University of Pretoria etd — Graaff AJ (2003)

Chapter 3
Evolutionary Computation

“survival of the fittest” -
The Origin of Species
by Charles Darwin, 2001

This chapter gives an overview of evolutionary computation (EC) [2]. The different recombina-
tion operators, selection methods and mutation are explained. The chapter also summarises the
different EC paradigms. Section 3.1 provides a summary of a general evolutionary aléérithm
(EA), while succeeding sections provide a more detailed discussion of aspects of evolutionary
computation. In these sections the focus will be on genetic algorithms, since this EC paradigm
is used in the GAIS classifier to evolve a set of ALCs.

Evolutionary computation mimics natural evolution in biological organisms. Evolutionary algo-
rithms (EA) are stochastic search algorithms where the search for an optimal solution is guided
by the principle of survival of the firtest and mathematical models of genetic and behavioral
inheritance. A population of candidate solutions (or individuals) is evolved for a number of gen-
erations through application of a number of operators such as crossover, mutation and selection
until an optimal, or best individual is found as solution to the optimisation problem. The four
most common specific paradigms of EC are [72]: Genetic Algorithms (GA), Genetic Program-
ming (GP), Evolutionary Programming (EP) and Evolutionary Strategies (ES). These paradigms
use the same general evolutionary algorithm.

13

University of Pretoria etd — Graaff AJ (2003)

CHAPTER 3. EVOLUTIONARY COMPUTATION 14

3.1 A General Evolutionary Algorithm

The following pseudo-code algorithm summarises a general evolutionary algorithm. Although
all operator types are included in the algorithm, different EC paradigms use different operators
and different representations of the chromosome. The differences between the most popular EC

paradigms are discussed in section 3.2.

General EA:

1. setthe generation counter, g=0
2. initialise a population of K chromosomes
3. while no convergence

(a) evaluate the fitness of each chromosome in the population
(b) perform crossover

i. select parents

ii. produce offspring from the selected parents
(c) perform mutation

i. select a candidate chromosome

ii. mutate selected candidate
(d) select the survivors to form the next generation

(e) evolve the next generation (g=g+1)

Several aspects of the general algorithm above need to be explained in more detail, for example
the initialisation of the population, the fitness of a chromosome, the crossover operator and mu-
tation on chromosomes, the selection of survivors for the next generation and the convergence in
the population. These aspects are discussed in sections 3.3 to 3.8. First, the differences between

EC paradigms are discussed in section 3.2.

3.2 EC Paradigms

This section outlines the main differences between the most popular EC paradigms. Other
paradigms include differential evolution [66], cultural evolution [42] and co-evolution [25].

University of Pretoria etd — Graaff A J (2003)

CHAPTER 3. EVOLUTIONARY COMPUTATION 15

3.2.1 Genetic Algorithms (GA)

Genetic algorithms were first introduced by Alex Fraser [32], while Holland laid down the ba-
sic principles in 1975 [41]. The genetic algorithm mimics genetic evolution [4]. Chromosomes
are in genotype-space and are mostly bit-strings. Continuous-valued variables are usually coded
into a binary representation. A drawback of bit-string chromosomes is the occurrence of Ham-
ming cliffs [26], which is addressed by using Hamming bit-string representations. The genetic
algorithm uses recombination operators, mutation and selection methods to evolve to the best
solution [26, 72].

3.2.2 Genetic Programming (GP)

Genetic programming also models genetic evolution but the chromosomes represent executable
programs in a tree structure. Genetic programming was developed by Koza [52]. The goal of the
genetic programming algorithm is to evolve the best executable program in a problem domain
that performs (or executes) best. Therefore the fitness function measures how well a chromo-
some executes in the problem domain. Crossover is implemented by swapping subtrees between
selected parents to produce offspring. Mutation can be implemented as randomly changing a
node, expanding (growing) the tree to a larger depth, truncating the tree or randomly replace a
terminal node [26, 72].

3.2.3 Evolutionary Programming (EP)

Different from genetic algorithms, evolutionary programming models behavioral evolution and
chromosomes represent solutions in phenotype-space. EP was developed by Fogel [27]. EP does
not use crossover, since each individual in the population generates one offspring through the
mutation operator. The offspring compete against the chromosomes of the previous generation
for survival to the next generation. The EP uses elitism as replacement scheme [26, 72].

