
Chapter 5

ACO in Dynamic Optimisation

Problems

Ant colony optimisation has proved suitable to solve static optimisation problems, that

is problems where the objective does not change with time [52, 54]. However, many

real-world problems are defined for dynamic environments, where a previously optimum

solution may become sub-optimal and new optima may appear.

Dynamic optimisation problems form a class of difficult optimisation problems. Op-

timisation algorithms applied to dynamic environments must be able to find and track

solutions as the environment changes. In this regard, it should be possible to track both

the position and value of optima as changes occur, and it should be possible to detect any

new optima that appear and those that disappear. Changes in environments may take

various forms, such as changes in the objective functions and/or problem constraints. An

acceptable solution at a particular point in time may not be acceptable after a change

in the environment has occurred.

The power-aware routing problem considered in this thesis is a dynamic optimisation

problem: A realistic mobility model is used within MANET, the position of the nodes

changes, and both the optimal decision variables (Pareto set) and the optimal objective

values (Pareto front) change repeatedly during the optimisation process.

This chapter is organised as follows: Section 5.1 provides a mathematical defini-

tion of dynamic optimisation problems. Section 5.2 discusses how ACO algorithms can

be adapted for dynamic optimisation problems. Section 5.3 discusses performance met-

rics for DOP. Section 5.4 describes dynamic multi-objective optimisation (DMOO), while

Section 5.5 discusses performance metrics for dynamic multi-objective optimisation prob-

lems (DMOP).

91

5.1 Definition of Dynamic Optimisation Problems

A single-objective dynamic optimisation problem is formally defined as

Definition 5.1.1. Dynamic optimisation problem:

minimise f(x, δ(t)), x = (x1, ..., xnx), δ(t) = (δ1(t), ..., δnδ
(t))

subject to gm(x, δ(t)) ≤ 0, m = 1, ..., ng

hm(x, δ(t)) = 0, m = 1, ..., nh

x ∈ Rnx

(5.1)

where δ(t) is a vector of time-dependent objective function control parameters, nδ is the

number of objective function control parameters, and gm and hm denote the inequality

and equality constraints respectively. The objective is to find and track

x∗(t) = min
x

f(x, δ(t)) (5.2)

where the solution x∗(t) is the optimum found at time step t.

Therefore, the task of a dynamic optimisation algorithm is to locate the optimum

and track its trajectory as closely as possible and also to search for new optima that

may appear. Algorithms should have the ability to track changes in both the position

of x∗(t) and the value of the optimum, f(x∗(t)).

Dynamic environments can be classified into the following classes of problems [61,

64, 68]:

• the location of the optimum changes,

• the location of the optimum remains the same, but its value changes, and

• both the location and value of the optimum change simultaneously.

The difficulty of a dynamic optimisation problem is determined by the frequency, the

severity and the predictability of environment change [23]:

• The frequency of change determines how often the environment changes, usu-

ally in terms of the number of the iterations between each change. As frequency

92

of change increases, the time available for adaptation becomes shorter and the

optimisation task becomes more difficult.

• The severity of change determines the amount of displacement of the current

location of the optimum. Large displacements make the problem more difficult.

• The predictability of change defines the pattern of the change, which can be

linear, random or cyclic.

5.2 ACO Algorithms and Dynamic Environments

ACO was developed for static environments in which ants, as a result of the autocat-

alytic feedback process, converge on a single solution. This characteristic of ACO meta-

heuristics limits their application to static environments. In order for ACO algorithms

to be applied to DOPs, mechanisms should be employed that maintain diversity. These

mechanisms should find a trade-off between the opposing goals of preserving pheromone

information and sufficient resetting of pheromone information to allow the ants to con-

tinuously explore the search space.

ACO algorithms for dynamic environments can be classified into the following ap-

proaches:

• Re-initialisation methods. The simplest way to enforce exploration is to restart

the ant algorithm after each environment change has occurred. However, a simple

restart of the ant algorithm will discard all old information about best paths. As

a result, it will take longer to find a solution which may prevent re-convergence to

a new optimum under frequent changes.

• New pheromone update methods. Changes in the search space render pheromone

information inaccurate and inconsistent. Therefore, an alternative approach to

restarting the ACO algorithm is to develop new approaches to pheromone updates.

Under the assumption that the change in the environment is relatively small, it is

likely that the new optimum will, in some sense, be related to the old one, and

it would probably be beneficial to transfer knowledge in the form of pheromone

information from the old optimisation run to the new run. On the other hand, if

too much information is transferred and the severity of change is high, the next

93

iteration of the algorithm after the change has occurred may start near a local

optimum, and the algorithm may become detained at this local optimum. Thus, a

reasonable compromise between these two opposing approaches has to be found.

The rest of this section focuses on such methods.

5.2.1 Re-initialisation Methods

Gambardella et al. [77] proposed a complete re-initialisation of all pheromone concen-

trations when no improvement in the quality of solutions is observed. All pheromone

concentrations, τij, are re-initialised to τ0 = 1
QTLbest(t)

, where Q is a parameter and

TLbest(t) is the tour length of the best solution found so far. While all pheromones

are re-initialised, information about the best solution found so far is retained and used

to initialise new pheromones on each link. This technique can be applied in dynamic

environments when a change in the environment occurs. This diversification mechanism

increases exploration while retaining some knowledge from previous environments. Lim-

iting the amount of stored history to the adapted to change elitist solution assists the

algorithm to track the optimal solution.

5.2.2 New Pheromone Updates Methods

Stützle [194] proposed that, when stagnation occurs, pheromone values be increased pro-

portionally to the difference between the pheromone value and the largest pheromone

value. The increase of pheromone intensity for all links will increase the selection proba-

bility for all links. The same increase in pheromone intensity can be applied in dynamic

environments when a change in the environment occurs. The relative difference of the

pheromone trails will not be very large and, as a consequence, exploration of new paths

is increased.

Guntsch and Middendorf [90] proposed three pheromone update rules (strategies) for

dynamic environments, namely, the restart strategy, the η-strategy, and the τ -strategy.

The strategies distribute a reset-value, γi ∈ [0, 1], to each node i. These reset values are

used to reinitialise the pheromone values on all links incident to i, as follows:

τij(t + 1) = (1− γi)τij + γi
1

nG − 1
(5.3)

94

where nG is the number of nodes in the representation graph.

The reset-values for each strategy are calculated as follows:

• Restart strategy: This strategy is a global pheromone modification strategy

which reinitialises all the pheromone values by the same degree. For each node, i,

γi = λR (5.4)

where λR ∈ [0, 1] is a strategy-specific parameter.

This strategy acts globally without considering the position of the environment

change. Consequently the ant algorithm may need more time to find the optimum.

The most extensive resetting of pheromone values should generally be performed

in the close vicinity of the changed node. With lower values of λR, a trade-off

between exploration and exploitation would be achieved. With higher values of

λR virtually all pheromone information is reset and the ant algorithm needs more

time to rediscover a good solution.

• η-strategy: The η-strategy uses heuristic-based information to decide to what

degree pheromone values are to be equalised on all links incident to a node i. The

equalization of the pheromone values to some degree resets the pheromone values

and effectively reduces the influence of experience on the decisions an ant makes

to build a solution, thus improving diversity. Each node, i, is given a value, γi,

proportionate to the nearest changed node j (a node which is inserted or deleted),

and equalisation is effected on all links incident to node i. The node, i, receives

the reset value

γi = max{0, dη
ij} (5.5)

where

dη
ij = 1− η̄

λE.ηij

(5.6)

95

with

η̄ =
1

nG ∗ (nG − 1)

nG∑
i=1

nG∑
k=1
k 6=i

ηik (5.7)

and λE ∈ [0,∞) is a strategy-specific parameter.

• τ-strategy: This strategy uses a distance measure based on pheromone informa-

tion to equalise those links which are closer to the changed node to a greater extent

than links that are further from the changed node. The reset value is

γi = min{1, λτd
τ
ij}, λτ ∈ [0,∞) (5.8)

where

dτ
ij = max

T (i,j)

{ ∏

(x,y)∈T (i,j)

τxy

τmax

}
(5.9)

where T (i, j) is the set of all paths from i to j, and τxy is the pheromone associated

with link (x, y).

All three strategies adapt the pheromone information such that exploration is in-

creased, assisting the algorithm in the detection of new optima. Also, there is adequate

transfer of knowledge from previous iterations.

Guntsch et al. [93] developed a novel ACO algorithm for dynamic environments,

where extensive resetting of pheromone values is performed in the vicinity of change

(i.e. local pheromone resetting) and an elitist strategy is proposed for use in dynamic

environments. This ACO algorithm combines the three strategies discussed above in

order to make ant algorithms more suitable for optimisation in dynamic environments.

In a situation where strong local resetting of pheromones in the area of change is

necessary, a combination of the global restart strategy with one of the two more locally

acting strategies, i.e. with the η−strategy or τ−strategy, is applied. In the areas where

no change occurs, a lower global resetting of the pheromone values is needed to be able

96

to change the best solution found. This combination can be realised by having each of

the two combined strategies distribute reset-values, and then choosing the maximum of

the two reset-values for each node.

A standard elitist strategy for ant algorithms is that an elitist ant, which represents

the best solution found so far, updates the pheromone values in every generation. How-

ever, this best solution may no longer represent a feasible solution after an environment

change. Instead of forgetting the old best solution, Guntsch et al. [93] adapted the

old best solution so that it becomes a reasonably good solution after the environment

changes. Two steps are followed in order to adapt the old best solution: i) all nodes

that were deleted after the environment change are also deleted from the old best solu-

tion, effectively connecting the predecessors and successors of the deleted nodes, and ii)

the nodes that were added after the environment change are inserted individually into

the old best solution at the place where they cause the minimum increase in cost. The

solution derived from this process is the new solution of the elitist ant.

Using a combination of the three strategies and the heuristic for keeping a modified

elitist ant, better solutions are found for different strategy parameters than is the case

with the pure strategies alone. The authors proved empirically that using the above

strategies and resetting the information only in the area of change performed best when

problem changes occur frequently. The novel ACO algorithm was applied successfully

to a combinatorial dynamic TSP.

Eyckelhof and Snoek [67] modified the AS to apply it to DOPs by introducing global

shaking: All pheromone values are squashed into a pre-defined range, while preserving

the relative pheromone rankings. That is, if τij(t) > τi′j′(t) holds before shaking, it also

holds after shaking.

Shaking is implemented as follows

τij = τ0

(
1 + log(

τij

τ0

)

)
(5.10)

Shaking is done when an environment change has been detected. The shaking proce-

dure changes the ratio between exploitation and exploration and diversifies search when

change occurs.

There is a high probability that paths only have to change in the vicinity of the

environment change. Therefore, in addition to global shaking, a local shaking operator

was developed which operates in the same way as global shaking, but only within a

97

defined radius around the area of change. Local shaking showed good performance under

increased change frequencies. The higher the change frequency, the more important it is

to preserve some of the pheromone information in order to exploit the solutions in the

vicinity of the environment change. The local shake algorithm, by smoothing the part of

the pheromone matrix which is close to the environment change, combines exploitation

of the current pheromone matrix and biased exploration within the area of change.

Guntsch and Middendorf [91] proposed P-ACO, an ACS-based algorithm which uses

a population of previously best solutions to update the pheromone matrix. In the usual

implementations of the ACO, pheromone values are the incremental result of all the

updates since the start of algorithm execution. In P-ACO, on the other hand, the

pheromone patterns at time t are those precisely induced by the current ant population

P (t) and not the result of all past updates. That is, after one ant has completed its

solution, the solution is either added or included by replacement into the population set

according to both deterministic and stochastic criteria (population update strategies)

based on quality, population size, or age.

If a solution Tk enters the population, then the values of the pheromone variables

associated with Tk are correspondingly increased according to an AS-like rule using

equations (3.4)-(3.6). On the other hand, if a solution Tk leaves the population, then

the corresponding pheromone is decreased by the same amount it was increased when Tk

entered the population. In this way, the pheromone values precisely reflect the solutions

belonging to the current population P (t) at iteration t. In addition to this specific

mechanism, P-ACO makes use of the ACS’s transition rule using equations (3.7) and

(3.8) for component selection; however, it does not make any use of online step-by-step

pheromone updates, since pheromone updates are subject to the fact that solutions are

either entering or leaving the population.

Guntsch and Middendorf [92] applied the P-ACO algorithm for DOPs. When a

change occurs, heuristic repair of the solutions of the population is applied: the solutions

maintained in the population are modified after a change, such that they can also become

good solutions after the environment change. Since pheromone values depend only on

the solutions in the current population, using the solutions in the current population

to update pheromone information automatically adapts the pheromone information to

reflect the environment change. To maximise search efficacy the P-ACO algorithm only

inserts the best solution from each iteration into the population, thereby maintaining a

98

small population of elite solutions. The purpose of maintaining a population of solutions

is to provide the P-ACO algorithm with a quick way to adjust the pheromone mapping

if a change occurs. The P-ACO algorithm has been shown to be more efficient than most

ACO algorithms for dynamic combinatorial optimisation [92].

Ramos et al. [169] developed distributed pheromone laying over the dynamic environ-

ment itself in order to track different optima. The authors show that the self-organised

algorithm is able to cope with, and to adapt quickly to unforeseen situations.

