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Evaluating the safety of unreinforced concrete structures, such as concrete dams, requires an 

accurate prediction of cracking. Developing a suitable constitutive material model and a reliable 

computational procedure for analysing cracking processes in concrete has been a challenging 

and demanding task. 

 

Although many analytical methods based on fracture mechanics have been proposed for 

concrete dams in the last few decades, they have not yet become part of standard design 

procedures. Few of the current research findings are being implemented by practising engineers 

when evaluating dam safety.  

 

This research is focused on the development of a suitable crack modelling and analysis method 

for the prediction and study of fracturing in concrete gravity dams, and consequently, for the 

evaluation of dam safety against cracking. The research aims to contribute to the continuing 

research efforts into mastering the mechanics of cracking in concrete dams. 
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An analytical method for the purpose of establishing a crack constitutive model and 

implementing the model for the fracture analysis of concrete structures, in particular massive 

concrete gravity dams under static loading conditions, has been developed, verified and applied 

in the safety evaluation of a concrete gravity dam. 

 

The constitutive material model is based on non-linear fracture mechanics and assumes a 

bilinear softening response. The crack model has various improved features: (1) an enhanced 

mode I bilinear strain-softening approach has been put forward; (2) a new formula for bilinear 

softening parameters has been developed and their relation with linear softening has been 

outlined; (3) the influence of bilinear softening parameters on the cracking response has been 

studied; and (4) an enhanced modification to the shear retention factor which depends on the 

crack normal strain is included.  

 

The material model has been incorporated into a finite element analysis using a smeared crack 

approach. A sub-program was specially coded for this research. 

 
The validity of the proposed cracking model and the computational procedure developed for the 

purpose of analyzing the tensile fracture behaviour of concrete structures has been confirmed by 

verification on various concrete structures, including beams, a dam model and actual gravity 

dams.  

 

The crack modelling technique developed was successfully used in evaluating the safety of an 

existing concrete gravity dam in South Africa and adequately predicted the cracking response of 

the dam structure under static loadings. 

 

The main conclusions drawn are as follows:   

 

• Both mode I and mode II fracture have been modelled successfully. 

• The proposed bilinear softening model remains relatively simple to implement but 

significantly improves on predicting the softening response of “small-scale” concrete 

structures. 

• Both plane stress and plane strain crack analyses have been considered and can be 

confidently adopted in two-dimensional applications. 
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• The proposed method is mesh objective. 

• The crack modelling method developed can correctly predict the crack propagation 

trajectory and the structural behaviour with regard to fracturing in concrete structures. 

• If not considering shear stress concentration near the tip of a crack, constitutive crack 

analysis normally indicates a higher safety factor and a higher Imminent Failure Flood (IFF) 

than the classical methods in the analysis of concrete gravity dams for safety evaluation. 

 

 
Keyterms:  Concrete gravity dams, constitutive crack model, non-linear fracture mechanics, 

crack modeling, dam safety, computational procedure, crack propagation, bilinear softening, 

smeared crack approach. 
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NOTATION 
 
 

Given below is a list of the principal symbols and notations used in the thesis. All symbols 
and notations are defined in the text when they appear.  
 
 
Stresses and Strains 

 

ijσ          Stress tensor 

ijS          Stress deviator tensor 

mσ          Mean normal (hydrostatic) stress 

σ           Stress 

1σ , 2σ , 3σ     Principal stresses 

xσ          Normal stress in x direction 

yσ          Normal stress in y direction 

zσ          Normal stress in z direction 

xyσ          Shear stress in xy plane 

yzσ          Shear stress in yz plane 

zxσ          Shear stress in zx plane 

nnσ          Stress normal to crack 

ssσ          Stress parallel to crack 

nsσ          Shear stress in crack 

{ }σ          Stress vector in global coordinate 

{ }σ ′         Stress vector in local coordinate 
crS          Crack stresses in local coordinate 
cr
nS , cr

nnS       Mode I normal stress in local coordinate 

cr
nsS          Mode II shear stress in local coordinate 

cr
ntS          Mode III shear stress in local coordinate 

ijε           Strain tensor 

ε           Strain 
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1ε , 2ε        Principal strains 

xε           Normal strain in x direction 

yε           Normal strain in y direction 

zε           Normal strain in z direction 

xyε          Shear strain in xy plane 

yzε          Shear strain in yz plane 

zxε          Shear strain in zx plane 

uε           Ultimate normal tensile strain of no-tension resistance 

nε , nnε         Strain normal to crack 

sε , ssε        Strain parallel to crack 

nsε          Shear strain in crack 

coε          Intact concrete strain in global coordinate 
crε , cr

iε       Crack strain in global coordinate 

{ }ε          Strain vector in global coordinate 

{ }ε ′          Strain vector in local coordinate 

ne           Normal strain of cracked concrete in local coordinate 

e
ne           Elastic normal strain of concrete at the tensile strength 

u
ne           Ultimate normal strain of crack concrete 

f
ne          Ultimate normal crack strain in local coordinate 

cr
ie          Crack strain in local coordinate 

cr
nne          Mode I normal crack strain in local coordinate 

cr
nsγ          Mode II shear crack strain in local coordinate 

cr
ntγ          Mode III shear crack strain in local coordinate 

I1          First invariant of stress tensor 

J2          Second invariant of stress deviator tensor 

J3          Third invariant of stress deviator tensor 
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Material Parameters 

 
coD          Constitutive matrix of the intact concrete 
crD          Constitutive matrix of cracks 
I
iD          Mode I stiffness of a crack(i) 

IID , II
iD      Mode II stiffness  

IIID         Mode III stiffness 
I
liD ,          Mode I stiffness of a crack(i) for linear strain softening 

I
bliD ,         Mode I stiffness of a crack(i) for bilinear strain softening 

D           Constitutive matrix 

E           Young’s modulus 

sE          Strain softening modulus 

nE          Secant modulus 

cf           Compressive strength of concrete 

tf           Tensile strength of concrete 

c
tf , r

tf        Tensile strength of concrete or rock 

G           Shear modulus 

fG          Specific fracture energy 

c
fG , r

fG       Fracture energy of concrete or rock 

ch           Crack characteristic length 

eK          Stiffness matrix of an element 

K           Overall structural stiffness matrix 

[ ]K          Constitutive matrix in global coordinate 

[ ]K ′         Constitutive matrix in local coordinate 

K           Stress intensity factor 

ICK          Fracture toughness 

p           Constant defining shear softening shape 

1α , 2α        Bilinear softening shape parameters 
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β           Shear retention factor 

maxβ         Maximum shear retention factor 

μ           Normal retention factor 

ν           Poisson’s ratio 

wc          Crack band width 

 

Miscellaneous Symbols  

 
a           Depth of crack 

ea           Nodal point displacement of an element 

a           Overall nodal displacement vector 

B           Stress-displacement operator 

d           Depth of beam 

Gr          Self weight 
ef          Loads on an element 

f           Overall structural load vector 

h           Width of dam at the level of initial notch 

L           Differential operator 

l1, l2, l3       Direction cosines of local axes (n, s, t) to global x axis 

n1, n2, n3      Direction cosines of local axes (n, s, t) to global y axis 

m1, m2, m3     Direction cosines of local axes (n, s, t) to global z axis 

)(xN         Shape functions 

N, Ni  Transformation matrix of crack quantities between the global and local 

coordinate 

MPa        Megapascals stress or pressure 

n           Direction normal to crack 

s           Direction parallel to crack 

t           Direction parallel to crack 

P0          Load to cause crack-tip tensile stress equal to the tensile strength 

Pu          Peak load 
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[ ]R   Transformation matrix of stress, strain and stiffness between the global 

and local coordinate systems 

)(xu         Displacement field 

TΔ          Temperature drop in degree Celsius 

Tol         Convergence tolerance 

W, W1, W2    Crack opening 

x, y, z        Cartesian coordinates 

Δ           Increment of quantities 

ϕ           Frictional angle 

φ           Threshold angle of a crack 

θ           Angle of the local axis system with the global coordinate system 

Ux          Displacement in x-direction 

Uy          Displacement in y-direction 

 

Abbreviations and Acronyms   

 

BLS        Bilinear softening  

B&L(1993)    Bhattacharjee & Leger (1993) 

B&L(1994)    Bhattacharjee & Leger (1994) 

CBM        Crack band model 

CMOD      Crack mouth opening displacement  

CMSD       Crack mouth sliding displacement 

CS         Cornelissen et al’s softening  

DWAF       Department of Water Affairs & Forestry  

FE          Finite element 

FM         Fracture mechanics 

F.O.S        Factor of safety 

FPZ         Fracture process zone 

FSL         Full supply level 

FU          Full uplift  

H:V         Slope ratio of horizontal to vertical 

ICM        Interface crack model 

ICOLD      International Congress on Large Dams 
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IFF         Imminent failure flood 

LEFM       Linear elastic fracture mechanics 

LS          Linear softening 

ISCM       Interfaced smeared crack model 

NLFM       Non-linear fracture mechanics 

NOC        Non-overspill crest 

NW-IALAD   Network Integrity Assessment of Large Concrete Dams 

PU         Partial uplift 

R&B(1989)   Rots & Blaauwendraal (1989) 

R&D(1987)   Rots & de Borst (1987) 

RDD        Recommended design discharge 

RDF        Recommendation design flood 

RL         Reduced level 

RMF        Regional maximum flood 

SEF         Safety evaluation flood 

TW         Tailwater level 

OBE        Operationally based earthquake 

MCE        Maximum credible earthquake 
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CHAPTER I - INTRODUCTION 

 

1.1  Background and overview 

 

Concrete, as a material of low tensile strength, has been subject to cracking problems 

since it was first used in structural applications. Recognition of the importance of cracking 

in concrete structures has prompted great interest in research on the fracture modelling of 

concrete. Classical (strength-based) mechanics of materials have been proved to be 

inadequate to handle severe discontinuities, such as cracks in a material. With the advance 

of powerful finite element (FE) analysis techniques, intensified research efforts have been 

made over the past few decades in the application of fracture mechanics (FM) in the 

modelling of cracking phenomena in concrete and concrete structures. Plain and 

reinforced concrete structures have been extensively analyzed using this broad FE, FM 

approach.  

 

For example, Valente (2003) used a crack band model to analyze statically and 

dynamically the collapsed baroque Noto Cathedral in Italy for the purpose of rebuilding 

the 60-m-high structure. 

 

Shi, Ohtsu, Suzuki & Hibino (2001) extended the discrete crack approach to the numerical 

analysis of multiple cracks in a real-size tunnel specimen which had been experimentally 

tested. 

 

The sudden collapse of the New York Schoharie Creek Bridge in 1987 due to the unstable 

cracking in the reinforced piers, caused by the rapid flow of a flood, led Swenson & 

Ingraffea (1991) to adopt discrete cracking models, including linear and non-linear FM, to 

evaluate the initiation, stability and propagation profile of the crack that caused the failure. 

The deadly (loss of ten lives) cracking problems of the bridge can be rationally explained 

by the use of FE-based models.  

 

Other types of plain or reinforced concrete structures that experienced fracture-controlled 

problems, such as the pullout of anchor bolts, the thick-walled ring, beams, panels, frames, 
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containment vessels and shells, have also been analyzed in the past using FE, FM models 

(ACI 1997). 

 

In an important effort to apply the FM approaches that have been developed to problems 

of practical significance, concrete dams (which are normally huge, fracture-sensitive 

concrete structures) have received special attention from researchers and have formed an 

essential part of this broad area of research on concrete crack modelling. 

 

Uncontrolled crack propagation in concrete caused the disastrous failures of Malpasset 

Dam in France in 1959 (SimScience website). The rapid crack propagation as evidenced in 

the failure process of the above dam, has emphasized the importance of developing an 

accurate crack modelling method to safeguard dams. The Kölnbrein arch dam in Austria 

and Koyna gravity dam in India are representative of the two main types of dam structures 

which have attracted most research efforts for FM crack modelling of concrete dams. 

 

Gravity dams are structures that rely on their own weight for resistance against sliding and 

overturning to maintain stability. In ancient times dated back as early as 4000 years BC,  

gravity dams were built using masonry materials such as earth, rock and cut blocks, with 

both the upstream and downstream faces sloped and the base thickness being many times 

the height of the dam. Concrete was first used in building a 47-m-high gravity dam called 

the Lower Crystal Springs Dam in the USA which was completed in 1889. Because they 

are relatively simple to design and build, concrete gravity dams have become a major dam 

type throughout the world. With the development of design and analytical expertise, as 

well as of construction techniques and equipment, dams have become ever larger with 

regard to both height and volume, e.g. the world’s largest gravity dam so far, Three 

Gorges Dam in China, has a height of 185 m and a water-storage volume of 39.2 billion 

m3. If a dam on this scale were to fail and collapse, this could lead to probably the greatest 

disaster in human history. Therefore, the safety of huge structures such as concrete gravity 

dams is of the utmost concern to the engineers involved in the design, construction and 

post-built safety evaluation of dams. 

 

A great deal of research on the numerical modelling of the cracking behaviour of concrete 

has been carried out during the past few decades. In the process, many concrete crack 
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propagation models have been developed and applied in concrete cracking analyses. The 

early strength-based model, in which the crack was assumed to propagate when the 

calculated tensile stresses at the crack tip exceed a specified tensile strength of the 

concrete, has seldom been used in any recent concrete analyses due to its inherent lack of 

mesh objectivity (FE mesh discretization has a significant influence on the results). Linear 

elastic fracture mechanics (LEFM), in which crack growth occurs when the effective stress 

intensity factor exceeds the material’s fracture toughness, has been widely used in the 

analysis of concrete in the past. Models based on non-linear fracture mechanics (NLFM) 

have now become popular for analysing concrete cracking due to the existence of a 

fracture process zone (FPZ) at the front of the crack tip.  

 

Many concrete gravity dams, which are generally massive, plain concrete structures, have 

experienced cracking problems to various extents. Crack formation and propagation in 

concrete gravity dams could influence their structural stability and endanger the safety of 

the dams. Normally, the huge size of a concrete dam excludes direct experimental tests on 

the structural cracking behaviour under various loading conditions. Therefore, evaluation 

of the possible cracking trajectory in concrete dams by means of an accurate constitutive 

model, in order to simulate the cracking response of the concrete effectively, becomes vital 

and would be a useful tool for practising engineers to ensure the safety of dam structures. 

This requires developing a numerical model and techniques that can accurately analyse 

and appraise a dam structure, either for the purpose of designing a new dam or for 

evaluating the safety of an existing concrete dam. 

 

The need for methods that can accurately predict the behaviour of cracking in concrete 

dams has led to intensified research in this field. In fact, many attempts have been made to 

develop a rigorous model to simulate the cracking mechanisms in and the behaviour of 

concrete dams, especially concrete gravity dams. To name a few, Ingraffea (1990) 

performed a case study on the Fontana Dam, a gravity dam in the United States, to 

elucidate the mechanisms for crack initiation and to predict the observed crack trajectory 

employing a 2-D discrete LEFM method. Bhattacharjee & Leger (1994) applied a 2-D 

smeared crack model based on NLFM crack propagation criteria to study the static fracture 

behaviour of the Koyna Dam, a gravity dam in India. A more detailed review of these 

attempts will be given in Chapter II. 
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Although many analytical methods based on fracture mechanics have been proposed for 

concrete dams in the last few decades, they have not yet become part of standard design 

procedures. In fact, few of the current researches from all over the world are being 

implemented by practising engineers when evaluating dam safety. Current practice for 

crack analysis in concrete dams is to implement either the traditional “no-tension” gravity 

design method, which is based on rigid body equilibrium and strength of materials to 

determine crack length, assuming horizontal planar crack extension, linear stress 

distribution and zero stress at crack tip, or a non-linear FE analysis including plasticity 

models and contact simulation. 

 

There are several FE programs that can be used to analyse the cracking response of 

concrete structures, e.g. MSC.Marc, ABAQUS, ANSYS, DIANA, LUSAS, 

FRANC2D/3D, FRACDAM and MERLIN, etc. At the Department of Water Affairs and 

Forestry (DWAF) – the dam authority in South Africa, MSC.Marc is currently the main 

FE tool used for non-linear analysis, including crack prediction on concrete dams. The 

cracking analysis in MSC.Marc is limited to linear tensile strain softening and the constant 

shear retention factor. This means that MSC.Marc lacks the flexibility in analysing 

cracking behaviour that is offered by more advanced crack models (including multi-linear 

or non-linear softening, shear retention factor varied with the crack’s normal strain, etc.). 

Although some commercial FE programs, such as DIANA include advanced crack 

models, the codes of these programs are not generally available to be modified/enhanced 

for research purposes. In addition, the existing programs yield significantly different 

results on the crack response of a concrete gravity dam, as demonstrated in the benchmark 

exercise carried out by the European Thematic Network Integrity Assessment of Large 

Dams between 2003 and 2005 (refer to http://nw-ialad.uibk.ac.at). The different results 

with regard to peak load, displacement and stress given by the different programs 

highlight the need to improve the cracking analysis capacity of the existing FE packages 

by developing, perhaps, a better method of crack analysis and its numerical 

implementation in an FE program. An improved crack model and method could give a 

more accurate crack response (crack profile, horizontal crest displacement, etc.) in 

concrete dams which could be used to evaluate the safety of dams.  
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1.2 Motivations and objectives of this study 

 

This research aims to contribute to the continuing research efforts on mastering the 

mechanics of cracking in concrete dams. 

 

In order to evaluate the stability and safety of concrete dams more accurately, it is 

necessary to develop a better model and method for analysing cracking problems in 

concrete dams.  

 

The objectives of the research are as follows: 

 

• To evaluate the existing constitutive crack models critically and to adopt a suitable 

constitutive crack model using non-linear smeared fracture mechanics for simulating 

and investigating the cracking process in concrete dam structures. 

• To develop a more accurate strain softening relation and to calibrate the parameters. 

• To develop a numerical program specially for implementing the constitutive model in 

order to carry out fracture analysis of concrete dams under static loading conditions. 

• To validate the constitutive model and numerical techniques by investigating the 

cracking behaviour of concrete structures that have been researched experimentally 

and/or numerically in the past. 

• To investigate dam concrete softening parameters. 

• To investigate the cracking behaviours of concrete gravity dams for better evaluation 

of dam safety. 

 

1.3 Scope of this study 

 

This research is focused on the development of a suitable crack modelling and analysis 

method for the prediction and study of fracturing in concrete gravity dams, and 

consequently, for the evaluation of dam safety against cracking. The research is limited to 

the two-dimensional (2-D) static cracking analysis of concrete gravity dams. The 

following areas are not covered in this research: 
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• Three-dimensional (3-D) cracking, although the research could be extended from 2-D 

to 3-D with some additional effort. 

• Dynamic cracking. 

• The water pressure that develops inside the crack as the crack grows. 

• The coupling between different crack modes, and different cracks. 

• Time dependent behaviour such as creep and shrinkage. 

 

1.4  Methodology of this study 

 

The research begins with a thorough literature review of previous investigations into the 

subject area and similar research. The theory and development of constitutive crack 

models are followed to establish the material crack model used in this study. The 

implementation of the proposal crack model is undertaken through the development of a 

sub-program specially coded for this research. The constitutive crack model proposed and 

the implementation procedure of the proposed crack model in an FE program are validated 

by analyzing and comparing the results obtained with the previously investigated concrete 

beams, gravity dams and model dam. After the verification process, the crack model and 

the sub-program are applied to analyze and predict the fracture response and to evaluate 

the related dam safety against the cracking of an existing, full-size concrete gravity dam. 

Finally, conclusions are drawn and recommendations are made based on this study. 

 

1.5 Organization of this study 

 

Chapter I gives the background, motivation, objectives, scope and methodology of this 

study. Chapter II is a comprehensive literature review of the development of crack models 

for application with concrete, especially concrete dams. The review focuses mainly on the 

evolution of the crack models proposed by other researchers in the world during the past 

few decades and gives a critical appraisal of the pros and cons of the crack models. A brief 

description of the analytical and design methods adopted for concrete gravity dams is 

given for readers who are not familiar with the design and safety evaluation procedure for 

concrete gravity dams. Past investigations into the fracture analysis of concrete dams are 

also discussed in Chapter II. 
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Chapter III presents the constitutive crack model adopted for smeared crack analysis of 

concrete structures in this research. It describes the crack onset criterion and direction, 

strain softening during the fracture process and post-crack features (such as non-

orthogonal crack criteria for a new crack to occur, and whether the crack is fixed or 

rotating, definition of crack closing and reopening, and crack mechanisms for unloading 

and reloading), etc. A bilinear strain softening diagram for mode I and a shear softening 

relationship for mode II are proposed. 

 

In Chapter IV, a numerical program capable of constitutive modelling crack initiation and 

the crack propagation of mixed modes is developed specially for smeared crack analysis 

of fracture behaviours in concrete dams. The program is incorporated into a commercial 

general-purpose code called MSC.Marc in order to carry out a complete FE analysis from 

the pre-processing involved in setting up the mesh and the loading/boundary conditions 

etc., and the solving of equilibrium equations, to post-processing of the results obtained. 

Preliminary verification of the program that has been developed is carried out on some 

elementary specimens. Three cracking verification cases in DIANA are selected to further 

benchmark the program that has been developed in this chapter. 

 

In Chapter V, the proposed crack model and the numerical techniques that have been 

developed are thoroughly evaluated and benchmarked in static fracture analyses of 

different plain concrete beam structures under either mode I or mixed mode loading 

conditions. The fracture response of the beams and the parameter study on the proposed 

bilinear softening relationship are discussed in this chapter. 

 

The proposed crack modelling techniques are needed to be evaluated and benchmarked in 

static fracture analyses of concrete dams. For this purpose, in Chapter VI, a scaled-down 

model of a gravity dam, a full-scale “benchmark” gravity dam and an existing gravity dam 

(the Koyna Dam in India) under static loading conditions are selected to do the benchmark  

because these dams were previously investigated for fracture behaviours by other 

researchers. 

With confidence in the crack modelling techniques developed in this research having been 

built up by means of the benchmark exercises detailed in the previous chapters, Chapter 

VII is devoted to using the crack model to predict the static fracture response of a concrete 
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gravity dam in South Africa and to evaluate the safety of the dam – the stability of the 

dam has been a matter of concern for the dam safety authority. 

 

The last chapter, Chapter VIII, gives the conclusions of this research and makes 

recommendations for further study and application of concrete crack models. 

 

Figure 1.1 gives a schematic outline of the organization of this study. 
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Figure 1.1 - Outline of the research  
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CHAPTER II - LITERATURE REVIEW ON GRAVITY DAM DESIGN AND ON THE 

DEVELOPMENT IN FRACTURE ANALYSIS OF CONCRETE DAMS 

 

The constitutive modelling of cracking behaviours and crack representations in numerical 

implementation are the two main issues in the study of cracking in concrete structures. 

Crack modelling in concrete structures has undergone great development in the past, 

especially with regard to smeared constitutive models. The general development of 

research into the crack modelling of concrete, especially smeared constitutive modelling 

of concrete cracking and its application to concrete dams, is presented. This review of past 

and current research into the modelling of concrete cracking should provide a clear 

background to and platform for any further research in this field. 

 

The methodology adopted to date for analyzing the cracking problems of concrete dams is 

reviewed to show the historical trends in the development of analysis methods for 

correctly predicting fracturing behaviours in concrete dams. Current research efforts to 

improve the modelling of cracking in concrete dams are also pointed out. 

 

The use of finite element (FE) analysis for modelling cracks is an important step in 

developing crack models suitable for the accurate simulation of the cracking process in 

concrete structures. Much effort has been put into finding appropriate ways to represent 

cracking in FE formulation. The main methods proposed so far are presented.  

 

Accurate determination of the fracture energy (a material parameter of fracture mechanics) 

of massive dam concrete, which uses large aggregates, has a significant influence on the 

fracture analysis of concrete dams. For this reason, research on this key material parameter 

for fracture in concrete dams is described. 

 

Past investigations into cracking analyses for concrete gravity dams under static loadings 

are discussed to highlight the human pursuit of complete safety for dam structures, even 

under cracking situations. 
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2.1 Causes of cracking in concrete gravity dams  

 

The low tensile resistance of concrete is the main reason why cracking is a common 

phenomenon in concrete dams. There are many causes that could contribute to cracking in 

concrete dams, either individually or collectively.  A broad classification of these causes is 

given below (Linsbauer 1990). 

 

Inadequate design and construction methods: Geometrical “flaws or defects” such as 

notches, corners, jagged interface between dam and foundation, and inadequate 

preparation of the construction joints and concrete block joints.  All these defects can lead 

to local stress concentration and deformation restraint. 

 

Material problems: Volume changes due to shrinkage, creep, heat of hydration or 

chemical changes such as alkali-aggregate reaction.  

 

Structural behaviour: Tensile stresses induced by varied static loadings, earthquake 

loadings, temperature changes and differential settlement of the foundation. Uplift 

pressure and overflow can also cause severe cracking in dams and endanger their safety. 

 

Normally, surface cracks caused by, e.g., concrete shrinkage or creep cannot really 

threaten the structural safety of concrete dams and are not the type of cracks that dam 

engineers regard as a concern for structural safety. Cracks penetrating deep inside dams, 

caused by excessive stresses or strains (which develop as a result of load application) or 

by material volume changes (such as alkali-aggregate reaction), are the main concern for 

engineers because these cracks can lead to considerable changes to the structural 

behaviour and failure resistance of the dam structure. In general, the state of stress and 

strain in the concrete mass will determine and control the fracture mechanism in concrete. 

 

2.2 Brief description of methods of analysis and design criteria for concrete gravity dams 

 

For the design of concrete dams, it is necessary to determine the forces that can be 

expected to affect the stability of the structure. The forces (shown in Figure 2.1) that must 

 
 
 



31 

  

be considered for the design and analysis of concrete gravity dams under static loadings 

are those due to:  

 

• Hydrostatic pressure (including tailwater loading)  H, H’, V, V’  

• Silt pressure (sediment loading)  S 

• Uplift forces  U 

• Weight of structure (self weight)  Gr 

 

Other loads, including wind and waves, ice and temperature loading, are sometimes 

considered in design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 - Forces acting on a gravity dam  

 

In addition to the normal static loading conditions, it may be necessary to apply earthquake 

loads. It is not likely, however, that all of these loads will occur at the same time. Table 2.1 

below lists the load combinations for concrete dam design in South Africa (Chemaly 

1995). 

 

 

 

 
 
 



32 

  

TABLE 2.1 - Definition of load combinations in South Africa 

Load category Load combinations 

Normal loading A.  RDD + Gr + PU + S + TW 

B.  FSL + Gr + PU + S + OBE 

C.  RDD + Gr + FU + S + TW 

Abnormal loading 

D.  RMF + Gr + PU + S + TW 

Extreme loading E.  FSL + Gr + PU + S + TW + MCE 

 

FSL:  Water level at full supply level 

FU:    Full uplift (relief holes blocked or no drainage system) 

Gr:   Self weight of dam 

MCE:  Maximum credible earthquake 

OBE:  Operationally based earthquake 

PU:   Partial uplift (with pressure-relief holes functioning) 

RDD:  Water level at recommended design discharge (1 in 200-year flood) 

RMF:  Water level at regional maximum flood 

S:    Silt loading (after 100 years’ deposition) 

TW:   Tailwater level 

 

Over the years, methods of analyzing concrete gravity dams have been developed and 

improved – from the classical method based on linear elastic calculations to the FE 

method which can carry out far more accurate non-linear analysis under more complex 

loading conditions. 

