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CHAPTER III - CONSTITUTIVE MODELS AND PARAMETERS STUDY 

 

As shown in Chapter II, the constitutive modelling of concrete cracking phenomena has 

undergone tremendous development. Many constitutive models have been proposed in the 

past for analyzing concrete fracture, mainly for small-scale concrete structures such as 

single- or double-notched beams of mode I or mixed-mode fracturing. 

 

Concrete dams are normally huge in size and are subjected to both normal and shear 

loadings, which results in a complex state of stress within the structures. As stated in 

Chapter II, the non-orthogonal crack model proposed by de Borst & Nauta (1985) is an 

ideal model to form the basis for the further development of models to simulate the 

cracking process in concrete dams under both normal and shear loadings. The constitutive 

relationships adopted in this research for the different deformation phases, such as the 

stages before and during softening, are outlined in the sections below. 

 

In this research a smeared constitutive model has been established which has the 

advantages of preserving the topology of the finite element (FE) mesh and of easy 

determination of the crack orientation by aligning the crack perpendicular to the direction 

of principal stress during analysis. This model can be used to analyze the entire process of 

concrete cracking, including 

 

• Pre-softening:    Structural behaviour before a crack is initiated 

• During softening:  Structural behaviour during crack formation 

• Structural behaviour for unloading/reloading and closing/reopening of cracks. 

 
3.1 Pre-softening constitutive relationship 

 

In this study, linear elastic behaviour in tension before the onset of a tensile fracture is 

assumed. For compression, linear elasticity is also assumed due to the fact that the research 

is focused on the local strain-softening behaviour of tensile fractured concrete and because 

the structures involved in this study, such as concrete gravity dams, are governed by 

cracking, not crushing. As a consequence, some non-elastic softening close to the peak 
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stress before a crack is initiated will be ignored by the above assumption. If required, a 

non-linear, plastic stress-strain law could be included later. 

 

The incremental stress – incremental strain relationship is expressed as follows. 

 

Δσ = Dco Δε                                                (3.1) 

 

• For 3-D FE analysis, equation (3.1) can be expressed as follows: 
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Where 

E     Young’s modulus 

ν      Poisson’s ratio 

x, y, z   Global Cartesian coordinates   

 

• For plane stress analysis, the above equation (3.1) can be expressed as follows: 
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Where 

G     shear modulus,  
)1(2 ν+

=
EG     
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• For plane strain analysis, the above equation (3.1) can be expressed as follows: 
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3.2 Crack onset criterion and crack direction 

 
The crack onset criterion in this research is defined by assuming that the concrete will 

crack when the maximum tensile principal stress σ1 exceeds the concrete tensile strength 

tf  at a Gauss point. The crack direction is then perpendicular to the direction of the 

maximum principal stress (see Figure 3.1).  

 

This is a simple and effective conventional criterion which will ignore the effects of the 

second and third principal stresses under multi-axial loading conditions. For a 2-D 

application, the criterion is shown in straight lines in Figure 3.2. A more accurate crack 

initiation criterion (red curve in the Figure 3.2) depends on the second principal stress of 

the perpendicular direction, such as the criterion based on tensile strain energy density 

proposed by Bhattacharjee & Leger (1993). 

 

 

 

 

 

 

   

 

 

Figure 3.1 - Crack direction and local axis system for 2-D and 3-D applications 
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Figure 3.2 - Crack initiation criteria for a 2-D application 

 

3.3 Constitutive relationship during concrete cracking 

 

The early orthogonal crack models limited the crack formation and directions. Following 

cracking at one point, a second crack can be only allowed to form in the perpendicular 

direction of the first crack and so on. In 3-D modelling, a third crack may only develop 

perpendicular to the first two cracks. To improve cracking behaviour, de Borst and Nauta 

(1985) developed a non-orthogonal crack model, which allows a subsequent crack at a 

point to develop at any angle to a prior crack. This approach is ideal for simulating the 

cracking process in concrete structures. One of the main features of the model is that it 

decomposes the total crack strain increment into a strain increment for the uncracked 

concrete between cracks coεΔ and a strain increment at the crack crεΔ as follows: 

 
crco εεε Δ+Δ=Δ                                              (3.5) 

 

The crack strain increment crεΔ in equation (3.5) is further contributed to by all the 

individual cracks at a particular Gauss point: 
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Where cr
1εΔ  is the strain increment of a first (primary) crack; cr

2εΔ  is the strain increment 

of a secondary crack, and so on. 

