
Chapter 7

Simulation and Empirical Analysis

This chapter contains an empirical study of the performance of the five multi-objective

ant colony optimisation algorithms presented in this thesis, and an analysis of the influ-

ence of various algorithmic features on performance. The five algorithms are compared

to each other and also to a state-of-the-art, multi-objective evolutionary algorithm, the

NSGA-II, which was adapted in this thesis (refer to Section 6.7) for the multi-objective,

power-aware routing problem. This chapter refers to the adapted NSGA-II as the NSGA-

II-MPA. Several numeric simulations are presented and discussed with the goal of vali-

dating the algorithms which have been implemented.

The remainder of this chapter is organised as follows: Section 7.1 describes the ex-

perimental procedure which was followed in order to test the five algorithms. Section 7.2

presents the empirical analysis of control parameters. Section 7.3 discusses parameter

settings for NSGA-II-MPA. Section 7.4 compares the implemented algorithms, while

Section 7.5 concludes the chapter.

7.1 Experimental Procedure

Different network configurations (scenarios) are tested for each algorithm and the Pareto

fronts are obtained for each of the algorithms. The following subsections describe the

different network scenarios, the simulation environment, and the performance measures

used to compare the different Pareto fronts.

7.1.1 Network Scenarios

A number of different network scenarios were considered, where the characteristics of

each scenario differ in the number of nodes, NG, pause time, Tsm, and the global range

of the mobility model, Rg. Table 7.1 illustrates the different values for NG, Tsm and Rg,

from which a total of 54 scenarios have been generated as listed in Table 7.2.
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Table 7.1: Different simulation parameters used to generate network scenarios

NG Tsm Rg

value 1 30 1 sec 300 m

value 2 100 2 sec 500 m

value 3 300 3 sec 800 m

value 4 4 sec

value 5 5 sec

value 6 6 sec

Table 7.2: List of scenarios for comparing the algorithms
Scenario Configuration Scenario Configuration
Name Name
scenario 1a NG = 30, Rg = 300 m, Tsm = 1 sec scenario 6a NG = 100, Rg = 800, Tsm = 1 sec
scenario 1b NG = 30, Rg = 300 m, Tsm = 2 sec scenario 6b NG = 100, Rg = 800, Tsm = 2 sec
scenario 1c NG = 30, Rg = 300 m, Tsm = 3 sec scenario 6c NG = 100, Rg = 800, Tsm = 3 sec
scenario 1d NG = 30, Rg = 300 m, Tsm = 4 sec scenario 6d NG = 100, Rg = 800, Tsm = 4 sec
scenario 1e NG = 30, Rg = 300 m, Tsm = 5 sec scenario 6e NG = 100, Rg = 800, Tsm = 5 sec
scenario 1f NG = 30, Rg = 300 m, Tsm = 6 sec scenario 6f NG = 100, Rg = 800, Tsm = 6 sec
scenario 2a NG = 30, Rg = 500 m, Tsm = 1 sec scenario 7a NG = 300, Rg = 300, Tsm = 1 sec
scenario 2b NG = 30, Rg = 500 m, Tsm = 2 sec scenario 7b NG = 300, Rg = 300, Tsm = 2 sec
scenario 2c NG = 30, Rg = 500 m, Tsm = 3 sec scenario 7c NG = 300, Rg = 300, Tsm = 3 sec
scenario 2d NG = 30, Rg = 500 m, Tsm = 4 sec scenario 7d NG = 300, Rg = 300, Tsm = 4 sec
scenario 2e NG = 30, Rg = 500 m, Tsm = 5 sec scenario 7e NG = 300, Rg = 300, Tsm = 5 sec
scenario 2f NG = 30, Rg = 500 m, Tsm = 6 sec scenario 7f NG = 300, Rg = 300, Tsm = 6 sec
scenario 3a NG = 30, Rg = 800 m, Tsm = 1 sec scenario 8a NG = 300, Rg = 500, Tsm = 1 sec
scenario 3b NG = 30, Rg = 800 m, Tsm = 2 sec scenario 8b NG = 300, Rg = 500, Tsm = 2 sec
scenario 3c NG = 30, Rg = 800 m, Tsm = 3 sec scenario 8c NG = 300, Rg = 500, Tsm = 3 sec
scenario 3d NG = 30, Rg = 800 m, Tsm = 4 sec scenario 8d NG = 300, Rg = 500, Tsm = 4 sec
scenario 3e NG = 30, Rg = 800 m, Tsm = 5 sec scenario 8e NG = 300, Rg = 500, Tsm = 5 sec
scenario 3f NG = 30, Rg = 800 m, Tsm = 6 sec scenario 8f NG = 300, Rg = 500, Tsm = 6 sec
scenario 4a NG = 100, Rg = 300 m, Tsm = 1 sec scenario 9a NG = 300, Rg = 800, Tsm = 1 sec
scenario 4b NG = 100, Rg = 300 m, Tsm = 2 sec scenario 9b NG = 300, Rg = 800, Tsm = 2 sec
scenario 4c NG = 100, Rg = 300 m, Tsm = 3 sec scenario 9c NG = 300, Rg = 800, Tsm = 3 sec
scenario 4d NG = 100, Rg = 300 m, Tsm = 4 sec scenario 9d NG = 300, Rg = 800, Tsm = 4 sec
scenario 4e NG = 100, Rg = 300 m, Tsm = 5 sec scenario 9e NG = 300, Rg = 800, Tsm = 5 sec
scenario 4f NG = 100, Rg = 300 m, Tsm = 6 sec scenario 9f NG = 300, Rg = 800, Tsm = 6 sec
scenario 5a NG = 100, Rg = 500 m, Tsm = 1 sec scenario 5d NG = 100, Rg = 500, Tsm = 4 sec
scenario 5b NG = 100, Rg = 500 m, Tsm = 2 sec scenario 5e NG = 100, Rg = 500, Tsm = 5 sec
scenario 5c NG = 100, Rg = 500 m, Tsm = 3 sec scenario 5f NG = 100, Rg = 500, Tsm = 6 sec

154

 
 
 



Values of NG from 30 to 300 represent a small to large network which enables a

scalability analysis of the algorithms. Values of Tsm from 1 sec to 6 sec determine how

often the environment changes and represent high to low change frequencies. Values of

Rg from 300 meters to 800 meters determine the amount of displacement of the current

location of the optimum and represent low to high change severities.

The performance of each algorithm was tested under all 54 scenarios. For each of

the scenarios 30 independent simulations have been executed and results are reported as

averages over these simulations. Both the comparative results and the empirical results of

the impact of the parameters in terms of the performance of each algorithm are reported

in Section 7.4.

In order to test the quality of the solutions, a high initial energy of 400 energy units

was used for each node.

7.1.2 Simulation Environment

The simulation environment generates a network topology consisting of a number of

nodes. Initial placement of nodes was made randomly within the simulation environment,

which is a circular area with a diameter of 300m, 500m, or 800m. Nodes move within

this area according to the RPGM model (refer to Section 6.5). The centre of the circular

area is also mobile, and its motion follows the RWP model (refer to Section 2.4).

All the nodes have a resting period of Tsm seconds. Tsm determines the change

frequency. The performance of each algorithm was checked for Tsm = 1, Tsm = 2,

Tsm = 3, Tsm = 4, Tsm = 5, and Tsm = 6 seconds. After the resting period all the

nodes moved in accordance with the RWP mobility model. This process repeated itself

throughout the simulation, thus bringing about continuous changes in the topology of

the underlying network. The number of changes for each simulation is STtot / Tsm, where

STtot is the total simulation time.

Before the topology changes, a number of iterations of the multi-objective optimisa-

tion algorithm had taken place and, at each iteration, each ant had calculated a solution,

T , evaluated the solution and, if non-dominated, inserted the solution into the Pareto

set, Ps. Thereafter, the solutions in Ps which were dominated by T were deleted from

Ps. Before the mobility model was applied again, a packet was sent from the source

node to the destination node using a random route, Ts, from the Pareto set list and the

ApplyMobilityChanges procedure was executed (refer to Algorithm 12).
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7.1.3 Performance Measures

The five proposed algorithms and the NSGA-II-MPA algorithm each produced an esti-

mated Pareto front, PF (PEEMACOMP , PEEMACOMH , PEEMMASMP , PEEMMASMH ,

PEEMACOMC , and PNSGA−II−MPA). Each PF was evaluated using three quantitative

metrics, discussed in Section 4.7.2:

• The ND metric: The number of non-dominated solutions is computed, noted as

n̄alg in the result tables.

• The spread metric: The diversity of solutions in each Pareto front is computed

using the spread metric, noted %̄ in the result tables.

• The hypervolume measure: The size of the dominated space is computed using

the hypervolume measure, noted ξ̄ in the result tables.

Simulation of the five algorithms presented the following practical problems. Firstly,

due to mobility, different independent runs of the algorithms produced results that dif-

fered significantly. To overcome this high variability, performance measures were calcu-

lated as averages over 30 independent runs for each of the algorithms. For each scenario,

each algorithm is therefore executed thirty times, with each execution starting from dif-

ferent initial conditions. For each run of an algorithm a Pareto-optimal set of solutions,

PF , was computed, one for each network topology. The number of times that one al-

gorithm has a better nalg, %, and ξ average than all the other algorithms before each

change, is counted and referred to as nw
alg, %w, and ξw respectively. The total average

for all iterations before a change to the environment occurs, further averaged over 30

simulations is calculated for each metric and referred to as n̄alg, %̄, and ξ̄. The standard

deviation, and a 95% confidence interval, CI, is provided next to each value.

Secondly, when simulating the algorithms the network topology changes after the

mobility model is applied. For fair comparison among the different algorithms, it is

important that the algorithms are tested on the same sequence of topology changes.

Therefore, based on the mobility model used, a sequence of node changes is determined

for each of the 30 runs. All algorithms are then evaluated on these change sequences.

The objective of the experiments is to analyse and compare the performance of the

six algorithms according to the metrics listed above.
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7.1.4 Sending a Packet

A network initialised with random or uniform pheromone tables will not contain any

useful information about good routes. After a short time has elapsed, the largest prob-

abilities in the pheromone tables of each node will define relatively optimal routes. For

example, after 500 time steps or 5 seconds, the algorithm will converge on typically good

routes in relation to the five objectives, and a packet may be sent from the source to

the destination. Therefore, each algorithm runs for the allowed pause time, Tsm, before

sending a packet.

7.2 Empirical Analysis of the Ant-Based Algorithms

Control Parameters

The space of possible control parameter settings for the five ant algorithms is large,

including parameters r0, ρl, ρg, α, βν , βξ, βπ, β%, βς , λE, λν , λξ, λπ, λ%, λς , and Pas.

The objective of this section is to perform a sensitivity analysis of these parame-

ters in order to derive suggestions of how the parameters should be initialized for best

performance. For each parameter, a number of values were tested while all the other pa-

rameters were held constant. The default value of the parameters is: βν = 3.0, βξ = 3.0,

βπ = 3.0, β% = 3.0, βς = 3.0, STtot=120sec, r0 = 0.5, ρl = 0.5, ρg = 0.5, α = 1.0, λE = 6,

λν = 0.2, λξ = 0.2, λπ = 0.2, λ% = 0.2, λς = 0.2, Pas = 100. These values were obtained

using a trial-and-error process for finding preliminary best parameter settings. For each

parameter value the Pareto front, PF , was obtained using the process described in Sec-

tion 7.1.3. The performance metrics listed in Section 7.1.3 were computed for each of

these Pareto fronts and used to determine the best values for each control parameter.

Due to space limitations, the influence of parameter values is only presented for a 30

nodes network.

The results of the empirical analysis of the ant-based algorithms control parameters

are illustrated in Tables D.1-D.18 in Appendix D. Graphs of the performance metrics

as a function of the different control parameters, Tsm and Rg, based on Tables D.1-

D.18, are presented in Appendix E using the FluxViz software [1]. Relations between

the different performance metrics and the parameter values with reference to different

change frequencies are illustrated in two dimension figures. Each value is the average of
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the three change severities. Relations between the different performance metrics and the

parameter values with reference to different change severities are also illustrated in two

dimension figures, where each value is the average of the six change frequencies.

The following subsections perform an empirical analysis of the sensitivity of the

algorithms to the above parameters.

7.2.1 Heuristics vs Pheromone Parameters

Parameters βν , βξ, βπ, β%, and βς set the relative importance of heuristic versus pheromone

information. In the transition rules for the developed algorithms (refer to equations

(6.20), (6.31), (6.42), (6.48), and (6.54)), parameters βψ, where ψ represents either ν, ξ,

π, %, or ς depending on the sub-objective, are the exponents of heuristics, ηψij
, which

are defined as in equations (6.13)-(6.17). Heuristic values ranged between 0 (high link

cost) and 1 (small link cost).

The larger the value of βψ, the smaller the emphasis on heuristic information, and

learned desirability discovered by pheromone trails is favored. In this case, ants may

choose non-optimal paths too quickly. On the other hand, a small value for βψ gives

higher priority to heuristic information over pheromone and the algorithm becomes more

greedy and leads to increased exploration.

In order to find the best value for all βψ parameters, values for these parameters were

randomly selected from the range [1, 7]. The values (βν , βξ, βπ, β%, βς) ∈ {(1, 1, 1, 1, 1),

(3, 3, 3, 3, 3), (3.5, 4, 4.5, 4, 5), (4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5), (7, 7, 7, 7, 7)} were selected and

tested. For this study the rest of the parameter values were fixed as in Section 7.2.

Tables D.1-D.3 in appendix D summarise the empirical results for βψ using the n̄alg,

%̄ and ξ̄ metrics. These results are visualised using the FluxViz software in Figures E.1-

E.15 in appendix E. These figures highlights the best results with blue indicating the

best values for the n̄alg, %̄ and ξ̄ metrics. Relations between the different performance

metrics and the βψ values with reference to different change frequencies are illustrated in

Figures 7.1-7.3. Relations between the different performance metrics and the βψ values

with reference to different change severities are illustrated in Figures 7.4-7.6. The βψ

axis represents the combination of the parameters (βν , βξ, βπ, β%, βς) used in the exper-

iments. Axis values of βψ=1, 2, 3, 4, 5, 6 respectively refer to parameter combinations

(1, 1, 1, 1, 1), (3, 3, 3, 3, 3), (3.5, 4, 4.5, 4, 5), (4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5), and (7, 7, 7, 7, 7).

The larger the number of non-dominated solutions, n̄alg, the better the effectiveness
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of the MOO algorithm in generating desired solutions. A value of zero for %̄ indicates that

all members of the Pareto front are equidistantly spaced. A higher value of ξ̄ indicates

that the obtained Pareto front is closer to the true Pareto front.

For each βψ parameter combination, referred to as an experiment, six different change

frequencies (with Tsm ∈ {1, 2, 3, 4, 5, 6}) and three different change severities (with

Rg ∈ {300, 500, 800}) were used. The same applies with the rest of the sections for

the empirical analysis of the ant-based algorithms control parameters.

The rest of this section discusses the results obtained from the experiments with

regards to the influence of βψ on the performance metrics.

1. Influence of βψ on the number of non-dominated solutions, n̄alg.

Irrespective of the change frequency and change severity, for (βν , βξ, βπ, β%, βς) ∈
{(1, 1, 1, 1, 1), (3, 3, 3, 3, 3)} all the algorithms produced a very low number of non-

dominated solutions (refer to Figures E.1, E.4, E.7, E.10, E.13, 7.1, 7.4). For values

of (βν , βξ, βπ, β%, βς) = (3.5, 4, 4.5, 4, 5), (βν , βξ, βπ, β%, βς) = (4.5, 5, 3.5, 4, 4), and

(βν , βξ, βπ, β%, βς) = (5, 5, 5, 5, 5) the best values of n̄alg were obtained. There-

fore, βψ should be large enough in order to have a strong focus on pheromone

information.

For all the experiments, n̄alg decreased with increase in change frequency, Tsm

(refer to Figure 7.1), which is expected. As frequency of change increases, the

time available for adaptation becomes shorter and it becomes more difficult to find

optimum solutions.

Also, n̄alg decreased with increase in change severity, Rg (refer to Figure 7.4), which

is also expected. With high change severity there is a large displacement of the

current location of the optimum and it is more difficult to adapt and to find optimal

solutions.

2. Influence of βψ on the spread metric, %̄.

Irrespective of the change frequency and change severity, for (βν , βξ, βπ, β%,

βς) ∈ {(1, 1, 1, 1, 1), (3, 3, 3, 3, 3)} all the algorithms displayed a higher value for

%̄ which means less uniformly distributed solutions (refer to Figures E.2, E.5,

E.8, E.11, E.14). For all values of (βν , βξ, βπ, β%, βς) ∈ {(3.5, 4, 4.5, 4, 5),

(4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5), (7, 7, 7, 7, 7)} lower values of %̄ (more uniformly dis-
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tributed solutions) were obtained. Higher values of βψ, and therefore a strong

focus on pheromone information, produced a better solution spread.

A decrease in change frequency, Tsm, leads to more uniformly distributed solutions

(refer to Figure 7.2), which is expected. As the change frequency decreases, the

time left for adaptation gets larger and there are more iterations available to track

the optima. The archive is more likely to become full several times, and each time

the crowding distance is used in selecting which solution in the archive will be

replaced with a new solution. This promotes diversity among the stored solutions

in the archive since those solutions which are in the most crowded areas are most

likely to be replaced by a new solution. At the end the archive will contain more

non-dominated solutions which are in the least crowded area in the objective space,

therefore, maintaining a good spread of non-dominated solutions.

The value of %̄ increased with increase in change severity, Rg (refer to Figure 7.5),

which is also expected. When Rg increases, more iterations are needed to track

the optima after the change occurred and therefore the distribution of solutions

decreases correspondingly.

3. Influence of βψ on the hypervolume metric, ξ̄.

For (βν , βξ, βπ, β%, βς) ∈ {(1, 1, 1, 1, 1), (3, 3, 3, 3, 3)} all the algorithms displayed

a lower value of the ξ̄ metric (refer to Figures E.3, E.6, E.9, E.12, E.15). For

all values of (βν , βξ, βπ, β%, βς) ∈ {(3.5, 4, 4.5, 4, 5), (4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5)}
the best values of ξ̄ were obtained. For (βν , βξ, βπ, β%, βς) = (7, 7, 7, 7, 7) all the

algorithms presented a decline in value of the ξ̄ metric (refer to Figures 7.3, 7.6)

which shows that too much exploitation is not good. These observations are true

for all change frequencies (refer to Figure 7.3) and all change severities (refer to

Figure 7.6).

