± 13.510)	(± 5.889)	(± 1.393)	(± 52.346)	(± 0.139)	(± 0.397)
524	25	30.800	8.683	2.300	149.900	13.563	17.735
	KUII I	(± 6.885)	(± 2.329)	(± 1.418)	(± 89.560)	(± 0.165)	(± 0.037)
104 0	50	20.667	7.750	1.800	108.633	14.799	16.710
	that	(± 5.726)	(± 2.586)	(± 1.297)	(± 89.016)	(± 0.169)	(± 0.188)
of team	75	25.133	10.917	1.967	60.367	15.918	14.620
		(± 6.709)	(± 3.235)	(± 1.129)	(± 48.565)	(± 0.130)	(± 0.336)
Ma,	100	32.300	14.133	1.633	49.833	16.255	13.002
	DEL PRE	(± 13.018)	(± 5.810)	(± 1.273)	(± 54.484)	(± 0.137)	(± 0.463)
699	25	32.433	0.000	2.567	112.500	13.597	17.732
	tter e	(± 5.137)	(± 0.000)	(± 1.382)	(± 68.027)	(± 0.134)	(± 0.037)
	50	20.500	0.000	1.933	90.533	14.848	16.685
		(± 5.036)	(± 0.000)	(± 1.337)	(± 66.951)	(± 0.122)	(± 0.163)
1	75	24.133	0.000	1.800	45.133	15.927	14.613
	M.R.C	(± 6.163)	(± 0.000)	(± 1.243)	(± 25.962)	(± 0.126)	(± 0.295)
an av	100	33.033	0.000	1.767	44.400	16.267	13.041
	nd as	(± 10.791)	(± 0.000)	(±1.251)	(± 36.541)	(± 0.136)	(± 0.587)

In the average musiker of VLCs indicates that the outlerns from the heaten class have a

achieved when IS=699 and W1=100 which gave an average number of 33.033 ALCs in the active set of ALCs. An average number of 0.000 of the ALCs in the active set have memory status since there is only one iteration. The ALCs classified 44.400 patterns falsely as malignant and 1.767 as benign giving a misclassification of 46.167 patterns (#Misclassified = 44.400 + 1.767 = 46.167) which gives a correct classification rate of 93.395%.

Table 7.10 shows the results when the ALCs were trained with the positive selection method. The best classification result was achieved when IS=175 and W1=75 which gave an average number of 22.308 ALCs in the active set of ALCs. An average number of 11.525 of the ALCs in the active set had memory status. The ALCs classified 40.333 patterns falsely as malignant and 1.967 as benign which gives a misclassification of 42.300 patterns (#Misclassified = 40.333 + 1.967 = 42.300) and a correct classification rate of 93.948%. Figure 7.5 shows that the initial number of ALCs in the active set of ALCs was on average 26.566 and decreased over four iterations to an average of 15.333. Therefor the average fitness of the ALC set decreased over all iterations from 15.588 to 15.458. The average number of misclassification increased from iteration one to two and then decreased to iteration four.

7.2.3 Conclusion: Wisconsin Breast Cancer

In conclusion, the ALCs trained on the benign class with negative selection had a correct classification of 98.907% with an average number of 34.567 ALCs that had an average HD of 17.499. The ALCs that had been trained with positive selection on the benign class as self had a correct classification of 98.798% with an average number of 33.800 ALCs that had an average HD of 17.490. Comparing these results shows that there is neither a major difference in correct classification between the two different training methods nor in the average number of ALCs or HD with the same parameter settings (IS=524, W1=25), though negative selection does have a slightly better correct classification than positive selection. With the patterns from the malignant class as the self set the negative selection method had a correct classification of 93.395% with an average number of 33.033 ALCs that had an average HD of 13.041. The positive selection method had a correct classification of 93.948% with an average number of 22.308 ALCs that had an average HD of 14.322. These results conclude that when the patterns of the malignant class is used as the self set, different parameter settings are necessary to achieve similar correct classification results for both the selection methods and that the average number of ALCs for negative selection is higher than the average number of ALCs for positive selection. The difference in the average number of ALCs indicates that the patterns from the benign class have a