 

The strain increment of individual crack (i), cr
iεΔ , in the global x, y and z coordinates can 

be obtained by transforming the local crack strain increment cr
ieΔ as follows:  

 
cr
ii

cr
i eN Δ=Δε                                                    (3.7) 
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The local coordinate system ( n, s, t ) is crack-aligned as shown in Figure 3.3, where n 

refers to the direction normal to a crack and s, t refer to the directions tangential to a crack. 

 

In equation (3.8), cr
nneΔ  is the mode I local crack normal strain increment and cr

nsγΔ , cr
ntγΔ  

are the mode II and III local crack shear strain increments respectively. Ni is a 

transformation matrix between the global and local coordinates at the crack (i). 
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Figure 3.3 - Coordinate system and traction vectors across a crack for 3-D application 
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For a 3-D configuration, Ni has the following format: 
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Where l1, l2, l3, m1, m2, m3, n1, n2, n3 are the direction cosines of the axes defined in 

Tables 3.1 and 3.2 (refer to Figures 3.1 and 3.3): 

 

TABLE 3.1 - Direction cosines of local axes in global axis 

 x y z Global coordinate 

n l1 m1 n1  

s l2 m2 n2  

t l3 m3 n3  

Lo
ca

l c
oo

rd
in

at
e 

    

 

 

For a 2-D application (plane stress or plane strain), Table 3.1 becomes the following 

Table 3.2. 
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TABLE 3.2 - Direction cosines of local axes in global axis (2-D) 

 x y z Global coordinate 

n l1=  cosθ m1= sinθ n1= 0  

s l2= -sinθ m2= cosθ n2= 0  

t l3= 0 m3= 0 n3= 1  

Lo
ca

l c
oo

rd
in

at
e 

    

 

Where θ is the angle between the normal of a crack and the global x-axis shown in 

Figure 3.1. 

 

For equation (3.7), it is convenient to assemble the individual crack vectors and matrices 

into a general form as follows. 

 
crcr eN Δ=Δε                                                (3.10) 

 

Where [ ]L21 NNN =  is a transformation matrix which combines all the individual crack 

transformation matrices, and [ ]Tcrcrcr eee L21 ΔΔ=Δ is the local crack strain increment 

which is composed of the contributions of multiple cracks. 

 

The local stress increment crSΔ can be derived by transforming the global stress increment 

σΔ as follows: 

 

σΔ=Δ Tcr NS                                                (3.11) 

 

Where [ ]Tcrcrcr SSS L21 ΔΔ=Δ  is composed of the contributions of multiple cracks. 
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For an individual crack (i), the local crack stress increment vector cr
iSΔ is defined as: 
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Where cr
nnSΔ is the mode I normal stress increment and cr

nsSΔ , cr
ntSΔ are the mode II and III 

shear stress increments respectively. 

 

The constitutive relationships of the concrete between the cracks and the local cracks are 

as follows: 

 
cocoD εσ Δ=Δ                                                (3.13) 

 
crcrcr eDS Δ=Δ                                               (3.14) 

 

Where 

Dco is the constitutive matrix of the ‘intact’ concrete between the cracks as follows: 
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and  

Dcr is the constitutive matrix of the local cracks as follows: 
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Where the size (columns and rows) of Dcr depends on the number of cracks at the Gauss 

point. Zero off-diagonal terms implies that the coupling effects between different cracks 

are ignored. 

