
Chapter 4

Multi-Objective Optimisation

Ant colony optimisation (ACO) algorithms were originally proposed for single-objective

optimisation problems [51, 52, 53, 54, 56, 195]. For many real-world problems it is

necessary to optimise more than one conflicting objective (multi-objective optimisation)

simultaneously. In this respect, an ACO has to be modified in order for it to be applicable

to multi-objective optimisation problems [11, 79, 134].

This chapter provides an overview of the different aspects of multi-objective op-

timisation. A definition of Pareto-optimality is provided and various multi-objective

optimisation algorithm classes are discussed. The adaptation of ACO algorithms for

multi-objective optimisation problems is discussed. In addition to the ACO algorithms

for multi-objective optimisation, the elitist non-dominated sorting genetic algorithm

(NSGA-II) is also described in detail. The NSGA-II is included in this chapter, as

it is used to compare the results with those of the ACO algorithms proposed in this the-

sis. Performance metrics that can be used to compare the performance of multi-objective

algorithms are also discussed.

4.1 Introduction

Many real-world problems require the simultaneous optimisation of a number of objective

functions. This is referred to as multi-objective optimisation (MOO) [208] and presents

a situation in which certain of the required objectives may be in conflict with one an-

other. An example of a multi-objective problem (MOP) is compressor design where

the major objectives are the maximisation of overall isentropic efficiency, the maximi-

sation of mass flow rate, the maximisation of total pressure ratio, the minimisation of

weight, and the maximisation of durability. Another example of a MOP is routing in

data communication networks, where the objectives may include minimisation of routing

cost, minimisation of route length, minimisation of congestion, and maximisation of the

57

utilisation of physical infrastructure. There is an important trade-off between the last

two objectives, as minimisation of congestion is achieved by reducing the utilisation of

links. A reduction in utilisation, on the other hand, means that infrastructure, for which

high installation and maintenance costs are incurred, is under-utilised. Solutions to such

problems require a balance between conflicting objectives.

The remainder of this chapter is organised as follows: Section 4.2 provides a theoreti-

cal overview of the multi-objective problem (MOP). Section 4.3 discusses the concepts of

Pareto-optimal set and Pareto-optimal front. Section 4.4 presents a summary of MOO

algorithm classes. Section 4.5 demonstrates the way in which ACO can be adapted to

solve multi-objective problems. Section 4.6 discusses evolutionary multi-objective opti-

misation (EMO) and the NSGA-II algorithm. Section 4.7 discusses performance metrics

for comparing the performance of multi-objective algorithms.

4.2 Multi-Objective Optimisation Problem

Let S ⊆ Rnx denote the nx-dimensional search space defined by a finite set of decision

variables. Let x = (x1, x2, ..., xnx) ∈ S refer to a decision vector. A single objective

function, fk(x), is defined as fk : Rnx → R. Let f(x) = (f1(x), f2(x), ..., fno(x)) ∈ O ⊆
Rno be an objective vector containing no objective function evaluations; O is referred to

as the objective space. The search space, S , is also referred to as the decision space. Let

F ⊆ S denote the feasible space which is constrained by ng-inequality and nh-equality

constraints, i.e.

F = {x : gm(x) ≤ 0, hl(x) = 0, m = 1, ..., ng; l = 1, ..., nh} (4.1)

where gm and hl are the inequality and equality constraints respectively. With no con-

straints the feasible space is the same as the search space, S .

Using the notation above, a multi-objective optimisation problem is defined as:

minimise f(x)

subject to x ∈ F
x ∈ [xmin, xmax]

nx

(4.2)

58

Solutions, x∗, to the MOP are in the feasible space, F ⊆ S . In order for x∗ to be in

the feasible space, F , both the inequality and equality constraints have to be satisfied.

The main issue in MOO is the presence of conflicting objectives, where improvement

in one objective may result in deterioration in another objective. Trade-offs do exist

between such conflicting objectives, however, and the task is to find solutions which

balance these trade-offs. Such a balance may be achieved when a solution is unable to

effect an improvement in any of the objectives without degrading one or more of the

other objectives. These solutions are referred to as non-dominated solutions of which

many may exist.

Therefore, the objective when solving a MOP is to produce a set of acceptable com-

promises rather than a single solution. This set of solutions is referred to as the non-

dominated set or the Pareto-optimal set. The plot of the objective functions whose

non-dominated solutions are in the Pareto-optimal set is called the Pareto front.

4.3 Pareto-Optimality

This section presents a number of definitions which pertain to MOO.

Definition 4.3.1. Domination: For two decision vectors, x and z, x dominates z,

noted x ≺ z, if and only if x is equally good or better than z for each of the objectives

to optimise, i.e.

fk(x) ≤ fk(z), ∀k ∈ {1, 2, .., no} ∧ ∃k ∈ {1, 2, .., no}|fk(x) < fk(z) (4.3)

The concept of dominance is illustrated in Figure 4.1 for a two-objective function,

f(x) = (f1(x), f2(x)). The shaded area denotes the area of the objective vectors which

are dominated by f .

Definition 4.3.2. Weak domination: A decision vector, x, weakly dominates a deci-

sion vector, z, noted x ¹ z, if and only if x is not worse than z for each of the objectives

to optimise, i.e.

fk(x) ≤ fk(z), ∀k ∈ {1, 2, .., no} (4.4)

Definition 4.3.3. Pareto-optimal: A decision vector x∗ ∈ F is termed a Pareto-

optimal solution for the MOP (refer to equation (4.2)) if there does not exist a decision

59

f1

(f1(x), f2(x))
.

Dominated by f (x) = (f1(x), f2(x))f2

Figure 4.1: The concept of dominance

vector, x 6= x∗ ∈ F that dominates x∗, i.e. 6 ∃x : fk(x) < fk(x
∗) ∀k ∈ {1, 2, .., no}. An

objective vector f∗(x) is Pareto-optimal if x is Pareto-optimal.

In words, a decision vector, x∗, is Pareto optimal if there exists no feasible vector

of decision variables x ∈ F which would decrease some criterion without causing a

simultaneous increase in at least one other criterion. The presence of multiple objective

functions, usually conflicting among them, give rise to a set of optimal solutions called

the Pareto-optimal set .

Definition 4.3.4. Pareto-optimal set: The set of all Pareto-optimal decision vectors

form the Pareto-optimal set, P∗. That is,

P∗ = {x∗ ∈ F| 6 ∃x ∈ F : x ≺ x∗} (4.5)

Therefore, the Pareto-optimal set contains the set of solutions, or balanced trade-offs,

for the MOP. The corresponding objective vectors are referred to as the Pareto-optimal

front PF∗.

Definition 4.3.5. Pareto-optimal front: Given the objective vector, f(x), and the

Pareto-optimal solution set, P∗, then the Pareto-optimal front, PF∗ is defined as

PF∗ = {f(x∗) = (f1(x
∗), f2(x

∗), ..., fno(x
∗))|x∗ ∈ P∗} (4.6)

60

An example of a Pareto front is illustrated in Figure 4.2. Figure 4.3 illustrates the

assignment of an objective vector, f , to the decision vector, x.

Pareto-optimal (Non-dominated)

Dominated

f1

f2

Figure 4.2: Pareto-optimal front for objectives f1 and f2

4.4 Multi-Objective Optimisation Algorithm Classes

It may be computationally expensive to generate the Pareto front [224]. Owing to the

computational complexity, exact methods to find all non-dominated solutions are not

feasible.