Table 7.10: Malignant - Positive selection

IS	W1	#ALCs	able 7.10: <i>Mali</i> #MemALCs	#fPos	#fNeg	ADT	HD
175	25	22.333	6.350	2.767	126.000	22.037	16.800
		(± 4.240)	(± 1.637)	(± 1.695)	(± 90.812)	(± 0.151)	(± 0.360)
	50	16.275	6.375	1.367	106.167	21.053	15.923
		(± 5.096)	(± 2.677)	(± 1.217)	(± 76.795)	(± 0.181)	(± 0.420)
	75	22.308	11.525	1.967	40.333	20.043	14.322
		(± 5.555)	(± 3.397)	(± 1.377)	(± 19.752)	(± 0.121)	(± 0.267)
	100	26.117	13.933	1.467	62.733	19.680	12.643
		(± 8.666)	(± 5.283)	(± 1.456)	(± 75.871)	(± 0.129)	(± 0.633)
350	25	31.833	7.950	2.000	126.500	22.419	17.741
		(± 6.701)	(± 2.291)	(± 1.259)	(± 99.243)	(± 0.100)	(± 0.043)
	50	21.100	6.967	2.000	98.167	21.190	16.696
		(± 4.708)	(± 1.857)	(± 1.390)	(± 60.796)	(± 0.136)	(± 0.169)
	75	24.667	9.733	1.967	60.800	20.111	14.685
		(± 6.315)	(± 2.693)	(± 1.564)	(± 47.323)	(± 0.109)	(± 0.309)
	100	28.867	11.817	2.067	61.400	19.798	13.080
		(± 13.577)	(± 5.759)	(± 1.530)	(± 50.348)	(± 0.169)	(± 0.439)
524	25	32.500	8.933	1.933	109.667	22.407	17.741
		(± 4.524)	(± 1.973)	(± 1.437)	(± 61.938)	(± 0.097)	(± 0.034)
	50	20.400	7.300	2.033	115.767	21.225	16.698
	+ 34	(± 6.414)	(± 2.753)	(± 1.217)	(± 86.717)	(± 0.177)	(± 0.148)
	75	25.700	11.167	1.967	54.600	20.026	14.581
		(± 6.944)	(± 3.049)	(± 0.928)	(± 41.608)	(± 0.104)	(± 0.303)
	100	32.267	14.200	1.933	55.100	19.752	12.931
	144	(± 14.350)	(± 6.504)	(± 1.437)	(± 61.477)	(± 0.140)	(± 0.530)
699	25	28.600	0.000	1.867	164.033	22.505	17.723
		(± 9.227)	(± 0.000)	(± 1.408)	(± 105.704)	(± 0.209)	(± 0.049)
	50	19.800	0.000	2.000	114.900	21.182	16.669
		(± 5.054)	(± 0.000)	(± 1.114)	(± 79.443)	(± 0.106)	(± 0.125)
	75	26.867	0.000	1.800	45.800	20.093	14.733
	w-1	(± 4.939)	(± 0.000)	(± 1.095)	(± 21.815)	(± 0.135)	(± 0.294)
	100	29.333	0.000	1.667	60.900	19.712	13.016
		(± 10.908)	(± 0.000)	(± 1.241)	(± 64.088)	(± 0.143)	(± 0.481)

Figure 7.6: Malignant - Positive selection with IS=175 and W1=75

larger distribution in non-self space than patterns from the *malignant* class, thus more ALCs is necessary to cover the non-self space with negative selection than ALCs with positive selection that only needs to cover the self space. These results also show that with patterns from the *malignant* class as self, the positive selection method is a better training method not only for better correct classification but also for less average number of ALCs in the set.

7.3 Mushroom

The data set contains descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family. Each pattern in the data set represents a specie that is classified as definitely edible, definitely poisonous or of unknown edibility and not recommended. The latter class was combined with the poisonous class. There are 8124 patterns in the data set and each pattern consists of 22 nominally valued attributes. There are 2480 patterns with missing values for the stalk-root attribute. 4208 patterns are of the edible class and 3916 patterns of the poisonous class. The patterns were converted to binary strings of length 57. The missing values were represented by binary strings as straight 1's.