The graphs indicate an increase in ξ̄ with decrease in change frequency (refer to Fig-

ure 7.3). This result is expected since low change frequency gives more iterations,

and theoretically is supposed to produce a uniform distribution of the solutions

and closeness of the solutions to the optimal Pareto set, thus increasing the size

of the dominated space (hypervolume measure). Also, the graphs indicate an in-

crease of hypervolume, ξ̄, with decrease in change severity (refer to Figure 7.6). It

is intuitive to assume that smaller change severities are easier to adapt to, primar-
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ily by transferring solutions from the past optimisation problem which may help

to accelerate the rate of convergence to the optima, after a change has occurred.

Therefore the closeness of the solutions to the optimal Pareto set should be getting

worse as the change severity increases.

For the values of (βν , βξ, βπ, β%, βς) ∈ {(3.5, 4, 4.5, 4, 5), (4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5)},
all algorithms displayed the best value, with reference to all three metrics. Accordingly,

the value of (βν , βξ, βπ, β%, βς) = (3, 4, 4.5, 4, 5) was adopted for the remainder of the

simulations.
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Figure 7.1: Influence of βψ on n̄alg metric, for different change frequencies, Tsm
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Figure 7.2: Influence of βψ on %̄ metric, for different change frequencies, Tsm
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Figure 7.3: Influence of βψ on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.4: Influence of βψ on n̄alg metric, for different change severities, Rg
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Figure 7.5: Influence of βψ on %̄ metric, for different change severities, Rg
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Figure 7.6: Influence of βψ on ξ̄ metric, for different change severities, Rg
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7.2.2 Exploration Vs Exploitation Parameter, r0

The parameter, r0, is used in the ACS transition rule (refer to equations (6.20), (6.31),

(6.54)) to control the balance between exploration and exploitation of the search space.

Parameter r0 takes values within the interval [0, 1]. When r0 approaches zero, exploration

is favoured. More focus can be given on exploitation instead of exploration by increasing

the value of r0.

In order to find the best value for r0, five values were considered, namely r0 ∈
{0.1, 0.3, 0.5, 0.7, 0.9}.

Since r0 is an ACS specific parameter, the influence of r0 is investigated only for

the EEMACOMP, EEMACOMH and EEMACOMC algorithms, as these make use of

the ACS equation to compute the transition probability (see equations (6.20), (6.31),

(6.54)).

Tables D.4-D.6 summarise the empirical results for r0 using the n̄alg, %̄ and ξ̄ metrics.

Results are visualised in Figures E.16-E.24. Relations between the different performance

metrics and the r0 values with reference to different change frequencies are illustrated in

Figures 7.7-7.9. Relations between the different performance metrics and the r0 values

with reference to different change severities are illustrated in Figures 7.10-7.12.

The following parameter values were used based on the result of the previous section:

βν = 3.5, βξ = 4.0, βπ = 4.5, β% = 4.5, and βς = 5.0. The rest of the parameter values

were fixed as in Section 7.2.

The rest of this section discusses the results obtained from the experiments with

regards to the influence of r0 on the performance metrics.

1. Influence of r0 on the number of non-dominated solutions, n̄alg.

For the values of r0 ∈ {0.5, 0.7, 0.9} all the algorithms produced the largest n̄alg

irrespective of change frequencies and change severities. For r0 = 0.1 and r0 = 0.3

results are similar to the values of r0 ∈ {0.5, 0.7, 0.9} for lower change frequencies

(Tsm ∈ {3, 4, 5, 6}). For r0 = 0.1 and r0 = 0.3 and higher change frequencies

(Tsm = 1 and Tsm = 2) all the algorithms produced a very low number of non-

dominated solutions compared to larger values of Tsm (refer to Figure 7.7). This

result is expected because for r0 = 0.1 and r0 = 0.3 there is a high exploration

of the search space and if the change frequency is too high environment changes

may occur before convergence. That is, high exploration negatively affected the
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number of non-dominated solutions for high change frequencies. For the values of

r0 ∈ {0.5, 0.7, 0.9} all the algorithms produced the largest n̄alg for high change

frequencies which indicates that exploitation should be preferred under high change

frequencies.

For all the experiments, n̄alg increased with decrease in change frequency, Tsm

(refer to Figure 7.7). This result is expected as low change frequencies provides

more time to explore the search space, thereby finding more solutions.

The EEMACOMH algorithm produced the lowest number of non-dominated solu-

tions for Rg = 800, for all values of r0 (refer to Figure 7.10(b)).

Independent of change frequency and change severity, the best values for r0 are

r0 ∈ {0.5, 0.7, 0.9} (refer to Tables D.4-D.6 and Figures E.16, E.19, E.22).

2. Influence of r0 on the spread metric, %̄.

For values of r0 ∈ {0.5, 0.7, 0.9} all the algorithms produced a lower spread metric

value producing more uniformly distributed solutions.

Values of r0 = 0.1 and r0 = 0.3 produced the largest spread metric value with high

change frequencies (Tsm = 1 and Tsm = 2). That is, high exploration negatively

affected the solution spread for high change frequencies. The values of r0 = 0.1

and r0 = 0.3 produced a low spread metric value with low change frequencies

(Tsm ∈ {3, 4, 5, 6}), for all ACO algorithms.

The graphs indicate an increase in %̄ (i.e. deterioration in the solution spread)

with increase in change severity (refer to Figure 7.11). When Rg increases, more

iterations are needed to track the optima after the change occurred and therefore

less time is available to reach a good distribution of solutions.

The best values for the solution spread are produced with r0 = 0.5, irrespective of

change frequencies and change severities (refer to Tables D.4-D.6 and Figures E.17,

E.20, E.23).

3. Influence of r0 on the hypervolume metric, ξ̄.

For all change frequencies and all change severities the values of r0 = 0.1 and r0 =

0.3 produced the worst results for the hypervolume metric (refer to Figures E.18,

E.21, E.24). That is, high exploration negatively affected the ξ̄ metric. This is
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related to the fact that the computational load of the hypervolume calculation

sharply increases, the more criteria are considered (when the number of objectives

increases). Combined with a high exploration of the search space, environment

changes may occur before convergence thus affecting the hypervolume.

The graphs indicate an increase in ξ̄ with decrease in change frequency (refer to

Figure 7.9). Also, the graphs indicate an increase in ξ̄, with decrease in change

severity (refer to Figure 7.12).

The best values for the hypervolume were produced with r0 = 0.5, for all change

frequencies and all change severities.

A value of r0 = 0.5 offers the best trade-off between metrics n̄alg, %̄ and ξ̄ for all

change frequencies and all change severities. Therefore, a value of 0.5 for r0 was adopted

for the remainder of the simulations.
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Figure 7.7: Influence of r0 on n̄alg metric, for different change frequencies, Tsm
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Figure 7.8: Influence of r0 on %̄ metric, for different change frequencies, Tsm
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Figure 7.9: Influence of r0 on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.10: Influence of r0 on n̄alg metric, for different change severities, Rg
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Figure 7.11: Influence of r0 on %̄ metric, for different change severities, Rg
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Figure 7.12: Influence of r0 on ξ̄ metric, for different change severities, Rg

7.2.3 Local Decay Parameter, ρl

After each solution construction step, the local updating rule is applied for all the ACS

based algorithms (refer to equations (6.26) and (6.37)). The local decay parameter, ρl,

determines the rate at which pheromone on all the paths are evaporated after each step.

Parameter ρl has values within the interval [0, 1]. A high value of ρl leaves less pheromone

at each step. Consequently, the ants have less information on other ants’ paths, and the
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search is less focused, favouring exploration. More focus can be given on exploitation

instead of exploration by decreasing the value of ρl.

In order to find the best value for ρl, five values for ρl were considered, namely

ρl ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Since ρl is an ACS parameter, the influence of ρl is

investigated only for the EEMACOMP, EEMACOMH and EEMACOMC algorithms, as

these make use of the ACS local update rule. The following parameter values were used

based on the result of sections 7.2.1-7.2.2: βν = 3.5, βξ = 4.0, βπ = 4.5, β% = 4.5,

βς = 5.0, and r0 = 0.5. The rest of the parameter values were fixed as in Section 7.2.

Tables D.7-D.9 summarise the empirical results for control parameter ρl using the

n̄alg, %̄ and ξ̄ performance metrics. Results are visualised in Figures E.25-E.33 and 7.13-

7.18.

The rest of this subsection discusses the results obtained from the experiments with

regards to the influence of ρl on the performance metrics.

1. Influence of ρl on the number of non-dominated solutions, n̄alg.

All the algorithms produced high values for n̄alg for all values of ρl and low change

frequencies (Tsm ∈ {5, 6}). For values of ρl = 0.1 and ρl = 0.3 and high change

frequencies (Tsm ∈ {1, 2, 3, 4}) (refer to Figure 7.13) all the algorithms struggled

to find many non-dominated solutions. It is clear that too much exploitation

(small ρl) is not good under high change frequency with regard to n̄alg. In fact,

this observation is true for change frequencies Tsm ∈ {1, 2, 3, 4} and all change

severities (refer to Figures E.25, E.28, E.31, 7.13, 7.16).

For all the experiments, n̄alg decreased with increase in change frequency (refer to

Figure 7.13). This result is expected since, as frequency of change increases, the

time available for adaptation becomes shorter and it becomes more difficult to find

optimum solutions.

Results for Rg = 800 show that the EEMACOMH algorithm produced the lowest

number of non-dominated solutions (refer to Figure 7.16(b)).

The best results for the n̄alg metric were obtained with ρl ∈ {0.5, 0.7}, irrespective

of change frequencies and change severities (refer to Tables D.7-D.9 and Figures

E.25, E.28, E.31, 7.13, 7.16).

2. Influence of ρl on the spread metric, %̄.
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Results for ρl = 0.1 and ρl = 0.3 show that all the algorithms failed in obtaining

a good spread in the found non-dominated solutions (refer to Figures E.26, E.29,

E.32), irrespective of change severities and for change frequencies Tsm ∈ {1, 2, 3, 4}.
The spacing metric for ρl = 0.9 is also higher (obtaining less uniformly distributed

solutions) than the spacing metric obtained with ρl ∈ {0.5, 0.7}. It is also clear that

too much exploration (very large ρl) and too much exploitation (small ρl) is not

good (refer to Figures 7.14 and 7.17). In fact this observation is true for all change

frequencies and all change severities. A balance of exploration and exploitation

is needed, which is achieved with a ρl ∈ {0.5, 0.7} (refer to Tables D.7-D.9 and

Figures 7.14 and 7.17).

The graphs indicate a deterioration in the solution spread with increase in change

frequency (refer to Figure 7.14). A decrease in change frequency leads to more

uniformly distributed solutions, which is expected (refer to Section 7.2.1 on page

160).

The graphs indicate a deterioration in the solution spread with increase in change

severity (refer to Figure 7.17). That is, high change severity negatively affected

the solution spread.

3. Influence of ρl on the hypervolume metric, ξ̄.

Irrespective of the change frequency and change severity, all algorithms succeeded

in obtaining good performance with respect to the hypervolume metric (refer to

Figures E.27, E.30, E.33). A general trend that is observed over all values of Tsm

and Rg is that performance peaks at ρl = 0.5 and ρl = 0.7. Again this indicates

that a balance between exploration and exploitation is best for this dynamic envi-

ronment, since a high value of ρl which favours exploration and a low value of ρl

which favours exploitation produced the lowest values for the hypervolume (refer

to Figures 7.15 and 7.18).

The graphs indicate in most cases an increase in ξ̄ with decrease in change frequency

(refer to Figure 7.15). This result is expected, since low change frequency gives

more time for adaptation and is supposed to produce a uniform distribution of the

solutions and closeness of the solutions to the optimal Pareto set.

A value of ρl = 0.5 and ρl = 0.7 offers the best trade-off between metrics n̄alg, %̄ and

ξ̄ for all change frequencies and all change severities. Accordingly, the value of 0.5 for ρl
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was adopted for the remainder of the simulations.
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Figure 7.13: Influence of rl on n̄alg metric, for different change frequencies, Tsm
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Figure 7.14: Influence of rl on %̄ metric, for different change frequencies, Tsm
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Figure 7.15: Influence of rl on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.16: Influence of rl on n̄alg metric, for different change severities, Rg
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Figure 7.17: Influence of rl on %̄ metric, for different change severities, Rg
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Figure 7.18: Influence of rl on ξ̄ metric, for different change severities, Rg
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7.2.4 Global Decay Parameter, ρg

After each iteration, all ants found a solution and the global updating rule is applied

(refer to equations (6.24), (6.35), and (6.56). The global decay or global evaporation

parameter, ρg, sets the amount of pheromone that evaporate on the paths after each

loop, as for ρl. A high value of ρg will help finding more solutions instead of focusing on

a specific solution.

In order to find the best value for ρg, five values were considered, namely ρg ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. The influence of ρg was investigated for all five algorithms.

The following parameter values were used based on the result of sections 7.2.1-7.2.3:

βν = 3.5, βξ = 4.0, βπ = 4.5, β% = 4.5, βς = 5.0, r0 = 0.5, and ρl = 0.5. The rest of the

parameter values were fixed as in Section 7.2.

Tables D.10-D.12 summarise the empirical results for control parameter ρg using the

n̄alg, %̄ and ξ̄ metrics. Results are visualised in Figures E.34-E.48 and 7.19-7.24.

The rest of this subsection discusses the results obtained from the experiments.

1. Influence of ρg on the number of non-dominated solutions, n̄alg.

Parameter ρg follows similar trends as for ρl with reference to n̄alg, except that there

is no real trend between n̄alg and the change frequency (refer to Figures E.25, E.28,

E.31, E.34, E.37, E.40, E.43, E.46). Values of ρg ∈ {0.5, 0.7} performed the best

for all change frequencies (refer to Figure 7.19) and for all change severities (refer

to Figure 7.22).

2. Influence of ρg on the spread metric, %̄.

Results for ρg = 0.1 and ρg = 0.3 show that all the algorithms failed in obtaining

a good spread in the found non-dominated solutions (refer to Figures E.35, E.38,

E.41, E.44, E.47), irrespective of change severities and change frequencies. For

ρg = 0.9, the spread metric is higher than the spread metric obtained with ρg ∈
{0.5, 0.7}. It seems to be a general trend for all results thus far that too much

exploration (very large ρg) and too much exploitation (small ρg) is not good. For

ρg = 0.9 there is high pheromone evaporation and the search is very random.

Consequently, it takes more time for the algorithms to converge to a solution. That

explains the high value of %̄. For ρg = 0.1 and ρg = 0.3 there is high pheromone

concentration and ants tend to converge to the same solution. There is a too early

convergence to sub-optimal solutions, which again explains the high value of %̄.
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Again, parameter ρg follows the same trends as for ρl with reference to %̄. Values

of ρg ∈ {0.5, 0.7} performed the best (refer to Tables D.10-D.12 and Figures 7.20

and 7.23).

3. Influence of ρg on the hypervolume metric, ξ̄.

Parameter ρg follows the same trends as for ρl with reference to ξ̄ (refer to Fig-

ures E.27, E.30, E.33, E.36, E.39, E.42, E.45, E.48).

A general trend that was observed over all values of Tsm and Rg is that perfor-

mance peaks at ρg = 0.5 and ρg = 0.7 (refer to Figures 7.21 and 7.24). Again

this indicates that a balance between exploration and exploitation is best for this

dynamic environment.

A value of ρg = 0.5 and ρg = 0.7 offered the best trade-off between metrics n̄alg,

%̄ and ξ̄ for all change frequencies and all change severities. Accordingly, the value of

ρg = 0.7 was adopted for the remainder of the simulations.
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Figure 7.19: Influence of ρg on n̄alg metric, for different change frequencies, Tsm
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Figure 7.20: Influence of ρg on %̄ metric, for different change frequencies, Tsm
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Figure 7.21: Influence of ρg on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.22: Influence of ρg on n̄alg metric, for different change severities, Rg
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Figure 7.23: Influence of ρg on %̄ metric, for different change severities, Rg
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Figure 7.24: Influence of ρg on ξ̄ metric, for different change severities, Rg
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7.2.5 Importance of the Pheromone Trail Concentrations Pa-

rameter, α

As illustrated in equations (6.42) and (6.48), α controls the balance between exploration

and exploitation. Diversification of the solution searching process in the solution space

can be emphasized by decreasing the value of α and exploitation can be increased by

increasing the value of α. If α = 0, no pheromone information is used, i.e. previous

search experience is neglected. The search then degrades to a stochastic greedy search.

Because α is used only in equations (6.42) and (6.48), the influence of α was investi-

gated only for EEMMASMP and EEMMASMH. For the other three algorithms, α was

set to one.

In order to find the best value for α, six values were considered, namely α ∈
{1, 1.5, 2, 2.5, 3, 3.5}.

The following parameter values were used based on the results of sections 7.2.1-7.2.4:

βν = 3.5, βξ = 4.0, βπ = 4.5, β% = 4.5, βς = 5.0, r0 = 0.5, ρl = 0.5, and ρg = 0.7. The

rest of the parameter values were fixed as in Section 7.2.

Tables D.13-D.15 summarise the empirical results for α using the n̄alg, %̄ and ξ̄ met-

rics. Results are visualised in Figures E.49-E.54 and 7.25-7.30. The rest of this section

discusses the results obtained from the experiments with regards to the influence of α

on the performance metrics.

1. Influence of α on the number of non-dominated solutions, n̄alg.

For α = 3 and α = 3.5 all the algorithms produced a very low number of non-

dominated solutions compared to lower values of α. The best values for α are for

α ∈ {1, 1.5, 2, 2.5}, for all change frequencies and all change severities (refer

to Tables D.13-D.15 and Figures E.49, E.52, 7.25 and 7.28). For these values all

algorithms produced a very large number of non-dominated solutions.

The graphs indicate a small decrease in the number of non-dominated solutions

with increase in change frequency which is expected (refer to Figures E.49, E.52 and

7.25). As pointed out in section 7.2.1 on page 159, as change frequency increases,

the time available for adaptation becomes shorter and it becomes harder to find

optimum solutions.

Also, there is a small decrease in the number of non-dominated solutions with

increase in change severity (refer to Figures E.49, E.52 and 7.28).
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2. Influence of α on the spread metric, %̄.

The graphs indicate a small deterioration of the solution spread with higher values

of α (refer to Figures E.50 and E.53). The best values for the solution spread were

produced with α ∈ {1, 1.5, 2}, for all change frequencies and all change severities.

Figure 7.26 indicates a deterioration of the solution spread (i.e. higher %̄) with

increase in change frequency which is expected (refer to Section 7.2.1 on page

160). Also, there is a deterioration of the solution spread with increase in change

severity (refer to Figure 7.29). This result is expected since, when Rg increases,

more iterations are needed to track the optima after the change occurred and

therefore less time is available to reach a good distribution of solutions.