 

The classical method of calculating stresses is based on the assumption of a linear stress 

distribution on a horizontal plane. The gravity dam is idealized as a cantilever beam. The 

stresses are computed by applying the following classical formula: 

 

I
My

A
P

±=σ                                                (2.1) 

 

Where 

P    Normal force acting on the selected cross-section 
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A   Area of the cross-section 

M   Bending moment acting on the cross-section 

y    Distance to the centre of the cross-section 

I    Moment of inertia of the cross-section. 

 

The calculated stresses in a horizontal plane are limited to meet the design criteria for 

permissible stresses in a concrete dam. The design criteria for stress distribution in a 

concrete gravity dam in South Africa are shown in Table 2.2 (Kroon 2002): 

 

TABLE 2.2 - Design criteria for normal stresses in concrete gravity dams (South Africa) 

 Normal loading (A) Unusual loadings (B, C, D and E) 

Tensile stresses None 0,2 MPa 

Compressive stresses 0,25 fc
  0,25 fc 

 
Note: fc is the compressive strength of the concrete in a standard cube after one year. The 
maximum tensile stress of 0,2 MPa can only be allowed on a dam site where the foundation rock is 
sound and not excessively horizontally jointed. 
 

A gravity dam is also designed to be safe against sliding and overturning. The stability of 

a gravity dam against overturning is guaranteed by dimensioning the dam so that the 

resultant of all forces acting on any horizontal plane within the dam and foundation, 

intersects the corresponding base plane within its middle third of the length. This will 

effectively prevent tensile stresses in a dam.   

 

The stability of a dam against sliding is of major concern to dam engineers. The factor of 

safety against sliding is defined using the following formula: 

 

H
PCASOF ϕtan.. +

=                                          (2.2) 

 

Where 

C   Ultimate cohesion of concrete or rock 

ϕ    Angle of internal friction 

A   Area of the basis of contact 
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P    Sum of the vertical forces, including the uplift forces 

H   Sum of the horizontal forces. 

 

The design criteria adopted in South Africa for safety against sliding of concrete dams are 

listed in Table 2.3. 

 

TABLE 2.3 - Design criteria for safety against sliding in concrete gravity dams 

(South Africa) 

 Normal loading 

(A) 

Abnormal loadings 

(B, C, D) 

Extreme loading 

(E) 

 F.O.S. for peak 2,0 – 4,0 1,5 – 2,0 > 1,0 – 1,2 

 F.O.S. for residual 1,5 – 2,0 > 1,0 – 1,2 > 1,0 

 

Note: Peak is the maximum shear properties (such as C and ϕ  ) in the interface between the wall 
concrete and foundation rock. Residual means the remained shear properties in the interface for 
long term. 
 

The development of computing power and the FE method allowed engineers to analyse 

non-linearity in concrete dam behaviour, including dam-foundation interactions, material 

plasticity, thermal stresses, etc. The FE method and numerical techniques have been 

improved and gradually introduced into the codes of practice, leading to better and safer 

designs (Galvez et al. 1996). Currently, two principal analytical methods, namely the 

classical method and the FE method, are being used in the design of concrete dams. 

 

2.3  Analysis of cracking in concrete dams 

 

With the conventional design methodology described in Section 2.2, concrete dams are 

usually designed to have “no tension” in any part of the dam under normal service loads 

and to withstand minimum tensile stresses only under extreme loading cases. However 

this “no tension” design has never been justified theoretically. The work of Bažant (1990) 

reveals that even apparently conservative “no tension” design cannot always be regarded 

as safe if a certain size (e.g. base width) of dam is exceeded. In his paper, Bažant used a 

simple example of a dam model with a predefined horizontal crack at the base to 

demonstrate that the “no tension” solution could yield a higher maximum load than linear 
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elastic fracture mechanics (LEFM). The size effect plot also shows that there is a critical 

size of dam after which the “no tension” design gives a higher maximum load than LEFM. 

In reality, most, if not all, of the existing concrete dams in the world cannot really be said 

to be in a perfect crack-free condition, even if many of these were designed to have “no 

tension”. 

 

The rigid body equilibrium strength-based criterion was initially adopted where it was 

assumed that a crack would propagate whenever the principal tensile stress at the crack tip 

exceeded a specified tensile strength of the concrete.  This was the only criterion for 

determining crack growth in concrete dams before the late 1970s (Saouma, Bruhwiler & 

Boggs 1990). 

 

The strength criterion for crack analysis of concrete dams is based on the assumption that 

a crack will propagate horizontally in a plane and extend to a point where the stress 

becomes zero, and that the stress distribution is linear along the uncracked length of the 

dam wall in that plane. This kind of cracking analysis method suffers from the following 

shortcomings: 

 

• The shear stress cannot be considered. 

• Strictly speaking, this shallow beam theory cannot be applied to concrete dams which 

usually have low aspect (height/base width) ratios. 

• The stress singularity at the tip of a crack cannot be taken into account. 

 

The analysis of cracking based on this rather arguable assumption is not compatible with 

continuum mechanics (Linsbauer 1990).  The diagram in Figure 2.2 is an illustrative 

example of the forces and stress distribution in a cracked concrete gravity dam analyzed 

by means of the conventional method. 
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 Figure 2.2 - Diagram of the forces and stresses used in the classical analysis method for a 

concrete gravity dam 

 

Significant advances in the FE method make it a very useful tool for investigating 

cracking in concrete dams. However, when the strength-based approach is applied in the 

FE method, it is often found that if the mesh around the crack tip is refined, the stresses 

become progressively larger and the results are said to be “mesh-unobjective”. This leads 

to the conclusion that strength-based models are unsuitable for modelling the stress 

singularities at a crack tip and that they are inadequate for analyzing cracking in concrete 

structures. 

 

It is well known that cracking in concrete is a dominant source of the non-linearity 

experienced in concrete dams. To study cracking behaviour in a dam and to gain an 

understanding of how the cracking that is normally caused by high stress concentrations 

can redistribute the stress in a dam, non-linear FE analysis using material plasticity models 

(such as Drucker-Prager and Mohr-Coulomb) and contact simulation of the cracks has 

been adopted. This approach allows prediction of the scope of the cracking and the 

potential effect on leaking in concrete dams.  

 

Fracture mechanics, based on fracture energy principles, deals with cracking in materials 

and is ideally suited for studying crack development and propagation in concrete 

structures. The application of fracture mechanics to modelling the cracking process in 

Uplift pressure 

Effective stresses 
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LEFM NLFM 

concrete dams for the purpose of safety evaluation has drawn a great deal of interest and 

attention world-wide. At the 15th International Congress on Large Dams (ICOLD) 

conference held in Lausanne in 1985, researches on the analysis of cracking responses in 

concrete dams using fracture mechanics were accepted and presented (Linsbauer 1990).  

Although many analytical methods based on fracture mechanics have been proposed for 

concrete dams in the last decades, they have not yet been introduced into standard design 

procedures. 

 

During the past decades, LEFM has been widely used in the analysis of concrete dams, 

especially gravity dams. Due to the existence of a fracture process zone (FPZ) (refer to 

Figure 2.3) at the front of the crack tip, although sometimes, small compared with the size 

of the dam, strictly speaking, a model based on non-linear fracture mechanics (NLFM) 

should be adopted in all cracking analyses of concrete dams. NLFM has gained 

recognition among the researchers and become the main trend for the fracture analysis of 

concrete dams. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2.3 - Fracture process zone in LEFM and NLFM (Bhattacharjee & Leger 1992) 
 

Detailed descriptions of LEFM and NLFM, the crack models based on them and their past 

application in the analysis of concrete dams are given in later sections (2.5.3, 2.5.4 and 

2.7) of this chapter. 
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2.4  Finite element approaches for modelling cracking in concrete  

  

Constitutive modelling of the crack behaviour of concrete relies on the FE program’s 

ability to install the constitutive model and simulate the cracking profile. At present, the 

methods most frequently adopted in FE analysis to model cracking are as discussed below. 

 

Discrete crack approach:  This approach represents a crack as a discrete gap along the 

inter-element boundary. Inter-element boundaries are separated to simulate cracking. This 

involves the addition of nodes which influence element connectivity and the stiffness 

matrix. The analysis is complicated by a continuous change of the FE topology during the 

analysis (Bhattacharjee & Leger 1992).  A pre-defined crack path is sometimes needed 

beforehand to define the orientation of the cracks. 

 

Smeared crack approach:  In this approach, the stiffness of the material in an element 

(or at an integration point) is modified to simulate an infinite number of closely spaced 

cracks ‘smeared’ over the region under consideration. The advantage of the method lies in 

its simplicity and cost-effectiveness since the topology of the FE mesh remains unchanged 

and no restrictions are imposed on the orientation of the crack (Bhattacharjee & Leger 

1992). This approach still has several deficiencies, namely its tendency to cause diffused 

crack patterns, the directional bias and stress locking.  

 

There are other FE approaches that could be used to model cracking in concrete. For 

example, Kuo (1982) proposed an interfaced smeared crack model (ISCM) which 

combines the advantages of the discrete and smeared approaches. Graves & Derucher 

(1987) proposed an improved interfaced smeared crack model on the basis of Kuo’s work 

to find a satisfactory ‘pushing-back’ procedure (by altering the local element 

displacements until the stresses at the cracking interface are brought close to zero through 

an iteration process) at the local level.  Other authors have mentioned the lattice approach 

as another numerical method with possibilities (Galvez, Cervenka, Cendon & Saouma 

2002; Cai, Robberts & van Rensburg 2004). 
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2.5  Crack modelling of concrete 

 

Concrete is made up of different constituents (or phases) and is by nature a heterogeneous 

material. The cracking process in concrete is very complicated and the crack surface is 

tortuous (see Figure 2.7). To model this complex process adequately demands continued 

research efforts to find methods capable of accurately predicting and simulating the 

cracking response in concrete.  

 

A non-linear static analysis of cracked concrete requires a constitutive model that is able 

to represent the locations phenomenon (i.e. to identify locations where cracks will initiate, 

predict crack growth and model crack coalescence) and to model this process up to 

collapse of the structure. In general, five main phases can be identified and these are 

discussed in the following sections: 

 

• pre-fracture material stress-strain behaviour 

• crack (fracture) initiation 

• crack propagation criteria 

• crack modelling, and 

• post-crack behaviour. 

 

2.5.1  Pre-fracture material stress-strain behaviour 

 

Before cracking, concrete in tension can be sufficiently modelled as an isotropic, linear 

elastic material. The behaviour of concrete under high compressive loading is normally 

modelled as non-linear. However, in structures such as concrete gravity dams, the 

compression stresses are low enough that it is adequate to assume a linear elastic 

constitutive law.  It is true that some non-elastic softening close to the peak tensile stress, 

before a crack is initiated, will be ignored in the above assumption. Nevertheless, a 

non-linear, plastic stress-strain law can always be adopted due to the rapid advance of FE 

analysis capacity. Most of the previous investigations into concrete cracking, especially in 

concrete gravity dams, have assumed a pre-cracking linear, elastic behaviour under both 

tensile and compressive loadings.   
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For concrete cracking analysis, the plane stress state is probably the analysis most often 

adopted for verification. In plane stress analysis, the linear, elastic incremental stress–

incremental strain relationship is expressed as follows: 
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Where 

E   Young’s modulus 

ν   Poisson’s ratio 

x   the global horizontal direction  

y   the global vertical direction. 

 

2.5.2  Crack initiation  

 

To study the non-linearity caused by cracking in concrete, it is necessary to know where 

the cracking starts. Thus it is important to set up crack initiation criteria in the model. 

Researchers have proposed various criteria to indicate crack initiation: 

 

 The conventional criterion for a homogeneous structure is to assume that a new crack 

will initiate when the principal tensile stress reaches the uniaxial tensile strength of the 

concrete. Bhattacharjee & Leger (1993) have pointed out that this criterion is not 

entirely satisfactory in a 2-D or 3-D FE analysis, because: (i) the material stress-strain 

response is non-linear prior to reaching the peak strength, and (ii) the principal stress 

and strain, used as the response indicators, are not directly proportional due to 

Poisson’s effect. 

 

  In a 3-D analysis, cracking can be assumed to occur when the stress reaches a failure 

surface (or more specifically, the crack detection surface) on a meridian plane (Chen 

1982). 
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 Difficulty in finding the uniaxial tensile strength experimentally has led to the modulus 

of rupture, as obtained from a beam test, being used as a crack initiation criterion 

(Linsbauer, Ingraffea, Rossmanith & Wawrzynek 1989a). 

 

 Another crack initiation criterion states that a linear elastic relationship is assumed until 

the tensile strain energy density in the analysis equals the pre-peak area under a 

uniaxial stress-strain diagram as obtained from a laboratory specimen, as shown in 

Figure 2.4 (Bhattacharjee & Leger 1993; Bhattacharjee & Leger 1994). 

 

½σ1ε1 ≥ ∫
ε

εσ
0

d = ½σiεi = 
E
i

2

2σ                                  (2.4) 

 

To obtain the tensile strain energy, ½σ1ε1, we need to know the maximum principal 

stress, σ1, and strain, ε1, at a material point. σi is the apparent tensile strength, defined 

as 25 ~ 30% higher than the tensile strength of concrete, σt, while εi is the 

corresponding strain. 

 

 

 

 

 

 

 

 

Figure 2.4 – Crack initiation criterion (Bhattacharjee & Leger 1994) 

 

 Onate, Oller, Oliver & Lubliner (1988) used a fully elasto-plastic model for the 

concrete and assumed that cracking occurred where the effective plastic strain was 

greater than zero. It was further assumed that the crack developed in a direction 

orthogonal to the direction of the maximum principal strain at the point. 
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The conventional crack initiation criterion remains the most accepted due to its simplicity 

and conceptual straightforwardness (Araujo & Awruch 1998; Leclerc, Leger & Tinawi 

2003; Planas, Elices, Guinea, Gomez, Cendon & Arbilla 2003, etc). Most researchers also 

agree that the crack direction should be orthogonal to the maximum principal stress or 

strain.  

 

2.5.3  Crack propagation criteria 

 

 Strength-based criterion 

 

As discussed in Section 2.3, the strength-based criterion assumes that a crack will 

propagate when the predicted stress at the tip of the crack exceeds the tensile strength of 

the material. In this way, the criterion is identical to the conventional crack initiation 

criterion.  
 

 Fracture mechanics criteria 

 

Fracture mechanics predicts the propagation of cracks on the basis of the energy dissipated 

by the structure during fracturing. It is now well established that fracture in concrete is not 

concentrated in a point at the crack tip, but rather occurs within a finite zone ahead of the 

crack, defined as the FPZ. Micro-cracking of the material in the FPZ helps to explain the 

observed softening behaviour of material in this region. 

 

The non-homogeneous nature of concrete causes further complications: 

(i)  Cracks do not propagate along a straight line, but rather follow a tortuous path. 

(ii) The exact position of the crack tip is difficult to determine because of aggregate 

bridging in the crack and variations in the size of the FPZ. 

 

Fracture mechanics can be broadly classified into two categories: LEFM and NLFM. 

Models based on LEFM assume a linear elastic material and that crack extension is 

accompanied by a sudden release of surface stresses.  At the tip of a crack, the stress 

becomes singular. Crack growth occurs when the effective stress intensity factor 
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(including the appropriate modes of I – opening, II – sliding and III – tearing – see 

Figure 2.5) equals the material fracture toughness. 

 

 
Figure 2.5 - Modes of fracture  

 

Since the presence of FPZ is ignored, LEFM should be applied only to concrete structures 

in which the FPZ is much smaller than the dimensions of the structure under 

consideration. LEFM can, therefore, successfully be applied to most parts of a large 

concrete structure, such as a gravity dam. However, a concrete gravity dam, normally a 

very stiff structure, may have long and narrow (small opening displacement) cracks. 

In this case, the FPZ cannot be treated as small and be ignored, which means that 

sometimes LEFM cannot be applied, even to large gravity dams. 

 

NLFM recognizes the non-linear material behaviour by including the strain-softening 

behaviour of the concrete in the FPZ. In 1990, Saouma et al. adopted that crack 

propagation occurs when the stress at the tip of the FPZ reaches the tensile strength. Since 

the 1980s, research into crack analysis models based on NLFM has been intensified. The 

following section, Section 2.5.4, focuses mainly on the development of smeared cracking 

models based on NLFM, although the other crack models based on, for example, discrete 

fracture, LEFM and strength-based criteria, are also addressed. 

 

 

 

 

 
 
Mode I – opening       Mode II – sliding      Mode III – tearing 
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2.5.4  Crack models 

 

Strain softening has been modelled by various types of constitutive laws.  Apart from 

NLFM, endochronic theory, plastic-fracturing theory, plasticity with decreasing yield limit 

and, recently, continuum damage theory are also used (Pijaudier-Cabot & Bažant 1987; 

Bažant & Kim 1979; Ghrib & Tinawi 1995). 

Various crack propagation criteria and fracture models based on these criteria have been 

proposed in the literature, but only the major developments are presented here. 

 

Two major categories of crack models – discrete and smeared – are described in this 

section, which shows the development of the major fracture models. The overall 

development of cracking models is illustrated in Figure 2.10.  

 

 Discrete fracture models 

 

• Discrete model 1: Linear elastic fracture mechanics (LEFM) 

 

The criterion for crack growth in LEFM, which is applicable only to cracked structures, 

is as follows: 

 

ICKK ≥                                                  (2.5) 

 

Where K is the stress intensity factor, which is a measure of the strength of the 

singularity around the tip of a crack. K can be expressed and computed by: 

 

rfK ijij πσθ 2)(=                                          (2.6) 

 

As shown in Figure 2.6, ijσ  are the stresses at a distance, r, from the crack tip and at an 

angle, θ, from the crack plane. )(θijf  are known trigonometric functions of θ 

(depending on the specimen, crack geometry and loading, etc.).  At the crack tip, the 

stress is theoretically singular. Thus, as the crack tip is approached, the stress 

asymptotically approaches infinity. Hence: 
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( )0;0 →== raK θσπ   

 

 Where 

a    the crack size 

σ    the applied stress. 

 

      
Figure 2.6 - Crack in an arbitrary body and coordinate system (LEFM)  

 

KIC is the fracture toughness, which is a measure of the material’s resistance to cracking 

and can be determined experimentally. 

 

The stress intensity factor, K, and the fracture toughness, KIC , should be determined in 

accordance with the three different fracture modes (I – opening, II –sliding and III – 

tearing). For 2-D analysis, modes I and II are normally considered, although mode I – 

opening is usually the dominant mode in concrete fracturing. 

 

• Discrete model 2: Fictitious crack model (Hillerborg, Modeer & Petersson 1976) 

 

As can be seen in Figure 2.7, the FPZ is characterized as a fictitious crack lying ahead 

of the actual crack tip. Three material parameters are required in this model: tensile 

strength ft, specific fracture energy Gf, and the shape of the softening curve σ(δ). Gf is 

y 

r 
xθ 

FPZ 

Material point 
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regarded as a material property and represents the energy absorbed per unit area of 

crack: 

∫=
f dG f

δ
δδσ

0
)(                                            (2.7) 

 

where δf is the critical crack separation displacement when the softening stress is equal 

to zero. 

 
 Figure 2.7 - Representative NLFM discrete and smeared crack models (Bhattacharjee & 

Leger 1992)   

Fictitious crack model  (discrete crack model) 

Crack band model  (smeared crack model) 
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• Discrete model 3: Effective elastic crack approach 

 

The FPZ in concrete can also be modelled by a single Griffith-Irwin energy dissipation 

mechanism. By setting σ(δ) = 0, it is implied that no energy is required to overcome the 

cohesive pressure in separating the crack surfaces.  A two-parameter fracture model by 

Jenq & Shah (1985) and a size effect model by Bažant & Kazemi (1990) are typical 

examples. 

 

The following three discrete models have also been proposed (Rots 2002): 

 

• Decomposed crack model (Rots 1988) 

• Plasticity-based interface model (Lourenco 1996) 

• Model based on total relative displacement (Rots 1988) 

 

 Smeared fracture and constitutive models 

 

• Smeared model 1: Orthotropic stress-strain relations (Rashid 1968) 

 

The classical smeared crack model was based on the conventional strength-based crack 

initiation/propagation criterion, with zero post-cracking strength perpendicular to the 

crack.  Although good results were obtained for many practical applications, the 

method proved to be mesh-unobjective and converged to an incorrect failure mode, 

with zero energy dissipation. The model’s results did not reflect the size effect seen in 

test results. The constitutive law of this model in 2-D application is as follows (Rots 

1989). 
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Where 

n   the direction normal to the crack (mode I – opening) 
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s   the direction tangential to the crack (mode II – shearing). 

 

In this model, both the normal and shear stiffness of the crack become zero 

immediately after the crack is formed. The orientation of the crack is fixed upon crack 

formation. 

 

• Smeared model 2: Mode II shear retention improvement (based on Rashid’s 

orthotropic model) 

 

Numerical difficulties and distorted crack patterns were sometimes experienced with 

the application of the above orthotropic model (Rots 1989). Retaining a reduced shear 

stiffness across the crack can improve the performance of the model which has the 

following stress-strain relation:  
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A constant shear retention factor is usually adopted in the application of the model.  

A more realistic, crack-opening-dependent shear retention factor was also applied 

previously in order to reflect the fact that shear stress transferred in a crack would 

decrease as the crack propagated further, with an increase in the crack’s normal strain. 

 

The shear retention factor β ( 10 ≤≤ β ) is used to account for aggregate interlock in the 

concrete cracking process, which can reduce the numerical difficulties. 

 

• Smeared model 3: Mode I tension softening improvement (based on the above 

smeared model 2) 
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   SE  = Eμ  

 

A sudden drop in the tensile strength to zero in the above smeared crack model 2 may 

also cause numerical difficulties similar to those caused by shear drop to zero (Rots 

1989).  Many displacement-controlled tensile tests reveal a gradual softening in the 

stress-strain relation after crack initiation. For this reason, further improvements were 

made to introduce a normal strain-softening concept into the fixed crack model. By 

doing this, ‘over-stiff’ results can be reduced; such results are often seen despite the 

effort of adopting mode II shear retention β. Linear strain softening is often used by 

inserting a negative normal retention factor μ ( 01 ≤≤− μ ). 

 

• Smeared model 4: Extended crack band model (CBM) (proposed by Bažant & Oh 

1983) 

 

Bažant & Oh (1983) improved the above fixed crack models by taking Poisson 

coupling after crack formation into consideration. In their original crack band model, 

they ignored the shear retention effect by not including the shear modulus term 

(βG = 0). The following extended crack band model was proposed to reinsert the shear 

modulus on a retention basis (βG).  
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 Where 

E
Es=μ  

 ν   Poisson’s ratio 

 Es  the strain-softening modulus (negative value). 

 

It is assumed that the FPZ develops within a fixed bandwidth, propagating as a blunt 

front.  A typical value for the bandwidth, wc, would be three times the size of the 
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aggregate.  Although the CBM (see Figure 2.7) has shown good agreement with all the 

basic experimental data for concrete specimens, it has the following disadvantages 

(Bažant & Lin 1988): 

 

(i)  The bandwidth determines the element size and subdivision of the bandwidth is not 

allowed. 

(ii)  If the crack follows a zigzag path, the rugged opposite sides of the crack could 

incorrectly transfer stresses that would normally not be present in an open crack – 

a phenomenon referred to as ‘stress locking’. 

(iii) The choice of mesh could influence the direction of fracture propagation. 

(iv) The bandwidth of the cracking zone cannot be altered. 

 

For the linear strain-softening relationship shown in Figure 2.8, which is often 

assumed, the Es can be obtained using the following formula: 

  

 

c

f
t

t
s

t

s
cf

h
EG

f

Ef
E

E
f

E
EhG

22
)1(

2

22

−
=⇒−=                       (2.12) 

 Where 

tf    the tensile strength 

 E   the elastic modulus 

 fG   the fracture energy 

ch    the crack characteristic length (in CBM, ch = wc). 

 

 

 

 

  

 

 

 

  

Figure 2.8 - Stress-strain diagram for the crack band model 

 
 
 



51 

  

• Smeared model 5: Non-orthogonal model (de Borst & Nauta 1985) 

 

In this non-orthogonal smeared crack model, the total strain increment is considered to 

be composed of an intact concrete strain increment coεΔ  and a cracked strain increment 
crεΔ : 

 
crco εεε Δ+Δ=Δ                                            (2.13) 

 

The constitutive relationship for the cracked concrete is given by: 

 

 ( ){ } εσ Δ+−=Δ
− coTcoTcrcoco DNNDNDNDD 1                        (2.14) 

 

Where 

Dco   the constitutive matrix for the intact concrete between cracks 

Dcr   the constitutive matrix for the cracks (in the local coordinate direction) 

N    a transformation matrix. 

 

The model has the following advantages: 

 

o A mixed-mode crack matrix can be formed. 

o Non-orthogonal multi-crack formation can be modelled. 

o Crack formation can be combined with other non-linear phenomena, such as 

plasticity, creep and thermal effects. 

 

Rots (2002) also pointed out two disadvantages of this model: 

 

o Difficulty of implementation due to the complicated algorithms involving internal 

iterations. 

o Difficulty of choosing parameters for the shear retention functions and the 

threshold angles. There is no theoretical or experimental guideline to determine 

these values for different applications. 
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• Smeared model 6: Non-local crack constitutive model (Bažant & Lin 1988) 

 

The principal idea of this non-local crack model is to use the non-local concept only for 

those variables that control ‘damage’ and not for the strains or stresses in the 

constitutive relation. The disadvantages of the above smeared model 4 (CBM) can be 

eliminated by using a non-local constitutive model. Variables causing strain softening 

are treated as non-local, while all other variables are treated as local. The most 

important feature of this model is that the effect of structure size on the ultimate 

capacity and on the post-peak slope of the load–deflection diagram can be correctly 

presented (ACI 1997). The application of a non-local model in the analysis of a dam 

may be limited since at least three elements are required on the crack band, resulting in 

a very fine mesh. The analysis is complicated by the spatial averaging of local response 

quantities (Bhattacharjee & Leger 1994). 

 

When the model was used for practical applications, the following inconveniences 

became apparent (Pijaudier-Cabot & Bažant (1987): 

 

o The non-local concept is applied for all responses, including the elastic or plastic 

hardening behaviour. 

o An overlay with a local continuum is necessary for avoiding certain zero-energy 

periodic modes of instability. 

 

Pijaudier-Cabot & Bažant (1987) developed a modified non-local formation which 

avoids these two inconveniences.  

 

• Smeared model 7: Localized smeared fracture models (Bhattacharjee & Leger 

1994) 

 

The models of plane stress use a simplified definition of the constitutive material 

behaviour and have been shown to be computationally economical. A local axis system 

ns is selected for the fractured material, where the direction n is normal to the smeared 

cracks (refer to Figure 2.9). If En is the secant modulus of the fractured material, then 

the 2-D constitutive matrix relating local stresses and strains is defined as: 
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nε and sε  normal strain components in the local axis normal to and parallel with the 

fractured plane respectively. 