 

For a crack (i): 
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 in which I
iD  is the mode I stiffness modulus, 

GDII
i β

β
−

=
1

 is the mode II shear stiffness modulus and III
iD  is the mode III stiffness 

modulus. β  is the shear retention factor to be defined in Section 3.5.  
)1(2 ν+

=
EG  is the 

elastic shear modulus. Again, no coupling is considered between the shear and normal 

strains on the crack plane. 

 

From equations (3.11), (3.13), (3.5) and (3.10), we have: 

 

)( crcoTcocoTTcr eNDNDNNS Δ−Δ=Δ=Δ=Δ εεσ                     (3.17) 

 

From equations (3.17) and (3.14), we have: 

 

)( crcoTcrcr eNDNeD Δ−Δ=Δ ε                                    (3.18) 

 

From equation (3.18), we have: 

 

εΔ=Δ+ coTcrcoTcr DNeNDND )(                                  (3.19) 
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From equation (3.19), we have: 

 

[ ] εΔ+=Δ
− coTcoTcrcr DNNDNDe 1

                                (3.20) 

 

From equations (3.20) and (3.13), (3.5) and (3.10), we have: 

 

[ ]{ }εεσ Δ+−Δ=Δ
− coTcoTcrco DNNDNDND 1

                        (3.21) 

 

The overall relationship between global stress and strain is obtained from the above 

equation (3.21): 

 

[ ]{ } εσ Δ+−=Δ
− coTcoTcrcoco DNNDNDNDD 1                        (3.22) 

 

3.3.1  Plane stress application used in this research 

 

For the plane stress analysis in equation (3.22), we have: 
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Where I
iD  is the mode I stiffness, which will be discussed in the next section, Section 3.4. 
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GD II
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 is the mode II stiffness, which will be discussed in the Section 3.5. 

 

[ ]L21 NNN =  is the overall transformation matrix composed of all the transformation 

matrices (equation 3.26) of each individual crack at a point. 
 

The transformation matrix of an individual crack (i) reduces to a 3 x 2 matrix from 

equation (3.9) as follows: 
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Where θi is the angle between the normal of a crack (i) and the global x-axis shown in 

Figure 3.1. 

 

3.3.2  Plane strain application used in this research 

 

For the plane strain analysis in equation (3.22), we have: 
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Where I
iD  is the mode I stiffness, which will be discussed in the next section, Section 3.4. 
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 is the mode II stiffness, which will be discussed in Section 3.5. 

 

Equation (3.28) is the same as equation (3.24), and equation (3.29) is the same as equation 

(3.25). 

 

[ ]L21 NNN =  is the transformation matrix composed of all the transformation matrices 

(equation 3.30) of each individual crack at a point. 
 

The transformation matrix of an individual crack (i) reduces to a 4 x 2 matrix from 

equation (3.9) as follows: 
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3.4 Mode I tensile softening  

 

In equation (3.22), the constitutive matrix of the local crack at a Gauss point is composed 

of all the individual cracks at that point. For any one crack (i) at that point, the mode I 

stiffness of the crack, I
iD , is dependent on the fracture energy Gf of the material, which is 

defined as the energy dissipation for a unit area of a mode I (tension) crack plane 

propagation, the shape of the tensile softening diagram, the direct tensile strength ft and 

the crack blunt width hc. The fracture energy Gf and the direct tensile strength ft are taken 

as fixed material properties for a specific concrete. The crack blunt width hc will be 

discussed later in Section 3.7. The shape of the crack softening diagram for mode I 

fracturing of concrete would significantly change the values of the mode I softening 

modulus and is still a much-debated matter. The mode I softening diagram could take 
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various forms. Linear, bilinear and non-linear curves have been adopted in past and 

current analyses of the cracking of concrete structures (refer to Figure 3.4). 

 

Linear strain softening (see for example Figure 3.5) has been widely adopted in the 

fracture analysis of concrete structures, in particular for concrete dams. The mode I 

stiffness modulus of a local crack is defined as follows: 
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Where Es is the strain-softening modulus shown in Figure 3.5.  In Figures 3.5 and 3.6, ne  

is the normal strain of cracked concrete in a local coordinate system (sum of the normal 

strains of the concrete between cracks and of the cracks themselves). cr
nS  is the normal 

stress in the local crack. cr
nne  is the normal strain in the local crack. 

f
ne  is the ultimate 

normal crack strain, after which tensile stress vanishes. 