5.3 Performance Metrics for Dynamic Optimisation

Algorithms

It is far more difficult to quantify the performance of an algorithm on dynamic optimi-

sation problems than on static optimisation problems [19]. The difficulty in quantifying

performance in dynamic environments stems from the fact that the global optimum

changes over time, resulting in multiple solutions. The ability of the algorithm to re-

spond to these changes over time has to be quantified.

Even though techniques exist to detect environment changes, these techniques are

infeasible owing to the additional computational complexity. Morrison [149] provides a

summary of performance measures for dynamic environments with respect to evolution-

ary algorithms:

• Accuracy (Acc): At each environment change, the absolute difference between the

value of the best solution of the iteration found just before a change has taken

place and the value of the true global optimum before the change is calculated.

The average of these differences for all environment changes is then calculated as

a measure of performance [207], denoted by Acc, and defined as

Acc =
1

nc

nc∑
i=1

|f(Lopt(tc))− f(Lbest(tc))| (5.11)

where tc is the iteration just before a change has taken place, nc is the number

of changes of the fitness landscape (environment) during the run, Lopt(tc) is the

99

optimum solution, Lbest(tc) is the best solution found in the environment after

iteration tc (just before the environment change), and f is the fitness function. If

nI is the number of iterations between changes then tc = nI − 1.

The smaller the measured value for Acc the better the result. In particular, a value

of 0 for Acc means that the algorithm found the optimum every time before the

landscape was changed (i.e. nI iterations were sufficient to track the optimum).

This measure requires knowledge of the iteration when the environment changed

and the true optimum for each change. In real problems, the position of the true

global optimum is not always available, and when the environment changes is also

not usually known.

• Adaptability (Ada): At each environment change, the average of the absolute dif-

ference between the value of the best solution found for each iteration and the value

of the optimum before the change is calculated. The average of these differences

for all environment changes (over the entire run) is then calculated as a measure

of performance [207], denoted by Ada, and defined as

Ada =
1

nc

nc∑
i=1

1

nI

nI−1∑
t=0

|f(Lopt(tc))− f(Lbest
i (t))| (5.12)

where Lbest
i (t) is the best solution found in the environment for iteration t for the

fitness landscape after the i-th environment change (i ∈ [0, nc − 1]).

The smaller the measured value for Ada the better the result. A value of 0 for Ada

means that the best solution in the population is the same as the optimum for all

iterations, i.e. the optimum is never lost by the algorithm.

Similar to the first measure, Ada requires knowledge of the iteration when the

environment changed and the true optimum for each change.

Combining the Acc and the Ada measures, the quality of the search process per-

formed by the algorithm can be evaluated. For example, results with low values

for Acc and larger values for Ada indicate that the algorithm loses the optimum

after a change is made, but the time interval between changes is long enough to

recover.

100

• At each iteration, the average of the Euclidean distance between each solution of the

iteration and the global optimum before the change is calculated. The average over

these distances for all iterations before a change and for all environment changes is

then calculated as a measure of performance [212], denoted by AED, and defined

as

AED =
1

nc

nc∑
i=1

1

nI

nI−1∑
t=0

1

nPF

nPF∑

k=1

||Lopt(t)− Li
k(t)|| (5.13)

where nPF is the number of solutions at iteration t, Li
k(t) is the k-th solution

at iteration t for the fitness landscape after the i-th environment change, and

||Lopt(t)−Li
k(t)|| denotes the Euclidean distance between the solutions Lopt(t) and

Li
k(t).

The smaller the measured value for AED the better the result. A value of 0 for

AED means that the algorithm has found the optimum at each iteration.

Again, the problem with the AED measure is the fact that the position of the global

optimum in the search space is usually not available, except in test problems.

Another problem is that the Euclidian distance does not apply to all problem

spaces.

• Best-of-generation average (BOGA): This is the average of the best solution for

each iteration over several executions of the algorithm on the same problem [88].

BOGA for algorithm A is defined as

BOGAA(t) =
1

nr

nr∑
r=1

Lbest
r (t) (5.14)

where nr is the number of runs and Lbest
r (t) is the best solution for iteration t and

run r.

To compare the performance of one algorithm against another, the BOGA metric

is calculated for each iteration before a change in the environment occurs (refers

to Equation (5.14)).

Figure 5.1 illustrates the BOGA metric for algorithms A and B. The run of each

algorithm consists of 20 iterations and the frequency of change is 5. Therefore,

101

during each run the function changes every 5 iterations, resulting in 4 changes per

run.

0
1
2
3
4
5
6
7
8
9

0 5 10 15

Iteration

B
O

G
A

Algorithm A
Algorithm B

Figure 5.1: Best of generation averages

This method is the most commonly used method to compare the performance of

one algorithm against another. However, it does not provide a convenient method

for comparing performance across the full range of changes in the environment:

Many experiments are required for an accurate measure over all possible changes

and using this metric requires the determination of the number of iterations to

be used for a representative sample of all the environment changes. In addition,

this metric does not provide a convenient method for measuring the statistical

significance of the results: it is difficult to determine whether any differences in

performance are statistically significant.

• At each iteration, the difference between the value of the best solution of the

iteration minus the value of the worst solution within a small window, W , of

recent iterations, compared to the value of the best solution within the window

minus the value of the worst solution within the window, is calculated as a measure

of performance [112], denoted by WA. WA is defined as

WAA(t) =
f(Lbest(t))− f(Lworst

W (t))

f(Lbest
W (t))− f(Lworst

W (t))
(5.15)

102

where Lbest
W (t) is the best solution within the window [t−W, ..., t], and Lworst

W (t) is

the worst solution within the window [t−W, ..., t].

This measure is based on the assumption that the best fitness value will not change

much over a small number of iterations, which may not be true. This measure also

does not provide a convenient method for comparing performance across the full

range of changes in the environment.

Since the position of the global optimum in the search space is not available for

the DMOP proposed in this thesis, the BOGAA(t) measure is used to compare the

performance of the developed algorithms.

5.4 Dynamic Multi-objective Optimisation

A dynamic multi-objective optimisation problem (DMOP) is a dynamic optimisation

problem (DOP) where at least one of the sub-objectives changes over time.

Solving a DMOP consists of tracking changes in the Pareto-optimal front. New

dominated solutions may be found and should be added. It may happen that current

solutions in the Pareto-front become dominated after a change and these should be

removed.

Very little research has been done on DMOO. Most research in DMOO has been done

on EAs [43, 68, 89, 106, 132] and PSO [87].

This section will only discuss a dynamic multi-objective optimisation evolutionary

algorithm (DMOEA) proposed by Liu and Wang [132], since this thesis will borrow

some of the aspects of this method. Liu and Wang proposed a new DMOEA denoted

by DMEA. The DMEA algorithm divides the simulation time of the DMOP into several

equal time sub-periods. In each sub-period, the DMOP is approximated by a static

multi-objective optimisation problem. As a result, the original DMOP is approximately

transformed into several static multi-objective optimisation problems. The comparative

study in [132] showed that DMEA is more effective than the compared algorithms with

respect to convergence, diversity, and the distribution of the obtained Pareto optimal

solutions.

To the author’s knowledge no studies exist of the application of ACO algorithms to

DMOPs.

103

5.5 Performance Metrics for Dynamic Multi-Objective

Optimisation Problems

Performance measures for DMOPs need to quantify the ability of the algorithm to adapt

the Pareto-front under changes in the environment. As indicated in Section 5.3, perfor-

mance measures for single-objective optimisation problems can be divided into measures

that make use of the global optimum and measures independent of the global optimum.

In addition, performance measures for MOPs can be divided into measures where the true

Pareto front is known and performance metrics where the true Pareto front is unknown

(refer to Section 4.7.2).

Since the true Pareto-front is not known for the DMOP proposed in this thesis, the

focus of this thesis is on measures that do not require knowledge of the true Pareto-front.

The following performance metrics are used to compare the algorithms of this thesis:

• Number of non-dominated solutions found (ND) [119, 208]

The number of non-dominated solutions found (refer to Section 4.7.2) is calculated

for each iteration before a change to the environment occurs. The average over nr

runs is then calculated for each of these iterations as follows:

ND
i
=

1

nr

nr∑
r=1

NDi
r (5.16)

where NDi is the number of non-dominated solutions found for iteration i and NDi
r

is the number of non-dominated solutions found for run r at iteration i, which is

an iteration before a change occurs in the environment.

The performance of the algorithm over time is expressed as the average ND
i
over

all iterations, that is,

ND =
1

nc

nc∑
i=1

ND
i

(5.17)

where nc is the total number of recorded iterations (or change periods). When

comparing the performance of two algorithms, A and B, the total number of times

that ND
i

A is better than ND
i

B is calculated as the performance measure.

104

The ND metric measures how well the algorithms performed in identifying solu-

tions along the Pareto front. Larger values for ND are preferred as it indicates

that many efficient solutions were found which is preferred by the decision maker.

The maximum value for ND is 100 which is the size of the archive.

• Size of the dominated space or hypervolume measure (Sd) [17, 218]

To compare the performance of one algorithm against another, the hypervolume,

Sd (refer to Section 4.7.2), is calculated for each iteration before a change to the

environment occurs. The average over nr runs is then calculated for each of these

iterations as follows:

Sd
i
=

1

nr

nr∑
r=1

Si
dr

(5.18)

where Si
d is the hypervolume calculated for iteration i and Si

dr
is the hypervolume

calculated for run r at iteration i, which is an iteration before a change occurs in

the environment.

The performance of the algorithm over time is expressed as the average Sd
i

over

all iterations, that is,

Sd =
1

nc

nc∑
i=1

Sd
i

(5.19)

Since the optimisation problem in this thesis involves the minimisation of five

objectives, a reasonable maximum value for each objective is selected for the origin

of the objective space (refer to Section 4.7.2). The hypervolume metric measures

how well the algorithms performed in identifying solutions along the full extent of

the Pareto front. Higher values of Sd indicate more closeness to the true Pareto

front and better performance.

When comparing the performance of two algorithms, A and B, the total number

of times that Sd
i

A is better than Sd
i

B is calculated as the performance measure.

• Spacing (SP) or spread metric [179, 208]

105

To compare the performance of one algorithm against another, the spacing metric,

SP i (refer to Section 4.7.2), is calculated for each iteration before a change to the

environment occurs (refer to Equation (4.34)). The average over nr runs is then

calculated for each of these iterations as follows:

SP
i
=

1

nr

nr∑
r=1

SP i
r (5.20)

where SP i
r is the spacing metric value of run r at iteration i, which is an iteration

before a change occurs in the environment.

The performance of the algorithm over time is expressed as the average SP
i
over

all iterations, i.e.

SP =
1

nc

nc∑
i=1

SP
i

(5.21)

The smaller the value of SP , the better the distribution in the current non-

dominated set. A value of zero indicates that all members of the current Pareto

front are equidistantly spaced.

When comparing the performance of two algorithms, A and B, the total number

of times that SP
i

A is better than SP
i

B is calculated as the performance measure.

5.6 Summary

This section provided an overview of the main characteristics of dynamic problems and

the main goals of an optimisation algorithm for dynamic environments. The use of ant

algorithms to handle changes in dynamic environments has been described, and DMOO

and performance metrics for DMOO have been discussed.

The following chapter presents the multi-objective optimisation algorithms for power-

aware routing metrics.

106

Chapter 6

Multi-Objective Optimisation

Algorithms for Power-Aware

Routing Metrics

This chapter formally introduces the multi-objective power-aware routing problem. Five

multi-objective ant colony optimisation algorithms are then developed to solve the multi-

objective power-aware routing problem.

6.1 Introduction

The mobile ad hoc network routing problem is rendered difficult due to node mobility,

time-varying capacity of wireless links, and limited resources. Physically available routes

become invalid as a result of topology changes brought about by node movement or link

failure (i.e. routes may not be found by the routing algorithm) thus causing packets to

be dropped and leading both to throughput degradation and increased control overhead.

Control packet overhead (e.g. resource reservation, routing and scheduling) is an expen-

sive operation in mobile ad hoc wireless networks in terms of energy consumption and

should be kept to a minimum.

Routing algorithms for mobile networks that attempt to optimise routes while at-

tempting to keep message overhead small have been discussed in Chapter 2. Different

routing protocols use one or more of a small set of metrics to determine optimal paths.

However, some of these metrics have a negative impact on node and network life by

inadvertently overusing the energy resources of a small set of nodes in favour of others

(refer to Section 2.5.10).

Conservation of power and careful sharing of the cost of routing packets will ensure

that node and network life be increased. The simultaneous optimisation of several power-

107

aware metrics will result in energy efficient routes and power saving.