 

The local constitutive relationship matrix [D]ns can be transformed to the global 

coordinate directions as follows:  

 

[D]xy = [T]T [D]ns [T]                                         (2.16) 

 

Where 

[T] strain transformation matrix defined as follows in terms of the inclination of the 

normal to a crack plane, θ : 
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Figure 2.9 - Stress-strain diagram in local coordinates for smeared crack model 7 

  

• Other smeared models 

 

Rots (2002) also listed and elaborated on three other smeared crack models with their 

merits and demerits. 

 

• Total-strain based model (Feenstra et al. 1998): In this model, material is modelled by 

stress-total strain relations. 

• Plasticity based model (Feenstra 1993): The tension and compression of the model are 

approached in a unified way. 

• Micro-plane crack model (Bažant & Oh 1985): The model is similar to the non-

orthogonal crack model.  

 

Two other smeared crack models were also proposed (Planas, Elices, Guinea, Gomez, 

Cendon & Arbilla 2003): 

 

• Strong singularity crack model (Oliver et al. 2002): This model is similar to the 

classical local models (such as the crack band model) with an improvement in the 

strong singularity kinematics, which is able to make a jump in displacements appear 

naturally in a solution of the continuum approach. 
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• Gradient crack model (Peerlings et al. 2001): This model is similar to the non-local 

model. It assumes that the stress at a material point is derived from both the strain at 

that point and its spatial derivatives. 

 

To summarize the available crack models, the flow chart in Figure 2.10 categorizes and 

lists them into a systematic way. 

 

2.5.5  Summary of crack models discussed 

 

Since the late 1960s, many concrete crack propagation criteria have been developed and 

applied to analyze cracking in concrete structures. The early strength-based criterion has 

seldom been used in recent analyses due to its inherent lack of mesh objectivity. LEFM 

has been widely used in the analysis of concrete dams, in particular gravity dams, as 

shown in Section 2.7 below. NLFM manages to account for the FPZ in front of the crack 

tip, providing improved modelling of cracking in concrete. Most of the recent models 

proposed in the literature are based on NLFM.  

 

Concrete dams are huge structures and models requiring a fine FE mesh, such as the CBM 

(Bažant & Oh 1983) and non-local models (e.g. Bažant & Lin 1988), are not 

recommended. The use of a cohesive (fictitious) discrete crack model seems to be gaining 

popularity, although the computational costs are very high. The non-orthogonal smeared 

crack model proposed by de Borst & Nauta (1985) appears to be very promising due to its 

ability to handle simultaneously non-linear concrete behaviour and cracking, 

non-orthogonal multi-crack formation and crack rotation, and due to it having no stringent 

mesh size requirement.  

 

Some features that should be considered in concrete cracking models are briefly discussed 

below. 

 

o Mixed mode: In the papers by Planas et al. (2003) and Rots & de Borst (1987), 

although it is pointed out that fractures predominantly form and propagate in mode I, 

both sets of researchers agree that pure mode I fractures do not occur, which means that 

mode II cannot be totally ignored. 
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Galvez et al. (2002) further investigated mixed-mode fracturing and their numerical 

results agreed quite well with those from two experimental sets of mixed-mode fracture 

of concrete beams. The benchmark results showed that a mode II parameter change has 

little influence on the numerical predictions. They suggested further research on the 

influence of the parameters of mode II in the mixed-mode (I/II) fracture of concrete. 

 

o Crack direction: The direction of crack propagation has been determined 

predominantly in the literature to be orthogonal to the direction of maximum principal 

stress or strain. Martha, Llorca, Ingraffea & Elices (1991) described and compared 

three crack-direction criteria, namely (i) maximum circumferential stress theory, (ii) 

minimum strain energy density theory and (iii) maximum energy release rate theory, 

and concluded that a suitable criterion had still not been found and that further research 

was necessary. Feng, Pekau & Zhang (1996) adopted the strain energy density factor 

criterion, which assumes that the direction of crack propagation is towards the 

minimum region of strain energy density factor. Two assumptions (hypotheses) had to 

be made in order to obtain a simplified model of 3-D crack propagation for arch dams. 

 

o Coupling effect: In most of the cracking models, the coupling effect between the shear 

stiffness and normal stiffness is generally ignored due to the fact that most applications 

are restricted to small crack strains. 2-D modelling of the crack shear transferred in 

rough cracks and the influence of the crack width and normal stresses, etc. on crack 

shear has been done by various researchers – Bažant & Gambarova (1984); Riggs & 

Powell (1986); Yoshikawa, Wu & Tanabe (1989) and Divakar & Fafitis (1992), etc. To 

the authors’ knowledge, 3-D crack shear modelling is still an untouched area, at least in 

the field of concrete dams.   

 

o Crack closing and reopening: Most crack models adopt the secant modulus approach 

for unloading (crack closing). For reloading, the constitutive models follow the same 

route of unloading until the normal strain in the crack exceeds the previously reached 

strain. Bhattacharjee & Leger (1992) reviewed a few available studies on this matter 

and suggested further rational investigation. 
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2.5.6  Shear resistance of fractured concrete 

 

Fracture could lead to a significant change in the direction of the principal stresses. 

Aggregate interlocking on the rough crack surfaces results in the development of shear 

stresses in the cracked concrete. Shear transfer along rough cracks is known to be 

pressure-sensitive and to cause dilation. Three boundary conditions for the normal 

pressure imposed on a rough crack are usually considered in the modelling of shear 

resistance in a crack.  They are: 

 

o Constant normal stress condition 

o Constant crack width condition 

o Variable normal stress and crack width conditions. 

 

Divakar & Fafitis (1992) developed a micro-mechanical interface shear model to predict 

the shear transfer under the above three boundary conditions. Four mechanisms (sliding; 

interlocking, overriding and fracturing) of shear transfer were considered. This micro-

mechanical model, which took into account the internal structure of the material and the 

nature of the rough surface, was satisfactorily verified by the experimental results. Bažant 

& Gambarova (1984) introduced a crack band micro-plane model to describe crack shear 

in concrete. 

 

A simple shear retention factor, β, is often used to reduce the shear modulus in the 

constitutive matrix. However, this ignores shear dilation and the dependence of shear on 

the crack opening displacement.  A constant shear modulus fails to account for the 

variation in shear strain, caused by the strain normal to the crack, which has been observed 

experimentally. To overcome this problem, Rots & de Borst (1987) adopted a bilinear 

shear modulus approach and Balakrishnan & Murray (1988) proposed a method of 

decreasing the shear modulus linearly with increasing normal strain. 

 

2.5.7  Post-crack behaviour 

 

The post-fracture behaviour forms an important part of the crack constitutive model.  

A crack is normally assumed to propagate in a direction perpendicular to the maximum 
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principal stress that initiated the first cracking. Fixed orthogonal crack models assume that 

an additional crack plane will only form orthogonally to the first crack plane. Later 

developments (Rots & Blaauwendraad 1989) resulted in the rotating crack model and the 

fixed, multi-directional (non-orthogonal) crack model. 

 

Cervera, Oliver & Herrero (1990) presented an elastic-fracturing constitutive model, of 

which the post-fracture concrete behaviour is the most important part, for progressive 

cracking in large dams due to the swelling of concrete. The model allows for one or two 

independent sets of cracks appearing at the same point in two scenarios, as follows: 

 

o Two cracks will be orthogonal if they are formed simultaneously and no further 

cracking will be allowed at that point. 

o If one crack occurs first, further loading may cause a sequential, second crack to occur, 

which can be allowed to form in a non-orthogonal direction to the first (primary) crack.   
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Developments with 
Concrete Cracking Models 

Discrete Approach (variable mesh) Continuum Approach (fixed mesh) 

Smeared Approach  
(NLFM)  

Damage Mechanics  
 

 

Discrete Model 1 
LEFM  (Kaplan 1961) 

Discrete Model 2 
Fictitious Crack Model 
(Hillerborg et al. 1976) 

Discrete Model 3 
Effective Elastic Model 

(Jenq & Shah 1985) 

Decomposed Crack Model 
(Rots 1988) 

Plasticity-based Interface 
Model  (Lourenco 1996) 

Total Relative Displacement-
based Model (Rots 1988) 

Smeared Model 1 
Orthotropic Model 

(Rashid 1968) 

Isotropic Model 
(Lemaître 1986) 

Anisotropic Model 
(Ghrib &Tinawi 1995) 

Smeared Model 3 
Mode I softening improvement on 

Smeared Model 2 

Smeared Model 5 
Non-orthogonal Model  

(de Borst & Nauta 1985) 

Micro-plane Model 
(Bažant & Oh 1985) 

 

Total Strain-based Model 
(Feenstra et al. 1998) 

 

Smeared Model 7 
Localized Model 

(Bhattacharjee & Leger 1994) 

Strong Singularity Model 
(Oliver et al. 2002) 

 

Smeared Model 6 
Non-local Model 

(Bažant & Lin 1988) 

Gradient Model 
(Peerlings et al. 2001) 

Plasticity-based Model 
(Feenstra 1993) 

Smeared Model 4 
Extended Crack Band Model 

(Bažant & Oh 1983) 

Smeared Model 2 
Shear retention improvement on 

Smeared Model 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 - Flowchart of overall cracking models proposed for concrete fracture 
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2.6   Fracture energy Gf of dam concrete 

 

Accurate determination of the fracture energy of concrete, especially dam concrete, is not 

an easy task because the amount of the fracture energy Gf will vary with many factors, 

namely type and size of specimen, type of aggregates, maximum grain size, concrete 

strength and moisture, type of cement and additives, loading rate, etc. Dam concrete is 

usually different from normal concrete in the following ways: 

 

o Large aggregate size:    maximum aggregate size is usually 100 ~ 150 mm 

o Low water-cement ratio:  to improve strength 

o Low cement content:    to reduce thermal cracking and shrinkage during curing. 

 

Very high discrepancies of the fracture energy Gf of dam concrete have been reported, as 

discussed below.  

 

Trunk & Wittmann (1998) conducted a series of tests on normal and dam concrete with 

different specimen sizes up to 3 200 mm. For normal concrete, a fracture energy Gf of 121 

~ 322 N/m was obtained. For dam concrete, a fracture energy Gf of 219 ~ 482 N/m was 

determined. 

 

Brühwiler (1988) carried out wedge-splitting tests on different specimens – cylindrical, 

drilled cores from three existing concrete dams. Fracture energies Gf of 175, 235 and 

257 N/m were obtained for these three dam concrete specimens which had diameters of 

200 ~ 300 mm.  

 

Espandar & Lotfi (2000) adopted a fracture energy Gf of 600 N/m in the analysis of the 

Shahid Rajaee arch dam in Iran. 

 

Espandar & Lotfi (2003) stated that RILEM gave a fracture energy Gf in the range of 70 ~ 

200 N/m for normal concrete and suggested that the fracture energy of dam concrete 

should be three times higher than that of normal concrete. A higher fracture energy has 

often been used in the practical analysis of dam concrete.  Fracture energies Gf of as high 

as 1 375 and 2 200 N/m have been seen to be used before. 
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Bhattacharjee & Leger (1994) pointed out that the fracture energy generally observed for 

dam concrete is typically in the range of 100 ~ 200 N/m. 

 

The ICOLD report (2001) stated that fracture energy increases with the maximum 

aggregate size. For normal concrete, if the maximum grain size is in the range of 2 ~ 38 

mm, the fracture energy was found to be in the range of 50 ~ 200 N/m. Fracture energies 

of up to 280 N/m were obtained for the maximum grain size of 76 mm. The maximum 

aggregate size normally used in concrete dams is in the range of 100 ~ 150 mm, which 

would result in an even higher fracture energy. 

 

Saouma, Broz, Bruhwiler & Boggs (1991) obtained fracture energy Gf of 80 ~ 140 N/m 

for dam concrete.  

 

The fracture energy of concrete increases with the size of the specimens and becomes a 

constant value after a critical large specimen size is reached. Therefore, sufficiently large 

specimens have to be used for any experiments to accurately determine the fracture 

energy. The fracture energy obtained on small specimens needs to be corrected for the size 

effect. 

 

Bažant and his co-workers (Bažant, Kim & Pfeiffer 1986; Bažant & Pfeiffer 1987) 

proposed a ‘size effect law’ for the correct determination of the fracture energy Gf as 

follows: 

 

AE
gG f

)(α
=         (

d
a0=α )                                     (2.18) 

 

Where 

)(αg  the non-dimensionalized energy-release rate, known for the chosen specimen 

shape from LEFM 

A the slope of the size-effect regression line of 2−
Nσ  versus d 

Nσ  nominal stress at maximum load 

d the characteristic dimension (depth) of the specimen  
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0a  the traction-free crack length (notch length). 

 

Linsbauer (1991) carried out the wedge-splitting tests on drilling core samples of dam 

concrete with two diameters, 150 mm and 190 mm. The diameter of each sample allowed 

ten drilling cores to be tested. A large spread of fracture energies were reported to have 

been obtained from the experiment. For the samples of 150 mm in diameter, the fracture 

energy ranged from 59.9 to 177.3 N/m, with an average value of 109.1 N/m. The larger 

samples of 190 mm in diameter samples gave fracture energies in the range of 109.1 to 

230.8 N/m, with an average value of 155.4 N/m.   

 

He, Plesha, Rowlands & Bažant (1992) also carried out large-scale wedge-splitting 

compact tension tests on dam concrete in order to study the fracture mechanics properties 

of dam concrete for different loading rates and specimen sizes. Dam concrete specimens 

were cast with a maximum aggregate size of 76 mm. The size-effect law presented by 

Bažant et al. (1986) discussed above was adopted to compute the fracture energy of the 

dam concrete from the test data. The experimental results showed that the fracture energy 

falls within the range of 200 to 300 N/m for dam concrete. 

 

It is also reported from experiments that the fracture energy Gf increases with the 

compressive strength of the concrete and the loading rate. 

 

Three test methods are usually employed for the determination of the concrete fracture 

energy Gf, namely the uniaxial tensile test, the bending test and the wedge-splitting test. 

The double cantilever-beam test, the compact tension specimen test and the double torsion 

specimen test have also been used in the past.  

 

In conclusion, the fracture energy of dam concrete with large maximum aggregates is 

much higher than that of normal concrete. The past investigations and experiments yielded 

huge discrepancies in the magnitudes of the fracture energy of the dam concrete (mostly 

between 80 and 600 N/m), which would make the choice of fracture energy for the crack 

modelling of concrete dams a rather uncertain matter. Therefore, a sensitivity study on this 

fracture parameter should be considered in the fracture analysis of a concrete dam. The 
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fracture energy Gf  = 100 ~ 300 N/m is probably the most possible value for concrete 

dams. 

  

2.7   Past investigations of the static cracking problems of concrete gravity dams 

 

Over the past decades, many attempts have been made to investigate the cracking 

problems in concrete gravity dams by using various cracking analysis methods. Discrete 

LEFM seems to be the most popular approach for dam fracture analysis and it is used 

extensively in modelling the cracking of gravity dams.  Ayari (1988), in his PhD study, 

adopted the discrete LEFM approach in analyzing the static fracture response of concrete 

gravity dams. 

 

Chappell & Ingraffea (1981) used LEFM to model fracture in the Fontana gravity dam 

(USA) which had experienced the first traces of cracking in 1949. The cracking problem 

in this dam was formally acknowledged in 1972.  Reasonably accurate predictions of 

crack trajectory and stability were obtained (SIMSCIENCE website).  Again, Ingraffea 

(1990) used a 2-D mixed-mode, discrete LEFM model as a forensic tool to analyze crack 

propagation in the Fontana Dam. The observed crack profile, which started from the 

middle of the downstream face (caused by a combination of cyclic, reversible thermal 

expansion and concrete growth due to the alkali-silica reaction) and then dipped down 

through the gallery, was reproduced by this mixed-mode LEFM crack analysis. He further 

used the method in a generic gravity dam for the purpose of evaluating the dam’s design 

and analyzing its stability. The factor of safety against sliding predicted by LEFM is, in 

general, less conservative (i.e. has a higher value) than that of the classical method. 

 

Linsbauer (1990) developed a diagram (critical crack vs. depth of crack level and fracture 

toughness) based on LEFM for assessing cracking in gravity dams which can be applied in 

determining “the stability of horizontal cracks in the top three quarters of any gravity 

dam” with a triangular dam profile of width-to-height ratio of 0.8. The value of LEFM in 

analyzing cracking in concrete dams has therefore been demonstrated. 

 

Gioia, Bažant & Pohl (1992) carried out a 2-D mixed-mode discrete LEFM analysis on an 

identical model of the Koyna Dam – a concrete gravity dam in India. FRANC – a discrete 
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LEFM program, was adopted for the prediction of crack growth. Curves of overflow-

displacement at the top were plotted to compare the results obtained from analyses of no-

tension, plasticity and fracture mechanics. The conclusions drawn from the analysis are 

that the classical no-tension design criterion is not always safe and that the safety of dams 

should be evaluated on the basis of fracture mechanics. 

 

Kumar & Nayak (1994) carried out a 2-D mixed-mode, discrete LEFM analysis in a case 

study of the Lakhwar gravity dam. Seven load cases with six different cracks at different 

locations were used to study the effect of parameters such as dam height, B/H (base-height 

ratio), type of singularity at the heel, etc. The results show that the most significant 

parameters affecting the tensile stress and the stress intensity factor are ER/EC (ratio of 

Young’s modulus of foundation rock and concrete), B/H and the type of singularity at the 

heel. LEFM can “successfully” determine the location of cracks.    

  

Plizzari, Waggoner & Saouma (1995) experimentally tested and numerically analyzed 

(using LEFM) cracking in gravity dam models in order to establish a centrifugal testing 

technique for modelling fracturing in concrete gravity dams. 

 

Plizzari (1997) further used LEFM to predict crack propagation in concrete gravity dams.  

A parametric study of triangular-shaped dams was performed, assuming a horizontal crack 

at the dam/foundation interface. He proposed a scale law to determine the maximum 

hydrostatic pressure that a cracked gravity dam can carry. 

 

Compared with the wide applications of LEFM in the analysis of the cracking of concrete 

dam structures, the NLFM criterion was applied much less in the past to concrete 

structures, apparently due to the complexity of applying it. Nevertheless, Bhattacharjee & 

Leger (1994) used the NLFM criterion in a 2-D smeared crack model for analyzing a 

model gravity dam and the Koyna gravity dam in India.  A rotating crack model and a 

fixed crack model with variable shear resistance factors (FCM-VSRF) were used to 

analyze the Koyna Dam. The relation of overflow and displacement at the top was plotted 

to allow comparison with the results of LEFM and plasticity analyses. The crack profile 

predicted was good. Sensitivity studies of the response to fracture parameters, such as 

fracture energy and initial crack depth, and to different crack models (rotating or fixed) 
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were carried out. The FCM-VSRF model normally provides a stiffer response due to 

significant stress-locking. The fracture energy Gf and the initial crack depth a0 do not have 

much influence on the ultimate structural response. 

 

Bhattacharjee & Leger (1995) again employed a rotating smeared crack model to predict 

the static fracture behaviour of the Koyna Dam. They proposed the concept of ‘effective 

porosity’ to model the water intrusion and the consequent uplift pressure inside the cracks 

which was found to greatly reduce the ultimate resistance of the dam structure. 

Comparison with the conventional ‘no-tension’ gravity method revealed that this method 

of analysis for concrete dams may not always be as conservative as is usually thought. 

 

Ghrib & Tinawi (1995) presented damage mechanics models based on anisotropic 

formulation to predict the static response of concrete dams.  A 1:40 reduced model of a 

gravity dam tested by Carpinteri, Valente, Ferrara & Imperato (1992) was used to verify 

the accuracy of the proposed model. The damage models provide an accurate prediction of 

the ultimate load. They also provide crack profiles “similar” to the experimental results. 

The Koyna Dam was also used to compare the proposed damage mechanics models with 

the other numerical investigations under overflow hydrostatic loading. It is stated that the 

proposed models are mesh-objective and accurate, and can be used for assessing the 

ultimate capacity of a concrete dam and the dam’s safety margin. 

 

Saouma & Morris (1998) used a 2-D LEFM and NLFM interface crack model (ICM) to 

analyze the Greyrock gravity dam in the USA. The program MERLIN was coded so that 

the criterion for crack propagation was a strength-based one in which the tensile stress 

could not exceed the tensile strength. Fracture mechanics analysis was employed to 

evaluate the dam safety and to highlight the need for practice engineers to accept this 

method for evaluating dam safety. Two crack orientations – straight and kinking – were 

considered. The analysis based on fracture mechanics revealed that the classical rigid body 

equilibrium is more conservative and that it would be more economical to use the method 

based on fracture mechanics.  

 

Araújo & Awruch (1998) adopted both discrete NLFM crack model and continuum 

damage theory in an analysis of the cracking of the Tucuruí gravity dam in Brazil, which 
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was due to thermal effects during the construction phase, and verified the dam’s safety 

against cracking. 

 

Cervera et al. (1990) used 2-D and 3-D elastic-fracturing models in the analysis of a 79-

m-high gravity dam in Spain, called the Mequinenza Dam, which had experienced 

cracking on the upstream wall and the interior corridors. Fracture due to swelling of the 

concrete was modelled, including the mechanism of water intrusion, concrete extension, 

tensile fracturing and seasonal thermal straining. 

 

Cervera, Oliver & Galindo (1992) again developed an FE constitutive model to study 

cracking due to concrete hydration in the large Mequinenza gravity dam. For short-term 

behaviour, a continuum damage constitutive model was used. For long-term creep 

behaviour, visco-elastic effects were modelled and considered. Good agreement between 

the numerical simulation and the measurements was obtained. 

 

Barpi & Valente (2001) used a 1:40-scale gravity dam model previously tested by 

Carpinteri et al. (1992) to verify the capability of the cohesive crack model to correctly 

predict the size effect, using fuzzy parameters. They found that the cohesive crack model 

could indeed predict the size effect, thus explaining the behaviour of a dam model based 

on experimental results from much smaller specimens. 

 

Shi, Suzuki & Nakano (2003) used an extended fictitious crack model to model multiple 

cracks in concrete dams. Only mode I cracks were considered for simplicity. Bi-linear 

strain softening was adopted. Three FE models of generic gravity dams with initial 

notches were used to verify the analytical procedure developed for the cracking analysis of 

concrete dams. They demonstrated that the model is able to investigate the ultimate 

response of concrete dams, identify the potentially damaging cracks and predict the crack 

profile, without any restrictions on the numbers and locations of cracks. 

 

Saouma et al. (1990) gave a detailed review of the application of fracture mechanics to 

concrete dams. The applicability of various models to concrete dams, and the limitations 

of the models, were discussed and practical examples of fracture mechanics models were 
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presented. Compared with the classical method, the fracture mechanics approach is less 

conservative and the results are less sensitive to material properties.  

 

2.8   Concluding remarks and recommendations 

 

It is a demanding and challenging task to develop a constitutive model that effectively 

includes all the characteristics of cracking in concrete, yet remains sufficiently simple for 

practical implementation.  An accurate model should include the tortuous crack path and 

the non-linear inelastic material behaviour in the FPZ. 

 

Constitutive modelling of the tensile resistance of concrete using the FE method has 

progressed from conventional strength-based models to models based on fracture 

mechanics and energy-conserving principles. Current trends in research show a movement 

from 2-D to 3-D modelling, from LEFM to NLFM, and from a single crack with a 

predefined location to multiple cracks with unbiased location and taking into consideration 

the effect of water pressure inside the cracks. The complexity of the problem seems to be 

the reason why a generally accepted 3-D fracture model for concrete has not yet been 

presented. However, the constitutive model proposed by de Borst & Nauta (1985) appears 

to be very promising.  

 

From the literature review, it can be concluded that further research is needed into 

developing a constitutive model of concrete dams, to be implemented into FE analysis. 

The following aspects should be addressed: 

 

• The fracture strain softening has been well studied, but further attention should be 

given to the multi-linear and non-linear mode I softening diagram for the concrete 

normally used in concrete dams.  

• The post-cracking treatment of shear in the constitutive model requires more attention. 

The influence of normal displacements (or strains) on the shear modulus should be 

investigated both experimentally and numerically. 

• Mixed-mode criteria should be used to address the complex stresses often encountered 

in dams. 
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• The smeared crack model is recommended for incorporation into the existing FE 

programs. 

• More research effort into crack propagation direction criteria in concrete dams is 

needed.  
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CHAPTER III - CONSTITUTIVE MODELS AND PARAMETERS STUDY 

 

As shown in Chapter II, the constitutive modelling of concrete cracking phenomena has 

undergone tremendous development. Many constitutive models have been proposed in the 

past for analyzing concrete fracture, mainly for small-scale concrete structures such as 

single- or double-notched beams of mode I or mixed-mode fracturing. 

 

Concrete dams are normally huge in size and are subjected to both normal and shear 

loadings, which results in a complex state of stress within the structures. As stated in 

Chapter II, the non-orthogonal crack model proposed by de Borst & Nauta (1985) is an 

ideal model to form the basis for the further development of models to simulate the 

cracking process in concrete dams under both normal and shear loadings. The constitutive 

relationships adopted in this research for the different deformation phases, such as the 

stages before and during softening, are outlined in the sections below. 

 

In this research a smeared constitutive model has been established which has the 

advantages of preserving the topology of the finite element (FE) mesh and of easy 

determination of the crack orientation by aligning the crack perpendicular to the direction 

of principal stress during analysis. This model can be used to analyze the entire process of 

concrete cracking, including 

 

• Pre-softening:    Structural behaviour before a crack is initiated 

• During softening:  Structural behaviour during crack formation 

• Structural behaviour for unloading/reloading and closing/reopening of cracks. 

 
3.1 Pre-softening constitutive relationship 

 

In this study, linear elastic behaviour in tension before the onset of a tensile fracture is 

assumed. For compression, linear elasticity is also assumed due to the fact that the research 

is focused on the local strain-softening behaviour of tensile fractured concrete and because 

the structures involved in this study, such as concrete gravity dams, are governed by 

cracking, not crushing. As a consequence, some non-elastic softening close to the peak 
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stress before a crack is initiated will be ignored by the above assumption. If required, a 

non-linear, plastic stress-strain law could be included later. 

 

The incremental stress – incremental strain relationship is expressed as follows. 

 

Δσ = Dco Δε                                                (3.1) 

 

• For 3-D FE analysis, equation (3.1) can be expressed as follows: 
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Where 

E     Young’s modulus 

ν      Poisson’s ratio 

x, y, z   Global Cartesian coordinates   

 

• For plane stress analysis, the above equation (3.1) can be expressed as follows: 
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Where 

G     shear modulus,  
)1(2 ν+

=
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• For plane strain analysis, the above equation (3.1) can be expressed as follows: 
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3.2 Crack onset criterion and crack direction 

 
The crack onset criterion in this research is defined by assuming that the concrete will 

crack when the maximum tensile principal stress σ1 exceeds the concrete tensile strength 

tf  at a Gauss point. The crack direction is then perpendicular to the direction of the 

maximum principal stress (see Figure 3.1).  

 

This is a simple and effective conventional criterion which will ignore the effects of the 

second and third principal stresses under multi-axial loading conditions. For a 2-D 

application, the criterion is shown in straight lines in Figure 3.2. A more accurate crack 

initiation criterion (red curve in the Figure 3.2) depends on the second principal stress of 

the perpendicular direction, such as the criterion based on tensile strain energy density 

proposed by Bhattacharjee & Leger (1993). 