 

Various experimental studies have revealed that concrete actually fractures in a non-linear 

softening format, where an exponential softening curve best fits the experimental data as 

done by Cornelissen, Hordijk & Reinhardt (1986). However, since a non-linear softening 

curve is normally difficult to implement in the analysis, it is not considered justified at this 

stage for practising engineers to use this non-linear softening approach. A bilinear 

softening strategy is adopted in this research to approximate the real softening curve by 

adjusting the values of the two shape parameters 1α  and 2α  (refer to Figure 3.6), while 

maintaining simplicity of implementation. 

 

For the purpose of this research, the following bilinear strain-softening equations were 

developed: 
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Where 1α  and 2α  are bilinear softening shape parameters. 1α  is defined as the portion of 

the tensile strength below which the strain softening becomes flattened (the mode I 

softening modulus uses the second slope line of softening). 2α  is defined as the ratio of 

the second softening modulus to the first softening modulus. 

 
I
bliD , is the first mode I softening modulus in the bilinear softening diagram (refer to 

Figure 3.6), which is controlled by the shape parameters of the softening diagram ( 1α  and 

2α ), the fracture energy Gf, the direct tensile strength ft and the crack blunt width of the 

finite elements hc. 

 

When I
li

I
bli DD ,,1 ,0 ==α , the strain softening becomes linear 

When I
li

I
bli DD ,,2 ,1 ==α , the strain softening becomes linear.  

 

Figure 3.7 shows how the shapes of the bilinear diagram are changed and their 

relationship with the linear mode I softening modulus I
liD ,  if 1α  is fixed at 1/3 while 2α  

is taken as 0.1, 0.2 and 0.3 respectively. 

 

 

 

 

 

 

 

 

  

 

 

Figure 3.4 - Linear, bilinear and curved mode I strain-softening diagram of “crack”  
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Figure 3.5 - Linear elastic – mode I strain-softening diagram of cracked concrete  

 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.6 - Definition of bilinear mode I strain-softening diagram of “crack” 
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Figure 3.7 - Bilinear mode I strain-softening diagrams for 1α  = 1/3; 2α  = 0.1, 0.2 and 0.3 

(local coordinate) 

 

3.5 Mode II shear softening  

 

Due to aggregate interlock in plain concrete, the shear modulus does not reduce to zero 

immediately after cracking. Therefore, shear stress can be developed on the plane of a 

crack at subsequent loading. In the past, a simple non-zero shear retention factor β was 

adopted to represent shear softening in modelling concrete cracking (Bhattacharjee & 

Leger 1993; Lotfi & Espandar 2004). However, this method ignores the shear dilation and 

the dependence of crack shear on the crack opening displacement. This also results in a 

constant cracking shear modulus that cannot take into account the fact that the shear strain 

varies with the normal crack strain, as observed in experimental studies. For this research, 

the shear stiffness of a crack is defined as a decreasing function of the crack normal strain 

in the following formula (equation 3.34), which is similar to that used by Rots & 

Blaauwendraad (1989), except for a maximum shear retention factor maxβ defined here to 

limit the maximum shear allowed in a crack. The value of maxβ usually varies from 0 to 

0.5. A high shear retention value ( β close to 0.5) could cause extensive cracking in 

certain applications, while zero retention ( β = 0) could result in numerical instabilities 

(Lotfi & Espandar 2004). 
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Where cr
nne  and f

ne have been defined previously and p is a constant defining the shear-

softening shape. As shown in Figure 3.8, if p =0, maxββ = (constant); if p =1, shear 

softening is in a descending linear format; if p =2, shear softening is in a descending 

non-linear format. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 - Relationship between shear retention factor and “crack” strain (local 

coordinate) 

 

3.6 Fixed/rotating, unloading/reloading and closing/reopening of cracks 

 

As stated previously, the direction of cracking is generally aligned perpendicular to the 

principal stress direction and is fixed after the crack has been initiated in the fixed 

non-orthogonal crack model. Each fixed crack is “remembered” with its own direction and 

is kept unaltered for the rest of analysis. This permanent “memory” of crack directions 

increases the cost of computation.  