This chapter presents new adaptations of the ant colony system (ACS), the max-

min ant system (MMAS), and the multiple colony ACO algorithm for solving the MOP

power-aware routing problem. This MOP consists of the following five objectives: 1)

minimise energy consumed per packet, 2) maximise time to network partition, 3) min-

imise variance in node power levels, 4) minimise cost per packet, and 5) minimise max-

imum node cost while taking into consideration a realistic mobility model. This thesis

proposes five algorithms for solving this MOP. The first two algorithms, namely, the en-

ergy efficiency for mobile networks using multi-objective ant colony optimisation, multi-

pheromone (EEMACOMP) algorithm and the energy efficiency for mobile networks using

multi-objective ant colony optimisation, multi-heuristic (EEMACOMH) algorithm are

adaptations of multi-objective ant colony optimisation algorithms (MOACO) based on

the ant colony system (ACS) algorithm. The next two algorithms, namely, the energy

efficiency for mobile networks using multi-objective MAX-MIN ant system optimisation,

multi-pheromone (EEMMASMP) algorithm and the energy efficiency for mobile net-

work using multi-objective MAX-MIN ant system optimisation, multi-heuristic (EEM-

MASMH) algorithm solve the above multi-objective problem using an adaptation of the

MAX-MIN ant system optimisation algorithm. The last algorithm, namely, the energy

efficiency for mobile networks using multi-objective ant colony optimisation, multi-colony

(EEMACOMC) algorithm uses a multiple colony ACO algorithm.

One of the objectives of this thesis is to explore different ways of adapting ACO

algorithms for the power aware routing problem and to identify which algorithms have

a better performance in terms of the optimisation criteria. The management of the

pheromone information in MOO is an important factor for the design of a MOACO

algorithm. So, the issue is to change the way in which the pheromone matrix is used

to account for multiple objectives. This can be achieved either by keeping a single

pheromone matrix (EEMACOMH and EEMMASMH), where pheromone updates are

proportional to a weighted sum of updates, each update corresponding to an objec-

tive, or using multiple pheromone matrices, one for each objective (EEMACOMP and

EEMMASMP). EEMACOMC uses multiple colonies, where each colony focuses on the

optimisation of one of the objectives. Using several colonies can serve different goals.

The usual aim is to have colonies that specialise to find good solutions in different regions

of the Pareto front, but it could also be used to let each colony specialise on a given

108

objective. Finally, EEMACOMP, EEMACOMH and EEMMASMP, EEMMASMH are

chosen because they transfer knowledge of the best performing ACO algorithms for single

objective optimization, respectively ACS and MMAS, into the multi-objective context

for the power aware routing problem.

This chapter is organised as follows. Section 6.2 discusses the suitability of ACO

algorithms for the power-aware routing problem. Section 6.3 describes in detail the five

metrics for power-aware routing and formulates them mathematically. Section 6.4 for-

mulates the multi-objective optimisation problem. Section 6.5 discusses the mobility

model used, namely, the reference point group mobility model. All the changes to the

power-aware routing problem formulation resulting from this mobility model are dis-

cussed. Section 6.6 presents the five multi-objective ant colony optimisation algorithms

proposed in this thesis for simultaneously optimising the five power-aware routing met-

rics. Section 6.7 describes in detail the elitist non-dominated sorting genetic algorithm

for multi-objective power-aware routing (NSGA-II-MPA). The five algorithms proposed

will be compared with the NSGA-II-MPA algorithm.

6.2 Suitability of Ant Algorithms for the Power-Aware

Routing Problem

The ant algorithms discussed in the previous chapters illustrate the various reasons why

it is possible that these types of algorithm could perform well in mobile multi-hop ad

hoc networks. Some of these reasons will now be discussed in terms of their relevance to

important properties of the power-aware routing problem.

• Dynamic topology: The power-aware routing problem is a dynamic optimisation

problem because, after applying the mobility model to the MANET, the position of

the nodes changes and as a consequence the objective functions change repeatedly.

The changes in the environment are responsible for the poor performance of many

“classical” routing algorithms in mobile multi-hop ad hoc networks. The ability of

ACO algorithms to adapt from the optimum solution for one set of circumstances

to the optimal solution to another set of circumstances makes ACO suitable for

DOP.

109

• Local information: The power-aware routing problem has certain characteris-

tics, including distributed information, non-stationary stochastic dynamics, and

asynchronous evolution of the network status. These characteristics match some

of the properties of ACO algorithms, such as the use of local information to gen-

erate solutions, indirect communication via the pheromone trails and stochastic

state transitions. In contrast to other routing approaches, the ant algorithms use

only local information to make stochastic decisions, that is, there is no need to

transmit routing tables or other information blocks to other nodes of the network.

In addition, ACO algorithms are characterised by the fact that they are multi-

agent systems interacting with each other via a form of indirect communication

(stigmergy).

• Link quality: It is possible to integrate the connection/link quality into the com-

putation of the pheromone concentration, especially into the evaporation process.

Link quality is inversely proportional to the cost between nodes and that may easily

reflect at the pheromone matrices. Evaporation helps to remove old or poor links

from the collective memory of the system. The association of link quality with

pheromone information will improve the decision process with respect to the link

quality. It is important to note that the link quality approach may be modified so

that nodes may also manipulate the pheromone concentration independent of the

ants, for example, if a node detects a change in the link quality.

• Support for multi-path: Each node has a routing table with entries for all its

neighbours. This routing table also contains the pheromone concentration. The

decision rule for selecting the next node is based on the pheromone concentration

at the current node which is provided for each possible link. Since this decision

is stochastic, a set of alternative valid paths can be discovered (multi-path) in

order to disperse the data. A multi-path data transfer provides reliable network

operations, while considering the energy levels of the nodes.

6.3 Metrics for Power-Aware Routing

This thesis hypothesises that conserving power and carefully sharing the cost of routing

packets will ensure that node and network life are increased. This section, therefore,

110

describes five power-aware metrics that result in energy-efficient routes [186]:

1. Minimise energy consumed per packet (EP): This is one of the most obvious

metrics that reflects the hypothesis of this thesis in respect of conserving energy.

Assume that a certain packet, p, traverses the route T (s,D) which consists of nodes

n1, ..., nnT
where n1 is the source, s, and nnT

the destination, D. Let Eij denote

the energy consumed in transmitting (and receiving) one packet over one hop from

node ni to node nj and Tp the route which the packet, p, traverses. The energy,

EP (Tp), consumed for one packet, p, is denoted by

EP (Tp) =

nT−1∑
i=1

Ei(i+1) (6.1)

where nT is the number of nodes in the route, Tp. The energy, EP (T), consumed

for all packets is denoted by

EP (T) =

nT
p∑

p=1

EP (Tp) (6.2)

where nT
p is the total number of packets from s to D and T is the set of routes Tp,

one for each packet p.

Thus, the goal of this metric is to minimise EP (T).

Discussion:

EP facilitates finding the min-power path which minimises the overall energy con-

sumption for delivering a packet. Each wireless link is annotated with its transmis-

sion energy. The min-power path is that path that minimises the sum of the link

costs along the path. In fact, it is interesting to observe that, under light loads,

the routes selected when using this metric are identical to the routes selected by

shortest-hop routing. This is not a surprising observation because, if the assump-

tion is made that Eij = Ec,∀(i, j) ∈ L, where Ec is a constant and L is the set of

all links, then the power consumed is (nT − 1)Ec . In order to minimise this value

nT needs to be minimised and this is equivalent to finding the shortest-hop path.

111

In situations where one or more nodes on the shortest-hop path are heavily loaded,

the selected route may differ from the route selected by shortest-hop routing. This

is as a result of the fact that the amount of energy expended in transmitting one

packet over one hop will not be a constant since variable amounts of energy (per

hop) may be expended on network contention. Thus, the EP metric will tend to

route packets around congested areas (possibly increasing hop-count).

Shortest hop algorithms, while resulting in minimum delay, often result in the early

death of some mobile nodes. When mobile nodes are unfairly burdened to support

several packet-relaying functions these nodes consume more battery energy and run

out of energy earlier than other nodes, thereby creating partitions and disrupting

the overall functionality of the ad hoc network. Consider the network illustrated in

Figure 6.1 [186]. Here, node 6 will be selected as the route for packets going from

0 to 3, 1 to 4 and 2 to 5, thus providing the shortest hop. As a result, node 6 will

expend its battery resources at a faster rate than the other nodes in the network

and will be the first node to die. Thus, the EP metric alone does not really meet

the goal of increasing node and network life.

2. Maximise time to network partition (TNP): The objective of the TNP metric

is to divide the load among mobile nodes so that the network will partition in such a

way that nodes drain their energy at equal rates. The TNP metric is very important

in mission-critical applications such as battle site networks. Optimisation of TNP

is very difficult if it has to simultaneously maintain low delay and high throughput.

The goal of the TNP metric is to obtain a balanced ad hoc network in order to

achieve better performance in terms of execution time and throughput.

A common approach to balancing network load is to minimise the utilisation of

the link with the least capacity:

TNP (Tp) = Maxi,j ∈ Tp

{
1

ca(i,j)

}
(6.3)

with the capacity of link (i, j) defined as

112

0 1

2

3
4

5

6

Figure 6.1: A network illustrating the problem with energy per packet as a metric.

ca(i, j) =
ec

i

Eij

(6.4)

where ec
i is the current energy of node i, and Eij is the energy expenditure for unit

flow transmission over the link (i, j); ca(i, j) is the capacity of the link (i, j) defined

as the number of unit-length messages that may be transmitted along (i, j) before

node i runs out of energy.

Discussion: Given a network topology, the maxflow-min-cut theorem [130] may be

used to find a minimal set of nodes (i.e. the cut-set nodes) whose removal will

cause the network to partition. The routes between these two partitions must pass

through one of these cut-set nodes, which are called critical nodes. Therefore,

a routing procedure must divide the work among the critical nodes in order to

maximise the lifetime of the network. Dividing the work among the critical nodes

is similar to the “load balancing” problem, where tasks need to be sent to one of the

many servers available so that response time is minimised – this is an NP-complete

113

problem. If care is not taken that the critical nodes drain their power at an equal

rate, there will be delay increases as soon as one of these nodes die as a result of

network partition. Achieving equal power drain rate among these nodes requires

careful routing, and is similar to the load balancing problem described above. Since

nodes in different partitions determine routes independently, it is not possible to

achieve the global balance required to maximise the network partition time whilst

minimising the average delay. Maximising the network lifetime using the TNP

metric is a more fundamental goal of an energy efficient routing algorithm: Given

alternative routing paths, TNP selects that path which will result in the longest

network operation time.

3. Minimise variance in node power levels (VNP): In order to measure quanti-

tatively how well the nodes share the load, the variation factor, VF, is introduced.

The VF is defined as the variance of the capacity of the nodes:

V F (Tp) =

∑
i,j ∈ Tp

|ca(i, j)− µT |
nT − 1

(6.5)

where µT is the average capacity for solution Tp, which is computed as

µT =
1

(nT − 1)

∑
i,j ∈ Tp

ca(i, j) (6.6)

A lower value of VF indicates both a better load distribution and minimum variance

in node power and tends to zero for a perfectly balanced load sharing system.

The VNP metric is based on the assumption that all nodes in the network are

equally important and that no single node must be penalised more than any other

node. The VNP metric ensures that all the nodes in the network remain up and

running for as long as possible.

Discussion: A problem with minimising variance in node power levels is similar to

“load sharing” in distributed systems, where the objective is to minimise response

time while keeping the amount of unfinished work in all nodes the same. This

goal may be achieved by using a routing procedure, where each node sends traffic

114

through the neighbour with the least amount of data waiting to be transmitted,

thus avoiding overloading a node.

4. Minimise cost per packet (CP): Let fi(e
e
i (t)) denote the node cost or weight

of node ni where ee
i (t) represents the total energy expended by node ni thus far.

The total cost of sending a packet along path T (s,D) = (s = n1, n2,D = nnT
) is

defined as the sum of the node costs of all the nodes that lie along that path. The

cost CP of sending a packet p from n1 to nnT
via intermediate nodes n2, ..., nnT−1

is,

CP (Tp) =

nT−1∑
i=1

fi(e
e
i (t)) (6.7)

The goal of the CP metric is to minimise the total cost over all the packets. The

paths selected when using the CP metric should be such that those nodes with de-

pleted energy reserves do not lie on many paths. In this way the network partition

is extended.

Discussion: Since fi represents the reluctance of a node to forward packets, fi is

chosen as [186]

fi(e
e
i (t)) =

1

Ei − (ee
i (t))

(6.8)

where Ei is the initial energy of node ni when the network is deployed.

Function fi is the reciprocal of the residual energy of node ni. Therefore, as the

energy of a node decreases, the cost of using that node increases.

Using equation (6.8), equation (6.7) becomes

CP (Tp) =
∑
i∈Tp

1

Ei − (ee
i (t))

(6.9)

To summarise, the benefits of the CP metric are the following:

115

• It is possible to incorporate the residual energy characteristics directly into

the routing protocol.

• As a side-effect, the CP metric increases the time to network partition and

reduces variation in node costs.

• The effects of network congestion are incorporated (as an increase in node

cost due to contention).

5. Minimise maximum node cost (MNC): The node cost, Cni
(t), is defined as

the ratio of the total energy consumed up to time, t, to the initial energy, Ei [65]:

Cni
(t) =

Ei − ec
i(t)

Ei

(6.10)

The MNC metric is then defined as

MNC(Tp) = max
i∈Tp

Cni
(t), ∀t > 0 (6.11)

The objective of this metric is to minimise MNC. Minimising the cost per node

significantly reduces the maximum node cost. MNC delays node failure and reduces

variance in remaining battery lives because links with high energy cost are avoided.