3. Influence of α on the hypervolume metric, ξ̄.

Values of α ∈ {1, 3, 3.5} produced the worst results for the hypervolume metric

(refer to Figures E.51 and E.54). This observation is true for all change frequencies

(refer to Figure 7.27) and all change severities (refer to Figure 7.30). That is, high

exploration and high exploitation negatively affected the ξ̄ metric.

The graphs indicate a small increase in ξ̄, with decrease in change frequency (refer

to Figure 7.27).

There is no pattern between ξ̄ and Rg, which indicates insensitivity of ξ̄ to Rg

(refer to Figure 7.30).

The best values for the hypervolume were produced with α ∈ {1.5, 2, 2.5}, for

all change frequencies and all change severities (refer to Tables D.13-D.15 and

Figures E.51, E.54, 7.27 and 7.30).

A value of α = 1.5 offered the best trade-off between metrics n̄alg, %̄ and ξ̄ for all

change frequencies and all change severities. Accordingly, the value of α = 1.5 was

adopted for the remainder of the simulations.
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Figure 7.25: Influence of α on n̄alg metric, for different change frequencies, Tsm
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Figure 7.26: Influence of α on %̄ metric, for different change frequencies, Tsm
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Figure 7.27: Influence of α on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.28: Influence of α on n̄alg metric, for different change severities, Rg
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Figure 7.29: Influence of α on %̄ metric, for different change severities, Rg
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Figure 7.30: Influence of α on ξ̄ metric, for different change severities, Rg
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7.2.6 η-Strategy Parameter

The η-strategy parameter, noted λE, is used to determine the reset value to reinitialise

pheromone values on links. The η-strategy is applied after a change in the environment

occurs in order to promote diversity. If λE → ∞ there is no pheromone conservation

and exploration is emphasized. For lower values of λE there is a higher pheromone

conservation and exploitation is promoted.

All algorithms were run using the η-strategy. The influence of λE on the performance

metrics n̄alg, %̄, and ξ̄ was therefore evaluated. In order to find the best value for λE,

four values for λE were considered, namely λE ∈ {2, 4, 6, 8}.
The following parameter values were used based on the result of sections 7.2.1-7.2.5:

βν = 3.5, βξ = 4.0, βπ = 4.5, β% = 4.5, βς = 5.0, r0 = 0.5, ρl = 0.5, ρg = 0.7, and

α = 1.5. The rest of the parameter values were fixed as in Section 7.2.

Tables D.16-D.18 summarise the empirical results for the control parameter λE using

the n̄alg, %̄ and ξ̄ metrics. Results are visualised in Figures E.55-E.69 and 7.31-7.36.

The rest of this subsection discusses the results obtained from the experiments with

regards to the influence of λE on the performance metrics n̄alg, %̄, and ξ̄.

1. Influence of λE on the number of non-dominated solutions, n̄alg.

Results for λE = 2 and λE = 8 show that all the algorithms struggled to find many

non-dominated solutions irrespective of change frequency (refer to Figure 7.31) and

irrespective of change severity (refer to Figure 7.34). All the algorithms produced

the largest number of non-dominated solutions for λE = 4 and λE = 6 (refer to

Figures E.55, E.58, E.61, E.64, E.67).

The graphs indicate a decrease in the number of non-dominated solutions with

increase in change frequency (refer to Figure 7.31).

Results for Rg = 800 show that the EEMACOMH algorithm produced the low-

est number of non-dominated solutions irrespective of the λE value (refer to Fig-

ure 7.34(b)).

2. Influence of λE on the spread metric, %̄.
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Irrespective of the change frequency and change severity, for λE = 2 and λE = 8 all

the algorithms displayed a higher value for %̄ which means less uniformly distributed

solutions (refer to Figures E.56, E.59, E.62, E.65, and E.68). For λE = 4 and

λE = 6 lower values of %̄ (more uniformly distributed solutions) were obtained.

A decrease in change frequency lead to more uniformly distributed solutions (refer

to Figure 7.32). As pointed out in section 7.2.1 on page 160, as frequency of change

decreases, the time available for adaptation becomes larger and the crowding dis-

tance operator is applied more times on the archive. At the end the archive will

contain more non-dominated solutions which are in the least crowded area in the

objective space, therefore, maintaining a good spread of non-dominated solutions.

The graphs indicate a deterioration of the solution spread with increase in change

severity (refer to Figure 7.35). That is, high change severity negatively affected the

solution spread. When the change severity increases there is not much information

gained from the past to reuse, and it takes more time to optimise the problem

and less time to explore, which explains the poor distribution of solutions as Rg

increases.

The best solution distribution is produced with λE = 4 and λE = 6, for all change

frequencies and all change severities (refer to Tables D.16-D.18 and Figures E.56,

E.59, E.62, E.65, E.68, 7.32, 7.35).

3. Influence of λE on the hypervolume metric, ξ̄.

A general trend that is observed over all values of Tsm and Rg is that performance

with reference to the hypervolume metric peaks at λE = 4 and λE = 6 (refer to

Figures E.57, E.60, E.63, E.66, E.69, 7.33, and 7.36). Again, this indicates that

a balance between exploration and exploitation is best for this dynamic environ-

ment. With λE = 4 and λE = 6, the relative difference of the pheromone trails

is small enough to increase exploration of new paths and large enough to increase

exploitation of existing paths.

The graphs indicate an increase in ξ̄ with decrease in change frequency (refer to

Figure 7.33).

There is no pattern between ξ̄ and Rg, which indicates insensitivity of ξ̄ to Rg

(refer to Figure 7.36), excluding the EEMACOMH which showed a decrease in ξ̄
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with Rg = 800 (refer to Figure 7.36(b)).

A value of λE = 4 and λE = 6 offered the best trade-off between metrics n̄alg, %̄ and

ξ̄ for all change frequencies and all change severities. Accordingly, the value off λE = 6

was adopted for the remainder of the simulations.
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Figure 7.31: Influence of λE on n̄alg metric, for different change frequencies, Tsm
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Figure 7.32: Influence of λE on %̄ metric, for different change frequencies, Tsm
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Figure 7.33: Influence of λE on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.34: Influence of λE on n̄alg metric, for different change severities, Rg
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Figure 7.35: Influence of λE on %̄ metric, for different change severities, Rg
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Figure 7.36: Influence of λE on ξ̄ metric, for different change severities, Rg
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7.2.7 Importance of the Objectives Parameters

The parameters λν , λξ, λπ, λ%, λς ∈ [0, 1] are user-defined parameters which set the

importance of the objectives in the search. For this thesis the assumption was made

that the objectives have the same importance in the search. Therefore, the value for

all λψ was set to 0.2. It is suggested that future research investigates the influence of

different values for these parameters on performance.

7.2.8 Pareto Archive Size

The size of the archive is fixed. If the number of solutions is more than the archive

size, solutions which have high density in the objective space, i.e. solutions with a lower

value of the crowding distance (refer to Section 4.6.2), are removed. On the other

hand if the archive is not full, the current non-dominated solutions are added until the

archive becomes full. Keeping a bound on the archive size may be important because

the Pareto-optimal set may be infinitely large, but also because updating and searching

through the archive will become very time-consuming if the archive is allowed to grow

without bound.

The size of the Pareto archive was limited to 100 since this value has been used by

different researchers [120, 225].

7.2.9 Summary of Ant Based Control Parameters which Affect

Exploration and Exploitation

In order for ACO algorithms to be applied to DOPs, mechanisms should be employed that

maintain diversity. This section summarises the control parameters for ACO algorithms

which influence the exploration and exploitation.

• Heuristics vs Pheromone Parameters, βψ

Parameters βψ=βν , βξ, βπ, β%, and βς set the relative importance of heuristic versus

pheromone information. The larger the value of βψ, the smaller the emphasis on

heuristic information, and learned desirability discovered by pheromone trails is

favored. On the other hand, a small value for βψ gives higher priority to heuristic

information over pheromone and the algorithm becomes more greedy and leads to

increased exploration.
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Higher values of βψ, and therefore a strong focus on pheromone information, pro-

duce a better solution spread. The highest number of non-dominated solutions and

the best value for the hypervolume metric are obtained with a balance between ex-

ploration and exploitation which is achieved for the values of (βν , βξ, βπ, β%, βς)

∈ {(3.5, 4, 4.5, 4, 5), (4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5)}.

• Exploration Vs Exploitation Parameter, r0

The parameter, r0, is used in the ACS transition rule (refer to equations (6.20),

(6.31), (6.54)) to control the balance between exploration and exploitation of the

search space. Parameter r0 takes values within the interval [0, 1]. When r0 ap-

proaches zero, exploration is favoured. More focus can be given on exploitation

instead of exploration by increasing the value of r0.

Irrespective of change frequencies and change severities, high exploration negatively

affected the number of non-dominated solutions while for high exploitation all the

algorithms produced the largest number of non-dominated solutions.

The best values for the hypervolume and the solution spread were produced with

a balance between exploration and exploitation which is achieved for the value of

r0 = 0.5, for all change frequencies and all change severities.

• Local Decay Parameter, ρl

The local decay parameter, ρl, determines the rate at which pheromone on all the

paths are evaporated after each step. Parameter ρl has values within the interval

[0, 1]. A high value of ρl leaves less pheromone at each step. Consequently, the ants

have less information on other ants’ paths, and the search is less focused, favouring

exploration. More focus can be given on exploitation instead of exploration by

decreasing the value of ρl.

A balance of exploration and exploitation is needed, which is achieved with a

ρl ∈ {0.5, 0.7}. These values offer the best trade-off between metrics n̄alg, %̄ and ξ̄

for all change frequencies and all change severities.

• Global Decay Parameter, ρg

The global decay or global evaporation parameter, ρg, sets the amount of pheromone

that evaporate on the paths after each iteration, as for ρl. A high value of ρg will

help to find more solutions instead of focusing on a specific solution.
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Irrespective of change frequencies and change severities, a balance of exploration

and exploitation is needed, which is achieved with a ρg ∈ {0.5, 0.7}. These values

offer the best trade-off between metrics n̄alg, %̄ and ξ̄.

• Pheromone Trail Concentrations Parameter, α

Diversification of the solution searching process in the solution space (exploration)

can be emphasized by decreasing the value of α and exploitation can be increased

by increasing the value of α. If α = 0, no pheromone information is used, i.e.

previous search experience is neglected. The search then degrades to a stochastic

greedy search.

For high values of α (high exploitation) all the algorithms produced a very low

number of non-dominated solutions compared to lower values of α. The best values

for α for the n̄alg metric are for α ∈ {1, 1.5, 2, 2.5}, for all change frequencies and

all change severities

There is a small deterioration of the solution spread with higher values of α. The

best values for the solution spread were produced with α ∈ {1, 1.5, 2}, for all

change frequencies and all change severities.

High exploration and high exploitation negatively affected the ξ̄ metric. The best

values for the hypervolume were produced with α ∈ {1.5, 2, 2.5}, for all change

frequencies and all change severities.

• η-Strategy Parameter

The η-strategy parameter, noted λE, is used to determine the reset value to reini-

tialise pheromone values on links. The η-strategy is applied after a change in

the environment occurs in order to promote diversity. If λE → ∞ there is no

pheromone conservation and exploration is emphasized. For lower values of λE

there is a higher pheromone conservation and exploitation is promoted.

A general trend that is observed over all values of change frequency and change

severity is that performance with reference to all the three metrics peaks at λE =

4 and λE = 6. Again, this indicates that a balance between exploration and

exploitation is best for this dynamic environment. With λE = 4 and λE = 6, the

relative difference of the pheromone trails is small enough to increase exploration

of new paths and large enough to increase exploitation of existing paths.

198

 
 
 



7.2.10 Summary of Ant Based Control Parameters

The performed empirical analysis of the ant based algorithms control parameters (refer

to Sections 7.2.1-7.2.8) showed that the performance and quality of the ACO algorithms

is sensitive to control parameters. The empirical analysis showed that a balance between

exploration and exploitation is good for the dynamic power aware optimization problem.

Also, high exploration negatively affected the number of non-dominated solutions and

the solution spread for high change frequencies.

Table 7.3 summarises the simulation control parameters and their values as resulted

from this empirical study for the proposed multi-objective power-aware routing ACO

algorithms.

7.3 NSGA-II-MPA Parameters

The control parameters of NSGA-II-MPA have been optimised using the same process

as described and conducted in section 7.2 for the ant-based algorithms. Table 7.4 lists

the values for the NSGA-II-MPA parameters that produced the best results for these

experiments.

7.4 Algorithm Comparison

This section has as its main objective to compare the EEMACOMP, EEMACOMH,

EEMMASMP, EEMMASMH, and EEMACOMC algorithms to each other and also to

the NSGA-II-MPA.

The remainder of this section is organised as follows: Subsection 7.4.1 describes the

followed experimental procedure. Section 7.4.2 discusses performance with reference

to the number of non-dominated solutions. Performance with reference to the spacing

metric is covered in Section 7.4.3. Section 7.4.4 discusses the results with reference to the

hypervolume metric. Section 7.4.5 analyses the performance of the algorithms over time

with reference to the performance metrics. Section 7.4.6 discusses the performance of the

optimisation criteria (power-aware routing objectives). Section 7.4.7 gives an overview

of the ranking of the algorithms. Section 7.4.8 discusses the computational complexity

of the algorithms, while Section 7.4.9 gives a summary of the overall performance of the

algorithms.
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Table 7.3: Simulation parameters for the MOO ACO algorithms

Parameter Value Applicable Algorithms

Number of Nodes, NG 30, 100, 300 ALL
Transmission Range, Tr 400m ALL
Rg 300m, 500m, 800m ALL
Simulation Time 120 ALL
Mobility Model RPGM ALL
Number of Ants 25 ALL
Source Node, S 4 ALL
Destination Node, D 28 if NG = 30 ALL

98 if NG = 100 or NG = 300
Network Timer, Tsm 1, 2, 3, 4, 5, 6 sec ALL
Exploration Vs Exploitation 0.5 EEMACOMP, EEMACOMH,
Parameter, r0 EEMACOMC
Local Evaporation 0.5 EEMACOMP, EEMACOMH,
Parameter, ρl EEMACOMC
Global Evaporation 0.7 ALL
Parameter, ρg

α 1.50 EEMMASMP, EEMMASMH
Initial Energy for Node i, Ei 400 ALL
η-Strategy Parameter, λE 6 ALL
λν 0.2 EEMACOMP, EEMMASMP
λξ 0.2 EEMACOMP, EEMMASMP
λπ 0.2 EEMACOMP, EEMMASMP
λ% 0.2 EEMACOMP, EEMMASMP
λς 0.2 EEMACOMP, EEMMASMP
βν 3.5 ALL
βξ 4.0 ALL
βπ 4.5 ALL
β% 4.5 ALL
βς 5.0 ALL
Pareto Archive Size 100 ALL
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Table 7.4: Simulation parameters for the NSGA-II algorithm

Parameter value

Population size 100
Crossover probability 0.9
Mutation probability 0.125
R 256
Ne 30

7.4.1 Experimental Procedure

Each estimated pareto front, PF , produced by the EEMACOMP, EEMACOMH, EEM-

MASMP, EEMMASMH, EEMACOMC, and NSGA-II-MPA algorithms is evaluated us-

ing three performance metrics, namely the n̄alg, %̄, and ξ̄ (refer to Section 7.1.3). The

performance of each algorithm was tested under different scenarios for different change

frequencies, change severities and number of nodes as outlined in section 7.1.1. The

influence of the change frequency, the change severity and the number of nodes on the

performance of each algorithm was evaluated. For each of the scenarios 30 simulations

were executed and results are reported as averages over these simulations together with

the standard deviations.

Results obtained from the EEMACOMP, EEMACOMH, EEMMASMP, EEMMASMH,

EEMACOMC, and NSGA-II-MPA algorithms are summarised in Tables F.1 to F.54

in the appendix F. Each table represents the results of the execution for each algo-

rithm, for a specific scenario. A total of 54 scenarios, generated as listed in Table 7.2

for different values combinations of NG ∈ {30, 100, 300}, Tsm ∈ {1, 2, 3, 4, 5, 6}, and

Rg ∈ {300, 500, 800}, were tested.

In each table, the following information is provided for each algorithm:

• n̄alg: average number of non-dominated solutions found by each algorithm.

• %̄: average value of the spacing metric.

• ξ̄: average value of the hypervolume metric.

• nw
alg : number of times that the algorithm has a better n̄alg than the others, for

each environment change.
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• %w : number of times that the algorithm has a better %̄ than the others, for each

environment change.

• ξw : number of times that the algorithm has a better ξ̄ than the others, for each

environment change.

• Rank : overall rank of the algorithm. For each of the performance metrics the

algorithm is ranked according to the number of times that the algorithm has a

better performance than all the other algorithms with reference to this performance

metric, for each environment change. The algorithm’s average rank is calculated

and then the algorithm is ranked accordingly.

• CI : the 95% confidence intervals using the t-test for each algorithm and each

performance metric.

For all of the experiments, the algorithms used the best found values for the control

parameters as listed in tables 7.3 and 7.4.

Appendix G presents three dimensional graphs to illustrate the influence of change

frequency, Tsm, and change severity, Rg, on the performance metrics, n̄alg, %̄, and ξ̄ for

different number of nodes, based on Tables F.1 to F.54.

For each algorithm the following hypotheses or questions were investigated :

1. Is there a statistical significant difference in the performance of the algorithms?

2. Does performance deteriorate with increase in change frequency?

3. Does performance deteriorate with increase in change severity?

4. Are the algorithms scalable?

5. Is there an algorithm that is less affected by change frequency / change severity?

To test whether there is a statistical significant difference in the performance of any

two algorithms, algorithm1 and algorithm2, with reference to the performance metric,

pmetric, the following two hypotheses were considered:

H0 : µpmetric

algorithm1 = µpmetric

algorithm2

H1 : µpmetric

algorithm1 > µpmetric

algorithm2
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where H0 is the null hypothesis and H1 is the alternative hypothesis.

In order to test these hypotheses the Mann-Whitney U test [129] was applied over

the 30 pmetric values (one for each simulation) for each algorithm and for each Tsm, Rg

and NG combination. A 95% confidence level was used together with a 1-tail test. The

critical value for U is 317, where U is the test statistic for the Mann-Whitney test.

Results are illustrated in appendix H using Fluxviz [1] graphs. Each graph contains 4

axes. The first axis represents the change frequency, Tsm, the second axis represents

the change severity, Rg, and the third axis represents the number of nodes, NG. The

last axis represents the results of the Mann-Whitney U test one for each of the Tsm, Rg

and NG combinations. Each combination corresponds to a specific scenario. If the null

hypothesis, H0, is accepted for a specific scenario, the value of 0 and the symbol “≈” are

displayed next to the scenario (last axis), showing that there is no statistical significant

difference between the performance of the two compared algorithms. If H0 is rejected

the value of one and the symbol “>” are displayed next to the scenario, showing that

the first algorithm is better than the second one for the respective scenario.