For this reason, a number of stochastic search strategies such as particle swarm opti-

misation (PSO) [60, 63], evolutionary algorithms (EAs) [15], tabu search [81], simulated

annealing [118], and ant colony optimisation (ACO) [54, 56] have been developed. These

strategies endeavour to find a set of solutions for which the objective vectors are not too

far removed from the optimal objective vectors.

MOO involves guiding the search towards the true Pareto front while maintaining a

diverse set of non-dominated solutions. The task of MOO is thus reduced to finding an

61

x1

x2
Decision space

y1

y2
Objective space

(x1,x2,…,xn) (y1,y2,…,yn)f

Pareto set Pareto front

Figure 4.3: Mapping between decision space and objective space

approximation to the true Pareto front such that

• the distance to the true Pareto front is minimised,

• the set of non-dominated solutions, i.e. the Pareto-optimal set, is as diverse as

possible, and

• non-dominated solutions which have already been found are maintained.

The first objective is addressed by assigning an appropriate fitness function in order

to quantify the quality of a solution in the presence of multiple optimisation criteria.

In terms of the second objective, methods are used which preserve the diversity of non-

dominated solutions [42, 226]. The third objective which, in essence, addresses both

the first two objectives is achieved by using archives of previously found non-dominated

solutions [120]. The use of archives is a type of elitist strategy, where the best solutions

are maintained in a repository.

Depending on the fitness assignment strategy, classes of MOO algorithms are grouped

into:

• Aggregation-based methods. The objectives are aggregated into a single pa-

rameterised objective function. The parameters of this function are systematically

62

varied during the optimisation run in order to find a set of non-dominated so-

lutions instead of a single trade-off solution. The aggregation-based method is

referred to as the weighted sum method [143]. Another aggregation-based method

is the epsilon-constraint method [46, 213], which involves optimising a primary

objective and expressing the other objectives in the form of inequality constraints.

Although aggregation methods have been successfully applied to solve MOPs, the

following disadvantages of these methods should be noted:

– Aggregation methods can find only one solution with a single application of

the algorithm. To find more than one solution repetitive applications of the

algorithm are required. However, repetitive applications do not guarantee

that distinct Pareto-optimal solutions will be found.

– Optimal values for the weights are problem dependent. Care must be taken

when choosing the values of the weights in order to ensure that an acceptable

solution is found.

• Criterion-based methods. Criterion-based methods [76, 142] switch between the

objectives during the optimisation process, i.e. different stages of the optimisation

process use different objectives.

• Dominance-based methods. One of the most important issues in MOO is that

of determining when one solution is better than another with respect to all objec-

tives. To address this issue the notion of dominance is used (refer to Section 4.3).

Dominance-based MOO algorithms [104, 177], using an archive, provide an efficient

way in which to find multiple Pareto-optimal solutions simultaneously in a single

simulation run.

The following paragraphs briefly describe MOO algorithms that make use of Pareto

dominance to find a set of non-dominated solutions.

Evolutionary algorithms (EA) refers to a class of stochastic optimisation methods

that simulate the process of natural evolution [224]. As a result of the population-

based nature of EAs, EAs have been widely used in multi-objective optimisation as the

population-based nature of EAs allows the generation of several elements of the Pareto-

optimal set with a single run [16, 40, 167].

63

Particle swarm optimisation (PSO) [60, 61] refers to a population based stochastic

optimisation technique which was inspired by the social behaviour of bird flocking. PSO

algorithms have been adapted to maintain a set of non-dominated solutions using the

Pareto dominance [102, 158, 171].

Ant colony optimisation (ACO) algorithms have been adapted to solve MOPs [30,

49, 76, 85, 104, 177]. Most of the ACO algorithms adapt the way that pheromone and

heuristic information is used to increase diversity. Diversity is improved by ensuring

better exploration by artificial ants.

The rest of the chapter focuses on describing these MOO ACO algorithms, as MOO

ACO algorithms are used in this thesis to solve the multi-objective power-aware routing

problem.

4.5 Ant Colony Optimisation for Multi-Objective Op-

timisation

Ant colonies are increasingly used to solve various optimisation problems [51, 52, 53,

54, 56, 195]. Most of these applications of ACO algorithms are for single-objective

optimisation. For many real-world problems it is necessary to optimise more than one

conflicting objective simultaneously. In this respect, ACO algorithms have been adapted

to find a set of acceptable non-dominated solutions that cover, in the best way possible,

the various regions of the true Pareto front.

This section describes the different ways in which ACO has been adapted to solve

MOPs in general and is organised as follows: Subsection 4.5.1 discusses the different

issues with MOACO algorithms, while Subsections 4.5.2 to 4.5.6 respectively discuss

the single colony, single-pheromone, single-heuristic matrix methods, the single colony,

single-pheromone, multi-heuristic matrix methods, the single colony, multi-pheromone,

single-heuristic matrix methods, the single colony, multi-pheromone, multi-heuristic ma-

trix methods, and the multi-colony MOO algorithms.

4.5.1 Introduction

Very few studies have dealt with MOO using multi-objective ACO algorithms (MOA-

COs). The design of a MOACO algorithm should address the following issues [79, 134]:

64

• The management of the pheromone information in MOO. ACO algorithms

for single objective problems represent the pheromone information in terms of a

single pheromone matrix (or vector) in which each entry in the matrix corresponds

to the desirability of the move from node i to node j. One pheromone matrix

represents one objective, because pheromone updates are proportional to some

objective function expressing the quality of a solution (trail) or partial solution.

So, the issue is to change the way in which the pheromone matrix is used to

account for multiple objectives. This can be achieved either by keeping a single

pheromone matrix [142], where pheromone updates are proportional to a weighted

sum of updates, where each update corresponds to an objective, or using multiple

pheromone matrices, one for each objective [104].

The essential difference between single and multi-pheromone matrix methods is

that those algorithms that use multiple pheromone matrices are able to keep ob-

jective specific history information completely partitioned, whereas those that use

a single pheromone matrix must combine this information.

When a MOACO algorithm uses multiple pheromone information and a one-to-one

pheromone to objective mapping is used then ideally the pheromone information

contained in a single matrix will reflect which solution components advantage a

particular objective.

The choice of the pheromone model depends on design issues such as how the

solution construction process uses pheromone information and how pheromone

matrices are updated and decayed.

The reduction in memory associated with using a single pheromone matrix ver-

sus multiple pheromone matrices is also a motivating factor when choosing a

pheromone model [10]. To make positive use of the extra memory required by

multiple pheromone matrices, pheromone matrices must contain different informa-

tion by being updated or decayed non-uniformly or by being mapped differently

during the pheromone update and solution construction processes.

• The management of heuristic information in MOO. Single-objective ACO

algorithms use one heuristic information matrix to represent the attractiveness of

each edge with reference to a single objective. In a multi-objective optimisation

65

problem with no objectives, no different cost factors (heuristic information func-

tions) are defined between each pair of nodes, one for each objective. The heuristic

information must then be changed to account for multiple objectives. This can

be achieved by using two different strategies. The first strategy is to consider an

aggregation of the different objectives into a single heuristic information, where

each entry is an aggregated value of the attractiveness of each edge [27, 49, 72].