Since future network lifetime is difficult to estimate, the last three metrics have been

included in order to increase network lifetime indirectly. Variance of residual battery

energy of mobile nodes is a simple indication of energy balance and may be used to

extend network lifetime. The cost-per-packet metric is similar to the energy-per-packet

metric but cost-per-packet includes the residual energy life of each node in addition

to the transmission energy. The corresponding energy-aware routing protocol prefers

wireless links which require low transmission energy, but, at the same time, avoids nodes

with low residual energy with high node cost. The outcome of the MNC metric is that

each candidate path is annotated with the maximum node cost among the intermediate

nodes (equivalently, the minimal residual battery life), and the path with the minimum

path cost, is selected. Maximum node cost is also referred to as the max-min path in

online max-min (OMM) protocol [165] because this protocol uses the residual battery

life of nodes rather than their node cost. It is clear from the above that, in order to

maximise network lifetime, it is necessary to achieve a measure of balance between the

116

energy consumed by a route and the minimum residual energy at the nodes along the

chosen route.

The five metrics discussed in this section express, in different ways, the hypothesis

of this thesis about conserving energy in the network by selecting routes carefully.

The next section formulates the power-aware routing problem.

6.4 Multi-Objective Optimisation Problem for Power-

Aware Routing Metrics Using a Mobility Model

Based on the five metrics defined in Section 6.3, this section defines the dynamic MOP

for power-aware routing. The problem is formulated in Section 6.4.1, while Section 6.4.2

discusses the heuristic information used to solve the dynamic MOP.

6.4.1 Problem Formulation

For this thesis, a network is modelled as a directed graph, G = (V, L), where V represents

the set of nodes and L is the set of links. The definitions in appendix C are used for the

formulation of the power-aware routing problem.

The power-aware routing problem is defined as a dynamic MOP, with the objective

to find a path, T (s,D) = {s = n1, n2, ..., D = nnT
}, such that the energy consumed per

packet, EP (Tp), utilisation of the most heavily used link, TNP (Tp), variance in node

power levels, V F (Tp), cost per packet, CP (Tp), and maximum node cost, MNC(Tp), are

minimised (refer to equations (6.1), (6.3), (6.5), (6.9) and (6.11)). More formally, the

problem is defined as

minimise f(Tp) = (EP (Tp), TNP (Tp), V F (Tp), CP (Tp), MNC(Tp)) (6.12)

An example of a networking routing problem is discussed in the remainder of this

section in order to illustrate the multi-objective power-aware problem stated above:

Given the network topology of a directed graph G as illustrated in Figure 6.2, the number

associated with each link (i, j) denotes the energy, Eij, consumed in transmitting one

117

0

7

6

8

3
4

5

2

1

9

8

15

10

22

30

20

12

40

20
20

2

3

1.5

5.5

5
3

2

1.8

1.2

1.6 2

1

2

2.5

2 4
1.2

Figure 6.2: A network illustrating the multi-objective optimisation problem

packet over one hop from node i to node j. With each node is associated a number, ec
i ,

where ec
i is the residual power of node i. The initial energy for each node is 50Joule,

npT = 10, s = 3, and D = 9. Table 6.1 presents the values of the objective functions

for the random solution, Tp(3, 9) = (3, 1, 2, 5, 8, 9). After finding the set of candidate

paths (solutions) from source to destination, and using the concept of non-dominance,

the Pareto set is calculated. The objective of the algorithms of this thesis is to calculate

the Pareto set in one run and evaluate it just before a change in the environment occurs,

using the performance metrics discussed in Section 5.5.

The following subsection presents the heuristic information associated with each sub-

objective.

118

Table 6.1: Objective functions calculated for the route of Figure 6.2

Solution Tp = (3, 1, 2, 5, 8, 9)
(i, j) (3, 1) (1, 2) (2, 5) (5, 8) (8, 9)
Eij 2 2.5 3.0 2 1
i 3 1 2 5 8 9
ec

i 10 15 20 30 20 40
ec
i

Eij
5.00 6.00 6.66 15.00 20.00

1
ec
i

0.10 0.066 0.050 0.033 0.050 0.025

EP (Tp) 10(2+2.5+3+2+1)=105
TNP (Tp) 0.2

µTp 10.53
V F (Tp) 5.57
CP (Tp) 0.1+0.066+0.05+0.033+0.05+0.025=0.324

MNC(Tp) max(0.8, 0.7, 0.6, 0.4, 0.6, 0.2) =0.8

6.4.2 Heuristic Information

For each of the five sub-objectives, the heuristic information needed to guide the search

to an optimal solution is defined as follows:

• Energy consumed per packet heuristic: Let ηνij
denote the heuristic desirability or

the attractiveness of the move from node i to node j which is associated with the

objective EP. Then,

ηνij
=

1

Eij

(6.13)

The heuristic information, ηνij
, guides the ants to construct good solutions with

low energy consumed per packet. For this purpose, the function ην creates a matrix

that associates a row to each node and a column for each feasible neighbour node.

Each entry is calculated according to the energy, Eij, consumed in transmitting one

packet over one hop from i to j (refer to equations (6.1) and (6.2)). The motivation

for using the energy consumed per packet heuristic information is that, intuitively,

good solutions will choose a link with low transmission energy.

• Time to network partition heuristic: Let ηξij
denote the heuristic information as-

sociated with the objective TNP. Then,

ηξij
=

ec
i

Eij

(6.14)

119

The heuristic information, ηξij
, guides the ants to construct good solutions with

minimal utilisation of the most heavily used link in the network. The assignment

of each entry in the matrix created by ηξ is made according to the current energy,

ec
i , of node i and the energy, Eij, which is consumed in transmitting one packet

over one hop from i to j (refer to equation (6.3)). The motivation for using the

time to network partition heuristic information is that the use of the least heavily

used link in the network delays first node failure (due to node energy depletion),

and thus delays network partition.

• Variance in node power levels heuristic: Let ηπij
denote the heuristic information

associated with the objective VNP. Then,

ηπij
=

1

|ca(i, j)− µT | (6.15)

where ca(i, j) denotes the capacity of link (i, j) and µT is the average capacity for

all links of T which is computed as in equation (6.6).

The heuristic information, ηπij
, guides the ants to construct good solutions with

minimum variance in node power level and to send traffic through the nodes with

less capacity variation. The assignment of each entry in the matrix created by ηπ

is made according to the current capacity variation of link (i, j) (refer to equation

(6.5)). The motivation for using the variance in node power levels heuristic in-

formation is that the performance potential from an energy environment depends

on the variation in the energy available across the network. While the amount of

energy available is definitely relevant, it is the distribution of this energy in space

and time which significantly affects network performance. For instance, if large

amounts of energy are available, but concentrated in a small region of the network,

then the nodes in those regions without energy supply will limit the total useful

lifetime of the network. Energy available in other regions of the network may not

be able to meet the performance requirements of the system as a whole.

• Cost per packet heuristic: Let η%ij
denote the heuristic information associated with

the objective CP. Then,

η%ij
=

ec
j

Ej

(6.16)

where ec
j is the residual energy of node j and Ej is the initial energy of node j.

120

The heuristic information, η%ij
, guides the ants to construct good solutions with

low cost per packet and to send traffic through nodes with more residual energy

(refer to equation (6.9)). The motivation for using the cost per packet heuristic

information is that, if routes that pass through nodes with high residual energy

are used, network lifetime will be maximised [8].

• Maximum node cost heuristic: Let ηςij denote the heuristic information associated

with the objective MNC. Then,

ηςij =
Ej

Ej − ec
j(t)

(6.17)

The heuristic information, ηςij , guides the ants to construct good solutions with

minimum node cost and to send traffic through links with high residual energy (re-

fer to equation (6.11)). The motivation for using the maximum node cost heuristic

information is that network lifetime will be maximised if routes that pass through

links with high node cost are avoided [18].

The next section deals with the mobility model used for the multi-objective power-

aware routing problem.

6.5 Reference Point Group Mobility Model

This thesis makes use of the reference point group mobility (RPGM) model [29] (refer

to Section 2.4). Nodes move in a random fashion using the random way point mobility

(RWP) model [29] around a global centre from which the nodes are not able to move

farther than a radius of Rg/2. This global centre is also mobile, and its motion may follow

an arbitrary motion pattern. The RWP model is used to create the motion pattern of

the global centre. The effect is that each node will follow the mobility pattern.

RPGM was selected because group motion occurs frequently in ad hoc networks,

and RPGM may be readily applied to many existing applications [101]. Moreover, with

a proper choice of parameters, RPGM may be used to model several mobility models

which have previously been proposed (refer to Section 2.4). RPGM has the advantage of

providing a general and flexible framework for describing mobility patterns which are task

oriented and time restricted, in addition to being easy to implement and verify. RWP

121

is one of the widely used models for ad hoc and infrastructure wireless simulations [163]

and it has been implemented in several network simulations [110, 183].

The dynamic nature of the power-aware routing problem is determined by the mo-

bility model. The mobility model, in part, makes the problem a dynamic optimisation

problem. The Rg determines the severity of change and the pause time, Tsm, before

applying the mobility model, determines the frequency of change (refer to Section 5.1).

The remainder of this section presents the actions to be taken just before applying

the RPGM mobility model and all the updates after the change occurs.

Every Tsm seconds, a packet is sent from a source node to a destination node using

a random route, Ts, from the Pareto set. The choice of a random route is motivated

by the fact that none of the Pareto set solutions is absolutely better than the other

non-dominated solutions and all of them are equally acceptable with regards to the

satisfaction of all the objectives.

The energy required to do a single-hop transmission from node i to node j is Eij.

Therefore, the current energy, ec
i , for each node i ∈ Ts is updated according to

ec
i = ec

i − Eij (6.18)

where link (i, j) ∈ Ts.

The RPGM mobility model is applied (refer to Section 6.5) and the distances, dij,

between all nodes i and j belonging to L are recalculated. Since the energy required

for transmitting a message along a link (i, j) is proportionate to the distance, dij, the

energy, Eij, for all links (i, j) ∈ L is recalculated using

Eij = max

{
1

(Tr)2
,

1

(Tr)2
∗ d2

ij

}
(6.19)

where Tr is the transmission range of the node and dij is the Euclidean distance between

nodes i and j (refer to Section 2.5.8). The Pareto set is updated by deleting the invalid

routes (routes with broken links), i.e. routes for which Eij > ec
i or dij > Tr. Since

the objective functions have been changed, the sub-objectives for all solutions of the

current Pareto set are evaluated using equations (6.2), (6.3), (6.5), (6.9), (6.11) and all

the dominated solutions are discarded from the Pareto set.

Finally, the heuristic matrices are recalculated (refer to equations (6.13)-(6.17)).

122

The above steps are summarised in Algorithm 12.

Algorithm 12 General Procedure of ApplyMobilityChanges

Choose a random route, Ts, from Pf ;
Send one packet from source to destination using Ts;
for all nodes i ∈ Ts do

Update ec
i according to equation (6.18);

end for
Apply the RPGM mobility model (refer to Section 6.5);
for all links (i, j) ∈ L do

Recalculate dij ;
Recalculate Eij according to equation (6.19);

end for
Delete invalid solutions from Pf ;
for all T ∈ Pf do

Re-evaluate the sub-objectives using equations (6.2), (6.3), (6.5), (6.9), (6.11);
end for
Remove dominated solutions from Pf ;
for all links (i, j) ∈ L do

Recalculate all the heuristic matrices according to equations (6.13)-(6.17);
end for

6.6 Multi-Objective Ant Colony Optimisation

This section presents the five multi-objective ant colony optimisation algorithms pro-

posed in this thesis for simultaneously optimising the five power-aware routing metrics

given in Section 6.3.

Subsection 6.6.1 discusses the general framework of the ACO algorithms developed

for the power-aware routing problem. Subsections 6.6.2 to 6.6.6 respectively present the

EEMACOMP, EEMACOMH, EEMMASMP, EEMMASMH and EEMACOMC multi-

objective ACO algorithms.

6.6.1 General Framework of ACO Algorithms for the Power-

Aware Routing Problem

An overview of the ACO algorithms for the power-aware routing problem is given below

in Figure 6.3.

The remainder of this subsection discusses the solution construction process for each

algorithm, the management of the archive, Pf (Pareto set), and the global pheromone

update.

Solution construction process. At every iteration of the developed algorithms

each ant constructs a complete solution as follows: Starting from the source node, s,

123

———————————————————————————————

1. Initialise control parameters, and pheromone matrices.

2. Calculate the heuristic matrices.

3. Place all ants at source node s.

4. Repeat for the duration of the simulation time

(a) Repeat for the duration of pause time {Optimise static problem for power-aware routing }
i. For each ant

A. Construct a solution.

B. Evaluate the solution.

C. If solution is non-dominated insert it into the archive.

D. Keep the size of the archive to a predefined limit.

ii. Apply global pheromone update using all non-dominated solutions of the archive.

(b) Dynamic aspect for power-aware routing

i. Send a packet using a solution from the archive.

ii. Apply RPGM mobility model.

iii. ApplyMobilityChanges {apply updates due to the mobility of the nodes}
A. Update energy levels.

B. Update node distances.

C. Eliminate invalid solutions from the archive.

D. Re-evaluate the sub-objectives.

E. Eliminate dominated solutions from the archive.

F. Recalculate heuristic information.

iv. Apply pheromone conservation.

