
Chapter 1

Introduction

This thesis proposes to simultaneously optimise five power-aware metrics for energy

efficiency in maximising mobile ad-hoc network (MANET) lifetime, taking in consid-

eration a realistic mobility model, using an ant colony optimisation (ACO) approach.

The ACO approach addresses a hardware independent routing protocol implementa-

tion within MANETs. Using the proposed algorithms, a set of optimal solutions, the

Pareto-optimal set, is found based on ACO. Section 1.1 introduces MANETs. Section 1.2

emphasizes the importance of reducing energy consumption for MANETs. Section 1.3

briefly describes how this thesis solves the energy consumption problem for MANETs.

Section 1.4 states the primary objectives of this thesis. Section 1.5 explains the contri-

bution of this thesis, and Section 1.6 gives the thesis outline.

1.1 Mobile Ad Hoc Network

Mobile devices coupled with wireless network interfaces will become an essential part

of future computing environments consisting of infrastructured and infrastructure-less

mobile networks. Wireless local area networks based on IEEE 802.11 technology are

the most prevalent infrastructured mobile networks, where a mobile node communicates

with a fixed base station, and thus a wireless link is limited to one hop between the

node and the base station. A MANET is an infrastructure-less multi-hop network where

each node communicates with other nodes directly or indirectly through intermediate

nodes [35, 117]. Thus, all nodes in a MANET basically function as mobile routers partic-

ipating in some routing protocol required for deciding and maintaining the (potentially)

dynamically changing routes. Since MANETs are infrastructure-less, self-organizing,

rapidly deployable wireless networks, they are highly suitable for applications such as:

• Military tactical operations [86, 100] for fast and possibly short term establishment

of military communications for troop deployments in hostile and/or unknown en-

1

vironments.

• Search and rescue missions [114] for communication in areas with little or no wire-

less infrastructure support.

• Disaster relief operations [162] for communication in environments where the ex-

isting infrastructure is destroyed or left inoperable.

• Law enforcement [201] for secure and fast communication during law enforcement

operations.

• Commercial use [26] for creating communications in exhibitions, conferences, and

large gatherings.

Building such ad hoc networks poses a significant technical challenge due to multiple

constraints imposed by the environment [36, 82]. As a result, the device used in the

field must weigh as little as possible. Furthermore, since mobile devices are battery op-

erated, they need to be energy conserving in order to maximise battery lifetime. Several

technologies are in the process of being developed with the aim of achieving energy con-

servation by targeting specific components of the computer and optimising the energy

consumption of these components. For example, low-power displays, algorithms to re-

duce the power consumption of disk drives, low-power I/0 devices, and low-power central

processing units (CPUs) all contribute to overall energy savings.

As a result of the highly dynamic and distributed nature of MANETs, routing tends

to be one of the key issues in MANETs [48, 174]. In particular, energy efficient routing

may constitute the most important design criterion for MANETs since mobile nodes are

powered by batteries with limited capacity. Power failure of a mobile node not only

affects the node itself, but also the ability of the node to forward packets on behalf of

other nodes and, thus, the overall network lifetime.

A mobile node not only consumes its battery energy when it is actively sending or

receiving packets, but it also consumes battery energy when idle and listening to the

wireless medium for any possible communication requests from other nodes. Thus, en-

ergy efficient routing protocols minimise either the active communication energy which

is required to transmit and receive data packets or the energy consumed during inactive

periods. In terms of protocols that belong to the former category, the active communi-

cation energy may be reduced by adjusting the radio power of each node just enough

2

to reach the receiving node, and no more. This transmission power control approach

may be extended to determine the optimal routing path that will minimise the total

transmission energy required to deliver data packets to their destinations. In terms of

those protocols that minimise the energy consumed for data transfer during inactive

periods, each node may save the inactivity energy by switching its mode of operation to

sleep/power-down mode or by simply turning the mode of operation off when there is no

data to be either transmitted or received. This will result in substantial energy savings,

especially in cases where the network environment is characterised by a low duty cycle

of communication activities. However, a well-designed routing protocol is required to

guarantee data delivery even if most of the nodes sleep and do not forward packets to

other nodes.

Another important approach to the optimisation of active communication energy is

the load distribution approach [111]. While the primary focus of the above two ap-

proaches is to minimise the energy consumption of individual nodes, the main goal of

the load distribution method is to balance the energy usage amongst the nodes and to

maximise the network lifetime by avoiding over-utilised nodes when selecting a routing

path. While it is not clear whether any particular algorithm or class of algorithms is the

best for all scenarios, there are definite advantages and disadvantages to each protocol,

and each protocol is suited for certain situations. However, it is possible to combine and

integrate the existing solutions and metrics for energy efficiency in order to offer a more

energy efficient routing mechanism.

1.2 Reducing Energy Consumption for MANETs

The research focus in MANETs, in the past years, has been on developing strategies for

reducing the energy consumption of the communication subsystem and increasing the

lifetime of the nodes. Recent studies have stressed the need for designing medium access

control (MAC) and routing protocols to ensure longer battery life. Much research has

been done on designing protocols that increase the lifetime of nodes and the network [33,

109]. The research and developed algorithms were done with reference to the MAC,

network and transport layers. Power-aware MAC protocols such as the power-aware

multi-access protocol (PAMAS) [185] have been designed for battery energy savings that

intelligently turn off radios when they can not transmit or can not receive packets.

3

The mobile ad-hoc network routing problem is difficult because of node mobility [7,

105, 206, 215]. With mobility, physically available routes may become invalid due to

the topology change by node movement or link failure (i.e. may not be found by the

routing algorithm), causing packets to be dropped and leading to throughput degradation

and increasing control overhead. When two nodes previously within the transmission

range move far away, the connection is lost. Vice versa, when two nodes move into the

transmission range, a connection is gained. Thus, two conflicting goals are encountered:

on the one hand, in order to optimise routes, frequent topology updates are required,

while on the other hand, frequent topology updates result in higher message overhead.

Routing algorithms for mobile networks have been presented that attempt to optimise

routes while attempting to keep message overhead small [33, 78, 97, 107, 116, 125, 138,

139, 157, 160, 182, 204]. Different routing protocols use one or more of a small set of

metrics to determine optimal paths. Some of these metrics, however, have a negative

impact on node and network life by inadvertently overusing the energy resources of a

small set of nodes in favour of others.

Conserving power and carefully sharing the cost of routing packets will ensure that

node and network life are increased. Singh et al. [184] presented several power-aware

metrics that do result in energy-efficient routes. These metrics are

1. to minimise energy consumed per packet,

2. to maximise time to network partition,

3. to minimise variance in node power levels,

4. to minimise cost per packet, and

5. to minimise maximum node cost.

Many real-world problems require the simultaneous optimisation of a number of ob-

jective functions, referred to as multi-objective optimisation problems (MOP) [37, 147].

Some of these objectives may be in conflict with one another. A typical MOP simulta-

neously involves some competing objectives. The solution to a MOP requires a suitable

definition of optimality (usually called Pareto optimality). MOPs normally have not

one, but an infinite set of solutions, which represent possible trade-offs among the ob-

jectives (such solutions constitute the so-called Pareto-optimal set [155]). For MOPs

4

the main task is to optimise a vector function, say f(x) = (f1(x), f2(x), ..., fn(x)). A

typical way to approach these problems is to transform the MOPs into single-objective

(or scalar) problems (e.g. by using a linear aggregating function). This approach does,

indeed, make sense if the functions f1, f2, ..., fn are of the same type and expressed in

the same units, but otherwise (for instance, if f1 denotes distance, f2 denotes time, and

so on) the scalarised problem might be meaningless. Also transforming the MOPs into

a single-objective problem might not be feasible when there are trade-offs among the

sub-objectives.

1.3 Solving Multi-Objective Power-Aware Metrics

with Ant Colony Optimisation Algorithms

This research presents five multi-objective algorithms for simultaneously optimising the

five power-aware metrics used for determining routes in wireless ad hoc networks, whilst,

at the same time, taking into account the reference point group mobility (RPGM)

model [29].

The proposed algorithms constitute new versions of the multi-objective ant colony

system [53], the max-min ant system [195], and the multiple colony ant system [76].

1.4 Objectives

The primary objectives of this thesis can be summarised as follows:

• To develop and test multi-objective ant optimisation algorithms, in order to simul-

taneously optimise the five power-aware routing metrics described in Section 1.2

while taking in consideration a realistic mobility model.

• To obtain empirical results to support the predictions offered by the proposed

algorithms.

1.5 Contributions

The main contributions of this work are:

5

• Development of the first dynamic multi-objective ant optimisation algorithms to

simultaneously optimise five power-aware objectives for energy efficiency and the

MANET’s lifetime, taking in consideration a realistic mobility model.

• The evaluation of the scalability of the five dynamic multi-objective ant optimisa-

tion algorithms with different network sizes.

• The experimental evaluation of the response of the five algorithms to varying node

mobility.

1.6 Thesis Outline

Chapter 2 contains an introduction to MANETs which is, in turn, followed by a compre-

hensive review of recent work conducted which addresses energy efficient and low-power

design within the network layer. The chapter also examines different mobility models.

Chapter 3 starts with an introduction to combinatorial optimisation. An overview of

the foraging behaviour of real ants is then presented, and this is, in turn, followed by a

discussion on ant colony optimisation algorithms.

Chapter 4 commences with a theoretical overview of the multi-objective problem

(MOP), which is followed by a discussion of the concepts of Pareto-optimal set and

Pareto-optimal front. In view of the fact that ACO methods for MOO problems form

the basis of the work presented in this thesis the focus then shifts to the application of

ACO algorithms to MOO problems. A brief introduction of the evolutionary algorithms

for solving multi-objective optimisation problems is then presented, and the NSGA-II

algorithm is described in detail. Performance metrics used to compare multi-objective

algorithms are discussed.

Chapter 5 discusses the concept of optimisation within dynamic environments since

the optimisation problem considered in this thesis is within the context of a dynamic

environment. A formal definition of a dynamic optimisation problem (DOP) is presented,

followed by an overview of the main characteristics of DOPs. The ant algorithms for

DOP are discussed, the performance metrics for DOP are described, and dynamic multi-

objective optimisation examined.

Chapter 6 describes in detail the five metrics for power-aware routing, and the multi-

objective optimisation problem is reformulated. This is followed by a description of the

6

new multi-objective ant colony optimisation algorithms for simultaneously optimising

the five power-aware routing metrics. These new algorithms are adaptations of multi-

objective ant colony optimisation algorithms.

Chapter 7 presents an empirical analysis of the behaviour of the multi-objective ant

colony optimisation algorithms which were introduced in Chapter 6. The results are

presented and evaluated.

Chapter 8 presents a summary of the findings of this thesis. Topics for future research

are also discussed.

Appendix A and appendix B respectively list abbreviations and symbols used in this

thesis along with their explanations.

Appendix C displays symbols used in this thesis to formulate the multi-objective

optimisation problem for power-aware routing metrics.

Appendix D and appendix E respectively contain tables and graphs to visualise the

results of the empirical analysis of the ant-based algorithm control parameters.

Appendix F displays the algorithms results for different scenarios.

Appendix G presents a three dimensional graphs to illustrate the influence of change

frequency and change severity on the performance metrics.

Appendix H contains the results of the Mann-Whitney U test for each pair of algo-

rithms to be compared.

Appendix I summarises the optimisation criteria results.

Appendix J presents FluxViz graphs to illustrate the influence of change frequency

and change severity on the optimisation criteria for different number of nodes.

7

Chapter 2

Energy Efficient Network Protocols

for Mobile Ad Hoc Networks

This chapter provides a review of mobile ad hoc networks (MANETs) and their main

components. A discussion of multi-hop MANETs is also presented. An overview of

the different mobility models is given. This is followed by a survey of different energy

efficient protocols within the network layer.

2.1 Introduction

A mobile ad hoc network (MANET) refers to a collection of wireless mobile nodes which

form a self-configuring network without using any existing, fixed infrastructure [35, 117].