7.3.1 Edible

The classification results for training the ALCs with negative selection on patterns of the edible class as self is shown in table 7.11. The lowest misclassification of 932.667 patterns falsely as edible and 1.400 falsely as poisonous (#Misclassified = 932.667 + 1.400 = 934.067) was achieved with IS=4062 and W1=25. This gives a correct classification of 88.502% with an average number of 46.267 ALCs in the active set of ALCs. The average number of ALCs with memory status in the active set was 19.850. There was no change in the size of the active set of ALCs or the average fitness over all iterations and the constant size was an average number of 46.267 ALCs.

The best classification result shown in table 7.12, is achieved with IS=8124 and W1=25 when training the ALCs with positive selection on the patterns of the edible class as self. The misclassification of 1019.333 patterns falsely as edible and 1.200 falsely as poisonous (#Misclassified = 1019.333 + 1.200 = 1020.533) gives a correct classification of 87.438%. The average number of ALCs in the active set of ALCs was 43.933 and an average number of 0.000 of these had memory status since there was only one iteration.

Table 7.11: Edible - Negative selection

1			Table 7.11: Edi				
IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD
2031	25	37.925	17.675	0.967	949.867	25.682	27.475
		(± 4.890)	(± 3.150)	(± 1.351)	(± 195.539)	(± 0.183)	(± 0.100)
	50	26.333	13.625	1.100	1376.800	28.627	24.874
		(± 8.039)	(± 4.860)	(± 2.023)	(± 448.271)	(± 0.148)	(± 0.252)
	75	34.125	19.583	1.267	1276.367	30.695	21.749
		(± 11.146)	(± 7.072)	(± 2.180)	(± 274.065)	(± 0.232)	(± 0.330)
	100	63.800	39.900	1.867	1172.033	31.466	20.162
		(± 18.449)	(± 12.374)	(± 2.738)	(± 290.378)	(± 0.193)	(± 0.337)
4062	25	46.267	19.850	1.400	932.667	25.520	27.698
		(± 3.999)	(± 2.297)	(± 2.222)	(± 196.295)	(± 0.131)	(± 0.063)
F	50	28.067	13.017	1.167	1451.367	28.554	25.009
		(± 8.358)	(± 4.128)	(± 1.704)	(± 449.082)	(± 0.239)	(± 0.222)
	75	43.833	20.783	1.700	1224.100	30.706	21.845
		(± 11.641)	(± 5.640)	(± 2.996)	(± 359.480)	(± 0.160)	(± 0.361)
	100	74.733	35.467	2.767	1083.733	31.449	20.224
		(± 18.221)	(± 8.684)	(± 4.368)	(± 186.907)	(± 0.144)	(± 0.251)
6093	25	45.033	19.350	2.000	1021.633	25.510	27.704
		(± 4.390)	(± 2.327)	(± 3.373)	(± 216.756)	(± 0.161)	(± 0.051)
	50	26.767	12.667	1.067	1300.867	28.534	25.041
		(± 8.097)	(± 4.022)	(± 1.552)	(± 314.306)	(± 0.214)	(± 0.204)
	75	45.800	21.933	1.467	1221.533	30.687	21.879
		(± 9.568)	(± 4.686)	(± 2.417)	(± 253.926)	(± 0.136)	(± 0.249)
	100	63.733	30.500	2.667	1171.700	31.391	20.303
A 10.50		(± 17.416)	(± 8.270)	(± 3.994)	(± 202.250)	(± 0.137)	(± 0.296)
8124	25	45.333	0.000	1.533	981.233	25.498	27.709
		(± 4.011)	(± 0.000)	(± 1.943)	(± 314.111)	(± 0.154)	(± 0.064)
	50	29.267	0.000	1.267	1387.433	28.609	24.960
		(± 9.836)	(± 0.000)	(± 1.856)	(± 541.728)	(± 0.276)	(± 0.251)
	75	42.733	0.000	1.900	1244.667	30.701	21.909
		(± 10.544)	(± 0.000)	(± 2.987)	(± 262.081)	(± 0.213)	(± 0.369)
	100	65.867	0.000	1.967	1120.867	31.451	20.197
		(± 17.702)	(± 0.000)	(± 3.023)	(± 187.307)	(± 0.132)	(± 0.283)

