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Chapter 4

Nonlinear plant simulator

4.1 Introduction

Figure 3.1 in chapter 3 shows the dependency between the nonlinear models which constitute the mill
simulator. In this chapter these dependencies will be studied in earnest with the aim of connecting the
models together. Furthermore, the tuning and choice of model constants will be discussed in order
to yield realistic simulated behaviour. Plant data obtained from an actual logged Steckel Hot Rolling

Mill Process are used as simulator inputs!.

4.2 Simulator inputs

4.2.1 Introduction

The nonlinear plant simulator is to be used for identifying linear plant models around certain identi-
fied operating points. These linear models are highly dependent on the precalculated operating points
associated with the generated rolling schedule [18, 59]. The generation of an optimal setup schedule
falls outside the scope of this work and a practical schedule was taken as a given input for the simu-
lator. Practical setup schedules were identified from the plant data for the Steckel Hot Rolling Mill

process.

In the simulator, only the identified models of chapter 3 are solved and the modelling of the other

't needs to be stressed that the measured plant data has an average time resolution of 0.423 seconds with the mill under
closed loop control. This data is helpful, but not completely suited for the tuning of the open loop plant investi gated in this
study. The open loop data can possibly be extracted from the closed loop results with some added effort, but the impact
of this procedure is questionable due to the data’s under-sampled nature. It is stated that the hydraulic gauge loop has a
bandwidth of 15 Hz [1, 8] which is equivalent to a first order transfer function with a time constant of 10ms, roughly 23
times smaller than the current time resolution of the data.
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identified rolling parameters (see figure 3.1) falls outside the scope of this dissertation. Unmodelled
parameters (discussed and motivated in section 3.2) that are critical for the functioning of the simula-
tor are:

e The temperature in the roll gap;

e The rolling mill speed;

Input thickness;

Rolling schedules.

These modelling deficiencies are compensated for by conditioning real logged plant data for the above

variables to be suitable as inputs for the mill simulator.

Operating points were identified from the logged plant data for two similar stainless steel strips of
grade 304, which is the most common rolled product of a large stainless steel manufacturer in South
Africa®. The data show that the strip is usually rolled in a 5-9 pass schedule and that the strip entrance
thickness, as obtained from the roughing mill, is about 25mm. In table 4.1 a typical 9 pass rolling
schedule is given reflecting entrance and exit thicknesses for each pass. Also shown are the pyrometer
measured maximum roll gap entrance and exit temperatures, 6;,,__ and 65, respectively, as well as
the measured starting velocity (vsqert) , threading velocity (vinreqq) and final velocity (Ustop) of the

main mill drive.

Table 4.1: Typical Steckel Rolling Mill schedule for the investigated similar strips.

Pass number | hi(mm) | ha(mm) | 67 C | 05 C | vearem.s™! | vipregam.s™! UgtoplTh:s ™
1 25 18.2 980 960 2.1 6 1.8
2 18.2 13:3 967 955 2.1 3.5 1.8
3 13.3 9.7 965 950 2.1 4.8 1.8
4 9.7 7.5 962 948 2.1 6.1 1.8
5 78 6.1 957 942 2:1 8 1.8
6 6.1 5.1 955 940 2.1 9.2 1.8
7 5.1 4.3 950 937 21 10 1.8
8 4.3 3l 948 935 2.1 10 1.8
9 2.7 3.3 945 933 2.1 8.5 3.6

The implemented simulator does not have the capability to simulate flatness behaviour of the strip and
is only limited to thickness profile simulation. From practical experience® [3] the desired thickness
profile is rolled during the early passes and during the later passes the flatness (shape) can be con-

trolled. When the strip thickness is greater than 12mm the strip profile is controlled and zero to very

*This information was provided by M. Lewis during a personal meeting.
*Information supplied by M. Lewis during a personal discussion.
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little action can be exerted to control the strip shape/flatness. When the strip thickness falls below

6mm the shape/flatness is controlled and the profile is left unchanged.

4.2.2 Motivation for the choice of simulation operating point

Two rolling schedules and the associated measured data of two similar Stainless Steel grade 304 strips
were identified and this data was adapted to form the simulator inputs. It was decided to focus on data
of pass 1 and pass 3 in a 5 pass schedule, as possible inputs for the simulator. Some advantages and

disadvantages associated with the choice of either of these two passes can be summarized as:

Pass 1:

e If data for pass 1 are used as simulator inputs, the rolling variables might tend to be open loop

data and can be used for simulator tuning.

e The possibility exists to perform step tests on the Steckel rolling mill, on which this simulator is
based. If this should materialize, defects and disturbances caused by these tests can be corrected

for in later passes.

e When pass 1 is chosen as the operating pass, the simulation time interval of the tension model

is small and leads to longer computation times.
Pass 3:

e Logged data of pass 3 incorporates effects of control actions taken in previous passes. It might
prove difficult to extract open loop data from the available closed loop data. The closed loop
logged data can be used to evaluate the performance of the proposed controller against the

industrial controller,

e The exit thickness of pass 3 falls on the borderline, where the controllability of profile declines

and the controllability of the sheet’s shape/flatness increases®.

Of all of the above points, the computation time was considered to be the most important and weighed

heavily in the final choice to make the simulator operable for pass 3.

4.2.3 Rolling variables

The rolling data associated with pass 3 for one of the two identified similar strips were manipulated
to serve as input for the mill simulator. In figure 4.1 a measured process speed curve of the main

mill drive speed is shown. This batch process exhibits a speed up ramp after tension in the sheet has

“Information supplied by M. Lewis during a personal discussion.
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been established up to a threading speed. In figure 4.2 the X-ray measured strip input and output
thicknesses to and from the roll gap are shown. In figure 4.3 the measured temperatures outside on
either side of the roll gap are shown. These temperatures are interpolated linearly in order to obtain a

temperature estimate in the roll gap.

The operation point of the simulator was chosen on the mill speed up ramp at a speed of 3.5m/s. This
operating point was used, because control is not well addressed on the speed up of the curve [19]. The
converse is the norm for the regulation of the rolling process at threading speed [4, 3]. The possible
material saving that can result from the elimination of off specification products during the process

start and stops can be significant [19].

Mill Speed vs. Time

Speed (m/s)
W
n
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w
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251 1

0 50 100 150
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Figure 4.1: Typical speed vs. measured time for pass 3.

4.3 Roll gap model

4.3.1 Solution methodology

The solution of the roll gap model entails the solution of the differential equation model, Eq. 3.15,
together with its associated boundary values. Unfortunately the ODE model consists of two indepen-
dent differential equations on either side of the neutral plane. This phenomenon is due to the frictional
forces that work towards the neutral point (see figure 3.2). The general method for solving this model
is by numerically integrating the two independent differential equations from either end of the arc of

contact while working towards the neutral point of the roll gap.
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Figure 4.3: Typical entry and exit temperatures to and from the roll gap vs. the measured time for

pass 3.
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The coordinate system of the roll gap model is chosen such that ;UTQS is increasing towards the entrance
of the roll gap. This choice simplifies the solution of the differential equation associated with the
length from the exit of the roll gap towards the neutral point®. This differential equation is solved

using a Runge Kutta fourth order numerical integration method [71].