7.4.2 Number of Non-Dominated Solutions Metric

This subsection analyses the empirical results of each algorithm in terms of the average

number of non-dominated solutions metric, n̄alg. The n̄alg metric measures how well

the algorithms performed in identifying solutions along the Pareto front. Larger values

for n̄alg are preferred as it indicates that many efficient solutions were found which is

preferred by the decision maker.

Figures G.1-G.3 in Appendix G illustrate the influence of Tsm and Rg on the n̄alg

metric under different NG values, using the values of Tables F.1 to F.54. The following

observations can be made from the figures and tables:

1. Influence of Tsm on the n̄alg metric.

Figures G.1-G.3 indicate that n̄alg increased for all ACO algorithms as Tsm in-

creases (change frequency decreases). Figures G.1(f), G.2(f) and G.3(f) indicate

that n̄alg increased for the NSGA-II-MPA algorithm as Tsm increases, for all sce-

narios, excluding those with NG ∈ {100, 300} and Rg = 800.
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Table 7.5 displays the average values for n̄alg over all the NG and Rg values while

Figure 7.37 illustrates the results of Table 7.5. Table 7.5 and Figure 7.37 indicate

that n̄alg increased for each algorithm as change frequency decreases. This result

is expected as low change frequencies (high pause time, Tsm) provides more time

to explore the search space, thereby finding more solutions.

Table 7.5: Average value for n̄alg over all the NG and Rg values
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 78.56 82.48 85.68 86.87 88.26 91.26
PEEMACOMH 52.70 54.57 57.99 57.29 61.50 63.85
PEEMMASMP 75.60 77.79 80.01 80.72 83.18 85.78
PEEMMASMH 72.52 75.47 77.88 79.15 81.41 83.82
PEEMACOMC 72.69 76.18 76.70 78.56 81.02 83.23
PNSGA−II−MPA 34.99 39.40 41.67 41.58 41.33 41.72
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Figure 7.37: Average value for n̄alg over all the NG and Rg values

It is also to be noted from Table 7.5 and Figure 7.37 that EEMACOMH and

NSGA-II-MPA are significantly worse than the other algorithms. In other words,

EEMACOMH and NSGA-II-MPA do not scale well with reference to Tsm.
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2. Influence of Rg on the n̄alg metric.

Figures G.1-G.3 show that in most cases the number of non-dominated solutions

decreased with increase in change severity, Rg. For the rest of the scenarios, n̄alg

increased when Rg increased to 500, and decreased again with Rg = 800. In order

to better visualise the relation between Rg and n̄alg, Table 7.6 displays the average

values for n̄alg over all the NG and Tsm values while Figure 7.38 illustrates the

results of Table 7.6.

Table 7.6: Average value for n̄alg over all the NG and Tsm values
Rg

PF 300 500 800
PEEMACOMP 99.25 88.87 68.48
PEEMACOMH 75.93 69.46 34.05
PEEMMASMP 97.33 83.68 60.66
PEEMMASMH 94.92 81.82 58.90
PEEMACOMC 95.75 82.02 57.57
PNSGA−II−MPA 53.15 41.62 25.92
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Figure 7.38: Average value for n̄alg over all the NG and Tsm values
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Table 7.6 and Figure 7.38 show that when n̄alg is taken as the average value over

all the NG and Tsm values, the number of non-dominated solutions decreased with

increase in Rg. This trend is expected, because an increase in change severity, Rg,

causes only some of the nodes to be within transmission range. The number of

alternative paths by which to send a packet from source to destination and the

number of non-dominated solutions therefore decreases.

It is also to be noted from Table 7.6 and Figure 7.38 that EEMACOMH and

NSGA-II-MPA are affected the most by the change severity.

3. Performance of multi-pheromone approaches vs single-pheromone ap-

proaches with reference to the n̄alg metric.

Multi-pheromone approaches are EEMACOMP and EEMMASMP where a phero-

mone matrix is associated with each objective. Single-pheromone approaches are

EEMACOMH and EEMMASMH where one pheromone matrix is associated with

all the objectives.

Figures G.1(a), G.2(a), G.3(a), G.1(c), G.2(c), and G.3(c) illustrate the influence

of Rg and Tsm on the n̄alg metric for the multi-pheromone approaches, while fig-

ures G.1(b), G.2(b), G.3(b), G.1(d), G.2(d), and G.3(d) illustrate the influence of

Rg and Tsm on the n̄alg metric for the single-pheromone approaches. The figures

show that the multi-pheromone approaches produced a larger n̄alg in most scenarios

compared to single pheromone approaches.

To test whether there is a statistical significant difference in the performance of

the multi-pheromone approach, EEMACOMP, and the single pheromone approach,

EEMACOMH, the following two hypotheses were considered:

H0 : µ
n̄alg

EEMACOMP = µ
n̄alg

EEMACOMH

H1 : µ
n̄alg

EEMACOMP > µ
n̄alg

EEMACOMH

In order to test these hypotheses the Mann-Whitney U test was applied over all

scenarios for the EEMACOMP and EEMACOMH.
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Figure H.1 illustrates the results of the Mann-Whitney U test. Results show that

the multi-pheromone approach, EEMACOMP, produced significantly more non-

dominated solutions than the single pheromone approach, EEMACOMH, for 95%

of the scenarios (all scenarios except scenarios with {NG = 30, RG = 300, Tsm ∈
{3, 4, 5, 6}} and {NG = 30, RG = 500, Tsm ∈ {3, 5, 6}}). EEMACOMP increases

the coverage of the solution space, therefore finding more non-dominated solutions

than the EEMACOMH algorithm.

Following the same procedure as with EEMACOMP and EEMACOMH, to test

whether there is a statistical significant difference in the performance of the multi-

pheromone approach, EEMMASMP, and the single pheromone approach, EEM-

MASMH, the following two hypotheses were considered:

H0 : µ
n̄alg

EEMMASMP = µ
n̄alg

EEMMASMH

H1 : µ
n̄alg

EEMMASMP > µ
n̄alg

EEMMASMH

Results of the Mann-Whitney U test are illustrated in Figure H.2. The Mann-

Whitney U test shows that EEMMASMP produced significantly more non-dominated

solutions than EEMMASMH for all scenarios, excluding those with {NG = 30,

RG ∈ {300, 500}, ∀Tsm} and {NG = 300, RG = 500, Tsm ∈ {1, 2, 3}} (72% of the

scenarios).

For the scenarios where the null hypothesis is rejected, EEMMASMP increases

the coverage of the solution space, therefore finding more non-dominated solutions

than the EEMMASMH algorithm.

4. Performance of the multi-colony approach vs single-colony approaches

with reference to the n̄alg metric.

EEMACOMC is a multi-colony approach assigning a colony to each objective, while

EEMACOMP, EEMACOMH, EEMMASMP, and EEMMASMH are single-colony

approaches assigning the same colony for all objectives.

Figures G.1(a), G.2(a), G.3(a), G.1(b), G.2(b), G.3(b), G.1(c), G.2(c), G.3(c),

G.1(d), G.2(d), and G.3(d) illustrate the influence of Rg and Tsm on the n̄alg metric
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for the single-colony approaches, while figures G.1(e), G.2(e), and G.3(e) illustrate

the influence of Rg and Tsm on the n̄alg metric for the multi-colony approach.

Figures G.1(a), G.1(e), G.2(a), G.2(e), G.3(a), and G.3(e) show that the single-

colony approach, EEMACOMP, produced in most scenarios more non-dominated

solutions than the multi-colony approach, EEMACOMC.

To test whether there is a statistical significant difference in the performance of

EEMACOMP and EEMACOMC the following two hypotheses were considered:

H0 : µ
n̄alg

EEMACOMP = µ
n̄alg

EEMACOMC

H1 : µ
n̄alg

EEMACOMP > µ
n̄alg

EEMACOMC

Results of the Mann-Whitney U test are illustrated in Figure H.3. The Mann-

Whitney U test shows that EEMACOMP is significantly better than EEMACOMC

with reference to the n̄alg metric for all scenarios with NG > 30, excluding scenarios

with {Tsm = 6, RG = 300, NG = 100} and {Tsm = 1, RG = 800, NG = 100} (better

for 63% of the scenarios).

Figures G.1(b), G.1(e), G.2(b), G.2(e), G.3(b), and G.3(e) show that the multi-

colony approach, EEMACOMC, produced in most scenarios more non-dominated

solutions than the single-colony approach, EEMACOMH.

To test whether there is a statistical significant difference in the performance of

EEMACOMC and EEMACOMH the following two hypotheses were considered:

H0 : µ
n̄alg

EEMACOMC = µ
n̄alg

EEMACOMH

H1 : µ
n̄alg

EEMACOMC > µ
n̄alg

EEMACOMH

Results of the Mann-Whitney U test are illustrated in Figure H.4. The Mann-

Whitney U test shows that EEMACOMC is significantly better than EEMACOMH

with reference to the n̄alg metric for all scenarios, excluding those with {NG = 30,

Rg = 300, Tsm ∈ {3, 4, 5, 6}} and {NG = 30, Rg = 500, Tsm ∈ {5, 6}} (better for

88% of the scenarios).
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5. Performance of ACO approaches vs the NSGA-II-MPA approach with

reference to the n̄alg metric.

Figures G.1-G.3 show that all the ACO approaches displayed a higher value for

n̄alg when compared to the NSGA-II-MPA approach.

To test whether there is a statistical significant difference in the performance of the

ACO approaches and the NSGA-II-MPA approach the following two hypotheses

were considered:

H0 : µ
n̄alg

ACO = µ
n̄alg

NSGA−II−MPA

H1 : µ
n̄alg

ACO > µ
n̄alg

NSGA−II−MPA

where ACO takes the values EEMACOMP, EEMACOMH, EEMMASMP, EEM-

MASMH, and EEMACOMC.

Results of the Mann-Whitney U tests are illustrated in Figures H.5-H.9. The Mann-

Whitney U tests show that all the ACO approaches excluding EEMACOMH found

significantly more non-dominated solutions than the NSGA-II-MPA approach, for

all scenarios. EEMACOMH produced significantly more non-dominated solutions

than NSGA-II-MPA for all scenarios, excluding those with {NG ∈ {100, 300},
Rg = 800 } (better for 77% of the scenarios).

6. Performance of ACS approaches vs MAX-MIN approaches with refer-

ence to the n̄alg metric.

EEMACOMP and EEMACOMH are ACS approaches, while EEMMASMP and

EEMMASMH are MAX-MIN approaches. Figures G.1(a), G.2(a), G.3(a), G.1(b),

G.2(b), and G.3(b) illustrate the influence of Rg and Tsm on the n̄alg metric for

the ACS approaches, while Figures G.1(c), G.2(c), G.3(c), G.1(d), G.2(d), and

G.3(d) illustrate the influence of Rg and Tsm on the n̄alg metric for the MAX-MIN

approaches.

Figures G.1(a), G.1(c), G.1(d), G.2(a), G.2(c), G.2(d), G.3(a), G.3(c), and G.3(d)

show that the ACS approach, EEMACOMP, produced a higher n̄alg for higher num-

ber of nodes compared to the MAX-MIN approaches, EEMMASMP, and EEM-

MASMH.
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To test whether there is a statistical significant difference in the performance of the

EEMACOMP, and the EEMMASMP and EEMMASMH, approaches, the following

two hypotheses were considered:

H0 : µ
n̄alg

EEMACOMP = µ
n̄alg

EEMAXMIN

H1 : µ
n̄alg

EEMACOMP > µ
n̄alg

EEMAXMIN

where EEMAXMIN takes the values EEMMASMP and EEMMASMH.

In order to test these hypotheses the Mann-Whitney U test was applied and the

results are illustrated in Figures H.10 and H.11. Figure H.10 shows that EEMA-

COMP produced significantly more non-dominated solutions than EEMMASMP

for all scenarios with NG = 100 and Rg = 800, scenarios with NG = 300, irrespec-

tive of Tsm and Rg, and scenarios with {Rg = 800, NG = 30, Tsm ∈ {1, 2, 3, 4}}
(better for 63% of the scenarios). Figure H.11 shows that EEMACOMP produced

significantly more non-dominated solutions than EEMMASMH for all scenarios,

excluding those with {Rg = 300, NG = 30, ∀Tsm}, {Rg = 500, NG = 30, Tsm ∈
{1, 3, 4, 5, 6}}, {Rg = 800, NG = 30, Tsm = 1}, and {Rg = 500, NG = 100, Tsm =

6} (better for 75% of the scenarios).

Figures G.1(b), G.1(c), G.1(d), G.2(b), G.2(c), G.2(d), G.3(b), G.3(c), and G.3(d)

show that the MAX-MIN approaches, EEMMASMP and EEMMASMH, produced

on average a higher n̄alg compared to the ACS approach EEMACOMH.

To test whether there is a statistical significant difference in the performance of

the EEMMASMP and EEMMASMH approaches, and the EEMACOMH approach,

the following two hypotheses were considered:

H0 : µ
n̄alg

EEMAXMIN = µ
n̄alg

EEMACOMH

H1 : µ
n̄alg

EEMAXMIN > µ
n̄alg

EEMACOMH

In order to test these hypotheses the Mann-Whitney U test was applied and the

results are illustrated in Figures H.12 and H.13. Figure H.12 shows that EEM-

MASMP produced significantly more non-dominated solutions than EEMACOMH
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for all scenarios, except those with {Rg = 300, NG = 30, Tsm ∈ {3, 4, 5, 6}}
and {Rg = 500, NG = 30, Tsm ∈ {3, 5, 6}} (better for 87% of the scenarios).

Figure H.13 shows the same results when comparing EEMMASMH and EEMA-

COMH.

7. Influence of NG on the n̄alg metric.

Figures G.1-G.3 show that n̄alg decreased for each algorithm as the number of

nodes, NG, increased. With increase in number of nodes the computational com-

plexity is much higher and there is not enough time for the algorithms to explore

the search space and to track the optima after the change occurred, thereby finding

less solutions.

7.4.3 Spacing Metric

This subsection analyses the empirical results of each algorithm in terms of the average

spacing metric, %̄. The spacing metric serves as an indicator of the distribution of

solutions in the obtained Pareto front for each algorithm. The higher the value of %̄, the

less uniformity in the distribution of solutions. The ideal value for the spacing metric is

zero, in which case all solutions would be equidistantly spaced. Smaller values for %̄ are

therefore preferred.

Figures G.4-G.6 in Appendix G illustrate the influence of Tsm and Rg on the %̄

metric under different NG values, using the values of Tables F.1 to F.54. The following

observations can be made from the figures and tables:

1. Influence of Tsm on the %̄ metric.

Figures G.4-G.6 show that the solution spread improved (%̄ decreased) with de-

crease in change frequency. In order to derive different trends, Table 7.7 displays

the average values for %̄ over all the NG and Rg values while Figure 7.39 illustrates

the results of Table 7.7.

Table 7.7 and Figure 7.39 indicate that the solution spread improved with decrease

in change frequency. Lower change frequencies provide more time to explore the

search space. This helps to identify solutions along the full extent of the Pareto

front and keeps the solutions more uniformly distributed in the whole Pareto-
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Table 7.7: Average value for %̄ over all the NG and Rg values
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.084 0.070 0.062 0.057 0.056 0.050
PEEMACOMH 0.129 0.114 0.101 0.102 0.097 0.087
PEEMMASMP 0.093 0.082 0.072 0.068 0.065 0.059
PEEMMASMH 0.098 0.085 0.077 0.073 0.070 0.066
PEEMACOMC 0.110 0.095 0.084 0.080 0.077 0.070
PNSGA−II−MPA 0.188 0.139 0.133 0.134 0.139 0.136
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0.16

0.18
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NSGA-II-MPA

─ϱ
Tsm

Figure 7.39: Average value for %̄ over all the NG and Rg values
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optimal set, instead of gathering in a small region. A decrease in change frequency

leads to more uniformly distributed solutions, which justifies the obtained results.

It is also to be noted from Table 7.7 and Figure 7.39 that EEMACOMP is better

than the other algorithms while NSGA-II-MPA is significantly worse than all the

ACO algorithms.

2. Influence of Rg on the %̄ metric.

Figures G.4-G.6 show that, for all the ACO algorithms, the solution spread deterio-

rated with increase in change severity, Rg. The same applied to the NSGA-II-MPA

algorithm for scenarios with NG = 30. For scenarios with NG > 30, NSGA-II-MPA

had a strange behaviour: For scenarios with NG = 100 (refer to Figure G.5(f)),

NSGA-II-MPA had the worst solution spread for Rg = 300. With Rg = 300,

the network has a small diameter and combined with a medium number of nodes

(NG = 100) may produce many redundant solutions. Redundancy may slow down

the optimisation process and have a negative impact on the exploration ability of

the algorithm. For scenarios with NG = 300 (refer to Figure G.6(f)), NSGA-II-

MPA had a parabolic behaviour with worst %̄ at Rg = 500 and best %̄ at Rg = 300.

With NG = 300 and Rg = 300, the redundancy of solutions is probably not uniform

and may be beneficial for the optimisation process. From these solutions many new

solution candidates may be reached, thus improving diversity.

In order to derive different trends, Table 7.8 displays the average values for %̄ over

all the NG and Tsm values while Figure 7.40 illustrates the results of Table 7.8.

Table 7.8 and Figure 7.40 indicate that when %̄ is taken as the average value over

all the NG and Tsm values, %̄ increased (the solution spread deteriorated) with

increase in RG for all algorithms.

Table 7.8: Average value for %̄ over all the NG and Tsm values
Rg

PF 300 500 800
PEEMACOMP 0.034 0.057 0.100
PEEMACOMH 0.057 0.098 0.163
PEEMMASMP 0.040 0.068 0.112
PEEMMASMH 0.043 0.073 0.120
PEEMACOMC 0.043 0.071 0.145
PNSGA−II−MPA 0.106 0.125 0.200
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Figure 7.40: Average value for %̄ over all the NG and Tsm values

The global range, Rg, relates to the connectivity of the network. When Rg is small

the network is highly connected which means that it is easy to move from any one

vertex to any other vertex in a few steps. Thus, the network has a small diameter

and many alternate disjoint paths between vertices. With a high value of Rg,

only part of the nodes are within transmission range from one another, and the

number of alternative paths available to send a packet from source to destination

decreases. Thus, it is logical that the diversity will deteriorate when the network

range increases. On the other side, when the change severity, Rg, increases, it

becomes more difficult for the optimiser to adapt current solutions to a changing

environment. There is not much information gained from the past to reuse and it

takes more time to optimise the problem and less time to explore, which explains

the poor distribution of solutions as Rg increases.

