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Summary

The maximum likelihood (ML) estimation procedure of Matthews and Crowther (1995: A maximum
likelihood estimation procedure when modelling in terms of constraints. South African Statistical
Journal, 29, 29-51) is utilized to fit a continuous distribution to a grouped data set. This grouped
data set may be a single frequency distribution or various frequency distributions that arise from
a cross classification of several factors in a multifactor design. It will also be shown how to fit a
bivariate normal distribution to a two-way contingency table where the two underlying continuous
variables are jointly normally distributed. This thesis is organized in three different parts, each playing
a vital role in the explanation of analysing grouped data with the ML estimation of Matthews and
Crowther.

In Part | the ML estimation procedure of Matthews and Crowther is formulated. This procedure
plays an integral role and is implemented in all three parts of the thesis. In Part | the exponential
distribution is fitted to a grouped data set to explain the technique. Two different formulations
of the constraints are employed in the ML estimation procedure and provide identical results. The
justification of the method is further motivated by a simulation study. Similar to the exponential
distribution, the estimation of the normal distribution is also explained in detail. Part | is summarized
in Chapter 5 where a general method is outlined to fit continuous distributions to a grouped data
set. Distributions such as the Weibull, the log-logistic and the Pareto distributions can be fitted
very effectively by formulating the vector of constraints in terms of a linear model.

In Part Il it is explained how to model a grouped response variable in a multifactor design. This
multifactor design arise from a cross classification of the various factors or independent variables to
be analysed. The cross classification of the factors results in a total of 7' cells, each containing a
frequency distribution. Distribution fitting is done simultaneously to each of the T cells of the mul-
tifactor design. Distribution fitting is also done under the additional constraints that the parameters
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of the underlying continuous distributions satisfy a certain structure or design. The effect of the
factors on the grouped response variable may be evaluated from this fitted design. Applications of a

single-factor and a two-factor model are considered to demonstrate the versatility of the technique.

A two-way contingency table where the two variables have an underlying bivariate normal distribution
is considered in Part Ill. The estimation of the bivariate normal distribution reveals the complete
underlying continuous structure between the two variables. The ML estimate of the correlation
coefficient p is used to great effect to describe the relationship between the two variables. Apart

from an application a simulation study is also provided to support the method proposed.
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Chapter 1
Introduction

In many situations, data are only available in a grouped form. Typical continuous variables such as
income, age, test scores and many more are for various reasons classified into a few class intervals.
The implication is that the usual statistical techniques employed for continuous variables can no
longer be applied in the usual sense. Often when researchers are confronted with grouped data,
the underlying continuous nature of the variable is ignored and the data do not comply to the
requirements of the statistical tests applied.

The maximum likelihood (ML) estimation procedure of Matthews and Crowther (1995) will be
utilized to fit a continuous distribution to a grouped data set. This grouped data set may be a
single frequency distribution or various frequency distributions that arise from a cross classification of
several factors in a multifactor design. It will also be shown how to fit a bivariate normal distribution
to a two-way contingency table where the two underlying continuous variables are jointly normally
distributed.

This thesis is organized in three different parts, each playing a vital role in the explanation of analysing
grouped data with the ML estimation of Matthews and Crowther. All the examples, applications
and simulations are done with the SAS procedure IML, listed in the Appendix.
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Part |

The ML estimation procedure of Matthews and Crowther is formulated. This procedure plays an
integral role and is implemented in all three parts of the thesis. In Part | the exponential distribution
is fitted to a grouped data set to explain the technique. Two different formulations of the constraints
are employed in the ML estimation procedure and provide identical results. The justification of the
method is further motivated by a simulation study. Similar to the exponential distribution, the
estimation of the normal distribution is also explained in detail. Part | is summarized in Chapter 5
where a general method is outlined to fit continuous distributions to a grouped data set. Distributions
such as the Weibull, the log-logistic and the Pareto distributions can be fitted very effectively by

formulating the vector of constraints in terms of a linear model.

Part Il

In Part Il it is explained how to model a grouped response variable in a multifactor design. This
multifactor design arise from a cross classification of the various factors or independent variables to
be analysed. The cross classification of the factors results in a total of 7' cells, each containing a
frequency distribution. Distribution fitting is done simultaneously to each of the T cells of the mul-
tifactor design. Distribution fitting is also done under the additional constraints that the parameters
of the underlying continuous distributions satisfy a certain structure or design. The effect of the
factors on the grouped response variable may be evaluated from this fitted design. Applications of a

single-factor and a two-factor model are considered to demonstrate the versatility of the technique.

Part Il

A two-way contingency table where the two variables have an underlying bivariate normal distribution
is considered. The estimation of the bivariate normal distribution reveals the complete underlying
continuous structure between the two variables. The ML estimate of the correlation coefficient p is
used to great effect to describe the relationship between the two variables. Apart from an application

a simulation study is also provided to support the method proposed.
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Fitting distributions to grouped data
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Chapter 2
The ML estimation procedure

In this chapter the ML estimation procedure of Matthews and Crowther (1995) is presented. This
procedure is employed to find the ML estimates in the statistical analysis of grouped data. The
formulation and explanation of the ML estimation procedure described in this chapter will be used

throughout the thesis.

2.1 Formulation
Consider a total of n observations tabulated in a frequency distribution with k& classes.

Table 2.1: General formulation of a frequency distribution.

Class Interval | Frequency
(_007 xl) fl
(71, 72) f2
[$k—27 $k—1) fr—1
{Ik‘—la OO) fk
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The observations in Table 2.1 originate from a continuous distribution and information concerning
the distribution is now only available in grouped form. In Table 2.1 the first and last intervals of the

frequency distribution may be open ended class intervals.