As wireless networks become an integral component of the modern communication in-

frastructure, energy efficiency becomes an important design consideration in view of the

limited battery life of mobile terminals. Power conservation techniques are commonly

used in the hardware design of such systems. Since the network interface is a significant

consumer of power, there has been much research conducted into low-power design of

the entire network protocol stack of wireless networks in an effort to enhance energy ef-

ficiency. This chapter presents a comprehensive summary of recent work done on energy

efficient and low-power design within the network layer. Table 2.1 illustrates the open

systems interconnection (OSI) based protocol stack for a generic wireless network.

The mobility model plays a very important role in determining the protocol perfor-

mance in MANETs [47, 123, 174]. Thus, it is essential to study and analyse various

mobility models and their effect on MANET protocols. This chapter surveys and exam-

ines different mobility models which have been proposed in recent research literature.

A great body of knowledge about MANETs has been produced and many researchers

in the field are now trying to apply this knowledge to the field of wireless sensor networks

8

Table 2.1: Protocol stack for a generic wireless network

Application and Services
OS and Middleware

Transport
Network

Data link (LLC, MAC)
Physical

(WSNs) because MANETs and WSNs are very similar. Both are distributed wireless

networks and routing between two nodes may involve the use of intermediate relay nodes.

Both networks are usually battery-powered and therefore there is a big concern on mini-

mizing power consumption. Both MANETs and WSNs use a wireless channel and finally,

self-management is necessary because of the distributed nature of both networks.

The remainder of this chapter is organised as follows. Section 2.2 provides a descrip-

tion of MANETs and their main components. Section 2.3 discusses multi-hop MANETs.

Section 2.4 surveys and examines different mobility models. Section 2.5 discusses power-

aware protocols within the network layer. Section 2.6 discusses bio-inspired routing for

MANETs and, finally, Section 2.7 summarises and concludes the chapter.

2.2 Power Consumption and Communication for MANETs

In ad hoc mobile wireless networks, energy consumption is an important issue as most

mobile hosts operate on limited battery resources. Conservation of energy is, therefore,

critical in order to prolong the lifetime of the network. Instruction level modelling mobile

systems run on the limited energy which is available within a battery. Thus the energy

consumed by the system, or by the software running on the system, determines the

duration of battery life.

There are two main consumers of energy on a MANET node, namely, the central pro-

cessing unit and the radio (transmitter/receiver). These energy consumers are described

in the following subsections.

9

2.2.1 Central Processing Unit

The microprocessor draws a current each time a program is executed. The average power

consumed by a microprocessor while running a certain program is given by Po = Ic ∗ Vs,

where Po is the average power, Ic is the average current, and Vs the supply voltage [202].

Since power is the rate at which energy is consumed, the energy consumed by a program

is given by E = Po ∗ Te where Te is the execution time of the program. Te, in turn, is

given by Te = Nc ∗ cp where Nc is the number of clock cycles utilised by the program

and cp is the clock period.

Thus, together with the power cost of the hardware component it is important to also

estimate the power cost of the software component. In order to systematically analyse

the power cost of the software component it is necessary to estimate the power cost of

the individual instructions.

Power Cost Measurement Method

It is obvious that a good instruction-level energy model is essential in order to eval-

uate software in terms of the power metric and also to help search the design space

for low power software implementations. The instruction-level power analysis technique

was first developed at Princeton University [128, 202, 203]. The technique is based on

measurements of the current drawn by the processor as it executes certain instructions

repeatedly. Power models for the Intel 486DX2, the Fujitsu SPARClite 934, and the

Fujitsu DSP processor have been developed using this method. In order to model the

energy consumption of the microprocessor, individual instructions must be considered.

Each instruction involves specific processing demands across various units of the CPU.

In terms of this model each instruction in the instruction set is assigned a fixed energy

cost which is termed the base energy cost. The variation in the base costs of a given in-

struction is then quantified as a result of different operands and address values. The base

energy cost of a program is based on the sum of the base energy costs of each instruction

executed. However, during the execution of a program, certain inter-instruction effects

occur of which the energy contribution is not accounted for if only the base costs are

taken into account. The circuit state constitutes the first type of inter-instruction effect,

while the second type is related to the resource constraints that may lead to stalls and

cache misses. The energy cost of these effects is also modelled and used to obtain the

10

Table 2.2: Subset of the base cost table for the 486DX2

Number Instruction Base Cost(mA) Cycles
1 NOP 275.7 1
2 MOV DX,BX 302.4 1
3 MOV DX,[BX] 428.3 1
4 MOV DX,[BX][DI] 409.0 2
5 MOV [BX],DX 521.7 1
6 MOV [BX][DI],DX 451.7 2
7 ADD DX,BX 313.6 1
8 ADD DX,[BX] 400.1 2
9 ADD [BX],DX 415.7 3
10 SAL BX,1 300.8 3
11 SAL BX,CL 306.5 3
12 LEA DX,[BX] 364.4 1
13 LEA DX,[BX][DI] 345.2 2
14 JMP label 373.0 3
15 JZ label 375.7 3
16 JZ label 355.9 1
17 CMP BX,DX 298.2 1
18 CMP [BX],DX 388.0 2

total energy cost of a program.

Certain instructions involve multiple cycles within a given pipeline stage. The base

energy cost of the instruction is merely the observed average current value multiplied

by the number of cycles taken by the instruction in that specific stage. Table 2.2 [203]

summarises the CPU base costs for certain 486DX2 instructions.

Methodologies for analysing the energy consumption of embedded software help to

verify whether an embedded design meets the energy constraints. These methodologies

may also be used to guide the design of embedded software in such a way that the design

meets these constraints.

Operating Modes

The CPU has four operating modes, namely, power down, power save, active, and idle.

Power down shuts down the processor while the external interrupts (switch, button)

remain on. Power save shuts down the processor while external interrupts and an asyn-

chronous timer (external oscillator) remain on. The active mode leaves everything on,

11

while the idle mode shuts down the processor while the peripheral universal asynchronous

receiver transmitter (UART), serial peripheral interface (SPI), and analogue to digital

converter (ADC) remain on.

2.2.2 Radio

Radios have three operating modes, namely, transmit, receive, and power off. Thus,

the total power consumption at a node is dependent on the operating modes of the two

subsystems, i.e. the CPU and radio. All two subsystems must be used sparingly in

order to prolong the lifetime of the network. As has been proved by several wireless

network researchers [12, 50, 164, 187] the radio consumes the most energy of these

two subsystems. At the communication distances which are typical in MANETs, the

receiving and transmitting data involve similar costs [166]. Therefore, it is essential that

protocols that account explicitly for receive power be developed. The primary cost of

radio power consumption does not come from the number of packets transmitted but

from the time spent by the nodes in a state of idle listening.

Idle listening is the time spent listening while waiting to receive packets. Stemm and

Katz [189] observed that idle listening dominates the energy costs of network interfaces in

hand-held devices. Overhearing constitutes a secondary cost of radio power consumption.

Since radios are broadcast mediums, nodes receive all communications, including those

destined for other nodes. Clearly, in order to reduce power consumption in radios, the

radio must be switched off during idle times.

An important challenge for the communication block unit is the design of a wakeup

radio – a low-power radio that is able to receive very simple communication and, in

particular, is able to detect whether communication with its own node is desired. In

such a case the wakeup radio may power up the main radio that receives the actual

communication. Unfortunately, switching the radio off means that a neighbouring node

that detects an interesting event is not able to wake up the radio’s node. This may lead to

missed events and packets, thus both increasing latency and wasting energy. Accordingly,

a challenge to radio technology is to develop an ultra low power communication channel

which is able to wake up neighbouring nodes on demand. Currently, such wakeup radios

still constitute an area of active research in chip design and communications research [131,

209].

Researchers are investigating protocols across software layers for controlling radio

12

on/off times. Current approaches, which have been designed and implemented for

real-world TinyOS applications, have focused on MAC-layer and application-layer tech-

niques. Great Duck Island (GDI) for habitat monitoring [137] uses MAC-layer low-

power-listening [197], while TinyDB [136] uses application-layer duty cycling [28] when

deployed.

2.3 Multi-Hop MANETs

Multi-hop topologies play a significant role in MANETs. There are two main reasons

for the importance of multi-hops. Firstly, the MANET itself has no wired or power-rich

infrastructure. Therefore, in order to connect to the outside world, data must travel hop

by hop to the nearest access point. Secondly, in terms of wireless communication, it is

more energy efficient to transmit over several short distances than over a few long dis-

tances. Short distances also have better signal-to-noise ratios (because the environment

is more homogenous), and this results in fewer retransmissions per hop due to packet

loss [164].

However, there are inherent problems in multi-hop MANETs. Asynchronous events

may trigger sudden bursts of traffic that could lead to collisions, congestion, and channel

capture [214]. The problems that arise for wireless multi-hop networks are as a result of

hidden nodes and exposed nodes. A hidden node refers to a node within the interfering

range of the intended destination but out of the sensing range of the sender. Hidden nodes

cause collisions at the destination when they transmit during the destination’s reception.

An exposed node refers to a node which is within the sensing range of the sender but

out of the interfering range of the destination. Exposed nodes cease transmitting despite

the fact that no collisions will take place at the destination.

In view of the fact that the MAC is a shared and scarce resource in a wireless multi-

hop ad hoc network, efficient control of access to this shared media tends to become

complicated. There has been considerable effort expended in designing MAC layer pro-

tocols, and several possible MAC layer protocols have been proposed [3, 217, 221]. The

widely adopted IEEE 802.11 distributed coordination function (DCF) MAC protocol

does not work well in wireless multi-hop networks primarily because DCF was designed

for single communication cell networks [217]. The basic DCF access mechanism is carrier

sense multiple access/collision avoidance (CSMA/CA) which uses physical carrier sense

13

and the request-to-send/clear-to-send (RTS/CTS) handshake for collision avoidance [99].

The latter is extremely effective in avoiding hidden nodes in single communication cells.

However, the hidden node problem still exists in multi-hop networks. There is no scheme

which addresses the exposed node problem which is far more harmful in multi-hop net-

works. In order to understand the reason why this is the case, it must be stated that in

a carrier sense wireless network,

• the communication (transmitting) range and sensing (receiving) range are not sym-

metric,

• the interfering range and sensing range are much larger than the communication

range, and

• collisions occur at the receiver and not the transmitter.

The larger interfering and sensing ranges are the cause of severe unfairness while

end-to-end packets yield problems in multi-hop networks. While larger interfering ranges

exacerbate the hidden node problem, larger sensing ranges exacerbate the exposed node

problem.

2.4 Mobility Models

Performance evaluation of a protocol for a MANET should test the protocol under

realistic conditions including, but not limited to, a sensible transmission range, limited

buffer space for the storage of messages, representative data traffic models, and realistic

movements of the mobile users (i.e. a mobility model).

A mobility model should attempt to mimic the movements of real mobile nodes

(MNs). Changes in the speed and direction of MNs must occur and within reasonable

time slots; for example, it is not desirable for MNs to travel in straight lines at constant

speeds throughout the course of the entire simulation because real MNs generally do not

travel in such a restricted manner. Different entity and group mobility models for ad

hoc networks have been developed [13, 29, 124]. This research uses the reference point

group mobility model (RPGM) [29].

In the remainder of this section the reference point group mobility model is described.

Reference point group mobility model (RPGM) is a group mobility model, where group

movements are based upon the path traveled by a logical centre.

14

At the beginning of a simulation, the RPGM model divides mobile nodes into groups.

Each group has a logical centre whose movement defines the entire group’s motion be-

havior including location, speed, direction and acceleration.

Each individual node has one reference point which movement is determined by that

of the group. The motion of each node is determined by two vectors, a group motion

vector and an individual motion vector with respect to the node’s reference point. The

net motion vector of each node is the sum of the two vectors. The group motion is

defined by specifying a sequence of check points along the path corresponding to given

time intervals. As time goes by, a group moves from one check point to the next on

a continuing basis. By proper selection of check points, many realistic situations can

easily be modeled, where a group must reach predefined destinations within given time

intervals to accomplish the group’s task. There are different ways to create various

moving scenarios by changing the pattern of check points [101].