It is also to be noted from Table 7.8 and Figure 7.40 that NSGA-II-MPA is signif-

icantly worse than all the ACO algorithms.

3. Performance of multi-pheromone approaches vs single-pheromone ap-
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proaches with reference to %̄ metric.

Figures G.4(a), G.5(a), G.6(a), G.4(c), G.5(c), and G.6(c) illustrate the influence

of Rg and Tsm on the %̄ metric for the multi-pheromone approaches, while Fig-

ures G.4(b), G.5(b), G.6(b), G.4(d), G.5(d), and G.6(d) illustrate the influence of

Rg and Tsm on the %̄ metric for the single-pheromone approaches.

Figures G.4(a), G.4(b), G.5(a), G.5(b), G.6(a), and G.6(b) show that the multi-

pheromone approach, EEMACOMP, outperformed the corresponding single phero-

mone approach, EEMACOMH, in terms of the solution spread. To test whether

there is a statistical significant difference in the performance of the two approaches,

the following two hypotheses were considered:

H0 : µ%̄
EEMACOMP = µ%̄

EEMACOMH

H1 : µ%̄
EEMACOMP > µ%̄

EEMACOMH

In order to test these hypotheses the Mann-Whitney U test was applied over all

scenarios for EEMACOMP and EEMACOMH.

Figure H.14 illustrates the results of the Mann-Whitney U test. Results show that

the multi-pheromone approach, EEMACOMP, had a significantly better solution

spread than the single pheromone approach, EEMACOMH, except for the sce-

nario with Tsm = 1, NG = 30, and RG = 500 (better for 98% of the scenarios).

EEMACOMP improves the coverage of the solution space, therefore, leading to

more uniformly distributed solutions.

Figures G.4(c), G.4(d), G.5(c), G.5(d), G.6(c), and G.6(d) show that the multi-

pheromone approach, EEMMASMP, produced results similar to the corresponding

single pheromone approach, EEMMASMH, in terms of the solution spread. Fol-

lowing the same procedure as with EEMACOMP and EEMACOMH, the Mann-

Whitney U test has been applied for EEMMASMP and EEMMASMH. The Mann-

Whitney U test shows that there is no statistical significant difference in the aver-

age performance between EEMMASMP and EEMMASMH with reference to the

%̄ metric except for 33% of the scenarios, i.e scenarios with (Rg = 300, NG = 100,

Tsm ∈ {3, 5, 6}), (Rg = 800, NG = 100, Tsm = 1), (Rg = 300, NG = 300,
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Tsm ∈ {1, 3, 4, 5, 6}), (Rg = 500, NG = 300, Tsm ∈ {2, 3, 4}), (Rg = 500, NG = 300,

Tsm = 6), and (Rg = 800, NG = 300, Tsm ∈ {1, 3, 4, 5, 6}) (refer to Figure H.15).

4. Performance of the multi-colony approach vs single-colony approaches

with reference to %̄ metric.

Figures G.4(a), G.5(a), G.6(a), G.4(b), G.5(b), G.6(b), G.4(c), G.5(c), G.6(c),

G.4(d), G.5(d), and G.6(d) illustrate the influence of Rg and Tsm on the %̄ metric

for the single-colony approaches, while figures G.4(e), G.5(e), and G.6(e) illustrate

the influence of Rg and Tsm on the %̄ metric for the multi-colony approach.

Figures G.4(a), G.4(e), G.5(a), G.5(e), G.6(a), and G.6(e) show that the single-

colony approach, EEMACOMP, produced in most scenarios a better solution spread

than the multi-colony approach, EEMACOMC. To test whether there is a statis-

tical significant difference in the performance of EEMACOMP and EEMACOMC

the following two hypotheses were considered:

H0 : µ%̄
EEMACOMP = µ%̄

EEMACOMC

H1 : µ%̄
EEMACOMP > µ%̄

EEMACOMC

Results of the Mann-Whitney U test are illustrated in Figure H.16. The Mann-

Whitney U test shows that EEMACOMP is significantly better than EEMACOMC

with reference to the %̄ metric for all scenarios, excluding scenarios with {NG = 30,

Rg = 300, Tsm ∈ {3, 4, 6}}, {NG = 30, Rg = 500, Tsm = 5}, and {NG = 100,

Rg = 500, Tsm = 6} (better for 90% of the scenarios).

Figures G.4(b), G.4(e), G.5(b), G.5(e), G.6(b), and G.6(e) show that the multi-

colony approach, EEMACOMC produced in most scenarios a better solution spread

than the single-colony approach, EEMACOMH.

To test whether there is a statistical significant difference in the performance of

EEMACOMC and EEMACOMH the following two hypotheses were considered:

H0 : µ%̄
EEMACOMC = µ%̄

EEMACOMH

H1 : µ%̄
EEMACOMC > µ%̄

EEMACOMH
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Results of the Mann-Whitney U test are illustrated in Figure H.17. The Mann-

Whitney U test shows that EEMACOMC is significantly better than EEMACOMH

with reference to the %̄ metric for all scenarios, excluding scenarios with {NG = 30,

Rg = 300, Tsm ∈ {2, 3}}, {NG = 30, Rg = 500, Tsm = 6}, {NG = 30, Rg = 800,

Tsm ∈ {3, 5}}, and {NG = 100, Rg = 800, Tsm = 1} (better for 89% of the

scenarios).

5. Performance of ACO approaches vs NSGA-II-MPA approach with ref-

erence to %̄ metric.

Figures G.4-G.6 show that all the ACO approaches produced in most scenarios a

better solution spread compared to the NSGA-II-MPA approach.

To test whether there is a statistical significant difference in the performance of the

ACO approaches and the NSGA-II-MPA approach the following two hypotheses

were considered:

H0 : µ%̄
ACO = µ%̄

NSGA−II−MPA

H1 : µ%̄
ACO > µ%̄

NSGA−II−MPA

Results of the Mann-Whitney U tests are illustrated in Figures H.18-H.22. The

Mann-Whitney U tests show that all the ACO approaches produced significantly

better solution spread than the NSGA-II-MPA approach for all scenarios, excluding

the following scenarios: {NG = 30, Rg = 500, Tsm ∈ {1, 2}}, {NG = 100, Rg = 500,

Tsm ∈ {3, 4, 5, 6}}, {NG = 100, Rg = 800, Tsm ∈ {4, 5, 6}}, and {NG = 300, Rg =

800, Tsm ∈ {3, 4}} for EEMACOMP (better for 80% of the scenarios), {NG = 30,

Rg = 500, Tsm ∈ {1, 2, 3}}, {NG = 100, Rg = 500, Tsm ∈ {1, 2}}, and {NG = 300,

Rg = 300, Tsm ∈ {1, 2, 4, 5, 6}} for EEMACOMH (better for 83% of the scenarios),

{NG = 30, Rg = 500, Tsm ∈ {1, 2, 3}}, {NG = 100, Rg = 500, Tsm ∈ {1, 2, 6}},
and {NG = 300, Rg = 800, Tsm ∈ {2, 5}} for EEMMASMP (better for 85% of

the scenarios), {NG = 30, Rg = 500, Tsm ∈ {1, 2, 3}}, {NG = 100, Rg = 500,

Tsm ∈ {2, 6}}, and {NG = 300, Rg = 800, Tsm ∈ {5, 6}} for EEMMASMH (better

for 87% of the scenarios), and {NG = 30, Rg = 500, Tsm ∈ {2, 3}}, {NG = 100,
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Rg = 500, ∀ Tsm }, and {NG = 300, Rg = 800, Tsm ∈ {6}} for EEMACOMC

(better for 83% of the scenarios).

6. Performance of ACS approaches vs MAX-MIN approaches with refer-

ence to %̄ metric.

Figures G.4(a), G.5(a), G.6(a), G.4(b), G.5(b), and G.6(b) illustrate the influence

of Rg and Tsm on the %̄ metric for the ACS approaches, while Figures G.4(c),

G.5(c), G.6(c), G.4(d), G.5(d), and G.6(d) illustrate the influence of Rg and Tsm

on the %̄ metric for the MAX-MIN approaches.

Figures G.4(a), G.4(c), G.4(d), G.5(a), G.5(c), G.5(d), G.6(a), G.6(c), and G.6(d)

show that the ACS approach, EEMACOMP, produced in most scenarios a better

solution spread for NG > 30 compared to the MAX-MIN approaches, EEMMASMP

and EEMMASMH.

To test whether there is a statistical significant difference in the performance of

EEMACOMP and the EEMMASMP and EEMMASMH approaches, the following

two hypotheses were considered:

H0 : µ%̄
EEMACOMP = µ%̄

EEMAXMIN

H1 : µ%̄
EEMACOMP > µ%̄

EEMAXMIN

In order to test these hypotheses the Mann-Whitney U test was applied and the

results are illustrated in Figures H.23 and H.24. Figure H.23 shows that EEMA-

COMP, produced a significantly better solution spread than EEMMASMP for

NG > 30 excluding scenario with {NG = 100, Rg = 800, Tsm = 1} (better for

65% of the scenarios), while Figure H.24 indicates that EEMACOMP, produced

a significantly better solution spread than EEMMASMH for NG > 30 (better for

66% of the scenarios).

Figures G.4(b), G.4(c), G.4(d), G.5(b), G.5(c), G.5(d), G.6(b), G.6(c), and G.6(d)

show that the MAX-MIN approaches, EEMMASMP and EEMMASMH, produced
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in most scenarios a better solution spread compared to the ACS approach EEMA-

COMH.

To test whether there is a statistical significant difference in the performance of

the EEMMASMP and EEMMASMH approaches, and the EEMACOMH approach,

the following two hypotheses were considered:

H0 : µ%̄
EEMAXMIN = µ%̄

EEMACOMH

H1 : µ%̄
EEMAXMIN > µ%̄

EEMACOMH

In order to test these hypotheses the Mann-Whitney U test was applied and the

results are illustrated in Figures H.25 and H.26. Figure H.25 shows that EEM-

MASMP had a significantly better solution spread than EEMACOMH, except for

scenarios with {NG = 30, Rg = 300, Tsm ∈ {1, 2}}, and {NG = 30, Rg = 500,

Tsm ∈ {1, 2, 3, 4, 6}} (better for 87% of the scenarios). Figure H.26 indicates that

EEMMASMH had a significantly better solution spread than EEMACOMH for

all scenarios, except those with {NG = 30, Rg = 300, Tsm = 1}, and {NG = 30,

Rg = 500, Tsm ∈ {1, 2, 3, 4, 5, 6}} (better for 87% of the scenarios).

7. Influence of NG on the %̄ metric.

Figures G.4-G.6 show that when the number of nodes increased from 100 to 300

the distribution of solutions for all algorithms deteriorated. This is both an inter-

esting and an unexpected result, which is possibly related to the computational

complexity of the algorithms and scalability. The problem with scalability is that,

as the number of nodes increases, it becomes necessary for the routing protocol to

search more nodes in order to reach the destination, thus affecting diversity. When

the number of nodes increased from 30 to 100 the distribution of solutions for all

algorithms improved.

7.4.4 Hypervolume Metric

This subsection analyses the empirical results of each algorithm in terms of the hyper-

volume metric, ξ̄. The hypervolume metric measures how well the algorithms performed
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in identifying solutions along the full extent of the Pareto front. High values of the

hypervolume metric indicate the closeness of the solutions to the optimal Pareto set.

Figures G.7-G.9 in Appendix G illustrate the influence of Tsm and Rg on the ξ̄

metric under different NG values, using the values of Tables F.1 to F.54. The following

observations can be made from the figures and tables:

1. Influence of Tsm on the hypervolume metric, ξ̄.

Figures G.7-G.9 show a small increase of ξ̄ as change frequency decreases, for all

the ACO algorithms. This observation is confirmed when looking at Table 7.9 and

Figure 7.41. Table 7.9 displays the average values for ξ̄ over all the NG and Rg

values while Figure 7.41 illustrates the results of Table 7.9. This observation is

expected as change frequency determines how often the problem changes and it

seems intuitive to assume that a high change frequency makes a problem more

difficult for an algorithm to solve as less time is available at each Tsm to reach

the new global optima and optimise the multi-objective problem. Low change

frequency gives more iterations, and theoretically is supposed to produce a uniform

distribution of the solutions and closeness of the solutions to the optimal Pareto

set.

Table 7.9: Average value for ξ̄ over all the NG and Rg values
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 60831.05 61552.60 61894.07 62010.58 62179.96 62485.17
PEEMACOMH 59205.85 59677.70 59843.11 59936.95 60076.63 60365.10
PEEMMASMP 60410.77 60999.21 61421.41 61440.03 61678.51 61995.58
PEEMMASMH 60264.39 60804.01 61252.15 61290.71 61489.01 61811.21
PEEMACOMC 61033.57 61753.97 62181.59 62308.67 62439.49 62701.89
PNSGA−II−MPA 61514.60 60201.54 60078.20 60028.05 60041.14 60048.25

2. Influence of Rg on the hypervolume metric, ξ̄.

For the ACO algorithms there are different observations according to the number of

nodes. Figure G.7 shows an increase in ξ̄ when Rg increases to 500 and a decrease

in ξ̄ when Rg increases to 800, for scenarios with NG = 30. For most scenarios

with NG = 100, there is an increase in ξ̄ with increase in change severity (refer to

Figure G.8). For scenarios with NG = 300, Figure G.9 shows an increase in ξ̄ with

decrease in change severity.
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Figure 7.41: Average value for ξ̄ over all the NG and Rg values

For the NSGA-II-MPA algorithm, Figure G.7(f) shows an increase in ξ̄ with in-

crease in change severity, for scenarios with NG = 30. For scenarios with NG = 100,

there is a decrease in ξ̄ when Rg increases to 500 and an increase in ξ̄ when Rg in-

creases to 800 (refer to Figure G.8(f)). For scenarios with NG = 300, Figure G.9(f)

shows an increase in ξ̄ when Rg increases to 500, and a decrease in ξ̄ when Rg

increases to 800.

Table 7.10: Average value for ξ̄ over all the NG and Tsm values
Rg

PF 300 500 800
PEEMACOMP 62046.719 62895.465 60677.192
PEEMACOMH 60746.295 61105.342 57976.182
PEEMMASMP 61491.817 62542.096 60083.312
PEEMMASMH 61459.620 62419.858 59746.060
PEEMACOMC 62708.710 62870.936 60783.509
PNSGA−II−MPA 57908.890 59735.745 63251.480

Table 7.10 displays the average values for ξ̄ over all the NG and Tsm values while

Figure 7.42 illustrates the results of Table 7.10. Table 7.10 and Figure 7.42 show
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Figure 7.42: Average value for ξ̄ over all the NG and Tsm values

that when ξ̄ is taken as the average value over all the NG and Tsm values, ξ̄ sharply

decreases for Rg = 800 for the ACO algorithms and ξ̄ sharply increases for Rg = 800

for the NSGA-II-MPA, outperforming the ACO algorithms. The expected result

is a decrease in ξ̄ with increase in change severity: It is a common assumption

that smaller change severities are easier to adapt to, primarily by transferring

solutions from the past optimisation problem which may help to accelerate the rate

of convergence to the optima, after a change has occurred. Since Rg determines the

change severity, the convergence to the optima, and therefore the closeness of the

solutions to the optimal Pareto set, should be getting worse as the change severity

increases.

3. Performance of multi-pheromone approaches vs single-pheromone ap-

proaches with reference to the hypervolume metric.

Figures G.7(a), G.8(a), G.9(a), G.7(c), G.8(c), and G.9(c) illustrate the influence

of Rg and Tsm on the ξ̄ metric for the multi-pheromone approaches, while fig-

ures G.7(b), G.8(b), G.9(b), G.7(d), G.8(d), and G.9(d) illustrate the influence of
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Rg and Tsm on the ξ̄ metric for the single-pheromone approaches.

Figures G.7(a), G.7(b), G.8(a), G.8(b), G.9(a), and G.9(b) show that the multi-

pheromone approach, EEMACOMP, displayed a higher value for the ξ̄ metric com-

pared to the single pheromone approach, EEMACOMH.

To test whether there is a statistical significant difference in the performance of

EEMACOMP and EEMACOMH the following two hypotheses were considered:

H0 : µξ̄
EEMACOMP = µξ̄

EEMACOMH

H1 : µξ̄
EEMACOMP > µξ̄

EEMACOMH

In order to test these hypotheses the Mann-Whitney U test was applied over all

scenarios for the EEMACOMP and EEMACOMH.

Figure H.27 illustrates the results of the Mann-Whitney U test. Results show

that EEMACOMP produced a significantly higher value for the ξ̄ metric than

EEMACOMH for all scenarios, excluding those with {NG = 30, Rg = 500, Tsm =

1} and {NG = 30, Rg = 800, Tsm = 1} (better for 96% of the scenarios).

4. Performance of the multi-colony approach vs single-colony approaches

with reference to the hypervolume metric.

Figures G.7(a), G.8(a), G.9(a), G.7(b), G.8(b), G.9(b), G.7(c), G.8(c), G.9(c),

G.7(d), G.8(d), and G.9(d) illustrate the influence of Rg and Tsm on the ξ̄ metric

for the single-colony approaches, while figures G.7(e), G.8(e), and G.9(e) illustrate

the influence of Rg and Tsm on the ξ̄ metric for the multi-colony approach.

Figures G.7(b), G.7(e), G.8(b), G.8(e), G.9(b), and G.9(e) show that the multi-

colony approach, EEMACOMC, produced in most scenarios a higher value for the

hypervolume metric than the single-colony approach, EEMACOMH.

To test whether there is a statistical significant difference in the performance of

EEMACOMC and EEMACOMH the following two hypotheses were considered:
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H0 : µξ̄
EEMACOMC = µξ̄

EEMACOMH

H1 : µξ̄
EEMACOMC > µξ̄

EEMACOMH

Results of the Mann-Whitney U test are illustrated in Figure H.28. The Mann-

Whitney U test shows that EEMACOMC is significantly better than EEMACOMH

with reference to the ξ̄ metric for all scenarios, excluding scenarios with {NG = 30,

Rg = 500, Tsm = 1} and {NG = 30, Rg = 800, Tsm ∈ {2, 6}} (better for 94% of

the scenarios).

5. Performance of ACO approaches vs the NSGA-II-MPA approach with

reference to the hypervolume metric.

Figures G.7-G.9 and Tables F.1 to F.54 show that all the ACO approaches dis-

played a higher value for the hypervolume metric when compared to the NSGA-II-

MPA approach, except for scenarios with NG = 300 and Rg ∈ {500, 800} and for

scenarios with NG = 30 and Rg = 800.