Denote the vector of the first (k — 1) frequencies in Table 2.1 by

S

= | (1)

Jr-1

with corresponding vector of upper class boundaries

X

Z2

Tr—1

It is assumed that the vector f is a random vector with some discrete distribution such as Poisson,

multinomial or product multinomial. Assume multinomial sampling and define

1
Po = Ef (2.3)

as the vector of relative frequencies. Let 7r( denote the vector of probabilities, where the i-th element
of 7 is the probability that an observation falls in the i-th class interval. Hence, the expected value
of pg is

E(po) = mo (2.4)

with covariance matrix )
Cov(po) = - (diag [mo] —momy) = Vo (2.5)

where diag [m] is a diagonal matrix with the elements of 7y on the diagonal.

The vector of cumulative relative frequencies is denoted by

p = Cp, (2-6)
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6
where C is a triangular matrix such that
1 00 0
110 - 0
C:(k—1)xk-1)=]1111 -0 . (2.7)
111 1
The expected value of p is
E(p) = Cmyo
=7 (2.8)
with covariance matrix
Cov(p) = CV,C'
1
= C {—(diag 7] —71'07"6)} C'
n
1
= —{Cdiag [C"'xw| C' — 7'}
n
= V. (2.9)

2.2 Estimation

The frequency vector f is distributed according to a multinomial distribution and consequently
belongs to the exponential class. Since the vector of cumulative relative frequencies is a one-to-one
transformation of f, the random vector p may be implemented in the ML estimation procedure
of Matthews and Crowther (1995) presented in Proposition 1. Utilizing the ML estimation, it is
possible to find the ML estimate of 7r, under the restriction that 7r satisfies the constraints defined

in the ML estimation procedure.

The basic foundation of this research are given in the following two propositions. The proofs are
given in Matthews and Crowther (1995).
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Proposition 1 (ML estimation procedure)
Consider a random vector of cumulative relative frequencies p, which may be considered as a
non-singular (one-to-one) transformation of the canonical vector of observations, belonging to the
exponential family, with

E(p) =7 and Cov(p)=V .

The observed p is the unrestricted ML estimate of 7 and the covariance matrix V. may be a
function of . Let g(m) be a continuous vector valued function of 7, for which the first order

partial derivatives,
Jg(m)
or

with respect to m exist. The ML estimate of 7, subject to the constraints g(m) = 0 is obtained

G,= (2.10)

iteratively from
7=p—(G:V) (G,VG,) g(p) (2.11)

Jg(m)
or

and (G,VG.)" is a generalized inverse of (G,VG.).

T=p

where G, =

The iterative procedure implies a double iteration over p and 7. The procedure starts with the
unrestricted ML estimate of 7, as the starting value for both p and 7. Convergence is first obtained
over p using (2.11). The converged value of p is then used as the next value of 7, with convergence
over p starting again at the observed p. In this procedure V is recalculated for each new value of
7t in the iterative procedure. Convergence over 7 ultimately leads to 7, the restricted ML estimate

of .

Proposition 2 The asymptotic covariance matrix of 7, under g(mw) =0, is

Cov () = V- (G,V) (G,VG.)" (G,V) (2.12)
which is estimated by replacing w by .
In Matthews and Crowther (1995) it is assumed that the restrictions are linearly independent, but

in Matthews and Crowther (1998), it is shown that if the restrictions are linearly dependent, it leads
to the generalized inverse, (G,VG.)", to be introduced in (2.11) and (2.12).

The objective is now to find the ML estimate of 7r, under the constraints that the cumulative relative

frequencies 7, equal the cumulative distribution curve, F'(x) at the upper class boundaries x. This
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implies that the ML estimate of 7 is to be obtained under the restriction
F(x)=m (2.13)
which means that the vector of constraints in (2.11) may be formulated as
g(w)=F(x)—m=0. (2.14)

The set of constraints in Proposition 1 is essentially not unique and may be dependent. Any function
say g;(7), that implies the same constraints on 7 as g(7r), may be used and will provide the same
results. The objective now is to choose g(7) in such a way to simplify the calculation of derivatives
and to streamline the estimation process. In some instances it is possible to find the ML estimate
of 7 under constraints, by making use of traditional methods, but the procedure suggested in

Proposition 1 provides an elegant and straightforward method for obtaining the ML estimates.

2.3 Goodness of fit

In order to test the deviation of the observed probabilities p from the restricted ML estimates 7,

imposed by the constraints g(7r) = 0, it is convenient to formulate and test the null hypothesis

Hj:g(w)=0
by some goodness of fit statistic like the Pearson y?2-statistic
o Z (ps = @2 (2.15)
= i
or the Wald statistic
W =g(p)(G,VG,)g(p) - (2.16)

Both the Pearson and the Wald statistic have a x2-distribution with r degrees of freedom, where r
is equal to the number of linear independent constraints in g().

Another useful measure, is the measure of discrepancy
D=W/n (2.17)
which will provide more conservative results for large sample sizes. As a rule of thumb the observed

and expected frequencies are considered to not deviate significantly from each other if the discrepancy
is less than 0.05.
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Chapter 3
The exponential distribution

To illustrate the underlying methodology of fitting a distribution via the ML estimation process
described in Proposition 1, it will be shown how to fit an exponential distribution to the frequency
data in Table 2.1.