A second strategy is to consider each different objective separately. In this case

separate heuristic information matrices are maintained, one for each objective func-

tion [56, 76, 177].

• Pareto archival. Single-objective ACO algorithms have all ants converging to a

single solution. MOACO has to have the ability to find multiple solutions, which

can be achieved using a Pareto archive. Pareto archival is the method by which

multiple Pareto optimal solutions are stored for post algorithm run-time analysis

or use [30, 104, 148, 161]. A storage repository (called an archive) is used to store

the non-dominated solutions that are found.

• Balancing exploration against exploitation. The balance between explo-

ration and exploitation is guided by the ants’ memory, the pheromone matrices

with pheromone information accumulated by all the ants from the beginning of the

search process, the problem-specific heuristic information, the pheromone evapo-

ration, and the pheromone update.

Balancing exploration against exploitation is necessary in order to meet the two

MOACO goals:

– to find a number of solutions that are close to the Pareto front (quality en-

hancing behaviour), and

– to maintain a coverage of solutions along the entire Pareto front (diversity

preserving behaviour).

The use of several colonies can serve to achieve a balance between exploration and

exploitation. Communication between colonies emphasises exploitation by recruit-

ing colonies to work in the same region of the search space. Less communication

has an explorative effect, since each colony is more likely to be searching in a

different part of the search space.

66

• Pheromone update. In single objective optimisation problems, the best perform-

ing ACO algorithms often use only the best solutions of each iteration (iteration-

best strategy) or, since the start of the algorithm (best-so-far strategy), for up-

dating the pheromones. However, in the multi-objective case it is more difficult to

determine which are the best solutions to be chosen for the pheromone update.

Two different ways of implementing the pheromone update are possible: the selec-

tion by dominance strategy [104, 177] and the selection by objective strategy [76].

The selection by dominance strategy allows only the non-dominated solutions to

update pheromone concentrations. An iteration-best strategy would consider the

non-dominated solutions among those generated in the current iteration; a best-

so-far strategy would be obtained by choosing only solutions of an archive of the

non-dominated solutions found since the start of the algorithm.

The selection by objective strategy allows solutions that find the best values for

each objective within the current cycle or since the start of the algorithm to update

pheromone concentrations.

If the selection by objective strategy is used and multiple pheromone information is

considered, each pheromone matrix associated with each objective will be updated

by the solution with the best objective value for the respective objective. Selection

by objective has two benefits:

– As in MMAS and ACS, one solution per pheromone matrix only will be al-

lowed to deposit pheromones, which leads to improved performance compared

to the original AS (see Sections 3.5.2 and 3.5.3). As a result the advanced

techniques used in the MMAS and ACS algorithms may easily be adapted to

multi-objective problems.

– Each pheromone matrix focuses on one objective only, and thus the aggrega-

tion of all the pheromone matrices by means of a weight vector truly regulates

the relative importance of each objective.

Recently, different ACO algorithms for multi-objective problems have been developed

which address the issues mentioned above. Gravel et al. [85] proposed a MOACO based

on the AS algorithm using a single heuristic information matrix and a single pheromone

matrix. Schaerer and Barán [177] adapted the ACS to use two heuristic matrices and

67

a single pheromone matrix, while Pinto et al. [161] adapted the MMAS to use multiple

heuristic matrices and a single pheromone matrix. Cardoso et al. [30] and Doerner et

al. [49] modified the AS and ACS respectively to employ a pheromone matrix for each of

the objectives using a single heuristic matrix information. Iredi et al. [104] adapted the

AS for two objectives by including two pheromone matrices and two heuristic matrices –

one for each objective. Mora et al. [148] adapted the ACS to use two heuristic matrices

and two pheromone matrices.

With respect to the number of colonies used, either one colony can be used [177],

or one colony for each objective function [142]. The above algorithms all use only one

colony. Gambardella et al. [76] and Iredi et al. [104] have proposed the use of multiple

colonies, where each colony focus on the optimisation of one of the objectives. Using

several colonies can serve different goals. The usual aim is to have colonies that specialise

to find good solutions in different regions of the Pareto front, but it could also be used

to let each colony specialise on a given objective.

MOACO algorithms can be classified according to different criteria. One of them

could be whether the algorithm returns a set of non-dominated solutions, i.e. if it looks

for a set of Pareto solutions during its run, or it just gives a single solution as output.

Another interesting criterion is the way the pheromone information is updated.

For the purpose of this thesis, MOACO algorithms are examined and classified into:

• single colony, single-pheromone matrix, single-heuristic matrix algorithms,

• single colony, single-pheromone matrix, multi-heuristic matrix algorithms,

• single colony, multi-pheromone matrix, single-heuristic matrix algorithms,

• single colony, multi-pheromone matrix, multi-heuristic matrix algorithms, and

• multi-colony algorithms.

The following subsections provide a short overview of these classes of algorithms.

4.5.2 Single Colony, Single-Pheromone, Single-Heuristic Ma-

trix Methods

Gravel et al. [85] proposed a MOACO called a multiple objective ACO metaheuris-

tic (MOACOM). MOACOM is based on the AS algorithm and uses a single heuristic

68

information matrix and a single pheromone matrix. Each value of the heuristic infor-

mation matrix and each value of the pheromone matrix is the result of the aggregation

of information associated with every objective. Considering these two matrices, the AS

transition rule is applied to build the ants’ solutions.

MOACOM deals with the multiple objectives in a lexicographic order, a priori es-

tablished by the decision maker. At the end of each iteration, only the first solution

according to the lexicographic order considered is taken into account and the pheromone

matrix is updated on the basis of the evaluation of the primary objective. Each ant k

deposits ∆τ k
ij pheromone on each link (i, j) used by the ant as follows:

∆τ k
ij =

Q

f 0(Tk)
(4.7)

where Q is a constant related to the amount of pheromone laid by the ants, f 0 is the

primary objective function, and Tk is the solution built by the ant k.

MOACOM uses elite solution storage, and hence does not maintain populations of

non-dominated solutions. As such, MOACOM saves on the computation costs associated

with maintaining a non-dominated solution set.

4.5.3 Single Colony, Single-Pheromone, Multi-Heuristic Ma-

trix Methods

Single colony, single-pheromone, multi-heuristic matrix methods use one pheromone ma-

trix and multiple heuristic matrices, one for each of the sub-objectives.