To test whether there is a statistical significant difference in the performance of the

ACO approaches and the NSGA-II-MPA approach the following two hypotheses

were considered:

H0 : µξ̄
ACO = µξ̄

NSGA−II−MPA

H1 : µξ̄
ACO > µξ̄

NSGA−II−MPA

Results of the Mann-Whitney U tests are illustrated in Figures H.29-H.33. The

Mann-Whitney U tests show that all the ACO approaches displayed a significantly

higher value for the hypervolume than the NSGA-II-MPA approach for all scenar-

ios, excluding the following scenarios: {NG = 30, Rg = 800, Tsm = 1}, {NG = 100,

Rg = 300, Tsm = 2}, {NG = 100, Rg = 500, Tsm = 1}, and {NG = 100, Rg = 800,

Tsm = 1} for EEMACOMP, EEMMASMP and EEMMASMH (better for 92% of

the scenarios), {NG = 30, Rg = 800, Tsm = 1}, {NG = 100, Rg = 300, Tsm = 4},
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and {NG = 100, Rg = 800, Tsm ∈ {2, 3, 4} for EEMACOMH (better for 90% of the

scenarios), {NG = 30, Rg = 800, Tsm ∈ {1, 2}}, {NG = 100, Rg = 300, Tsm = 2},
and {NG = 100, Rg = 500, Tsm = 1} for EEMACOMC (better for 92% of the

scenarios).

6. Performance of ACS approaches vs MAX-MIN approaches with refer-

ence to the hypervolume metric.

Tables F.1 to F.54 and Figures G.7-G.9 show no trend between the performance

of the ACS approaches and the MAX-MIN approaches with reference to the hy-

pervolume metric.

7. Influence of NG on the hypervolume metric.

Figures G.7-G.9 show that, for scenarios with NG = 300 and Rg = 800, all algo-

rithms displayed a lower value for the hypervolume metric.

There are two possible explanations for this result:

(a) Computational complexity of the algorithms: As the number of nodes in-

creases it becomes necessary for the routing protocol to search more nodes in

order to reach the destination, which, in turn, increases the convergence time

and affects closeness towards the true Pareto front.

(b) Premature convergence towards local optima: With a high number of nodes

the population tends to contain similar individuals and the diversity decreases

rapidly. The suboptimal solutions which may have helped in finding the global

optima are deleted too rapidly and the closeness towards the true Pareto front

gets worst.

7.4.5 Performance of the Algorithms Over the Environmental

Changes

This subsection compares the performance of the algorithms for each environment change.

For each environmental change the average values for all the solutions of the iteration

before a change to the environment occurs were calculated for each metric. These values

were then averaged over all Rg and NG and further averaged over the 30 simulations.

The obtained values are referred to as n̄alg, %̄, and ξ̄.
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Figure 7.43 visualises the performance of the algorithms over time with reference to

n̄alg. The graphs show that, for all change frequencies, there is little variance in n̄alg

over time. This shows the ability of all the algorithms, excluding the EEMACOMH and

the NSGA-II-MPA, to react to change and find an adequate number of non-dominated

solutions. Also, results show that transferring of solutions from the environment before

the change occurs helps to accelerate search after the environment has changed and

find a satisfactory number of non-dominated solutions. Therefore, in each environment,

good solutions were likely to be found where good solutions have been in the previous

environment. The EEMACOMP algorithm found more non-dominated solutions than all

the other algorithms and the NSGA-II-MPA found the least number of non-dominated

solutions. For low change frequencies all algorithms displayed the largest values for n̄alg.

Figure 7.43(a) shows a linear decrease over time for the NSGA-II-MPA algorithm for

Tsm = 1 (high change frequency). NSGA-II-MPA had less time to react to changes and

the time to find solutions was increased at each environment change.

Figure 7.43(f) shows an increase of n̄alg over time for the EEMACOMH algorithm for

Tsm = 6 (low change frequency). The optimiser had enough time to exploit the solutions

transferred from the previous environment and improve the tracking performance of the

optima and reduce the time to find solutions.

Figure 7.44 visualises the performance of the algorithms over time with reference to

%̄. The graphs show that, for all change frequencies, %̄ had a very small value, showing

a very good distribution of the solutions. For NSGA-II-MPA, %̄, remained constant over

time for Tsm ∈ {3, 4, 5, 6} and displayed an increase over time for Tsm = 1. For all

ACO algorithms, %̄ remained at relatively the same level, for all environment changes,

which again shows the robustness of the ACO algorithms. The assumption can be made

here that a diverse spread of non-dominated solutions can adapt more easily to changes

when the environment change is not too severe. For severe environment changes, the

performance of the algorithms are similar to restarting the optimisation from scratch,

and the optimum tracking becomes difficult. That is the case for NSGA-II-MPA, for

Tsm = 1.

The EEMACOMP algorithm had the best solution spread and the NSGA-II-MPA

had the worst solution spread compared to the rest of the algorithms.

Figure 7.45 visualises the performance of the algorithms over time with reference to

the ξ̄ metric. The graphs show high values of ξ̄ for all change frequencies. The value
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of ξ̄ is similar for all environment changes, showing that there is a good adaptability

to environment changes by all the algorithms. The size of the objective space which

is dominated by the non-dominated solutions is over 80% of the total hypervolume of

75000, where 75000 is the maximum hypervolume calculated using the values of 100.0,

0.1, 500.0, 0.5, and 30.0, corresponding to a maximum value for each of the objectives.

This indicates the closeness of the solutions to the optimal set and the good spread of

solutions across the objective space. All algorithms displayed a similar value of ξ̄.
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Figure 7.43: Performance of the algorithms over time with regard to the number of
non-dominated solutions metric, n̄alg
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Figure 7.44: Performance of the algorithms over time with regard to the spacing metric,
%̄
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Figure 7.45: Performance of the algorithms over time with regard to the hypervolume
metric, ξ̄
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7.4.6 Optimization Criteria

This section analyses the performance of each algorithm in terms of the optimisation

criteria (objective functions). The performance of each algorithm was tested under

different scenarios for different change frequencies, change severities, and number of

nodes as outlined in section 7.1.1. For each scenario the Pareto front, PF , produced

by the EEMACOMP, EEMACOMH, EEMMASMP, EEMMASMH, EEMACOMC, and

NSGA-II-MPA algorithms is estimated. The influence of the change frequency, the

change severity, and the number of nodes on the value of each objective function is

evaluated.

For each of the scenarios 30 simulations have been executed and results were re-

ported as averages over these simulations over all environment changes together with

the standard deviations.

Results obtained from the EEMACOMP, EEMACOMH, EEMMASMP, EEMMASMH,

EEMACOMC, and NSGA-II-MPA algorithms are summarised in Tables I.1 to I.45 in

appendix I for the different scenarios. Based on these tables, appendix J illustrates the

influence of change frequency, Tsm, and change severity, Rg, on the EP , TNP , V NP ,

CP , and MNC optimisation criteria (refer to Section 6.3 for a discussion of these crite-

ria) for different number of nodes, NG, using Fluxviz graphs.

Figures J.1-J.3 visualise the influence of Tsm and Rg on the EP criterion based on

the results of Tables I.1-I.9. Figures J.4-J.6 visualise the influence of Tsm and Rg on

the TNP criterion based on the results of Tables I.10-I.18. Figures J.7-J.9 visualise the

influence of Tsm and Rg on the V NP criterion based on the results of Tables I.19-I.27.

Figures J.10-J.12 graphically illustrate the influence of Tsm and Rg on the CP criterion

based on the results of Tables I.28-I.36, while Figures J.13-J.15 visualise the influence of

Tsm and Rg on the MNC criterion based on the results of Tables I.37-I.45.

The algorithms were compared in terms of the value of the objective functions. To

test whether there is a statistical significant difference in the performance of any two

algorithms with reference to the optimisation criteria, the Mann-Whitney U test as

outlined in section 7.4.1 was applied.

• Energy consumed per packet, EP , objective

Tables I.1-I.9 and Figures J.1-J.3 show no variation in EP with increase in change

frequency for NG = 30 and no pattern between EP and change frequency for
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NG ∈ {100, 300}.
Table 7.11 displays the average values of EP over all the NG and Rg values using the

results of Tables I.1-I.9. Figure 7.46 illustrates the results of Table 7.11. Table 7.11

and Figure 7.46 indicate no significant difference in EP value as change frequency

increases. It is also to be noted from Table 7.11 and Figure 7.46 that when EP

is taken as the average value over all the NG and Rg values, NSGA-II-MPA is

significantly better than the other algorithms, showing a very low EP.

Table 7.11: Average value of the EP objective over all the NG and Rg values

Tsm

PF 1 2 3 4 5 6
PEEMACOMP 8.60 8.77 8.58 8.43 8.54 8.28
PEEMACOMH 9.90 10.47 10.39 10.32 10.62 10.22
PEEMMASMP 8.86 9.07 8.86 8.82 8.89 8.52
PEEMMASMH 9.10 9.29 9.08 9.05 9.09 8.75
PEEMULTCOL 8.72 8.90 8.66 8.60 8.68 8.34
PNSGA−II−MPA 2.58 2.55 2.53 2.51 2.52 2.52

Tables I.1-I.9 and Figures J.1-J.3 indicate an increase in EP with increase in Rg

for NG = 30. For NG = 100, EEMACOMC and NSGA-II-MPA produced the

highest EP for Rg = 800, while the rest of the algorithms produced the highest EP

for Rg = 300. For NG = 300, EEMACOMH, EEMACOMC and NSGA-II-MPA

produced the highest EP for Rg = 800 and no real trend between EP and change

severity for Rg ∈ {300, 500}, while the rest of the algorithms presented no pattern

between EP and change severity.

In order to better visualise the relation between Rg and EP, Table 7.12 displays the

average values of EP over all the NG and Tsm values while Figure 7.47 illustrates

the results of Table 7.12. Table 7.12 and Figure 7.47 indicate that EP increased

for each algorithm as Rg increased to the value of 800. This trend is expected,

because an increase in change severity, Rg, causes only some of the nodes to be

within transmission range and paths with minimum energy consumed per packet

may not be possible. It is also to be noted from Table 7.12 and Figure 7.47 that

when EP is taken as the average value over all the NG and Tsm values, NSGA-

II-MPA is significantly better than the other algorithms, showing a very low EP.
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Figure 7.46: Average value of the EP objective over all the NG and Rg values

Table 7.12: Average value of the EP objective over all the NG and Tsm values

Rg

PF 300 500 800
PEEMACOMP 8.87 7.56 9.17
PEEMACOMH 9.67 9.51 11.78
PEEMMASMP 8.88 7.96 9.67
PEEMMASMH 8.89 8.15 10.14
PEEMULTCOL 7.75 7.59 10.61
PNSGA−II−MPA 2.26 2.21 3.14

Tables I.1-I.9 and Figures J.1-J.3 show that the EP value increased significantly

when the number of nodes increased to NG = 300. This is an unexpected result

which is possibly related to the computational complexity of the algorithms. As

the number of nodes increases, it becomes necessary for the routing protocol to

search more nodes in order to reach the destination, thus affecting diversity and

the finding of the paths with the least energy consumed per packet.

232

 
 
 



2

4

6

8

10

12

300 500 800

EEMACOMP
EEMACOMH
EEMMASMP
EEMMASMH
EEMACOMC
NSGA-II-MPA

Rg

EP

Figure 7.47: Average value of the EP objective over all the NG and Tsm values

Tables I.1-I.9 show that all the ACO approaches displayed a higher value for EP

and therefore worst performance when compared to the NSGA-II-MPA approach.

To test whether there is a statistical significant difference in the performance of the

NSGA-II-MPA approach and the ACO approaches, the following two hypotheses

were considered:

H0 : µEP
NSGA−II−MPA = µEP

ACO

H1 : µEP
NSGA−II−MPA > µEP

ACO

where ACO takes the values EEMACOMP, EEMACOMH, EEMMASMP, EEM-

MASMH, and EEMACOMC.

Results of the Mann-Whitney U tests were the same for all the compared algo-

rithms, as illustrated in Figure 7.48. The Mann-Whitney U tests show that the

NSGA-II-MPA had a significantly lower energy consumed per packet than all the

ACO algorithms for all the scenarios. This is possibly related to the effects of the
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k shortest path algorithm used for NSGA-II-MPA, which selects the first R paths

with minimum energy consumed per packet and with minimum cost per packet

(refer to Section 6.7).

Tsm Rg NG

≈

>

Figure 7.48: Comparing the NSGA-II-MPA algorithm against the ACO algorithms with
regard to EP using the Mann-Whitney U test

• Utilisation of the most heavily used link, TNP , objective

Tables I.10-I.18 and Figures J.4-J.6 indicate a small decrease in TNP with decrease

in change frequency for all algorithms. In addition, the NSGA-II-MPA displayed

a high value of TNP for Tsm = 1, showing a bad performance for high change

frequency.

Table 7.13 displays the average values of TNP over all the NG and Rg values using

the results of Tables I.10-I.18. Figure 7.49 illustrates the results of Table 7.13.

Table 7.13 and Figure 7.49 indicate a very small decrease or no difference for

TNP as Tsm increased (change frequency decreased), except for the NSGA-II-MPA

algorithm which displayed a high value of TNP for Tsm = 1. Low change frequencies

provide more time to better optimise the TNP objective.
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Table 7.13: Average value of the TNP objective over all the NG and Rg values

Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0024 0.0022 0.0021 0.0021 0.0020 0.0020
PEEMACOMH 0.0026 0.0024 0.0023 0.0022 0.0022 0.0022
PEEMMASMP 0.0024 0.0022 0.0021 0.0021 0.0020 0.0020
PEEMMASMH 0.0024 0.0022 0.0021 0.0021 0.0021 0.0021
PEEMULTCOL 0.0023 0.0022 0.0022 0.0022 0.0021 0.0021
PNSGA−II−MPA 0.0130 0.0026 0.0024 0.0023 0.0023 0.0022
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Figure 7.49: Average value of the TNP objective over all the NG and Rg values

235

 
 
 



Tables I.10-I.18 and Figures J.4-J.6 indicate an increase in TNP with increase in

change severity for all algorithms. In addition, the NSGA-II-MPA displayed a high

value of TNP for NG = 100, Rg = 300 and Tsm = 1.

In order to better visualise the relation between Rg and TNP, Table 7.14 displays

the average values for TNP over all the NG and Tsm values, while Figure 7.50

illustrates the results of Table 7.14. Table 7.14 and Figure 7.50 indicate that TNP

increased for each algorithm as Rg increased. This trend is expected, because an

increase in change severity, Rg, causes only some of the links to be valid, and it

may not be possible to minimise or avoid the utilisation of the link with the least

capacity.

Table 7.14: Average value of the TNP objective over all the NG and Tsm values

Rg

PF 300 500 800
PEEMACOMP 0.0014 0.0018 0.0033
PEEMACOMH 0.0014 0.0019 0.0036
PEEMMASMP 0.0014 0.0018 0.0033
PEEMMASMH 0.0014 0.0018 0.0033
PEEMULTCOL 0.0014 0.0019 0.0033
PNSGA−II−MPA 0.0021 0.0020 0.0083

Tables I.10-I.18 and Figures J.4-J.6 show that the TNP value decreased when the

number of nodes increased. This is an expected result because as the number of

nodes increases, more links are available and therefore it becomes more easy to

minimise the utilisation of the link with the least capacity.

Tables I.10-I.18 show that all the ACO approaches displayed a lower value for the

TNP for scenarios with NG = 300 when compared to the NSGA-II-MPA approach.

To test whether there is a statistical significant difference in the performance of

the ACO approaches and the NSGA-II-MPA approach for NG = 300, the following

two hypotheses were considered:

H0 : µTNP
ACO = µTNP

NSGA−II−MPA

H1 : µTNP
ACO > µTNP

NSGA−II−MPA
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Figure 7.50: Average value of the TNP objective over all the NG and Tsm values

Results of the Mann-Whitney U tests were the same for all the compared algorithms

as illustrated in Figure 7.51. The Mann-Whitney U tests show that all ACO

approaches are significantly better than the NSGA-II-MPA approach with reference

to the TNP objective for NG = 300. There is no significant difference between ACO

approaches and the NSGA-II-MPA approach with reference to the TNP objective

for NG ∈ {30, 100}.

• Variance in node power levels, V NP , objective

Tables I.19-I.27 and Figures J.7-J.9 show no pattern between VNP and change

frequency.

Table 7.15 displays the average values of VNP over all the NG and Rg values using

the results of Tables I.19-I.27. Figure 7.52 illustrates the results of Table 7.15.

Table 7.15 and Figure 7.52 indicate a small decrease in VNP with a decrease

in change frequency for the ACO algorithms and a small increase in VNP with
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Figure 7.51: Comparing the ACO algorithms against the NSGA-II-MPA algorithm with
regard to the TNP objective using the Mann-Whitney U test

a decrease in change frequency for the NSGA-II-MPA. Low change frequencies

deteriorate the optimisation of the VNP for the NSGA-II-MPA.

Table 7.15: Average value of the V NP objective over all the NG and Rg values

Tsm

PF 1 2 3 4 5 6
PEEMACOMP 81.53 80.63 80.55 80.07 79.29 78.78
PEEMACOMH 90.00 89.60 87.98 88.16 86.32 85.55
PEEMMASMP 82.95 82.46 82.75 82.18 81.17 80.82
PEEMMASMH 83.33 82.70 83.08 82.54 81.95 81.03
PEEMULTCOL 76.27 76.17 76.94 76.27 76.48 76.07
PNSGA−II−MPA 114.67 117.40 119.43 121.03 120.62 121.65

Tables I.19-I.27 and Figures J.7-J.9 indicate a decrease in VNP with increase in

Rg for NG = 30. For NG = 100 all the single-colony ACO algorithms produced

the highest VNP for Rg = 500 and the lowest VNP for Rg = 300, while the

EEMACOMC and the NSGA-II-MPA algorithms produced the lowest VNP for
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Figure 7.52: Average value of the V NP objective over all the NG and Rg values

Rg = 800.

Table 7.16 displays the average values of VNP over all the NG and Tsm values

while Figure 7.53 illustrates the results of Table 7.16. Table 7.16 and Figure 7.53

indicate an increase in VNP with increase in change severity from 300 to 500 and

then a decrease in VNP with increase in change severity from 500 to 800 for the

ACO algorithms. The NSGA-II-MPA produced a decrease in VNP with increase

in change severity. High change severities improve the optimisation of the VNP.