The probability density function (pdf) of an exponential random variable with expected value i is

given by
1
flayp) = —e/m (3.1)
1

and the cumulative distribution function (cdf) is given by

Fzp)=1—em (3.2)

To fit an exponential distribution it is required (see 2.13) that

1—exp(—0x)=m (3.3)

where 1 : (k — 1) x 1 is a vector of ones, x is the vector of upper class boundaries and 0 = p~1.
From this requirement (3.3) two alternative ways of performing the estimation procedure are de-
scribed. In Sections 3.1 and 3.2 it will be shown that although the specifications of the two sets of
constraints, g(m) = 0, seem completely different, the final results obtained are identical.
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10
3.1 Direct set of constraints
A direct set of constraints in (2.11) follows from (3.3) with
g(m)= {1 — exp (%)} — 7 . (3.4)
The parameter 6 is expressed in terms of the cumulative probabilities in (3.3) and hence
o Xhiom) 35

The chain rule for matrix differentiation is employed in (3.6) to obtain the following matrix of partial

derivatives
_ Og(m)
Gr = or
 o({1l-ep(—00}—m)
N or
_ Oexp(-0x) Om
N on on
_ Oexp(—0x) 00
= "6 om | (36)
exp (—0z) In(1 —7y)
p exp (.—ng) p In(1 — T2)
B exp (—0xy_1) %' In(1 —71) 1
- 060 U xx /) orn B
exp (—0xy) - 11 [ —(1—m)™? |
—0z) - / —(1— -1
= eXp( 1’2) T2 . (_ )f ) - diag ( 7T2) —1
: x'x :
exp (—0zp_1) - Tp—1 | (1 =)t
= — (diag[exp (—0x)]) - P, D, —1 (3.7)
where

P,= x (x'x) ' ¥/ (3.8)
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is the projection matrix of x and
Jln(1 — )
D, = ———~
om
= —(diag[l—=])7" . (3.9)

The estimation procedure in Proposition 1 utilizes a double iteration over 7 and p starting with the
observed vector of cumulative relative frequencies as the initial values for both convergencies over
7 and p. The iterative procedure may be summarised as follows:

p' = observed cumulative relative frequencies

p=rp!

P,=x (x'x)'x/

DO OVER 7
m™=p
V =1 {Cdiag[C '7|]C’' — w7’}
o — ~x'In(1—m)

x'x

D,= — (diag[1 — 7])~"
G, = — (diag [exp (—0,x)]) - P, - D, — 1

p=p

DO OVER p
0 — _x'In(1-p)
P x'x

D,= — (diag[1 — =])~"
G, = — (diag [exp (—0,x)]) - P, - D, — 1
g(P)={1—exp(-0,x)} — p
p=p—(G:V) (G VG,) g (p)
END
END
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From the above it follows that convergence is first obtained over p where the parameter 6,,, the vector
of constraints g(p) and the matrix of partial derivatives G, are all functions of p. Convergence
over p leads to the next value of 7t with convergence over p starting again at the observed vector of
cumulative relative frequencies namely pf. The values of V, 0, and G, are recalculated for every
value of 7r when iterating over . Convergence over 7r ultimately leads to 7, the restricted ML

estimate of 7w under g (7) = 0 with corresponding ML estimator

x'In(1 — )

x'x

f=— (3.10)

and hence the ML estimator for the exponential distribution

ot <M) b (3.11)

0 x'x
follows. The iterative process is illustrated in Example 3.1.

Example 3.1

Consider n = 100 observations simulated from an exponential distribution with expected value
p=0"1 =50. The grouped data set is shown in Table 3.1.

Table 3.1: Simulated data set from an exponential distribution.

Class interval | Frequency
0,12.5) 17
[12.5,25) 14
25, 50) 31
(50, 100) 26
[100, 00) 12

Table 3.2 shows the various values of 7w and p in the double iteration process, with corresponding
values for j = §~*. The results in Table 3.2 can be calculated directly, or can be obtained using the
SAS program EXP1.SAS listed in Appendix A.1.
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Table 3.2: Double iteration process.

Iteration over p

Iteration over 7 J= ] =2 Jj=3 J=
0.1700 0.1700 0.2373 0.2380 0.2380
i1 0.3100 0.3100 0.4184 0.4194 0.4194
0.6200 0.6200 0.6620 0.6629 0.6629
0.8800 0.8800 0.8862 0.8863 0.8863
i, = 48.83 p,=48.83 | p,=46.03 | p,=4599 | p,=4599
0.2380 0.1700 0.2137 0.2147 0.2147
P 0.4194 0.3100 0.3820 0.3833 0.3833
0.6629 0.6200 0.6186 0.6197 0.6197
0.8863 0.8800 0.8563 0.8553 0.8553
i, = 45.99 p, =48.83 | p,=51.63 | p,=5172 | p,=>51.72
0.2147 0.1700 0.2143 0.2152 0.2152
i3 0.3833 0.3100 0.3829 0.3841 0.3841
0.6197 0.6200 0.6196 0.6207 0.6207
0.8553 0.8800 0.8570 0.8561 0.8561
W, = 5H1.72 p, =48.83 | p,=51.49 | p,=>51.57 | p,=>51.57
0.2152 0.1700 0.2143 0.2152 0.2152
i 0.3841 0.3100 0.3828 0.3841 0.3841
0.6207 0.6200 0.6196 0.6207 0.6207
0.8561 0.8800 0.8570 0.8561 0.8561
W, = H1.57 p, =4883 | p,=5149 | p,=>51.58 | pu,=>51.58
0.2152 0.1700 0.2143 0.2152 0.2152
ik 0.3841 0.3100 0.3828 0.3841 0.3841
0.6207 0.6200 0.6196 0.6207 0.6207
0.8561 0.8800 0.8570 0.8561 0.8561
i, = 5H1.58 p, =4883 | p,=5149 | p,=>51.58 | pu,=>51.58

13
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The procedure starts with the unrestricted ML estimate of 7

0.1700
0.3100
0.6200
0.8800

14

(the observed vector of cumulative relative frequencies) and after convergence the restricted ML

estimate of 7
0.2152

0.3841
0.6207
0.8561

is obtained. The elements of 7 follow a cumulative exponential curve at the upper class boundaries

and hence the ML estimate

follows. The estimated exponential distribution is therefore

L exp(- =)
= —— X —
5158 P\ 5158

f(x)

and is shown in Figure 3.1, together with the observed frequency distribution (blue line) and esti-

mated frequency distribution (red line).
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f(x)
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Figure 3.1: The estimated exponential distribution with the observed and estimated frequency

distribution.