3.2.4 Evolutionary Strategies (ES)

Evolutionary strategies model the evolution of evolution [67, 73]. That is, ES is concerned
with optimising the evolutionary process itself [26, 68]. Chromosomes present solutions in both
genotype- and phenotype-space, but the fitness of the chromosomes is the behavior of the individ-
ual in phenotype-space. The chromosome consists of genetic material and strategy parameters.

The ES algorithm evolves the chromosome’s strategy parameters, and the strategy parameters is

University of Pretoria etd — Graaff A J (2003)

CHAPTER 3. EVOLUTIONARY COMPUTATION 16

used to evolve the genetic material of the chromosome. The ES algorithm also uses mutation as
operator and a mutated chromosome is only accepted if mutation has improved the fitness of the
individual [26, 72]. The ES uses different crossover, mutation and selection techniques [26].

3.3 The Chromosome

An evolutionary algorithm makes use of a population of chromosomes, or individuals. Each
chromosome represents a potential solution to the problem that needs to be optimised. A chro-
mosome consists of the set of parameters to the problem or function that needs to be optimised.
The parameters are known as genes and represent values in the same space as the function being
optimised (referred to as phenotype-space). Each gene consists of alleles. Alleles are specific

values from the domain of the corresponding parameter assigned to the gene.

There are different chromosome representation schemes. Some of these are binary string rep-
resentations where the binary values are discretised real numbers or boolean values, trees that
represent programs, or the chromosome can represent real-valued variables. The chromosomes
converge in the limit and the best chromosome is chosen as a solution or an approximate solution
to the problem. Parameter-values are usually mapped to an intermediate space, referred to as
genotype-space. This mapping from phenotype-space to genotype-space is known as coding and

the inverse mapping is known as decoding [72].

When the problem that needs to be optimised is a mathematical function, then the chromosome
will represent the real-valued variables of that function. For a more complex problem like the
optimisation of the execution of a program, the chromosomes will represent different programs
using a tree-structure. The coding mappings can influence the global behavior of the EA al-
gorithm. It is important to include all necessary parameters in the chromosome representation
to prevent evolution to a less optimal solution. Operations on the chromosome produces off-
spring to widen the search space of solutions. The chromosome’s genotypes are evaluated on the
corresponding phenotype to determine the chromosome’s fitness. At each generation, the chro-
mosome’s fitness is calculated and only the fittest chromosomes survive to the next generation.

The next section discusses the fitness function, followed by methods of offspring creation.

University of Pretoria etd — Graaff A J (2003)

CHAPTER 3. EVOLUTIONARY COMPUTATION 17

3.4 Calculating the Fitness

The fitness function maps the chromosome’s representation into a scalar value. The scalar value
of the chromosome indicates how close a chromosome is to the optimal solution. The fitness
function therefore provides a quantification of the quality of the chromosome. It is the fitness
of a chromosome that determines whether the chromosome will be selected to produce offspring
and quantifies its chances for survival among the other chromosomes in the population to the next
generation. The probability to mutate a chromosome is usually a function of the chromosome’s
fitness. Chromosomes with high scalar fitness values should preferably not be mutated.

The fitness function is problem-specific. The function can either be a unimodal function or a
multi-modal function. A unimodal function has a single optimal solution where a multi-modal
function has multiple optima. The standard optimisation methods only find a single solution and
for local optimisation algorithms this solution is either a local minimum or local maximum, thus
not necessarily the best solution [9]. Global optimisation algorithms find the best solution. A
technique known as niching has been developed to find multiple solutions in multi-modal func-
tions. GAs have been successfully applied with niching, with the effect that individuals converge
to different solutions, or niches [43, 53]. The best individual per riche is one of the solutions to
the problem. Niching can be done in two ways: Parallel and sequential niching. Parallel niching
concurrently finds niches in the search space through strategies that identify and refine poten-
tially good solutions over time [335, 43, 53, 57]. Sequential niching develops niches over time, in
sequence. After each discovered niche, individuals are repelled from the area around the niche

to focus on unexplored areas in the search space [3].