The solution of the differential equation associated with the roll gap length from the neutral point
towards the entrance of the roll gap’ is however not apparent. The boundary condition of the problem
is provided at the end of the length. The solution of the differential equation is done by numerically
back-calculating the vertical roll pressure distribution. This back calculation solution is achieved by

manipulating the standard Runge Kutta equations as follows:

fr = f(@rt1:Pr41), (4.1)

fo = f(rks1— %upkﬂ B % 1), (4.2)
f3=f(Pr+1 — %a?kﬂ = “A;—qsfz)a (4.3)
fo = f(ék: yk), (4.4)

Pk = prir — (1 + 22 4 23 + fi), @)

where,

Dk, Pr+1: Discretized values of the vertical rolling pressure along the arc of contact;
fi, Vi € [1,...,4]: Function values used in the numerical integration procedure;

@k, Pr+1: Discretized arc values;

Ad¢: Angle interval for discretized arc.

In order to have an estimate of the roll gap temperature, the entrance and exit temperature of the roll
gap are linearly interpolated to yield the estimated temperature. This estimated roll gap temperature
along the arc of contact is used to calculate the yield stress of the material, the friction coefficient,
and indirectly the position along the arc. The variation of speed along the arc of contact was not used
in the calculation of the material yield stress, because the neutral point rolling mill speed and the
associated geometric quantities are used to calculate an average strain and strain rate that the material
is subjected to in the roll gap. This average strain and strain rate are used in the yield stress model see
Eq. 3.28.
% As defined in table 3.1.

6dp(d) __ 1 p(d) | sindtucosd 1 (p(@)—k(e.é.8)) -
d¢ 2R h(d) l—ptang —2R ki) S%n(!ﬁ'

7dp(¢) _ rp(@) | sing—pcose | _ 1 (p(8)—k(e.é.8)) -
LY =R G Uit | - R sl sing,
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As was previously remarked in chapter 2, the neutral point shifts with the application of tension to
the strip. A suitable equation was not found in the literature that defines the neutral point position as
a function of the applied strip tensions. In order to evaluate the tension interactions with the roll gap
model the modelling of the movement of the neutral point is fundamental in the calculation of the

frictional forces in the roll gap.

The solution of the two differential equations are independent. At a certain point (neutral point)
the solution of these two differential equations equate and the movement of the neutral point is thus
solved numerically. In chapter 5 the effects of varying the applied strip tensions and the draft on the

specific roll force are also highlighted using some illustrative figures.

4.3.2 Physical constants

In table 4.2 the roll radius as well as an average value for the roll radius and length of the arc of contact
are shown. It was found that the logged data and the roll gap model simulation was not in agreement
and the roll gap model was tuned to yield adequate roll force simulation. Two tuning parameters, ay s
and agp, were used. ays was used to tune the yield stress model to agree with calculated values in
the database applicable to the Steckel Mill under investigation. After this step the roll force was tuned
by adjusting, agp, and good agreement was achieved. In table 4.3 the yield stress model parameters

and the tuning factors are shown.

Table 4.2: Roll gap model parameters

Variable | Value
R 375 mm
R 403 mm
L, 50 mm

Table 4.3: Yield stress model parameters and tuning factors. The yield stress model parameters are

used in Eq. 3.28

Variable | Value
kfo 2800

k¢ 0.0024

kfspeeda | 0.0165
ays 0.925
QRp 0.716
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4.3.3 Flow chart

In figure 4.4 the roll gap model flow chart is shown. The roll gap model has as its inputs the draft, main
mill drive speed, exit and entrance temperatures, and the exit and entrance tensions that are outputs
from the tension model. These variables are used to calculate the yield stress and friction coefficient
along the arc of contact in order to find the vertical rolling force pressure along the arc of contact. It
can be seen that the two independent differential equations are solved independently and when these
solutions equate the neutral point is obtained. This array is combined and then integrated over the
arc of contact to yield the rolling force. This rolling force is then used to calculate the deformed
roll radius. This deformed roll radius is updated with an iterative Gauss-Seidel scheme and this loop
terminates when the normalized error between two iterative steps is less than 0.1%. The Gauss-Seidel

iterative scheme is described in more detail in section 4.4.2 where the tension model is discussed.

Once the neutral point is found, the velocity and thickness change along the arc of contact are cal-
culated. The output of the roll gap model is the specific roll force, length of the arc of contact, and
the entrance and exit velocities of the roll gap. These outputs are used as inputs for the other models
in the mill simulator. The specific rolling force is used in the stand model. The length of the arc of
contact is used in the main simulator loop to simulate the transport delay across the roll gap. The two

speeds are used as inputs to the tension model.

4.4 Tension Model

4.4.1 Solution methodology

The implemented tension models are integrators with large gains. Classical control system theory
[72] states that the bandwidth (rad.s~!) is equal to the gain of the pure capacitive process. This gain
is highly dependent on the constants of the system and is largely influenced by Young’s modulus
of the strip. In [73], Young’s modulus for Stainless Steel grade 304, E,;, is given as a function of
temperature. Using the tabulated values in [73] an interpolated value of Ey;|g—o7gec = 106 x 10° Pa
was found. The model gain is,

EysAeross _ 106 x 10%wh;
Lc_fﬂrg 6.4

Vi e[1,2], (4.6)

where Acos5 is the cross sectional area of the strip in the width perpendicular to the rolling direction,
and h; is the thickness on either side of the roll gap. These gains determine the bandwidth, and also
the simulation time interval of the model required to keep the tension model stable. The rule-of-thumb
is to make the simulation frequency 2-10 times larger than the system bandwidth [74]. From Eq. 4.6,
it is evident that the simulation frequency of the model lowers when the thickness decreases. This
attests that tension control is of increasing importance with decreasing thickness as is the case for

cold rolling mills and the latter passes of the rolling schedule for the Steckel Mill process. In order
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Figure 4.4: Roll gap model flowchart.
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to save simulation time, the maximum allowable simulation time interval was chosen to correspond
to a sampling frequency twice the bandwidth of the integrator model. The maximum simulation time

intervals that can be used for the tension model simulation, when pass 3 data is used, are,

4.7)

21 Lepesrg 1 1.04 x 10785, when h; = 13mm
Attension == .

7EssAcross 7.38 % 10%; 1.51 =x 10788, when h; = 9mm

In chapter 5, simulation results are shown for the specific rolling force as a function of the applied
tensions. These results may make the tension setup values obtained from Eq. 3.32 seem low. These
setup tension values are in fact larger than the applied strip tensions associated with a multistand
hot rolling mill, and are comparable to tension values associated with multistand cold rolling mills.
In table 4.4, nominal tension setup values given in [3] for hot rolling and cold rolling of steel are
compared to results obtained from Eq. 3.32, when similar strip thickness for both the hot rolling
cases are used. Table 4.4 confirms the observation that Steckel Rolling relies on tension more as a
secondary deformation process compared to multistand mills. Ultimately the strip can be drawn thin
if necking® is allowed, but less controllability is possible due to the control effort associated with the

acceleration and deceleration of the large inertias associated with the coiler motors and their drums.