Schaerer and Barán [177] adapted the ACS to use two heuristic matrices. The al-

gorithm, referred to as multi-objective ant colony system (MOACS), changes the ACS

transition rule to

j =





Arg Maxu∈Nk
i (t){τiu(t)(η

1
iu)

βλk(t)(η2
iu)

β(1−λk)(t)} if r ≤ r0,

J otherwise
(4.8)

where β weights the relative importance of the heuristic matrices of the different objec-

tives with respect to the pheromone matrix, λk is computed for each ant k as λk = k
nk

,

where nk is the number of ants, and J ∈ Nk
i (t) is a node that is randomly selected

according to probability,

69

pk
iJ(t) =

τiJ(t)(η1
iJ)βλk(t)(η2

iJ)β(1−λk)(t)∑
u∈Nk

i (t) τiu(t)(η1
iu)

βλk(t)(η2
iu)

β(1−λk)(t)
(4.9)

The local pheromone update is the same as for the original ACS, with τ0 initially

calculated as follows:

τ0 =
1

f̄ 1f̄ 2
(4.10)

where f̄ 1 and f̄ 2 are the average objective values over a set of heuristically obtained

solutions (prior the execution of the ant algorithm) for the objective functions, f 1 and

f 2, respectively. The value of τ0 is not fixed during the algorithm run, but undergoes

adaptation taking a new value τ
′
0. Every time an ant k builds a complete solution, Tk, this

solution is compared to the current set of non-dominated solutions, P , to check whether

Tk is a non-dominated solution. If Tk is a non-dominated solution it is included in P
while the solutions dominated by Tk are deleted from P . At the end of each iteration,

τ
′
0 is calculated by applying equation (4.10) with the average values of each objective

function taken from the solutions currently included in P . If τ
′
0 > τ0, then τ0 = τ

′
0, and

the pheromone matrices are reinitialised to the new value of τ0; otherwise, the global

update is performed for each solution, Tp, in P by applying the following rule:

τij = (1− ρ)τij +
ρ

f 1(Tp)f 2(Tp)
, ∀(i, j) ∈ Tp (4.11)

Instead of relying on multiple pheromone matrices to guide objective specific solution

construction, MOACS uses multiple heuristic matrices (one per objective) which are

weighted in a specific way for each ant to bias solution construction toward different

objective trade-offs. In other words, MOACS achieves diversity across the Pareto front

through the use of heuristics rather than pheromones.

Pinto et al. [161] presented a multi-objective algorithm based on MMAS referred to

as M-MMAS. M-MMAS simultaneously optimises four objectives (f 1, f 2, f 3, f 4), using

a single pheromone matrix, τ , and three heuristic matrices (M-MMAS uses the same

heuristic matrix for two of the objectives since both objectives are functions of the same

heuristic information). The MMAS transition rule is changed to

70

pk
ij(t) =





τα
ij(t)

∏3
l=1(η

l
ij)

βl (t)∑
h∈ Nk

i
(t)

τα
ih(t)

∏3
l=1(η

l
ih)βl (t)

if j ∈ Nk
i (t)

0 otherwise

(4.12)

where β1, β2, and β3 determine the relative influence among heuristic information.

The global update is performed for each solution, Tp, of the current set of non-

dominated solutions by applying the following rule:

τij = (1− ρ)τij + ∆τ p, ∀(i, j) ∈ Tp (4.13)

where

∆τ p =
1

f 1(Tp) + f 2(Tp) + f 3(Tp) + f 4(Tp)
(4.14)

The upper limit, τmax, for the pheromone matrix is

τmax =
∆τ p

(1− ρ)
(4.15)

The lower limit, τmin, for the pheromone matrix is

τmin =
∆τ p

2nk(1− ρ)
(4.16)

Other MOACO approaches that use single pheromone and multiple heuristic matrices

can be found in [72, 177].

4.5.4 Single Colony, Multi-Pheromone, Single-Heuristic Ma-

trix Methods

This class of MOACO addresses the management of the pheromone information (refer

to Section 4.5.1) using one pheromone matrix for each sub-objective. Assuming that no

sub-objectives need to be optimised, no pheromone matrices are used.

Cardoso et al. [30] extended the AS to maintain multiple pheromone matrices. The

AS transition rule (refer to equation (3.3)) is changed to

71

pk
ij(t) =

ηβ
ij(t)

∏no

l=1(τ
l
ij)

αl(t)
∑

h∈ Nk
i (t) ηβ

ih(t)
∏no

l=1(τ
l
ih)

αl(t)
(4.17)

where τ l
ij represents the pheromone information for the l-th objective, ηij is the heuristic

information, Nk
i (t) is the feasible neighbourhood of ant k at node i, β determines the

relative importance of the heuristic information, and each αl controls the influence of

the corresponding objective.

After each iteration, evaporation is applied separately for the pheromone of each

objective as follows:

τ l
ij = (1− ρl)τ

l
ij (4.18)

where ρl is the pheromone evaporation rate for the l-th objective (a different evaporation

rate is considered for each pheromone matrix).

At every iteration and for each objective, each ant k deposits ∆τ l
ij pheromone on

each link (i, j) used by the ant, where

∆τ l
ij =

Q

f l(Tk)
(4.19)

and Q is a constant related to the amount of pheromone laid by the ants, and f l is the

l-th objective function. Non-dominated solutions generated in each iteration are stored

in an archive.

Similar to Cardoso et al., Doerner et al. [49] modified the ACS to employ a pheromone

matrix for each of the objectives. The ACS transition rule (refer to equation (3.7)) is

changed to

j =





Arg Maxu∈Nk
i (t){(

∑no

l=1 wlτ
l
iu(t))η

β
iu(t)} if r ≤ r0,

J otherwise
(4.20)

where wl is the weight assigned to the pheromone matrix of each objective function, and

J ∈ Nk
i (t) is a node that is randomly selected according to probability,

pk
iJ(t) =

(
∑no

l=1 wlτ
l
iJ(t))ηβ

iJ(t)∑
u∈Nk

i (t)(
∑no

l=1 wlτ l
iu(t))η

β
iu(t)

(4.21)

72

Pheromone update was carried out by using two different ants which had discovered

the best and the second-best solution generated in the current iteration for each l-th

objective. The global pheromone information is updated for each l-th objective according

to equation (3.10), as follows:

τ l
ij(t + 1) = (1− ρ)τ l

ij(t) + ρ∆τ l
ij(t) (4.22)

where ∆τ l
ij(t) has the following values:

∆τ l
ij(t) =





15 if edge (i, j) ∈ best and second-best solutions,

10 if edge (i, j) ∈ best solution,

5 if edge (i, j) ∈ second-best solution,

0 otherwise

(4.23)

4.5.5 Single Colony, Multi-Pheromone, Multi-Heuristic Ma-

trix Methods

Iredi et al. [104] adapted the AS for two objectives by including two pheromone matrices

(τ and τ
′
) and two heuristic matrices (η and η

′
) – one for each objective. The AS

transition rule (refer to equation (3.3)) is changed to

pk
ij(t) =





τ
αλk
ij (t)τ

′α(1−λk)

ij (t)η
βλk
ij (t)η

′β(1−λk)

ij (t)
∑

h∈ Nk
i

(t)
τ

αλk
ih (t)τ

′α(1−λk)

ih (t)η
βλk
ih (t)η

′β(1−λk)

ih (t)
if j ∈ Nk

i (t)

0 otherwise

(4.24)

where λk is different for each ant k, in order to force the ants to search in different regions

of the Pareto front; λk is calculated as the ratio of the ant index to the total number of

ants.

73

Every ant that generates a solution in the non-dominated front for the current itera-

tion is allowed to update both pheromone matrices, τ and τ
′
, by depositing an amount

equal to 1
np

, where np is the number of ants that constructed a non-dominated solution.

Then, all non-dominated solutions for the current iteration are added to an external

archive and this archive is sorted to remove any dominated solutions. At the end of the

algorithm execution, the external archive is returned as the final set of solutions.