3.2 Constraints in terms of a linear model

An alternative formulation of the vector of constraints may be developed. The linear model
In(l—m)=—-0x (3.12)

follows from the requirement (3.3) implying that In(1 — 7r) is a scalar multiple of the upper class
boundaries, x. Or equivalently, In(1 — 7r) is in the vector space generated by x.

Since Q,=1—x (x’x)f1 x’ is the projection matrix of the vector space orthogonal to x, the vector

of constraints, g(7) = 0, may now be expressed in terms of a new g(7) namely

g(m) =Q,In(1 — ) . (3.13)
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The rationale behind the constraints (3.13) is that In(1 — 7) is an element of the vector space of
x if and only if In(1 — 7r) is orthogonal to the error space of x (i.e. vector space orthogonal to x)
in which case Q. In(1 — 7) = 0. The vector of constraints (3.13) consists out of (k — 2) linear

independent functions, since

rank(Q,) = rank (I)—rank (x (x'x) ™" x’)
= (k—1)—rank(x)
= (k—=1)—-1

The matrix of partial derivatives is now much simpler than the previous formulation (3.7) with

_ Og(w)
Gr = or
- 2@ -m) (3.14)

where D= — (diag [1 — 7])~" (previously derived in (3.9)).

The restricted ML estimate of @ namely 7 is obtained after convergence of the iterative procedure
and leads to the ML estimators

A )
x'x
and
.1
H—b\-

Using the multivariate delta theorem (see Bishop, Fienberg and Holland (1975) p.492) the asymp-

totic variance of 6 follows
-~ 15/ AN
Var(@) {g} COV(ﬂ') {g}

_ { X DW}COV(%) {X’f;DW}, (3.16)

12

x'x

where Cov (7) is given in Proposition 2 (2.12).



ﬂ UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

17
Applying the multivariate delta theorem again it follows that
SO (/)70 RN
Var(u) = {%} Var(0)
1 —~
= Var(6) (3.17)
and hence .
I~ N (u, o Var(ﬁ)) . (3.18)
Example 3.2

In this example the estimation of the exponential distribution to the simulated frequency distribution
in Table 3.1 is revisited. The vector of constraints (3.13) is now formulated in terms of a linear model.
The results are exactly the same as in the previous formulation (3.4), although the intermediate
iterations differ. The restricted ML estimate of 7 is tabulated in Table 3.3.

The restricted and unrestricted ML estimate of (—In(1 — 7)) are tabulated in Table 3.3.

Table 3.3: The restricted and unrestricted ML estimates.

Upper class Unrestricted MLE Restricted MLE

~

boundaries p —1In(1 - p) T —In(1—7)

12.5 0.1700 0.18633 0.21522 0.24235

25 0.3100 0.37106 0.38412 0.48471
20 0.6200 0.96758 0.62069 0.96941
100 0.8800 2.1203 0.85613 1.9388

According to (3.12) the plot of In(1 — 7r) against x should follow a straight line. In Figure 3.2
the unrestricted ML estimates are indicated with blue dots, while the restricted ML estimates are

indicated with red circles. The circles follow the straight line
y = 0.019388z

implying that 0 =0.019388 and consequently 71 = 0.019388~1 = 51.578.
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Figure 3.2: The values of —In (1 — 7r) follow a straight line.

Other relevant statistics are summarised in Table 3.4.

Table 3.4: ML estimates and goodness of fit statistics.

MLE Goodness of fit

Estimate Std. error || Statistic | Value | df | prob

i =51.578 | 65 = 5.654 || Pearson | 4.376 | 3 | 0.2236
Wald | 4.295 | 3 | 0.2313

As can be expected, the Pearson and Wald statistics indicate an adequate fit.

For a 95% confidence interval for p
£ 1.96 (05)

the margin of error is 1.96 (5.654) = 11.082, resulting in the confidence interval

(40.496 , 62.660) .

100
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The SAS program EXP2.5AS listed in Appendix A.2 estimates the exponential distribution utilising

the vector of constraints as a linear model.

3.3 Simulation study

In this study 1000 samples were simulated from an exponential distribution with expected value
i = 50. Each sample consisted of 100 observations and were classified into the 5 class intervals
of Table 3.1. Since the data was simulated from an exponential distribution with expected value
it = 50 the true population value for 7 follows from

0.2212
» xy\ | 03935
i eXp( 50>_ 0.6321

0.8647

which implies that the standard error for 1 is

-~

on = 4/50*Var()
= 5.458

-~

(Var (@) derived in (3.16)). This compares well with the standard deviation of 5 of the mean of an
ungrouped sample of 100 observations from this exponential distribution.

The ML estimate for 1 as well as its estimated standard error were calculated for each of the 1000
generated frequency distributions. The true theoretical values as well as the descriptive statistics for

the ML estimates are summarised in Table 3.5.

Table 3.5: Simulation results for the exponential distribution.

MLE || Theoretical Value || Mean | Std. deviation P Median Pys

50 50.127 5.727 41.381 | 49.676 | 59.956
5.458 5.487 0.716 4421 | 5418 | 6.732

=)

Q)
=)
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From Table 3.5 it follows that the mean and median of the ML estimates are relatively close to the
theoretical values. Further it is known that approximately 90% of the ji-values should be within
1.645 standard deviations from p = 50 i.e. 1.6450; = 8.978. This is in accordance with the fifth
and the ninety-fifth percentile of the ji-values tabulated in Table 3.5. The standard deviation of the
pi-values is also quite close to the standard error ;.