This thesis generates group motion patterns using the random waypoint model. Every

time the group reaches its destination, all nodes inside the group pause for a certain time

and then restart the moving process.

The group motion vector maps out the location of the reference centre, while the

node-dependent random motion vectors, added to the group motion vector, give the

positions of the node. The RPGM model describes the group membership of a mobile

node by its physical displacement from the group reference center. For example, at time

t the location of the i-th node in the j-th group is given by

xj,i(t) = yj,i(t) + zj,i(t) (2.1)

where yj,i(t) is the reference location and zj,i(t) is the local displacement.

The node-dependent local displacement or random motion vector, zj,i(t), denotes

the effect of the mobile nodes having their own localised movements while following the

general group motion defined by the reference centre. RPGM is illustrated in Figure 2.1.

In Figure 2.1, five MNs are initially placed in the lower left-hand corner of the simu-

lation area. A black square represents the group centre while the circles near the group

centre represent the MNs in the group. One circle in Figure 2.1 is grey in order to

distinguish it from the other MNs in the group. The movement of the grey circle will be

examined. RPGM first calculates the reference point of each MN using the group motion

15

.

.

y(t)

y(t+1)
z(t+1)

z(t)

GM(t)

GM(t+1)

Figure 2.1: Movements of MNs using RPGM

vector, GM(t). GM(t) may be randomly chosen or predefined. The current reference

point of the grey MN, y(t), moves towards the right-hand corner of the simulation area

alongside the group centre. This location becomes the new reference point, y(t + 1),

for the grey MN. Finally, the new position of the grey MN is calculated by summing a

random motion vector, z(t + 1), with the new reference point, y(t + 1). The length of

z(t + 1) is uniformly distributed within a specified radius centred at y(t + 1) while its

direction is uniformly distributed between 0 and 2π. This process is repeated for each

MN in the group.

The RPGM model is a very good approach for realizing group mobility in tactical

scenarios, because relative positions of nodes inside the groups can be modeled explicitly

using an appropriate choice of parameters.

2.5 Network and Power Saving Routing Protocols

Routing of packets and congestion control are the main functions of the network layer [133].

In wireless mobile networks the network layer has the added functionality of routing un-

der mobility constraints and mobility management including user location update. This

section discusses energy efficient routing algorithms which were developed for wireless

networks.

16

A switch is a device with several inputs and outputs that acts like a traffic junction

to forward messages. Switches consist of a fabric and a set of ports which allow packets

to flow from one link to another. Switches act as intersections as they forward messages

arriving from one input link to a different output link. The advantage of a packet

switched data network is its ability to scale beyond single hop communication. By

connecting switches the network may be expanded to allow messages to be sent over

multiple hops to non-adjacent nodes. Packet switched networks contain many pathways

and this creates the problem of how to find a route from one node to another. A

route connects nodes via one or more intermediate switches. Routes are discovered by

exchanging information about links in order to construct route tables which contain

directions to each node in the network. A packet switched network may be represented

as a graph of nodes which are connected by links or edges. Each edge is assigned a cost

which is derived from the characteristics of the link. The aim of a routing algorithm is

to find the least cost path between two non-adjacent nodes in the network and to create

a table which maps each destination to one of the output ports of the switches.

Ad hoc routing algorithms may be categorised into two types: table driven and on-

demand [168]. Table driven algorithms send periodical broadcasts in order to maintain

a route table. Algorithms classified as on-demand construct routes only when the routes

are needed. Both types of algorithms use controlled flooding to find routes. The differ-

ence between these two approaches is the frequency with which flooding takes place. In

terms of an on-demand protocol, flooding takes place only when a node desires a route

to a new destination. On the other hand, because routing information is constantly

propagated and maintained in table driven routing protocols, a route to every other

node in the ad hoc network is always available, regardless of whether or not it is needed.

This feature, although useful for datagram traffic, incurs substantial flooding traffic and

power consumption.

Ad hoc routing algorithms may also be classified as active or reactive routing al-

gorithms [216]. Routing algorithms that attempt to determine routes in advance are

classified as active routing algorithms. Routing algorithms which take action only when

a link is broken are classified as reactive.

Subsections 2.5.1 to 2.5.7 respectively discuss power efficient data gathering and

aggregation protocols, dynamic source routing, distance vector routing, routing for max-

imum system lifetime, temporally ordered routing algorithms, volcano routing schemes,

17

and destination sequenced distance vector, power-aware protocols. Subsection 2.5.8

presents a routing algorithm for network capacity maximisation (CMAX) in a wire-

less network. Subsection 2.5.9 presents the online maximum lifetime (OML) routing

algorithm to maximise lifetime in a wireless network. Subsection 2.5.10 discusses other

power-aware routing algorithms with respect to different metrics while Subsection 2.5.11

discusses power-aware routing algorithms for networks with frequent topological changes.

These routing protocols employ power efficient methods for data gathering, aggregation

and sending in order to achieve long network lifetimes.

2.5.1 Power Efficient Data Gathering and Aggregation

Protocol

Tan and Korpeoglu [200] proposed two algorithms for enhancing network lifetime, namely,

the power efficient data gathering and aggregation protocol (PEDAP) and the power ef-

ficient data gathering and aggregation protocol power-aware (PEDAP-PA). Both are

routing protocols based on optimal minimum spanning trees (MST) [34]:

Definition 2.5.1. Minimum spanning tree:

Given a connected, undirected, graph G = (V, L) a spanning tree, Ts, denotes an

acyclic subset of edges, Ts ⊆ L, that connects all the vertices together.

Assuming G is weighted, the cost of a spanning tree, Ts, is the sum of edge weights,

Cs, in the spanning tree, given as

Cs(Ts) =
∑

(u,w) ∈ Ts

cs,uw (2.2)

where (u,w) ∈ Ts is an edge and cs,uw is the weight of edge (u,w). A MST is a spanning

tree of minimum weight.

PEDAP minimises the total energy expended in the system in a round of communi-

cation in which each round corresponds to an aggregation of data which is transmitted

from different MANET nodes to the sink by computing a minimum spanning tree over

the MANET. The data packets are then routed to the base station over the edges of

the computed minimum spanning tree. PEDAP prolongs a satisfactory lifetime for the

first node while providing a satisfactory lifetime for the last node. PEDAP constructs

minimum energy consuming routing tables for each round of communication.

18

PEDAP-PA extends PEDAP by balancing the energy consumption among the nodes.

PEDAP-PA provides a near optimal lifetime for the first node although the lifetime of

the last node is slightly decreased.

Both algorithms consider that locations of wireless nodes are fixed and that the

base station knows all the locations of the nodes a priori. The nodes are in direct

communication range of each other and are able to transmit to and receive from the

base station. The nodes aggregate or fuse the data received (via the minimum spanning

tree) from the other nodes with their own data, and produce one packet only regardless

of the number of packets received. In each round a special node is randomly selected to

assume the responsibility for sending the fused data to the base station. Both algorithms

assume that the quality of the system dramatically decreases after the first node dies.

However, this is not always the case if the redundancy of a wireless network is considered.

2.5.2 Dynamic Source Routing

Dynamic source routing (DSR) [107] uses one or more of a small set of metrics to deter-

mine optimal paths. The most common metric used is shortest-hop routing [173]. DSR

is a routing protocol for ad hoc networks that uses dynamic source routing of packets

between hosts that wish to communicate. Source routing is a routing technique in which

the sender of a packet determines the complete sequence of nodes through which to for-

ward the packet. The sender lists this route explicitly in the header of the packet and

identifies each forwarding hop by the address of the next node to which it must trans-

mit the packet on its way to the destination host. The sender uses a route discovery

algorithm to discover a route to the destination host dynamically. A route maintenance

procedure is used to inform the sender of any routing errors. DSR uses no periodic rout-

ing advertisement messages, thereby reducing network bandwidth overhead, particularly

during periods when little or no significant host movement is taking place. Battery power

is also conserved on the mobile hosts – both by not sending the advertisements and by

having no need to receive the advertisements. DSR adapts quickly to routing changes

when host movement is frequent, yet requires little or no overhead during periods in

which hosts move less frequently.

19

2.5.3 Distance Vector Routing

Distance vector routing (DVR) [97] refers to a decentralised algorithm which applies a

distance vector to each route. A distance vector has two components – magnitude and

direction. The magnitude represents the cost or distance of the route while the direction

identifies the output port which leads to the destination. Switches which use the distance

vector algorithm maintain local route tables containing a cost and next hop address for

each destination in the network. Messages are forwarded by consulting the route table

for the correct destination. Routes are selected by competing for the lowest cost path

until a stable state is reached. Occasionally, routes do not stabilise and this causes loops

to be formed.

2.5.4 Routing for Maximum System Lifetime

Chang and Tassiulas [33] presented several proposals on ways in which to model the

system lifetime of ad hoc networks when the total energy in the network limits lifetime.

They proposed routing algorithms with which to select routes and the corresponding

power levels so as to maximise the elapsed time until the batteries of the nodes are

depleted. Instead of minimising the energy consumed, the focus of the routing algorithms

is on maximising the lifetime of the system. In order to achieve this, instead of minimising

the absolute power consumed, traffic is routed in such a way that the energy consumption

is balanced among the nodes in proportion to the available energy of the nodes. The

proposals of Chang and Tassiulas are applicable to networks which are either static or

else to networks with slowly changing topology to the extent that there is enough time

to balance the traffic optimally during the periods between successive topology changes.

2.5.5 Temporally Ordered Routing Algorithm

Park and Corson [156, 157] presented a new distributed routing protocol for mobile multi-

hop wireless networks known as temporally ordered routing algorithm (TORA). TORA is

extremely quick in creating and maintaining loop-free multi-path routing to destinations

for which routing is required while simultaneously minimising communication overhead.

TORA adapts speedily to topological changes and has the ability to detect network

partitions and to erase all invalid routes within a finite time. TORA is a link reversal

algorithm which routes messages by assigning a height value to each node. Heights

20

impose a temporary order on the set of nodes from highest to lowest. Messages may flow

only via nodes in descending height order. Heights are negotiated between immediate

neighbours on demand by sending a query message, and, thus, triggering further queries

which elevate the height of the originator. Intermediate nodes are assigned heights in

descending order toward the destination. A query packet consists of a quintuplet which

contains the time of a link request, the identifier address of the originator, the reference

height of the originator, and the forwarding node height. A sequence number orders

the queries, thus reducing the chances of a loop being created by older requests. At any

given time the same quintuplet with node identifier i is associated with each node i. This

quintuplet represents the height of the node. Route maintenance is performed when a

broken link is detected. The height of a node at the point of failure is lowered, thus

causing a link reversal. If it is not possible to reach a destination, then routes toward

the destination are flushed from the network.

This protocol is best-suited for use in large, dense mobile networks in which the

reaction of the protocol to link failures typically involves a localised single pass of the

distributed algorithm only. This capability is unique among protocols which are stable

in the face of network partitions, and results in the high degree of adaptability of the

protocol. In order to verify convergence in a MANET protocol it is necessary to consider

states which are reachable not only in terms of the events of the protocol itself but also

in terms of changes of topology [219, 220].

The TORA protocol guarantees that no loops will occur, provides multiple routes and

minimal communication overhead even in highly dynamic environments. TORA aims to

minimise routing discovery overhead, and, in doing so, prefers instant routes to optimal

routes. The protocol supports source-initiated, on-demand routing for networks with a

high rate of mobility as well as destination oriented, proactive routing for networks with

lesser mobility.

2.5.6 Volcano Routing Scheme

Ganjali and McKeown [78] proposed the volcano routing scheme (VRS) algorithm which

routes packets successfully even if the topology changes extremely rapidly. VRS does

not need to discover routes, or exchange routing information. It merely balances the

load locally between adjacent pairs of nodes. Ganjali and McKeown demonstrated that

VRS keeps the system stable for various models of mobility, different communication

21

patterns, and different volumes of flow in the network. The VRS is a potential-based

routing scheme. The key principle in potential-based routing is to define K scalar fields

on the network one for each destination node. More formally, a single-valued potential,

denoted by P f
u , is associated with any flow f at a given node u. At each node u of

the network, packets destined to Df , the destination of the f -th flow, are routed in the

direction (i.e. the next hop) that the potential field decreases the most for flow f .