Mora et al. [148] adapted the ACS to use two heuristic matrices and two pheromone

matrices. The algorithm referred to as hCHAC changes the ACS transition rule to

j =





Arg Maxu∈Nk
i (t){ταλk

iu (t)τ
′α(1−λk)
iu (t)ηβλk

iu (t)η
′β(1−λk)
iu (t)} if r ≤ r0,

J otherwise
(4.25)

where J ∈ Nk
i (t) is a node that is randomly selected according to probability,

pk
ij(t) =





τ
αλk
ij (t)τ

′α(1−λk)

ij (t)η
βλk
ij (t)η

′β(1−λk)

ij (t)
∑

h∈ Nk
i

(t)
τ

αλk
ih (t)τ

′α(1−λk)

ih (t)η
βλk
ih (t)η

′β(1−λk)

ih (t)
if j ∈ Nk

i (t)

0 otherwise

(4.26)

where λk is calculated as the ratio of the ant index to the total number of ants.

The local pheromone update is the same as for the original ACS, with different initial

values τ0 and τ
′
0 for each objective, initially calculated as follows:

τ0 =
1

NGf 1(Tworst)
(4.27)

τ
′
0 =

1

NGf 2(Tworst)
(4.28)

where Tworst is the worst solution heuristically obtained prior to the execution of the

ant algorithm and f 1 and f 2 are the objective functions.

Every ant k that generates a solution, Tk, in the non-dominated front for the current

iteration is allowed to update both pheromone matrices, τ and τ
′
, by depositing an

amount equal to 1
f1(Tk)

and 1
f2(Tk)

respectively. Then, all non-dominated solutions for

the current iteration are added to an external archive and this archive is sorted to remove

74

any dominated solutions. At the end of the algorithm execution, the external archive is

returned as the final solutions.

4.5.6 Multi-Colony MOACO Algorithms

The first implementations of ACO algorithms made use of only one colony of ants to

construct solutions. These algorithms have been adapted to use multiple colonies [76,

104, 142, 146]. One of the first applications of multiple colony ACO algorithms was to

solve MOP. This section discusses such algorithms.

MOPs are solved by assigning to each colony the responsibility for optimising one

of the objectives. Each colony is independent of the other colonies in the sense that it

has its own ants and its own pheromone information to the extent that, when an ant

from a certain colony constructs the ant’s solution, the ant is guided by the pheromone

information from the ant’s own colony only. After every iteration of the ant algorithm

for each colony, the colony computes the new pheromone information.

Three aspects define the behaviour of the multiple colonies:

• The set of weight vectors which are used to aggregate multiple pheromone infor-

mation.

The image of the optimal Pareto set in the objective space is a trade-off surface

between the different objectives. Over this surface, two solutions can be said to

belong to different regions with respect to the differences in the objective vectors

of the two solutions, for example, if the distance between their respective objective

vectors is more than a given value.

The use of single pheromone information does not in itself force each colony to

focus on a certain region. However, when multiple pheromone information is used,

the set of weight vectors that each colony uses in order to aggregate its multiple

pheromone information defines in some way a region in the objective space on

which the colony focuses the search. Choosing the set of weights forces each colony

to approximate a different region of the optimal Pareto set.

The infinite set of weights defines all the possible directions that can be taken to

approximate the optimal Pareto set. Any finite subset Γ of maximally dispersed

weight vectors defines a region for the entire optimal Pareto set. A partition of

75

Γ defines regions in the optimal Pareto set that can be either disjoint or overlap-

ping regions depending on whether disjoint partitions of Γ are considered or not.

Then, the multiple colonies can use i) the same partition of Γ, ii) disjoint, or iii)

overlapping partitions of Γ.

As for the single colony algorithm, in multi-colony algorithm the ants in a colony

use different λ-values. That is, when making decisions ants weight the relative

importance of each optimisation objective differently. Given the number of colonies

nc and the number of ants per colony, nk/nc, Iredi et al. [104] proposed the following

possibilities to define each weight value λk for each ant k, where k ∈ [1, nk/nc]:

– Single region: for all colonies the values of λk are in the interval [0, 1], com-

puted as

λk =
k − 1

nk/nc − 1
(4.29)

An alternative could be to use different λk-values in the colonies so that λk-

values of the ants in the colonies are in different subintervals of [0, 1]. Thus,

the colonies weight the optimisation sub-objectives differently.

– Disjoint regions: each colony, c, have distinct λk-values, computed as

λk = (c− 1)nk/nc + k (4.30)

– 50% overlapping regions: the interval of values of λk for colony c overlaps by

50% with the interval for colony c − 1 and colony c + 1. Colony c has ants

with

λk ∈
[

c− 1

nc + 1
,

c + 1

nc + 1

]
(4.31)

• The pheromone update strategy.

In order to enforce specialisation of the colonies, each ant deposits pheromone

on one colony only. The pheromone update strategies described for the single

colony approach may also be applied to multiple colonies. The selection by dom-

inance method is adapted straightforwardly to the multi-colony approach. That

is, the ants belonging to the Pareto set of the candidate set are distributed be-

tween colonies and are allowed to deposit pheromone. In selection by objective,

76

the Pareto set of the candidate set is, somehow, distributed among the colonies.

Then, for each colony, the best solution in respect of each objective is allowed to

deposit pheromone.

The pheromone update strategy must select the colony from which each solution

updates the pheromone information.

Iredi et al. [104] presented two different methods to determine in which colony an

ant should update the pheromone matrix:

1. Method 1 – Update by origin: an ant only updates the pheromone matrices in

its own colony. Using this method other colonies help to detect which of the

solutions in the local non-dominated front of a colony might be dominated.

The update by origin method enforces both colonies to search in different

regions of the non-dominated front.

2. Method 2 – Update by region: the sequence of solutions along the non-

dominated front is split into nc parts of equal size. Ants that have found

solutions in the c-th part update in the colony c, c ∈ [1, nc]. This method

may be used with bi-objective problems only, because for more than two ob-

jectives, a set of non-dominated objective vectors may just be partially sorted.

• Cooperation between colonies.

Cooperation is achieved by colonies exchanging solutions so that the pheromone

updates of one colony are influenced by solutions from other colonies. Another

alternative is to form the candidate set – from which the best solutions have been

selected in order to update the pheromone information – with solutions from all

colonies.

If no cooperation takes place between colonies, then a reasonable way for pheromone

update in the multi colony algorithm is that only those ants that found a solu-

tion which is in the local non-dominated front of the colony, update the colony’s

pheromone information. Therefore the results are the same as with a multi-start

approach where a single colony ant algorithm is run several times and the global

non-dominated front at the end is determined from the non-dominated fronts of

all runs. This approach significantly increases the processing speed and decreases

the number of evaluations for each iteration.

77

Middendorf et al. [146] demonstrated that if a high solution quality is required

or the overall performance of the algorithm needs to be increased, information ex-

change between the colonies is important. Information exchange allows the colonies

to profit from the good solutions found by other colonies. Information exchange

also allows colonies to search in different regions of the search space by using dif-

ferent pheromone matrices, thus, improving diversity.

To balance exploration against exploitation, the colonies cooperate with a given

communication policy specifying the details of what kind of information to ex-

change, when to exchange it, and among which colonies.

In the remainder of this section multi-colony methods for multi-objective optimisation

are described.

Mariano and Morales [142] proposed a multi-colony ACO approach where one colony

of ants exists for each objective. Mariano and Morales studied a problem in which every

objective was influenced by parts of a solution only, so that an ant from colony c received

a (partial) solution from an ant from colony c − 1 and then tried either to improve or

to extend this solution with respect to the c-th sub-objective. A final solution that had

passed through all the colonies was allowed to update the pheromone information when

it formed part of the non-dominated front.