IS	W1	#ALCs	<u>Fable 7.12: Edi</u> #MemALCs	#fPos	#fNeg	ADT	HD
2031	25	39.417	18.500	1.600	1041.067	31.348	27.516
	A THE A	(± 3.322)	(± 2.310)	(± 2.647)	(± 208.822)	(± 0.167)	(± 0.116)
	50	23.317	11.758	0.667	1459.433	28.467	24.794
dia di		(± 7.704)	(± 4.421)	(± 1.028)	(± 482.058)	(± 0.209)	(± 0.324)
	75	40.308	23.492	1.600	1175.733	26.284	21.788
	Land N	(± 10.520)	(± 7.175)	(± 2.568)	(± 267.085)	(± 0.164)	(± 0.329)
	100	60.367	37.025	2.333	1147.567	25.501	20.128
	10, 14	(± 16.348)	(± 11.319)	(± 4.205)	(± 263.109)	(± 0.204)	(± 0.386)
4062	25	42.733	17.717	1.500	1146.200	31.546	27.681
	elf los	(± 9.487)	(± 4.211)	(± 1.996)	(± 454.393)	(± 0.217)	(± 0.082)
	50	27.300	12.633	1.367	1470.900	28.449	25.036
		(± 8.408)	(± 3.792)	(± 2.356)	(± 403.862)	(± 0.218)	(± 0.246)
	75	46.833	22.333	1.567	1164.233	26.275	21.882
	- S- 770	(± 11.293)	(± 5.284)	(± 2.112)	(± 292.382)	(± 0.176)	(± 0.323)
9110	100	62.367	29.683	2.233	1149.600	25.535	20.176
	iona f	(± 17.824)	(± 8.405)	(± 3.645)	(± 241.385)	(± 0.169)	(± 0.290)
6093	25	44.033	19.450	1.300	1098.233	31.574	27.707
		(± 7.323)	(± 3.539)	(± 1.705)	(± 398.745)	(± 0.260)	(± 0.051)
	50	28.367	13.350	0.867	1437.400	28.416	25.027
	Jone	(± 8.344)	(± 4.067)	(± 1.634)	(±409.499)	(± 0.225)	(± 0.218)
	75	44.467	21.367	1.967	1212.500	26.388	22.012
	g the	(± 11.073)	(±5.597)	(± 2.942)	(± 264.740)	(± 0.214)	(± 0.394)
I be co	100	68.067	32.583	3.133	1205.900	25.643	20.350
	contro	(± 18.431)	(± 8.747)	(± 4.547)	(± 229.452)	(± 0.176)	(± 0.327)
8124	25	43.933	0.000	1.200	1019.333	31.502	27.690
		(± 7.506)	(± 0.000)	(± 1.495)	(± 373.054)	(± 0.153)	(± 0.059)
1	50	29.533	0.000	1.100	1322.200	28.340	24.925
	han b	(± 8.464)	(± 0.000)	(± 2.040)	(±332.097)	(± 0.202)	(± 0.238)
l de l	75	39.200	0.000	1.800	1250.800	26.322	21.865
		(± 10.584)	(± 0.000)	(± 2.809)	(± 308.670)	(± 0.187)	(± 0.361)
	100	71.133	0.000	2.167	1205.633	25.535	20.159
		(± 20.669)	(± 0.000)	(± 3.064)	(±283.299)	(± 0.158)	(±0.339)

7.3.2 Poisonous

The results for training the ALCs with the negative selection method on patterns of the poisonous class as self is shown in table 7.13. The best classification result was achieved when IS=8124 and W1=25 which gave an average number of 45.033 ALCs in the active set of ALCs. An average number of 0.000 of the ALCs in the active set had memory status since there is only one iteration. The ALCs classified 1591.933 patterns falsely as poisonous and 1.700 as edible giving a misclassification of 1593.633 patterns (#Misclassified = 1591.933 + 1.700 = 1593.633) which gives a correct classification rate of 80.383%.