Table 4.4: In this table the tension setup values are shown for various cases. The notation zB and zF
refers to pass z’s tension between the entrance of the roll gap and the back coiler and tension between

the exit of the roll gap and the front coiler respectively.

Stand (Pass) | Exit Tension (kN/m) | Exit Tension (kN/m) | Eq. 3.32 (kN/m)
Number Cold Steel Rolling Hot Steel Rolling Steckel Rolling
0 (1B) 11]p=22mm 0|n=22mm 108.3|p=20mm
1 (1F/2B) 216.7|h=1.65mm 30.1|p=11.57mm 91.0|p=11.57mm
2 (2F/3B) 142.1|p—0.96mm 23.3|h=6.30mm 77.3|h=6.30mm
3 (3F/4B) 100.7|p=0.61mm 18.7|h=3.97mm 68.2],=3.97mm
4 (4F/5B) 67.6|h=0.41mm 18.3|1=2.95mm 62.9|p=2.95mm
5 (5F) 17.1|h=0.30mm 5|n=2.5mm 60.2]p=2.5mm

4.4.2 Flow chart

The tension model could be expressed as an explicit and implicit model. The explicit model is ob-
tained by reformulating the integral model (Eqs. 3.33, 3.34) as an equivalent state-space differential
equation model. The explicit model makes it difficult to solve for the implicit behaviour between the
tensions applied to the roll gap model and the output velocities of the roll gap model. These velocities
are in turn used as inputs to the tension model. Such an iterative process can be solved by using an

iterative solution procedure such as Gauss-Seidel iteration.

*When the strip tension stress is larger that the material yield stress the strip deforms plastically. This deformation is

manifested in a thickness and a less obvious width reduction of the sheet.
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In this dissertation the tension model is kept unchanged in its integral format (Eqs. 3.33, 3.34). The
input is the draft in the middle of the sheet, d(z = 0,t = #;), at any given time instance, which is
an integer multiple of the main loop’s simulation time interval, Atz44n. In order to keep the tension
loop stable it was found that, Atiension < Atrrain, and that the tension loop must be solved at a

higher frequency than the rest of the models.

It can be argued that due to these differences in the bandwidth of the tension processes and the rest of
the simulator, that the tension models are faster than the rest of the processes, and could therefore be
omitted from this study. Although there is some truth in this statement, this dissertation is an initial
investigation into the tension and gauge interactions and no applicable article in the literature, where
the effect of tension deviations on the thickness control loop of a Steckel Mill Process is investigated,
could be found. However, statements are made in [3] that tension deviations influence the gauge
control system of a single stand rolling mill adversely, and that Steckel Mills relies largely on a

drawing process, which implies that the application of large tensions to the strip occurs.

In figure 4.5 two loops are apparent. The outer loop is the time loop that is simulated for time
t = to + ntension, Vlo < t <ty + Atprein, Where n is the simulation counter. The inner loop
accounts for the iterative solution of the tension as a function of the exit and entrance speeds of
the roll gap. The execution of this loop is stopped after the Gauss-Seidel filtered tension answer,
T;; Vi € [1,2],

T, = oT},,, + (1 — a)T; (4.8)

new previous !

has stabilized to within a 0.1% error of the normalized tension differences between two iterative steps.

This normalized error is expressed as,

71— Tppeivnal | 172 = Toprens

e’,‘"TOTT — previou + I previous | : (4-9)
TEeVvious previous

where T3, ., is the current calculated tension due to speed deviations obtained from the roll gap model

after T3, ..., Was applied to the roll gap model. This new tension value is filtered in order to ensure

convergence and to negate possible divergent oscillating. Before the execution of the next iterative

step, T; is set equal to the current 7;.

previous

The tension loop executes rapidly if & = 0.95. A safety factor of 15 loop iterations is set as the
maximum number of iterative steps. After the completion of the loop the tension value is used in the

rest of the simulator at the timing instance of the main loop.

4.5 Stand Model

4.5.1 Solution Methodology

Separation of variables
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There are different ways of solving a partial differential equation model [75, 51, 53, 54, 7] such as
depicted in chapter 3. It was decided to use an analytical approximate method [75] to solve the
vertical displacements of the rollers as a function of time and space in order to simulate the strip
crown behaviour. The analytical solution of a partial differential equation requires that the variable be
separated into two functions. Each of these functions is dependent on only one of the two independent
variables, thus the dependence of the vertical displacements y(z,t) is separated into two infinite
vectors, ®(z) (row vector) and q(¢) (column vector) [53, 54]. When the vector product is taken
between these two vectors, the displacement, y(z,t) is a superposition of an infinite number of the
products ¢;(z)g;(t) (Vj € [0,1,2,...]). Thus the vertical displacements of the stand model can be

expressed as:

yi(z,t) = i(2)q;i(t)

o0
=Y éi;(2)g; (1), (4.10)
7=0
where i € [1,2,3,4] for the 4 roller model and i € [1,2] for the 2 roller pack model. The variables

are,

yi(z,t): Vertical displacement in time of a roll over the width of the rolling mill stand.
®;(z): The natural mode of vibration (row vector) for a continuous system.

q;(t): Column vectors of the normal coordinates, which are continuous functions of time.

The solution for the displacements of the beams can be obtained by solving the Eigenvalue problem of
the system. The Eigenvalue problem is solved to generate ordinary and independent sets of ordinary
differential equations that will describe the dynamic motion of the system. The calculated eigenvalues

are the natural frequencies of the undamped system.
Vibration analysis method

The more common ways to derive equations of motion are with the aid of Newtonian dynamics or
Lagrange dynamics [54, 53]. Although more degrees of freedom are required to describe a system if

Newtonian dynamics are used.

The Raleigh-Ritz and Assumed Modes method are energy-based approximate analytical methods
used for the solving of vibration analysis problems [75, 52, 53, 76]. It was stated earlier that the
separation of variables technique is used to solve the PDE model. It is not feasible to calculate
the infinite modes of vibration, but the vertical displacement can be approximated by taking the
superposition of the products of a finite number of modes of vibration and their accompanying normal

coordinates.
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The approximate vertical displacement is expressed as,

2p
vi(z,t) = Y ¢y, (2)qi; (8), Vi € [1,2,3,4], (4.11)
=0

where p is the number of accurate natural modes of vibration.