5. Return solutions of the archive.

——–

Figure 6.3: Overview of ACO algorithms for the power-aware routing problem

a non-visited node is selected at each step using an adaptation of the ACS transition

rule for the EEMACOMP, EEMACOMH, and EEMACOMC algorithms (refer to Sec-

tion 3.5.2) and an adaptation of the MAX-MIN transition rule for the EEMMASMP

and EEMMASMH algorithms (refer to Section 3.5.3). This process continues until the

destination node, D, is reached. When a new node has been added to a candidate solu-

tion, a local pheromone update is performed for the EEMACOMP, EEMACOMH, and

EEMACOMC algorithms (refer to Section 3.5.2).

Archive management. At the conclusion of each iteration, the Pareto set, Pf , is

updated including the non-dominated solutions that have been found thus far. Domi-

nated solutions are removed from Pf . If the number of non-dominated solutions exceeds

the predefined archive size, Pas, then a truncation operator is used to remove solutions

with a lower value of the crowding distance from the archive (refer to Section 4.6.2).

The use of the crowding distance guides the selection process at the various stages of the

algorithm towards a uniformly spread-out Pareto-optimal front.

124

Global pheromone update. In the case of multiple pheromone algorithms (EEMA-

COMP and EEMMASMP) each pheromone matrix associated with each objective is

updated using all the solutions of the archive, Pf . That is, every ant that generated a

solution in the non-dominated front, Pf , from the beginning of the run is allowed to up-

date all pheromone matrices (refer to Section 4.5.4). In the case of a single pheromone

algorithm (EEMACOMH, EEMMASMH) every ant that generated a solution in the

non-dominated front from the beginning of the run is allowed to update the pheromone

matrix (refer to Section 4.5.3).

The next sections elaborate in detail on the different steps for each of the algorithms.

6.6.2 Energy Efficiency Using Multi-Objective Ant Colony Op-

timisation, Multi-Pheromone Algorithm

In accordance with the ant colony system (ACS) (refer to Section 3.5.2) the energy

efficiency for a mobile network using a multi-objective ant colony optimisation, multi-

pheromone (EEMACOMP) algorithm makes use of a colony of ants and several pheromone

matrices. This concept has been borrowed from Iredi et al. [104] (refer to Section 4.5.4).

EEMACOMP calculates five pheromone matrices – one for each optimisation criterion,

which, together with a heuristic matrix for each optimisation criterion, are used to cal-

culate transition probabilities. The association of different pheromone matrices for each

objective may be useful if the weight of each objective is different and the solution

components for each objective must be defined differently (refer to Section 4.5.4).

From equation (3.7), the transition rule for EEMACOMP becomes

j =





arg maxu ∈ Nk
i (t)

{
τλν
νiu

(t)ηβν
νiu

(t) + τ
λξ

ξiu
(t)η

βξ

ξiu
(t) + τλπ

πiu
(t)ηβπ

πiu
(t) + τ

λ%
%iu(t)η

β%
%iu(t)+

τλς
ςiu

(t)ηβς
ςiu

(t)
}

if r ≤ r0

J if r > r0

(6.20)

where λν , λξ, λπ, λ%, λς ∈ (0, 1) are user-defined parameters which establish the impor-

tance of the objectives; τνij
(t), τξij

(t), τπij
(t), τ%ij

(t) and τςij(t) are the pheromone ma-

trices, one per objective; ηνij
(t), ηξij

(t), ηπij
(t), η%ij

(t) and ηςij(t) represent the heuristic

information. The parameters βν , βξ, βπ, β%, βς define the relative influence among heuris-

tic information. The other symbols are as defined in Section 3.5.2. J ∈ Nk
i (t) is a node

125

randomly selected based on the probability given by equation (3.8) [104]. According to

this equation the probability for EEMACOMP becomes

pk
iJ(t) =





(
τλν
νiJ

(t)ηβν
νiJ

(t)+τ
λξ
ξiJ

(t)η
βξ
ξiJ

(t)+τλπ
πiJ

(t)ηβπ
πiJ

(t)+τ
λ%
%iJ

(t)η
β%
%iJ

(t)+τ
λς
ςiJ

(t)η
βς
ςiJ

(t)

)

∑
∀u∈Nk

i
(t)

(
τλν
νiu

(t)ηβν
νiu

(t)+τ
λξ
ξiu

(t)η
βξ
ξiu

(t)+τλπ
πiu

(t)ηβπ
πiu

(t)+τ
λ%
%iu

(t)η
β%
%iu

(t)+τ
λς
ςiu

(t)η
βς
ςiu

(t)

)

if J ∈ Nk
i (t)

0 otherwise

(6.21)

where Nk
i (t) is a list containing a set of valid nodes to visit from node i.

All objective functions are normalized and bounded by an upper limit value that

gives approximately the same magnitude to each objective function [103]. To further

reduce any problems which may arise due to difference in magnitude of the objective

functions, the above rule uses the sum of the products of the different pheromone and

heuristic information matrices instead of the product as used by Iredi et al. [104].

The transition rule in equation (6.21) creates a bias towards those nodes which are

connected by links with a large amount of pheromone. The same transition rule will bias

the search toward minimising energy consumed per packet, utilisation of the link with

the least capacity, variance in node power levels, cost per packet, and maximum node

cost. Such nodes have a higher probability of being selected.

Heuristic information matrices are calculated at the beginning of the simulation and

every time there is a change in the environment using equations (6.13)-(6.17). Pheromone

matrix initialisation, and global and local updates are discussed next.

Pheromone matrix initialisation

The five pheromone matrices are initialised as follows:

τψij
(t) = τ0ψ (6.22)

for all ψ ∈ {ν, ξ, π, %, ς}, and for all (i, j) ∈ L, where τ0ψs are small positive values

calculated for each objective, as follows

τ0ψ =
1

NGBψ

(6.23)

126

where NG is the number of nodes; Bν = EP (Tν), where Tν is the route from source s to

destination D with minimal energy consumed per packet; Bξ is the maximum capacity

of all links belonging to T for all paths T from s to D; Bπ is the minimal variance

of the capacity of all nodes for all paths T from s to D; B% = CP (T%), where T% is

the route with minimal cost consumed per packet; Bς denotes the maximum energy

consumed in transmitting one packet over one hop for all links belonging to T and for

all paths T from s to D. Routes T , Tν , and T% are calculated using greedy heuristics

as follows: Starting from the source node, s, a non-visited node is selected at each step

according to the heuristic information associated with the corresponding objective. This

process continues until the destination node, D, is reached and the greedy algorithm is

completed.

Global pheromone update

Once all nk ants have constructed solutions (refer to Section 6.6.1), the archive (Pareto

set), Pf , is updated including the non-dominated solutions that have been found thus

far. All the solutions from Pf are then selected to modify the pheromone trails globally.

Each pheromone trail associated with each objective is updated using the following global

update rules (refer to Section 3.5.2):

τψij
(t + 1) = (1− ρg)τψij

(t) + ρg∆
ψτij(t) (6.24)

where ρg ∈ [0, 1] is the global evaporation factor, ψij represents either νij, ξij, πij, %ij,

or ςij depending on the sub-objective, and

∆ψτij(t) =

{
1

C(Tk)
if i, j ∈ Tk

0 otherwise
(6.25)

for all Tk ∈ Pf , where C(Tk) represents the corresponding objective function.

If ρg is small, this strategy favours exploitation by encouraging ants to search in the

vicinity of the solutions of the current Pareto front.

127

Local pheromone update

When a new node is added to a solution being constructed by an ant, a local pheromone

update is performed using

τψij
(t + 1) = (1− ρl)τψij

(t) + ρlτ0ψ (6.26)

where τ0ψ is the initial amount of pheromone on every link, ψ represents either ν, ξ, π,

%, or ς depending on the sub-objective, and ρl ∈ [0, 1] is the local evaporation factor.

The EEMACOMP discussed above has been developed for static objective functions.

The following subsection discusses an adaptation of EEMACOMP for dynamic objective

functions.

Dynamic EEMACOMP

The problem considered in this thesis is a dynamic optimisation problem. Therefore, the

static EEMACOMP above has to be adapted to dynamic environments. This section

presents an adaptation of EEMACOMP to dynamic environments.

The dynamic ACO algorithm is based on the principle of dividing the simulation

time, STtot , into nts time slices with equal length, STtot/Tsm, where Tsm is the length of

the pause time for the mobility model. Tsm is an indication of frequency of change (refer

to Section 5.1). During each time slice a problem very similar to a static EEMACOMP

is created, and optimisation is carried out. For each of these static problems the aim is

to simultaneously minimise the five objectives and to create a Pareto set, Pf , with the

best non-dominated solutions that have been found within the time slice. Every Tsm

seconds the mobility model is applied, the position of the nodes is changed with severity

of change, Rg (refer to Section 5.1), and a new static EEMACOMP is created. The

concept of a time slice has been introduced to bound the time dedicated to each static

problem. A different strategy could be to stop and restart the algorithm each time a new

event occurs (i.e. the mobility model is applied). The disadvantage of such an approach

is that the time to be dedicated to each static problem would not be known in advance,

and, consequently, optimisation may be interrupted before a good local minimum is

reached, thus producing unsatisfactory results.

If Tsm is small enough, the change in the problem is frequent but a lesser number of

iterations are allowed to track new optimal solutions. There is a lower limit to Tsm below

128

which, albeit a small change in the problem, the number of iterations are not enough

for an algorithm to track the new optimal solutions adequately. Such a limiting Tsm

will depend on the chosen algorithm, but importantly allows the best scenario which the

chosen algorithm can achieve. The next chapter investigates this aspect and finds such

a limiting Tsm for the different developed algorithms.

Once a time slice is completed and the respective static problem has been solved by

the ACS based EEMACOMP algorithm, each pheromone matrix will contain informa-

tion on the characteristics of good solutions for this specific problem. In particular, good

paths will manifest high values in the corresponding entries of the pheromone matrix for

each objective. Pheromone information, together with the current Pareto set, may be

passed on to the static problem corresponding to the following time slice since the two

problems would potentially be very similar. This operation would prevent optimisation

having to restart each time from scratch and would contribute greatly to the good per-

formance of the EEMACOMP algorithm. In case there is no similarity between the

two static problems above, the performance of EEMACOMP will be the same as with

restarting the optimisation from scratch.

As part of the dynamic EEMACOMP, the ApplyMobilityChanges procedure is called

(refer to Algorithm 12) and pheromone conservation rules are applied.

The ApplyMobilityChanges procedure sends a message from source to destination,

applies the RPGM mobility model and executes all the necessary updates after the change

has occured. The Pf archive is re-evaluated and dominated solutions are removed from

the archive.

Pheromone conservation rules are applied in order to promote the efficient passing

on of information regarding the properties of good solutions from a static problem in

one time slice to the static problem in the following time slice. At the end of each

time slice the mobility procedure is applied and the environment changes. The distances

between nodes are modified, the energy required for transmitting a message along a

link (i, j) may be changed and nodes may move out of transmission range or run out of

energy. Pheromone trails must be adapted in order to reflect these changes. In order

to correct the amount of pheromones, this thesis uses the pheromone update rules for

dynamic environments which were proposed by Guntsch and Middendorf [90] (refer to

Section 5.2). The choice of these update rules is motivated by the fact that pheromone

values are not completely reinitialised but a trace of old values containing characteristics

129

of good solutions remain. These rules distribute reset-values γνi
, γξi

, γπi
, γ%i

, γςi ∈ [0, 1]

to each node i. These values determine the amount of re-initialisation of the pheromone

values on links j incident to i according to

τψij
(t + 1) = (1− γψi

)τψij
(t) + γψi

1

nG − 1
(6.27)

where ψi represents either νi, ξi, πi, %i, or ςi depending on the sub-objective.

In order to calculate the reset-values, the η-strategy (refer to Section 5.2.2) is used,

where heuristic information is applied to decide to what degree pheromone values are

equalised. According to the η-strategy, the closer a link is to a modified node, the greater

the amount of pheromone which will be removed from this link. The motivation behind

the choice of η-strategy is that this specific strategy helps the ants to find new paths by

increasing the influence of new links. The measurement of closeness is based on the link

costs in terms of the different objectives.

Each node i is assigned the values γνi
, γξi

, γπi
, γ%i

, γςi proportionate to the distances

dη
νij

, dη
ξij

, dη
πij

, dη
%ij

, and dη
ςij

from the changed component, j, and equalisation is carried

out on all links incident to the changed component. These distances are derived from the

heuristics ηνij
, ηξij

, ηπij
, η%ij

, and ηςij such that a high heuristic implies a large distance.

For each pheromone matrix, the γνi
, γξi

, γπi
, γ%i

, γςi values are calculated using

γψi
= max{0, dη

ψij
} (6.28)

with

dη
ψij

= 1− η̄ψ

λE.ηψij

(6.29)

where ψ represents either ν, ξ, π, %, or ς depending on the sub-objective, and

η̄ψ =
1

nG ∗ (nG − 1)

nG∑
i=1

nG∑
j=1

j 6=i

ηψij
(6.30)

where λE ∈ [0,∞) is a strategy-specific parameter.