Some problems have several objectives which are represented as sub-objectives in a multi-
objective function. In most cases the sub-objective functions are in conflict, i.e. the reduction
of one objective results in the increase of another objective. Multi-objective optimisation tech-
niques find solutions with a good trade-off between the conflicting sub-objectives. Multi-modal
functions and multi-objective problems have the same goal of finding multiple solutions for the
optimisation problem. Multi-objective optimisation techniques find multiple solutions for a num-
ber of sub-objectives as niching has the objective to find multiple solutions for a single objective
for a multi-modal problem. It is of utmost importance to include all necessary objectives in the
fitness function, to prevent evolving a less optimal solution for the problem. For more informa-
tion on multi-objective optimisation, the reader is referred to [13].

University of Pretoria etd — Graaff A J (2003)

CHAPTER 3. EVOLUTIONARY COMPUTATION 18

Before the fitness of a chromosome can be calculated, the chromosome’s representation first
needs to be decoded to phenotype-space if the domain of the fitness function is in phenotype-
space. If the fitness function is too complex to evaluate, an approximate function evaluation can
be used, which approximately gives the same value as the “true” fitness function in less time
[12]. Penalty functions have also been considered in the evaluation of fitness, penalising a chro-
mosome for an invalid or “bad” solution to the problem or a chromosome that violates a certain
set of restrictions [34, 69].

3.5 Reproduction

Reproduction is the process of producing new offspring from selected individuals through -
crossover or mutation. The reproduction step consists of a selection step where parents are se-
lected and a crossover step where genetic material of individuals are exchanged to form offspring.

These operators are discussed in more detail in this section.

3.5.1 Selection

This section describes the most popular selection methods that can be used to select chromo-
somes as parents for crossover, individual chromosomes for mutation or the chromosomes that
survive to the next generation. Usually, chromosomes with high fitness are selected for crossover
to converge faster to a best solution. Highly fit chromosomes should not be selected for mutation
to prevent the danger of diverging from “good” solutions in the search space. Therefore chromo-

somes with low fitness are usually selected for mutation.

All selection methods are based on the fitness of the chromosomes [10]. Certain selection meth-
ods allow selection of a chromosome more than once, resulting in clones of the selected chro-
mosome. An advantage of clones is that more chromosomes with high fitness form part of the
population, while a disadvantage is the probability of less diversity in the search space. When se-
lecting chromosomes to survive to the next generation, either all offspring are selected to replace
some or all parents from the previous generation, or chromosomes from both the offspring and
the parents from the previous generation are considered for selection. Offspring can only replace
parents if the offspring has a higher fitness than the parents. Goldberg and Deb [36] compared
many of these selection methods. The most popular selection techniques are listed below:

University of Pretoria etd — Graaff A J (2003)

CHAPTER 3. EVOLUTIONARY COMPUTATION 19

Random Selection: All the individuals in the population have an equal chance to be selected
with no reference to their individual fitness.

Proportional Selection: The probability of an individual to be selected is based on the in-

 dividual’s fitness proportional to the summed fitness of all the individuals in the population. A
drawback of this selection method is that an individual may dominate the production of offspring
which results in a limited diversity among individuals in the new population. This drawback can
be overcome by limiting the number of offspring the selected individual may produce.

Rank-Based Selection: The individuals in the population are sorted according to their fitness.
The rank ordering of the individuals in the sorted set determines the probability to select an
individual. Selection is thus not based on the magnitude of an individual’s fitness. As such,
ranking has the advantage that a highly fit individual will not dominate the selection process. An
alternative approach is to assign survival probabilities to the individuals in the sorted set using
an exponential function with the rank as parameter to the exponential function. This results in a
higher selection intensity with the disadvantage of less diversity which could lead to suboptimal

solutions.

Tournament Selection: A random sample of i individuals is selected from the population to
take part in a tournament of selecting the individual with the best fitness. The sample may be
taken with or without replacement. It is therefore possible that an individual can combine with
itself to produce offspring or a parent can be selected more than once to produce offspring. An
advantage of tournament selection is that the individuals with worst fitness will not be selected
and as long as sampling is done with replacement, the best individual will not dominate the

reproduction process.