For the Assumed Modes and the Rayleigh Ritz method the number of modes (2p) is chosen two times

larger than the predominant spatial modes (p) [75].

Each roller has 2p number of assumed modes. Application of the Assumed Modes method only
requires that the assumed modes be generated for one element. The same modes can be used for the
other roller elements. The assumed modes must satisfy the boundary values given in equations 3.64,
3.65, 3.66, 3.67, 3.69, 3.70, 3.71 and 3.72. From these equations it can be seen that each of the roller
elements have the same boundary value structure®. In this work the choice of the assumed modes is
motivated by the results obtained by Pederson [59], where the first two natural modes of vibration
were calculated using Galerkin’s method!”. In this dissertation four assumed modes were developed
although not all of these modes are used in the implemented simulator. When the number of assumed
modes increase with one, the number of states of the stand model increases with 2 for each roller. The

generated assumed modes'! for one roller are shown in figure 4.6 and are given as,

U, = [ "1[)1'1 Tubiz 'lpis witl ] , Vi € [1’2’3’4]’ (4.13)

where the first assumed modes is,

223 2z
i, (z) = 4.25 (l—) —1.28 (i_) — 0.5, (4.13)
i i
the second assumed mode,
9.\ 4 22\ 2
Wiy (2) = 0.15 (f) ~0.3 (Tz) +1.0, (4.14)
) 1
the third assumed mode,
2z\° 2z\° 2
Wig(7) = —2.81 (Z—Z) — 538 (l—z) +2.06 (E—Z) — 0.5, 4.15)
i i i
and the fourth assumed mode is,
6 4 2
2 2
b2 =711 () —1a22 (%) 4711 (2. 4.16)
l; l; fz’
gyf” |;=_i_ri =0 and yfa) L=£"' #0, Vi € [1,2,3, 4], where (™) signifies a nth order differentiation of space (z).

"Galerkin's method is another approximate analytical method used for solving PDE models [75].
"'"The normal structure of the natural modes of vibration for a simple beam is [59, 60, 53], ¢i(z) = ci1cosBiz +

cinsinfiz + ciscoshfBiz + e;asitnhf3;z.
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The coupled assumed modes of vibration for the four roller model are, ¥ = { U, Uy, U3 Uy ],

and for the two roll pack, ¥ = [ U, O, ] where ¥ is a row vector.

Taking the assumed modes of the approximate method into consideration, an estimate of the vertical

displacement, ;, can be expressed as,

2p
ﬂ}(z,t) = Z‘pzj (Z)Qij (t) = qji(z)qi(t}t Vie [11 21 34] (417)
J=1

The spatial solution, ®(z), of the stand model is obtained by solving the Eigenvalue problem of the
system. When the Eigenvalue problem is solved, the system can be decoupled, and a set of ordinary
differential equations for the normal time coordinates q(t), is obtained. The relationship between the

assumed modes and the natural modes of vibrations is [54, 75],
®(z) = ¥(z)U, (4.18)

where U is the modal matrix of the system [54].

For the purposes of the simulator it was decided to concentrate on the two roll pack model, because
the four roller model increases the complexity of the mill simulator and increases the simulation time.

Other reasons for this choice are given in section 3.5.6.

Assumed Modes of Vibration

Amplitude

-15 1 1 L i 1 1 1 | L

-1 -0.8 -0.6 -0.4 -0.2 Q 0.2 0.4 0.6 0.8 1
Normalised Width

Figure 4.6: Assumed Modes for a roller element
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4.5.2 Two Roller model

4.5.2.1 Model equations

Roll Packs

In order to avoid confusion with the indices in this section and the indices used in chapter 3, the

indices of the two roll packs, namely 15 and 34 are renamed as | and 5 respectively.

When Eq. 4.17 is substituted into Eqs. 3.63 and 3.68, while a fourth order spatial derivative as well as

a second and first derivative of time are done, for the estimated vertical displacement of each roller!?,

pA1Y1q) + EII\I’§4)Q1 + ﬁstm’p‘ljléh + kstriplIIIQI — ‘|“kstr:ip1p2(12 + ﬁstriplpZQZ =+ P,, (4.19)

pA2Usqs + EIQ“I';(;[)(M + Bstrip Va2l + KstripV2qa = +Bstrip P11 + kstrip1q1 — P, (4.20)
Premultiplying Eq. 4.19 and Eq. 4.20 with U7 () and U7 () respectively yields,

T A1 Té + ‘I’?Efﬂll?)ql + 0T BotripT1a1 + VT ki ¥1qy =
+UT BstripTado + U7 kspripPaqy + VT P/, (4.21)

U] pAr¥ado + VS EL T g, + U3 BatripPadz + U3 kgtripUaqo =
+\Pgﬂstrip‘111(il = @gksirip\PIQI = \I’%"P’. (4.22)

Discrete Components

The interactions between the discrete elements associated with the hydraulic jacks, the work roll
chock-bearing combinations as well as the forces (these forces work in tandem and are taken as the
same force, J(t)) that can be exerted by the hydraulic jacks in order to apply positive or negative

work roll bending, are expressed as,

Msirisir + Kogysir = J(t) + Ks1YsiB, (4.23)

MssBysip + Ksyysip = —J(t) + Kqrysir, (4.24)
where s € [L, R], and the generic representations are defined as:
M 7, Msyp: The masses of the top and bottom work roll chock-bearing combinations.

K j: The hydraulic stiffness of the hydraulic actuators and unmodelled stiffness lumped together to

form a discrete spring on either side of the mill.

n

"*The notation applies v'™ (1) = g—“ﬁ, thus ) denotes an n'**) order spatial derivative of the displacement variable.

n
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YsJT- YssB: The vertical displacements of the lumped discrete elements M, M, ;5 (also see figure
3.3).

The interactions between the discrete elements associated with the back-up chock-bearing combina-

tions and the hydraulic actuators and load cells are expressed as,

Msriist = —Fras, (4.25)

Mpiysp + Kspyss = 0, (4.26)

where s € [L, R], and the generic representations are defined as:

Mg, Mgp: The masses of the top and bottom back-up roll chock-bearing combinations.

K p: The stiffness of the load cells on either side of the mill.

Fy 45: The thrust force of the hydraulic actuators.

YsB, Ys7: The vertical displacements of the lumped discrete elements Mp, M, (also see figure 3.3).