Algorithm 13 summarises EEMACOMP. In summary, if the environment has changed,

then pheromone conservation is applied to allow the ants to explore new, relevant areas

of the search space in later iterations.

130

Algorithm 13 General Procedure of EEMACOMP

t = 0; Pf = ∅; Set timer Tsm;
Initialise s, D, r0, βν , βξ, βπ, β%, βς , λν , λξ, λπ, λ%, λς ;
Initialize nk; {number of ants}
Initialize Pas; {Maximum archive size}
Initialize τ0ν , τ0ξ, τ0π, τ0%, τ0ς ;
for each link (i, j) do

Initialize pheromone matrices τνij (t), τξij (t), τπij (t), τ%ij (t), τςij (t) using equation (6.22);
end for
for each link (i, j) do

Calculate ηνij , ηξij , ηπij , η%ij , ηςij ;
end for
Place all ants, k = 1, ..., nk at source node s;
while t <= STtot do

{begin resolve static EEMACOMP}
while Tsm seconds not elapsed do

for k = 1 to nk do
T = ∅;
i = s; {where s the source node and i the current node}
while (i 6= D) do

Build set Nk
i (t) for node i;

Assign probability pk
ij to each node of Nk

i according to equation (6.21);
Select node j of Nk

i using equations (6.20) and (6.21);
T = T ∪ j ;
Apply local update pheromone using equation (6.26);
i = j;

end while
Evaluate the sub-objectives for solution T using equations (6.2), (6.3), (6.5), (6.9), (6.11) ;
if T is non-dominated by any Tx ∈ Pf then

Pf = Pf ∪ T − {Ty | T ≺ Ty}, ∀Ty ∈ Pf ;
if size of Pf > Pas then

Truncate Pf

end if
end if

end for
for all Tk ∈ Pf do

Update global pheromone ∀(i, j) ∈ Tk using equations (6.24)-(6.25);
end for

end while
{end resolve static EEMACOMP}

Call Procedure ApplyMobilityChanges() (refer to Algorithm 12);
Apply pheromone conservation ∀(i, j) ∈ L using equations (6.27)-(6.30);
t = t + Tsm;
Reset timer Tsm;

end while
Return Pf

131

6.6.3 Energy Efficiency Using Multi-Objective Ant Colony Op-

timisation, Multi-Heuristic Algorithm

In accordance with the ant colony system (ACS) (refer to Section 3.5.2), the energy

efficiency for mobile networks using a multi-objective ant colony optimisation, multi-

heuristic (EEMACOMH) algorithm makes use of a colony of ants, one pheromone matrix

and a different heuristic matrix for each objective.

This concept has been borrowed from Iredi et al. [104] (refer to Section 4.5.3). The

EEMACOMH algorithm is similar to EEMACOMP with the only difference being that

EEMACOMH uses a single pheromone matrix instead of five pheromone matrices. This

single pheromone matrix represents the desirability of the solution components with

regard to all the objectives.

From equation (3.7), the transition rule for EEMACOMH becomes

j =





arg maxu ∈ Nk
i (t)

{
τiu(t)× (ηβν

νiu
(t) + η

βξ

ξiu
(t) + ηβπ

πiu
(t) + η

β%
%iu(t) + ηβς

ςiu
(t))

}

if r ≤ r0

J if r > r0

(6.31)

where τij(t) is the pheromone matrix – the same for all objectives – and ηνij
(t), ηξij

(t),

ηπij
(t), η%ij

(t) and ηςij(t) represent the heuristics. The parameters βν , βξ, βπ, β%, and βς

define the relative influence among heuristic information. The rest of the symbols are as

defined in Section 3.5.2. J ∈ Nk
i (t) is a node randomly selected based on the probability

given by equation (3.8). According to this equation the probability for EEMACOMH

becomes

pk
iJ(t) =





(
τiJ (t)×(ηβν

νiJ
(t)+η

βξ
ξiJ

(t)+ηβπ
πiJ

(t)+η
β%
%iJ

(t)+η
βς
ςiJ

(t))

)

∑
∀u∈Nk

i
(t)

(
τiu(t)×(ηβν

νiu
(t)+η

βξ
ξiu

(t)+ηβπ
πiu

(t)+η
β%
%iu

(t)+η
βς
ςiu

(t))

)

if J ∈ Nk
i (t)

0 otherwise

(6.32)

The solution construction process is as given in Section 6.6.1. Heuristic information

matrices are calculated at the beginning of the simulation and every time there is a change

132

in the environment using equations (6.13)-(6.17). Pheromone matrix initialisation, and

global and local updates are discussed next.

Pheromone matrix initialisation

The pheromone matrix is initialised as follows:

τij(t) = τ0 (6.33)

for all (i, j) ∈ L, where τ0 is a small positive value calculated as

τ0 =
1

NG ×Ba

(6.34)

where NG is the number of nodes, and Ba is the length of the initial solution produced

by the nearest neighbour heuristic [70].

Global pheromone update

Once each of the nk ants has completed its solution, if the ant’s solution, Tk, is non-

dominated by the solutions of Pf , the solution is stored in the archive, Pf , and solutions

of Pf newly dominated by Tk are removed from the archive. All the solutions from Pf are

then selected to modify the pheromone trail globally. The pheromone trail is updated

using the following global update rule (refer to Section 3.5.2) [161]:

τij(t + 1) = (1− ρg)τij(t) + ρg∆τ k(t), ∀ (i, j) ∈ Tk (6.35)

where

∆τ k =
1

EP (Tk) + TNP (Tk) + V F (Tk) + CP (Tk) + MNC(Tk)
(6.36)

for all Tk ∈ Pf , where each objective value is normalised to ensure that all objectives

have approximately the same magnitude [103].

133

Local pheromone update

When a new node is added to a solution being constructed by an ant, a local pheromone

update is performed using

τij(t + 1) = (1− ρl)τij(t) + ρlτ0 (6.37)

where τ0 is the initial amount of pheromone on every link of L.

The EEMACOMH discussed above has been developed for static objective functions.

The following section discusses an adaptation of EEMACOMH for dynamic objective

functions.

Dynamic EEMACOMH

As with EEMACOMP (refer to Section 6.6.2) the dynamic EEMACOMH is addressed as

a series of static problems with a new problem being defined each time the mobility model

is applied. The ApplyMobilityChanges procedure (refer to Algorithm 12) is applied at

the end of each time slice.

The pheromone conservation rules are applied as for EEMACOMP, but only one

pheromone matrix is updated as follows:

τij(t + 1) = (1− γi)τij(t) + γi
1

nG − 1
(6.38)

where

γi = max{0, dη
ij} (6.39)

with

dη
ij = 1− η̄

λE.(ηνij
+ ηξij

+ ηπij
+ η%ij

+ ηςij)
(6.40)

where

η̄ =
1

nG ∗ (nG − 1)

nG∑
i=1

nG∑
j=1

j 6=i

(ηνij
+ ηξij

+ ηπij
+ η%ij

+ ηςij) (6.41)

134

where λE ∈ [0,∞) is a strategy-specific parameter.

The EEMACOMH algorithm is very similar to the EEMACOMP algorithm (refer

to Algorithm 13) with the following differences in respect of EEMACOMH: a) there

is only one pheromone matrix for the EEMACOMH algorithm, b) if the environment

is modified, equations (6.38)-(6.41) are used for pheromone conservation, c) equations

(6.35) and (6.36) are used for the global pheromone updating, d) the local pheromone

update is performed using equation (6.37), and e) the transition rule is applied according

to equations (6.31) and (6.32).

In the interests of completeness, Algorithm 14 presents the general procedure of the

proposed EEMACOMH algorithm.

6.6.4 Energy Efficiency Using Multi-Objective MAX-MIN Ant

System Optimisation, Multi-Pheromone Algorithm

Energy efficiency for mobile networks using the multi-objective MAX-MIN ant system

optimisation, multi-pheromone (EEMMASMP) algorithm is based on the MAX-MIN ant

system (MMAS) (refer to Section 3.5.3). The EEMMASMP algorithm modifies MMAS

with the following changes in order to solve the dynamic multi-objective problem:

• Similar to the previous two algorithms, EEMMASMP finds a set of Pareto optimal

solutions termed Pf , instead of finding a single optimal solution as is done by

MMAS.

• EEMMASMP solves the dynamic aspect of the multi-objective power-aware rout-

ing problem.

In accordance with MMAS, the EEMMASMP algorithm uses a colony of ants and

several pheromone matrices. EEMMASMP calculates five pheromone matrices – one for

each optimisation criterion – which, together with a heuristic matrix for each optimi-

sation criterion, are used to calculate transition probabilities. This concept has been

borrowed from Iredi et al. [104] (refer to Section 4.5.4).

The EEMACOMP and EEMMASMP algorithms are very similar. The only difference

between EEMACOMP and EEMMASMP is that the ACS (adapted to develop EEMA-

135

Algorithm 14 General Procedure of EEMACOMH

t = 0; Pf = ∅; Set timer Tsm;
Initialize s,D, r0, ρ, βν , βξ, βπ, β%, βς , nk;
Initialize Pas; {Maximum archive size}
Calculate τ0 using equation (6.34);
for each link (i, j) do

Initialize pheromone matrix τij(t) = τ0;
Calculate ηνij , ηξij , ηπij , η%ij , ηςij ;

end for
Place all ants, k = 1, ..., nk at source node s;
while t <= STtot do

{begin resolve static EEMACOMH}
while Tsm seconds not elapsed do

for k = 1 to nk do
T = ∅;
i = s; {where s the source node and i the current node}
while (i 6= D) do

Build set Nk
i (t) for i;

Assign probability pk
ij to each node of Nk

i according to equation (6.32);
Select node j of Nk

i using equations (6.31) and (6.32);
T = T ∪ j ;
Apply local update pheromone using equation (6.37);
i = j;

end while
Evaluate the sub-objectives for solution T using equations (6.2), (6.3), (6.5), (6.9), (6.11);
if T is not dominated by any Tx ∈ Pf then

Pf = Pf ∪ T − {Ty | T ≺ Ty}, ∀Ty ∈ Pf ;
if size of Pf > Pas then

Truncate Pf

end if
end if

end for
for all Tk ∈ Pf do

Update global pheromone ∀(i, j) ∈ Tk using equations (6.35) and (6.36);
end for

end while
{end resolve static EEMACOMH}

Call Procedure ApplyMobilityChanges() (refer to Algorithm 12);
Apply pheromone conservation ∀(i, j) ∈ L using equations (6.38)-(6.41);
t = t + Tsm

Reset timer Tsm;
end while
Return Pf

136

COMP) is replaced with MMAS. The differences between EEMMASMP and EEMA-

COMP with reference to MMAS are presented next.

From equation (3.3), the transition rule for EEMMASMP becomes

pk
ij(t) =





(
ταλν
νij

(t)ηβν
νij

(t)+τ
αλξ
ξij

(t)η
βξ
ξij

(t)+ταλπ
πij

(t)ηβπ
πij

(t)+τ
αλ%
%ij

(t)η
β%
%ij

(t)+τ
αλς
ςij

(t)η
βς
ςij

(t)

)

∑
∀u∈Nk

i
(t)

(
ταλν
νiu

(t)ηβν
νiu

(t)+τ
αλξ
ξiu

(t)η
βξ
ξiu

(t)+ταλπ
πiu

(t)ηβπ
πiu

(t)+τ
αλ%
%iu

(t)η
β%
%iu

(t)+τ
αλς
ςiu

(t)η
βς
ςiu

(t)

)

if j ∈ Nk
i (t)

0 otherwise

(6.42)

where α defines the relative influence between the heuristic information and the pheromone

levels. The other symbols are as defined in Section 6.6.2.

The solution construction process is as given in Section 6.6.1. Heuristic information

matrices are calculated at the beginning of the simulation, and every time there is a

change in the environment, using equations (6.13)-(6.17). Pheromone matrix initialisa-

tion and global updates are discussed next.

Pheromone matrix initialisation

The five pheromone matrices are initialised using

τψij
(t) = τ0 (6.43)

for all (i, j) ∈ L, where ψij represents either νij, ξij, πij, %ij, or ςij depending on the sub-

objective; τ0 is the upper bound set to some arbitrarily high value in order to achieve a

high degree of exploration at the start of the algorithm.

Global pheromone update

Once all nk ants have constructed solutions (refer to Section 6.6.1), the archive, Pf , is

updated including the non-dominated solutions that have been found thus far. All the

solutions from Pf are then selected to modify the pheromone trails. Each pheromone

trail associated with each objective is updated using equations (6.24)-(6.25) (refer to

Section 6.6.2).

137

If, after application of the global update rule, the pheromone value of a link becomes

greater than the maximum value allowed, then the pheromone value of a link is explicitly

set as equal to the maximum allowed value (refer to Section 3.5.3) for all pheromone

matrices according to the following rules:

if τψij
(t + 1) > τmaxψ

then τψij
(t + 1) = τmaxψ

(6.44)

for all (i, j) ∈ Tk and for all Tk ∈ Pf , and τmaxψ
is calculated as proposed in Pinto and

Barán [161]:

τmaxψ
=

∑
Tk∈Pf

1

(1− ρg)C(Tk)
(6.45)

where C(Tk) represents the corresponding objective function.