Gambardella et al. [76] adapted the ACS for two objectives by defining two ant

colonies each dedicated to the optimisation of a different objective function. Each colony

maintains its own pheromone matrix, initialised to have a bias towards an initial solution.

A local heuristic is first used to obtain the initial solution TLgb, which is then improved

by the two colonies, each with respect to a different objective: TLgb is updated each time

one of the colonies computes an improved feasible solution and represents the best path

globally that has been found from the beginning of the trial. The colonies cooperate by

exchanging TLgb which is used for global pheromone updating. The pheromone global

update is performed with TLgb using equation (3.10).

Both previous approaches used a lexicographical order to decide the order of im-

portance of each objective. That is, no two objectives could be assigned the same

importance.

Iredi et al. [104] proposed an approach for bi-criteria optimisation based on multiple

ant colonies without considering a lexicographical order. The ant algorithm for each

colony adapted the AS for two objectives by including two pheromone matrices (τ and

78

τ
′
) and two heuristic matrices (η and η

′
) – one for each objective (refer to Section 4.5.5).

Each colony specialised in finding satisfactory non-dominated solutions in different parts

of the Pareto front.

In order to achieve collaboration between the colonies, the ants within an iteration

place their solutions into a global solution pool that is shared by the other colonies.

The pool is used to determine the non-dominated front of all the solutions pertaining

to that iteration. Subsequently, only those ants that had found a solution which was

in the global, non-dominated front are allowed to update the pheromone information.

Cooperation was activated after each iteration at which point all colonies had found a

solution.

Iredi et al. [104] showed that cooperation between the colonies permits the finding

of good solutions along the whole Pareto front. Heterogeneous colonies were used in

which the ants have different preferences as regards the sub-objectives when constructing

a solution. This choice of heterogeneous colonies has a considerable impact on the

performance of the algorithms.

Alaya et al. [6] proposed a multi-colony ant algorithm to solve a multi-objective

optimisation problem with any number no of objectives. The proposed algorithm uses

no + 1 ant colonies and no pheromone matrices. Each of the l-th colonies (l ∈ [1, ..., no])

aims at optimising the l-th objective function and uses one pheromone matrix, τ l, and

one heuristic information function, ηl, defined with respect to the l-th objective. The

(no + 1)-th colony considers, at each construction step, a randomly chosen objective to

optimise. The pheromone matrix, τno+1, considered by the (no +1)-th colony is the same

as the pheromone matrix of the l-th objective function, where l ∈ [1, ..., no] is randomly

chosen. The heuristic information ηno+1 considered by the (no + 1)-th colony is the sum

of heuristic informations associated with all objectives, i.e. ηno+1 =
∑no

l=1 ηl.

The ant algorithm for each colony is based on the MAX-MIN ant algorithm. The

pheromone update is as follows: For each of the first no colonies, pheromone is laid on

the components of the best solution, Tib
l , found by the l-th colony during the current

iteration, where the quality of solutions is evaluated with respect to the l-th objective,

f l, only.

The quantity, ∆τ l
ij, of pheromone deposited on each link (i, j) used by the Tib

l solu-

tion, for the l-th pheromone matrix is defined as follows

79

∆τ l
ij =

1

(1 + f l(Tib
l)− f l(Tgb

l))
(4.32)

where Tgb
l is the global best solution since the beginning of the run considering the l-th

objective function.

The (no +1)-th colony maintains a set of solutions: a best solution for each objective.

The (no + 1)-th colony lays pheromone on each pheromone structure relative to the

correspondent objective using equation (4.32).

4.5.7 Summary

This section examined several approaches in which ACO algorithms have been adapted to

solve MOPs. Five different approaches have been discussed, namely, the single colony,

single-pheromone, single-heuristic matrix, the single colony, single-pheromone, multi-

heuristic matrix, the single colony, multi-pheromone, single-heuristic matrix, the single

colony, multi-pheromone, multi-heuristic matrix, and the multi-colony approach.

4.6 Evolutionary Multi-Objective Optimisation

Over the past decade, a number of multi-objective evolutionary algorithms (MOEAs)

have been suggested [16, 40, 167, 224]. This section briefly describes evolutionary algo-

rithms (EAs) in Subsection 4.6.1 and the elitist non-dominated sorting genetic algorithm

(NSGA-II) in Subsection 4.6.2.

4.6.1 Evolutionary Algorithms

EAs are a class of stochastic optimisation methods that simulate the process of nat-

ural evolution [224]. Several classes of EAs have been developed, including genetic

algorithms, evolutionary programming, and evolution strategies [16]. All of these ap-

proaches maintain a population of candidate solutions. During the optimisation process,

these candidate solutions are changed through application of selection and variation op-

erators. While selection mimics competition for reproduction and resources among living

beings, variation imitates the natural capability of creating “new” living beings by means

of recombination and mutation. Although the underlying mechanisms are simple, EAs

80

have proved to be a general, robust and powerful search mechanism [16]. In particu-

lar, EAs have been successful in solving optimisation problems with multiple conflicting

objectives [41] and intractable, large and complex search spaces [223].

In EA terminology, candidate solutions are referred to as individuals or chromosomes.

The set of candidate solutions is referred to as a population.

Algorithm 7 General Scheme of an Evolutionary Algorithm

Initialise population P with random candidate solutions;
while not terminating condition do

Evaluate each candidate from P ;
Select parents;
Recombine pair of parents;
Mutate the resulting offspring;
Select individuals for the next generation and insert them into P

′
;

P ← P
′
;

end while
Return P ;

A generic EA is summarised in Algorithm 7. An EA consists of the following steps:

Firstly, an initial population is created at random, and this constitutes the starting

point of the evolution process. A loop consisting of the following steps – evaluation

(fitness assignment), selection, recombination, and/or mutation – is then executed a

certain number of times. Each loop iteration is termed a generation, and a predefined

maximum number of generations often serves as the termination criterion of the loop.

However, other conditions, for example stagnation in the population or the existence of

an individual with sufficient quality, may also be used to terminate the simulation. In

the end the best individuals in the final population represent the outcome of the EA.

The different steps of the loop are discussed next:

• Evaluation function (fitness function). The evaluation function is a function or

procedure that assigns a quality measure to individuals.

• Parent selection mechanism. The role of parent selection or mating selection is to

distinguish between individuals based on their quality, in particular, to allow the

better individuals to become parents of the next generation. An individual is a

parent if it has been selected to undergo variation in order to create offspring.

81

• Recombination. A binary variation operator is called recombination or crossover.

A recombination operator merges information from two parent individuals into one

or two offspring individuals.

• Mutation. A unary variation operator is commonly called mutation. A mutation

operator is applied to one individual and delivers a (slightly) modified mutant, its

child or offspring. A mutation operator is always stochastic: its output - the child

- depends on the outcomes of a series of random choices.

• Survivor selection mechanism. The role of survivor selection or environmental

selection is to distinguish among individuals from the offspring based on their

quality. The fittest will be allowed in the next generation.

4.6.2 Elitist Non-Dominated Sorting Genetic Algorithm

Since this thesis will compare the performance of MOACO algorithms to the performance

of the elitist non-dominated sorting genetic algorithm (NSGA-II) on the multi-objective

power aware routing problem, this section provides an overview of NSGA-II.