The displacements at the end of the rollers and the displacement of the discrete elements are the
same displacement and provide the connecting relationship between the discrete and the continuous

systems. These displacements are expressed as,

—ly

yer(t) = yror(t) =yi(o-1) = ‘I]l(_T){h(t): (4.27)
yrr(t) = yror(®) = 1a(20) = T Da ), @29
yrB(t) = yLsp(t) = y2(_7[2,t) R ‘1’2(%2)%(?5): (4.29)
yrn(®) = yrsn(t) = 2. 0) ~ Ta(D)an(t) (30

When the above relationships are substituted into equations 4.23, 4.24, 4.25 and 4.26. The resulting
eight equations of motion are premultiplied with U (52), ¥T(4), T (52) and TT(4) consecu-

tively. The following equations result,

-l - —ly
T (—= 5 )MLT‘IH( Dy = o] (52 5 NPy ap, (4.31)
T (= )MRTQ ( Ja = ¥ (E)FHAR: (4.32)
- Iy e ! 1
Uy (- 5 2\Mpp¥q(—2 5 DYl =2 5 2V K pUa(—2 5 2)q2 =0, (4.33)
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[ I, .. l [

@g(é)MRBQQ(é)Q2 + \D%(%)KRB%(EQ)QQ =0; (4.34)
oT(— 5 LMy ¥y (— 5 )ql+‘1’1(7)KJL‘I’( L = 9T (=2 5 MKy o (— 5 N + 0T (=2 5 1,
(4.35)

5t Iy I [ 7,0l 7.1
T (2)MRJT‘P1( Da + T (= )KJR‘I’l(z) =0 (5 )KJR‘I’z( )Q2+‘I’1(§)J, (4.36)
5 ( —2\MpypUs(—= 5 —2)go + 7} ( VK Ua(—2 5 2)qe = I (—2 5 VK0 (— 5 Nar — (=2 5 ¥,
(4.37)

7,12 l2 Iy l5 lo A 7,.l2
ol(= )MRJT‘I’Q(Q)Q2+‘I’2(2)KJR%( Ja2 = @2(2)KJR‘I’1(§)Q1—‘I’2(§)J- (4.38)

The total stand model in terms of the assumed modes is obtained when equations associated with
the top roll pack and equations associated with the bottom roll pack are summed respectively. In the

following sections the whole stand model is manipulated to yield a linear state-space matrix model.

4.5.2.2 Mass, stiffness and damping elements

In order to express the stand model in linear matrix notation, the mass, stiffness and damping matrices
of each element have to be computed.

Continuous Masses

The mass matrix of each continuous mass roller are expressed as M;; € R?*? Vi, j € [1,2]. The
matrix elements of the estimated mass matrices associated with the rollers are obtained, when the

following integrals are done over the width of the rollers:

L
2.y, pAp; dz, Vi=jandi € [1,2
Mipj, = f_zll b 11,2] ; (4.39)
0, Vi#]
where h, g € [1, ..., 2p].
Discrete bearing mass elements

The matrices for the discrete mass elements are constructed as follows,

Mysi = Ui(2)T My, 0i(2), € R¥P*2P, (4.40)

Mgrs = Ui(2)T M5y Us(2), € RP*P, (4.41)
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where s, 1, j, x are indices and s € [L,R]. Whens = L = z = —%,3 =R == '. When

i=1=x=T,and wheni=2= y = B.
Bending Stiffness of Roller Elements

After the substitution of the assumed vertical displacement into the PDE-model as shown in equations

4.21 and 4.22, the bending stiffness of a roller pack needs to be calculated as,

L
ki, = / i, EIp{ dz. (4.42)
0

But in [75] it is shown that the assumed bending stiffness of a beam is calculated as,

ks .
kiiy, = f v ELyD dz, (4.43)
0

where the latter equation is obtained by following a Lagrangian dynamic approach. The discrepancy
between the order of spatial differentiation of the assumed modes between Eq. 4.43 and Eq. 4.42,

can be clarified by observing from [54] that the natural bending stiffness of a beam is calculated as,

I
Figip = / 02 ELgY dz, (4.44)
0
but if the true vertical displacement, y = ®q, is substituted into the PDE model (Egs. 3.63 and 3.68)
the bending stiffness would be calculated as,
. (1)
kigih :/ QSZ‘QEL‘QSQ dz, (445)
0

When integration by parts is done twice on Eq. 4.45 the following is yielded,

, 9@ (@)ds = $()¢ (@)|2, — 4 (2)9 (@)

2

f 6O (@) (2)dz,  (4.46)

L i3
and it can be shown that fi $(2)¢p W (2)dz = [2, $2)(2)¢? (2)dz, but f W(2)p™ (z)dz is not
2 2

i
necessarily equal to [ 1) (2)4(?)(z)dz. The relationship (see Eq. 4.18) between the assumed
2
modes and the natural modes of vibration ensures that the real bending stiffness will be computed
after the solution of the Eigenvalue problem. Thus Eq. 4.43 is used in the calculation of the assumed

bending stiffness of a roll pack. Thus,

. {fo’ () EL(2)9 (2)dz, Vi = j andi € [1,2]
ihzg—

: (4.47)
0, Vi#j

where h, g € [1,2].
Elastic Recovery of Strip

From Eqs. 4.21 and 4.22 it is seen that the elastic recovery of the strip is modelled as a distributed

spring element. The matrix elements can be calculated as,

kszripihjg = ¢Zh( ) strip(z)wjg (z)dza (4-48)

w28,
2
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where kstrimh G Ktrip,;» and the elastic recovery stiffness matrix is expressed as,

Kstm-p - K.stri;p]l —Kstripm c m2px2p (4‘49)

_K.St?"l'pg] Kst'ripp_z
Load Cell Discrete Spring Elements
From Egs. 4.33 and 4.34 the discrete stiffness matrix associated with the load cells is calculated as,
- T 2px2p
Kusa = Ua(2)" Ksp¥Us(z) € R ; (4.50)

where 5 € [L, R] and Kgso € R¥*?, Whens =L =z = —E—Qi,s =R=>z=

(] Ry

Hydraulic Jacks Springs elements

From Egs. 4.35-4.38 the discrete stiffness matrix associated with the hydraulic jack springs is calcu-

lated as,
K aijs = Vi(2)T K1595(2), (4.51)

where s € [L, R] and K455 € RWXW Whens =L = 2 = —%, = R= gi= % When

i=1=y=T,andwheni =2= y=D5.
Strip/Work Roll Damping

From Egs. 4.21 and 4.22 it is seen that the damping is also modelled as a distributed parameter. The

damping matrix elements are calculated as,

ath
2

Cinjy = Viy, (2) Bstrip (2)9;, (2)dz, (4.52)

it
2

where C’ihjg €Cy; € P22
Total Stand Model

When the above matrices are summed the assumed modes mass and stiffness matrices are obtained

as,
M, + Mgz, + Mar1 0
— +M + M
M = dJL1 dJR1 c 8%4?”(4;0, (4.53)
0 Mojy + My + Mgro
i +Mysr2 + Myira
K11 + Kistripy, + Kyanir —Kstripi, — Kiaior — Kaizr
v +K
R e € RIPXP (454

—Kstrips, — Ko — Kyanr Koo + Kistrip,, + Kiaoar
+K j4o2r + Karo + Kgra
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The assumed damping matrix of the stand model is expressed as,

Cll _CIQ
‘_CZI CZZ

C= € Rirxdp, (4.55)

Taking Eq. 4.18 into account the coupled stand model equations of motion can be expressed as,

MUy +CUq+ KUq=Bu (4.56)

4.5.2.3 Discretization

The continuous mass rollers were discretized into 50 discrete elements with 51 nodes. The distance
between two nodes is expressed as A, which is equal to 8cm. Using these discrete nodes the integrals
can be solved using Boole’s numerical integration method [71] or normal Euler numerical integration.
The areas and second moments of inertias were diagonalized'® and the assumed modes were evaluated

at each node!?.