 

 

 

 

 

 

   

 

 

Figure 3.1 - Crack direction and local axis system for 2-D and 3-D applications 
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Figure 3.2 - Crack initiation criteria for a 2-D application 

 

3.3 Constitutive relationship during concrete cracking 

 

The early orthogonal crack models limited the crack formation and directions. Following 

cracking at one point, a second crack can be only allowed to form in the perpendicular 

direction of the first crack and so on. In 3-D modelling, a third crack may only develop 

perpendicular to the first two cracks. To improve cracking behaviour, de Borst and Nauta 

(1985) developed a non-orthogonal crack model, which allows a subsequent crack at a 

point to develop at any angle to a prior crack. This approach is ideal for simulating the 

cracking process in concrete structures. One of the main features of the model is that it 

decomposes the total crack strain increment into a strain increment for the uncracked 

concrete between cracks coεΔ and a strain increment at the crack crεΔ as follows: 

 
crco εεε Δ+Δ=Δ                                              (3.5) 

 

The crack strain increment crεΔ in equation (3.5) is further contributed to by all the 

individual cracks at a particular Gauss point: 
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Where cr
1εΔ  is the strain increment of a first (primary) crack; cr

2εΔ  is the strain increment 

of a secondary crack, and so on. 

 

The strain increment of individual crack (i), cr
iεΔ , in the global x, y and z coordinates can 

be obtained by transforming the local crack strain increment cr
ieΔ as follows:  

 
cr
ii

cr
i eN Δ=Δε                                                    (3.7) 
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The local coordinate system ( n, s, t ) is crack-aligned as shown in Figure 3.3, where n 

refers to the direction normal to a crack and s, t refer to the directions tangential to a crack. 

 

In equation (3.8), cr
nneΔ  is the mode I local crack normal strain increment and cr

nsγΔ , cr
ntγΔ  

are the mode II and III local crack shear strain increments respectively. Ni is a 

transformation matrix between the global and local coordinates at the crack (i). 
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Figure 3.3 - Coordinate system and traction vectors across a crack for 3-D application 
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For a 3-D configuration, Ni has the following format: 
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Where l1, l2, l3, m1, m2, m3, n1, n2, n3 are the direction cosines of the axes defined in 

Tables 3.1 and 3.2 (refer to Figures 3.1 and 3.3): 

 

TABLE 3.1 - Direction cosines of local axes in global axis 

 x y z Global coordinate 

n l1 m1 n1  

s l2 m2 n2  

t l3 m3 n3  

Lo
ca

l c
oo

rd
in

at
e 

    

 

 

For a 2-D application (plane stress or plane strain), Table 3.1 becomes the following 

Table 3.2. 
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TABLE 3.2 - Direction cosines of local axes in global axis (2-D) 

 x y z Global coordinate 

n l1=  cosθ m1= sinθ n1= 0  

s l2= -sinθ m2= cosθ n2= 0  

t l3= 0 m3= 0 n3= 1  

Lo
ca

l c
oo

rd
in

at
e 

    

 

Where θ is the angle between the normal of a crack and the global x-axis shown in 

Figure 3.1. 

 

For equation (3.7), it is convenient to assemble the individual crack vectors and matrices 

into a general form as follows. 

 
crcr eN Δ=Δε                                                (3.10) 

 

Where [ ]L21 NNN =  is a transformation matrix which combines all the individual crack 

transformation matrices, and [ ]Tcrcrcr eee L21 ΔΔ=Δ is the local crack strain increment 

which is composed of the contributions of multiple cracks. 

 

The local stress increment crSΔ can be derived by transforming the global stress increment 

σΔ as follows: 

 

σΔ=Δ Tcr NS                                                (3.11) 

 

Where [ ]Tcrcrcr SSS L21 ΔΔ=Δ  is composed of the contributions of multiple cracks. 
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For an individual crack (i), the local crack stress increment vector cr
iSΔ is defined as: 
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Where cr
nnSΔ is the mode I normal stress increment and cr

nsSΔ , cr
ntSΔ are the mode II and III 

shear stress increments respectively. 

 

The constitutive relationships of the concrete between the cracks and the local cracks are 

as follows: 

 
cocoD εσ Δ=Δ                                                (3.13) 

 
crcrcr eDS Δ=Δ                                               (3.14) 

 

Where 

Dco is the constitutive matrix of the ‘intact’ concrete between the cracks as follows: 
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and  

Dcr is the constitutive matrix of the local cracks as follows: 
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Where the size (columns and rows) of Dcr depends on the number of cracks at the Gauss 

point. Zero off-diagonal terms implies that the coupling effects between different cracks 

are ignored. 

 

For a crack (i): 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
III
i

II
i

I
i

cr
i

D
D

D
D

00
00
00

 in which I
iD  is the mode I stiffness modulus, 

GDII
i β

β
−

=
1

 is the mode II shear stiffness modulus and III
iD  is the mode III stiffness 

modulus. β  is the shear retention factor to be defined in Section 3.5.  
)1(2 ν+

=
EG  is the 

elastic shear modulus. Again, no coupling is considered between the shear and normal 

strains on the crack plane. 

 

From equations (3.11), (3.13), (3.5) and (3.10), we have: 

 

)( crcoTcocoTTcr eNDNDNNS Δ−Δ=Δ=Δ=Δ εεσ                     (3.17) 

 

From equations (3.17) and (3.14), we have: 

 

)( crcoTcrcr eNDNeD Δ−Δ=Δ ε                                    (3.18) 

 

From equation (3.18), we have: 

 

εΔ=Δ+ coTcrcoTcr DNeNDND )(                                  (3.19) 
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From equation (3.19), we have: 

 

[ ] εΔ+=Δ
− coTcoTcrcr DNNDNDe 1

                                (3.20) 

 

From equations (3.20) and (3.13), (3.5) and (3.10), we have: 

 

[ ]{ }εεσ Δ+−Δ=Δ
− coTcoTcrco DNNDNDND 1

                        (3.21) 

 

The overall relationship between global stress and strain is obtained from the above 

equation (3.21): 

 

[ ]{ } εσ Δ+−=Δ
− coTcoTcrcoco DNNDNDNDD 1                        (3.22) 

 

3.3.1  Plane stress application used in this research 

 

For the plane stress analysis in equation (3.22), we have: 
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Where I
iD  is the mode I stiffness, which will be discussed in the next section, Section 3.4. 
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GD II
i β
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=
1

 is the mode II stiffness, which will be discussed in the Section 3.5. 

 

[ ]L21 NNN =  is the overall transformation matrix composed of all the transformation 

matrices (equation 3.26) of each individual crack at a point. 
 

The transformation matrix of an individual crack (i) reduces to a 3 x 2 matrix from 

equation (3.9) as follows: 
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Where θi is the angle between the normal of a crack (i) and the global x-axis shown in 

Figure 3.1. 

 

3.3.2  Plane strain application used in this research 

 

For the plane strain analysis in equation (3.22), we have: 
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Where I
iD  is the mode I stiffness, which will be discussed in the next section, Section 3.4. 

 

GD II
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 is the mode II stiffness, which will be discussed in Section 3.5. 

 

Equation (3.28) is the same as equation (3.24), and equation (3.29) is the same as equation 

(3.25). 

 

[ ]L21 NNN =  is the transformation matrix composed of all the transformation matrices 

(equation 3.30) of each individual crack at a point. 
 

The transformation matrix of an individual crack (i) reduces to a 4 x 2 matrix from 

equation (3.9) as follows: 
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3.4 Mode I tensile softening  

 

In equation (3.22), the constitutive matrix of the local crack at a Gauss point is composed 

of all the individual cracks at that point. For any one crack (i) at that point, the mode I 

stiffness of the crack, I
iD , is dependent on the fracture energy Gf of the material, which is 

defined as the energy dissipation for a unit area of a mode I (tension) crack plane 

propagation, the shape of the tensile softening diagram, the direct tensile strength ft and 

the crack blunt width hc. The fracture energy Gf and the direct tensile strength ft are taken 

as fixed material properties for a specific concrete. The crack blunt width hc will be 

discussed later in Section 3.7. The shape of the crack softening diagram for mode I 

fracturing of concrete would significantly change the values of the mode I softening 

modulus and is still a much-debated matter. The mode I softening diagram could take 

 
 
 



81 

  

various forms. Linear, bilinear and non-linear curves have been adopted in past and 

current analyses of the cracking of concrete structures (refer to Figure 3.4). 

 

Linear strain softening (see for example Figure 3.5) has been widely adopted in the 

fracture analysis of concrete structures, in particular for concrete dams. The mode I 

stiffness modulus of a local crack is defined as follows: 
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Where Es is the strain-softening modulus shown in Figure 3.5.  In Figures 3.5 and 3.6, ne  

is the normal strain of cracked concrete in a local coordinate system (sum of the normal 

strains of the concrete between cracks and of the cracks themselves). cr
nS  is the normal 

stress in the local crack. cr
nne  is the normal strain in the local crack. 

f
ne  is the ultimate 

normal crack strain, after which tensile stress vanishes. 

 

Various experimental studies have revealed that concrete actually fractures in a non-linear 

softening format, where an exponential softening curve best fits the experimental data as 

done by Cornelissen, Hordijk & Reinhardt (1986). However, since a non-linear softening 

curve is normally difficult to implement in the analysis, it is not considered justified at this 

stage for practising engineers to use this non-linear softening approach. A bilinear 

softening strategy is adopted in this research to approximate the real softening curve by 

adjusting the values of the two shape parameters 1α  and 2α  (refer to Figure 3.6), while 

maintaining simplicity of implementation. 

 

For the purpose of this research, the following bilinear strain-softening equations were 

developed: 
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Where 1α  and 2α  are bilinear softening shape parameters. 1α  is defined as the portion of 

the tensile strength below which the strain softening becomes flattened (the mode I 

softening modulus uses the second slope line of softening). 2α  is defined as the ratio of 

the second softening modulus to the first softening modulus. 

 
I
bliD , is the first mode I softening modulus in the bilinear softening diagram (refer to 

Figure 3.6), which is controlled by the shape parameters of the softening diagram ( 1α  and 

2α ), the fracture energy Gf, the direct tensile strength ft and the crack blunt width of the 

finite elements hc. 

 

When I
li

I
bli DD ,,1 ,0 ==α , the strain softening becomes linear 

When I
li

I
bli DD ,,2 ,1 ==α , the strain softening becomes linear.  

 

Figure 3.7 shows how the shapes of the bilinear diagram are changed and their 

relationship with the linear mode I softening modulus I
liD ,  if 1α  is fixed at 1/3 while 2α  

is taken as 0.1, 0.2 and 0.3 respectively. 

 

 

 

 

 

 

 

 

  

 

 

Figure 3.4 - Linear, bilinear and curved mode I strain-softening diagram of “crack”  

 
 
 



83 

  

 

f
ne

tf

tf1α

s

sI
li EE

EE
D

−
=,

I
bliD ,

I
bliD ,2α

1

1

1

cr
nS

cr
nne

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 - Linear elastic – mode I strain-softening diagram of cracked concrete  

 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.6 - Definition of bilinear mode I strain-softening diagram of “crack” 
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Figure 3.7 - Bilinear mode I strain-softening diagrams for 1α  = 1/3; 2α  = 0.1, 0.2 and 0.3 

(local coordinate) 

 

3.5 Mode II shear softening  

 

Due to aggregate interlock in plain concrete, the shear modulus does not reduce to zero 

immediately after cracking. Therefore, shear stress can be developed on the plane of a 

crack at subsequent loading. In the past, a simple non-zero shear retention factor β was 

adopted to represent shear softening in modelling concrete cracking (Bhattacharjee & 

Leger 1993; Lotfi & Espandar 2004). However, this method ignores the shear dilation and 

the dependence of crack shear on the crack opening displacement. This also results in a 

constant cracking shear modulus that cannot take into account the fact that the shear strain 

varies with the normal crack strain, as observed in experimental studies. For this research, 

the shear stiffness of a crack is defined as a decreasing function of the crack normal strain 

in the following formula (equation 3.34), which is similar to that used by Rots & 

Blaauwendraad (1989), except for a maximum shear retention factor maxβ defined here to 

limit the maximum shear allowed in a crack. The value of maxβ usually varies from 0 to 

0.5. A high shear retention value ( β close to 0.5) could cause extensive cracking in 

certain applications, while zero retention ( β = 0) could result in numerical instabilities 

(Lotfi & Espandar 2004). 
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Where cr
nne  and f

ne have been defined previously and p is a constant defining the shear-

softening shape. As shown in Figure 3.8, if p =0, maxββ = (constant); if p =1, shear 

softening is in a descending linear format; if p =2, shear softening is in a descending 

non-linear format. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 - Relationship between shear retention factor and “crack” strain (local 

coordinate) 

 

3.6 Fixed/rotating, unloading/reloading and closing/reopening of cracks 

 

As stated previously, the direction of cracking is generally aligned perpendicular to the 

principal stress direction and is fixed after the crack has been initiated in the fixed 

non-orthogonal crack model. Each fixed crack is “remembered” with its own direction and 

is kept unaltered for the rest of analysis. This permanent “memory” of crack directions 

increases the cost of computation.  

 

After cracking, the shear stresses would cause the principal stress axes to rotate, which 

could increase the tensile principal stresses well above the concrete tensile strength. In this 
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research, a new crack is initiated whenever the angle between the normal to the crack 

plane of the last crack and the current principal stress direction exceeds a pre-defined 

threshold angle or whenever the inclined tensile principal stress σ1 violates the crack onset 

criterion. The reason why the above new crack initiation criterion is adopted will now be 

explained. 

 

If only the stress criterion applies (i.e. if the maximum tensile principal stress exceeds the 

material’s tensile strength), then the total number of cracks cannot be limited. For 

example, if high shear stress remains in a crack, a new crack could be initiated with almost 

every loading increment, which would render the analysis inefficient. On the other hand, 

the threshold angle condition (i.e. when the angle between the principal stress and the last 

existing crack exceeds a threshold angle) does not control the maximum tensile stress. 

A tensile principal stress three times higher than the tensile strength could occur without 

violating the threshold angle condition (Rots & Blaauwendraad 1989). Only if these two 

conditions are combined can a reasonable new crack initiation criterion be established.  

 

Depending on the magnitude of the pre-defined threshold angle, many cracks could occur 

at a Gauss point. For the purpose of limiting the computing memory required and making 

the multi-directional crack model more robust, a maximum of six cracks are allowed to 

form at a Gauss point. The effect of each additional crack on the results becomes 

progressively and significantly less as the number of cracks at a point increases. 

 

Concrete structures are normally subjected to both tension and shear stress conditions. The 

mixed-mode fracturing behaviour leads to the rotation of the axes of principal stress after 

a crack is formed. Consequently, the fixed crack axes no longer represent the axes of 

principal stress. The fixed, multi-directional, non-orthogonal crack model adopted here is 

able partially to reduce the misalignment between the crack orientation and the principal 

direction.  

 

Alternatively, a rotating approach can be used in which the normal axis to the crack plane 

is allowed to co-rotate with the principal stress axis. A rotating crack concept, in which 

the axes of a crack co-rotate with the orientation of the principal stress, has been proposed 
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in the past to eliminate the discrepancy between and the misalignment of the crack 

directions and principal directions. 

 

Rots & Blaauwendraad (1989) proposed a rotating crack model by simply vanishing the 

threshold angle and making all previous cracks inactive, erasing them from memory. In 

this way, the crack orientation changes continuously to align with the direction of 

principal stress. The following three conditions were set for the rotating model by Rots & 

Blaauwendraad (1989): 

 

• The orientation of subsequent cracks is only controlled by setting the threshold angle to 

zero. 

• Only the current crack is allowed to remain active, by erasing all previous cracks at the 

Gauss point. 

• The influence of previous cracks is accounted for and the mode II shear-softening 

modulus IID  in the following equation (3.36) is used to ensure coaxiality. 

 

In order to enforce coaxiality between the principal stress and strain, the softening shear 

modulus for a 2-D analysis should be calculated as follows: 

 

)(2 21

21

εε
σσβ
−
−

=G                                              (3.35) 

 

)()(2
111

2121

21

σσεε
σσ

β −−−
−

=⇒+=
G

D
DGG

II
II                     (3.36) 

 

The proposed fixed, multi-directional, non-orthogonal crack model can be converted into 

a rotating model by applying the above-mentioned conditions for the rotating crack 

approach.  

 

The post-fracturing behaviour forms an important part of the crack constitutive model. 

The unloading/reloading and closing/reopening strategy used is shown in Figures 3.9 and 

3.10. A secant unloading approach is adopted in this study, which implies that the crack 

stress-strain relationship follows a path back to the origin upon a strain reduction.  This 
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Secant unloading/reloading for 
partially opened cracks 

Elastic unloading/reloading for 
partially opened cracks 

Closing/reopening for fully 
opened cracks 

strategy is often used by researchers since it yields a closer approximation to the real 

unloading behaviour of concrete for application in smeared based crack models than the 

elastic unloading approach used in the past, in which the crack closes immediately during 

a strain reduction (Calayir & Karaton 2005; Rots 2002; Cervera et al. 1990). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 - Diagram of unloading/reloading and closing/reopening (in crack strain) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 - Diagram of unloading/reloading and closing/reopening (in total strain) 
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3.7 Width of crack blunt front and mesh objectivity 

 

In the smeared crack approach, a crack in an element is formed and propagated over an 

area related to the size of the element.  The characteristic length of the crack band in 

smeared modelling must be defined in order to obtain mesh objectivity. The fracture 

process is assumed to occur in bands of micro-defects over a so-called crack band width. 

Gajer & Dux (1990) treated the width of the crack band as a material property, which 

should be three to ten times the maximum aggregate size. 

 

Bhattacharjee & Leger (1992) distinguished between the characteristic length hc in 

non-linear fracture mechanics models and the width of the crack band wc in the crack band 

model (Bažant & Oh 1983). Unlike the crack band width wc, the characteristic dimension 

hc is a geometric property of the cracking element (refer to Figures 2.6 and 2.7 in 

Chapter II for illustrations of wc and hc). 

 

The introduction of a characteristic length hc into the determination of the mode I 

softening modulus is a step towards a non-local softening model for mesh objectivity.  

 

The following definition of the crack characteristic length hc has been proposed by 

researchers in the past: 

 

• elementofAreahc = ; i.e. square root of the area of the cracking element for a 2-D 

application (Bhattacharjee & Leger 1992) or 

• hc = size of the cracking element, across the direction of crack propagation 

(Bhattacharjee & Leger 1992). 

• hc is taken as the side of an equivalent cube having the same volume as the tributary 

volume at the cracked point of a solid isoparametric element for a 3-D application 

(Lotfi & Espandar 2004). 

• elementcrackingtheofsizehc ×= 2  (Rots & Blaauwendraad 1989). 

 

A more rigorous description of hc, which is dependent on the mesh size, crack direction 

and spatial position, can be found in the paper by Oliver (1989).  
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In this research, the response quantities of elements were computed at each integration 

point of the elements. Thus, the size adjustment of the strain-softening modulus Es (refer 

to Figure 3.5) and the fracture energy dissipation are determined on the basis of local 

response quantities. The crack characteristic length hc is defined as the size of the element 

across the crack direction if the finite element mesh is oriented to be parallel to the crack 

band (Figure 3.11(a)). If a crack is propagating obliquely through an element, as shown in 

Figure 3.11(b), then hc is defined as the square root of the element area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 - Crack characteristic length hc of a quadrilateral element (first order with full 

integration) 
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3.8 Element selection for crack analysis  

 

The application of reduced integration is less reliable than the normal integration element. 

It could induce a spurious hour-glass mode, which could easily cause divergence of the 

iterative procedure. Dodds, Darwin, Smith & Leibengood (1982) investigated the hour-

glassing problems and suggested that reduced integration elements should not be used. In 

this research, first-order elements with full integration have been selected for the analysis 

of concrete cracking, as used by many researchers in the past (Bhattacharjee & Leger 

1993; Bhattacharjee & Leger 1994; Rots & Blaauwendraad 1989). Second-order elements 

can also be used for the proposed smeared crack model if needed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 - Quadrilateral element of first order with full integration used in the research 

 

3.9 Concluding remarks 

 

The constitutive crack model adopted for the smeared crack analysis of concrete structures 

in this research has been presented. The crack initiation criterion and direction were 

described first. An enhanced mode I and II strain-softening strategy has been developed 

for this research. The conditions for subsequent new crack(s) to occur after the initial 

cracking have been established. Fixed or rotating cracks, a definition of crack closing and 

reopening, the crack mechanism for unloading and reloading, etc. have also been 

described. A bilinear mode I strain-softening formula has been given. The crack 

characteristic length hc and the element type selected for this research have been defined. 

Node 
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The constitutive crack model proposed in this chapter will be fully implemented in an FE 

program in Chapter IV. 
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CHAPTER IV - NUMERICAL TECHNIQUE AND PROGRAM FOR FINITE ELEMENT 

CONSTITUTIVE CRACKING ANALYSIS 

 

The main purpose of this chapter is to develop a sub-program which is to be incorporated 

into the commercial general-purpose finite element (FE) program – MSC.Marc – and to 

test the sub-program using elementary, simple specimens of both plane stress and plane 

strain elements. The sub-program should have the capacity to simulate the cracking 

process in concrete, using the adopted constitutive relationships of crack softening 

outlined in Chapter III. 

 

Very few general-purpose commercial FE packages can accommodate the non-linear 

cracking analysis of concrete structures. MSC.Marc is an FE program which can model 

concrete cracking with linear post-peak strain softening and a constant shear retention 

factor β. Bilinear or non-linear strain softening, and arbitrary crack-opening-dependent 

reduced shear modulus in the constitutive modelling of concrete cracking are not available 

in this program. However, MSC.Marc allows users to develop and substitute their own 

sub-programs in the package. This feature provides users with a powerful way of solving 

non-standard problems, such as crack simulation in concrete.  The program was available 

for the author to use for this research. 

  

The FE method basically has six steps. The success of any FE program depends partly on 

how the program implements these steps. A description of the FE method (including the 

following six steps) and the algorithm used in MSC.Marc is given in the Annexure. 

 

Step 1: Choose shape functions  

Step 2: Establish material relationship  

Step 3: Compile element matrices  

Step 4: Assemble to form the overall structural stiffness matrix  

Step 5: Solve equations  

Step 6: Recover the stresses and strains. 
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4.1  Program framework for the cracking analysis of concrete  

 

4.1.1  Framework for the implementation of the constitutive model in the FE analysis of concrete 

structures 

 

The flow chart shown in Figure 4.1 illustrates the general FE procedure for the crack 

analysis of concrete structures. 

 
Figure 4.1 - General FE crack analysis procedure for concrete structures 
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4.1.2  Sub-program coded in MSC.Marc to implement the crack constitutive model 
 

Modelling bilinear or non-linear mode I and II softening requires the development and 

programming of a subroutine in MSC.Marc. The lack of advanced fracture-modelling 

capacity in this FE package (and in other generally available FE packages) requires a 

considerable programming effort to implement crack modelling.  

 

A subprogram called HYPELA, incorporated into MSC.Marc, was specially and 

independently developed for this research on the FE modelling of the cracking behaviour 

of concrete structures. The subroutine has the capacity to simulate the cracking process in 

concrete, using the adopted constitutive relationships of crack softening outlined in 

Chapter III.  

 

The cracking analysis starts with the linear elastic stress-strain law. In the subprogram 

HYPELA, the following steps are performed (refer to Figure 4.2 for the flowchart of these 

steps): 

 

Step 1:  Material properties and parameters related to concrete strain softening, such as the 

fracture energy Gf, Young’s modulus E, Poisson’s ratio ν, tensile strength ft, mode I 

softening parameters )/( 21 αα , maximum mode II shear reduced factor βmax, etc. are input 

for a specific crack analysis application. 

 

Step 2:  The utility routine ELMVAR is called to retrieve element data (e.g. stresses σij, 

strains εij) from the MSC.Marc program’s internal data storage. ELMVAR is provided 

with the following information: element post code (icode); element number (m); 

integration point number (nn); layer number (kc) and requested variables (var). 

 

Step 3:  A further subroutine – STRM –was specially coded for this research to be called 

in the subprogram HYPELA in order to calculate the principal stresses and their direction 

cosines from the stress tensor 
⎥
⎥
⎥
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point. 
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In the subroutine STRM, the principal stresses and direction cosines at a Gauss point are 

calculated as follows (refer to Chen 1982): 

 

• Calculate the first invariant of the stress tensor: I1 = σ11 + σ22 + σ33           (4.1) 

 

• Calculate the mean normal stress: 13
1 Im =σ                            (4.2) 

 

• Obtain the stress deviator tensor 
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• Calculate the second invariant of the stress tensor: 
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• Calculate the third invariant of the stress tensor: 
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where θ is the angle of similarity. 

 

• Calculate the principal stresses: 
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• Set σ = σ1, solve 
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and 12
1

2
1

2
1 =++ nml ;                                           (4.9) 

 

The Cramer method in matrix algebra is adopted to obtain the direction cosines of the 

first principal stress to the global coordinates l1, m1 and n1. 

 

• Similarly, set σ = σ2 and σ = σ3 to obtain the direction cosines of the second and third 

principal stresses to the global coordinates l2, m2, n2 and l3, m3, n3 respectively.  

 

Step 4:  Check the crack initiation criterion (σ1 ≥ ft) for a Gauss point which has not 

cracked before. Also check new crack conditions for an existing crack at a Gauss point (σ1 

≥ ft, or whether the angle between the previous crack and the present crack at a Gauss 

point is greater than the threshold angle). For a Gauss point that has not cracked before, if 

the crack initiation criterion is met, then the point is assumed to be cracking. Otherwise, 

the point remains linear elastic. For an existing crack point, if either of the conditions is 

met, then a new additional crack is assumed at that point, at an angle to the previous crack.  

 

Step 5:  For the cracking points, using the direction cosines calculated from STRM, form 

the transformation matrix [ ]L21 NNN =  (see equations 3.9, 3.26 and 3.30 in Chapter III 

for 3-D, plane stress and plane strain application respectively) and transform the strains 

from global coordinates to local coordinates. 

 

Step 6:  Check the status of stress and strain at the cracking points to see if the crack is 

still opening, or unloading/reloading, or closing (see Figures 3.9 and 3.10). 

 

Step 7:  According to the different crack statuses, define the mode I stiffness modulus I
iD  

for crack opening, or crack unloading/reloading, or crack closing accordingly in 

 
 
 



98 

  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
III
i

II
i

I
i

cr
i

D
D

D
D

00
00
00

 for the constitutive matrix crD   (refer to equation 3.16 and 

Figures 3.9 and 3.10 in Chapter III). After that, form the constitutive relationship of 

equation 3.22. 

 

Step 8:  Transform the stresses and the stiffness matrix from local coordinates to global 

coordinates. 

 

In the subprogram, the transformation of stresses, strains and the stiffness matrix between 

the global and local coordinate systems is carried out using the following equations (4.13 

to 14.15): 

 

Transformation matrix R, in which l1, l2, l3, m1, m2, m3, n1, n2, n3 are the direction cosines 

of the axes defined in Tables 3-1 and 3-2 in Chapter III, is as follows: 

 

For 3-D analysis: 
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For 2-D plane stress analysis: 
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For 2-D plane strain analysis: 
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{ } [ ]{ }εε R=' ;      { } [ ] { }'1 εε −= R                                   (4.13) 

 

{ } [ ] { }σσ TR −=' ;     { } [ ] { }'σσ TR=                                   (4.14) 

 

[ ] [ ] [ ][ ] 1' −−= RKRK T ;   [ ] [ ] [ ][ ]RKRK T '=                                (4.15) 

 

Where { }'ε is the local strain vector;        { }ε is the global strain vector 

      { }'σ is the local stress vector;       { }σ is the global stress vector 

      [ ]'K is the local constitutive matrix;   [ ]K is the global constitutive matrix. 