Normally, the potential function depends on the topology of the network and it is

chosen in such a way that each packet is directed toward its destination. In VRS, the

potential function is totally different, and is simply based on the number of packets

buffered at each node of the network and not on the connectivity of the network. At a

given node, u, and for a given flow, f , the potential function, P f
u , is equal to the number

of packets of flow that reside at node u. VRS forwards packets from nodes which have

more buffered packets to those nodes which have fewer buffered packets.

The performance of VRS is based on several metrics, namely, packet loss, distribu-

tion of queue size, and the length of the path taken by packets. Simulations suggest

that, when the network is not highly loaded, the average and maximum queue sizes do

not change with the communication range, the number of nodes, and the mobility pro-

cess [78]. However, when the network becomes highly loaded as a result of reducing the

communication range or decreasing the number of nodes, the queue sizes increase. For a

fixed number of nodes in the network expansion of the communication range of each node

increases the average degree of each node, and this, in turn, enhances the connectivity of

the network and reduces the packet loss ratio. If the communication range of each node

is fixed then increasing the number of nodes in the network will reduce the packet loss.

2.5.7 Destination Sequenced Distance Vector

Destination sequenced distance vector (DSDV) [160] is a proactive protocol which models

mobile computers as routers. The mobile computers cooperate to forward packets as

needed to each other. Packets are transmitted between the stations (mobile computers)

of the network by using routing tables which are stored at each station of the network.

Each routing table, at each of the stations, lists all the available destinations as well as the

number of hops to each destination. Each route table entry is tagged with a sequence

number. This sequence number is generated by the destination station. In order to

maintain the consistency of the routing tables in a dynamically varying topology, each

22

station periodically transmits routing table updates and transmits updates immediately

when significant new information becomes available. Older routes will be discarded in

favour of newer or cheaper routes (with fewer hop counts). The routing table updates

may be sent in two ways:

1. a full dump which sends the full routing table to the neighbours and is able to span

several packets, or

2. an incremental update which sends only those entries with a metric (hop count)

change since the last update.

Route updates must be sent sufficiently frequently in order to locate all the nodes in

the network, thus creating a high communication overhead when the topology is dynamic.

Temporary routing loops may be caused by a delay in the propagation of accurate route

information. The aim of DSDV is to prevent the propagation of false or out of date

information by appending a sequence number to distance vector routing. DSDV has a

moderate memory requirement of O(n), where n is the number of nodes. No simulation

studies have yet been performed in order to examine the convergence of the algorithm.

2.5.8 Routing for Network Capacity Maximisation in Energy-

Constrained Ad Hoc Networks

Kar et al. [115] developed a capacity-competitive algorithm known as CMAX. CMAX

carries out admission control, i.e. the algorithm may occasionally reject messages that

are deemed to be too detrimental to the residual capacity of the network. Network

capacity is defined as the total volume of message data that is successfully carried by

the network.

Before describing the CMAX algorithm, the following terminology will be defined:

The wireless network is modelled as a directed graph, G = (V, L). V is the set of nodes

in the network with n = |V | the number of nodes. L is the edge set. There is a directed

edge, (u,w) ∈ L, from node u to node w if and only if a single-hop transmission from u

to w is possible. Let Eu > 0 be the initial energy of node u and let ec
u ≥ 0 denote the

current energy of node u. For each (u,w) ∈ L let Euw > 0 denote the energy required

to do a single-hop transmission from node u to node w. Following a single-hop message

23

transmission from u to w the current energy in node u becomes ec
u−Euw. Note that this

single-hop transmission is possible only if ec
u ≥ Euw.

To calculate Euw, the most common model for power attenuation is used. In this

model signal power attenuates at the rate ca

dhd
, where ca is a media dependent constant,

d is the distance from the signal source, and hd is another constant between 2 and 4 [170].

Therefore, Euw = Ewu = c ∗ dhd
uw, where duw is the Euclidean distance between nodes u

and w, and c is a constant.

Let κ(u) = 1− ec
u/Eu be the fraction of initial energy of node u that has been used

so far, where Eu is the initial energy of node u. Let ζ and σ represent two constants.

CMAX changes the weight of every edge (u,w) from Euw to Euw ∗ (ζκ(u) − 1). The

shortest source-to-destination path, P , in the resulting graph is determined using the

new weight. If the length of this path is more than σ, then the routing request is rejected

(admission control); otherwise, path P is accepted as the route. Algorithm 1 summarises

the CMAX algorithm.

Algorithm 1 CMAX Algorithm

Step 1: {Initialize}
Eliminate from G every edge (u,w) for which ec

u < Euw;
Change the weight of every remaining edge (u,w) to Euw ∗ (ζκ(u) − 1);

Step 2: {Shortest Path}
Let P be the shortest source-to-destination path in the modified graph.

Step 3: {Wrap Up}
If no path is found in Step 2, the route is not possible;
If the length of P is more than σ, reject the route;
Otherwise, use P for the route;

2.5.9 The Online Maximum Lifetime Heuristic

In order to maximise lifetime, it is necessary to delay the depletion of the energy of a

node to a level below that needed to transmit to its closest neighbour for as long as

possible [94]. This objective may be attained by using a two-step algorithm, namely, the

online maximum lifetime (OML) heuristic algorithm. The OML is used to find a path for

each routing request, ri = (si, di), where si is the source node and di is the destination

node. In the first step, OML removes from G all edges (u,w) such that ec
u < Euw as

these edges require more energy than is available for a transmit. Let the resulting graph

24

be G
′
= (V, L

′
). In the next step OML determines the minimum energy path, P

′
i , from

si to di in the pruned graph G
′
. This may be done by using Dijkstra’s shortest path

algorithm [175]. In cases in which there is no si to di path in the pruned graph G
′
then

the routing request ri will fail. Assume that such a Pi
′ exists. Using Pi

′, OML computes

the residual energy, er
u as er

u = ec
u−Euw, for all edges (u, w) ∈ P

′
i . The minimum residual

energy, er
min, is then calculated as

er
min = min{er

u|u ∈ Pi
′ AND u 6= di} (2.3)

Let G
′′

= (V, L
′′
) be obtained from G

′
by removing all edges (u,w) ∈ L

′
with ec

u−Euw <

er
min. That is, all edges whose use would result in a residual energy below er

min are pruned

from L
′
. This pruning is an attempt to prevent the depletion of energy from nodes that

are low on energy.

The second step finds the path to be used to route request ri. In order to find the

path, OML begins with G
′′

as above and assigns weights to each (u,w) ∈ L
′′
. The weight

assignment is done to balance the desire to minimise total energy consumption as well

as the desire to prevent the depletion of node energy. Let em
u = min{Euw|(u,w) ∈ L

′′}
be the energy needed by node u to transmit a message to its nearest neighbour in G

′′
.

Let φ(u,w) a function whose use prevent the depletion of the energy of node u, below

that needed to transmit to the closest neighbour of u; φ(u,w) is defined as

φ(u,w) =





0 if ec
u − Euw > em

u

c otherwise
(2.4)

where c is a non-negative constant. For each u ∈ V , define

κ(u) =
er

min

ec
u

(2.5)

where κ(u) is the fraction of u’s initial energy that has been used so far.

The weight, E
′′
uw, assigned to edge (u, w) ∈ L

′′
is

E
′′
uw = (Euw + φ(u,w))(ζκ(u) − 1) (2.6)

where ζ is another non-negative constant.

25

From equation (2.6), the weighting function, through φ, assigns a high weight to edges

whose use on a routing path causes a node’s residual energy to become low. Also, all

edges emanating from a node whose current energy is small relative to er
min are assigned

a high weight because of the ζκ(u) term. Thus the weighting function discourages the use

of edges whose use on a routing path is likely to result in the failure of a future route.

Algorithm 2 gives the OML algorithm to select a path for request ri.

Algorithm 2 General Procedure of OML

Step 1: Compute G
′′
;

G
′
= (V, L

′
) where L

′
= L− {(u,w)|ec

u < Euw};
Let P

′
i be a shortest path from si to di in G

′
using Dijkstra’s algorithm;

If there is no such P
′
i , the route request fails and the algorithm terminates;

Compute the minimum residual energy er
min for all nodes other than di on P

′
i

using equation (2.3);
Let G

′′
= (V, L

′′
) where L

′′
= L

′ − {(u,w)|ec
u − Euw < er

min};
Step 2: Find route path

Compute the weight E
′′
uw for each edge of L

′′
using equation (2.6);

Let P
′′
i be a shortest path from si to di in G

′′
;

Use P
′′
i to route from si to di;

2.5.10 Other Power-Aware Routing Algorithms and Metrics

Energy conservation is a critical issue in wireless networks for node and network lifetime,

as the nodes are powered by batteries [211]. This subsection surveys recent routing

protocols for wireless networks in which energy awareness is an essential consideration.

The most interesting research issue in respect of these power-aware routing protocols

consists of ways in which to optimise different metrics.

Singh et al. [186] addressed routing of unicast traffic (unicast refers to the sending of

information packets to a single destination) with respect to battery power consumption.

Their research focused on the design of protocols to reduce energy consumption and to

increase the lifetime of each mobile node, thus also increasing network lifetime. This

goal may be attained by minimising the energy of mobile nodes, not only during active

communication, but also when the mobile nodes are inactive.

Transmission power control and load distribution are two approaches to minimising

the active communication energy. Sleep/power-down mode is used to minimise energy

26

during inactivity. In order to minimise the active communication energy, five different

metrics are defined from which to study the performance of power-aware routing pro-

tocols. These energy-related metrics have been used to determine an energy efficient

routing path instead of finding the shortest paths. The metrics are [186]:

• Energy consumed per packet:

This metric is useful in order to provide the minimum power path through which the

overall energy consumption for delivering a packet is minimised. Each wireless link

is annotated with the link cost in terms of transmission energy over the link. The

minimum power path is that path which minimises the sum of the link costs along

the path. However, a routing algorithm using this metric may result in unbalanced

energy spending among mobile nodes. Nodes that are unfairly burdened in order

to support several packet-relaying functions consume more battery energy and run

out of energy earlier than other nodes, thus disrupting the overall functionality of

the ad hoc network.

• Time to network partition:

This metric maximises the network lifetime. Given a network topology, a minimal

set of MNs exists so that the removal of these MNs would cause the network to

partition. The traffic in these MNs should be divided in such a way that their power

is depleted at equal rates. Given alternative routing paths, this metric favours the

selection of that path which will result in the longest network operation time.

• Variance in node power levels:

This metric is based on the premise that all MNs in the network operate at the

same priority level, thus ensuring that all mobile nodes are equal and that no single

mobile node is penalised or advantaged over any other. All mobile nodes in the

network remain powered on for as long as possible.

• Cost per packet:

Metrics other than energy consumed per packet need to be adopted in order to

maximise the lifetime of all the mobile nodes in the network. The cost per packet

metric creates routes in such a way that mobile nodes with depleted energy reserves

do not form part of many routes.

27

• Maximum node cost:

This metric attempts to minimise the cost experienced by a mobile when routing

a packet. By minimising the cost per mobile node significant reductions in the

maximum mobile cost are obtained. Also, the maximum node cost metric delays

mobile failure, and reduces variance in mobile power level.

In order to conserve energy all metrics need to be minimised, except the time to net-

work partition metric which needs to be maximised. As a result, a minimal cost routing

protocol with respect to the five energy efficient metrics is more appropriate instead of

a shortest hop routing protocol. Thus, although packets may be routed through longer

paths, the paths contain mobile nodes that have greater energy reserves. Also, rout-

ing traffic through lightly loaded mobile nodes conserves energy because contention and

retransmission are minimised.

The above approach to routing in wireless ad hoc networks requires that every mobile

node has knowledge of the locations of every other mobile node and the links between

them. This creates significant communication overhead and increases delays. Stojmen-

ovic and Lin [191] addressed this issue by proposing a power, cost, and power-cost global

positioning system (GPS) which is based on a localised routing algorithm, where nodes

make routing decisions based solely on the location of their neighbours and on the loca-

tion of the destination.