The NSGA-II [42] is one of the most efficient multi-objective evolutionary algorithms

using an elitist approach. The fitness assignment of NSGA-II consists of sorting the pop-

ulation on different fronts using the non-domination order relation. Initially, a random

parent population P of size Np is created. The population is sorted on the basis of non-

domination. Each solution is assigned a fitness equal to its non-domination level (1 is

the best level). Thus, minimisation of fitness is assumed. Binary tournament selection,

recombination, and mutation operators are used to create a child population of size Np.

From the first generation onward, the procedure differs, consisting of the main loop:

The parent and child population are combined into the population Rt. Rt is sorted

into non-dominated fronts. A new population P
′
is generated starting from the first non-

dominated front until Np individuals are found. The crowded comparison operator

is used for the selection process: Between two solutions with differing non-domination

fronts, the solution from the lower non-dominated front (with lower rank) is selected.

Otherwise, if both the solutions belong to the same non-dominated front then the solution

which is located in a region with the lesser number of solutions is included. From P
′
,

the child (offspring) population is generated with the standard bimodal crossover and

polynomial operators.

82

At the end of the execution of the algorithm, the best individuals in terms of non-

dominance and diversity are chosen.

The NSGA-II consists of the following different modules:

1. Finding the non-dominated front. This module does a quick sorting on the

solution space obtained after combining the parent and child population, and ex-

tracts the set of non-dominated solutions (non-dominated front).

Algorithm 8 summarises the steps to find the set of non-dominated solutions from

a set of solutions.

Algorithm 8 Procedure to Find the Set of Non-Dominated Solutions (Find-Non-
Dominated-Front)

Input parameter P ; {Population from which to extract the non-dominated front}
P
′
= ∅;

for all p ∈ P ∧ p /∈ P
′
do

P
′
= P

′ ∪ {p}; {include p in P
′
temporarily }

{compare p with other members of P
′}

for all q ∈ P
′ ∧ q 6= p do

if p ≺ q then
P
′
= P

′ \ {q}; {if p dominates a member q of P
′
, delete q }

else
if q ≺ p then

P
′
= P

′ \ {p}; {if p is dominated by other members of P
′
, do not include p

in P
′}

end if
end if

end for
end for
Return P

′
;

2. A fast non-dominated sorting approach. This module strips out the non-

dominated fronts one by one from the solution space and then ranks these non-

dominated fronts. The solutions belonging to the first non-dominated front are

given a rank of 1, and those belonging to the next non-dominated front a rank

of 2, and so on. This way the set of non-dominated fronts is extracted from the

population to be sorted.

Algorithm 9 summarises the steps for finding the set of non-dominated fronts.

83

Algorithm 9 Procedure to Find the Set of Non-Dominated Fronts (Non-Dominated-
Sort)

Input parameter P ; {Population for which to find the set of non-dominated fronts}
Z = ∅; {Z is the set of non-dominated fronts}
c = 1; {c is the non-dominated front counter and is initialized to one}
while P 6= ∅ do
Zc =Find-non-dominated-front(P); {Find the c-th non-dominated front}
P = P \ Zc; {remove non-dominated solutions from P};
Z = Z ∪ Zc;
c = c + 1;

end while
Return Z;

3. Density estimation. It is very important to keep the solution points well spread

out. Therefore, efficient measures are required for controlling the crowding (den-

sity) in one region. In order to obtain an estimate of the density of the solutions

surrounding a particular solution in the population, the average distance of two

points on either side of this point along each of the objectives is calculated. This

distance is termed the crowding distance.

The crowding distance computation requires that the population be sorted accord-

ing to each objective function value in ascending order of magnitude. Thereafter,

for each objective function, the boundary solutions (solutions with the smallest

and the largest function values) are assigned an infinite distance value. All other

intermediate solutions are assigned a distance value equal to the absolute difference

in the function values of two adjacent solutions. This calculation is continued in

terms of other objective functions. The overall crowding distance value is calcu-

lated as the sum of the individual distance values corresponding to each objective.

The following crowding-distance-assignment procedure (Algorithm 10) outlines the

crowding distance computation procedure for all solutions in a non-dominated set

I.

After all population members in set I have been assigned a distance metric then

any two solutions are compared for the extent of their proximity to other solutions.

A solution with a smaller value of this distance measure is, in some sense, more

crowded than other solutions. This is exactly what is compared in the crowded

comparison operator which is described below.

84

Algorithm 10 General Procedure of Crowding-distance-assignment

Input parameter I; {A non-dominated set}
nsi = |I|; {number of solutions in I}
for all i ∈ 1, ..., nsi do
I[i].distance = 0; {initialise distance}

end for
{no number of objectives}
for all j ∈ 1, ..., no do
I = sort(I, j); {sort using each j-th objective value}
I[1].distance = ∞;
I[nsi].distance = ∞;
for i = 2 To nsi − 1 do
I[i].distance = I[i].distance + (I[i + 1].j − I[i − 1].j); {I[i].j refers to the j-th
objective value of the i-individual in the set I}

end for
end for
Return I;

4. Crowded comparison operator. The crowded comparison operator ≺n guides

the selection process at the various stages of the algorithm towards a uniformly

spread-out Pareto-optimal front. The assumption is made that every individual,

Ii, in the population possesses two attributes: 1) non-domination rank Iirank
which

is based on the non-domination front, and 2) crowding distance Iidistance
.

The crowded comparison operator ≺n is defined as:

Ii ≺n Ij if (Iirank
< Ijrank

) or ((Iirank
= Ijrank

) and (Iidistance
> Ijdistance

) (4.33)

In other words, in terms of two solutions with differing non-domination ranks the

solution with the lower (better) rank is preferred. Otherwise, if both solutions

belong to the same front then the solution which is located in a lesser crowded

region is preferred.

Using the above procedures – a fast, non-dominated sorting procedure, a fast, crowded

distance estimation procedure and a simple crowded comparison operator – the NSGA-II

algorithm is summarised in Algorithm 11.

The NSGA-II is a genetic algorithm with O(noN
2
p) computational complexity (where

no denotes the number of objectives and Np the population size). As a result of the

85

low computational requirements of NSGA-II, its elitist approach and its parameterless

sharing scheme, the NSGA-II was selected as the algorithm to which the five algorithms

presented in this thesis will be compared.

Algorithm 11 General Procedure of NSGA-II

Create a random population P0;
Z = non-dominated-sort(P0);
Use binary tournament selection, recombination, and mutation operators to create a
child population Q0 of size Np.
t = 0;
while t < Nmaxgen do

Rt = Pt ∪Qt; {combine parent and children population}
Z = non-dominated-sort(Rt); {Z = (Z1,Z2, ...), all non-dominated fronts of Rt}
Pt+1 = ∅;
c = 1;
{till the parent population is filled}
while |Pt+1|+ |Zc| <= Np do

crowding-distance-assignment(Zc); {calculate crowding distance in Zc};
Pt+1 = Pt+1 ∪ Zc; {include c-th non-dominated front in the parent population}
c = c + 1; {check the next front for inclusion}

end while
Sort(Zc,≺n); {sort in descending order using ≺n}
Pt+1 = Pt+1 ∪Zc[1 : (Np − |Pt+1|)]; {Choose the first (Np − |Pt+1|) elements of Zc }
Qt+1 = make-new-pop(Pt+1); {Use selection, recombination, and mutation operators
to create a child population Qt+1}
t = t + 1; {increment the generation counter}

end while
Return Pt;

4.7 Performance Metrics for Multi-Objective Opti-

misation

It is not an easy task to compare the performance of multi-objective algorithms [22]. In

multi-objective optimisation the performance metric must assess a number of solutions,

each having a vector of objective values. Performance metrics are hard to define and more

than one metric is necessary to evaluate the performance of multi-objective algorithms.