The best classification result shown in table 7.14, was achieved with IS=2031 and W1=100 when training the ALCs with positive selection on the patterns of the poisonous class as self. The misclassification of 1695.000 patterns falsely as poisonous and 2.467 falsely as edible patterns (#Misclassified = 1695.000 + 2.467 = 1697.467) gives a correct classification of 79.105%. The average number of ALCs in the active set of ALCs was 50.717 and an average number of 17.242 of these had memory status. Figure 7.6 shows that the initial number of ALCs in the active set of ALCs was on average 64.033 and decreased over four iterations to an average of 26.166, but different from the previous experiments the average fitness of the ALC set increased over four iterations from 31.278 to 31.429. The average number of misclassification increased from iteration one to two and then decreased to iteration four.

7.3.3 Conclusion: Mushroom

Comparing the different selection methods with patterns from the *edible* class as the self set, it can be concluded that the negative selection method has a slightly better correct classification than the positive selection method. Both the selection methods have a value of 25 for W1 but different values for IS to obtain the best classification results. The same value of 25 for W1 indicates that the fitness of the ALCs in the GA for both selection methods is more influenced by their HD than by their ADT. The HD of both selection methods differ with 0.008 and indicates that the amount of overlap is more or less the same for both selection methods. When patterns from the *poisonous* class is used as the self set then the negative selection method has a better classification performance than the positive selection method since not only does the negative selection method have better correct classification results but also has on average less ALCs than the positive selection method to classify the patterns. These results indicate that the negative selection method has better classification performance than the positive selection method with

Table 7.13: Poisonous - Negative selection

	Table 7.13: Poisonous - Negative selection							
IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD	
2031	25	34.925	10.383	2.100	1876.300	25.609	27.371	
		(± 5.412)	(± 2.183)	(± 2.928)	(± 529.147)	(± 0.222)	(± 0.191)	
	50	23.858	7.158	1.833	2239.167	28.477	24.864	
		(± 5.654)	(± 2.091)	(± 1.949)	(± 530.783)	(± 0.266)	(± 0.365)	
	75	33.575	11.217	2.033	1917.000	30.609	21.728	
		(± 10.097)	(± 3.987)	(± 3.243)	(± 458.657)	(± 0.199)	(± 0.389)	
	100	52.792	18.042	3.033	1833.933	31.269	20.342	
		(± 14.391)	(± 5.996)	(± 4.687)	(± 425.009)	(± 0.158)	(± 0.285)	
4062	25	46.333	17.217	1.400	1834.900	25.535	27.722	
		(± 2.551)	(± 1.804)	(± 1.754)	(± 382.288)	(± 0.113)	(± 0.048)	
	50	28.533	11.350	1.200	2254.333	28.446	25.154	
	A 1.	(± 8.245)	(± 3.462)	(± 1.375)	(± 527.809)	(± 0.209)	(± 0.184)	
	75	44.300	17.167	1.867	1825.600	30.529	22.074	
	12	(± 11.928)	(± 4.652)	(± 2.460)	(± 342.097)	(± 0.156)	(± 0.263)	
	100	66.400	24.617	2.833	1686.100	31.288	20.340	
		(± 21.888)	(± 8.242)	(± 3.505)	(± 474.694)	(± 0.197)	(± 0.378)	
6093	25	44.700	18.967	1.767	1823.233	25.530	27.718	
		(± 7.498)	(± 3.704)	(± 1.478)	(± 527.523)	(± 0.187)	(± 0.059)	
	50	29.933	13.517	1.300	2236.967	28.499	25.094	
		(± 9.025)	(± 4.419)	(± 2.020)	(± 462.290)	(± 0.210)	(± 0.282)	
100	75	40.800	18.183	1.433	1952.600	30.487	22.035	
		(± 10.610)	(± 4.700)	(± 1.813)	(±474.423)	(± 0.139)	(± 0.308)	
	100	63.867	28.167	2.467	1746.633	31.280	20.370	
		(± 17.338)	(± 7.863)	(± 2.956)	(± 462.588)	(± 0.120)	(± 0.224)	
8124	25	45.033	0.000	1.700	1591.933	25.523	27.729	
		(±4.582)	(± 0.000)	(± 2.003)	(± 382.550)	(± 0.142)	(± 0.049)	
11-5.8	50	27.567	0.000	1.367	2218.267	28.509	25.052	
		(± 8.736)	(± 0.000)	(± 1.608)	(±498.915)	(± 0.218)	(± 0.235)	
	75	42.167	0.000	1.533	1889.133	30.488	22.089	
		(± 13.099)	(± 0.000)	(± 1.925)	(± 391.633)	(± 0.152)	(± 0.289)	
	100	57.633	0.000	1.867	1940.833	31.267	20.275	
		(± 24.102)	(± 0.000)	(± 2.460)	(± 569.112)	(± 0.228)	(± 0.522)	