The power-aware localised routing algorithm attempts to minimise the total power

needed to route a message between a source and a destination. The loop-free localised

power efficient routing algorithm may be described as follows: The source (or an in-

termediate node), S, should select one of its neighbours, A, to forward packets toward

destination, D, with the goal of reducing the total power needed for the packet trans-

mission. Only those neighbours that are closer to the destination than S are considered.

Node A becomes the source and the algorithm proceeds recursively until the destination

is reached – if possible.

The cost-aware localised routing algorithm is aimed at extending the worst case life-

time of batteries. The loop-free localised cost aware routing algorithm may be described

as follows: The cost, c(A), of a route from S to D via neighbouring node A is the sum

of the cost, f(A), of node A and the estimated cost of the route from A to D. If the

destination is one of the neighbours of node S, which currently holds the packet, then

the packet will be delivered to D. Otherwise, S will select that neighbour, A, which

28

minimises c(A). The algorithm proceeds until the destination is reached, if possible, or

until a node has no neighbouring node to the destination other than itself.

Combined power-cost algorithms both minimise the total power needed and maximise

remaining battery lifetime.

Stojmenovic and Lin [191] proved empirically that these localised power, cost, and

power-cost efficient routing algorithms are loop-free. These routing algorithms achieve

very high delivery rates for dense networks, but low delivery rates for sparse networks.

Control messages are used to update the positions of all nodes in order to maintain the

efficiency of the routing algorithms. These control messages also consume power which

means that the most advantageous trade-off for moving nodes must be established.

These routing algorithms were tested on static networks with high connectivity [191].

Power efficient methods tend to select well positioned neighbouring nodes in forwarding

messages while cost efficient methods favour nodes with more power remaining.

Shah and Rabaey [181] presented an energy aware routing algorithm for low energy

wireless networks. Network survivability was considered as the primary metric. They

demonstrated that network lifetimes may be increased up to 40% as against comparable

schemes such as directed diffusion routing. Energy aware routing builds per-sink cost

fields to direct data delivery. A sender probabilistically picks a receiver to which each

packet has to be forwarded. The basic principle is that, in order to occasionally increase

the survival of networks, it may be necessary to use sub-optimal paths. This will ensure

that the power of the optimal path is not depleted, and that the network degrades

as a whole rather than being partitioned. To prevent energy depletion of the optimal

path, multiple paths are found between the source and the destination, and each path

is assigned a certain probability of being selected, depending on the energy metric. In

order for each packet to be sent from the source to the destination one of the paths is

randomly chosen, depending on the probabilities. This means that none of the paths

is used all the time, thus preventing energy depletion. Also, different paths are tried

continuously, hence improving tolerance to nodes moving around in the network.

Energy aware routing is also a reactive routing protocol. It is also a destination-

initiated protocol in terms of which the data consumer initiates the route request and

subsequently maintains the route.

29

2.5.11 Power-Aware Routing Algorithms for Networks with

Frequent Topological Changes

Routing in mobile ad hoc networks is difficult because the topology may change rapidly [105,

215]. By the time new paths have been discovered the network could change again. In

extreme cases packets may circulate endlessly, thus causing the system to become unsta-

ble. It is difficult to describe and to constrain mobility for frequently changing networks.

There will not be enough time to balance traffic optimally between successive topology

changes. For this reason existing routing algorithms are of little use. However, exist-

ing algorithms such as the distance vector routing [160] have proved to be effective in

situations in which topology changes slowly.

Gafni and Bertsekas [71] considered the problem of maintaining communication be-

tween the nodes of a data network and a central station in the presence of frequent

topological changes as, for example, in mobile packet radio (PR) networks. They pro-

posed distributed algorithms for generating loop-free routes, and thus forming the basis

for the development of contingency routing algorithms.

These distributed algorithms have the following properties:

1. They work on unknown communication topologies.

2. They implement a directed acyclic graph (DAG) over the network topology, where

all directed paths lead to the destination.

3. In the event of changes to the topology of the network, a new DAG is created using

an iterative method.

In such distributed algorithms each PR is assigned a generalised number (i.e. an

element of a suitable totally ordered set). Link directions will always be oriented from

higher to lower numbers. This prevents loops from forming and provides reliable sec-

ondary routes that may be used for transmitting connectivity information and data to

the station when the primary routes fail. When a PR loses all its routes to the station,

a reversal process is executed whereby, on the basis of the numbers of its neighbours,

the PR selects a number according to the rules of one of the algorithms proposed. This

number is broadcast to all the PR’s neighbours informing them of any reversals in the

direction of communications that affect them.

30

There is a possibility that some numbers may become too large, for example, if the

network becomes disconnected. Accordingly, an error detection scheme is required to

ensure that each PR operates on the basis of correct numbers for all its neighbours.

These distributed algorithms – referred to as Gafni-Bertsekas (GB) algorithms – are

designed for operation in connected networks. GB algorithms do exhibit instability in

parts of the network which have become partitioned from the destination.

Stergaard [190] presented a distributed algorithm for a network with dynamic chang-

ing topology. This distributed algorithm is termed the efficient distributed hormone

graph gradient (EDHGG). EDHGG provides information on topological distance in com-

munication networks with dynamic changing topologies. From a functional point of view

this algorithm is an improved version of the algorithm which was presented by Gafni and

Bertsekas [71], with two additional features:

1. From a given node, the length of any directed path to the destination is equal to

the shortest undirected path to the destination.

2. Each node knows its topological distance from the destination.

EDHGG is based on topological distance (i.e. the number of hops between two nodes)

and is capable of dealing with changing topologies in the connectivity graph using only

local information, without global synchronisation. The algorithm generates messages

only when the topology of the graph changes.

2.6 Bio-inspired Routing for MANETs

In addition to the classical MANET routing algorithms, the focus of the MANET re-

search community has also been on the application of nature inspired engineering ap-

proaches to solve the MANET routing problem [31]. The term bio-inspired has been

introduced to demonstrate the strong relation between a particular system or algorithm,

which has been proposed to solve a specific problem, and a biological system, which

follows a similar procedure or has similar capabilities.

A number of MANET routing protocols have been designed [2], which deal with

the extremely dynamic nature of MANET networks [69]. These protocols are mainly

31

inspired by ant colony behaviours, resulting in distributed, self-organizing, and adap-

tive algorithms. The first ACO routing algorithms developed were the ant based con-

trol (ABC) algorithm [178] for circuit-switched telephone networks and AntNet [31] for

connectionless IP data networks. ACO implementations for different routing protocols

developed since then have based their design on either AntNet [14, 44, 113, 180, 210] or

ABC [196].

ABC is a proactive algorithm designed for load balancing in a circuit switched sys-

tem. ABC is used for call controlling (distributes the calls over multiple switches) and

maintains only one routing table whose rows show the destination. Calls between nodes

are routed as a function of the pheromone distributions at each intermediate node.

AntNet is an adaptive, distributed, mobile agents-based algorithm which was based

on the stigmergic communication found in natural ant colonies. The operation of AntNet

is based on two types of agents:

• forward ants who gather information about the state of the network, and

• backward ants who use the collected information to adapt the routing tables of

nodes on their path.

The routing tables of each visited node are updated based on trip times. AntNet has

been used to simultaneously optimize the throughput (delivered bits/sec), average delay

for data packets (sec), and network’s capacity usage. However, AntNet has a scalability

problem with larger scale networks, because each node has to generate many ants for

updating routing tables. In large networks, both overhead and loss of protocol packets

grow for distant destinations. Furthermore, ants may carry outdated information for

long travel times. Another problem which may arise when implementing AntNet on a

real network is the synchronization of the internal clocks of the nodes in the network.

The popularity of MANETs has lead to an increasing need to address MANETs

security issues. There are a number of proposals for secure MANETs that are based

on artificial immune systems (AISs) [39]. Artificial immune systems (AIS) are algo-

rithms and systems that use the human immune system as inspiration. Sarafijanovic and

Boudec [176] presented an AIS security solution that can detect misbehavior in the dy-

namic source routing (DSR) protocol [107]. Mazhar and Farooq [145] addressed anomaly

detection in MANETs using AIS, while Mazhar [144] proposed two security frameworks

for securing MANET protocols based on the AIS approach, i.e BeeAIS based on self

32

non-self discrimination from adaptive immune system and BeeAIS-DC based upon the

danger theory [39]

.

2.7 Summary

As a result of the power constraint characteristics of MANETs, it is vital to enhance the

longevity of the nodes in the network in order to prolong network lifetime. Low power

design as applied to the implementation of all protocols, and in particular (in reference

to this thesis), the routing protocols, remains one of the most important research areas in

terms of MANETs. This chapter provided a survey of existing algorithms at the network

layer that address the energy efficiency of MANETs. The next chapter discusses the

ant colony optimisation meta-heuristic approach for solving combinatorial optimisation

problems. In late chapters, energy aware optimisation algorithms are developed to based

on the ant colony optimisation meta-heuristic.

33

Chapter 3

Combinatorial Optimisation and

Ant Colony Optimisation

Meta-Heuristic

This chapter reviews basic definitions of concepts related to optimisation. The ant

colony meta-heuristic, viewed in the general context of combinatorial optimisation, is

then discussed. This is followed by a detailed description as well as a guide to three major

ant colony optimisation algorithms, namely, the ant system, the ant colony system, and

the MAX-MIN ant system.

3.1 Introduction

Ant colony optimisation (ACO) [54, 56] refers to a recent meta-heuristic approach

for solving difficult combinatorial optimisation problems. ACO was inspired by the

pheromone trail laying and following behaviour of real ants which use pheromones as a

communication medium. With reference to this biological example, ACO is based on

the indirect communication of a colony of simple agents, termed artificial ants, which

is mediated by (artificial) pheromone trails. The pheromone trails in ACO algorithms

serve as distributed, numerical information which the ants use to construct probabilis-

tic solutions to the problem under investigation and which the ants adapt during the

algorithm’s execution to reflect their search experience.

The ant system (AS) was the first ACO algorithm [56] developed to solve the trav-

elling salesman problem (TSP) [127]. Despite initial encouraging results, AS was not

able to compete with state-of-the-art algorithms for the TSP [57]. Nevertheless, AS did

play an important role in stimulating further research on algorithmic variants which did

obtain far more improved computational performance [53, 56, 73, 195]. Motivated by

34

this success, the ACO meta-heuristic was proposed [54, 56] as a common framework for

the existing applications and algorithmic variants. Algorithms which follow the ACO

meta-heuristic are generically referred to as ACO algorithms for the remainder of this

thesis.

The rest of chapter 3 is organised as follows: Section 3.2 provides an overview of com-

putational complexity, Section 3.3 discusses meta-heuristics in general, Section 3.4 gives

an overview of the ant colony optimisation meta-heuristic, while Section 3.5 provides a

detailed description of three major ant colony optimisation algorithms.

3.2 Computational Complexity

An important criterion for the classification of problems is the time required by algo-

rithms to find a solution to the given problem. This issue is addressed by the theory of

computational complexity [154] and, in particular, by the theory of NP-completeness [80].

The subject of computational complexity theory is dedicated to classifying problems in

terms of their degree of complexity.

The time-complexity of an algorithm is measured by a time-complexity function that

offers, depending on the size of the problem instance, the maximal run-time needed

by the algorithm to solve an instance of that problem. The size of a problem instance

reflects the volume of data required to encode an instance in a compact form. An intuitive

understanding of the size of an instance of the problem often suffices; for example, the size

of TSP [127] instance may be measured by the number of cities to be visited. Typically

the time-complexity is detailed in terms of the number of elementary operations required

to solve the problem, for example, the number of value assignments or comparisons. Time

complexity is formalised by the O(.) notation: Let f : N → N and g : N → N be two

functions. Then, f(n) = O(g(n)) if there are positive integers c and n0 such that for all

n > n0, f(n) ≤ c.g(n).