In Table 3.6 the percentiles of the estimated 1000 Pearson and Wald statistics are tabulated. The
critical values of a x2-distribution with 3 degrees of freedom is also shown in Table 3.6.

Table 3.6: Percentiles of the Pearson and Wald statistic.

Percentiles

P5 PlO P25 P50 P75 P90 P95

Pearson || 0.4370 | 0.6794 | 1.2829 | 2.5617 | 4.3586 | 6.5765 | 8.1324
Wald 0.3529 | 0.6299 | 1.2751 | 2.5533 | 4.2654 | 6.4586 | 8.0703

Critical values of a y2-distribution with 3 degrees of freedom.

2 2 2 2 2 2 2
X0.05 X0.10 X0.25 X0.50 X0.75 X0.90 X0.95

X2 (3) 0.3518 | 0.5844 | 1.2125 | 2.366 | 4.1083 | 6.2514 | 7.8147

From Table 3.6 it is clear that the empirical percentiles of the Pearson and Wald statistics correspond

very well to the theoretical percentiles of a y2-distribution with 3 degrees of freedom.

The simulation study was done with the SAS program EXPSIM.SAS listed in Appendix A.3.
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Chapter 4
The normal distribution

Analogous to the exponential distribution described in Chapter 3 the normal distribution with pdf

fxip,0) = V;—Wgexp{—% (x;u>2} (4.1)

will be fitted to grouped data using a direct set of constraints and also constraints specified in terms

of a linear model. The mean and variance of the normal distribution are i and o2 respectively.

By means of standardisation, z = x—;ﬁ the standard normal distribution with pdf

b (2) = — emg{—1x2} (4.2)

o2mo 2

is obtained. The cdf of the standard normal distribution is denoted by ® (z).

To fit a normal distribution to the frequency data in Table 2.1 it is required that

@(X_“>:n (4.3)

o

where ® (-) is the (vector valued) cdf of the standard normal distribution, 1 is the (k — 1) vector

of ones and x is the vector of upper class boundaries defined in (2.2).

21
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4.1 Direct set of constraints
To fit a normal distribution to grouped data a direct set of constraints, g (7) = 0, with
g(m)=@(z) - (4.4)

follows from (4.3). The vector of standardised upper class boundaries in (4.4) is a function of the
parameters to be estimated namely

- (57)

1
= (x 1)
B
= Xa (4.5)
with
X = ( x -1 ) (4.6)
and
a1 1
o= =1 ¢ (4.7)
(%) %
the vector of so-called natural parameters.
Under normality (see 4.3)
—ul
(b—l — X %
m = ()
which leads to the expression
a=(X'X)"'X'e ! (x) . (4.9)

The parameters of the normal distribution are now specified in terms of the cumulative relative
frequencies 7. Hence, from (4.5) and (4.9) the standardised upper class boundaries may be expressed
as

z=Px® ! (m) (4.10)

where
Py = X(X'X)"' X/ (4.11)
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is the projection matrix generated by the columns of X. This implies that, under normality the

vector z is the projection of @1 () on the vector space of X.

From the chain rule for matrix differentiation, employed in (4.12), it follows that the matrix of partial

derivatives is

_ Og(m)
Gr = orn
_ 0®(z) Om
N or or
0P (z) Oz
= o1 (4.12)
= diag[¢(z)] - Px - -D,—1I (4.13)
where 5% 1( )
1w
Dn—a—ﬂ_ . (4.14)

To solve (4.14) set v = &' (m) then ® (v) = 7 and hence

ov
D, = —
" or

&)

(%)’
= (diag[p ()™

= (diag [¢ (@ (w))]) " (4.15)

with ¢ (-) the vector valued pdf of the standard normal distribution.

The vector of constraints (4.4) and the matrix of partial derivatives (4.13) may be implemented in
the ML estimation procedure, where the restricted ML estimate 7 is obtained iteratively in a double
iterative procedure.
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The iterative procedure may be summarized as follows:

p' = observed cumulative relative frequencies
p=p'
Py=X(X'X)"'X
DO OVER 7
T=p
V =1 {Cdiag[C'nw]C — nr'}
D, = (diag[¢ (&1 (m))]) "
7z, =Px® ! (m)
G, =diag[¢ (z,)] - Px -D,—1

p=p'

DO OVER p
D,= (diag[¢ (@' (p))])
z, = Px®~' (p)

G, = diag[¢ (z,)] - Px - D,~1
g(p)=®(z)-p
p=p—(G:V) (G VG,) g (p)
END
END

For convergence over p the vector of upper class boundaries z,, the matrix of partial derivatives G,
and the vector of constraints g(p) are all functions of p. Utilizing

p=p—(G.V)(G,VG,) g (p)

convergence is obtained over p resulting in a new value for 7. For convergence over 7 the covariance
matrix V, vector of upper class boundaries z, and the matrix of partial derivatives G, are all

functions of 7r. Convergence over 7 leads to the restricted ML estimate 7 which follows a cumulative
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normal distribution curve at the upper class boundaries x. From the restricted ML estimate 7 the

ML estimator

o) (X'X)'X'® " (7) (4.16)

a =
Qg

follows and consequently the ML estimators for the normal distribution are

0
) 4.17
== (4.17)
and
5= o (4.18)
o = . .
ay

See (4.7) for the formulation of the parameters.
Example 4.1

The normal distribution will now be fitted to 100 observations simulated from a normal population
with mean 58 and standard deviation 15. The data is shown in Table 4.1.

Table 4.1: Simulated data set from a normal distribution.