Elitism: This selection method is used to select a set of the best individuals from the previous
population that will survive to the next generation. The number of individuals in the selected set
is known as the generation gap, ¢. These chromosomes are not mutated. If ¢ = 0, then the new
generation consists entirely out of new individuals. If ¢ > 0, then ¢ individuals survive to the
next generation. These ¢ selected individuals are either the ¢ best individuals to ensure that the
maximum fitness in the population does not decrease or ¢ individuals selected with one of the

selection methods explained above.

University of Pretoria etd — Graaff A J (2003)

CHAPTER 3. EVOLUTIONARY COMPUTATION 20

3.5.2 Crossover

The crossover operator exchanges genetic material between two or more selected parents to
produce offspring. The main idea of the crossover operator is to recombine genetic material
between fit chromosomes from previous generations with a certain probability, p., to produce
even fitter offspring. The crossover process is described by the following general algorithm:

1. generate E~U(0,1)
2. select parents A and B
3. if € > p. then crossover is not performed and A and B are returned, otherwise goto step 4

4. exchange genetic material between A and B according to one of the crossover operators
(described below) '

5. return the produced offspring

The following section explains how the crossover operator is applied to chromosomes with dif-

ferent representations.

3.5.2.1 Continuous-valued Chromosomes

Arithmetic crossover can be used if genes are continuous-valued [5]. A number of arithmetic

operators have been developed, for example:

e Average - take the arithmetic average of the genes in parents A and B as the new value for
the gene in the offspring O. That is, O; = 4%(;%, where i is the index to the i-th gene in the

chromosome.

e Geometric mean - take the square-root of the product of the two gene-values in parents A
and B as the new value for the gene in the offspring O. That is, O; = \/A; * B;, where i is

the index to the i-th gene in the chromosome.

e Extension - take the difference between the two gene-values in parents A and B, add the
difference to the higher of A or B, or subtract the difference from the lower of A or B. That
is,

0; = Max(A;,Bi) +y

University of Pretoria etd — Graaff A J (2003)

21

Figure 3.1: One-point crossover

Created Offspring

Paens

LERE LR S LR N

IR X T E R

Figure 3.2: Two-point crossover

= Min(Ai,Bi) -y

ed genes is a special case, where the set of values contains only two values. Pop-

over operators include [26]:
nt crossover (illustrated in Figure 3.1): A random position, j, is selected in both

A and B. The tail of parent A is swapped with the tail of parent B, producing two off-

oint crossover (illustrated in Figure 3.2): Two random positions, j and k, are selected
both parents A and B. The selected segment between j and & in parent A is swapped with the

L1236 796
hie» 677 x

University of Pretoria etd — Graaff AJ (2003)

22

PN AP AARSABSAROASO RS ASS
g

Figure 3.3: Uniform crossover
>nt in parent B, producing two offspring.

over (illustrated in Figure 3.3): Uniform crossover uses a randomly gener-
it has the same size as the number of genes in the chromosomes. The gene in
‘has a value of one indicates that the specific genes have to be swapped between
d B, producing two offspring. =

revents the evolutionary process to randomly search for the optimaﬂ solution. A high
in premature convergence to suboptimal solutions. If p. is too low, the evolutionary
' tend to have low diversity in the search space. This may restrict the possibility to
. al solution in the search space. ‘

tive of mutation is to introduce diversity into a population of chromosomes with a
bility p,;. The mutation operator randomly changes the genetic representation of the
hromosome to ensure diversity and to cover larger parts of the search space. Mutation
1 certain EC paradigms, where it is considered as a background operator. In these
(excluding EP), mutation operates on offspring that have been produced by the
rator. The following algorithm summarises mutation:

ct a chromosome D to mutate

-

- each gene in D generate E~U(0,1)

if € > p,, then do not mutate the gene, otherwise goto 2.(b)

University of Pretoria etd — Graaff A J (2003)

- EVOLUTIONARY COMPUTATION 23
e the gene by using one of the mutation operators (described below)

mutated chromosome D

inuous-valued Chromosomes

tation can be used if the genes of the chromosome are continuous-valued [5].
tion has been implemented in the following ways:

replacement, which replaces the value of a gene with a new random value that is
1 the domain of the variable.