Different values of p was experimented with but in the final simulator p was taken as one. In [59] a
total of 2 vibration modes were used and in [40] three modes of vibration are used as the rollers are

large and stiff elements, which limit high order spatial bending modes.

4.5.2.4 Solution

The modal matrix is solved from the general Eigenvalue problem,
(K — w*M)U =0, 4.57)
where U € R¥P*4P,
The decoupled equation of motion of the stand is written as,
UTMU4§ +UTCU4+ UTKUq=UTBu (4.58)
where M = UTMU, K = UTKU,C = UTCUanda = [ q;, ¢, a2 @, ]T € R22P)XLIS,

The decoupled normal coordinate system is expressed as,

él _ 12p><2p 0
q -M-'K -M~!'C
where B and u are the input matrix and input vector respectively. In section 4.7 these variables are

defined.

BA;(2) = diag{A} € R, I,(2) = diag{I} € R°"**! where i € [1,2].
M‘I’;‘ & §R51X2p
"*The notation Gtrollagyaumed mode APPliCS.

(4.59)

0
|
4 } [ M-1UTB
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The natural modes of vibration of the stand model are calculated by using the calculated modal matrix
and the assumed modes vector as shown in Eq. 4.18. In figures 4.7, 4.8, 4.9 and 4.10 the natural modes
of vibration for the two roller pack case, where the number of assumed modes is 3 and 4, are shown.
In figures 4.11 and 4.12 the natural modes of vibration for two different cases when the number of
assumed modes is 2 are shown. The distinguishing factor between these two cases is whether the

hydraulic jacks were modelled or not, e.g. K ;7 = 0 (figure 4.11) or K, ; = 8610% (figure 4.12).

The discretized vertical displacements are calculated as,
y:[mz]=[q>1 @2][(“], (4.60)
Y2a, q2

1
where y1,_,92,, € R¥*L

Natural Modes of Vibration,KJ=0,Kstrip=0,Beta=5e10

1 T T T T T T T

ST "%, ——  Mode 1 TRP 1
Rty e = Mode 2 TRP
0.6F i3 ‘== Mode 3 TRP g

Amplitude

Figure 4.7: Natural modes of vibration for 3 assumed modes of Top Roll Pack.

4.5.2.5 Flowchart

The solution of the stand model only requires matrix operations and a Runge Kutta time integration.
The Runge Kutta procedure is used on the total simulator nonlinear state-space model. This will be

discussed in section 4.7.

4.5.3 Physical constants

Roller Weights
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Natural Modes of Vibration,KJ=0,Kstrip=0,Beta=5e10
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Figure 4.8: Natural modes of vibration for 3 assumed modes of Bottom Roll Pack.
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Figure 4.9: Natural modes of vibration for 4 assumed modes of Top Roll Pack.
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In chapter 3 the weight of the rollers was not taken into consideration when the model was derived.

This modelling choice is motivated by comparing (see table 4.5) the roller weight to the maximum

mill rolling force (40MN). From table 4.5 it can be seen that the weight of the roller elements in total

is less than 5 % of the maximum rolling force and was thus omitted from the stand model derivation.

Table 4.5: Weight Comparison of Rollers and Chocks against the maximum rolling force, 40MN.

Variable Weight (kN) | Percentage Value of Fj;,,;;
Top Work Roll+Chocks+Bearings 179.52 0.449
Bottom Work Roll+Chocks+Bearings 194.24 0.486
Top Back-up Roll+Chocks 762.24 191
Bottom Back-up Roll+Chocks 762.24 1.91

Load cells

The discrete spring at the bottom of the mill represents the load cell. The displacement of this hard

spring models the load cell behaviour and its compression reflects the rolling force in the mill. It was

decided to model this spring according to an ABB Stainless Steel load cell used in the industry for roll

force measurement in hot rolling mills. The rectangular load cell, type PFVL 101V, of the Millmate

Roll Force System range was chosen [77]. The spring compression at nominal load is not to exceed

0.05mm and if nominal load is taken as half the mill force limit on either side of the mill, the spring

constant is found to be,

KSB

_ 0.5Fimit
0.05mm

=400 x 10°N/m,Vs € [L, R].

Natural Medes of Vibration,KJ=0,Kstrip=0,Beta=5e10

Amplitude

Mode 2 BRP
= i Mode 3 BRP
—— Mode 4 BRP
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Figure 4.10: Natural modes of vibration for 4 assumed modes of Bottom Roll Pack.

(4.61)
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Damping

In [8] damping for the HAGC system is provided between the strip and the working rolls. It is reported
in [78] that this damping is dependent on the length of the arc of contact in the roll gap. R-M Guo
showed in [8] that there is a contradiction with the statements in [78] and practical data obtained in
[8]. In the absence of a correction to this damping equation defined in [78], the same equation will be

used namely,

ﬁstm’p(t)'w =

w.k(e, €,6)|5,,=0 [ N ] (4.62)

Wengin () m.s™1
where k(e €,0)|z,,=0 (= 280M Pa) is the yield stress of the material at the delivery side of the roll
£ap, Wmain () is the main mill drive angular velocity and w is the strip width (1.4m). From the
logged data, concentrating only on the similarly identified strips, damping coefficients for pass 1,
Bstrip|pass1 = 1.48 x 108, and pass 3, Bstrip|passs = 1.18 x 108 N.m~1.s, were calculated. However
with these damping coefficients a non-bumpless start of the simulation from the chosen steady state
resulted. In chapter 5 section 5.3.2, simulation results for a Sgtrip|passa = 1 % 108 N.m~1.s are

compared to other values for the distributed friction coefficient.

The nearly steady state point could be maintained by increasing fsri. The general observation was
that the mill oscillation could not completely be damped out. Time simulations in [40] also exhibited
such oscillatory behaviour and in this investigation [40] damping was only modelled between the
strip and the work rolls. In chapter 5 damping ratios for the mill stand model with different Syy.i, and
K j are shown and discussed. An investigation of the damping found in the mill stand might prove

beneficiary for the long term research program.