An algorithm runs in polynomial time if the runtime is bounded by a polynomial. If

it is not possible for the runtime to be bounded by a polynomial then the algorithm is

said to be an exponential time algorithm. In complexity theory a distinction is made

between efficiently solvable problems (easy problems) and inherently intractable prob-

lems (difficult problems). Usually, a problem is considered to be efficiently solvable if it

is possible to find a solution in a number of steps bounded by a polynomial of the input

35

size. If the number of steps needed to solve an instance grows super-polynomially then

that problem is considered to be inherently intractable.

The theory of NP-completeness distinguishes between two basic classes of problems:

the class NP of tractable problems and the NP-complete class of problems. The class

NP consists of those problems that may be solved by a nondeterministic polynomial-

time algorithm (composed of a guessing stage and a checking stage). The NP-complete

class is the class comprising the most difficult problems. If it is possible to solve an

NP-complete problem by a polynomial time algorithm, then all problems in NP may be

solved in polynomial time.

Many problems of practical and theoretical importance within the fields of artificial

intelligence and operations research are of a combinatorial nature [9, 32, 127, 135, 205].

Combinatorial optimisation problems involve finding values for discrete variables such

that certain conditions are satisfied. Problems of combinatorial nature may be classified

either as optimisation or constraint satisfaction problems. The goal of combinatorial

optimisation problems is to find an optimal arrangement, grouping, ordering, or selection

of discrete objects.

The TSP [127] is probably the most widely known combinatorial optimisation prob-

lem, where the goal is to find a closed tour through a set of cities. Other examples

of combinatorial optimisation problems are assignment [32], scheduling [9], and vehicle

routing problems [205]. Constraint satisfaction problems (CSP) [135] require a solution

to be found that satisfies a given set of constraints. An important special case of the

CSP is the well-known satisfiability problem in propositional logic [122]. Other CSP

problems are graph coloring [25], temporal and spatial reasoning [5], as well as resource

allocation [151].

Combinatorial optimisation problems are often extremely difficult to solve. For ex-

ample, no algorithm exists for finding the optimal solution to a TSP within polynomial

time [153]. Similarly, no algorithm is guaranteed to decide in polynomial time whether a

given CSP instance is satisfiable or not. These problems are classified as NP-complete.

The class of NP-complete problems has the important distinction that no polynomial

time algorithm for any of its members exists to date and, consequently, these problems

are considered as inherently intractable from a computational point of view. Thus, in

the worst case, any algorithm that endeavours to solve an NP-complete problem will

require exponential execution time. In particular, the TSP and the CSP belong to this

36

class and are thus among the most difficult combinatorial problems.

Algorithmic approaches to combinatorial optimisation problems may be classified as

either exact or approximate [96]. Exact algorithms are guaranteed to find an optimal

solution in finite time by systematically searching the solution space. However, due to

the NP-completeness of many combinatorial optimisation problems, the time needed to

solve these problems may grow exponentially in the worst case. As a result of the fact

that there are several problems for which exact algorithms display poor performance,

several types of approximate algorithms have been developed that provide high quality

solutions to combinatorial problems in short computation time [62, 108].

Approximate algorithms may be classified into two main types: construction algo-

rithms and local search algorithms [193]. Construction algorithms generate solutions

from scratch by adding solution components step by step. The best known examples

are greedy construction heuristics [24]. The main advantage of the greedy heuristics is

speed: the algorithms are very quick and return reasonably good solutions. However,

these solutions are not guaranteed to be optimal with respect to small local changes and

solutions may be further improved by a local search.

Local search algorithms start from some given solution and try to find a better

solution within an appropriately defined neighbourhood of the current solution. Should

a better solution be found, this solution then replaces the current solution and the local

search is continued from this point. The most basic local search algorithm, termed

iterative improvement [59], applies these steps repeatedly until it is no longer possible to

find a better solution in the neighbourhood of the current solution and stops in a local

optimum. A disadvantage of this algorithm is that it may stop at poor quality local

minima. In order to avoid these disadvantages, many generally applicable extensions of

local search algorithms have been proposed [81, 118, 192, 193]. Local search algorithms

may be improved by either accepting worse solutions and, thus, allowing the local search

to escape from local optima, or by generating good starting solutions for local search

algorithms which guide towards better solutions. In the latter case, the experience gained

during the run of the algorithm is often used to guide the search in subsequent iterations.

General-purpose techniques have been designed to allow for a further improvement

in solution quality. These methods are termed meta-heuristics [152]. A meta-heuristic is

defined as a general heuristic method which is used to guide an underlying construction

or local search algorithm towards promising regions of the search space containing high

37

quality solutions. In other words, a meta-heuristic may be seen as a general algorithmic

framework which may be applied to different combinatorial optimisation problems with

relatively few modifications if given some underlying, problem specific method. The

problem considered in this thesis is a combinatorial optimisation problem.

The next section describes meta-heuristics in more detail.

3.3 Meta-Heuristics

Meta-heuristics are high-level strategies which guide an underlying, more problem spe-

cific heuristic, in enhancing the performance of this heuristic. Meta-heuristics are appli-

cable to a wide range of different combinatorial optimisation problems [20]. The main

goal is to avoid the disadvantages of iterative improvement and, in particular, multiple

descent by allowing the local search to escape from local optima. Many of the meta-

heuristic methods may be interpreted as introducing a bias so that high quality solutions

are produced quickly. This bias may take various forms and it may be cast as descent bias

(based on the objective function), memory bias (based on previous decisions), or experi-

ence bias (based on prior performance) [193]. Many of the meta-heuristic approaches rely

on probabilistic decisions which were made during the search [193]. However, the main

difference in terms of pure random search is that meta-heuristics do not use randomness

blindly, but in an intelligent, biased form.

When applied to combinatorial optimisation problems, the main aim of meta-heuristic

algorithms is to provide efficient solution techniques in order to yield high quality solu-

tions within a reasonable amount of time.

The next section discusses one of the most popular and efficient meta-heuristics,

namely, the ant colony optimisation (ACO) meta-heuristic. The algorithms proposed in

this thesis are using an ACO approach.

3.4 Ant Colony Optimisation Meta-Heuristic

Ant colony optimisation (ACO) is a meta-heuristic proposed by Dorigo [51].

The inspiring source of ACO is the foraging behaviour of real ants. The foraging

behaviour [45] enables the ants to find shortest paths between food sources and their

nests. While walking from food sources to the nest and vice versa, ants deposit a

38

substance called pheromone on the ground. In this way a pheromone trail is formed.

When they decide about a direction to go they choose, in probability, paths marked by

strong pheromone concentrations. This basic behaviour is the basis for a cooperation

interaction which leads to the emergence of shortest paths.

One of the basic principles of ACO is the use of an algorithmic counterpart of the

pheromone trail as a medium for cooperation and communication among a colony of

artificial ants. This medium of communication is guided by positive feedback.

Artificial ants posses characteristics of the real ants foraging behaviour. Artificial ants

are also enriched with additional capabilities to make them more effective and efficient.

The rest of the section is organised as follows. Subsection 3.4.1 discusses ant algo-

rithms and the foraging behaviour of real ants. Subsection 3.4.2 describes the relation

between natural and artificial ants. Subsection 3.4.3 discusses a general framework for

the ant colony optimisation meta-heuristic.

3.4.1 Ant Algorithms and Foraging Behaviour of Real Ants

Ant algorithms were first proposed by Dorigo et al. [51, 55] as a multi-agent approach to

difficult combinatorial optimisation problems, e.g. the travelling salesman problem and

the quadratic assignment problem (QAP). There is currently much ongoing research in

the scientific community with the aim of extending and applying ant-based algorithms

to the many different discrete optimisation problems [21, 38]. Recent applications of ant-

based algorithms cover problems such as vehicle routing [27, 205], sequential ordering [66,

75], graph colouring [4], routing in communications networks [98], amongst others.

Ant algorithms were inspired by observations of real ant colonies [45, 141]. Ants are

social insects, that is, insects that live in colonies and whose behaviour is directed more

to the survival of the colony as a whole than to that of a single individual component of

the colony. Social insects have captured the attention of many scientists [54, 58] because

of the high structuration level such colonies are capable of, especially when compared to

the relative simplicity of the individuals within the colony.

An important and interesting form of behaviour on the parts of ants is their foraging

behaviour [56], and, in particular, the way in which ants find the shortest paths between

food sources and their nest. Ants are able to detect pheromone and probabilistically

choose the next path to follow based on pheromone concentrations. Pheromone trails

enable ants to find their way back to the food source (or to the nest). Also, pheromone

39

trails may be used by other ants to find the location of food sources which have been dis-

covered by other ants. It has been demonstrated experimentally [45] that this pheromone

trail following behaviour may give rise to the emergence of shortest paths. In other words,

when more paths are available from the nest to a food source, a colony of ants may be

able to exploit the pheromone trails left by the individual ants in order to discover the

shortest path from the nest to the food source and back again.

In order to study the foraging behaviour of ants under controlled conditions, Deneubourg

et al. [45] set up the binary bridge experiment. In this laboratory experiment, as illus-

trated in Figure 3.1, the nest was separated from the food source by a bridge with two

equally long branches. Initially, both branches were free of any pheromones. After a

finite time period, one of the branches was selected, with most of the ants following the

path, despite the fact that both branches were of the same length. This selection of one

of the branches is as a result of random fluctuations in path selection which cause higher

concentrations on the one path.

Nest Food

Upper Branch

Lower Branch

Figure 3.1: Binary bridge experiment

From this experiment, referred to as the binary bridge experiment, a simple, formal

model was developed to characterise the path selection process [45, 159]. This proba-

bilistic model makes the assumption that ants deposit the same amount of pheromone.

This assumption implies that pheromone evaporation is not taken into account. It is

also assumed that the amount of pheromone on a branch is proportional to the number

of ants that used the branch in the past. The probability of choosing a branch at a

certain time depends on the total amount of pheromone on the branch, which is, in turn,

proportional to the number of ants that have used the branch until that time. More pre-

cisely, if Um and Lm respectively denote the numbers of ants that have used the upper

40

and lower branches after m ants have crossed the bridge, then Um + Lm = m. Pasteels

et al. [159] found empirically that the probability, PU(m), with which the (m+1)-th ant

chooses the upper branch is given as

PU(m) =
(Um + z)h

(Um + z)h + (Lm + z)h
(3.1)

where z quantifies the degree of attraction of an unexplored branch, and h is the bias to

using pheromone deposits in the decision process. The probability, PL(m), that an ant

chooses the lower branch is PL(m) = 1− PU(m).

Nest

Food

..
.
.

.
.

. .
.

.

..

.

.

Figure 3.2: Ants start exploring the dou-
ble bridge

Nest

Food

..
.
.

.
.

. .

..

.

.
.

.

.

.

.
.

...

Figure 3.3: Shortest path selection by
forager ants

Goss et al. [83] extended the binary bridge experiment such that one of the branches

of the bridge is longer than the other, as illustrated in Figures 3.2 and 3.3. Dots in

these figures indicate ants. Initially, paths are chosen randomly with approximately the

same number of ants following both paths. However, over time, more and more ants

follow the shorter path, since ants that follow the shortest path return to the nest earlier

than those ants on the longer path. The pheromone on the shorter path is, therefore,

reinforced sooner than that on the longer path.

The above process represents a form of distributed optimisation mechanism to which

each single ant makes a very small contribution. It is interesting to note that, although

a single ant is, in principle, capable of constructing a solution (i.e. of finding a path

41

between the nest and food reservoir), it is only the ensemble of ants, that is the ant

colony, which presents the shortest path finding behaviour. In a sense, this behaviour

may be viewed as an emergent property of the ant colony. It is also interesting to note

that ants are able to perform this specific behaviour using a simple form of indirect

communication mediated by pheromone laying which is known as stigmergy [84].

Stigmergetic communication is at work via the pheromone that ants deposit on the

ground while walking. Correspondingly, artificial ants simulate pheromone laying by

modifying appropriate pheromone variables associated to problem states visited, while

building solutions to the optimisation problem under consideration. Also, according to

the stigmergetic communication model, artificial ants have local access only to these

pheromone variables.