 

Step 9:  Return to the main program – MSC.Marc. 

 

 The HYPELA subprogram developed has the overall organization for the coding process 

as shown in Figure 4.2.  

 

4.1.3  Possible numerical implementation problems 

 

In the implementation of the constitutive model, concrete fracture modelling problems 

could be encountered, such as snap-back, non-convergence or hour-glass modes. 

 

‘Snap-back’ behaviour (in which the deflection response decreases after peak-point 

loading) could occur in the strain-softening analysis of concrete structures (Rots & de 

Borst 1987). Normal direct displacement control, installed in general FE programs, was 

demonstrated as being inadequate in modelling this “dramatic” behaviour to get a fully 

converged solution after peak load (de Borst 1986). An indirect displacement control 

technique, developed by de Borst (1986) for snap-back behaviour, has proved to be 

successful. However, this technique could not be implemented in MSC.Marc due to the 
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limitations of the package. In general, the limitations of FE packages require a special 

solution strategy to solve snap-back problems. The implementation of such a solution 

strategy is demonstrated in verification case 2 in Chapter V. 

 

Non-convergence is a problem frequently encountered in highly non-linear analyses. The 

computation process is terminated at the stage where numerical difficulties, which can be 

caused by many factors (such as an ill-conditioned stiffness matrix or unstable crack 

propagation) cannot be overcome. 

 

A further potential problem in modelling the cracking of concrete is ‘hour-glass’ modes, 

which have been reported by several researchers (de Borst 1986; Rots & de Borst 1987). 

These are spurious zero-energy modes that could cause non-convergence by developing a 

singular, or nearly singular, global stiffness matrix. They are often encountered when 

using reduced integration, although full-integration elements are not free from this 

phenomenon. Mixed-mode softening (normal and shear softening) and multiple crack 

simulation are potential factors that could trigger hour-glass modes. 
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Figure 4.2 - Flow chart of the overall organization for coding the sub-program HYPELA  
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To save computer time, two groups of elements could be defined in the FE model: 

(1) elements that are not allowed to crack for the region where cracking under the given 

loadings is unlikely; and (2) elements which could possibly crack. The elements that could 

crack are called by the subprogram HYPELA, developed as explained above. The 

elements that are defined as not cracking are run as normal in MSC.Marc. The flow 

diagram in Figure 4.3 illustrates the implementation position of the subprogram HYPELA 

in the FE process of MSC.Marc. 
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Figure 4.3 - Flow diagram for finite element analysis process in MSC.Marc 
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4.2  Verification study with MSC.Marc and other specimens investigated in the past 

 
For the purpose of verifying the general application of the subroutine developed, it is 

logical to test the subroutine thoroughly on specimens that are fracture-sensitive.  

 

Prior to cracking, concrete is assumed to be linear elastic and isotropic until the maximum 

principal stress exceeds the material’s tensile strength. When this strength-based crack-

initiating criterion is violated, cracks form in the direction perpendicular to the maximum 

principal stress. The strain-softening process starts at those Gauss points by moderating 

the isotropic, linear elastic stress-strain stiffness matrix to the adopted cracking stress-

strain laws that have been selected for this testing purpose.  

 

Four cases – called specimens 1, 2, 3 and 4 using plane stress elements, are verified in this 

section. 

 

4.2.1  Built-in crack model in MSC.Marc for specimens 1 and 2 (with reference to MSC.Marc 

Volume A: Theory and User Information) 

 

MSC.Marc has a built-in cracking model that can be used to handle concrete and other 

low-tension material. The model can predict crack initiation and simulate tension 

softening, plastic yielding and crushing. The cracking model is built on the uniaxial stress-

strain diagram shown in Figure 4.4. 
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Figure 4.4 - Uniaxial stress-strain diagram 

 

In this model, a crack develops in a material perpendicular to the direction of the 

maximum principal stress if the maximum principal stress σ1 in the material exceeds a 

certain value σcr (see Figure 4.4 and Figure 3.1 in Chapter III). Linear tension softening, 

characterized by a descending branch as shown Figure 4.4, is then adopted. The shear 

modulus across the crack is reduced by a constant shear retention factor. This model is by 

nature an orthotropic model, similar to the mode I and II improved Rashid model (smeared 

model 3 in Chapter II). At a material point, a second crack can only form perpendicular to 

the first crack. 

 

An opened crack can close again if the loading is reversed. If crack closing occurs, it is 

assumed that the crack has the capability to carry full compressive stress. 

 
4.2.2  The smeared model adopted for specimens 1 and 2 

 

In Chapter II, all the major crack models are reviewed and elaborated on. The crack model 

adopted for this verification purpose is briefly as follows: 

 

Verification crack model (refer to smeared model 3 in Chapter II for a description of the 

mode). This model is used for verification purposes mainly for two reasons:  
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1. It is similar to the built-in crack model in MSC.Marc and can be used to validate the 

subprogram by comparing the results from the two methods. 

 

2. It has the general capacity to model mode I and II fracturing in concrete. 

 

4.2.3  The smeared crack model adopted for specimens 3 and 4 
 

The non-orthogonal, multi-directional crack models outlined in Chapter III that are 

implemented in the subprogram HYPELA are used to verify specimens 3 and 4 in this 

section.  

 

4.2.4  FE models benchmarked 
 

Four test specimens are designed or selected for the verification exercise. Due to the fact 

that the built-in crack model in MSC.Marc can only handle linear mode I softening and a 

constant shear retention factor β to account for the loss of shear modulus after cracks, only 

the elementary simple-tension specimens (specimens 1 and 2) are believed to be adequate 

for the verification of the subprogram in the application of basic NLFM analysis. The 

results obtained from the subprogram are compared with the related results from either the 

built-in elastic, linear softening crack model in MSC.Marc or those from past 

investigations. 

 

Description of the element type and solution method used for the verification  

 

For this verification, a four-node quadrilateral isoparametric element with bilinear 

interpolation is adopted. A full 2 x 2 Gauss integration (four integration points) rule is 

used for the computation of the element stiffness matrix (see Figure 4.5). All the 

specimens used for verification purposes in this section are modelled as plane stress 

elements. 

 

Each node in the element has two degrees of freedom (Ux, Uy), which results in a total of 

eight degrees of freedom in one single element. 
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Figure 4.5 - First-order plane stress element with full integration 

 

The element is formed by mapping from the x-y plane to the ξ, η plane. Both the mapping 

and the assumed displacement function take the form: 

 

x =  a0  +  a1 ξ  +  a2 η  +   a3 ξ η                                         (4.16) 

 

y =  b0  +  b1 ξ  +  b2 η  +   b3 ξ η                                         (4.17) 

 

Either the coordinate or the displacement function can be expressed in terms of the nodal 

quantities by the interpolation functions. 
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The full Newton-Raphson method is adopted for the solution of the stiffness formulation.  

 

An adapted stepping procedure is adopted to automatically adjust the step time in the 

increment. 

 

Convergence: the relative residual criterion is used with the default tolerance Tol = 0.01 

(see equation A.15) 

 

 Description of the test specimens used for the verification 

 

Un-reinforced concrete structures are the most fracture-sensitive. Plain concrete uniaxial 

tension specimens are probably more sensitive to fracture than any other type. For this 

reason, the following four plain concrete specimens are believed to provide a good test for 

the fracture sensitivity of the FE crack models.  

 

1). Specimen 1 (tension specimen with one side fixed and node displacements applied at 

the other end – Figure 4.6). This model is considered for the purpose of checking the 

accuracy of the stress-update procedure in the subprogram.  

 

The crack directions are fixed after the cracks have formed. Three mode I linear softening 

moduli Es of 2 000, 20 000 and 50 000 MPa are adopted to test the sensitivity of the 

subprogram to the mode I softening parameters. An arbitrary non-zero shear retention 

factor β is selected to stabilize the numerical solution as the β value will not influence the 

response of this pure tensile fracture mode I analysis. The built-in crack model in 

MSC.Marc is also run for the same crack parameters for this verification purpose. 

 

The material properties and crack softening parameters are shown in Figure 4.6. 

 

An increase in node displacements is applied gradually up to the maximum value and then 

gradually released to zero as shown in Figure 4.7. 
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Figure 4.6 - FE model and model input  (specimen 1) 

 

 

 

 

 

 

 

 

 

Figure 4.7 - Applied displacement load vs. time (specimen 1) 

 

2). Specimen 2 (tension specimen of four elements fixed at one end and node 

displacements applied at the other end – Figure 4.8). This model was designed to further 

test the subprogram developed for correct stress-strain interaction between the cracked 

element and neighbouring uncracked elements. Only one element adjacent to the fixed 

boundary is allowed to soften, as shown in Figure 4.9.  

 

Similar to specimen 1, the crack directions are fixed after the cracks have formed. Three 

mode I linear softening moduli Es of 2 000, 5 000 and 20 000 MPa are adopted to test the 

sensitivity and correctness of the program to the mode I softening parameters. Again, an 

arbitrary non-zero shear retention factor β is selected only to stabilize the numerical 

solution as the β value will not influence the response of this pure tensile fracture mode I 

Node 2
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0 

m
m

 

Young’s modulus E = 20 000 MPa 

Poisson’s ratio υ = 0 

Tensile strength ft = 1.2 MPa 

Shear retention factor β = 0.2 (arbitrary) 

Applied node displacement = 0.0008 mm 
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analysis. The built-in crack model in MSC.Marc is also run for the same crack parameters 

for this verification purpose. 

 

The material properties and crack softening parameters are shown in Figure 4.8. 

 

An increase in node displacements is applied gradually up to the maximum value and then 

gradually released to zero, as shown in Figure 4.10. 

 

 
Figure 4.8 - FE model – beam of four elements (specimen 2)  

 

 

 

 

 

 

 

 

 

Figure 4.9 - Only one element softening      Figure 4.10 - Applied load vs. time 

          (specimen 2)                          (specimen 2) 

 

3). Specimen 3 (tension specimen fixed at one end and pulled by node displacements at 

the other end). This specimen has the same model size (2 mm x 10 mm), the same material 

properties and the same boundary conditions as Specimen 2. As widely reported (de Borst 
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Young’s modulus E = 20 000 MPa 

Poisson’s ratio υ = 0 

Tensile strength ft = 1.2 MPa 

Shear retention factor β = 0.2 (arbitrary) 

Applied node displacement = 0.0021 mm 
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1986), local softening constitutive modelling of concrete could cause mesh-dependent 

results and even snap-back behaviour if the FE mesh is discretized differently for the same 

model. This non-objectivity regarding the mesh size could be eliminated if the non-local 

formulation, or the fracture energy based NLFM by adjusting the slope of the softening 

branch according to the magnitude of the fracture energy, is introduced into the 

constitutive model. This specimen is used to demonstrate that the phenomenon reported 

previously by de Borst (1986) can be modelled by the subprogram developed if the 

constitutive law is not adjusted according to the element size or other factors. The analysis 

of this specimen is designed to test the post-peak mesh-dependent problem existing in 

material fracture. The strain-softening constitutive relationship is shown in Figure 4.11.  

The ultimate strain u
nε  is assumed to be four times the strain e

nε  at the tensile strength. The 

shear retention factor β is arbitrarily assumed to be 0.2 as its value would not affect the 

results of this pure-tension specimen. The various subdivisions of the specimen are shown 

in Figures 4.13 to 4.17. In each case only the element on the left adjacent to the fixed 

boundary is allowed to crack. 

 

The loading of node displacements is applied gradually up to the maximum value, as 

shown in Figure 4.12. 

 

 

 

 

 

 

 

 

 

Figure 4.11 - Strain-softening diagram (specimen 3) 

Young’s modulus E = 20 000 MPa 

Poisson’s ratio υ = 0 

Tensile strength ft = 1.2 MPa 

Shear retention factor β = 0.2 (arbitrary) 

Applied node displacement = 0.0021 mm 

Softening modulus Es = -6 666.67 MPa 
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          Figure 4.12 - Applied load vs. time (specimen 3) Figure 4.13 - Scenario 1: One element  

 

 

 

 

 

 

 

 

 

 Figure 4.14 - Scenario 2: Two elements       Figure 4.15 - Scenario 3: Three elements 

 

 

 

 

 

 

 

 

 

Figure 4.16 - Scenario 4: Four elements       Figure 4.17 - Scenario 5: Five elements  

 

4). Specimen 4 (A simple pure-tension specimen subjected to a constant stress field). 

A specimen (supported at one end, pulled at the other end – see Figure 4.18) of the unit 

thickness analyzed previously by Bhattacharjee & Leger (1993) is adopted to validate the 
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numerical implementation of the cracking model. This simple case is useful to confirm that 

the stress-strain response corresponds exactly to that of the material model. The FE model 

and the material properties are taken as the same as in the analysis of Bhattacharjee & 

Leger (1993) and are shown in Figure 4.18.  For comparison purposes, a linear strain 

softening (see Figure 4.19) is selected and only the two elements at the fixed boundary are 

allowed to crack (see Figure 4.21).  An arbitrary non-zero shear retention factor β is 

selected to stabilize the numerical solution since the β value will not influence the 

response of this mode I fracture analysis.  

 

The loading of node displacements is applied gradually up to the maximum value, as 

shown in Figure 4.20. 

 

 
Figure 4.18 - FE model – beam of 16 elements (specimen 4) 

 

 

 

 

 

 

 

 

 

Figure 4.19 - Strain-softening diagram       Figure 4.20 - Applied load vs. time 

          (specimen 4)                          (specimen 4) 
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Young’s modulus E = 20 000 MPa 

Poisson’s ratio υ = 0 

Tensile strength ft = 2.0 MPa 

Fracture energy  Gf = 0.04 N/mm 

Softening modulus Es = -1 333.33 MPa 

Thickness = 1.0 mm 

Applied node displacement = 0.04 mm 
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Figure 4.21 - Only the elements adjacent to rigid boundary softening (specimen 4) 

 

4.2.5  Discussion of results of the verification 
 

The results from the four specimens analyzed are shown and discussed in this section. 

 

Specimen 1. As seen from the following plots (Figures 4.22 to 4.24) of different softening 

moduli of 2 000, 20 000 and 50 000 MPa, the results from HYPELA are in very good 

agreement with those from the built-in crack model in MSC.Marc. This preliminary study 

shows that the subprogram HYPELA is capable of simulating cracking in this very simple 

one-element model.  
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Specimen1: Strain softening modulus (-2000 MPa) 
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Figure 4.22 - Stress-strain plots for softening modulus Es = -2 000 MPa (specimen 1) 

Specimen1: Strain softening modulus (-20000 MPa) 
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Figure 4.23 - Stress-strain plots for softening modulus Es = -20 000 MPa (specimen 1) 
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Specimen1: Strain softening modulus (-50000 MPa) 
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Figure 4.24 - Stress-strain plots for softening modulus Es = -50 000 MPa (specimen 1) 

 

Specimen 2. The following stress-strain plots (Figures 4.25 to 4.27) of node 2 (shown in 

Figure 4.8) for different softening moduli of 2 000, 5 000 and 20 000 MPa show that the 

results from HYPELA are in excellent agreement with those from the built-in crack model 

in MSC.Marc. This again shows that the subprogram HYPELA is capable of simulating 

cracking in this four-element model.   
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Specimen2: Strain softening modulus (-2000 MPa)
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Figure 4.25 - Stress-strain plots (softening modulus Es = -2 000 MPa) (specimen 2) 

 

Specimen2: Strain softening modulus (-5000 MPa)
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Figure 4.26 - Stress-strain plots (softening modulus Es = -5 000 MPa) (specimen 2) 
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Specimen2: Strain softening modulus (-20000 MPa) 
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Figure 4.27 - Stress-strain plots (softening modulus Es = -20 000 MPa) (specimen 2) 

 

Specimen 3. The model shows that when one element is cracking, the other elements are 

unloading correctly. Figure 4.28 shows that after the assumed tensile strength ft = 1.2 MPa 

has been reached, as the FE model is meshed with an increasing number of elements, the 

averaged horizontal strain of the model decreases until a value of zero averaged strain 

increment is obtained when the model is meshed with four elements. This four-element 

model of zero averaged strain increment corresponds to the linear strain-softening modulus 

chosen, which has an ultimate strain u
nε  four times the strain at the tensile strength (refer 

to Figure 4.11). If the number of elements in the model is greater than four, the snap-back 

phenomenon appears. In other words, as the model is discretized with more and more 

elements (up to five elements), the averaged strain of the model is gradually decreased and 

even snapped back as indicated by de Borst (1986).  
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Specimen3: Strain softening modulus (-6666.67 MPa)
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Figure 4.28 - Averaged strain for different numbers of elements in the model (specimen 3) 

 

Specimen 4. This simple, pure-tension beam was designed for the verification of mode I 

(opening) concrete fracture, which is widely regarded to be the dominant mode for most 

concrete structures. The calculated force-displacement response is shown in Figure 4.29 

demonstrating very close agreement with the results of Bhattacharjee & Leger (1993) and 

further validating the numerical implementation of HYPELA for the crack models 

adopted. 
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 Figure 4.29 - Force-displacement response (specimen 4) 

 
 
4.3  Verification study with DIANA 

 

The commercial general-purpose FE program DIANA (DIANA 1998) is a well-known 

code for non-linear crack analysis. Three cracking-verification cases in DIANA are 

selected to further benchmark the subprogram HYPELA.  

 

Second-order plane strain elements with four integration points are used in this 

verification study (Figure 4.30).  
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Figure 4.30 - Second-order plane strain element  

 

The specimens are fixed on one side and pulled at the other side by a horizontal 

deformation δx = 1.0E-4, which is multiplied by a factor of f, as shown in Figure 4.31.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 - Boundary and loading  

 

The purpose of these case verifications is to check the consistency of the crack status, 

crack strain and total stress for the integration point P after each loading step.  
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4.3.1  Cracking with linear tensile softening – plane strain (called PET1CR in DIANA) 
 

Smeared cracking with linear tension softening and full shear retention are applied. The 

loading is deformation, applied in six steps up to f = 41,1. The results shown in 

Figure 4.32 indicate that the proposed smeared crack model coded in the subprogram 

HYPELA produces the same results as those from DIANA.  
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Figure 4.32 - Crack stress and crack strain response (PET1CR)  

 
 
4.3.2 Cracking with bilinear tensile softening – plane strain (PET2CR) 

 
Smeared cracking with bilinear tension softening and full shear retention are applied. The 

loading is deformation, applied in six steps up to f = 41,1. The results in Figure 4.33 show 

that the HYPELA subprogram produces the same results as those from DIANA. 
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PET2CR - Bilinear softening 
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Figure 4.33 - Crack stress and crack strain response (PET2CR)  

 

4.3.3  Cracking with alternating loading – plane strain (PECLOP) 
 

Smeared cracking with linear tension softening and full shear retention are applied. The 

loading is deformation, applied in ten alternating steps, as shown in Figure 4.34. The crack 

closes and reopens due to the alternating loading. The results shown in Figure 4.35 

indicate that the HYPELA subprogram developed in this chapter can correctly model 

crack closing and reopening.  
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Figure 4.34 - Loading factor f at steps (PECLOP)   
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PECLOP - Linear softening 
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Figure 4.35 - Crack stress and crack strain response (PECLOP)  

 

4.4  Concluding remarks 

 

Incorporated into the commercial general-purpose FE program MSC.Marc, a subprogram 

called HYPELA has been coded to model the non-linear cracking process in concrete, 

using the smeared crack models developed previously for constitutive stiffness 

adjustment. For the plane stress elements, the subprogram was thoroughly benchmarked 

and verified in the four chosen FE models (mode I), either specially designed for this 

verification purpose or previously numerically tested. The HYPELA subprogram was 

further verified using plane strain elements, which showed good correlation with DIANA.  

 

Based on this first-stage benchmark exercise, which was intended to test the 

implementation procedure on elementary, simple specimens, the subprogram developed 

for this research can be used with confidence for further validation on more complicated 

concrete cracking structures, including concrete gravity dams, and eventually for the 

constitutive cracking analysis of a real concrete dam. 

 

The crack model outlined in Chapter III will also be used to benchmark and validate the 

crack models and the numerical implementation procedure in the analysis of mode I and 

mixed-mode concrete beams in Chapter V and in the analysis of concrete gravity dams in 

Chapter VI. The benchmark studies in Chapters V and VI are more detailed and 
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complicated for the purpose of thoroughly testing the versatility of the coded subprogram. 

Eventually, the crack models and numerical techniques that have been developed will be 

applied in the cracking analysis of a real gravity dam in South Africa and in the evaluation 

of the safety of the dam. 
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CHAPTER V  - STATIC FRACTURE ANALYSIS OF CONCRETE STRUCTURES 

 

5.1 Introduction 

 

In Chapter IV, the implementation of the crack model (subprogram) on simple 

pure-tension specimens was preliminarily validated. These pure-tension members are only 

subject to the mode I fracture response and the directions of crack propagation are fixed 

and a priori known. Thus a fixed, single-crack model can be accurately employed to 

simulate the fracture behaviour. The validation exercise is extended in this chapter to 

mode I and mixed-mode fracture simulation of more complicated concrete structures, such 

as a three-point, single-notched, centrally loaded beam and a four-point, single-notched 

shear beam.  

 

A three-point, single-notched, centrally loaded beam is first adopted to benchmark the 

proposed bilinear mode I tensile softening diagram and the related numerical 

implementation. The specimen is mode I dominant because no shear fracture deformation 

would occur in this specimen due to the symmetry of the geometry and the loading 

conditions. Therefore, a fixed, single-crack model is sufficient to simulate the fracture 

process in such a specimen.  

 

A well-investigated, single-notched shear beam under four-point, mixed-mode static 

loading conditions is further used to validate the crack model adopted with study of the 

fracture parameters. 

 

Mesh objectivity is definitely both a requirement and a necessity for any crack model 

proposed for finite element (FE) fracture analysis in any sensible fracture evaluation of 

concrete structures. For this reason, three differently meshed FE models of the same 

geometry were considered to test the objectivity regarding the mesh discretization of the 

crack model adopted and the numerical technique developed. 

 

All the models of the following three verification problems employ plane stress, and are 

four-noded and four-Gauss point isoparametric elements, with the exception of the 

second-order, eight-noded nine-Gauss point isoparametric elements used in case 3 for the 
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validation of the crack models and the implementation on second-order elements. 

A modified Newton-Raphson solution procedure is adopted. 

 

5.2 Case 1: three-point, centre-loaded, single-notched beam  

 

A symmetrical centre-notched concrete beam under three-point bending (two supports and 

a midpoint load) is used to validate the implementation of the cracking model with a 

parametric study. The beam has a length of 838 mm, a span of 788 mm and a cross-section 

of 102 mm x 102 mm. The notch:depth ratio (a/d) is 0.5. Malvar & Fourney (1990) carried 

out 12 experimental tests and also a numerical simulation on the beam.  

 

The beam is symmetrical along its centreline so that only half the beam (as modeled by 

Malvar & Fourney 1990) needs to be modelled in the FE analysis, as shown in Figure 5.1. 

The material properties used are as follows: 

 

 
Linear, bilinear and non-linear exponential strain-softening branches are used to 

investigate the cracking behaviour of the beam, as shown in Figure 5.2. This symmetrical 

specimen is not sensitive to shear softening since the crack propagates along the centre of 

the beam. No shear deformation would occur in the crack formation zone. Numerical 

studies are compared with the experimental results from Malvar & Fourney (1990), as 

shown in Figure 5.3.  

 

Cornelissen et al. (1986) conducted a series of tests to determine the crack-softening 

characteristics of normal-weight concrete and proposed an empirical formula obtained by 

curve fitting the test data: 
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                      (5.1) 

Young’s modulus E = 21 700 MPa;   Tensile strength ft = 3.1 MPa  

Poisson’s ratio υ = 0.2;            Fracture energy Gf = 0.0763 N/mm  

Crack characteristic length hc = 10 mm (width of element at the crack) 
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Where C1 = 3, C2 = 6.93, δ  is the crack opening and 0δ  is the crack opening at which the 

crack stress can no longer be transferred. This stress-crack opening relationship in 

equation (5.1) is transformed into a crack stress-strain law for this study, as shown in 

Figure 5.2. 

 

As shown in Figure 5.3, the calculated linear softening response (labelled as LS) yields the 

highest peak loading of all the softening relationships. This indicates that if linear 

softening is assumed when concrete fracture is modelled, then the resistance of the 

structure will be overestimated. The calculated non-linear softening response based on the 

experimental softening relationship derived by Cornelissen et al. (1986) (labelled as CS), 

yields the closest load-displacement relationship to the experimental results.   

 

The bilinear softening models (labelled as BLS) improve the response significantly when 

compared with the linear softening model. Therefore, the bilinear softening model is able 

to provide a reasonably accurate prediction of the cracking response, while remaining 

relatively simple to implement. The investigation demonstrates the importance of adopting 

bilinear softening analysis in concrete structures, instead of the general application of 

linear softening in concrete cracking analysis used in the past. Although Cornelissen et 

al.’s exponential non-linear softening relationship remains the most accurate, it requires 

greater effort to implement in an FE analysis compared with the simpler bilinear softening 

model. 

 

A series of constitutive parameters for bilinear softening curves was investigated for the 

purpose of calibrating the correct range of shape parameters 1α  and 2α  for concrete 

structures.  

 

A parameter study was conducted to determine the bilinear softening model parameters 

1α  and 2α  that best fit the experimental response. The results of the parameter study are 

shown in Figures 5.2 to 5.7, in which it can be seen that by setting the bilinear shape 

parameters 1α  to between 1/3 and 0.44 and 2α  to 0.1 respectively, good agreement with 

the experimental results can be obtained. 
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By selecting 2α  as constant and equal to 0.1, and setting 1α  to 0.25, 1/3 and 0.44, it can 

be seen that the first part of the bilinear softening modulus becomes steeper as 1α  

increases (see Figure 5.2), while the predicted response improves when compared with the 

experimental results (Figure 5.3). 

 

From Figures 5.5 and 5.7, in which 1α  is fixed at 0.25 and 1/3 respectively (see Figures 

5.4 and 5.6), while 2α  is varied from 0.1 to 0.3, it can be seen that as 2α  decreases from 

0.3 to 0.1, the first part of the bilinear softening modulus becomes steeper and the second 

part of the bilinear softening branch becomes flattener (see Figures 5.4 and 5.6), while the 

predicted response improves. It is concluded that the first part of the bilinear softening 

modulus is of greater importance than the second part, although it is the combination of 

the bilinear shape parameters 1α  and 2α  that determines the complete softening 

response. It is important to note that the particular values of 1α  and 2α  would depend on 

the concrete mix of the particular structure and need to be carefully determined 

experimentally. 

 

Compared with the numerical investigation by Malvar & Fourney (1990), this study has 

produced a better simulation of the experiment results. 