Table 7.16: Average value of the V NP objective over all the NG and Tsm values

Rg

PF 300 500 800
PEEMACOMP 76.67 82.16 81.59
PEEMACOMH 80.11 90.63 93.06
PEEMMASMP 78.13 84.41 83.63
PEEMMASMH 78.41 84.78 84.13
PEEMULTCOL 75.57 81.00 72.53
PNSGA−II−MPA 128.68 123.23 105.48

239

 
 
 



70

80

90

100

110

120

130

300 500 800

EEMACOMP
EEMACOMH
EEMMASMP
EEMMASMH
EEMACOMC
NSGA-II-MPA

Rg

VNP

Figure 7.53: Average value of the V NP objective over all the NG and Tsm values

Tables I.19-I.27 and Figures J.7-J.9 show no trend between the VNP value and the

number of nodes.

Tables I.19-I.27 show that all the ACO approaches except the EEMACOMH ap-

proach, displayed a lower value for the VNP for all scenarios when compared to

the NSGA-II-MPA approach. The EEMACOMH approach displayed a lower value

for VNP for all scenarios except for scenarios with Rg = 800 and NG ∈ {100, 300}
when compared to the NSGA-II-MPA approach. To test whether there is a sta-

tistical significant difference in the performance of EEMACOMP, EEMMASMP,

EEMMASMH, and EEMACOMC and the NSGA-II-MPA approach, the following

two hypotheses were considered:

H0 : µV NP
ACO = µV NP

NSGA−II−MPA

H1 : µV NP
ACO > µV NP

NSGA−II−MPA
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where ACO takes the values EEMACOMP, EEMMASMP, EEMMASMH, and

EEMACOMC.

Results of the Mann-Whitney U tests were the same for all the compared algo-

rithms as illustrated in Figure 7.54. The Mann-Whitney U tests show that the

EEMACOMP, EEMMASMP, EEMMASMH, and EEMACOMC approaches are

significantly better than the NSGA-II-MPA approach with reference to the VNP

objective for all scenarios.

Tsm Rg NG

≈

>

Figure 7.54: Comparing EEMACOMP, EEMMASMP, EEMMASMH, and EEMACOMC
against the NSGA-II-MPA algorithm with regard to the VNP objective using the Mann-
Whitney U test

To test whether there is a statistical significant difference in the performance of

EEMACOMH and the NSGA-II-MPA approach for all scenarios except for sce-

narios with Rg = 800 and NG ∈ {100, 300}, the following two hypotheses were

considered:

H0 : µV NP
EEMACOMH = µV NP

NSGA−II−MPA

H1 : µV NP
EEMACOMH > µV NP

NSGA−II−MPA
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Results of the Mann-Whitney U tests are illustrated in Figure 7.55. The Mann-

Whitney U tests show that the EEMACOMH approach is significantly better than

the NSGA-II-MPA approach with reference to the VNP objective for all scenarios

except for scenarios with Rg = 800 and NG ∈ {100, 300}.

Tsm Rg NG

≈

>

Figure 7.55: Comparing the EEMACOMH against the NSGA-II-MPA algorithm with
regard to the VNP objective using the Mann-Whitney U test

• Cost per packet, CP , objective

Tables I.28-I.36 and Figures J.10-J.12 show no trend between the CP value and

the change frequency for NG = 300, while for NG ∈ {30, 100} there is no difference

in CP value as change frequency increases.

Table 7.17 displays the average values of CP over all the NG and Rg values using

the results of Tables I.28-I.36. Figure 7.56 illustrates the results of Table 7.17.

Table 7.17 and Figure 7.56 indicate no difference in CP value with change frequency

variation except for NSGA-II-MPA which produced a higher value of CP for Tsm =

1. It is also to be noted from Table 7.17 and Figure 7.56 that when CP is taken
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as the average value over all the NG and Rg values, NSGA-II-MPA is significantly

better than the other algorithms, showing a very low CP.

Tables I.28-I.36 and Figures J.10-J.12 show no trend between the CP value and

the change severity for NG ∈ {30, 300}. For NG = 100, the CP value increased

with increase in Rg for all ACO algorithms, while the NSGA-II-MPA algorithm

produced the lowest CP for Rg = 800.

Table 7.17: Average value of the CP objective over all the NG and Rg values

Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.043 0.044 0.043 0.043 0.043 0.042
PEEMACOMH 0.050 0.054 0.053 0.054 0.055 0.053
PEEMMASMP 0.045 0.047 0.045 0.045 0.046 0.044
PEEMMASMH 0.047 0.048 0.047 0.047 0.047 0.045
PEEMULTCOL 0.040 0.041 0.039 0.039 0.040 0.038
PNSGA−II−MPA 0.017 0.010 0.010 0.010 0.010 0.010
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Figure 7.56: Average value of the CP objective over all the NG and Rg values
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Table 7.18 displays the average values of CP over all the NG and Tsm values, while

Figure 7.57 illustrates the results of Table 7.18. Table 7.18 and Figure 7.57 indicate

that CP was higher for Rg = 300 which is not expected, because low change severity

is supposed to delay the energy depletion of a node and therefore to maintain a

low cost of using that node and lower value of CP.

Table 7.18: Average value of the CP objective over all the NG and Tsm values

Rg

PF 300 500 800
PEEMACOMP 0.051 0.039 0.038
PEEMACOMH 0.056 0.050 0.053
PEEMMASMP 0.052 0.042 0.042
PEEMMASMH 0.052 0.043 0.044
PEEMULTCOL 0.043 0.037 0.038
PNSGA−II−MPA 0.012 0.010 0.012
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0.05

0.06
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Rg
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Figure 7.57: Average value of the CP objective over all the NG and Tsm values

Tables I.28-I.36 show that the CP value increased when the number of nodes in-

creased. This is an expected result because as the number of nodes increases, paths
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consist on average of more nodes, and therefore the value of the CP objective which

is a function of the residual energy of each node of the path increases.

Tables I.28-I.36 show that all the ACO approaches displayed a higher value for CP

and therefore worst performance for all scenarios when compared to the NSGA-

II-MPA approach. To test whether there is a statistical significant difference in

the performance of the NSGA-II-MPA approach and the ACO approaches, the

following two hypotheses were considered:

H0 : µCP
NSGA−II−MPA = µCP

ACO

H1 : µCP
NSGA−II−MPA > µCP

ACO

Results of the Mann-Whitney U tests were the same for all the compared algorithms

as illustrated in Figure 7.58. The Mann-Whitney U tests show that the NSGA-II-

MPA approach is significantly better than all the ACO approaches with reference

to the CP objective for all scenarios. Again, this is possibly related to the effects

of the k shortest path algorithm used in NSGA-II-MPA, which selects the first

R paths with minimum energy consumed per packet and with minimum cost per

packet (refer to Section 6.7).

• Maximum node cost, MNC, objective

Tables I.37-I.45 and Figures J.13-J.15 indicate a decrease in MNC with decrease

in change frequency for all algorithms.

Table 7.19 displays the average values of MNC over all the NG and Rg values using

the results of Tables I.37-I.45. Figure 7.59 illustrates the results of Table 7.19.

Table 7.19 and Figure 7.59 indicate an exponential decrease for MNC as change

frequency decreased for all ACO algorithms and a small decrease for MNC as

change frequency decreased for NSGA-II-MPA. That is an expected result, because

low change frequencies give more time for the algorithms to find paths with low

energy cost links.
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Figure 7.58: Comparing the NSGA-II-MPA algorithm against the ACO algorithms with
regard to the CP objective using the Mann-Whitney U test

Tables I.37-I.45 and Figures J.13-J.15 indicate an increase in MNC with increase

in change severity for most scenarios and for all algorithms.

Table 7.20 displays the average values for MNC over all the NG and Tsm values

while Figure 7.60 illustrates the results of Table 7.20. Table 7.20 and Figure 7.60

indicate that MNC increased for each ACO algorithm as Rg increased. This trend

is expected, because an increase in change severity, Rg, causes only some of the

links to be valid and it may not be possible to always find paths with low energy

cost links. The value of MNC for NSGA-II-MPA increased when Rg increased from

500 to 800.

Tables I.37-I.45 and Figures J.13-J.15 show that the MNC value had a small in-

crease when the number of nodes increased.

Tables I.37-I.45 and Figures J.13-J.15 show that all the ACO approaches displayed

a higher value for MNC for all scenarios except for scenarios with NG = 300

and Rg = 800 when compared to the NSGA-II-MPA approach. To test whether

there is a statistical significant difference in the performance of the NSGA-II-MPA
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Table 7.19: Average value of the MNC objective over all the NG and Rg values

Tsm

PF 1 2 3 4 5 6
PEEMACOMP 2.830 2.023 1.727 1.569 1.485 1.410
PEEMACOMH 2.794 1.999 1.778 1.602 1.518 1.456
PEEMMASMP 3.091 2.219 1.830 1.678 1.580 1.475
PEEMMASMH 3.067 2.220 1.828 1.665 1.579 1.516
PEEMULTCOL 3.736 2.577 2.057 1.751 1.610 1.556
PNSGA−II−MPA 1.513 1.339 1.267 1.232 1.212 1.202
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Tsm
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Figure 7.59: Average value of the MNC objective over all the NG and Rg values

Table 7.20: Average value of the MNC objective over all the NG and Tsm values

Rg

PF 300 500 800
PEEMACOMP 1.612 1.749 2.160
PEEMACOMH 1.666 1.760 2.148
PEEMMASMP 1.772 1.870 2.294
PEEMMASMH 1.766 1.870 2.302
PEEMULTCOL 1.802 2.011 2.830
PNSGA−II−MPA 1.240 1.143 1.500
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Figure 7.60: Average value of the MNC objective over all the NG and Tsm values

approach and the ACO approaches the following two hypotheses were considered:

H0 : µMNC
NSGA−II−MPA = µMNC

ACO

H1 : µMNC
NSGA−II−MPA > µMNC

ACO

Results of the Mann-Whitney U tests were the same for all the compared algorithms

as illustrated in Figure 7.61. The Mann-Whitney U tests show that the NSGA-II-

MPA approach is significantly better than all the ACO approaches with reference

to the MNC objective for all scenarios except for scenarios with NG = 300 and

Rg = 800 where the NSGA-II-MPA approach is equal to the ACO approaches.

The remainder of this section analyses the value of each optimisation criterion for

each environment change.
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Figure 7.61: Comparing the NSGA-II-MPA algorithm against the ACO algorithms with
regard to the MNC objective using the Mann-Whitney U test

Optimization criteria over time

For each optimisation criterion and for each iteration before a change to the environment

occurs, the average value of that criterion is computed over all the number of solutions

for this iteration, further averaged over all 30 simulations for all Rg and NG values per

Tsm value.

Figure 7.62 visualises the energy consumed per packet, EP, over time. For all change

frequencies, a slight decrease in EP is observed over time. This decrease over time in EP

shows that transferring solutions from the environment before the change occurs helps

to accelerate the rate of convergence to the optima after the change occurred. Therefore

more time is available to find solutions with equal or lower energy consumed per packet

after the environment has changed. For all environment changes the NSGA-II-MPA

produced a very low EP compared to the ACO algorithms.

Figure 7.63 visualises the utilisation of the most heavily used link, TNP, over time.

All algorithms minimise the TNP criterion to a very low value. Because of this low value

of TNP, the load among mobile nodes is divided so that the network will partition in

such a way that nodes drain their energy at equal rates. This will help to maximise the
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time to network partition. In addition, for NSGA-II-MPA, Figures 7.63(a) and 7.63(b)

indicate an exponential increase for TNP over time for Tsm = 1 and Tsm = 2.

Figure 7.64 visualises the variance in node power levels, VNP, over time. NSGA-II-

MPA displayed the highest value for VNP over all change frequencies, indicating a bad

load distribution. It is also to be noted from Figures 7.64(b)-7.64(d) that for the NSGA-

II-MPA, VNP decreased over time for Tsm ∈ {2, 3, 4} which is good. Otherwise, for all

algorithms, the value of VNP had a very small variation for all environment changes.

This small variation of VNP, together with the relatively low value for VNP, will ensure

that all the nodes in the network remain up and running for as long as possible.

Figure 7.65 visualises the cost per packet, CP, criterion over time. NSGA-II-MPA

produced the best CP value, having a small value for all environment changes. Even-

though NSGA-II-MPA produced the best cost results, all the ant algorithms achieved

very low cost solutions. Minimising CP achieves the objective of avoiding those nodes

with depleted energy reserves since these nodes have high node cost. In this way, network

partition is delayed.

Figure 7.66 visualises the maximum node cost, MNC, over time. EEMACOMC pro-

duced the worst MNC values (highest MNC values), while NSGA-II-MPA produced the

best MNC values. All algorithms produced low MNC values for all change frequen-

cies, and environment changes. This will help delay node failure and reduce variance in

remaining battery lives.

For all algorithms, there is a very small variation at each environment change in

the values of the EP, TNP, CP, and VNP objectives. This shows the robustness and

adaptability of all the algorithms to the environment changes.

7.4.7 Ranking Of The Algorithms Based On Performance Cri-

teria

Tables 7.21-7.29 give the average rank of the algorithms for each scenario based on the

results of Tables F.1-F.54. Symbols nw
alg, %w, and ξw are defined in Section 7.4.1. For

each of the performance metrics, each algorithm is ranked according to the number of

times that the algorithm had a better performance than all the other algorithms with

reference to this performance metric, for each environment change. The algorithm’s

average rank over all the performance criteria is calculated and then the algorithm is
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Figure 7.62: Energy consumed per packet, EP, criterion over time
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Figure 7.63: Utilisation of the most heavily used link, TNP, criterion over time
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Figure 7.64: Variance in node power levels, VNP, criterion over time
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Figure 7.65: Cost per packet, CP, criterion over time
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Figure 7.66: Maximum node cost, MNC, criterion over time
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ranked accordingly. Table 7.30 gives the average rank of the algorithms over all the

scenarios, together with the standard deviation.

Tables 7.24-7.29 indicate that EEMACOMP ranked overall in first place for 88% of

the scenarios with NG > 30. For scenarios with NG = 30, EEMACOMP ranked overall

in first place for 44% of the scenarios (refer to Tables 7.21-7.23). EEMACOMH is ranked

overall last for 87% of the scenarios. The NSGA-II-MPA algorithm had a better ξ̄ than

the other algorithms for almost all environment changes for scenarios with NG = 300

and Rg ∈ {500, 800} (refer to Tables 7.28-7.29).

Table 7.30 indicates that the EEMACOMP algorithm had on average the best rank

over all the scenarios, while the EEMACOMH algorithm had on average the worst rank

over all the scenarios.

Table 7.21: Ranks for scenarios with NG = 30, Rg = 300
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 0 3 0 4 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
PEEMACOMH 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
PEEMMASMP 5 0 0 3 1 0 0 3 0 0 0 4 0 1 0 3 0 0 0 4 0 0 0 4
PEEMMASMH 0 0 0 5 0 1 0 3 0 1 0 3 0 0 0 4 0 1 0 3 0 1 0 3
PEEMACOMC 10 0 120 1 0 0 60 1 0 0 40 1 0 0 30 1 0 0 24 1 0 1 20 1
PNSGA−II−MPA 0 117 0 2 0 59 0 2 0 39 0 2 0 29 0 2 0 23 0 2 0 18 0 2

Table 7.22: Ranks for scenarios with NG = 30, Rg = 500
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 5 54 9 1 0 31 13 1 0 29 6 1 0 28 0 2 0 18 0 2 0 14 0 2
PEEMACOMH 0 6 4 5 1 7 0 5 0 1 0 5 0 1 0 3 0 0 0 5 0 0 0 3
PEEMMASMP 4 43 20 2 0 9 4 4 0 6 0 3 0 3 0 3 0 3 0 3 0 0 0 3
PEEMMASMH 2 16 35 4 1 13 10 3 0 4 0 4 0 0 0 5 0 1 0 4 0 0 0 3
PEEMACOMC 1 1 52 3 0 0 33 2 0 0 34 2 0 0 30 1 0 2 24 1 0 6 20 1
PNSGA−II−MPA 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 5 0 0 0 5 0 0 0 3

Table 7.23: Ranks for scenarios with NG = 30, Rg = 800
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 6 28 23 4 11 43 31 1 4 13 39 1 6 20 29 1 4 14 17 1 3 11 20 1
PEEMACOMH 0 0 0 6 0 0 0 6 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5
PEEMMASMP 21 50 19 2 0 9 1 4 5 8 1 3 4 6 1 3 3 2 2 4 2 3 0 3
PEEMMASMH 9 42 56 1 0 8 24 3 5 19 0 2 4 4 0 4 1 8 3 2 5 6 0 2
PEEMACOMC 73 0 0 3 49 0 0 2 14 0 0 3 13 0 0 2 8 0 2 3 5 0 0 3
PNSGA−II−MPA 0 0 22 5 0 0 4 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5
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Table 7.24: Ranks for scenarios with NG = 100, Rg = 300
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 118 114 32 1 47 59 39 1 8 39 40 1 12 27 29 1 2 24 23 1 3 20 20 1
PEEMACOMH 0 0 0 6 0 0 0 6 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 3
PEEMMASMP 0 1 0 5 2 0 0 3 2 0 0 4 3 0 0 3 0 0 0 4 0 0 0 3
PEEMMASMH 2 1 1 4 1 0 1 3 5 0 0 2 2 0 1 2 1 0 0 3 0 0 0 3
PEEMACOMC 0 4 1 3 0 1 0 5 2 1 0 3 0 3 0 3 0 0 1 2 0 0 0 3
PNSGA−II−MPA 0 0 86 2 0 0 20 2 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 2

Table 7.25: Ranks for scenarios with NG = 100, Rg = 500
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 56 119 70 1 34 59 52 1 36 38 39 1 9 30 29 1 4 24 23 1 6 20 20 1
PEEMACOMH 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4
PEEMMASMP 61 0 2 2 13 0 2 2 3 0 0 3 6 0 0 2 5 0 0 3 1 0 0 3
PEEMMASMH 2 1 1 4 6 1 1 3 1 1 1 2 3 0 1 3 6 0 1 2 4 0 0 2
PEEMACOMC 0 0 0 5 0 0 5 4 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4
PNSGA−II−MPA 0 0 47 3 0 0 0 5 0 1 0 4 0 0 0 4 0 0 0 4 0 0 0 4

Table 7.26: Ranks for scenarios with NG = 100, Rg = 800
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 63 0 4 3 57 9 0 1 40 8 0 1 30 12 0 1 23 16 0 1 19 13 0 1
PEEMACOMH 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 5 0 0 0 5
PEEMMASMP 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 5 0 0 0 5
PEEMMASMH 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 1 1 0 4 1 2 0 4
PEEMACOMC 55 0 67 2 1 0 60 2 0 0 40 2 0 0 30 2 0 0 24 2 0 0 20 2
PNSGA−II−MPA 2 120 49 1 2 51 0 3 0 32 0 3 0 18 0 3 0 7 0 3 0 5 0 3