Table 7.14: Poisonous - Positive selection

Table 7.14: Poisonous - Positive selection								
IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD	
2031	25	36.433	11.075	2.033	1748.767	31.338	27.385	
		(± 3.570)	(± 1.670)	(± 2.580)	(± 335.773)	(± 0.188)	(± 0.114)	
	50	25.033	7.850	1.567	2095.600	28.493	24.844	
		(± 6.828)	(± 2.505)	(± 1.888)	(± 464.683)	(± 0.265)	(± 0.284)	
	75	32.792	10.558	1.500	1989.933	26.487	21.843	
		(± 9.468)	(± 3.776)	(± 1.796)	(± 504.108)	(± 0.214)	(± 0.372)	
	100	50.717	17.242	2.467	1695.000	25.665	20.201	
		(± 13.291)	(± 5.158)	(± 3.391)	(± 401.959)	(± 0.178)	(± 0.336)	
4062	25	43.867	15.967	1.700	1813.733	31.556	27.737	
		(± 8.025)	(± 3.181)	(± 2.395)	(± 587.445)	(± 0.340)	(± 0.067)	
	50	28.333	11.117	0.867	2281.133	28.611	25.177	
		(± 9.060)	(± 4.023)	(± 1.306)	(± 449.601)	(± 0.219)	(± 0.212)	
	75	41.200	15.867	1.867	1949.633	26.460	22.024	
		(± 9.477)	(± 4.013)	(± 2.330)	(± 311.235)	(± 0.177)	(± 0.287)	
	100	59.900	22.067	2.600	1773.900	25.779	20.377	
		(± 17.574)	(± 6.700)	(± 3.058)	(±491.493)	(± 0.162)	(± 0.287)	
6093	25	45.400	19.517	1.933	1712.333	31.506	27.727	
		(± 6.946)	(± 3.158)	(± 2.067)	(± 479.901)	(± 0.246)	(± 0.054)	
	50	27.100	12.100	1.233	2221.867	28.526	25.096	
		(± 8.763)	(±4.229)	(± 2.096)	(±541.412)	(± 0.235)	(± 0.252)	
	75	39.667	17.783	1.700	2069.133	26.489	21.993	
	-10	(± 11.133)	(± 5.051)	(± 1.784)	(± 343.100)	(± 0.188)	(± 0.394)	
11 11 11 11	100	68.233	30.267	2.467	1704.767	25.748	20.400	
		(± 21.837)	(±9.868)	(± 3.137)	(± 562.829)	(± 0.198)	(± 0.382)	
8124	25	45.733	0.000	1.967	1843.533	31.480	27.725	
		(± 3.741)	(± 0.000)	(± 2.632)	(± 334.025)	(± 0.125)	(± 0.049)	
Bris.	50	31.700	0.000	1.500	2111.500	28.498	25.163	
		(± 7.996)	(± 0.000)	(± 2.662)	(± 360.474)	(± 0.178)	(± 0.213)	
	75	39.867	0.000	1.533	1886.267	26.526	22.101	
		(± 11.365)	(± 0.000)	(± 2.097)	(± 496.066)	(± 0.172)	(± 0.386)	
	100	68.100	0.000	3.100	1729.967	25.787	20.445	
		(± 18.054)	(± 0.000)	(± 3.595)	(±474.410)	(± 0.198)	(± 0.302)	

Figure 7.7: Poisonous - Positive selection with IS=2031 and W1=100

patterns from the edible class as self or patterns from the poisonous class as self.