 

It is evident that the cracking model and the calculation procedure can accurately predict 

the cracking behaviour of concrete, provided a suitable softening response is adopted. 
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Figure 5.1 - Finite element model (Case 1) 

Figure 5.2 - Linear, bilinear and non-linear strain softening 
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Figure 5.4 - Bilinear strain softening with 1α  = 0.25 and 2α = 0.1, 0.2 and 0.3 

Figure 5.3 - Load-load point deflection for strain-softening branches in Figure 5.2 
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Figure 5.6 - Bilinear strain softening with 1α  = 1/3  and 2α = 0.1, 0.2 and 0.3 

respectively  

Figure 5.5 - Load-load point deflection for strain-softening branches in Figure 5.4 
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5.3 Case 2: single-notched shear beam  

 

A single centre-notched shear beam, loaded at points A and B and supported at two points 

at the bottom, is shown in Figure 5.8. The generality and accuracy of the crack model and 

the code developed are to be investigated. The beam has been tested experimentally by 

Arrea & Ingraffea (1981) and is widely used as a benchmark for numerical fracture 

analysis models (Rots & de Borst 1987; Bhattacharjee & Leger 1994). 

 

The FE model is shown in Figure 5.8 and the material properties and constitutive 

parameters are as follows.  

 

 

Young’s modulus E = 24 800 MPa;   Tensile strength ft = 2.8 MPa  

Poisson’s ratio υ = 0.18;           Fracture energy Gf = 0.1 N/mm 

Thickness of the beam = 156 mm     Bilinear shape parameters 1α  = 1/3 and 2α  =0.2 

Crack characteristic length hc = 13.5 mm 

Figure 5.7 - Load-load point deflection for strain-softening branches in Figure 5.6 
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During laboratory testing the load was applied to the specimen by means of a stiff steel 

beam, ACB. Since the steel beam is statically determinate, the ratio between its reactions 

at A and B (acting on the concrete beam) and the applied load can be easily determined. 

The load in this study was therefore applied directly to the concrete beam at A and B, 

using the same ratios as in the laboratory test. The crack opening is measured as a crack 

mouth sliding displacement (CMSD) and a crack mouth opening displacement (CMOD), 

as defined in Figure 5.13.  

 

Snap-back behaviour has been modelled numerically by several researchers (Rots & 

Blaauwendraad 1989; Rots & de Borst 1987; Bhattacharjee & Leger 1994), using an 

indirect displacement control strategy with the CMSD as controlling parameter. Due to the 

limitations in the FE package, which lacks the mechanism for an indirect displacement 

control solution, the author had to resort to a manual solution procedure. A peak load was 

firstly obtained by identifying the load beyond which the beam experienced unstable 

cracking and the solution was unable to converge. Subsequently, manual unloading 

beyond the peak load is achieved by defining the unloading path. It should be noted that 

the CMSD response of the beam is sensitive to the unloading path, which explains why 

CMSD was adopted to control the applied load directly or indirectly in the experimental 

and numerical investigations carried out by other researchers. 

 

Three solutions are presented: two linear softening models (labelled as LS) with β = 0.05 

and 0.1 respectively, and one bilinear softening model with β = 0.05 (labelled as BLS). 

A comparison with the experimental results for the load – CMSD response is shown in 

Figure 5.9. In the post-peak regime, the results of the linear softening model with β = 0.1 

fall outside the range of the experimental results, producing a less accurate post-peak 

response than the other two solutions. The results of the bilinear softening model are well 

within the experimental scattering range and show a significant improvement over the 

linear softening solutions. It is also observed that the CMSD response is very sensitive to 

the shear-softening parameters selected for this specimen due to the mixed-mode fracture. 

The numerical results agree well with the results of other researchers. 

 

The load–crack mouth opening displacement (CMOD) response obtained in this study, 

together with the results from Rots & de Borst (1987) (labelled as R&D 1987), are shown 

 
 
 



134 

  

in Figure 5.11. It must be noted that a mode I fracture energy of 0.1 N/mm is used in this 

investigation (for the purpose of comparison with other investigations) whereas a fracture 

energy of 0.075 N/mm was adopted by Rots & de Borst (1987). Most past investigations 

have adopted a mode I fracture energy of 0.1 N/mm such as Bhattacharjee & Leger (1994) 

and Rots & Blaauwendraad (1989) and others. For comparison with the results from the 

more available past investigations (mainly to compare with the work done by 

Bhattacharjee & Leger 1994), a mode I fracture energy of 0.1 N/mm was also adopted in 

this research. This is the main reason for the post-peak CMOD response of this 

investigation being slightly higher than those from Rots & de Borst (1987). In general, 

however, good agreement has been achieved. 

 

As pointed out by Rots & de Borst (1987), the beam responded in both mode I and II 

fracture propagations, with mode I being the main fracture mechanism in this application. 

This is confirmed by the ultimate CMOD response being approximately twice the 

corresponding CMSD response. 

 

The load-vertical displacement response at point C obtained in this study for the three 

cases mentioned above, together with the results from Rots & Blaauwendraad (1989) 

(labelled as R&B 1989) and Bhattacharjee & Leger (1994) (labelled as B&L 1994), are 

shown in Figure 5.10. The deflection at point C is obtained from the deflections at points 

A and B by assuming that the steel beam ACB used in the experimental test was infinitely 

stiff. Good agreement with the results obtained by Rots & Blaauwendraad (1989) and 

Bhattacharjee & Leger (1994) is exhibited for the snap-back behaviour. A mode I fracture 

energy of 0.1 N/mm was selected in the latter two references (Rots & Blaauwendraad 

1989; Bhattacharjee & Leger 1994).  

 

The final crack zone and the deformed shape of the beam are shown in Figures 5.12 and 

5.13. Figure 5.12 demonstrates that there is some discrepancy between the smeared cracks 

and the crack profile observed in the test. As shown in Figures 5.9 to 5.11, the post-peak 

structural resistance does not reduce to zero, indicating that stress-locking (which is 

inherent in smeared crack models) is present. This phenomenon was also observed in the 

other investigations using smeared crack models (Rots & Blaauwendraad 1989; 

Bhattacharjee & Leger 1994). 
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Figure 5.8 - Finite element model (Case 2) 

Figure 5.9 - Load – CMSD 
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Figure 5.10 - Snap-back in load – deflection at point C  

Figure 5.11 - Load – CMOD 
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Figure 5.12 - Crack profiles 

Figure 5.13 - Predicted deformation 
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5.4 Case 3: mesh objectivity and second-order elements validation  

 

A single-notched, three-point loaded beam is used to validate the mesh objectivity of the 

FE analysis of concrete fracture and the use of second-order elements for the 

implementation of the cracking model. This specimen was tested experimentally by 

Bažant & Pfeiffer (1987) and numerically investigated by Bhattacharjee & Leger (1993). 

 

The material properties are adopted from Bhattacharjee & Leger (1993) and are listed 

below. The specimen is shown in Figure 5.14. Linear strain softening is selected for 

comparison purposes. Shear softening does not influence the peak load in this specific 

application in which mode I fracture propagation is dominant. 

 

 
The crack characteristic length hc is dependent on the size of the elements at the crack in 

the different FE models used. 

 

Three FE models with 6, 12 and 24 elements through the depth of the beam are created for 

the mesh objectivity study, as shown in Figures 5.15 to 5.17 (namely model 1). The three 

FE models in Figures 5.15 to 5.17 are also modelled by the eight-noded, second-order 

elements with full integration for the purpose of verifying the crack models implemented 

with high-order elements. 

 

The loads 0P  required to cause a crack-tip tensile stress equal to the tensile strength tf  are 

determined using elastic bending theory and are given in Table 5.1 for the three FE 

models. The peak loading resistances uP  from the analyses for each of the three FE 

models are also shown in Table 5.1. Figure 5.18 compares the experimental results, the 

conventional elasto-brittle strength-based fracture analysis (labelled as SBM) and the 

numerical analysis done by Bhattacharjee and Leger (1993) (labelled as B&L 1993), by 

plotting the 
0P

Pu  ratio versus the mesh fineness. Also shown in Figure 5.18 are the results 

Young’s modulus E = 27 413 MPa;   Tensile strength ft = 2.886 MPa  

Poisson’s ratio υ = 0.18;           Fracture energy  Gf = 0.04029 N/mm 

Thickness of beam = 38.1 mm;      Depth of beam d = 304.8 mm 
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from this research (labelled as LS), which appear to be mesh objective since the fineness 

of the mesh has practically no influence on the predicted response, unlike the SBM 

analyses. The difference in results between the strain-softening models and the 

experimental findings, as explained by Bhattacharjee and Leger (1993), stems from the 

fact that the constitutive model parameters had to be assumed since they were not 

available from the experimental results. 

 

The peak loading resistance uP from the analyses of the three FE models of the second-

order elements and the related 
0P

Pu  ratio are shown in Table 5.2. 

 

The results from the first-order element models and the second-order element models for 

the three different mesh finenesses in Figures 5.15 to 5.17 are compared in Figure 5.19. It 

is clear that the analyses based on the implemented crack models are objective with regard 

to the different order elements used. 

 

 

 

Mesh fineness (number of elements 

through the depth) 
0P  

(kN) 

uP  

(kN) 0P
Pu  

Coarse mesh – 6 elements 6.65 7.304 1.098 

Medium mesh – 12 elements 6.42 7.064 1.100 

Fine mesh – 24 elements 6.31 6.936 1.099 

 

TABLE 5.1 - Loads from elastic bending theory and FE analyses for different mesh 

 finenesses – first-order elements
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Mesh fineness (number of elements

through the depth) 
0P  

(kN) 

uP  

(kN) 0P
Pu  

Coarse mesh – 6 elements 6.65 7.330 1.102 

Medium mesh – 12 elements 6.42 7.036 1.096 

Fine mesh – 24 elements 6.31 6.860 1.087 
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Figure 5.14 - Geometric configurations and boundary conditions  

TABLE 5.2 - Loads from elastic bending theory and FE analyses for different mesh

 finenesses – second-order elements 
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Figure 5.15 - Coarse model 1 – 6 elements in depth

Figure 5.16 - Medium model 1 – 12 elements in depth 
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Figure 5.17 - Fine model 1 – 24 elements in depth 

Figure 5.18 - Comparison of mesh objectivity (models 1) 
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The above mesh objectivity verification analyses have the following limitations: 

 

• The width of the notch in the three meshes is not fixed but varies with the element 

size used in the mesh. 

• The loadings in the three mesh models are not applied at the same distance to the 

centreline of the models, but vary with the element size used. 

 

Therefore, a further mesh objectivity study was carried out to eliminate the above-

mentioned limitations. The following three mesh models (namely model 2) (see Figures 

5.20 to 5.22) are created in this study based on the same beam configurations. All the 

material properties and boundary conditions are the same as above. The only difference 

between these three mesh models (Figures 5.20 to 5.22) and those in the previous mesh 

objectivity study (Figures 5.15 to 5.17) is that the position of the loadings and the width of 

the notches are kept the same in order to achieve the aim of this mesh objectivity 

verification.   

 

Figure 5.19 - Comparison of element objectivity (models 1) 
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Figure 5.20 - Coarse model 2 – 6 elements in depth 

Figure 5.21 - Medium model 2 – 12 elements in depth  
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The results of the analyses are shown in Figure 5.23 in which it can be seen that the crack 

analysis method and procedures developed can be regarded as mesh objective. Different 

meshes only result in a maximum discrepancy of approximately 7% in the result of the 

0P
Pu  ratio. 

 

It can be concluded from the verification studies on mesh objectivity that the proposed 

crack model and the numerical technique developed achieve the goal of mesh objectivity.   

 

 

 

Figure 5.22 - Fine model 2 – 24 elements in depth  
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5.5 Conclusion 

 

In this chapter, a comprehensive study on the versatility and accuracy of implementation 

of the proposed smeared crack FE model, based on non-linear fracture mechanics for 

concrete structures, has been carried out for the purpose of eventually applying the 

constitutive model in predicting the crack behaviour of concrete dams and in evaluating 

dam safety. 

 

A three-point, single-notched beam was considered for the comparative study on linear, 

bilinear and non-linear experimental curved softening, with experimental load-deflection 

relationships. The parametric bilinear shape study shows that if 1α  and 2α  are set in the 

vicinity of 1/3 and 0.1 respectively, which is a good approximation to the experimental 

non-linear softening curve of Cornelissen et al. (1986), very good numerical results are 

obtained compared with the results of the experiment. It can be concluded that a bilinear 

softening analysis yields significantly better results than the linear softening solutions 

mostly adopted in concrete cracking analysis, and that it can be applied with confidence in 

the fracture analysis of concrete structures. 

Figure 5.23 - Comparison of mesh objectivity  (models 2) 
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Normal and shear stress field prevailingly exists in concrete structures. Therefore, it is 

very important to validate the adopted numerical procedure in mixed mode application. A 

mixed-mode fracturing beam were analysed with the results demonstrating that bilinear 

mode I softening is superior to the linear strain softening. 

 

The mesh and element-order objectivity of the numerical method developed was observed 

in the analysis of a three-point, single-notched beam. 

 

Based on these case studies, the following conclusions are drawn: 

 

• The crack model is valid for both mode I and mixed-mode fracture analysis. 

• The proposed bilinear softening model remains relatively simple to implement, but 

significantly improves the prediction of the softening response. 

• The proposed method is mesh objective and could overcome problems such as 

non-convergence and snap-back. 

• The proposed method is element-order objective. 
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CHAPTER VI - STATIC FRACTURE ANALYSIS OF CONCRETE GRAVITY DAMS 

 

6.1   Introduction 

 

In the preceding chapter, Chapter V, small-scale concrete structures of beams were 

analyzed under mode I or mixed-mode fracture loadings. It is necessary to verify the 

localized strain-softening constitutive models and the program developed on large-scale 

structures, such as concrete gravity dams, before the crack analysis method developed here 

is eventually applied for evaluating the safety of a real concrete gravity dam subjected to 

cracking. 

 

Due to the low tensile resistance of concrete, cracking in concrete dams is a common 

phenomenon. Accurate prediction and evaluation of the crack propagation trajectory, and 

of the structural response due to rising water levels, are very important and necessary to 

establish safety of a dam. Concrete gravity dams are, in general, subjected to both flexure 

and shear loadings, which would induce mixed-mode fracturing. This co-existence of 

mode I tensile strain softening and mode II shear strain softening influences the prediction 

of the structure’s fracture resistance. 

 

The objective of this chapter is to investigate the applicability of the crack models to large 

concrete structures, such as concrete gravity dams, and to validate the results using past 

experimental and numerical investigations. 

 

Firstly, a model of a concrete gravity dam scaled down to 1:40, tested and numerically 

analyzed by Carpinteri et al. (1992), Bhattacharjee & Leger (1994) and Ghrib & Tinawi 

(1995), is analyzed to determine its fracture-development response. Thereafter, analyses 

on full-scale gravity dams, an 80-m-high “benchmark” dam adopted by Network Integrity 

Assessment of Large Concrete Dams (NW-IALAD 2005) and the existing 103-m-high 

Koyna Dam, are carried out for the purpose of comparing the structural results and the 

crack profiles with those of other published research. 
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6.2   Model concrete dam 

 

A scaled-down 1:40 model concrete gravity dam tested by Carpinteri et al. (1992) is 

considered to validate the crack model and implementation procedure. The model had a 

pre-assigned horizontal notch on the upstream face at 1/4 of the height and was subjected 

to a lateral loading which simulated the hydrostatic pressure (shown in Figure 6.1). 

 

A plane stress finite element (FE) model with four-noded, full integration elements with a 

thickness of 30 cm (the same as used by Bhattacharjee & Leger 1994) has been adopted. 

A fixed boundary condition is applied along the bottom line of the model. Four 

concentrated loads, with different percentages of the total applied force, are applied 

directly to the upstream wall (shown in Figure 6.1) similar to the experiment.  

 

The geometric dimensions, material properties and fracture parameters used in this 

verification are listed in Table 6.1. 

 

TABLE 6.1 - Model parameters (model dam) 

Dimensions of the model (m) Constitutive parameters 

Dam height 2.55 Young’s modulus E  (MPa) 35 700 

Crest width  0.248 Poisson’s ratio  ν   0.1 

Bottom width  2.0 Mass density  (kg/m3) 2 400 

Notch/depth ratio 0.2 Tensile strength  ft  (MPa) 3.6 

Thickness of the model 0.3 Fracture energy  Gf  (N/m) 184 

  Crack characteristic length hc  (mm) 80 

  Maximum shear retention factor  βmax 0.1 

  Threshold angle  30o 

 

In the experiment, the crack mouth opening displacement (CMOD) was used as a control 

parameter to monitor and adjust the applied load. As stated in Section 5.3 in Chapter V, 

the main program – MSC.Marc cannot carry out the “indirect displacement control” 

scheme using CMOD as a control parameter. In Chapter V, a tedious manual procedure 

was adopted to obtain the peak load and the snap-back phenomenon, but this will not be 

repeated in this analysis of the model dam. Therefore, this model is loaded up to the peak 
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total applied force, of approximately 750 kN, as obtained in the experiment (Carpinteri et 

al. 1992) and other numerical investigations (Bhattacharjee & Leger 1994 and Ghrib & 

Tinawi 1995). After that, linear unloading is applied to the model. The strains and thus the 

crack propagation path are obtained, and are shown in Figure 6.2. The experimentally 

observed crack is also shown. The predicted crack profile appears to be propagating 

correctly, firstly in a horizontal direction and then bending downward (due to the high 

compressive stresses). The cracking could not propagate downward as deeply as observed 

in the experiment, most probably due to the presence of stress-locking in the smeared 

analysis. Since the self-weight of the model was not successfully simulated in the 

experiment (due to premature failure along the foundation interface; refer to Bhattacharjee 

& Leger 1994), the results obtained in this validation only demonstrate the capability of 

the proposed crack model and the developed subprogram in predicting crack propagation 

in a dam-shaped structure. Full-size dams with the gravity effect will have to be used to 

further validate the constitutive model and the implementation procedure.  

 

A linear softening modulus was used to analyze the fracture response of the model dam 

numerically. An effort was made to obtain the maximum total applied force which is in 

agreement with the experimental and numerical results as shown in Figure 6.3. No attempt 

was made to obtain the unloading curve in relation to CMOD due to the lack of an 

“indirect displacement control” scheme in MSC.Marc, as stated before.  
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Figure 6.1 - Finite element model of concrete dam model and applied loads 
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Figure 6.2 - Strains and crack profiles in the model dam 
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Figure 6.3 - Total force vs. CMOD response in the model dam 
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6.3   A concrete gravity dam adopted by NW-IALAD 

 

An internet platform (http://nw-ialad.uibk.ac.at) was established by collaborating with 

researchers from across Europe to benchmark, amongst others, the fracture response of the 

chosen model of a concrete gravity dam using different FE analysis packages. The project 

was known as Network Integrity Assessment of Large Concrete Dams (NW-IALAD) and 

had a duration of three years from 01/05/2002 to 30/04/2005. The objective was the 

systematic comparison of the existing FE programs for the analysis of cracked concrete 

dams based on fracture/damage mechanics, which would help to identify their 

applicability to these problems and future developmental needs.  

 

Three cases (‘arrangements’) were provided for the benchmark exercise to suit the 

capabilities of the different programs. Arrangement 2 in the benchmark exercise was 

selected for this verification purpose. The details of the arrangement are as follows. 

 

The analysis was carried out for the self-weight of concrete and horizontal hydrostatic 

pressure, with the water level in the dam increasing gradually to the crest level (80 m) and 

then continuing to overflow to the maximum water level.  Only the concrete wall was 

allowed to crack and no cracking was considered in the rock (Jefferson, Bennett & Hee 

2005).  

 

The model of the concrete gravity dam selected for the benchmark exercise is shown in 

Figure 6.4. The height of the dam was 80 m, with a crest width of 5 m and a base width of 

60 m. The rock foundation was set at 120 m from each edge of the dam wall and 80 m 

deep below the base of the concrete dam. It was assumed that a perfect bond exists 

between the concrete wall and the rock foundation. The degrees of freedom on the 

foundation boundary were fully fixed (see Figure 6.5). 

 

The above model was also analyzed by other researchers (Jefferson et al. 2005) using the 

FE programs LUSAS and DIANA. The same model parameters and loadings were 

assumed, except for the maximum hydrostatic overflow loading, which was set at 100 m 

and 90 m respectively for LUSAS and DIANA. 
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Linear and bilinear softening models were used to analyze the fracture response of the 

dam for the verification purpose. Uplift water pressure was not included in the analysis. 

The elements used are four-noded, full-integration quadrilateral plane strain elements. The 

analysis was carried out using a modified Newton-Raphson solution for the non-linear 

equations. 

 

The fracture parameters used are as follows: bilinear shape parameters 1α  = 1/3 and 

2α  = 0.1; threshold angle = 60o; maximum shear retention factor maxβ  = 0.2; crack 

characteristic length hc = 2 680 mm; concrete tensile strength ft = 1.5 MPa and concrete 

fracture energy Gf  = 150 N/m. 

 

The material properties used in this verification are as given in Table 6.2. 

 

TABLE 6.2 - Model parameters (NW-IALAD) 

Constitutive parameters of concrete Constitutive parameters of rock 

Young’s modulus E  (MPa) 24 000 Young’s modulus E  (MPa) 41 000 

Poisson’s ratio  ν   0.15 Poisson’s ratio  ν   0.1 

Mass density  (kg/m3) 2 400 Mass density  (kg/m3) 0 

 

The crack profile of this analysis was plotted against the crack plot reported from LUSAS 

(Jefferson et al. 2005) and showed good agreement, although the crack for this analysis 

extended a little further and in a wider area (refer to Figure 6.6).  

 

The results of the fracture analysis were compared with those from LUSAS and DIANA 

(Jefferson et al. 2005) in the relationship of the water level (overflow) vs. the crest 

displacement, as shown in Figure 6.7. The results for the displacement appear to be of the 

same order. The LUSAS results showed a bend, capturing the overall change in stiffness 

after cracking, while the DIANA results were still in a straight-line form. The results of 

linear softening in this research show less deformation than bilinear softening, which 

means that bilinear softening is more capable of simulating the loss of stiffness caused by 

fracture than linear softening. Nevertheless, both the linear and bilinear softening results 

of this analysis show a naturally bent curve, capturing the loss of stiffness in the cracked 

elements due to strain-softening behaviour and are in good agreement with the 
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displacement results from LUSAS and DIANA. In this research the analysis was 

terminated at a water level of approximately 92 m (only indication of the peak water 

level). This should not be regarded as the failure water level since no effort was made to 

increase the accuracy at failure by, for example, adjusting the convergence tolerance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 - Geometric configurations of concrete dam (NW-IALAD) 
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Figure 6.5 - Finite element model of concrete dam with rock foundation (NW-IALAD)  
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Figure 6.6 - Strain and crack plots for NW-IALAD dam  
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Figure 6.7 - Relationship of water level (overflow) vs. crest displacement (NW-IALAD) 

 
 
6.4  Koyna Dam 

 

Koyna Dam is a 103-m-high concrete gravity dam in India. This dam is widely used as a 

benchmark model in the literature for verifying the established concrete cracking models.  

 

Gioia et al. (1992) analyzed this dam using a plasticity-based model and linear fracture 

mechanics under reservoir overflow. Three positions of a pre-set crack were studied and it 

was found that the crack located on the upstream side at the elevation of the slope change 

on the downstream face is the most critical position. Subsequently, Bhattacharjee & Leger 

(1994) and Ghrib & Tinawi (1995) analyzed this dam adopting this critical pre-existing 

crack position, using the smeared non-linear fracture mechanics and damage mechanics 

approaches respectively. In this study, the geometric configuration of the FE model is the 

same as in the FE model adopted by Bhattacharjee & Leger (1994) and Ghrib & Tinawi 

(1995), with a vertical upstream face as shown in Figure 6.8. 
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A plane stress model with four-noded, full-integration elements, subjected to gravity, 

hydrostatic pressure of full reservoir level and overflow loadings, is considered. No water 

pressure inside the cracks is considered in this study. 

 

Table 6.3 gives the data used in the plane stress FE model and analysis. 

 

TABLE 6.3 - Model parameters (Koyna Dam) 

Dimensions of the model (m) Constitutive parameters 

Dam height   103  Young’s modulus E  (MPa) 25 000 

Crest width  14.8 Poisson’s ratio  ν   0.2 

Bottom width  70 Mass density  (kg/m3) 2 450 

Width of dam at the level of 
initial notch h 

19.3 Fracture energy  Gf  (N/m) 100 or 200 

Depth of initial notch   0.1h Tensile strength  ft  (MPa) 1.0 

  Crack characteristic length hc (mm) 1 500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 - Finite element model of Koyna Dam and applied loads 
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The purpose of the present analysis is to verify the implemented crack models on a full 

gravity dam under general gravity and hydrostatic pressure loads, and to undertake a 

sensitivity study on the following areas: 

 

• Linear and bilinear strain-softening diagrams 

• Fracture energy Gf  

• Bilinear softening shape parameters ( 1α / 2α ) 

• Threshold angle 

• Maximum shear retention factor βmax. 

 

As shown in Figures 6.9 and 6.10, linear softening and bilinear softening ( 1α  = 0.4; 

2α  = 0.05) diagrams were used to predict the structural response in terms of crest 

displacement. The analyses were carried on two cases, with Gf = 100 and 200 N/m 

respectively. The fracture parameters used in the analyses were the threshold angle = 30o 

and the maximum shear retention factor βmax = 0.1. It is clear that compared with the 

results from Bhattacharjee & Leger (1994), the bilinear softening diagram provides 

significantly better results than the linear softening diagram. The sudden drop over a short 

period predicted by Bhattacharjee & Leger (1994) could not be obtained in the present 

analysis due to the lack of an “indirect displacement control” scheme in the main program 

– MSC.Marc as stated previously in Chapter V. 

 

The influence of the value of the fracture energy Gf on the predicted structural response 

was studied and is shown in Figures 6.11 and 6.12. The same constitutive fracture 

parameters were used as in the analyses shown in Figures 6.9 and 6.10. With the increase 

of the fracture energy Gf (from 100 to 200 N/m), the initial crack peak resistance of the 

dam structure is also increased. This initial stiffer response of the higher fracture energy 

(Gf = 200 N/m) following cracking, gradually becomes closer to the response of the lower 

fracture energy (Gf = 100 N/m) and eventually leads to a similar ultimate response for the 

two fracture energy Gf  cases. Again, the bilinear softening solution is shown to provide a 

more accurate response than the linear softening solution.  
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The results of a study of the influence of the bilinear shape parameters 1α  and 2α  on the 

predicted structural response are shown in Figures 6.13 to 6.18. The fracture parameters 

used in the analyses are: fracture energy Gf = 100 N/m; threshold angle = 30o and 

maximum shear retention factor βmax = 0.1. Figures 6.13 to 6.15 reveal that when 1α  is 

fixed at the values of 0.3, 0.4 and 0.44 respectively, while 2α  is increased from 0.1, 0.2 to 

0.3, the structural responses are similar, with a slight increase in stiffness as 2α  increases. 

 

In theory, when 2α  increases, the first softening modulus (absolute value) will decrease, 

while the second softening modulus (absolute value) will increase. This implies that the 

first softening modulus plays a more dominant role when the structure starts to crack. The 

fact that the smaller first softening modulus corresponds to the greater 2α  value means 

that localized softening provides a smaller and stiffer structural response. Gradually, the 

second softening modulus starts to influence the structural response, leading to a similar 

ultimate response for the different values of 2α . 