On the other hand, if the pheromone value of a link becomes less than the lower

limit, then the pheromone value of a link is explicitly set equal to the lower limit (refer

to Section 3.5.3) for all pheromone matrices according to the following rules:

if τψij
(t + 1) < τminψ

then τψij
(t + 1) = τminψ

(6.46)

for all (i, j) ∈ Tk and for all Tk ∈ Pf , and τminψ
is calculated as proposed in Pinto and

Barán [161]:

τminψ
=

τmaxψ

2nk

(6.47)

The EEMMASMP discussed above has been developed for static objective func-

tions. EEMMASMP is adapted for dynamic objective functions in the same way as with

EEMACOMP (refer to Section 6.6.2).

Algorithm 15 summarises the EEMMASMP algorithm.

138

Algorithm 15 General Procedure of EEMMASMP

t = 0; Pf = ∅; Set timer Tsm;
Initialize s, D, τ0, α, βν , βξ, βπ, β%, βς , λν , λξ, λπ, λ%, λς ;
Initialise nk; {number of ants}
Initialise Pas; {Maximum archive size}
for each link (i, j) do

Initialise pheromone matrices τνij (t), τξij (t), τπij (t), τ%ij (t), τςij (t) using equation (6.43);
Calculate ηνij , ηξij , ηπij , η%ij , ηςij ;

end for
Place all ants, k = 1, ..., nk at source node s;
while t <= STtot do

{begin resolve static EEMMASMP}
while Tsm seconds not elapsed do

for k = 1 to nk do
T = ∅; i = s; {where s the source node and i the current node}
while (i 6= D) do

Build set Nk
i (t) for i;

Assign probability pk
ij to each node of Nk

i (t) according to equation (6.42);
Select node j of Nk

i (t) using equation (6.42);
T = T ∪ j ;
i = j;

end while
Evaluate the sub-objectives for solution T using equations (6.2), (6.3), (6.5), (6.9), (6.11);
if T is not dominated by any Tx ∈ Pf then

Pf = Pf ∪ T − {Ty | T ≺ Ty}, ∀Ty ∈ Pf ;
if size of Pf > Pas then

Truncate Pf

end if
end if

end for
for all Tk ∈ Pf do

update global pheromone ∀(i, j) ∈ Tk using equations (6.24)-(6.25);
Restrict the pheromone intensities within the lower and upper limits, ∀(i, j) ∈ Tk, using
equations (6.44)-(6.47);

end for
end while
{end resolve static EEMMASMP}

Call Procedure ApplyMobilityChanges() (refer to Algorithm 12);
Apply pheromone conservation ∀(i, j) ∈ L using equations (6.27)-(6.30);
Restrict the pheromone intensities within the lower and upper limits, ∀(i, j),∈ L using equations
(6.44)-(6.47);
t = t + Tsm;
Reset timer Tsm;

end while
Return Pf

139

6.6.5 Energy Efficiency Using Multi-objective MAX-MIN Ant

System Optimisation, Multi-heuristic Algorithm

In accordance with the max-min ant system (MMAS) (refer to Section 3.5.3) the energy

efficiency for mobile networks using a multi-objective MAX-MIN ant system optimisa-

tion, multi-heuristic (EEMMASMH) algorithm uses a colony of ants, a single pheromone

matrix and a different heuristic matrix for each objective. EEMMASMH is very similar

to the EEMMASMP algorithm, the sole difference being that EEMMASMH uses only

one pheromone matrix, τij(t). This single pheromone matrix represents the desirability

of the solution components with regard to all objectives.

From equation (3.3), the transition rule for EEMMASMH becomes

pk
ij(t) =





τα
ij(t)

(
ηβν

νij
(t)+η

βξ
ξij

(t)+ηβπ
πij

(t)+η
β%
%ij

(t)+η
βς
ςij

(t)

)

∑
∀u∈Nk

i
(t)

τα
iu(t)

(
ηβν

νiu
(t)+η

βξ
ξiu

(t)+ηβπ
πiu

(t)+η
β%
%iu

(t)+η
βς
ςiu

(t)

)

if j ∈ Nk
i (t)

0 otherwise

(6.48)

where the symbols are as defined in Section 6.6.2.

The pheromone matrix is initialised as

τij(t) = τ0 (6.49)

for all (i, j) ∈ L, where τ0 is the upper bound set to some arbitrarily high value in order

to achieve a high degree of exploration at the start of the algorithm.

The equations for global pheromone updating are the same as those of EEMACOMH

(refer to equations (6.35) and (6.36)).

If, after applying the global update rule, τij(t + 1) becomes greater than τmax, then

τij(t + 1) is explicitly set equal to τmax according to the following rule:

if τij(t + 1) > τmax then τij(t + 1) = τmax (6.50)

140

for all (i, j) ∈ Tk and for all Tk ∈ Pf , where

τmax =
∑

Tk∈Pf

1

(1− ρg)(EP (Tk) + TNP (Tk) + V F (Tk) + CP (Tk) + MNC(Tk))
(6.51)

On the other hand, if τij(t + 1) < τmin then τij(t + 1) is explicitly set equal to τmin

according to the following rule:

if τij(t + 1) < τmin then τij(t + 1) = τmin (6.52)

for all (i, j) ∈ Tk and for all Tk ∈ Pf , where

τmin =
τmax

2nk

(6.53)

The EEMMASMH discussed above has been developed for static objective func-

tions. EEMMASMH is adapted for dynamic objective functions in the same way as with

EEMACOMH (refer to Section 6.6.3).

Algorithm 16 summarises the EEMMASMH algorithm.

6.6.6 Energy Efficiency Using Multi-Objective Ant Colony Op-

timisation, Multi-Colony Algorithm

The multiple colony ACO developed by Gambardella et al. [76] and described in Sec-

tion 4.5.6 was used to solve MOPs by assigning a colony to each objective. This section

proposes the energy efficiency for mobile networks using a multi-objective ant colony opti-

misation, multi-colony (EEMACOMC) algorithm which applies the multi-colony concept

to the power-aware routing problem.

Since five objectives are defined for the power-aware routing problem, five colonies

are created – one for each of the objectives. These colonies each have the same number

of ants, nkc = nk/5, with c = 1, ..., 5.

Each colony implements an ACS, where the transition rule for each sub-objective is

j =





arg maxu∈Nk
i (t){τψiu

(t)η
βψ

ψiu
(t)} if r ≤ r0,

J otherwise
(6.54)

where βψ represents either βν , βξ, βπ, β%, or βς depending on the sub-objective, and

141

Algorithm 16 General Procedure of EEMMASMH

t = 0; Pf = ∅; Set timer Tsm;
Initialise s, D, τ0, α, βν , βξ, βπ, β%, βς ;
Initialize nk; {number of ants}
Initialize Pas; {Maximum archive size}
for each link (i, j) do

Initialise pheromone matrix τij(t), using equation (6.49);
Calculate ηνij , ηξij , ηπij , η%ij , ηςij ;

end for
Place all ants, k = 1, ..., nk at source node s;
while t <= STtot do

{begin resolve static EEMMASMH}
while Tsm seconds not elapsed do

for k = 1 to nk do
T = ∅; i = s; {where s the source node and i the current node}
while (i 6= D) do

Build set Nk
i (t) for i;

Assign probability pk
ij to each node of Nk

i (t) according to equation (6.48);
Select node j of Nk

i (t) using equation (6.48);
T = T ∪ j ;
i = j;

end while
Evaluate the sub-objectives for solution T using equations (6.2), (6.3), (6.5), (6.9), (6.11);
if T is not dominated by any Tx ∈ Pf then

Pf = Pf ∪ T − {Ty | T ≺ Ty}, ∀Ty ∈ Pf ;
if size of Pf > Pas then

Truncate Pf

end if
end if

end for
for all Tk ∈ Pf do

update global pheromone ∀(i, j) ∈ Tk using equations (6.35) and (6.36);
Restrict the pheromone intensities within the lower and upper limits, ∀(i, j) ∈ Tk, using
equations (6.50)-(6.53);

end for
end while
{end resolve static EEMMASMH}

Call Procedure ApplyMobilityChanges() (refer to Algorithm 12);
Apply pheromone conservation ∀(i, j) ∈ L using equations (6.38)-(6.41);
Restrict the pheromone intensities within the lower and upper limits, ∀(i, j) ∈ L using equations
(6.50)-(6.53);
t = t + Tsm;
Reset timer Tsm;

end while
Return Pf

142

defines the importance of ηψiu
(t). The rest of the symbols are as defined in Section 3.5.2.

J ∈ Nk
i (t) is a node that is randomly selected according to probability,

pk
iJ(t) =

τψiJ
(t)η

βψ

ψiJ
(t)

∑
u∈Nk

i (t) τψiu
(t)η

βψ

ψiu
(t)

(6.55)

At every iteration of the ACS algorithm each ant of a colony constructs a complete

solution (optimising the objective of the colony) as follows (refer to Algorithm 17):

Starting from the source node, s, a non-visited node is pseudo-randomly selected at each

step as in equation (6.54), while equation (6.55) provides the probability of selecting a

link. This process continues until the destination node, D, is reached. When a new

node has been added to a candidate solution, a local pheromone update is performed

using equation (6.26) (refer to Section 3.5.2). The solution created by the ant is inserted

into the global archive PG without being evaluated. The archive, PG, contains all the

candidate solutions.

Algorithm 18 summarises the general procedure for constructing nk/5 solutions for

all the ants of a colony.

Algorithm 17 General Procedure of BuildPathMultiColony

input parameters s, D, r0, βψ, τψ, ηψ;
T = ∅;
i = s; {where s the source node and i the current node}
while (i 6= D) do

Build set Nk
i (t) for i;

Assign probability pk
ij to each node of Nk

i (t) according to equation (6.54);
Select node j of Nk

i (t) using equations (6.54) and (6.55);
T = T ∪ j;
Apply local pheromone update using equation (6.26);
i = j;

end while
Return T;

The five pheromone matrices are initialised using equations (6.22)-(6.23) (refer to

Section 6.6.2). The cooperation between colonies and the global pheromone updates are

discussed next.

143

Algorithm 18 General Procedure of BuildAllPathsMultiColony

input parameters s, D, r0, βψ, τψ, ηψ, nk;
for k = 1 to nk/5 do

T = BuildPathMultiColony(s, D, r0, βψ, τψ, ηψ);
Insert T in to global archive, PG;

end for
Return PG

Cooperation between colonies

The five colonies of ants cooperate and specialise in order to find good solutions in

different regions of the Pareto front. In every iteration, the ants in each colony deposit

their solutions into a global solution pool (called PG) that is shared by all colonies. This

pool of solutions, PG, is used to determine the non-dominated front of all solutions from

all the colonies in that iteration. Once all the ants from all colonies have constructed

their solutions and deposited them in PG, all the solutions of PG are evaluated against

the sub-objectives using equations (6.2), (6.3), (6.5), (6.9), (6.11). Every solution, T ,

of PG is compared with the solutions of Pf and, if T is non-dominated by any solution

of Pf , then T is inserted into Pf . All the solutions of Pf which are dominated by T

are removed from Pf . If the number of non-dominated solutions exceeds the predefined

archive size, Pas, a truncation operator is used to remove solutions with a lower value of

the crowding distance from the archive (refer to Section 4.6.2). The use of the crowding

distance guides the selection process during the various stages of the algorithm towards

a uniformly spread-out Pareto-optimal front.

Global pheromone update

Only those ants that found a solution which is in the global non-dominated front are

allowed to update pheromones. Each ant uses the update by origin method (refer to

Section 4.5.6) to determine in which colony the ant should update the pheromone matrix,

that is, the ant updates only in its own colony [104]. The update by origin method

imposes a stronger selection pressure on those ants that are allowed to update. The

update by origin method might also force the colonies to search in different regions of

the non-dominated front.

When only a few solutions from other colonies are in the same region, it is more likely

144

that a solution from the local non-dominated front of a colony might also appear in the

global non-dominated front. Hence, it is more likely that an ant with solutions in less

dense areas of the non-dominated front will be allowed to update and, thereby, influence

the ensuing search process [104].

The ants of each colony that found a solution which is in the global non-dominated

front, Pf , update only the pheromone matrix which is associated with the objective of

the colony (refer to Section 4.5.6).

The pheromone trail of each colony is updated using the solutions of Pf as follows:

τψij
(t + 1) = (1− ρg)τψij

(t) + ρg∆
ψτij(t) (6.56)

where ψij represents either νij, ξij, πij, %ij, or ςij depending on the sub-objective, and

∆ψτij(t) =

{
1

C(Tk)
if i, j ∈ Tk and Tk ∈ colony nc

0 otherwise
(6.57)

for all Tk ∈ Pf , where C(Tk) represents the corresponding objective function, and nc ∈
{1, ..., 5} represents the index of the colony associated with each objective.

The EEMACOMC algorithm discussed above has been developed for static objective

functions. EEMACOMC is adapted for dynamic objective functions in the same way as

for EEMACOMP (refer to Section 6.6.2).

Algorithm 19 summarises the dynamic EEMACOMC.