From the logged data of the exit thickness (see figure 4.2) it is not possible to draw conclusions of
these oscillations, due to the difference between the high oscillation period frequency, when fyrip =
5e10N.m~".s, with an oscillating period of roughly 2.6ms and the time resolution of the logged data
is 0.4 seconds. The oscillation periods of the 3 modes of vibration in [40] fall in the range of 3ms-4ms.

The amplitude of oscillation is not that extreme and are in the order of 2um.

It needs to be stressed that damping in the nonlinear hydraulic actuator was not modelled and that

maybe damping in the actuator might absorb these vibration oscillations.
Elastic recovery of the strip and hydraulic jacks

The elastic recovery of the strip is taken into account in the model derivation, but as a first iteration
not taken into account in the simulator. In [3] it is reported that the elastic recovery of the strip for

hot rolling applications is negligible and this asserts this modelling choice.

The hydraulic jacks can be modelled as springs. It is difficult to attain realistic values for these

springs, but in [65] hydraulic stiffness is calculated as,

Wy . (4.63)
ha

Electrical and Electronic Engineering 81



University of Pretoria etd — Scholtz, E (1999)

Chapter 4 Nonlinear plant simulator

where A is the working area of the actuator, 8, = 1.38G Pa is the oil’s bulk modulus and ho is the
average exit thickness of the roll gap assuming the hydraulic jacks coincide on the same vertical yz
plane as the exit from the roll gap. The actuator working area is calculated by taking the four bending
cylinders per bending block, of which 2 bending blocks per mill side are fitted. A bending cylinder
has a full bore side diameter of 210mm. Using Eq. 4.63, the hydraulic stiffness is calculated as
Kj|passs = 40 x 10°N/m.

It is found that using this magnitude for the bending stiffness coupled the upper and lower roll packs
to such an extent that the first natural mode of vibration was dominant for both roll packs. The vibra-
tion behaviour of the lower roll pack should be dominated by the second spatial mode of vibration,
according to the results obtained by Pederson [59]. This roll pack should only exhibit an increas-
ing/decreasing amount of bending as the rolling force increases/decreases. The displacements at the
end of the roll pack should reflect these force deviations by increasing the compression of the load
cell spring or reducing it respectively. Taking this statement into consideration and the fact that the
elastic recovery of the strip is limited, the upper and lower roll packs are completely decoupled by
making Kgrip = 0 and K, = 0,Vs € [L, R].

In figures 4.11 and 4.12 the effect of the jack springs are compared according to the natural modes of
vibrations obtained. When the jack springs are large the asymmetrical behaviour between upper and

lower roll packs are accentuated in figure 4.12 when compared to 4.11.

0.8

0.6

0.4

0.2

Amplitude
o

_0.4}k Mode 1 TRP
= s Mode 2 TRP
------ Mode 1 BRP
mad i IRTRREE Mode 2 BRP
=08
_1 1 1 1 1 1 1 1
-2 -15 -1 -0.5 0 05 1 15 2

Figure 4.11: Natural modes of vibration for K ;; = 0 and Bgrip = 5 x 1010 N.m~1.s.
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4.5.4 Mill Stretch Model

Tests are conducted by plant personnel on the mill under study in order to calculate the mill spring

curves for either side of the rolling mill. The test conducted on the mill can be described as follows:

The top roll pack is placed in contact with the bottom roll pack, without a strip in the roll gap.

Once the rollers are in place the top roll pack is pressed against the roll pack with a measured force,

Fiest, = 730Tons, and at this force level the initial mill stretch Ystretchiese, (Where s € [L, R]) is

logged. The force is then increased until a total rolling force of roughly 30MN is measured (15MN

per side). The mill stretch curves (see figure 3.4) are calculated using the values shown in table 4.6.

In [65] the structural stiffness of a rolling mill is given as 16.65 x 10%/b/in = 2.93 x 10°N/m and

in [59] the structural stiffness of the investigated plate mill is 2.02 x 10° N/m. These values are in

accordance with the calculated values (see table 4.6) for the Steckel Mill under consideration.

Table 4.6: Mill stretch model values

Side Ftests (MN) Ystretchiest, (mm) Ky (N/m)
s = L (0S) 7.217 2.774 3.388 x 10°
s = R (DS) 7.190 2.765 3.413 x 10°

Natural Modes of Vibration, KJ=8e10,Kstrip=0,Beta=5¢10

1.5 T

05

Amplitude

Mode 1 TRP
Mode 2 TRP
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Figure 4.12: Natural modes of vibration for K ;5 = 80 x 109N/m and Bsirip = 5 x 1019 N.m™1.s.
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4.6 Hydraulic actuator model

Data of the implemented plant actuators for the Steckel mill under consideration are not available.
Information of the physical constants and dimensions of such actuators had to be extracted from
articles [8, 64, 65, 79] and a servovalve manufacturer brochure [68]. This procedure was deemed

necessary in order to get a true reflection of the physical system.

4.6.1 Physical constants

Different types of servovalves are used in the rolling mill environment. The Steckel Mill, under
investigation, uses a servovalve with a natural frequency, f, of S1Hz!®. This value agrees with
the operating frequency range for servovalves, 60 - 100 Hz, listed by Guo [8]. Using this specified

frequency range as a criteria, the Moog Servovalve D661-range was identified from [68].

Table 4.7 relates values for different hydraulic systems found in the literature as well as values of the
D661 servovalve. All the listed values were converted into SI Units in order to compare them and to

motivate choices for the simulator.

Table 4.7: Comparison of hydraulic system parameters.

Variable | Bhowal [64] Guo [8] Ginzburg [65] | Huzyak [79] | Moog D661 [68]
90 (st) 6.67 x 1074 | 1.45 x 1073 | 4.70 x 103 | 1.58 x 10~3 1.33 x 103
Iy (mA) 20 . 30 20 10

A1 (m?) 0.7310 ) 0.6243 m? 0.6243 =

Ay (m?) 0.1639 - . 0.1698 2

P, (MPa) 25 31.04 27.59 27.59 35

P; (MPa) 6 - . - 5

Cylinder flow is calculated using, Q = A = K, z,, 4/ %, where the term incorporating the pres-
sure difference has the units of velocity, and Kz, has the units of area. The rated flow of the valve
has to pass through the servovalve into the cylinder. From the brochure data [68] this area is taken as

the spool drive area of 1.35 em?. Using this approach the value of K, can be calculated as,

= = 0.045m.
s 3Imm

B o= Aspool drive 1.356?7}'..2
Vs —
The hydraulic systems, for the left and right sides of the mill, were modelled using the values sum-
marized in Table 4.8.