 

When the value of 2α  is set to the values of 0.1, 0.2 and 0.3 respectively, while the values 

of 1α  increase from 0.3, 0.4 to 0.44, the predicted structural responses are similar, which 

means that 1α  does not have much influence on the structural response (refer to 

Figures 6.16 to 6.18). 

 

The influences of threshold angle for the crack onset criterion and the maximum shear 

retention factor βmax on the predicted structural response were also studied and it was 

found that both values have a very limited influence on the overall structural response, as 

evidenced in Figures 6.19 and 6.20. The analyses were carried out with the fracture energy 

Gf = 100 N/m. The maximum shear retention factor βmax = 0.1 and the bilinear softening 

shape parameters 1α  = 0.4 and 2α  = 0.05 were used for the sensitivity study on the 

threshold angle. The threshold angle = 30o and the bilinear softening shape parameters 

1α  = 0.4 and 2α  = 0.05 were used for the sensitivity study on the maximum shear 

retention factor βmax. In theory, with an increase in the threshold angle, the crack numbers 

should decrease, leading to less loss of stiffness at the Gauss point and a stiffer response. 

If the maximum shear retention factor βmax becomes lower, the retained shear modulus 
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should become lower as well, and there is also less chance of the maximum principal 

stress exceeding the tensile strength, thus leading to lower crack numbers at the Gauss 

point and a stiffer response in the structure. 

 

Since the threshold angle and the maximum shear retention factor βmax do not have much 

influence on the fracture response of the dam structure, their sensitivity to the crack 

profiles was not plotted. A bilinear softening study on the crack profiles was carried out 

for the reason that the bilinear softening modelling of crack behaviour is much better than 

the linear softening modelling for this structure. 

 

Figures 6.21 and 6.22 indicate that the value of the fracture energy Gf does not have much 

influence on the crack profile. Due to a slightly softer response, the crack propagation path 

in the analysis with a fracture energy Gf = 100 N/m curves down a little more than the 

crack path in the analysis with a fracture energy Gf = 200 N/m.   

 

Figures 6.22 to 6.26 are representative of the predicted crack profiles from the analyses 

based on the fracture energy Gf = 100 N/m, the threshold angle = 30o and the maximum 

shear retention factor βmax = 0.1, with different combinations of the bilinear softening 

shape parameters 1α  and 2α . 

 

As shown in Figures 6.21 to 6.26, the crack profiles predicted by introducing the different 

constitutive fracture parameters, such as the fracture energy Gf and the bilinear softening 

shape parameters ( 1α / 2α ), do not differ much and show good agreement with the crack 

profiles predicted by Bhattacharjee & Leger (1994). The crack profiles first stretch 

horizontally and then gradually bend downward owing to the existence of compressive 

stress on the downstream side. 

 

It can be concluded from all the above sensitivity studies that the gravity force and 

hydrostatic pressure on the dam are so dominant that the localized fracturing influenced by 

the fracture energy Gf, the threshold angle, the maximum shear retention factor βmax and 

the softening shape parameters 1α  and 2α  does not affect the overall structural response 

significantly. In other words, as pointed out by Bhattacharjee & Leger (1994), the 
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structural response due to self-weight and hydrostatic pressure loads is much greater than 

that due to local material fracturing. 
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Figure 6.9 - Comparison of predicted responses to overflow load for different crack 

models (Gf = 100 N/m) (Koyna Dam) 
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Figure 6.10 - Comparison of predicted responses to overflow load for different crack 

models (Gf = 200 N/m) (Koyna Dam) 
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Figure 6.11 - Influence of fracture energy Gf  on predicted structural response for linear 

softening models (Koyna Dam) 
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Figure 6.12 - Influence of fracture energy Gf  on predicted structural response for bilinear 

softening models (Koyna Dam) 
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Figure 6.13 - Influence of bilinear softening parameters 1α  = 0.3 and 2α  = 0.1, 0.2 and 0.3 

respectively on predicted structural response (Koyna Dam) 
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Figure 6.14 - Influence of bilinear softening parameters 1α  = 0.4 and 2α  = 0.1, 0.2 and 0.3 

respectively on predicted structural response (Koyna Dam) 
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Figure 6.15 - Influence of bilinear softening parameters 1α  = 0.44 and 2α  = 0.1, 0.2 and 

0.3 respectively on predicted structural response (Koyna Dam) 
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Figure 6.16 - Influence of bilinear softening parameters 1α  = 0.3, 0.4 and 0.44, and 2α  = 

0.1 respectively on predicted structural response (Koyna Dam) 
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Figure 6.17 - Influence of bilinear softening parameters 1α  = 0.3, 0.4 and 0.44, and 2α  = 

0.2 respectively on predicted structural response (Koyna Dam) 
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Figure 6.18 - Influence of bilinear softening parameters 1α  = 0.3, 0.4 and 0.44, and 2α  = 

0.3 respectively on predicted structural response (Koyna Dam)
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Figure 6.19 - Influence of maximum shear retention factor βmax on predicted structural 

response (Koyna Dam) 
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Figure 6.20 - Influence of threshold angle on predicted structural response (Koyna Dam) 

 

 
 
 



169 

  

 
Figure 6.21 - Crack profile (bilinear softening, fracture energy Gf = 200 N/m) 

(Koyna Dam) 

 
Figure 6.22 - Crack profile (bilinear softening 1α  = 0.3 and 2α  = 0.2, fracture energy 

Gf = 100 N/m) (Koyna Dam) 
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Figure 6.23 - Crack profile (bilinear softening 1α  = 0.4 and 2α  = 0.1) (Koyna Dam) 

 

 
Figure 6.24 - Crack profile (bilinear softening 1α  = 0.4 and 2α  = 0.2) (Koyna Dam) 
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Figure 6.25 - Crack profile (bilinear softening 1α  = 0.44 and 2α  = 0.2) (Koyna Dam) 

 

 
Figure 6.26 - Crack profile (bilinear softening 1α  = 0.44 and 2α  = 0.3) (Koyna Dam) 
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CHAPTER VII - SAFETY EVALUATION OF A CONCRETE GRAVITY DAM IN        

SOUTH AFRICA BASED ON FRACTURE ANALYSIS 

 

7.1   Introduction 

 

Evaluation of the safety of the existing dams in South Africa is carried out on a five-year 

basis. Cracking in concrete gravity dams could endanger the safety of the dams and needs 

to be accurately simulated and analyzed. In the preceding chapters, constitutive crack 

models have been adopted and a bilinear crack strain-softening law has been proposed. 

Implementation of the models and crack constitutive relationships has been undertaken by 

coding a subprogram. Verification and validation of the implemented crack models by 

means of fracture analyses of various concrete structures, including concrete gravity dams, 

have been carried out. 

 

The objective of this chapter is to use the crack analysis method developed to predict 

crack propagation in an existing concrete gravity dam, namely the Van Ryneveld’s Pass 

Dam in South Africa, and to evaluate the safety of the dam under the conditions of crack 

development in the dam. 

 

7.2 Description of the gravity dam and finite element (FE) model (with reference to Seddon, 

Shelly, Moore & Forbes 1998) 

 

The Van Ryneveld’s Pass Dam is a 33-m-high concrete gravity dam completed in 1925 

(see Figure 7.1). The dam is situated on the Sunday’s River about one km north of 

Graaff-Reinet. The main function of the dam is to provide storage of over 47 million m3 of 

water for the Graaff-Reinet Municipality and for irrigation. 

 

The dam’s foundation was not grouted and no drainage system was installed. The 

downstream face is made of large staggered, stepped blocks.  

 

The main features of the dam are as follows: 

(RL is the “reduced” or reference level) 
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Non-overspill crest level (walkway)              RL 790.35 m 

Full supply level (FSL)                       RL 787.60 m 

Riverbed level                             RL 757.00 m 

Maximum height of concrete wall above riverbed     33.35 m 

Maximum excavation depth                    14.4 m 

Crest thickness at NOC                       3.05 m 

Upstream slope                            vertical 

Downstream slope (RL 772.18 m to RL 787.60 m)    0.50: 1 (H:V) 

 Downstream slope (RL 755.40 m to RL 772.18 m)    0.65: 1 (H:V) 

 Downstream slope (below RL 755.40 m)           1: 1   (H:V) 

 

 
Figure 7.1 - Van Ryneveld’s Pass Dam (view from downstream) 

 

The FE model is shown in Figures 7.2 and 7.3, assuming a conservative average critical 

level (RL 751.30 m, 5.7 m below the riverbed level) for the concrete/rock interface over 

the central high part of the dam (Seddon et al. 1998). Plane strain elements with first-order 

full integration are used in the analysis. 

 

The boundary conditions are set as follows: 
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All the nodes at the outer edges of the area of the foundation being considered, shown in 

Figure 7.2, are fixed in both horizontal and vertical translation degrees of freedom, except 

for the nodes on the top face on which the base of the dam is situated. 

 

 
Figure 7.2 - Finite element model of Van Ryneveld’s Pass Dam 
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Figure 7.3 - Finite element model of Van Ryneveld’s Pass Dam (close-up for dam wall) 

and hydrostatic and sediment loadings applied 

 

7.3   Material properties and constitutive fracture parameters 

 

The concrete used in the dam was tested from drilled cores and was fully reported by Van 

der Spuy (1992). The material properties of the concrete are given in Table 7.1, with 

reference to Van der Spuy (1992) and Seddon et al. (1998).  

 

The rock foundation is reported to be sound dolerite bedrock. Schall (1988) conducted a 

visual inspection and laboratory tests on samples obtained by drilling through the dam’s 

concrete wall and its rock foundation by means of five vertical holes. The tests on the rock 

samples showed that the rock is dolerite of excellent quality. Blake (1975) indicated that 

the uniaxial tensile strength of intact dolerite type of rock materials could be as high as   

30 MPa. The intact shear strength of the dolerite varied in a range of 37.6 MPa to         

63.3 MPa (Seddon et al. 1998). It is therefore reasonable to assume that the tensile 

strength of the fractured dolerite at the dam site to be 2.5 MPa.  
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The cohesion and frictional angle of the rock are matters of uncertainty because no 

laboratory test results are available. It is general practice for dam stability analysis in 

South Africa to assume that the tangent of the angle of internal friction of rock, ϕtan , is 

0.8. The angle of internal friction of rock tested by the United States Bureau of 

Reclamation revealed that most rock samples have an angle of internal friction 045≥ϕ  

(Thomas 1976:170-171). Blake (1975:9-4–9-5) indicated ϕtan  = 1.1 for dolerite-type 

rock. In the present study, the angle of internal friction ϕ  adopted is 39o. The cohesion of 

the rock is assumed to be 1 MPa to 10 MPa. Non-linear plasticity analyses have been 

carried out based on this value range of cohesion for dolerite rock. The material properties 

of rock are also presented in Table 7.1. 

 

TABLE 7.1 - Material properties of concrete and rock 

Concrete wall Rock foundation 

Young’s modulus E  (MPa) 28 000 Young’s modulus E  (MPa) 30 000 

Poisson’s ratio ν   0.2 Poisson’s ratio  ν   0.22 

Tensile strength  ft (MPa) 1.5 Tensile strength  ft  (MPa) 2.5 

Mass density  (kg/m3) 2 455 Mass density  (kg/m3) 0 

Cohesion (MPa) 2.41 Cohesion (MPa) 1 ~ 10 

Frictional angle ϕ  55o Frictional angle ϕ  39o 

Coefficient of thermal expansion 1.0E-5/oC   

 

The constitutive fracture parameters of concrete and rock in the dam are also a matter of 

uncertainty. A sensitivity study on the fracture parameters is needed as part of a 

comprehensive fracture analysis of the dam for crack behaviour and safety evaluation. 

 

7.4   Bilinear strain-softening shape parameters  

 

As stated previously, concrete strain softening has been presented in the form of linear, 

bilinear and non-linear curve diagrams. A bilinear softening strategy provides a good 

approximation of the behaviour of the concrete material and has been accepted as a 

reasonable approximation of the softening curve for concrete. In the bilinear softening 

diagram, the first branch is steeper and represents large-scale debonding (fracture of 
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aggregates) and the second branch represents the frictional pull-out of aggregates which 

characterizes the behaviour of larger cracks (ICOLD report 2001). 

 

The bilinear softening laws have been used in past investigations for the numerical 

analysis of concrete fracturing. High discrepancies in the values adopted for the shape 

parameters 1α  and 2α  have been reported since there is no agreement about the precise 

position of the kink point of concrete material. The kink position is also influenced by the 

type of concrete and the fracture energy Gf, etc. 

 

The bilinear softening shape parameters 1α  = 1/3 and 2α  = 1/7 were selected by Li & 

Zimmerman (1998), Barpi & Valente (2001) and Yang & Proverbs (2003) in their 

analyses of fracturing in concrete structures such as a three-point bending beam, a dam 

model and a four-point shear beam. 

 

The crack stress–crack opening relationships (see Figure 7.4) used in the above analyses 

had to be transformed into crack stress–strain softening laws (see Figure 7.5) for the 

present study. If constant strain is assumed in the crack blunt width, then the shape of the 

crack stress–crack opening can be viewed as the same as that of the crack stress–strain 

relationship. The following formula (equation 7.1) was derived for calculating 2α  from 

the given values of 1α , W1 and W2: 
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Shi et al. (2001) adopted a bilinear softening diagram in the analysis of a concrete tunnel. 

The bilinear softening shape parameters 1α = 1/4 and 2α = 1/17 were used, which are 

transformed by the formula in equation 7.1, from the original crack stress–crack opening 

relationship adopted in the analysis. 
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Figure 7.4 - Bilinear strain softening (tensile stress vs. crack opening displacement) 

 

 
Figure 7.5 - Bilinear strain softening (tensile stress vs. local crack strain) 

 

Gálvez et al. (2002) also adopted a bilinear strain-softening law in the analysis of cracking 

in concrete, but did not indicate the values for the bilinear softening shape parameters 1α  

and 2α  in their paper. 

 

Further, Hanson & Ingraffea (2003) adopted bilinear strain softening in the analysis of 

concrete fracturing. They undertook a comparative study on different combinations of the 

bilinear softening shape parameters 1α  and 2α . The range for 1α  was chosen as 0.1 ~ 0.5 

and 2α  was selected from a very low value (1/171) to 1.0. 
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Bilinear strain softening has also been used in past investigations into the fracturing of 

concrete dams. Various researchers have proposed different values for the bilinear 

softening shape parameters 1α  and 2α . Petersson (1981) proposed the bilinear softening 

shape parameters 1α  = 0.3 and 2α  = 0.107 and Wittmann et al. (1988) proposed the 

bilinear softening shape parameters 1α  = 0.25 and 2α  = 1/17. 

 

Feltrin, Wepf & Bachmann (1990) adopted a bilinear softening law in the seismic 

cracking analysis of concrete gravity dams, but gave no indication of the values of the 

bilinear softening shape parameters 1α  and 2α  used in their analysis. 

 

Brühwiler & Wittmann (1990) conducted a series of wedge-splitting tests on the drilled 

cores from a concrete dam and presented bilinear strain-softening diagrams from the tests. 

According to the ICOLD report (2001) on the physical properties of hardened 

conventional concrete in dams, Brühwiler & Wittmann (1990) gave the bilinear softening 

shape parameters 1α  = 0.4 and 2α  = 0.243 for dam concrete. 

 

Shi et al. (2003) also adopted a bilinear softening diagram in the analyses of concrete 

gravity dams. The bilinear softening shape parameters 1α  = 1/4 and 2α  = 1/17 were used, 

which are transformed by the formula in equation 7.1, from the original crack stress–crack 

opening relationship adopted in the analyses.   

 

Espandar & Lotfi (2003) adopted bilinear softening diagram in the FE fracture analysis of 

a concrete arch dam. The bilinear softening shape parameters 1α  = 0.01 and 2α  = 0.0001 

had been used in the analysis. Thus the bilinear softening is basically in the linear format. 

The very low value for 2α  was adopted mainly for avoiding zero stiffness in the crack 

normal direction. 

 

Based on the past numerical and experimental investigations into the bilinear softening 

crack analysis of dam concrete, a good range for the bilinear softening shape parameters 

would be 1α  = 0.25 ~ 0.4 and 2α  = 0.05 ~ 0.3 to approximate dam concrete softening 

behaviour. A sensitivity study on the ranges of 1α  and 2α  should be carried out for 

analyzing the cracking behaviour of concrete in dams. 
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7.5 Fracture analysis and evaluation of the dam safety 

 

A crack analysis is carried out, studying the sensitivity of the fracture parameters and 

comparing the results with the linear elastic and non-linear Mohr-Coulomb plasticity 

analyses. Evaluation of the dam’s safety is based on the mode I and II crack analysis and 

the previous dam safety investigation (Seddon et al. 1998). 

 

The dam is loaded by self-weight, hydrostatic pressure at full supply level (FSL), silt 

pressure, overflow of up to 20 m, uplift pressure, tailwater pressure and a seasonal 

temperature drop in the dam wall. This loading condition is shown in Figure 7.3. When 

overflow load is applied, a trapezoidal pressure distribution is acting on the upstream face 

by adding the FSL triangular pressure with the “overflow” rectangular pressure. 

 

The hydrostatic loadings in the previous dam safety evaluation (Seddon et al. 1998) were 

set for three conditions, as follows: 

 

• Water level at Full Supply Level (FSL - 36.3 m above the rock foundation).  

• Water level at Recommended Design Flood (RDF - 4.61 m above the FSL). 

• Water level at Safety Evaluation Flood (SEF - 9.99 m above the FSL). 

 

The silt pressure is due to heavy siltation occurring in the dam reservoir which is assumed 

to be 9 m below the FSL. The density of the silt for the calculation of horizontal silt 

pressure acting on the upstream face of the dam is 3.53 kN/m3 (Seddon et al. 1998). 

 

The uplift pressure has been taken assuming the water level to be at FSL. For overflow 

conditions such as RDF and SEF, the same uplift pressure is adopted as for FSL, for the 

reason that higher pressure would not normally have time to develop due to the short 

duration of flash floods in South Africa. 

 

The elevation of the tailwater is varied with the water level in the dam. When the water 

level is at FSL, the elevation of the tailwater is at 5.7 m above the foundation. When the 

water level is at RDF, the elevation of the tailwater is at 15.7 m above the foundation. 
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When the water level is at SEF, the elevation of the tailwater is at 25.7 m above the 

foundation. 

 

Concrete dams are also subject to loading by seasonal changes in temperature. Normally, a 

temperature decrease inside a dam would cause tensile stresses at the upstream heel. Thus 

a drop in temperature is a loading scenario that must be included in the analysis regarding 

the safety of a concrete dam. 

 

The drop in temperature for seasonal temperature fluctuations is determined from the 

standard formula (adopted in the DWAF, South Africa) used in previous arch dam 

analyses undertaken for South African climatic conditions. This is done due to the lack of 

more detailed information and the lack of a standard formula for gravity dams. 

 

t
T

+
=Δ

4,2
34                                                  (7.2) 

 

Where t is the thickness (m) of the dam wall at a given level and TΔ  is the temperature 

drop in degrees Celsius. The temperature distribution was assumed to be uniform through 

the horizontal section of the dam. 

 

In fact, temperature drop loading makes cracking in this dam propagate even more when 

compared with the results of load cases without the influence of temperature. 

 

7.5.1  Parametric study on the fracture energy of concrete and rock 

 

The fracture energy fG  of the concrete used in dams was discussed and past 

investigations into it were presented in Section 2.6 of Chapter II. The fracture energy fG  

of dam concrete can be set between 100 N/m and 300 N/m. In the present analysis of the 

dam, a sensitivity study on the concrete fracture energy c
fG  =100 ~ 300 N/m and the rock 

fracture energy r
fG  =200 ~ 400 N/m is carried out. Different combinations of the fracture 

energies of concrete and rock based on the above ranges are used in the crack analysis of 
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this dam. The other fracture parameters used for this sensitivity study are assumed to be as 

follows: 

 

Bilinear shape parameters 1α  = 0.4 and 2α  = 0.05; crack onset threshold angle = 30o; 

maximum shear retention factor maxβ  = 0.1; and tensile strengths for concrete and rock = 

1.5 and 2.5 MPa respectively. 

 

Nine graphs of crest horizontal displacement in terms of overflow water level are shown 

in Figure 7.6. The fracture energy of rock r
fG  appears to have little influence on the crack 

response of the dam. As the fracture energy of rock increases from 200 N/m to 400 N/m 

with different values of the fracture energy of concrete c
fG , the structural behaviours 

become nearly identical for the same fracture energy of concrete c
fG . At low overflow 

water level, the lower fracture energy of concrete c
fG  (100 N/m) has a higher crest 

deformation. As the overflow water level increases to a higher level (approximately 17 m 

above), the crest deformation for a higher fracture energy of concrete c
fG  (300 N/m) 

becomes larger and increases at a faster rate. 

 

It appears that the fracture energy of concrete and rock in general do not have much 

influence on the overall dam deformation. The fracture energy of concrete c
fG , however, 

has a significant influence on the crack propagation paths in the dam structure, as shown 

in Figures 7.7 to 7.10. All these crack profiles are obtained at the same overflow water 

level of 20 m. As the fracture energy of concrete c
fG  increases, the crack will propagate 

from horizontal direction along the concrete/rock interface to bend more into the rock 

foundation. The fracture energies of concrete c
fG  = 300 N/m and rock r

fG  = 200 ~ 400 

N/m will cause the highest deformation in the dam. 
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Figure 7.6 - Crest horizontal displacement vs. overflow for various values of fracture 

energy 
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Figure 7.7 - Crack profile for c
fG  = 100 N/m 

and r
fG  = 400 N/m 

Figure 7.8 - Crack profile for c
fG  = 200 N/m 

and r
fG  = 400 N/m 
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7.5.2 Parametric study on the bilinear shape parameters 1α  and 2α  

 

In accordance with the discussion in Section 7.4 of the concrete used in the dam, the 

bilinear shape parameters 1α  and 2α  are studied for their influence on the dam’s 

behaviour. The bilinear shape parameters 1α  and 2α  for the rock are assumed to be the 

same as those for the concrete. As stated previously, 1α  will be in the range of 0.25 ~ 0.4 

and 2α  will be 0.05 ~ 0.3. The bilinear mode I strain-softening shapes for different values 

of 1α  and 2α  are shown in Figures 7.11 to 7.13.  

Figure 7.9 - Crack profile for c
fG  =300 N/m 

and r
fG  = 400 N/m 

Figure 7.10 - Crack profile for c
fG  = 300 N/m 

and r
fG  = 400 N/m (deformed 

shape) 
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Figure 7.11 - Bilinear softening shapes with 1α  = 0.25 and 2α  = 0.05, 0.1, 0.2 and 0.3  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12 - Bilinear softening shapes with 1α  = 1/3 and 2α  = 0.05, 0.1, 0.2 and 0.3  
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Figure 7.13 - Bilinear softening shapes with 1α  = 0.4 and 2α  = 0.05, 0.1, 0.2 and 0.3  
 

 

The other fracture parameters used for this sensitivity study are assumed to be as follows: 

 

Fracture energy c
fG  = 300 N/m and r

fG  = 400 N/m; threshold angle = 30o; maximum 

shear retention factor maxβ  = 0.1; and tensile strengths for concrete and rock = 1.5 and 

2.5 MPa respectively. 

 

As shown in Figures 7.14a to 7.14c, at the low overflow level, the crest deformation for all 

the combinations of 1α  and 2α  are similar. When the overflow water level exceeds 

approximately 7 m, the crest deformation curves of the cases 1α  = 1/3; 2α  = 0.05 and 1α  

= 0.4; 2α  = 0.05 show significantly more deformation. The other combinations of 1α  and 

2α  have similar crest deformations. The crack profiles (at the same overflow level) shown 

in Figures 7.15 to 7.26 for different values of 1α  and 2α  are much more sensitive than the 

crest deformation. Basically, when 1α  is fixed at 0.25 while 2α  ranges from 0.05 to 0.3 

(see Figures 7.15 to 7.18), cracks in the dam propagate along the concrete/rock interface. 
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When 1α  increases to 1/3 and 0.4 with 2α  = 0.05, the crack will propagate by bending 

downward into the rock (see Figures 7.19 and 7.23). Analyses adopting 1α  = 1/3 ~ 0.4 and 

2α  = 0.05 would cause the dam to deform more. 
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Figure 7.14a - Crest horizontal displacement vs. overflow level for strain-softening 

relationships with 1α  = 0.25 and 2α  = 0.05, 0.1, 0.2 and 0.3 
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Figure 7.14b - Crest horizontal displacement vs. overflow level for strain-softening 

relationships with 1α  = 1/3 and 2α  = 0.05, 0.1, 0.2 and 0.3 
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Figure 7.14c - Crest horizontal displacement vs. overflow level for strain-softening 

relationships with 1α  = 0.4 and 2α  = 0.05, 0.1, 0.2 and 0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15 - Crack profile for 1α  = 0.25 and 

2α  = 0.05 
Figure 7.16 - Crack profile for 1α  = 0.25 and 

2α  = 0.1 
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Figure 7.17 - Crack profile for 1α  = 0.25 and 

2α  = 0.2 
Figure 7.18 - Crack profile for 1α  = 0.25 and 

2α  = 0.3 

Figure 7.19 - Crack profile for 1α  = 1/3 and 

2α  = 0.05 
Figure 7.20 - Crack profile for 1α  = 1/3 and 

2α  = 0.1 

Figure 7.21 - Crack profile for 1α  = 1/3 and 

2α  = 0.2 
Figure 7.22 - Crack profile for 1α  = 1/3 and 

2α  = 0.3 
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7.5.3 Parametric study on the tensile strength of concrete and rock 

 

The tensile strengths of the wall concrete and the foundation rock for the crack onset 

criterion are varied to study their influence on the dam behaviour. 

 

The tests on the drilled cores of the dam concrete revealed that the tensile strength of the 

concrete was 3.07 MPa and the tensile strength of the concrete for analysis can be taken as 

1.5 MPa (Van der Spuy 1992). The influence of the tensile strength of the concrete on the 

crack response of the dam is studied by fixing the tensile strength of the rock r
tf  at        

Figure 7.23 - Crack profile for 1α  = 0.4 and 

2α  = 0.05 
Figure 7.24 - Crack profile for 1α  = 0.4 and 

2α  = 0.1 

Figure 7.25 - Crack profile for 1α  = 0.4 and 

2α  = 0.2 
Figure 7.26 - Crack profile for 1α  = 0.4 and 

2α  = 0.3 
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2.5 MPa, while the tensile strength of the concrete c
tf  ranges from 0.002 to 1.5 MPa. The 

other fracture parameters used for this sensitivity study are assumed to be as follows: 

 

Bilinear shape parameters 1α  = 0.4 and 2α  = 0.05; threshold angle = 30o; maximum shear 

retention factor maxβ  = 0.1; and fracture energies for concrete and rock = 300 N/m and 

400 N/m respectively. 

 

If c
tf  is set equal 0.002 MPa (which represents no tensile strength at the concrete/rock 

interface as assumed by Seddon et al. 1998), the dam would crack through and fail even 

before water reached the FSL. Thus, the case of c
tf  = 0.002 MPa could not be shown in 

Figure 7.27.  As seen in Figure 7.27, with an increase in the value of c
tf , the dam has less 

deformation. Therefore, the crack response of the dam is obviously sensitive to the tensile 

strength of the concrete. 