 

After cracking, the shear stresses would cause the principal stress axes to rotate, which 

could increase the tensile principal stresses well above the concrete tensile strength. In this 
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research, a new crack is initiated whenever the angle between the normal to the crack 

plane of the last crack and the current principal stress direction exceeds a pre-defined 

threshold angle or whenever the inclined tensile principal stress σ1 violates the crack onset 

criterion. The reason why the above new crack initiation criterion is adopted will now be 

explained. 

 

If only the stress criterion applies (i.e. if the maximum tensile principal stress exceeds the 

material’s tensile strength), then the total number of cracks cannot be limited. For 

example, if high shear stress remains in a crack, a new crack could be initiated with almost 

every loading increment, which would render the analysis inefficient. On the other hand, 

the threshold angle condition (i.e. when the angle between the principal stress and the last 

existing crack exceeds a threshold angle) does not control the maximum tensile stress. 

A tensile principal stress three times higher than the tensile strength could occur without 

violating the threshold angle condition (Rots & Blaauwendraad 1989). Only if these two 

conditions are combined can a reasonable new crack initiation criterion be established.  

 

Depending on the magnitude of the pre-defined threshold angle, many cracks could occur 

at a Gauss point. For the purpose of limiting the computing memory required and making 

the multi-directional crack model more robust, a maximum of six cracks are allowed to 

form at a Gauss point. The effect of each additional crack on the results becomes 

progressively and significantly less as the number of cracks at a point increases. 

 

Concrete structures are normally subjected to both tension and shear stress conditions. The 

mixed-mode fracturing behaviour leads to the rotation of the axes of principal stress after 

a crack is formed. Consequently, the fixed crack axes no longer represent the axes of 

principal stress. The fixed, multi-directional, non-orthogonal crack model adopted here is 

able partially to reduce the misalignment between the crack orientation and the principal 

direction.  

 

Alternatively, a rotating approach can be used in which the normal axis to the crack plane 

is allowed to co-rotate with the principal stress axis. A rotating crack concept, in which 

the axes of a crack co-rotate with the orientation of the principal stress, has been proposed 
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in the past to eliminate the discrepancy between and the misalignment of the crack 

directions and principal directions. 

 

Rots & Blaauwendraad (1989) proposed a rotating crack model by simply vanishing the 

threshold angle and making all previous cracks inactive, erasing them from memory. In 

this way, the crack orientation changes continuously to align with the direction of 

principal stress. The following three conditions were set for the rotating model by Rots & 

Blaauwendraad (1989): 

 

• The orientation of subsequent cracks is only controlled by setting the threshold angle to 

zero. 

• Only the current crack is allowed to remain active, by erasing all previous cracks at the 

Gauss point. 

• The influence of previous cracks is accounted for and the mode II shear-softening 

modulus IID  in the following equation (3.36) is used to ensure coaxiality. 

 

In order to enforce coaxiality between the principal stress and strain, the softening shear 

modulus for a 2-D analysis should be calculated as follows: 
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The proposed fixed, multi-directional, non-orthogonal crack model can be converted into 

a rotating model by applying the above-mentioned conditions for the rotating crack 

approach.  

 

The post-fracturing behaviour forms an important part of the crack constitutive model. 