Another important aspect of the foraging behaviour of real ants, that is exploited

by artificial ants, is the coupling between the autocatalytic (positive feedback) mecha-

nism [55] and the implicit evaluation of solutions. Implicit solution evaluation is the fact

that shorter paths (which correspond to lower cost solutions) will be completed earlier

than longer paths and therefore, shorter paths will receive pheromone reinforcement more

quickly. Implicit solution evaluation coupled with autocatalysis may be very effective:

the shorter the path, the sooner the pheromone is deposited by the ants and the greater

the number of ants that use the shorter path. As a result of the stronger attraction

of ants via the high pheromone concentrations, autocatalysis causes the shortest paths

to be favoured. This may cause premature convergence (stagnation) [51, 56], where

ants converge too quickly on the same path. Consequently, ants barely explore, and

exploit too much. The result of stagnation is that a suboptimal solution may be found.

Pheromone trail evaporation and stochastic (based on random choice) state transitions

are used to address these autocatalysis drawbacks. Evaporation causes pheromone con-

centrations on paths to decrease, thereby increasing the probability of selecting longer

paths.

3.4.2 Relation Between Natural and Artificial Ants

The artificial ant is a simple, computational agent that builds feasible solutions to the

problem being optimised by exploiting the available pheromone trails and heuristic in-

formation [52, 54]. Real and artificial ant colonies share a number of characteristics. The

most important of these characteristics are summarised as follows [54]:

42

• Natural and artificial ants both use a colony of individuals that interact and col-

laborate in order to solve a given task.

• Natural and artificial ants both modify their “environment” through stigmergic

communication based on pheromones. In the case of artificial ants the (artificial)

pheromone trail consists of numeric information which is only locally available.

• Natural and artificial ants both share a common task, i.e. the search for the shortest

path from an origin (the ant nest) to a certain goal state (the food).

• As do real ants, artificial ants build solutions iteratively by applying a local stochas-

tic transition policy in order to move between adjacent states.

However, these characteristics alone do not allow for the development of efficient

algorithms for difficult combinatorial problems. Artificial ants live in a discrete world

and possess additional capabilities:

• Artificial ants make use of heuristic information in the stochastic transition policy

used to select next links in the path being constructed.

• Artificial ants possess a memory that stores the path followed.

• The amount of pheromone deposited by artificial ants is a function of the quality

of the solution discovered.

• Pheromone evaporation in ACO algorithms is different to the pheromone evapora-

tion in nature, since the inclusion of an evaporation mechanism is a key question

to avoid the algorithm becoming stuck in local optima.

3.4.3 General Framework for Ant Colony Optimisation Meta-

Heuristic

Several ACO algorithms exist, which are collectively referred to as ant colony optimisa-

tion meta-heuristics. These algorithms model and exploit the behaviour of ants to be

applied to solve graph-based, NP-hard, combinatorial optimisation problems.

The main characteristics of ACO are:

43

1. Autocatalytic: The system uses positive feedback as a way of auto-reinforcement.

This process is iterative, and soon almost all ants will be choosing the best path.

2. Distributed computation: A number of agents are searching for the best solu-

tion.

3. Constructive heuristics: A “greedy force” which balances the decisions of ants

in terms of shorter paths or paths with more pheromone.

The problem to solve with an ACO algorithm is represented by a graph, G = (V, L),

where V denotes the set of nodes and L is a matrix which represents the connections

between nodes. The graph has NG = |V | nodes.

ACO algorithms are essentially construction algorithms: For each algorithm iteration,

every artificial ant constructs a solution to the problem by travelling on a construction

graph. Each link, (i, j) ∈ L, of the graph, which represents a possible step that an ant

may make, possesses two kinds of information in order to guide ant movements:

• Heuristic information which measures the heuristic preference of moving from

node i to node j. This heuristic information is denoted by ηij.

• Artificial pheromone trail information which measures the “learned desirabil-

ity” of the movement and mimics the real pheromone that natural ants deposit.

This pheromone information is denoted by τij.

The ACO meta-heuristic framework consists of three parts, namely, Ants generation-

and activity(), EvaporatePheromone(), and DaemonActions() (refer to Algorithm 3).

Ants generation and activity() After initialising each link of the problem graph

with a very small amount of pheromone and defining the starting node of each ant, each

ant iteratively constructs a solution during each iteration.

The transition rule assigns a probability to each possible link leading from the cur-

rent node. This probability expresses the desirability of each link and is calculated as

a function of pheromone concentrations on the link and heuristic information. While

moving, an ant keeps in memory the partial solution it has built in terms of the path the

ant was walking on the construction path. As ants construct paths (i.e. solutions to the

44

optimisation problem), a pheromone update rule is executed to update pheromone con-

centrations on links. The exact way in which the pheromone update rule is implemented

differs based on the specific ACO algorithm used. Depending on the algorithm used,

all ants can update pheromone on all links along the traversed path (referred to as the

online step-by-step pheromone trail update). Once every ant has generated a solution,

the ant can deposit an amount of pheromone which is a function of the quality of the

ant’s solution (referred to as the global or online delayed pheromone trail update).

EvaporatePheromone() Pheromone evaporation is used to increase exploration of

alternative paths, thereby reducing the chance of premature stagnation. For each link,

(i, j), pheromone evaporation is implemented using

τij(t) = (1− ρ)τij(t), ∀(i, j) ∈ L (3.2)

where ρ ∈ [0, 1] specifies the rate at which pheromones evaporate.

DaemonActions() Since not all ACO algorithms make use of daemon actions, the

daemon actions are indicated as optional. Daemon actions can be used to implement

centralised actions which cannot be performed by single ants. An example daemon action

is the use of a local optimisation procedure applied to the solutions built by the ants.

Pheromone updates performed by the daemon are called offline pheromone updates.

A generic ACO meta-heuristic algorithm is summarised in Algorithm 3. The high-

level description in Algorithm 3 consists of the above three main components of ACO

algorithms, namely, ant generation and activation, pheromone evaporation, and daemon

actions gathered in the schedule activities construct. The schedule activities construct

does not specify how these three activities are scheduled and synchronised. This is up

to the algorithm design.

Action ants generation and activity creates a new ant and activates that ant. The

procedure new active ant is called for each ant to construct a path from source to desti-

nation node. The procedure refers to an ant routing table which is maintained for each

ant. Each entry in an ant routing table is a value obtained by a functional composition of

the pheromone and heuristic values of the link of the corresponding nodes. The abstract

specification of new active ant() allows for the implementation of any ACO instances.

45

Algorithm 3 Generic ACO Meta-Heuristic

procedure ACO Meta Heuristic()
while termination criterion not satisfied do

begin schedule activities
ants generation and activity();
pheromone evaporation();
daemon actions(); {optional}

end schedule activities
end while
end procedure

procedure ants generation and activity()
while available resources do

schedule the creation of a new ant();
new active ant();

end while
end procedure

procedure new active ant() {ant lifecycle}
initialise ant();
M= update private ant memory();
i = starting node;
D = target node;
T = ∅; {ant solution}
while i 6= D do

Build set of neighbours for i; {using M}
A = read local ant routing table(); {problem specific heuristic information and pheromone infor-
mation}
Assign probability pij to each neighbour node j based on A,M , and problem constraints;
Select next node j according to transition policy based on pij and problem constraints;
T = T ∪ j;
i = j;
if online step by step pheromone update then

deposit pheromone on the visited arc();
update ant routing table();

end if
M= update private ant memory();

end while
if online delayed pheromone update then

evaluate solution();
deposit pheromone on all visited arcs();
update ant routing table();

end if
die(); {when ant finish building a solution and depositing pheromone the ant is deleted from the
system}
end procedure

46

3.5 Ant Colony Optimisation Algorithms

The term ACO meta-heuristic (ACO-MH) is used to represent all instances of ACO

variants [52, 54]. ACO refers to an algorithm which is a specific instance of the generic

algorithm presented in Algorithm 3.

The ACO-MH comprises a wide class of algorithms that may manifest very different

implementations. However, the ACO-MH is not sufficiently general to cover the full

family of ant algorithms. The fast ant system [198, 199] is an example of an ant algorithm

which is not covered by the ACO-MH. The fast ant system is a construction algorithm

based on the operation of a single ant without using explicit pheromone evaporation.

The next subsections discuss three different instances of the ACO-MH, namely, the

ant system [56], the ant colony system [53], and the MAX-MIN ant system [194]. The

algorithms presented in this thesis are adaptations of these three ACO algorithms. The

complete algorithm for each of these ACO instances is given. The three algorithms vary

in their transition rules and their pheromone trail update rules.

3.5.1 Ant System

The ant system (AS), developed by Dorigo et al. [56], was the first algorithm inspired

by the behaviour of real ants. Even though AS was developed to solve the travelling

salesman problem (TSP) [74], it can be applied to a more general class of combinatorial

optimisation problems [27, 67, 75, 140]. The AS deviates from the natural metaphor in

that artificial ants possess a degree of memory. Memory is achieved by maintaining a

tabu list of already visited cities. This is used to prevent revisiting cities. The tabu list

is selected using the ant’s private memory, M (refer to the generic ACO meta-heuristic

in Algorithm 3).

In AS, at each construction step an ant k chooses to go to the next node with a

probability that is computed as:

pk
ij(t) =





(τij(t))
α(ηij(t))

β
∑

u∈Nk
i

(t)
(τiu(t))α(ηiu(t))β if j ∈ Nk

i (t)

0 otherwise

(3.3)

where Nk
i (t) is the set of feasible nodes for ant k which is currently located at node i;

Nk
i (t) = V (i)\TLk(t), where TLk(t) is the tabu list for ant k, storing the ant’s partial

47

tour and V (i) is the set of neighbouring nodes for ant k which is currently located at

node i; τij represents the a posteriori effectiveness of the move from node i to node j, as

expressed in the pheromone intensity of the corresponding link, (i, j); ηij represents the a

priori effectiveness of the move from i to j (i.e. the attractiveness, or desirability of the

move) computed using a specific heuristic; α is a positive constant used to amplify the

influence of pheromone concentrations; β is an adjustable parameter that controls the

relative influence of the attractiveness, ηij(t), of node j. The heuristic information, ηij,

adds an explicit bias towards the most attractive solutions and is, therefore, a problem

dependent function.

The transition probability as given in equation (3.3) balances pheromone intensity,

τij, and heuristic information, ηij. The best balance between exploration and exploitation

is achieved through proper selection of the parameters α and β. Therefore, the transition

probability is a trade-off between heuristic (which indicates that close nodes should be

chosen with high probability, thus implementing a greedy constructive heuristic) and

pheromone trail intensity at time t (which indicates that links with a high traffic load

are more desirable than links with a low traffic load, thus implementing the autocatalytic

process). The ant’s decision table, Ai, for node i (refer to Algorithm 3), is obtained by

the composition of the local pheromone trail values with the local heuristic values as in

equation (3.3).

Pheromone evaporation is implemented as given in equation (3.2). Once all ants have

constructed a solution, pheromones are laid on the links, and the amount of pheromone

on the trails is calculated using

τij(t + 1) ← τij(t) + ∆τij(t) (3.4)

where τij(t) represents the pheromone concentration associated with link (i, j), and ∆ij(t)

is the total amount of pheromone deposited by all ants on link (i, j), defined as

∆τij(t) =

nk∑

k=1

∆τ k
ij(t) (3.5)

with

48

∆τ k
ij(t) =





Q
Lk(t)

if link (i, j) occurs in path described by TLk(t)

0 otherwise
(3.6)

where Q is a parameter that specifies the amount of pheromones ant k has to distribute

throughout its trail, Lk(t) is the tour length of ant k or the quality of the complete path

constructed by the ant k, and nk is the number of ants. Ants with a minimum tour

length deposit a greater amount of pheromone on the links that form part of their trails,

while longer tours receive smaller pheromone deposits.

The AS algorithm is summarised in Algorithm 4.