145

Algorithm 19 General Procedure of EEMACOMC

t = 0; Pf = ∅; Set timer Tsm;
Initialise s, D, r0, βν , βξ, βπ, β%, βς ;
Initialise nk; {number of ants}
Initialise τ0ν , τ0ξ, τ0π, τ0%, τ0ς ;
Initialise Pas; {Maximum archive size}
for each link (i, j) do

Initialise pheromone matrices τνij
(t), τξij

(t), τπij
(t), τ%ij

(t), τςij(t) using equations
(6.22)-(6.23);

end for
for each link (i, j) do

calculate ηνij
, ηξij

, ηπij
, η%ij

, ηςij ;
end for
Place all ants, k = 1, ..., nk at source node s;
while t <= STtot do
{begin resolve static EEMACOMC}
while Tsm seconds not elapsed do

PG = ∅;
PG = PG ∪BuildAllPathsMultiColony(s, D, r0, βν , τν , ην , nk);
PG = PG ∪BuildAllPathsMultiColony(s, D, r0, βξ, τξ, ηξ, nk);
PG = PG ∪BuildAllPathsMultiColony(s, D, r0, βπ, τπ, ηπ, nk);
PG = PG ∪BuildAllPathsMultiColony(s, D, r0, β%, τ%, η%, nk);
PG = PG ∪BuildAllPathsMultiColony(s, D, r0, βς , τς , ης , nk);
for all T ∈ PG do

Evaluate the sub-objectives for solution T using equations (6.2), (6.3), (6.5),
(6.9), (6.11);
if T is not dominated by any Tx ∈ Pf then

Pf = Pf ∪ T − {Ty | T ≺ Ty},∀Ty ∈ Pf ;
if size of Pf > Pas then

Truncate Pf ;
end if

end if
end for
for all Tk ∈ Pf do

Update global pheromone ∀(i, j) ∈ Tk using equations (6.56) and (6.57);
end for

end while
{end resolve static EEMACOMC}

Call Procedure ApplyMobilityChanges() (refer to Algorithm 12);
Apply pheromone conservation ∀(i, j) ∈ L using equations (6.27)-(6.30);
t = t + Tsm; Reset timer Tsm;

end while
Return Pf

146

6.7 Elitist Non-Dominated Sorting Genetic Algorithm

for Multi-Objective Power-Aware Routing

NSGA-II has not yet been applied to the multi-objective power-aware routing problem.

This section proposes for the first time to solve the multi-objective power-aware routing

problem using an adaptation of the NSGA-II algorithm called NSGA-II multi-objective

power-aware algorithm (NSGA-II-MPA).

NSGA-II-MPA modifies the NSGA-II procedure in tracking a new Pareto-optimal

front as soon as there is a change in the multi-objective power-aware routing problem.

The change in the problem is introduced with the application of the mobility model.

Hence, the position of the nodes changes and, as a result, there is a change in objective

functions.

As with the five ant algorithms proposed in this thesis, the dynamic multi-objective

power-aware routing problem is based on the principle of dividing the simulation time,

STtot , into nts time slices of equal length, STtot/Tsm. Tsm is the length of the pause time

for the mobility model. Tsm is an indication of frequency of change (refer to Section 5.1).

During each time slice a static problem is created, and optimisation is carried out using

the standard NSGA-II. For each of these static problems the aim is to simultaneously

minimise the five objectives and to create a population, Pt, with several non-domination

fronts that have been found within the time slice. The population, Pt, may be passed

on to the static problem corresponding to the following time slice since the two prob-

lems would potentially be very similar. This operation would prevent optimisation from

having to restart each time from scratch and would contribute greatly to the good perfor-

mance of the NSGA-II-MPA algorithm. To introduce diversity into the non-dominated

solutions obtained by the NSGA-II-MPA algorithm, a number of random solutions are

added whenever there is a change in the problem. The number of random solutions is

equal to a percentage of the population, Pt. When this percentage of random solutions

increases, the performance of NSGA-II-MPA deteriorates. More generations are needed

to track the new optimal front. At each change, the Pt archive is re-evaluated and

non-dominated sorting is applied.

Considering the power-aware routing problem formulation as given in Section 6.4.1,

the NSGA-II-PMA is described in more detail below.

The first iteration consists of the following three steps:

147

1. Initialise all parameters.

2. Build routing tables. A procedure for building the routing tables is executed

to build possible paths from the source, s, to the destination, D, of the network.

This procedure selects the R paths with minimum energy consumed per packet

and with minimum cost per packet where R is a parameter of the algorithm. The

k shortest path algorithm is used to select the R paths [222].

3. Calculate initial population, P0.

From the routing tables, |P0| different random chromosomes are generated. This

set of chromosomes is termed the chromosome pool, P0 (or population), and it

forms the first generation. Duplicated solutions in the population are replaced

with new randomly generated solutions. A chromosome is represented by a binary

string of size log2 (R), in order to represent R different paths. Each chromosome

represents a possible route (path) between the source node, s, and the destination

node, D.

1-2-53

1-2-3-4-52

1-2-3-51

1-4-50

ROUTEID

11

4

2

5

3

6

1-2-53

1-2-3-4-52

1-2-3-51

1-4-50

ROUTEID

01 11

cromosome1 cromosome2

route

Figure 6.4: Routing tables and chromosomes

148

In the example of Figure 6.4 the routing table contains 4 paths (R = 4) with

minimum energy consumed per packet and minimum cost per packet from s = 1

to D = 5. Each chromosome consists of a binary string of size 2 (log2 (4)) and

points to a specific path of the routing table. For example, the chromosome with

a binary value of 10 has a decimal value of 2 and points to the path with id = 2

(path 1− 2− 3− 4− 5).

Parents are selected from the population by using binary tournament selection

based on the rank and crowding distance. Out of two individuals the individual

with the lowest rank is selected, or, if both individuals have the same rank, the

individual with the greater crowding distance is selected (refer to Section 4.6.2).

The population selected generates offspring using crossover and mutation opera-

tors. Using the genetic operators, a child population Q0 of size Np is created.

The simulation (main loop) is run for STtot seconds with the following instructions:

Within the time slice, Tsm, the maximum number of allowed generations are used to find

the optimal population.

At each iteration, t, the following steps, as for the standard NSGA-II (refer to Sec-

tion 4.6.2) are applied: The population, Pt, is evaluated against the five sub-objectives.

Using binary tournament selection on parent population, Pt, of size Np, based on the

rank and crowding distance and applying crossover and mutation operators, Qt offspring,

of size Np, are created. The combined population, Rt = Pt ∪ Qt, of size 2Np, is sorted

into different non-domination levels. Individuals are then selected from this combined

population to be inserted into the new population on the basis of their non-domination

level. If there are more individuals in the last front than there are slots remaining in

the new population of size Np, a diversity preserving mechanism based on rank and the

crowding distance on the last front is employed. Individuals from this last front are

placed in the new population, Pt+1, on the basis of their contribution to diversity in the

population.

At the end of time slice, Tsm, the ApplyMobilityChangesNSGA procedure, as given

in Algorithm 20, and RebuildRoutesUpdatePopulation as given in Algorithm 21, handle

the dynamic aspect of the power-aware routing problem.

The ApplyMobilityChangesNSGA procedure sends one packet from the source to the

destination. In order to send the packet, a route Tbest from Pt+1 is used. Tbest is the

individual with rank 1 and the largest crowding distance. The RPGM mobility model

149

(refer to Section 6.5) is applied. Energy levels and distances are recalculated (refer to

Section 6.5).

The RebuildRoutesUpdatePopulation procedure applies the following modifications

to the original NSGA-II procedure, whenever a change in the multi-objective power-

aware routing problem occurs:

• All parent solutions are re-evaluated before merging the parent and child popula-

tions into a bigger pool. This process allows both offspring and parent solutions

to be evaluated using the changed sub-objectives.

• New random solutions are introduced. If Ne represents the first Ne solutions of

the population, Pt, a percentage, $ = Np−Ne

Np
%, of the new population is replaced

with randomly created solutions which helps to improve exploration. The first Ne

solutions of Pt are kept in the archive to maintain elitism. The population, Pt, is

completed up to the maximum size Np, using Np−Ne new chromosomes generated

based on routing tables which are created using the k shortest path algorithm. The

final Pt is passed onto the next static problem.

Algorithm 20 General Procedure of ApplyMobilityChangesNSGA

Choose the best route, Tbest, from Pt;
Send one packet from source to destination using Tbest;
for all nodes i ∈ Tbest do

Update ec
i according to equation (6.18);

end for
Apply the RPGM mobility model (refer to Section 6.5);
for all links (i, j) ∈ L do

Recalculate dij;
Recalculate Eij according to equation (6.19);

end for

The algorithm moves to the next time slice optimising the new static problem until

the end of the simulation.

The NSGA-II algorithm for multi-objective power-aware routing problem is sum-

marised in Algorithm 22.

150

Algorithm 21 General Procedure for RebuildRoutesUpdatePopulation

Delete invalid routes associated with Pt, i.e. routes for which Eij > ec
i or dij > Tr;

for all T ∈ Pt do
Re-evaluate the sub-objectives using equations (6.2), (6.3), (6.5), (6.9), (6.11);

end for
Apply non-dominated-sort on Pt; {refer to Section 4.6.2, Algorithm 9}
Find the first Ne individuals from Pt based on the rank and crowding distance; {An
individual is selected if the rank is lesser than the other, or if the rank is the same and
the crowding distance is greater than that of the other individuals}
The population Pe with |Pe| = Ne is created;
The corresponding paths, TNe , are selected; {Pe represent the elitist solutions}
Build routing table TNl

with Nl = Np −Ne paths from s to D; {Using the k shortest
path algorithm}
Complete the routing table, TNp = TNl

∪ TNe ;
From TNp generate Np different chromosomes, which form the new generation Pt;
Using the genetic operators on Pt, a child population Qt of size Np is created;

6.8 Summary

This chapter presented five new ant-based algorithms to solve the power-aware routing

problem. Versions of each algorithm have been developed assuming that the optimisation

problem is static. Each algorithm is then adapted to also solve the power-aware routing

problem in changing environments under the RPGM mobility model. The chapter also

presented an adaptation to the NSGA-II to solve the power-aware routing problem.

The next chapter empirically analyses the five algorithms, and compares their per-

formance to that of the NSGA-II.

151

Algorithm 22 General Procedure of NSGA-II for the Multi-objective Power-Aware
Routing Problem

Initialise Ei, ec
i , ∀i ∈ V ;

Calculate Eij , dij , ∀(i, j) ∈ L;
Create initial routing tables; {Using the k shortest path algorithm}
Create a random population, P0, from the routing tables;
Evaluate the sub-objectives for all T ∈ P0 using equations (6.2), (6.3), (6.5), (6.9), (6.11);
Z = non-dominated-sort(P0); {refer to Section 4.6.2, Algorithm 9}
Use binary tournament selection, recombination, and mutation operators to create a child
population Q0 of size Np;
simulation time = 0; Set timer Tsm;
while simulation time <= STtot do

t = 0;
{begin resolving static NSGA-II}
while Tsm seconds not elapsed do

for all T ∈ Pt do
Re-evaluate the sub-objectives using equations (6.2), (6.3), (6.5), (6.9), (6.11);

end for
Rt = Pt ∪Qt; {combine parent and children population}
Z = non-dominated-sort(Rt); {Z = (Z1,Z2, ...), all non-dominated fronts of Rt}
Pt+1 = ∅;
i = 1;
{untill the parent population is filled}
while |Pt+1|+ |Zi| <= Np do

crowding-distance-assignment(Zi); {calculate crowding distance in Zi using Algo-
rithm 10};
Pt+1 = Pt+1 ∪ Zi; {include i-th non-dominated front in the parent population}
i = i + 1; {check the next front for inclusion}

end while
Sort(Zi,≺n); {sort in descending order using the crowded comparison operator, ≺n}
Pt+1 = Pt+1 ∪ Zi[1 : (Np − |Pt+1|)]; {Choose the first (Np − |Pt+1|) elements of Zi}
Qt+1 = make-new-pop(Pt+1); {Use selection, recombination, and mutation operators to
create a child population Qt+1}
t = t + 1; {increment the generation counter}

end while
{end resolving static NSGA-II}

Call Procedure ApplyMobilityChangesNSGA() (refer to Algorithm 20);
Call procedure RebuildRoutesUpdatePopulation() (refer to Algorithm 21);
simulation time = simulation time + Tsm;
P0 = Pt;
Q0 = Qt;
Reset Tsm;

end while
Return Pt;

152

	Front
	Chapters 1-3
	Chapter 4
	CHAPTER 5
	5.1 Definition of Dynamic Optimisation Problems
	5.2 ACO Algorithms and Dynamic Environments
	5.3 Performance Metrics for Dynamic Optimisation Algorithms
	5.4 Dynamic Multi-objective Optimisation
	5.5 Performance Metrics for Dynamic Multi-ObjectiveOptimisation Problems
	5.6 Summary

	CHAPTER 6
	6.1 Introduction
	6.2 Suitability of Ant Algorithms for the Power-Aware Routing Problem
	6.3 Metrics for Power-Aware Routing
	6.4 Multi-Objective Optimisation Problem for Power-Aware Routing Metrics Using a Mobility Model
	6.5 Reference Point Group Mobility Model
	6.6 Multi-Objective Ant Colony Optimisation
	6.7 Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Power-Aware Routing
	6.8 Summary

	Chapters 7-8
	Back