It is assumed that the response of the second order transfer function servovalve model is critically

damped. This assumption can be motivated by referring to time response curves [68]. Once the spool

15Personal correspondence with M, Lewis.
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movement is larger than 100% the flow, associated with a certain pressure drop, can not exceed the
maximum flow, and a stroke greater than 100% will not reflect this limitation. This phenomena was

incorporated as a hard constraint on the stroke length of 43mm in the mill simulator,

The thrust force capability of the modelled actuators are given in table 4.9, and a physical constraint
of 40MN (20MN on each side of the mill) is applied. The modelled actuators are therefore capable
of handling these large rolling forces (20MN).

4.7 Dynamic Simulator

The dynamic simulator consists of two dynamic models. The two models are the tension model and
a combination of the hydraulic actuator models and the stand model. The tension model is simulated
at a higher sampling rate than the rest of the simulator. The combination of the hydraulic actuator

models and the stand model is expressed as a non linear state-space model. This nonlinear state-space

Table 4.8: Hydraulic Model System Parameters

Variable Value
L R
Iy +10 mA
Ay 0.74 m?
Ay 0.16 m?
Phigh 35 MPa
Hisi 5 MPa
Wy 21 x 51 %

Gy 1
Kiear 1x107°
Ky, 0.045 m
S 3 % 10~ %1
K, 1.5

T, 1 x107?

Table 4.9: Thrust force capability.

Ps1 (MPa) | Py (MPa) | Frs, (MN)
5 5 2.9
5 35 -1.9
35 3 25:1
35 35 20.3
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model is solved using a fourth order fixed time step Runge Kutta method [71].

The spatial modelling of the rollers provides the simulator with the draft deviation across the width
of the sheet. This deviation is used to solve the roll gap model at some of the 51 discretized nodes in
order to yield varying specific rolling forces across the width of the strip. It is assumed that the strip
is very ductile at 1000°C and that the strip does fill the whole roll gap. The simulator is not able to
account for strip with an entering negative (concave) crown, because the strip will not fill the whole
roll gap along the curvature of bended rolls. In the simulator the spatial dynamic draft is calculated

utilizing the following equation,
6(23 t) = h'lsciup - h'z.sctup - (5h1(t) - 6h2(zi t))

= dsetup — (0h1(t) — (y1(2,t) — y2(2,t))), where 3 <z < % (4.64)

Shy (t) is taken as the measured entrance thickness deviation at the center of the strip. dha(z,t) is

evaluated over the width of the strip.

In figure 4.13 the flow chart of the mill simulator is shown. This high level flow chart shows how the

various models are used in the mill simulator.

The nonlinear state-space model of the simulator will be expressed for the two roll pack system with

two assumed modes per roller. The assignment of states for the nonlinear state-space model is as

follows!7:
T
2= = | (4.65)
T - . - . T
Xa=[$1 T2 X3 T4 Ts T Ly ﬂis] ={q11 qi, 92, 92, 91, 912 92, CI22] :
(4.66)
where g;;, Vi, j € [1,2] were defined in section 4.5.2.4.
The state assignments associated with the hydraulic actuators are,
T
Xb=[ﬂ?9 Tip Ti1 Tiz T13 T4 Tis5 Tie T17 3318] =
T
[:CUL Ty Py %ap Tsy Pm Fra ©m 2p CUR] ' (4.67)
and the input vector of the dynamic simulator is,
T
u:[:cu T15 T14 16 P’(z)] . (4.68)

The flows of the hydraulic actuator models expressed as functions of the states are as follows:

Ky, g, pr—o(Ps —z11), when zg > 0
Qr1 = . ) (4.69)
KUL:E91 / ED-(.I‘H = Pf{), when g < 0

7 All of the variables have previously been defined in chapter 3.
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Figure 4.13: Mill simulator flowchart
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Ky, zg %(3315 — B;), when zg >0

Qr2 = (4.70)

vy T9 %(Ps — z15), when zg <0

2
KUleg p—o(Ps — T14), when T12 2 0

Qr1 = ; (4.71)
Kuyp12,/ (214 — ), when 215 <0

b

Ky, w12 fg(&tlﬁ — PB), whenz12 >0

T

Qro = y 4.72)
Kvﬁxlg E;{PS — .1.‘16), when r120 <0

Qri = Kieak, (211 — Z15), (4.73)

QRZ == Kﬂeakﬂ (5'314 . 2:16): (474)

The vertical displacements at the edges of the rollers as functions of the states are,

yir = [ b1 () $1,(71) ] [ T1 T ]T; (4.75)

—

T
£ :22‘2] ; (4.76)

r

YRT = [ ¢1,(%) ¢1,(4) J

The linear state equations associated with the stand are expressed as follows,

u, (4.77)

) 0 Irxo 0
Xq = Xq T+
-M-lK -M-lC M-lUuTB

where the input matrix is defined as,

B ()AL ¥ (FAn - W) Ar (LA AT (2)T @78
0 0 0 0 —A,Ty(2)T
The nonlinear state equations associated with the hydraulic systems are expressed as,
Tg9 = 1, (4.79)
E10 = =2y, Wy, T10 — w2, Tg + w2, I, (4.80)
, QL1 — Qu + Anign — JH22 (Qr2 — Qi + Arayrr)
T11 = 5 = ; (4.81)
Vei(zir) g AL (AiAp
Bo Krr KipA
T13 = 13, (4.82)
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£13 = —2(y, W, T13 — Wi, T12 + w2, Ip, (4.83)

Qri — Qri + Ariir1 — 3282 (Qr2 — Qi + Arorr)

B 4.84
i Yar 4 Ak _ (ApiAg)? ’ ( )
o Kgrr K;RTA
i _QL2+QLI_AL2@LT+E—%%T@
Ii5 = - = ’ (485)
Tig = - = , (486)
(l&a + _E_z_)
fﬁa KRT
; tuAn — #1542
7 = 11 1 15 o (487)
Krr
; T14AR1 — T16A :
T8 = 144R1 1641R2 Biar, —_—

Kpr

It needs to be stressed that most of these states are not defined as small signal variables and reflect
total state values for some state variables. The states associated with the linear stand model are
expressed as small signal deviation state values. The states associated with the hydraulic actuators

are not expressed as small signal state variables.

4.8 Conclusion

In this chapter the solution methodologies for each of the models identified in chapter 3 were dis-
cussed. These models were incorporated into a mill simulator and the chapter ended with the ex-
pression of the nonlinear state space model associated with the hydraulic actuator and stand model
combination. The tension model can not operate independently and uses the roll gap model in order
to solve the implicit relationship between the tensions and the roll gap speeds as well as the time
advancement of the tension simulation. The tension model is solved at a specific time instance using
the draft value at the middle of the strip. These tension values are used in the solution process of
the nonlinear state-space model of the stand and actuators combination. In the following chapter,

simulation results and the system identification for control purposes will be shown.
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