There are several criteria for quantifying the quality of the approximation to the

86

Pareto front. This section examines a number of performance criteria for MOO. The

rest of the section is organised as follows: Section 4.7.1 provides an overview of the goals

of multi-objective optimisation, while Section 4.7.2 discusses the perfomance metrics

used in this thesis.

4.7.1 Multi-Objective Optimisation Goals

It is relatively simple to define performance metrics for single objective optimisation.

However, MOPs do not have a single global optimum solution, but rather a number of

optimum solutions that represent a trade-off between the various sub-objectives. The

overall aim in MOO is to produce a set of solutions that represent a good approximation

to the trade-off surface. A good approximation set should be as close as possible to the

true Pareto front and should also provide a good coverage of the true Pareto front. The

goal of achieving a good coverage of the trade-off surface, i.e. to maintain diversity and

spread of solutions, is of particular interest in multi-objective optimisation.

It is difficult to define a single measure that can be used to quantify the quality of

solutions obtained by a multi-objective algorithm (MOA). Instead, MOA performance

is characterised using a number of different aspects [37, 208, 227]. This thesis focuses on

two aspects of MOA performance:

• Closeness to the true Pareto front, as the distance between the non-dominated set

obtained and the true Pareto front.

• Diversity of solutions in the Pareto front.

4.7.2 Performance Metrics

Several criteria have been developed to assess the quality of a MOO algorithm and to

compare such algorithms [95, 120, 188]. Some of the criteria require knowledge of the true

Pareto-optimal solutions, which are unknown in the optimisation problem presented in

this thesis. Taking this limitation into account, the following three criteria are selected:

1) size of the dominated space, 2) spread metric, and 3) the size of the approximated

Pareto front (number of non-dominated solutions). The first metric measures the close-

ness of the obtained non-dominated set to the true Pareto front. The second metric

measures the spread of solutions along the non-dominated set obtained, while the last

87

metric measures the size of the non-dominated set. These three metrics, do not require

knowledge of the true Pareto front.

The above three metrics are described below:

1. Size of the dominated space or hypervolume measure (Sd):

The size of the dominated space is a measure of how much of the objective space

is weakly dominated by a given non-dominated set [17, 126, 218]. Consider the

non-dominated set P = {p1,p2, ...,pl}. The size of the space dominated by the

set P , denoted by Sd(P), is defined as the volume of the union of hypercubes

{C1, ..., Cl}, where Ci is a hybercube whose two opposite vertices are pi and the

origin of the objective space. Since the optimisation problem in this thesis involves

the minimisation of five objectives, a reasonable maximum value for each objective

is selected for the origin of the objective space. The values of 100.0, 0.1, 500.0,

0.5, and 30.0, corresponding to a maximum value for each of the objectives EP ,

TNP , V F , CP , and MNC have been selected as the origin of the objective space.

These values lead to a maximum hypervolume of 75000. The hypervolume metric

measures how well the algorithms performed in identifying solutions along the full

extent of the Pareto front. Higher values of Sd(P) indicate more closeness to the

true Pareto front and better performance.

2. Spacing (SP) or spread metric [179, 208]: The SP metric is used to measure the

spread (distribution) of vectors in the current non-dominated set. Schott [179]

proposed an SP metric to measure the range (distance) variance of neighbouring

vectors in the non-dominated set. The SP is defined as

SP =

√√√√ 1

nPF

nPF∑
i=1

(r̄ − ri)2 (4.34)

where ri = minj=1,...,nPF
∑no

m=1 |f i
m − f j

m|; fm is the m-th objective function, r̄ is

the mean of all ri, nPF is the number of non-dominated solutions, and no is the

number of objectives. The smaller the value of SP, the better the distribution in

the current non-dominated set. A value of zero indicates that all members of the

current Pareto front are equidistantly spaced.

88

If an MOP has a PF which is composed of two or more Pareto curves then the

distance between the end-points of two successive curves may skew this metric.

Therefore, for this kind of Pareto sets, the distance corresponding to the breaks

should be removed from the spacing computation.

It should be noted that the objective values should be normalised before calcu-

lating the distance. Various normalisation schemes have been proposed in the

literature [103, 121].

3. Number of non-dominated solutions found (ND) [119, 208]:

This performance measure quantifies the size of the approximated Pareto front,

that is, the number of non-dominated solutions. The ND metric is defined as

ND(PF) = |PF| (4.35)

The size of the approximated Pareto front may also be calculated with respect to

the solution vectors in the decision space.

The n̄alg metric measures how well the algorithms performed in identifying solutions

along the Pareto front. Larger values for n̄alg are preferred as it indicates that

many efficient solutions were found which is preferred by the decision maker. The

maximum value for n̄alg is 100 which is the size of the archive.

Although counting the number of non-dominated solutions does provide an indica-

tion of the effectiveness of the MOO algorithm in generating desired solutions, ND

does not reflect on the distance of PF∗ from these non-dominated solutions. Also,

it is not possible to draw any conclusions about any dominance relation between

two approximation sets [228].

The three performance metrics are chosen because they address the main functional

goals of MOO algorithms (closeness to the true Pareto front and diversity of solution in

the PF). This set of three metrics will enable two or more non-dominated solution sets

to be compared among each other in terms of their functional achievements. Also, these

three metrics are unary and do not require knowledge of the true Pareto front which is

uknown in the power aware optimization problem presented in this thesis.

89

Moreover, the hypervolume indicator is the only unary quality measure that is known

to be strictly monotonic with regard to Pareto dominance: whenever a Pareto set ap-

proximation entirely dominates another one, then the indicator value of the former will

also be better. This property is of high interest and relevance for the problem examined

in this thesis which involves a large number of objective functions. The spacing metric

has a low computational overhead, and can be used with more than two objectives. A

high number of non-dominated solutions, i.e. the cardinality of a non-dominated set,

and therefore more route choices is also desired for power aware dynamic optimization

problems where it is difficult to obtain many different non-dominated solutions.

4.8 Summary

The main objective of this chapter was to review multi-objective optimisation theory

and algorithms used in this thesis, with specific reference to ACO algorithms and the

NSGA-II. Different adaptations of ACO algorithms to solve MOPs have been discussed

in detail, and a compact description of the NSGA-II was given. Performance metrics for

MOO used in this thesis were discussed.

The next chapter discusses ACO optimisation methods for dynamic environments.

90

	Front
	Chapters 1-3
	CHAPTER 4
	4.1 Introduction
	4.2 Multi-Objective Optimisation Problem
	4.3 Pareto-Optimality
	4.4 Multi-Objective Optimisation Algorithm Classes
	4.5 Ant Colony Optimisation for Multi-Objective Optimisation
	4.6 Evolutionary Multi-Objective Optimisation
	4.7 Performance Metrics for Multi-Objective Optimisation
	4.8 Summary

	Chapters 5-6
	Chapters 7-8
	Back