utation, where a small random value is added or subtracted from the value of a

ribution is used with a zero mean. To obtain a small value a small variance is used. The
 of the distribution is usually a function of the fitness of the individual that needs to be
dividual with a high fitness will be mutated less than an individual with a lower

ill be mutated more.

mutation operators for nominal-valued genes are [26]:

te (illustrated in Figure 3.4): Random genes in the chromosome are selected
value is replaced with its complement or a new random value (with probability

University of Pretoria etd — Graaff AJ (2003)

R 3. EVOLUTIONARY COMPUTATION 24

Chromosome & Mutated Chramosome

s
®

-

T
..:ff. .
& 5
L]

e

*

-

Randomly sslected ganes :

Figure 3.4: Random Mutation

Chromosome

rasssasRaNs Uy

Figure 3.5: In-order Mutation

der Mutate (illustrated in Figure 3.5): Two random positions, / and m, are selected in
romosome and only genes between these positions are considered for replacement using
n mutation.

Pm causes large diversity in the search space, since new genetic material is more rapidly
iced. A large mutation rate may cause good genetic material to be lost. A high mutation
ever beneficial in situations where more rapid coverage of the search space is needed.
one starts with a large initial mutation rate, decreasing it over time. A high mutation
asically results in a random search.

.

The Initial Population

| 3

tial population is generated by randomly selecting valid values for the genes from the
 the corresponding variables. Random selection ensures that the initial population
somes has a good uniform coverage of the search space. Domain knowledge of the

ace can be used to initialise the values of the genes, using heuristics to bias the initial
jon to potentially good solutions. The drawback of using domain knowledge is that the
| good areas in the search space are missed. A better solution may exist in the missed
he size of the initial population influences the convergence speed of the algorithm. With
pulation size, the search space is well covered. The larger diversity may result in less
s with longer time per generation to converge to the best solution. The consequence of
 population size is less diversity in the search space. The small population may take more

ons to converge but with less time per generatidn. To explore a larger search space with

University of Pretoria etd — Graaff A J (2003)

CHAPTER 3. EVOLUTIONARY COMPUTATION 25

a small population size, an initial large, but decaying mutation rate can be used. The individuals
will then initially be mutated with a large p,,, exploring a larger search space. As generations
pass by the individuals are mutated with a smaller p,, until the population converges to an optimal
solution.

3.8 Convergence

An evolutionary algorithm (EA) is an iterative process which continues until a convergence cri-
terion is satisfied. Several methods have been developed to test if an EA should terminate. Some

of the most frequently used criteria are summarised below:

e The EA terminates when a maximum number of generations is exceeded. When the max-
imum number of generations is too small, the EA might not have evolved an optimal solu-
tion yet, i.e. no convergence in the population. When the maximum number of generations
is too high, the population in the EA might have already converged to an optimal solution

before reaching the maximum number of generations, thus wasting computational effort.

o The desired, or an acceptable best chromosome evolves. When the optimum solution to a
problem is known, it can be used as a measure to determine when a suitable or satisfying
solution has evolved.

» The average fitness of the population and the variance of the population’s fitness do not
change over a certain number of generations. This indicates that the fitness of the popula-
tion has stabilised. '

3.9 Conclusion

This chapter gave an overview on evolutionary computation (EC). The chapter presented the
different recombination operators, selection methods and also gave a summary of the different
EC paradigms. EC methods require only the values of the function that needs to be optimised.
This fact makes EC methods stochastic, which can potehtially find the global optimum of the
objective function. EC methods search in parallel for a global solution to the problem. A disad-
vantage of EC methods is the computational cost, since a large number of function evaluations
must be performed to find a satisfying result. The choice of evolutionary operators, chromosome
representation and fitness function have a critical impabt on the performance of EC methods.

University of Pretoria etd — Graaff A J (2003)

[ONARY COMPUTATION 26

e stochastic in nature there is no guarantee of convergence to the optimum
ve method to solve complex problems is the artificial immune system.

» background on existing artificial immune system models and their ap-
ical environments. An artificial immune system is a dynamic distributed
o0 learn and recognise patterns. The AIS is robust, scalable and tolerant to

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014