 

From Figures 7.28 to 7.31 it can be seen that with a higher value of c
tf  for the concrete, 

the cracks would bend more into the rock. 

 
Figure 7.27 - Crest horizontal displacement vs. overflow level for various values of 

concrete tensile strength  

MPa 
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7.5.4 Parametric study on the crack onset threshold angleφ  

 

Different threshold angles (ranging from 0.1o to 60o) for the crack onset criterion are 

studied. The threshold angle is discussed in Section 3.6 of Chapter III. The other fracture 

parameters used for this sensitivity study are assumed to be as follows: 

 

Bilinear shape parameters 1α  = 0.4 and 2α  = 0.05; fracture energy of concrete and rock = 

300 N/m and 400 N/m respectively; maximum shear retention factor maxβ  = 0.1; and 

tensile strengths for concrete and rock = 1.5 and 2.5 MPa respectively. 

Figure 7.28 - Crack profile for c
tf  = 0.002 MPa 

and r
tf  = 2.5 MPa 

Figure 7.29 - Crack profile for c
tf  = 0.2 MPa 

and r
tf  = 2.5 MPa 

Figure 7.30 - Crack profile for c
tf  = 1.0 MPa 

and r
tf  = 2.5 MPa 

Figure 7.31- Crack profile for c
tf  = 1.5 MPa 

and r
tf  = 2.5 MPa 
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From Figure 7.32 it can be seen that there is no clear picture of the influence of the 

threshold angle on the crest displacement. The crack profiles for the same overflow level 

of 20 m shown in Figures 7.33 to 7.37 are very sensitive to the threshold angle. The cracks 

propagate in different directions (bifurcation) in the rock, which probably explains why 

the crest deformation is not sensitive to the values of the threshold angle.  

 

 
Figure 7.32 - Crest horizontal displacement vs. overflow level for various threshold angles 

 

 

 

 

 

 

 

 

 

 

 

 

0 

5 

10 

15 

20 

25 

0 5 10 15 20 25 
Crest horizontal displacement (mm)

O
ve

rf
lo

w
 w

at
er

 le
ve

l (
m

) φ =0.1o

φ  =15o

φ  =30o

φ  =45o

φ  =60o

Figure 7.33 - Crack profile for threshold angle 
of 0.1o 

Figure 7.34 - Crack profile for threshold angle 
of 15o 
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7.5.5 Parametric study on the maximum shear retention factor 

 

The influence of the value of the maximum shear retention factor βmax on the structural 

behaviour of the dam are studied. The maximum shear retention factor is discussed in 

Section 3.5 of Chapter III. The other fracture parameters used for this sensitivity study are 

assumed to be as follows: 

 

Bilinear shape parameters 1α  = 0.4 and 2α  = 0.05; threshold angle = 30o; fracture energy 

of concrete and rock = 300 N/m and 400 N/m respectively; and tensile strengths for 

concrete and rock = 1.5 and 2.5 MPa respectively.  

Figure 7.35 - Crack profile for threshold angle 
of 30o 

Figure 7.36 - Crack profile for threshold angle 
of 45o 

Figure 7.37 - Crack profile for threshold angle 
of 60o 
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Figure 7.38 shows that with a decrease of βmax, the crest deformation becomes larger when 

the overflow level exceeds approximately 17 m. For higher values of βmax (0.2 and 0.3), 

the fracture analysis did not converge beyond overflow levels of 9 m and 15.7 m 

respectively. Figures 7.39 to 7.42 show that the smaller βmax is, the sooner and deeper the 

cracks kink into the rock. 

 

0

5

10

15

20

25

0 5 10 15 20 25
Crest horizontal displacement (mm)

O
ve

rf
lo

w
 w

at
er

 le
ve

l (
m

) βmax=0.05

βmax=0.1

βmax=0.2

βmax=0.3

 
Figure 7.38 - Crest horizontal displacement vs. overflow level for various maximum shear 

retention factors  

 

 

 

 

 

 

 

 

 

 

 
Figure 7.39 - Crack profile for βmax = 0.05 Figure 7.40 - Crack profile for βmax = 0.1 
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7.5.6 Comparison with linear elastic and plasticity analyses 

 

A linear elastic analysis and a non-linear plasticity analysis based on the linear 

Mohr-Coulomb model are carried out and are compared with the results of various crack 

analyses. Figures 7.43a to 7.43c show a collection of previous graphs, as well as the 

results from the linear elastic and plasticity analyses. These graphs are representative of 

the previous sensitivity studies on fracture parameters. The Mohr-Coulomb yield criteria 

(refer to Chen & Saleeb 1982) require the cohesion C and the angle of friction ϕ  of 

materials which are provided in Table 7.1. 

 

In some study cases (such as case of  c
fG  =100 N/m and r

fG  = 400 N/m) shown in Figure 

7.43a, the cracking can be started as early as at FSL while in other cases, the dam starts to 

crack only after the water level is above FSL. 

  

As can be seen in Figures 7.43a to 7.43c, for fracture analysis of the dam, the crest 

displacement starts to increase rapidly with an increase in the overflow water level above 

approximately 17 m over FSL. It appears that the dam is safe at RDF and SEF and can be 

regarded as unsafe when the overflow water level reaches approximately 17 m. 

  

 

Figure 7.41 - Crack profile for βmax = 0.2 Figure 7.42 - Crack profile for βmax = 0.3 
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Figure 7.43a - Crest horizontal displacement vs. overflow level for various analysis 

methods 

 

 
Figure 7.43b - Crest horizontal displacement vs. overflow level for various analysis 

methods 
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Figure 7.43c - Crest horizontal displacement vs. overflow level for various analysis 

methods 

 

Subsequently, a new crack analysis is carried out based on the previous sensitivity studies 

on the fracture parameters (refer to Sections 7.5.1 to 7.5.5). The dam is loaded up to an 

overflow of 17 m, then unloaded. The constitutive fracture parameters used in this analysis 

are as follows: 

 

Fracture energy c
fG  = 300 N/m and r

fG  = 400 N/m; bilinear shape parameters 1α  = 0.4 

and 2α  = 0.05; threshold angle = 30o; maximum shear retention factor maxβ  = 0.05; and 

tensile strengths for concrete and rock = 1.5 and 2.5 MPa respectively. 

 

The results are presented in Figures 7.44 to 7.46. Figure 7.44 clearly shows that the dam 

would crack continuously even under the unloading process (by reducing the overflow 

water level in the dam). The crest displacement continues to increase with unloading. It is 

clear that the cracking of the dam is in an unstable stage when the dam is loaded to an 

overflow of 17 m. Further loading, unloading and even keeping the same loading would 

make the cracking continue until reaching un-convergence in the analysis. This means that 

although the local elements may have “failed” due to cracking, the structure as a whole 

0

5

10

15

20

25

0 5 10 15 20 25
Crest horizontal displacement (mm)

O
ve

rf
lo

w
 w

at
er

 le
ve

l (
m

)
θ=0.1

θ=60

βmax=0.05

βmax=0.1

Plasticity

Linear elastic

17 m 

SEF 

RDF 

FSL 

 
 
 



199 

  

would still be able to bear some further loading before it failed. This analysis further 

demonstrates that the dam can be regarded as unsafe when the overflow water level 

reaches approximately 17 m. 

 

The crack profiles in the dam at the end of loading and unloading are shown in 

Figures 7.45 and 7.46 respectively. It is clear that the crack propagates further when the 

dam is in the process of unloading. 
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Figure 7.44 - Crest horizontal displacement vs. overflow 

 

 

 

 

 

 

 

 

 
Figure 7.45 - Crack profile for overflow level 

 at 17 m 
Figure 7.46 - Crack profile at the end of 

 unloading 
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7.6   Evaluation of dam safety against sliding (shear) 

 

As stated in Section 2.2 of Chapter II, the stability of a dam against sliding is of major 

concern to dam engineers. The classical equation (2.2) for the calculation of the factor of 

safety against sliding was used to evaluate the safety of this dam (Seddon et al., 1998).  

 

Due to the lack of an alternative method for evaluating the safety of a dam against sliding, 

in this chapter the horizontal uncracked length along the concrete/rock interface is 

compared with the calculated critical uncracked length, based on the classical method, to 

check the stability of the dam against sliding. 

 

The calculated critical uncracked length for the abnormal load cases (20 m overflow, with 

a factor of safety that should be equal to or greater than 2.0) is 6.12 m, which means that if 

the uncracked length of the concrete/rock interface is greater than 6.12 m, then the dam is 

regarded as being safe against sliding (shear) under an overflow water level of 20 m. 

 

Since all the previous sensitivity studies on the fracture parameters have uncracked 

lengths along the concrete/rock interface longer than the critical uncracked length of 

6.12 m, the dam can be regarded as being safe against shear sliding with an overflow 

water level of up to 20 m.  

 
7.7  Conclusions 

 

The safety of the dam was evaluated by Seddon et al. (1998) using the traditional gravity 

method and cracked section analysis (rigid body equilibrium). The findings from their 

investigation are summarized as follows: 

 

• The dam is stable and failure of the dam is considered very unlikely under FSL (Full 

Supply Level) condition (no overflow). 

• The dam is unstable and the failure of the dam is considered probable under RDF 

(Recommended Design Flood) condition (overflow 4.6 m) 
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• The dam is unstable and the failure of the dam is considered possible under SEF 

(Safety Evaluation Flood) condition (overflow 10 m). 

 

The crack analysis of the dam using the developed non-linear fracture mechanics (NLFM) 

method reveals that the dam is considered to be safe under FSL, RDF and SEF conditions. 

The maximum overflow that the dam can endure is found to be at approximately 17 m. Of 

course, this will leave the dam with no safety margin. Assuming the concrete strength has 

been taken as the characteristic value, if the overflow at 17 m is taken as a safety factor 

of 1 (total water level in the dam will be 17 + 36.3 = 53.3 m), then the SEF (9.99 + 36.3 = 

46.29 m) will have a safety margin of 53.3/46.29 ≈ 1.15, the RDF (4.61 + 36.3 = 40.91 m) 

will have a safety margin of 53.3/40.91 ≈ 1.3 and the FSL (36.3 m) will have a safety 

margin of 53.3/36.3 ≈ 1.47. 

 

The NLFM-based investigation into this dam yields a higher collapse load or Imminent 

Failure Flood (IFF) and provides higher safety factors than those predicted by classical 

rigid body equilibrium analysis. 

 

The cracking, in general, would start along the concrete/rock interface. Then as the 

internal shear stresses rise in the rock, the cracking would kink downwards into the rock. 

This would leave a greater uncracked ligament length along the interface to resist shear 

sliding, thus giving the dam a higher safety margin. 

 

To cover uncertainties about the material properties and fracture parameters of the 

concrete and rock, parametric analyses are undertaken for an appropriate structural 

evaluation concerning the safety of the dam. The influence of the fracture parameters on 

the cracking response of the dam in terms of crest deformation is summarized as follows: 

 

• The fracture energy fG  normally does not have much influence on the dam’s 

structural behaviour. 

• The bilinear shape parameters 1α  and 2α  produce similar structural responses, except 

for 1α  = 1/3 ~ 0.4 and 2α  = 0.05, which would cause more deformation in the dam. 
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• The tensile strength c
tf  of the concrete has a significant effect on the crack response 

of the dam. The greater the c
tf , the less crest deformation in the dam and the more 

cracking into the rock. 

• The threshold angle does not have a significant influence on the dam’s overall 

behaviour. 

• The maximum shear retention factor βmax does not have much influence on the dam 

when the overflow is below approximately 17 m. When the overflow exceeds 17 m, 

however, the smaller βmax  would cause the dam to deform more. 

 

Nevertheless, the above fracture parameters, in general, do have a big influence on crack 

growth path, and therefore are sensitive to crack propagation in the dam structure. 

 

It is worth pointing out that if no tensile strength is assumed at the concrete/rock interface, 

the dam would fail under FSL.  

 

It is also worth pointing out that the water pressure that develops as cracks grow has not 

been taken into account in this research (or developed NLFM method). Therefore, the 

findings with regard to the safety of the dam should be taken as the maximum possible 

(upper boundary) safety limit that the dam can have.  
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CHAPTER VIII – CONCLUSIONS AND RECOMMENDATIONS 

 

 

 Developing a suitable constitutive material model and reliable computational procedure 

for analysing cracking processes in concrete has been a challenging and demanding task 

for many researchers worldwide. An analytical method (procedure) for the purpose of 

establishing a crack constitutive model and implementing the model for the fracture 

analysis of concrete structures, in particular massive concrete gravity dams under static 

loading conditions, has been developed, verified and applied in the safety evaluation of a 

concrete gravity dam subjected mixed-mode fracturing. 

 

The constitutive material crack model, which permits non-orthogonal cracks (originally 

proposed by de Borst & Nauta 1985), is based on non-linear fracture mechanics (NLFM). 

A new bilinear tensile softening diagram has been proposed. A shear retention factor that 

depends on the crack normal strain is also included.  

 

The constitutive material model has been implemented in a finite element (FE) analysis 

using a smeared crack approach. A sub-program has been specially coded for this research 

to be incorporated into a commercial, general-purpose FE package called MSC.Marc.  

 

The influence on the cracking behaviour of modelling the strain softening as bilinear or 

non-linear has been investigated in this study. The concrete used in dams, which in 

general has a larger aggregate size (as large as 150 mm), a lower cement content and a 

lower water-cement ratio than normal structural concrete, would require careful 

investigation of the fracture parameters for the cracking analysis of full-scale concrete 

dams. The fracture energy fG  of dam concrete would be higher than that of normal 

concrete. Although the past investigations and experiments indicated huge discrepancies 

in the fracture energy of dam concrete, fG  = 100 ~ 300 N/m could be adopted for 

concrete in dams where no test results are available. The bilinear softening shape 

parameters 1α  and 2α  also need to be carefully determined for each particular concrete 

dam. In this research, 1α  = 0.25 ~ 0.4 and 2α  = 0.05 ~ 0.3 were studied for their 

sensitivity in the structural behaviour of concrete dams. 

 
 
 



204 

  

The validity of the proposed cracking model and the computational procedure developed 

for the purpose of analyzing the tensile fracture behaviour of concrete structures has been 

confirmed by verification on various concrete structures, including beams and gravity 

dams, subjected to either mode I or mixed-mode fracturing. All the verification specimens 

have been experimentally tested or/and numerically simulated before by other researchers. 

 

The crack modelling technique developed has been successfully used in the FE analysis of 

an existing concrete gravity dam in South Africa and adequately predicted the cracking 

response of the dam structure under static loadings, including hydrostatic pressure due to 

overflowing, uplift pressure, silt pressure and seasonal temperature drops in the dam wall. 

The study has demonstrated the usefulness of NLFM in simulating the concrete cracking 

process and evaluating the stability of the observed cracks. 

 

The strain-softening model proposed here for concrete could be extended to model other 

strain-softening materials such as rock, etc. Metallic materials, which normally exhibit a 

more ductile softening behaviour, could, under “brittle” fracture conditions, also be 

simulated by carefully calibrating the fracture parameters used in this research. 

 

8.1  Conclusions 

 

The following conclusions are drawn based on the comprehensive fracture modelling of 

varied concrete structures and the findings arising from the previous chapters:   

 

• Both mode I fracture, which is dominant in the majority of concrete structures, and 

mode II fracture were modelled successfully. 

• The linear softening model is popular because of its simplicity, but fails to predict the 

true fracture behaviour accurately. The proposed bilinear softening model remains 

relatively simple to implement, but significantly improves on predicting the softening 

response of “small-scale” concrete structures. 

• For the bilinear softening diagram, the first softening modulus plays a more important 

(dominant) role when the structure starts to crack. The smaller first softening modulus 

will provide a stiffer structural response. 
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• Both plane stress and plane strain crack analyses have been considered and can be 

confidently adopted in two-dimensional applications. 

• The proposed method is mesh objective and could overcome problems such as 

non-convergence and snap-back. 

• The proposed method is element-order objective. 

• The crack modelling method developed is able to predict correctly the crack 

propagation trajectory and the structural behaviour with regard to fracturing in concrete 

structures. It can therefore be confidently applied in concrete fracture analysis. 

• If not considering shear stress concentration near the tip of a crack, constitutive crack 

analysis normally indicates a higher safety factor and a higher Imminent Failure Flood 

(IFF) than the classical methods in the analysis of concrete gravity dams for safety 

evaluation. 

 

Regarding the sensitivity of constitutive fracture parameters to the predicted fracture 

response of concrete gravity dams, the following conclusions are drawn: 

 

 In terms of the cracking propagation profile developed in the concrete dam structures, 

the following findings are obtained: 

 

• The fracture energy of the concrete fG  has a greater influence on the crack 

propagation in the lower part of a dam (such as in the vicinity of the concrete/rock 

interface of Van Ryneveld’s Pass Dam discussed in Chapter VII; the greater fG  is, the 

sooner and deeper the crack will bend into the rock), and less influence on the crack 

propagation in the upper part of the dam (such as with cracking in Koyna Dam 

discussed in Chapter VI). 

• The influence of the bilinear shape parameters 1α  and 2α  is similar to the general 

findings for the fracture energy fG . The value of 1α  does not seems to have much 

influence, but 2α  with a lower value will make the crack bend downwards into the 

rock. 

• The tensile strength tf  of concrete has a significant effect on the crack trajectory path 

in a dam. The greater tf  is, the more the crack will bend into the rock. 
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• The threshold angle also has a large influence on the dam’s crack propagation profile, 

although there no clear trend for this influence. 

• The maximum shear retention factor maxβ  has a large influence on the crack profile in a 

dam. A smaller value of maxβ  will cause the crack to bend sooner into the rock 

foundation. 

 

 In terms of the overall structural displacement on the crest of gravity dams, the 

following findings are obtained: 

 

• The fracture energy fG  normally does not have much influence on the dam’s ultimate 

deformation response. 

• The bilinear shape parameters 1α  and 2α  are quite sensitive to the fracture response in 

normal “small-scale” concrete structures, such as beams, but have only some limited 

influence on the structural response of large-scale structures, such as concrete gravity 

dams. 

• The tensile strength tf  of concrete has a significant effect on the crack response of a 

dam. The greater the value of tf , the less crest deformation there will be in the dam. 

• The threshold angle does not have a significant influence on the dam’s ultimate 

deformation behaviour. 

• The maximum shear retention factor maxβ  does not have much influence on the 

behaviour of a dam.  

 

From all the above findings from the sensitivity study, it can be concluded that the 

influence of gravity and hydrostatic pressure on a dam are so dominant that the localized 

fracturing – influenced by the fracture energy fG , the threshold angle, the maximum 

shear retention factor maxβ  and the softening shape parameters 1α  and 2α  – does not 

affect the structural response significantly. In other words, the effect on the structural 

response of a concrete dam due to loads, such as self-weight and hydrostatic pressure, etc., 

is much greater than the effect of the local material fracturing. 
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8.2  Recommendations 

 

Based on this study, the following recommendations are made for future research on the 

cracking analysis of concrete structures: 

 
• Water pressure inside cracks could reduce the concrete’s resistance to fracturing. Water 

penetration and uplift pressure inside cracks should be considered. 

• Three-dimensional crack analysis of dam structures, in particular of arch dams, is the 

preferred method of analysis. 

• The tensile strength of the concrete and rock should be determined from the tests on the 

drilled samples taken in situ since the cracking path and the overall response in a dam 

are very sensitive to the magnitude of the tensile strength. 

• The fracture energy of the concrete and foundation rock should also be determined 

from the tests on the drilled samples taken in situ. 

• The bilinear softening parameters 1α  and 2α  should be determined from the data 

fitting of the experimental non-linear softening curve of the concrete. 

• Further research on the influence of the parameters of mode II in the mixed-mode I/II 

fracture of concrete is recommended. 

• A more rigorous definition of the crack blunt width hc is needed. 

• A study on the interaction of cracks with construction joints and foundation contacts 

could make the prediction of dam safety more accurate. 

• The results from the numerical fracture analyses should be combined with field 

investigations, laboratory testing and common engineering sense to provide a clear 

overall picture for the evaluation of dam safety. 

• The fracture analysis of a dam should be adopted as part of the routine dam safety 

evaluation by practising engineers for a better and more accurate evaluation of dam 

safety. 

• Constitutive crack modelling is a powerful analysis technique which can be used to 

supplement the “classical” methods for dam safety analysis. 

• In the case of the need for the rehabilitation of “apparently unsafe” dams predicted by 

classical methods, the fracture analysis method developed can be used to recheck the 

dam’s structural behaviour and its safety, and could lead to a huge saving on 

unnecessary rehabilitation works. 
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8.3  Closure 

  

The most challenging areas of this research have been the establishment of the smeared 

NLFM cracking analysis method and its numerical implementation into a finite element 

program for the crack safety evaluation of concrete dams. This research shows promise for 

establishing the ultimate strength of concrete dam structures. 
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ANNEXURE   FINITE ELEMENT METHOD AND ALGORITHM IN MSC.Marc 

 
 

MSC.Marc is a general-purpose finite element (FE) program for advanced engineering 

analysis, which can be used to perform a wide variety of structural, fluid and coupled 

analyses using the finite element method (FEM) (MSC.Marc 2005). 

  

The purpose of this annexure is to review the FEM for a better understanding of how 

MSC.Marc works. 

 

A.1   Finite element method 
 

The FE method basically has the following six steps. The success of any FE program 

depends in part on how the program implements these steps. 

 

Step 1: Choose Shape Functions: The FEM expresses the displacement field, )(xu , in 

terms of the nodal point displacement, ea , by using the shape functions, )(xN , over the 

domain of the element eΩ , as: 

 
eaxNxu )()( =                                                       (A.1) 

 

Step 2: Establish the Material Relationship: The FEM expresses the dependent fields, 

such as the strain and stress, in terms of the nodal point displacement as: 

 

[ ] eaBxuLx == )()(ε  ;   eaBDxD === )()( εεσσ                                (A.2) 

 

where 

L          Differential operator 

)(xNLB =    Strain – displacement operator 

D          Constitutive matrix 
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Step 3: Element Matrices: The FEM equilibrates each element with its environment, 

which can be expressed as: 

 

0=+ eee faK                                                         (A.3) 

 

where  

 

dVBDBK
e

Te ∫
Ω

=                     Represents physical properties such as stiffness 

∫∫
ΓΩ

++=−
ee

FdStxNdVbxNf TTe )()(      Represents loads experienced by the element. 

 

These loads may be: body loadsb , such as weight or internal heat generation in volume 
eΩ ; surface loads t , such as pressure on surface eΓ ; or concentrated loads F . 

 

Step 4: Assembly: The FEM assembles all the elements to form a complete structure in 

such a manner as to equilibrate the structure with its environment. 

 

0=+ faK                                                          (A.4)     

 

where 

 

∑=
e

eKK    Overall structural stiffness matrix 

∑=
e

eff   Overall structural load vector 

a         Overall nodal unknowns (such as displacement) vector 

 

Step 5: Solve the Equations: The FEM specifies the boundary conditions, namely the 

nodal point values on the boundary, and the system equations are partitioned as:  
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                                                           (A.5) 

  

where: ua  are the unknown nodal values; sa are the specified nodal values; 
a

f are the 

applied nodal loads; and 
r

f are the nodal point reactions. Hence the solution becomes: 

 

ua = - 1−
uuK (

a
f + usK sa )                                                (A.6) 

 

r
f = - ( suK ua  + ssK sa )                                                  (A.7) 

 

Step 6: Recover: The FEM recovers the stresses by substituting the unknown nodal values 

found in Step 5 back into Step 2 to find the dependent fields, such as strain and stress. 

 

A.2   Non-linear FE analysis and iteration solution  
 

For the solution step, the following equation must be solved: 

 

[ ]{ } { }FaK =         or     0=− FI                                     (A.8) 

 

where  

 

[ ]K   Overall structural stiffness matrix 

{ }a    Overall nodal unknowns vector 

{ }F   Overall structural load vector. 

 

[ ]{ }aKI =  

{ }FF =  

 

For non-linear equations, both the stiffness and external forces may be functions of the 

nodal displacements: 
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I ( a )- F ( a ) = 0                                                     (A.9) 

 

To solve a non-linear set of equations, MSC.Marc generally applies the following two 

solution methods: 

 

a. Newton-Raphson (NR) method 

 

This is an iterative method. The structural stiffness matrix is constantly updated at each 

iteration. Given a general non-linear equation )(af  = 0, and a known point ia , a 

correction 1+Δ ia  can be calculated as follows: 

 

)(
)(

1
i

i
i af

af
a

′
=Δ +                                                         (A.10) 

 

with 

  

11 ++ Δ+= iii aaa                                                 (A.11) 

 

By defining the tangent stiffness: 

 

≡′ )( iaf ))()(()( iii
T
i aFaI

u
aK −

∂
∂

=                                    (A.12) 

 

and the residual: 

 

)()()()( iiii aFaIaRaf −=≡                                         (A.13) 

 

the Newton-Raphson method (equation A.10) can be rewritten in a more familiar form: 

 

)()( 1 iii
T
i aRaaK =Δ +                                              (A.14)

    

Gauss elimination techniques can be used to solve this set of equations for 1+Δ ia . 

 
 
 



213 

  

 

With each iteration, the residual should decrease. If it does, the method converges to the 

correct solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 - Full Newton-Raphson method (MSC.Marc 2005) 

 

 

b. Modified Newton-Raphson (MNR) method 

 

In this method, constant stiffness is applied within each load step and only updated at the 

beginning of the next load increment. There may be slow convergence behaviour. 
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A.3   Convergence checking 
 

The iterative procedure is terminated when the convergence ratio is less than a criterion of 

tolerance. 

 

a.   Residual checking: Residuals and reactions 

 

Relative:   
max

max

reaction

residual

F
F

 <  Tol                                      (A.15) 

 

Absolute:  
maxresidualF   <  Tol                                     (A.16) 

 

where 

maxresidualF   = maximum residual force 

maxreactionF   = maximum reaction force 

Tol       = tolerance  (default Tol = 0.1 ) 

Figure A.2 - Modified Newton-Raphson method (MSC.Marc 2005) 
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The residuals are the difference between the external forces and the internal forces at each 

node, namely: 

 

residualF  = externalF  - dVBDB
e

T∫
Ω

                                 (A.17) 

 

The nodal reactions are from the system equations, namely equation (A.7):  

 

reactionF  = 
r

f  =  - ( suK ua + ssK sa )                                    (A.18) 

 

The maximum residuals and reactions occur at different degrees of freedom (dof) that 

have the largest magnitude, namely: 

 

maxresidualF  = Max( i
residualF ) ;  i = 1, maxdof                               (A.19) 

and 

maxreactionF  = Max( i
reactionF ) ;  i = 1, maxdof                              (A.20) 

 

b.   Displacement checking: Maximum displacement change and maximum displacement 

increment 

 

Relative:  
max

max

du
uδ

 =  
max

max

1

i

ii

u

uu

Δ

Δ−Δ +

 <  Tol                           (A.21) 

 

Absolute:  
max

uδ  <  Tol                                           (A.22) 

 

where 

max
uδ   = maximum displacement change 

max
du   = maximum displacement increment 

Tol    = tolerance  (default Tol = 0.1 ) 
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Figure A.3 - Convergence checking  (MSC.Marc 2005) 
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