7.4 Glass

The glass data set consists of 214 patterns that are distributed between 7 glass types (classes). 70 patterns are of the building windows float processed type, 17 are of the vehicle windows float processed type, 76 are of the building windows non-float type and 0 are of the vehicle windows non-float type. The other patterns are divided into the non-window glass type: 13 patterns are of the container type, 9 of the tableware type and 29 of the headlamps type. Each patterns consists of 9 continuously valued attributes. The patterns were converted to binary strings of length 45.

7.4.1 Building-window-float

Table 7.15 shows the results for classifying the Glass data set with patterns of the building-window-float class as the self set. The ALCs were trained with the negative selection method. The best classification result was obtained for IS=106 and W1=25. An average number of 40.444 ALCs formed part of the active set of ALCs. An average number of 25.233 of the ALCs in the active set had memory status. The ALCs misclassified an average of 14.167 patterns as building-window-float and 1.367 as not. Thus, #Misclassified = 14.167 + 1.367 = 15.534 which gives a correct classification rate of 92.741%. Figure 7.8 shows that the average number of ALCs decreased from 40.8 to 39.733 over three iterations and that the average fitness of the ALC set also decreased from 21.796 to 21.770. The average number of misclassification increased from iteration one to two and then decreased at iteration three.

Table 7.16 shows the results when the ALCs were trained with the positive selection method. The best classification result was obtained when IS=53 and W1=25. An average number of 39.167 ALCs formed part of the active set of ALCs. An average number of 28.333 of the ALCs in the active set had memory status. The ALCs misclassified an average of 14.900 patterns as building-window-float and 1.467 as not. Thus, #Misclassified = 14.900 + 1.467 = 16.367 which gives a correct classification rate of 92.351%. Figure 7.9 shows a decrease in the average number of ALCs from 40.666 to 37.266 over five iterations. The average fitness also decreased from 21.790 to 21.722. The average number of misclassifications increased from iteration one to three and then decreased at iteration five.

Table 7.15: Building-window-float - Negative selection

		Table 7.1	15: Building-wi	- Negative selection			
IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD
53	25	37.913	27.353	1.233	14.967	21.977	21.690
		(± 4.368)	(± 3.741)	(± 2.144)	(± 5.129)	(± 0.122)	(± 0.065)
	50	23.467	16.600	1.033	28.533	24.698	19.175
		(± 5.185)	(± 4.251)	(± 1.810)	(± 9.634)	(± 0.210)	(± 0.272)
	75	36.100	27.433	1.367	26.567	26.454	16.549
73		(± 9.191)	(± 7.420)	(± 1.608)	(± 6.956)	(± 0.196)	(± 0.256)
100	100	56.100	43.087	1.133	23.700	26.953	15.319
		(± 13.547)	(± 10.538)	(± 1.871)	(± 7.720)	(± 0.169)	(± 0.329)
106	25	40.444	25.233	1.367	14.167	21.946	21.735
		(± 4.020)	(± 2.644)	(± 1.974)	(± 4.662)	(± 0.146)	(± 0.051)
	50	25.767	16.289	1.200	27.000	24.675	19.229
	C 5000	(± 6.106)	(± 4.260)	(± 1.472)	(± 7.883)	(± 0.169)	(± 0.180)
	75	35.933	23.189	1.400	25.733	26.424	16.597
		(± 8.158)	(±5.389)	(± 1.773)	(± 8.718)	(± 0.184)	(± 0.306)
	100	53.400	34.856	1.200	23.233	26.925	15.334
		(± 12.041)	(± 8.013)	(± 1.846)	(± 6.095)	(± 0.190)	(± 0.261)
160	25	40.100	19.500	1.433	15.467	21.857	21.762
		(± 4.318)	(± 2.125)	(± 1.960)	(±4.939)	(± 0.141)	(± 0.052)
4	50	25.667	12.783	1.167	26.867	24.702	19.198
		(± 5.996)	(± 3.019)	(± 2.019)	(± 10.126)	(± 0.237)	(± 0.182)
	75	35.300	17.633	1.067	28.367	26.436	16.521
		(± 9.855)	(± 4.936)	(± 1.660)	(± 7.522)	(± 0.227)	(± 0.326)
	100	56.267	28.117	1.133	23.967	26.986	15.280
		(± 19.490)	(± 9.749)	(± 1.634)	(± 8.736)	(± 0.226)	(± 0.359)
214	25	39.667	0.000	1.367	16.800	21.841	21.778
		(± 2.832)	(± 0.000)	(± 1.991)	(± 4.759)	(± 0.185)	(± 0.071)
	50	24.467	0.000	1.067	28.800	24.702	19.195
	4.1.4	(± 7.171)	(± 0.000)	(± 1.639)	(± 8.290)	(± 0.247)	(± 0.218)
	75	30.700	0.000	1.167	28.967	26.444	16.493
		(± 6.914)	(± 0.000)	(± 1.840)	(± 8.977)	(± 0.219)	(± 0.282)
	100	54.533	0.000	1.367	24.800	26.945	15.332
		(± 14.498)	(± 0.000)	(± 1.629)	(± 6.150)	(± 0.246)	(± 0.380)