3.5.2 Ant Colony System Optimisation

This section describes the ant colony system (ACS) – an ACO meta-heuristic introduced

by Dorigo and Gambardella [53] in order to improve the performance of AS. ACS differs

from AS in four aspects:

1. a different transition rule is used,

2. a different pheromone update rule is defined,

3. local pheromone updates are introduced, and

4. candidate lists are used to provide additional local heuristic information.

Each of these differences is discussed next.

ACS transition rule

The ACS transition rule, also referred to as a pseudo-random-proportional action rule [74],

was developed explicitly to balance the exploration and the exploitation abilities of the

algorithm. Ant k, currently located at node i, selects the next node, j, to move to using

the rule,

j =





Arg Maxu∈Nk
i (t){τiu(t)η

β
iu(t)} if r ≤ r0,

J otherwise
(3.7)

49

Algorithm 4 General Procedure of Ant System Algorithm

t = 0;
TLbest(t) = ∅; {shortest path}
Lbest(t) = 0; {tour length of the shortest path}
Initialise all parameters, i.e. α, β, ρ, Q, nk, τ0;
Place all ants, k = 1, ..., nk;
for each link (i, j) do

τij(t) = τ0; {Initialise pheromones to the small value τ0}
ηij(t) = 1

dij
; { dij represents the distance between the nodes i and j }

end for
repeat

for all ant k = 1, ..., nk do
TLk(t) = starting node of ant k;
i = starting node of ant k;
repeat

From current node i, select next node j with probability as defined in equation
(3.3);
Add j to the ordered list TLk(t);
i = j;

until full path has been constructed
Lk(t)=length of the tour described by TLk(t);
if Lk(t) < Lbest(t) then

TLbest(t) = TLk(t);
end if

end for
for each link (i, j) do

Apply evaporation using equation (3.2);
Calculate ∆τij(t) using equation (3.5);
Update pheromone using equation (3.4);

end for
for each link (i, j) do

τij(t + 1) = τij(t);
end for
t = t + 1;

until Stopping condition is true
Return TLbest(t);

50

where r is a real random variable uniformly distributed in the interval [0, 1], r0 is a

tuneable parameter (0 ≤ r0 ≤ 1), and J ∈ Nk
i (t) is a node that is randomly selected

according to probability,

pk
iJ(t) =

τiJ(t)ηβ
iJ(t)∑

u∈Nk
i (t) τiu(t)η

β
iu(t)

(3.8)

where Nk
i (t) is a set of valid nodes to visit and β is an adjustable parameter that controls

the relative influence of the attractiveness, ηij(t), of node j. The ACS transition rule

uses α = 1 and may be omitted. If β = 0, only pheromone amplification is at work, and

this will, in turn, lead to the rapid selection of tours which may prove to be far from

optimal. When r ≤ r0 exploitation is facilitated. The selection of the next node is then

heavily influenced by the distances between nodes and existing pheromone concentrations

by choosing the best local compromise between distance and pheromone concentration.

When r > r0 exploration is favoured. Greater emphasis may be placed on exploitation

instead of exploration by increasing the value of r0.

Pheromone global update

The ant that performed the best tour is allowed to update the concentrations of pheromone

on the corresponding links globally. Gambardella and Dorigo [53] implemented two meth-

ods of selecting the best tour (best path), TLbt(t), namely

• iteration-best in terms of which TLbt(t) represents the best path found during

the current iteration, t, denoted as TLib(t), and

• global-best in terms of which TLbt(t) represents the best path globally which has

been found from the beginning of the trial, denoted as TLgb(t).

The pheromone concentration, τij(t), is then modified by an amount, ∆τij(t), as

follows:

∆τij(t) =





1
Lbt(t)

if (i, j) ∈ TLbt(t)

0 otherwise
(3.9)

51

where Lbt(t) represents the length of the tour described by TLbt(t).

Only the best tour is reinforced through the global update as follows (including

pheromone evaporation),

τij(t + 1) ← (1− ρg)τij(t) + ρg∆τij(t) (3.10)

where ρg(0 ≤ ρg ≤ 1) is a parameter governing global pheromone decay.

The ACS global update rule results in the search being more directed by encouraging

ants to search in the vicinity of the best solution found thus far. This strategy favours

exploitation and is applied after all ants have constructed a solution.

Local update

When, while performing a tour, ant k is on node i and selects node j ∈ Nk
i (t) as the

next node to hop to, the pheromone concentration of (i, j) is immediately reinforced by

a fixed amount τ0. The pheromone decays simultaneously using

τij(t) ← (1− ρl)τij(t) + ρlτ0 (3.11)

where ρl(0 ≤ ρl ≤ 1) is a parameter which governs local pheromone decay, and τ0

is a small positive constant. Experimental results demonstrated that τ0 = 1/(nGLnn)

provided good results [53]; nG is the number of nodes in graph G, and Lnn is the tour

length produced by the nearest neighbour heuristic [172].

Candidate list

A candidate list is a list of preferred nodes to be visited from a given node. When an ant

is in node i, instead of examining all the unvisited neighbours of i, the ant chooses the

node to move to among those in the candidate list. Only if no candidate list node has

unvisited status then other nodes are examined. The candidate list contains nc < Nk
i (t)

nodes ordered by increasing cost, and the list is scanned sequentially and according to

the ant tabu list to avoid already visited cities.

ACS is summarised in Algorithm 5.

52

Algorithm 5 General Procedure of Ant Colony System Algorithm

t = 0; Initialise parameters β, ρg, ρl, r0, nk, τ0;
Place all ants, k = 1, ..., nk;
for each link (i, j) do

τij(t) = τ0;
ηij(t) = 1

dij
; { dij represents the distance between the nodes i and j }

end for
TLgb(t) = ∅;
Lgb(t) = 0;
repeat

for all ants k = 1, ..., nk do
TLk(t) = starting node of ant k;
i = starting node of ant k;
repeat

From current node i, select next node j ∈ Nk
i (t) using equations (3.7) and (3.8);

Add j to the ordered list TLk(t);
i = j;
Apply local update using equation (3.11);

until full path has been constructed;
Lk(t)=length of the tour described by TLk(t);

end for
for k = 1, ..., nk do

if Lk(t) < Lgb(t) then
TLgb(t) = TLk(t);
Lgb(t) = Lk(t);

end if
end for
for each link (i, j) ∈ TLgb(t) do

Apply global update using equation (3.10);
end for
for each link (i, j) do

τij(t + 1) = τij(t);
end for
TLgb(t + 1) = TLgb(t);
Lgb(t + 1) = Lgb(t);
t = t + 1;

until Stopping condition is true;
Return TLgb(t) as the solution;

53

3.5.3 MAX-MIN Ant System

Stützle and Hoos [194] introduced the max-min ant system (MMAS) in order to ad-

dress the premature stagnation problem of AS. The main difference between MMAS

and AS is that pheromone intensities are restricted within given intervals, τmin ≤ τij ≤
τmax for all τij, where τmin and τmax are two tunable parameters. By choosing appro-

priate values for τmin and τmax stagnation is reduced. Additional differences with AS as

stated in [194] are:

• After each iteration only the best ant is allowed to deposit pheromones following

the ACS model.

• Trails are initialised with the highest possible volume of pheromone τmax to incite

high exploration of trails at the commencement of the search process.

In order to limit the stagnation of the search a direct influence on the pheromone

limits is exerted by restricting the allowed range of the possible pheromone strength.

Pheromone strength is bounded by an upper and lower limit (thus MAX-MIN). A range

[τmin, τmax] is imposed to all τij components. A bound on the upper level is given as [195]

τmax(t) =

(
1

1− ρ

)
1

Lib(t)
(3.12)

where ρ is the evaporation factor and Lib(t) is the cost of the iteration-best path at

iteration t (alternatively the global-best path). The upper level is, therefore, time-

dependent. Before the first iteration the pheromone strength on all links is set to a

certain high value to ensure that, after the first iteration, the pheromones correspond to

τmax. The lower bound may be calculated as [195]

τmin(t) =
τmax(t)(1− p

1/(nG−1)
best)

(nG

2
− 1)p

1/(nG−1)
best

(3.13)

where nG denotes the number of nodes in graph, G, and pbest is the probability at which

the best solution is constructed. The term, nG

2
− 1, represents the average number of

nodes from which an ant has to choose.

The transition rule is the same as that of AS while the global update is the same

as that of ACS. As a result of the evaporation coefficient, all pheromones are decreased

54

at the end of each iteration while the pheromones on the links pertaining to the best

solution are increased. The pheromone upper bound helps to avoid search stagnation by

preventing only one trail from accumulating high values of pheromone. By limiting the

amount of pheromone in a given trail, the probability of an ant choosing that particular

trail is also limited.

The max-min algorithm is summarised in Algorithm 6. The iteration-best solution

is used to update pheromone concentrations.

3.6 Summary

Ant colony optimisation (ACO) has been used for the last decade to design effective

algorithms to solve combinatorial optimisation problems.

This chapter provided an overview of the basic principles of combinatorial problems.

ACO meta-heuristics for solving combinatorial optimisation problems were discussed,

including the most popular ACO algorithms. The ACO algorithms discussed in this

chapter are stochastic, population-based search algorithms. Optimal solutions are in-

crementally constructed by a number of agents working cooperatively by exchanging

information obtained about the search space.

The ACO algorithms discussed in this chapter were developed to solve

• static and well defined combinatorial optimisation problems; that is, problems for

which all the necessary information is both available and does not change during

the optimisation process, and

• single-objective optimisation problems.

In order to apply ACO algorithms to dynamic problems, the algorithms have to

be adapted to ensure good exploration abilities during the entire optimisation process.

Similarly, ACO algorithms have to be adapted to solve multi-objective optimisation

problems (MOPs).

Chapter 4 shows how ACO algorithms can be adapted to solve MOPs, while Chapter

5 explains how ACO algorithms can be adapted to solve dynamic optimisation problems.

55

Algorithm 6 General Procedure of Max-Min Ant System Algorithm

Initialise parameters α, β, ρ, nk, pbest, τmin, τmax;
t = 0, τmax(0) = τmax, τmin(0) = τmin;
Place all ants, k = 1, ..., nk;
for each link (i, j) do

τij(t) = τmax(0);
ηij(t) = 1

dij
; { dij represents the distance between the nodes i and j }

end for
repeat

TLib(t) = ∅; {TLib(t) is the iteration-best solution}
Lib(t) = 0;
for all ant k = 1, ..., nk do

TLk(t) = starting node of ant k;
i = starting node of ant k;
repeat

From current node i, select next node j with probability as defined in equation
(3.3);
Add j to the ordered list TLk(t);
i = j;

until full path has been constructed;
Lk(t)=length of the tour described by TLk(t);
if k=1 OR Lk(t) < Lib(t) then

TLib(t) = TLk(t);
Lib(t)=length of the tour described by TLib(t);

end if
end for
for each link (i, j) ∈ TLib(t) do

Apply global update using equation (3.10);
end for
for each link (i, j) do

Constrict τij(t) to be in [tmin(t), τmax(t)];
end for
TLib(t + 1) = TLib(t);
Lib(t + 1) = Lib(t);
t = t + 1;
Update τmax(t) using equation (3.12);
Update τmin(t) using equation (3.13);

until Stopping condition is true;
Return TLib(t) as the solution;

56

	Front
	CHAPTER 1
	1.1 Mobile Ad Hoc Network
	1.2 Reducing Energy Consumption for MANETs
	1.3 Solving Multi-Objective Power-Aware Metrics with Ant Colony Optimisation Algorithms
	1.4 Objectives
	1.5 Contributions
	1.6 Thesis Outline

	CHAPTER 2
	2.1 Introduction
	2.2 Power Consumption and Communication for MANETs
	2.3 Multi-Hop MANETs
	2.4 Mobility Models
	2.5 Network and Power Saving Routing Protocols
	2.6 Bio-inspired Routing for MANETs
	2.7 Summary

	CHAPTER 3
	3.1 Introduction
	3.2 Computational Complexity
	3.3 Meta-Heuristics
	3.4 Ant Colony Optimisation Meta-Heuristic
	3.5 Ant Colony Optimisation Algorithms
	3.6 Summary

	Chapter 4
	Chapters 5-6
	Chapters 7-8
	Back