Table 7.27: Ranks for scenarios with NG = 300, Rg = 300
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 118 114 0 1 60 57 0 1 39 39 0 1 29 27 0 1 24 23 0 1 15 18 0 1
PEEMACOMH 0 0 0 6 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 6
PEEMMASMP 0 3 0 3 0 0 0 5 0 0 0 5 0 2 0 3 0 0 0 4 2 0 0 4
PEEMMASMH 1 0 0 5 0 2 0 3 1 0 0 3 0 2 0 3 0 0 0 4 2 1 0 3
PEEMACOMC 0 1 120 2 0 0 60 2 0 0 40 2 0 0 30 2 0 0 24 2 0 0 20 2
PNSGA−II−MPA 1 2 0 3 0 1 0 4 0 1 0 3 0 0 0 5 0 1 0 3 0 1 0 5

Table 7.28: Ranks for scenarios with NG = 300, Rg = 500
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 119 118 0 1 59 58 0 1 39 39 0 1 29 29 0 1 23 23 0 1 19 19 0 1
PEEMACOMH 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
PEEMMASMP 0 1 0 4 0 1 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
PEEMMASMH 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3
PEEMACOMC 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
PNSGA−II−MPA 0 0 120 2 0 0 60 2 0 0 40 2 0 0 30 2 0 0 24 2 0 0 20 2

Table 7.29: Ranks for scenarios with NG = 300, Rg = 800
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 0 5 0 2 2 3 0 2 35 18 0 2 28 18 0 1 21 17 0 1 18 17 0 1
PEEMACOMH 0 0 0 4 0 0 0 4 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 6
PEEMMASMP 0 0 0 4 0 1 0 3 1 7 0 3 1 1 0 3 2 4 0 3 0 2 0 3
PEEMMASMH 0 2 0 3 0 0 0 4 1 0 0 4 0 0 0 4 0 0 0 4 1 1 0 3
PEEMACOMC 0 0 0 4 0 0 0 4 0 0 0 5 0 0 0 4 0 0 0 4 1 0 0 5
PNSGA−II−MPA 120 113 120 1 58 56 60 1 30 15 40 1 1 11 30 2 1 3 24 2 0 0 20 2
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Table 7.30: Average rank of all algorithms with respect to all performances measures

PF rank
PEEMACOMP 1.555 ± 1.040
PEEMACOMC 2.833 ± 1.313
PEEMMASMH 3.259 ± 0.850
PEEMMASMP 3.481 ± 0.794
PNSGA−II−MPA 3.259 ± 1.494
PEEMACOMH 4.666 ± 0.824

7.4.8 Computational Complexity of the Algorithms

The runtime complexity of each algorithm can be analysed by investigating the runtime

behavior of the sub-routines of the corresponding algorithm. The approximated worst

case asymptotic complexity of each algorithm is estimated as follows:

• EEMACOMP algorithm

The initialisation process has a worst case complexity of O(c1noN
2
G), while the

solution construction process has a worst case complexity of O(c2noN
2
G). When

checking whether to insert a new solution into the PF , EEMACOMP performs a

non-dominance check of worst case complexity O(c3noPas). The worst case com-

plexity for the crowding distance used in order to keep a bound on the archive

size is O(c4noP
2
as). The EEMACOMP global pheromone update has a worst case

complexity of O(c5noNGPas) and the ApplyMobilityChanges procedure has a worst

case complexity of O(c6noPas + c7noN
2
G). The pheromone conservation rule has a

worst case complexity of O(c8noN
2
G). The worst case complexity of EEMACOMP

is O(c9noPas+c10noP
2
as+c11noNGPas+c12noN

2
G) = O(noN

2
G) where no is the number

of objectives, Pas is the archive size, NG is the number of nodes, and c1, c2, ..., c12

are constants.

• EEMACOMH algorithm

The EEMACOMH algorithm has a similar worst case complexity as EEMACOMP

except for the global pheromone update, which has a worst case complexity of

O(c5NGPas) and the pheromone conservation rule which has a worst case complex-

ity of O(c8N
2
G). The worst case complexity of EEMACOMH is O(noN

2
G).

Comparing EEMACOMP with EEMACOMH, the use of multiple pheromone ma-
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trices requires an additional cost of O(5c5(no−1)NGPas) due to the global pheromone

update. EEMACOMP also requires an additional cost of O(c8(no − 1)N2
G) due to

the pheromone conservation.

• EEMMASMP algorithm

The EEMMASMP algorithm has a similar worst case complexity as EEMACOMP

except for an additional processing for restricting the pheromones by an upper and

lower limit in the order of O(5c12noN
2
G), where c12 is a constant. The worst case

complexity of EEMMASMP is O(noN
2
G).

• EEMMASMH algorithm

The EEMMASMH algorithm has a similar worst case complexity as EEMACOMH

except for additional processing in the order of O(13c12N
2
G) due to the restriction

of the pheromones by an upper and lower limit, where c12 is a constant. The worst

case complexity of EEMMASMH is O(noN
2
G).

• EEMACOMC algorithm

The EEMACOMC algorithm has a similar worst case complexity as EEMACOMP.

• NSGA-II-MPA has a worst case complexity O(noN
2
G + NG log(NG) + k log(k)) =

O(noN
2
G) where O(NG log(NG) + k log(k)) is the worst case complexity of the k-

shortest path algorithm.

The NSGA-II-MPA algorithm has the lowest worst case complexity because it does

not require pheromone updates, and the complexity of the k−shortest path algorithm is

less than the pheromone updates used in the ACO algorithms.

EEMMASMP has the highest worst case complexity because of the multi-pheromone

processing and the restriction of pheromones by the highest and lowest limits. Also,

EEMACOMP has a higher worst case complexity than EEMMASMH because of the

multi-pheromone processing which occurs more frequently than the restriction of pheromones

by the highest and lowest limits.

A fair ranking of the algorithms in terms of their worst case computational complexity

is: NSGA-II-MPA < EEMACOMH < EEMMASMH < EEMACOMC ≤ EEMACOMP

< EEMMASMP.
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7.4.9 Overall Performance of Algorithms

Based on the analysis of the empirical results presented in Subsections 7.4.2-7.4.7, this

subsection summarises the performance of the developed algorithms in terms of the n̄alg,

%̄ and ξ̄ metrics and the optimisation criteria.

A comparison of each algorithm for each scenario reveals the following conclusions:

• When change frequency, Tsm, decreased, all algorithms displayed lower values, and

therefore good results for the spacing metric for most scenarios. The solutions are

more uniformly distributed in the whole Pareto-optimal set, instead of gathering

in a small region.

• When change severity, Rg, increased, the number of non-dominated solutions de-

creased as well and the value of the %̄ metric increased for all algorithms.

• All algorithms displayed a high value for ξ̄ irrespective of Tsm, Rg, and NG. High

values of ξ̄ show closeness of the solutions to the optimal Pareto set, and to some

extent, the spread of the solutions across objective space.

• All algorithms displayed a very low value for the %̄ metric (below 0.3), showing

that they produced uniformly distributed solutions.

• The EEMACOMH algorithm is affected the most when change severity increased

to 800, producing a much smaller number of non-dominated solutions and a worst

solution spread compared to the rest of the ACO algorithms.

• All ACO algorithms compared to the NSGA-II-MPA algorithm displayed a higher

value for n̄alg for 90% of the scenarios.

• A larger number of nodes combined with higher change severity negatively affected

the performance of the ACO algorithms in terms of the number of non-dominated

solutions and solution spread, even though the value of %̄ is still low and under 0.3.

• The EEMACOMP algorithm found the largest number of non-dominated solutions

from EEMACOMH for all scenarios with NG > 30 (66.6% of the scenarios). Also,

EEMACOMP found the largest number of non-dominated solutions from EEM-

MASMP, EEMMASMH, and EEMACOMC for all scenarios with NG = 100 and
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Rg = 800 and scenarios with NG = 800 (44.4% of the scenarios). The EEMA-

COMP algorithm produced a better solution spread than EEMACOMH for 82%

of the scenarios, a better solution spread than EEMMASMP and EEMACOMC for

66% of the scenarios, a better solution spread than EEMMASMH for 77% of the

scenarios, and better solution spread than NSGA-II-MPA for 88% of the scenarios.

• For all environment changes, the EEMACOMP algorithm found more non-dominated

solutions than all the other algorithms and the NSGA-II-MPA found the least num-

ber of non-dominated solutions (refer to Figure 7.43).

• For all environment changes, the EEMACOMP algorithm had the best solution

spread and the NSGA-II-MPA had the worst solution spread (refer to Figure 7.44).

• For all algorithms, there is a very small variation at each environment change in

the values of the n̄alg, %̄, and ξ̄ metrics, and the values of the EP, TNP, CP, and

VNP objectives. This shows the robustness and adaptability of all the algorithms

to the environment changes.

• The NSGA-II-MPA approach had a lower energy consumed per packet than all the

ACO approaches and for all the scenarios.

• All ACO approaches are better than the NSGA-II-MPA approach with reference

to the utilisation of the most heavily used link, TNP , objective for NG = 300.

• The EEMACOMP, EEMMASMP, EEMMASMH, and EEMACOMC approaches

are better than the NSGA-II-MPA approach with reference to the variance in

node power levels, V NP , objective for all scenarios. The EEMACOMH approach

is better than the NSGA-II-MPA approach with reference to the V NP objective

for all scenarios except for scenarios with Rg = 800 and NG ∈ {100, 300}.

• The NSGA-II-MPA approach had a lower cost per packet, CP , than all ACO

approaches for all scenarios.

• The NSGA-II-MPA approach had a lower maximum node cost, MNC, than all

ACO approaches for all scenarios except for scenarios with NG = 300 and Rg = 800.

261

 
 
 



• EEMACOMP had the highest rank with reference to the performance criteria for

most scenarios, and the highest average rank over all scenarios and performance

criteria.

• EEMACOMH had the lowest average rank over all scenarios and performance

criteria.

• If all objectives have the same importance it is recommended to use the EEMA-

COMP, EEMMASMP, EEMMASMH, or EEMACOMC ACO algorithms (espe-

cially the EEMACOMP), which provide more closeness to the true Pareto front

and maintain better distribution of solutions in the Pareto front. If any of the

EP, CP, or MNC objectives have a higher priority than the other objectives, it is

recommended to use the NSGA-II-MPA algorithm.

7.5 Summary

This chapter presented an empirical study of the performance of the five ant multi-

objective optimisation algorithms presented in this thesis and the role played by the

various algorithmic features.

The experimental procedures and results of parameter tuning were given.

The five algorithms were compared with one another and with the NSGA-II, which

was adapted in this thesis for the multi-objective, power-aware routing problem. Dif-

ferent scenarios were tested for each algorithm according to the values of different ACO

and NSGA-II parameters and the Pareto fronts for each algorithm were obtained.

The experimental results showed that the five ACO algorithms, excluding the EEMA-

COMH algorithm, outperformed, on most scenarios, the NSGA-II-MPA algorithm in

terms of the number of solutions and spacing metric. All algorithms produced similar

results for the hypervolume metric for most of the scenarios. The NSGA-II-MPA ap-

proach had a lower energy consumed per packet, and lower cost per packet than all the

ACO approaches and for all the scenarios. Also, the NSGA-II-MPA approach had a

lower maximum node cost than all the ACO approaches for most scenarios. All ACO

approaches had a lower utilisation of the most heavily used link than the NSGA-II-MPA

for NG = 300 and less variance in node power levels for most of the scenarios.

By minimising the five optimisation criteria for the power-aware routing problem,
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the proposed ACO algorithms minimised the energy consumed per packet and spread

the traffic over the network to make all nodes have similar amounts of consumed energy.

Maximum energy consumption has been reduced which means that the lifetime of the first

node to die is extended using the ACO approaches. Consequently, MANETS network

lifetime was maximised and network partitioning was delayed.

In addition, the results demonstrated that EEMACOMP outperformed the other four

ACO algorithms and the NSGA-II-MPA algorithm in terms of the number of solutions

and spacing metric in most scenarios and produced the best rank. Therefore, in light of

the results presented, the EEMACOMP approach is recommended by this study for the

multi-objective, power-aware routing problem.
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Chapter 8

Conclusion

8.1 Summary

As a special type of network, mobile ad hoc networks (MANETs) have increasingly

been the focus of research in recent years. The network topology in MANETs usually

changes with time. Therefore, as a result of the highly dynamic and distributed nature

of MANETs, routing protocols are being presented with new challenges since traditional

routing protocols may not be suitable for MANETs. In particular, energy efficient rout-

ing may be the most important design criterion for MANETs since mobile nodes are

powered by batteries with limited capacity.

The main purpose of this thesis was to study ant algorithms as applied to the dynamic

environment of mobile ad hoc networks and, specifically, to resolve the five power-aware

metrics which were presented by Singh et al. [184]. These metrics aim to minimise the

energy consumed per packet, maximise the time needed to network partition, minimise

the variance in node power levels, minimise cost per packet, and minimise maximum

node cost. Taking into consideration a realistic mobility model using an ant colony

optimisation (ACO) approach, this thesis proposed to simultaneously optimise the five

power-aware metrics for energy efficiency and maximising the lifetime of MANETs. A

set of optimal solutions, the Pareto-optimal set, is found using ACO algorithms.

This thesis proposed five algorithms with which to solve the above multi-objective

optimisation problem. The first two algorithms are the energy efficiency for mobile net-

works using multi-objective ant colony optimisation, multi-pheromone (EEMACOMP)

algorithm and the energy efficiency for mobile networks using multi-objective ant colony

optimisation, multi-heuristic (EEMACOMH) algorithm. These two algorithms are adap-

tations of multi-objective ant colony optimisation algorithms (MOACO) based on the

ant colony system (ACS) algorithm.

The next two algorithms, namely, the energy efficiency for mobile networks using
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multi-objective MAX-MIN ant system optimisation, multi-pheromone (EEMMASMP)

algorithm and the energy efficiency for mobile networks using multi-objective MAX-MIN

ant system optimisation, multi-heuristic (EEMMASMH) algorithm succeeded in solving

the above multi-objective optimisation problem by using an adaptation of the MAX-MIN

ant system optimisation algorithm.

The last algorithm implemented, namely, the energy efficiency for mobile networks

using multi-objective ant colony optimisation, multi-colony (EEMACOMC) uses a mul-

tiple colony ACO algorithm.

In addition, this thesis used an adaptation of the NSGA-II algorithm called NSGA-

II multi-objective power-aware algorithm (NSGA-II-MPA) to solve the multi-objective

power-aware routing problem.

For each algorithm the following hypotheses or questions were investigated:

1. Is there a statistical significant difference in the performance of the algorithms?

2. Does performance deteriorate with increase in change frequency?

3. Does performance deteriorate with increase in change severity?

4. Are the algorithms scalable?

5. Is there an algorithm that is less affected by change frequency / change severity?

6. How is the performance of the algorithms over time?

The performance of each algorithm was tested under different scenarios for different

change frequencies, change severities and number of nodes as outlined in Section 7.1.1.

For each of the scenarios 30 simulations were executed and results were reported as

averages over these simulations. Each estimated pareto front, PF , produced by the

EEMACOMP, EEMACOMH, EEMMASMP, EEMMASMH, EEMACOMC, and NSGA-

II-MPA algorithms was evaluated using three performance metrics, namely the number

of non-dominated solutions, n̄alg, the spread metric, %̄, and the hypervolume metric, ξ̄

(refer to Section 7.1.3).

8.2 Conclusions

On the basis of the experimental results the final conclusions are summarised as follows:
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• The EEMACOMP algorithm found a largest number of non-dominated solutions

and produced a better solution spread compared to the rest of the algorithms, for

high percentage of scenarios.

• All ACO algorithms compared to the NSGA-II-MPA algorithm displayed a higher

value for n̄alg for 90% of the scenarios and they produced a better solution spread

for high percentage of scenarios.

• Performance for n̄alg and %̄ metrics deteriorate with increase in change frequency,

for all algorithms.

• Performance for n̄alg and %̄ metrics deteriorate with increase in change severity, for

all algorithms.

• The EEMACOMH algorithm is affected the most when change severity increased

to 800, producing a much smaller number of non-dominated solutions and a worst

solution spread compared to the rest of the ACO algorithms.

• A larger number of nodes combined with higher change severity negatively affected

the performance of the ACO algorithms in terms of the number of non-dominated

solutions and solution spread, even though the value of %̄ is still low and under 0.3.

• All the algorithms had a good performance over time. This shows the robustness

and adaptability of all the algorithms to the environment changes.

• All algorithms displayed a high value for ξ̄ irrespective of Tsm, Rg, and NG. High

values of ξ̄ show closeness of the solutions to the optimal Pareto set, and to some

extent, the spread of the solutions across objective space.

• EEMACOMP had the highest rank with reference to the performance criteria for

most scenarios, and the highest average rank over all scenarios and performance

criteria.

In summary, based on the simulations it can be concluded that using ant multi-

objective optimisation to simultaneously optimise the five power-aware metrics is ex-

tremely beneficial because the traffic is spread over the network, thus forcing all nodes

to have similar amounts of consumed energy. Maximum energy consumption has been

reduced which means that the lifetime of the first node to die is extended using the ACO
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approaches. Consequently, MANETS network lifetime was maximised and network par-

titioning was delayed.

This is the first time the power-aware routing multi-objective optimisation problem

has been solved using an ant colony optimisation algorithm. All five algorithms pre-

sented in this thesis were shown to outperform the NSGA-II-MPA algorithm in terms of

the performance metrics in most scenarios. Also, all the ACO approaches had a lower

variance in node power levels and a lower utilisation of the most heavily used link than

the NSGA-II-MPA approach. In addition, all ACO algorithms produced a very good

solution distribution, high number of non-dominated solutions and dominated a high

percentage of the objective space, showing closeness to the true Pareto front.

8.3 Future Work

Specific recommendations to develop and extend this work further and areas of future

research include:

• Other mobility models such as the random waypoint mobility model can be studied

in order to model different realistic situations of the movements of mobile nodes and

study the behaviour of the proposed algorithms. Finally, these different mobility

models may be compared in order to demonstrate their effects on the performance

of the proposed ant routing algorithms.

• A detailed comparison of the performance of the ant-based algorithms with other

meta-heuristics can be conducted.

• The influence of the control parameters on the ant-based algorithms under different

number of nodes can be analysed.

• The influence of different weights for the objective parameters, λψ, on the ant-based

algorithms can be examined.

• The impact of the Pareto archive size on the performance of the ant-based algo-

rithms can be analysed.

• Other performance metrics such as diversity in the objective space (DOM) pro-

posed by Morrison and De Jong [150], and their application to the evaluation and
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comparison of the developed multi-objective optimisation algorithms for the power

aware routing problem can be investigated.
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