Figure 7.8: Building-window-float - Negative selection with IS=106 and W1=25

Table 7.16: Building-window-float - Positive selection

IS	W1	#ALCs	#MemALCs	#fPos	#fNeg	ADT	HD
53	25	39.167	28.333	1.467	14.900	23.011	21.681
		(± 3.570)	(± 2.746)	(± 1.978)	(± 4.722)	(± 0.208)	(± 0.099)
	50	22.940	16.473	1.133	31.733	20.258	19.088
		(± 6.956)	(± 5.696)	(± 1.479)	(± 9.882)	(± 0.301)	(± 0.308)
	75	36.713	28.140	1.033	24.967	18.529	16.533
		(± 8.640)	(± 7.063)	(± 2.008)	(± 7.223)	(± 0.236)	(± 0.363)
	100	56.073	43.020	1.133	24.633	18.028	15.330
		(± 17.161)	(± 13.433)	(± 1.814)	(± 6.846)	(± 0.211)	(± 0.219)
106	25	37.678	23.322	1.433	18.400	23.082	21.691
		(± 8.418)	(± 5.558)	(± 1.775)	(± 12.277)	(± 0.174)	(± 0.187)
	50	27.833	17.589	1.100	27.100	20.332	19.225
ALC: U	-	(± 9.739)	(± 6.859)	(± 1.863)	(± 11.009)	(± 0.309)	(± 0.217)
	75	36.667	23.767	1.100	26.433	18.541	16.511
	2111	(± 10.584)	(± 6.988)	(± 1.668)	(± 7.722)	(± 0.219)	(± 0.270)
	100	54.133	35.356	1.367	26.367	17.999	15.271
		(± 15.301)	(± 10.155)	(± 1.790)	(± 9.294)	(± 0.186)	(± 0.290)
160	25	37.533	18.350	1.300	17.367	23.188	21.772
		(± 7.847)	(± 3.940)	(± 1.664)	(± 9.554)	(± 0.194)	(± 0.063)
	50	24.433	12.150	1.067	28.800	20.338	19.214
		(± 6.285)	(± 3.184)	(± 1.856)	(± 8.572)	(± 0.224)	(± 0.190)
4	75	33.367	16.667	0.900	26.433	18.599	16.624
		(± 9.604)	(± 4.786)	(± 1.517)	(± 7.243)	(± 0.245)	(± 0.369)
	100	54.400	27.183	1.100	24.400	18.036	15.338
		(± 14.750)	(± 7.370)	(± 1.845)	(± 7.069)	(± 0.235)	(± 0.278)
214	25	38.600	0.000	1.267	15.833	23.165	21.754
		(± 6.251)	(± 0.000)	(± 1.660)	(± 9.692)	(± 0.177)	(± 0.056)
	50	25.167	0.000	1.067	28.733	20.304	19.240
	l bott	(± 7.746)	(± 0.000)	(± 1.799)	(± 8.940)	(± 0.252)	(± 0.213)
	75	36.033	0.000	1.367	23.667	18.527	16.512
		(± 6.651)	(± 0.000)	(± 2.141)	(± 5.803)	(± 0.238)	(± 0.246)
	100	57.067	0.000	1.167	24.800	18.038	15.369
		(± 15.432)	(± 0.000)	(± 2.001)	(± 6.718)	(± 0.181)	(± 0.269)

Figure 7.9: Building-window-float - Positive selection with IS=53 and W1=25