Class Interval | Frequency
[0,40) 9
40, 50) 26
50, 60) 24
(60,75) 27
[75,100) 14

The various values for p and 7 in the double iteration process are calculated with the SAS program
NORMI1.SAS (listed in Appendix A.4) and tabulated in Table 4.2. The corresponding values for x
and o are also listed in Table 4.2.
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Table 4.2: Double iteration process.

Iteration over p

Iteration over 7 J= ] =2 Jj=3 J=
0.0900 0.0900 0.0950 0.0951 0.0951
i 0.3500 0.3500 0.2721 0.2713 0.2713
0.5900 0.5900 0.5375 0.5367 0.5367
0.8600 0.8600 0.8734 0.8736 0.8736
[, = D7.79 py =97.79 | p,=58.68 | p,=>5869 | pu,=>53.69
or = 14.76 o, = 14.76 o, = 14.27 o, = 14.26 o, = 14.26
0.0951 0.0900 0.1196 0.1206 0.1206
P 0.2713 0.3500 0.3094 0.3078 0.3078
0.5367 0.5900 0.5670 0.5667 0.5667
0.8736 0.8600 0.8791 0.8796 0.8796
i, = 58.69 p, =57.79 | p,=5750 | p,=5749 | p,=57.49
o = 14.26 o, =14.76 | 0,=14.92 | 0,=14.92 | 0, =14.92
0.1206 0.0900 0.1188 0.1197 0.1197
P 0.3078 0.3500 0.3084 0.3068 0.3068
0.5667 0.5900 0.5666 0.5663 0.5663
0.8796 0.8600 0.8794 0.8799 0.8799
W, = D7.49 p, =57.79 | p,=>5752 | p,=5752 | p,=>57.52
or = 14.92 o, = 14.76 o, = 14.88 o, = 14.89 o, = 14.89
0.1197 0.0900 0.1188 0.1197 0.1197
. 0.3068 0.3500 0.3084 0.3068 0.3068
0.5663 0.5900 0.5666 0.5663 0.5663
0.8799 0.8600 0.8794 0.8799 0.8799
f = D7.52 p, =57.79 | p,=5752 | p,=5752 | p,=>57.52
or = 14.89 o, =14.76 | 0,=1489 | 0, =14.89 | 0, = 14.89

26
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From Table 4.2 it can be seen that the ML procedure converges extremely fast. The procedure

starts off with the unrestricted ML estimate for 7 (observed cumulative relative frequencies)

0.0900
0.3500
0.5900
0.8600

and converges ultimately to the restricted ML estimate of 7

0.1197
0.3068
0.5663
0.8799

The elements of 7 follow a cumulative normal distribution curve at the upper class boundaries of x

and hence the ML estimates of the natural parameters follows from (4.16) with

R o 0.06717
o = =
iy 3.86338

From (4.17) and (4.18) the ML estimates for the normal distribution are

1 =>5752 and & =14.89.

The estimated normal distribution is shown in Figure 4.1, together with the observed frequency
distribution (blue line) and estimated frequency distribution (red line).
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Figure 4.1: The estimated normal distribution with the observed and estimated frequency
distribution.

4.2 Constraints in terms of a linear model

In the previous section a normal distribution was fitted to a grouped data set utilizing a direct set
of constraints. In this section the constraints will be formulated in terms of a linear model.
From (4.3) it is possible to formulate the linear model

orm - (5F)
= Xa (4.19)

where
X = ( x -1 ) (4.20)



<
=

“ UNIVERSITEIT VAN PRETORIA

4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

29
is the design matrix and
1
o — Zi _ g (4.21)
is the vector of natural parameters.
The linear model (4.19) implies the vector of constraints
g(m)=Qx® (m)=0 (4.22)
to be imposed in the ML estimation procedure, where
Qx=I-Px (4.23)

is the projection matrix orthogonal to X and P is previously defined in (4.11). According to (4.22)
the vector of cumulative probabilities will be fitted such that ®!(7) is orthogonal to the error
space of X or equivalently such that ®~!(7r) is in the vector space of X.

The matrix of partial derivatives follows

G - 0Qx P~ ()
om

= QxD, (4.24)
where D, = (diag [¢ (&' (r))]) " is already derived in (4.15).

Employing the vector of constraints (4.22) and the matrix of partial derivatives (4.24) in the ML
estimation procedure the restricted ML estimate, 7, is obtained. It follows from (4.19) that the ML
estimator of av is

a= = (X'X)"'X'®" ! (7) (4.25)

with asymptotic covariance matrix

. _ (o« . (0a’
Cov (@) = (%) Cov() (%>
= {(X'X)"'X'D,} Cov(m) {(X'X)"'X'D, }' (4.26)
The ML estimators . 1
= X and G=— (4.27)
aq (071
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follows from (4.25) and (4.21).

Let

P I B (4.28)

g L
aq

denote the vector of original parameters for the normal distribution. To find the asymptotic distrib-
ution for the ML estimate 3, the multivariate d-theorem is once again implemented and hence

3 =~ N(ﬁ,Cw(B)) (4.29)
H ~ Ty
-~ N ,BCov(a)B (4.30)
o
where
B
B = %a
0
—az L
= = a o ) (4.31)
-1 0
aq a?
a 1
Qg
Example 4.2

The normal distribution will now be fitted to the frequency distribution tabulated in Table 4.1, now
employing the vector of constraints as a linear model (4.22). By making use of the SAS program
NORM2.5AS in Appendix A.5, the ML estimation procedure yields exactly the same restricted ML
estimate for 7r, as in Example 4.1, namely

0.1197
0.3068
0.5663
0.8799
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although the intermediate iterations differ. The elements of

—1.17652
—0.50480
0.16691
1.17448

are the estimates of the inverse normal probabilities (standardised upper class boundaries) and

Py = X(X'X)'X
0.64486  0.40187 0.15888 —0.20561
0.40187  0.30841 0.21495 0.07477
0.15888 0.21495 0.27103 0.35514
—0.20561 0.07477 0.35514  0.77570

is the projection matrix generated by the columns of X. Multiplying these two matrices lead to
Px® ' (7) =o' (7)

which means that @' (7) is in the vector space of X and consequently ®~! (7) is a linear combi-
nation of the columns of X in (4.20). It is also clear that

qu)il (7/1\') =0
indicating that ®~! () is orthogonal to the error space of X. (See 4.22 and 4.23.)