The unloading/reloading and closing/reopening strategy used is shown in Figures 3.9 and 

3.10. A secant unloading approach is adopted in this study, which implies that the crack 

stress-strain relationship follows a path back to the origin upon a strain reduction.  This 
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strategy is often used by researchers since it yields a closer approximation to the real 

unloading behaviour of concrete for application in smeared based crack models than the 

elastic unloading approach used in the past, in which the crack closes immediately during 

a strain reduction (Calayir & Karaton 2005; Rots 2002; Cervera et al. 1990). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 - Diagram of unloading/reloading and closing/reopening (in crack strain) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 - Diagram of unloading/reloading and closing/reopening (in total strain) 
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3.7 Width of crack blunt front and mesh objectivity 

 

In the smeared crack approach, a crack in an element is formed and propagated over an 

area related to the size of the element.  The characteristic length of the crack band in 

smeared modelling must be defined in order to obtain mesh objectivity. The fracture 

process is assumed to occur in bands of micro-defects over a so-called crack band width. 

Gajer & Dux (1990) treated the width of the crack band as a material property, which 

should be three to ten times the maximum aggregate size. 

 

Bhattacharjee & Leger (1992) distinguished between the characteristic length hc in 

non-linear fracture mechanics models and the width of the crack band wc in the crack band 

model (Bažant & Oh 1983). Unlike the crack band width wc, the characteristic dimension 

hc is a geometric property of the cracking element (refer to Figures 2.6 and 2.7 in 

Chapter II for illustrations of wc and hc). 

 

The introduction of a characteristic length hc into the determination of the mode I 

softening modulus is a step towards a non-local softening model for mesh objectivity.  

 

The following definition of the crack characteristic length hc has been proposed by 

researchers in the past: 

 

• elementofAreahc = ; i.e. square root of the area of the cracking element for a 2-D 

application (Bhattacharjee & Leger 1992) or 

• hc = size of the cracking element, across the direction of crack propagation 

(Bhattacharjee & Leger 1992). 

• hc is taken as the side of an equivalent cube having the same volume as the tributary 

volume at the cracked point of a solid isoparametric element for a 3-D application 

(Lotfi & Espandar 2004). 

• elementcrackingtheofsizehc ×= 2  (Rots & Blaauwendraad 1989). 

 

A more rigorous description of hc, which is dependent on the mesh size, crack direction 

and spatial position, can be found in the paper by Oliver (1989).  
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In this research, the response quantities of elements were computed at each integration 

point of the elements. Thus, the size adjustment of the strain-softening modulus Es (refer 

to Figure 3.5) and the fracture energy dissipation are determined on the basis of local 

response quantities. The crack characteristic length hc is defined as the size of the element 

across the crack direction if the finite element mesh is oriented to be parallel to the crack 

band (Figure 3.11(a)). If a crack is propagating obliquely through an element, as shown in 

Figure 3.11(b), then hc is defined as the square root of the element area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 - Crack characteristic length hc of a quadrilateral element (first order with full 

integration) 
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3.8 Element selection for crack analysis  

 

The application of reduced integration is less reliable than the normal integration element. 

It could induce a spurious hour-glass mode, which could easily cause divergence of the 

iterative procedure. Dodds, Darwin, Smith & Leibengood (1982) investigated the hour-

glassing problems and suggested that reduced integration elements should not be used. In 

this research, first-order elements with full integration have been selected for the analysis 

of concrete cracking, as used by many researchers in the past (Bhattacharjee & Leger 

1993; Bhattacharjee & Leger 1994; Rots & Blaauwendraad 1989). Second-order elements 

can also be used for the proposed smeared crack model if needed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 - Quadrilateral element of first order with full integration used in the research 

 

3.9 Concluding remarks 

 

The constitutive crack model adopted for the smeared crack analysis of concrete structures 

in this research has been presented. The crack initiation criterion and direction were 

described first. An enhanced mode I and II strain-softening strategy has been developed 

for this research. The conditions for subsequent new crack(s) to occur after the initial 

cracking have been established. Fixed or rotating cracks, a definition of crack closing and 

reopening, the crack mechanism for unloading and reloading, etc. have also been 

described. A bilinear mode I strain-softening formula has been given. The crack 

characteristic length hc and the element type selected for this research have been defined. 
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The constitutive crack model proposed in this chapter will be fully implemented in an FE 

program in Chapter IV. 
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