The ML estimates and goodness of fit statistics are summarized in Table 4.3

Table 4.3: ML estimates and goodness of fit statistics for the normal distribution.

MLE Goodness of fit

Estimate Std. error || Statistic | Value | df | prob

j=57.515 | o5 = 1.556 || Pearson | 4.654 | 2 | 0.0976
0 =14.887 | 05 = 1.327 Wald | 4.855 | 2 | 0.1455
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According to the goodness of fit statistics summarized in Table 4.3, the null hypothesis of an
adequate fit is not rejected at a 5% level of significance. The adequate fit is further illustrated in
Figure 4.1.

The estimated standard errors 5 and 75 in Table 4.3 follows from the estimated covariance matrix

R 24219 0.0353
Cov <ﬂ> —Cov | "
g

0.0353 1.7622

which is estimated by substituting the restricted ML estimate 7 in Cov (7).

The 95% confidence intervals for ;o and o are tabulated in Table 4.4.

Table 4.4: 95% confidence intervals for ;1 and o.

Parameter Margin of error Confidence interval
1 1.96 (1.556) = 3.049 | (54.951,61.049)
o 1.96 (1.327) = 2.601 | (12.286,17.488)

From the confidence intervals reported in Table 4.4 the population parameters 1 and o do not differ
significantly from the theoretical values 58 and 15.

4.3 Simulation study

Similar to the simulation study done for the exponential distribution in the previous chapter, 1000
samples were simulated, each containing 100 observations. These samples were all simulated from a
normal population with mean p = 58 and standard deviation 0 = 15. The descriptive statistics for
the 1000 sample means and sample standard deviations of the ungrouped data sets are summarised
in Table 4.5.
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Table 4.5: Descriptive statistics for sample statistics of ungrouped data sets.

Statistic || Mean | Std. deviation Ps Median | Pys

T 57.993 1.489 55.582 | 57.919 | 60.446
s 14.902 1.078 13.244 | 14.881 | 16.673

Evaluating the sample statistics for the ungrouped data sets, the mean and median are very close

to the theoretical values. The standard deviation of Z is close to the standard error of Z, i.e.
o 15

0-5):—:

=15.
Vvn 100

The 1000 simulated data sets were all classified into the same set of class intervals as that of Table
4.1. The normal distribution was fitted to each of the 1000 generated frequency distributions and
the descriptive statistics for the ML estimates are tabulated in Table 4.6.

Table 4.6: Simulation results for the normal distribution.

MLE | Theoretical Value | Mean | Std. deviation B Median Py
1 58.000 57.993 1.548 55.512 | 57.945 | 60.598
o 1.569 1.562 0.146 1.343 | 1.550 | 1.826
o 15.000 14.915 1.384 12.797 | 14.823 | 17.376
05 1.341 1.340 0.171 1.091 | 1.320 | 1.653

In the case of a normal distribution with ;1 = 58 and o = 15 the theoretical value for 7 is

—1.2000 0.11507

_ —0.5333 0.29690
7T:(I)(x 58(1)):(1) _

15 0.1333 0.55304

1.1333 0.87146

leading to the asymptotic covariance matrix

1 2.46085 0.05201
Cov | =
o

| 0.05201 1.79748
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and yielding the standard errors o = 1.569 and o5 = 1.341 tabulated in Table 4.6. In view of
the fact that the standard error for a random sample from a N(58, 15?) distribution is % = 1.5,
not much accuracy has been lost by using a grouped sample in the estimation of y. As is evident
from Table 4.6 the mean and median of each of the ML estimates compare extremely well with
the theoretical values (approximate in the case of o; and 03). It is also interesting to note that
standard deviations for ji and & are close to the standard errors o and o05. To evaluate the fifth
and the ninety fifth percentiles the margin of error for the 90% confidence intervals are summarised

in Table 4.7.

Table 4.7: 90% margin of error for the ML estimators of the normal distribution.

Estimate | Std. Error | Margin of Error
o 1.6450; = 2.581
05 1.64505; = 2.206

Q) =

It is known that approximately 90% of the fi-values should be in the interval (55.419,60.581),
while 90% of the o-values should be in the interval (12.794,17.206). This compares well with the
simulated values in Table 4.6.

The goodness of fit statistics were calculated for each of the 1000 fitted normal distributions.
From Table 4.8 it follows that the Pearson and Wald statistics correspond very well to that of a

x2-distribution with 2 degrees of freedom.

Table 4.8: Percentiles of the Pearson and Wald statistic.

Percentiles

P5 PlO P25 P50 P’75 PQO P95

Pearson ||| 0.1291 | 0.2355 | 0.5945 | 1.3728 | 2.7147 | 4.6345 | 5.8393
Wald 0.1066 | 0.2054 | 0.5925 | 1.3742 | 2.7591 | 4.6721 | 6.1128

Percentiles of a x2-distribution with 2 degrees of freedom.

2 2 2 2 2 2 2
X0.05 X0.10 X0.25 X0.50 X0.75 X0.90 X0.95

x> (2) 0.1026 | 0.2107 | 0.5754 | 1.3863 | 2.7726 | 4.6052 | 5.9915
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Chapter 5

The Weibull, log-logistic and Pareto
distributions

In this chapter it will be shown how to fit the Weibull, log-logistic and Pareto distributions to a
grouped data set. Estimation will be done by constructing the vector of constraints in terms of a
linear model. This method is preferred due to the simplicity and the overall generalization of the
technique. This generalization is outlined in 3 easy steps where the estimation of the exponential
and normal distributions are also considered.

5.1 The Weibull distribution

The pdf of the Weibull distribution is

flz;k,0) = e—ix“_l exp [— (g)n] (5.1)

with cdf
x

F(z;k,0) =1 —exp [— <§>H] : (5.2)

The parameter k is a shape parameter with 6 the so-called scale parameter. The three basic shapes
of the Weibull distribution are illustrated in Figure 5.1.
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0.027 0.027 0.027
0.017 0.011 0.017
0 ‘ : ‘ 0 : : : 0
0 50 100 150 50 100 150 50 100 150
k=0.5 k=1 K=2
Figure 5.1: Weibull distributions with 6 = 50.
The mean and variance of the Weibull distribution are
1
and
2 2 2 2 1
or=0"I'(1+—-)-T"(1+— (5.4)
K K
respectively.
To fit a Weibull distribution it is required that
m=1-—exp [— (%)H} (5.5)
which implies that
In(1l—m)=— (%) . (5.6)
Taking the natural logarithm of (5.6) yields the linear model
In[—1In(1—m)] klnx — (k1Inf) 1
K
< Inx —1 )
k1n6
Xo (5.7)
where
X :( Inx —1 ) (5.8)




UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

“ UNIVERSITEIT VAN PRETORIA
4

37
is the design matrix and
o K
a=| ' |= (5.9)
Qo kIlnd
is the vector of natural parameters.
The vector of constraints
g(w)=QxIn[-In(1—=m)]=0 (5.10)

follows from (5.7) where Qx=1 — X(X'X) "X’ is the projection matrix orthogonal to X. The

matrix of partial derivatives becomes

_ 9{QuIn[-In(1-m))
— QyD, o (5.11)
where
b _ 8111[—1;171(-1—77)]
= {diag [~ (1)) (I (1))
— —{diag[ln (1 — =)} " {diag[1 — =]} " . (5.12)

The restricted ML estimate 7 is estimated such that In [—In (1 — 7r)] is a linear combination of X

leading to the ML estimator
a=(XX)"'X'In[-In (1 —7)] (5.13)
with asymptotic covariance matrix

Cov(@) = {(X'X)'X'D,} Cov(7) {(X'X)"'X'D,} . (5.14)

The parameters of the Weibull distribution are

K (€3]

s={ )= () ) (5.15)
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Hence, the ML estimator for 3 is
~ R a
a=| " )= . (5.16)
0 exp (a—f)
with asymptotic covariance matrix
Cov(B) = B Cov(a)B’ (5.17)
where
B
B = &=
oo
K
0
0
al
Qg
1 0
= (5.18)

“gee(@) e ()
According to the multivariate delta theorem the asymptotic distribution of B is

B=N(B,BCov(@)B) .

5.2 The log-logistic distribution

The log-logistic distribution is defined in a manner analogous to the definition of the lognormal
distribution. If log(x) follows a logistic distribution then z is said to follow a log-logistic distribution.

The pdf of the log-logistic distribution is

e kart

AT ey (5.19)

f(x;k,0) =

with cdf
0.k

ex

F(ZE,I{,Q):W .

(5.20)
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Setting F'(x; k,0) = m it follows that

and therefore

el

14 efxr

(691./1) / (1 + 69117”

)

= €

The mean and variance are given by

imen (-2 [r (14 2)r(1-2)]
<o () [ (14

Implementing = =F'(x), it follows from (5.21) that

and

respectively.

resulting in the linear model

where

and

(14 efxr — ef2r) / (1 + efx*)

vl

4r(-3 -

) = rlnx+01

— (mx 1)

1
14 =
K

K

0

)

1— =
K

)
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(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)
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The constraints formulated in terms of a linear model is
3
with matrix of partial derivatives
_ Og(m)
Gr = om
_ 9QxIn (%)
N om
= QXDﬂ'
where Qx = I — X (X’X)"' X’ and
0 Y
D, = —<In{——
" on { t (1 — 71') }
_ 9 {In(7) —=In(1 —m)}
- Om
= {diag[n]} ' + {diag[1 — =]} " . (5.28)

In the ML estimation procedure 7t is estimated such that In (%) is in the vector space of X. The

ML estimator & follows from the linear model (5.24)

R T
~ _ _ X/X —1xl1 2
a0 ) =% X (175 (5.29)
with asymptotic covariance matrix
Cov (&) = Cov g — {(X'X)"'X'D,} Cov (&) {(X'X)"'X'D, }’ (5.30)

where D, is derived in (5.28). As in the case of the Weibull distribution, the ML estimators of the
log-logistic are approximately normally distributed.
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The Pareto distribution has been successfully used to model the income of a population (Johnson

& Kotz (1970)). The pdf and cdf of the Pareto distribution are

f(x,k,0) = KBz~ "+D

and

Fa)=1-(g)

forx >0, 0>0and k >0 .

The mean and variance for the Pareto distribution are given by

K0
W= k>1
k—1
and e
o’ = /12 K> 2
(k=1 (k—2)

respectively.

To fit a Pareto distribution it is required that

Taking the natural logarithm of (5.35) leads to

In(l—-n) = —kln (%)

= —k(Inx—1In6)

K
= ( —Inx 1 )
kIn0

= X«

where

is the design matrix and

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)



<
=

“ UNIVERSITEIT VAN PRETORIA

4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

42

is the vector of natural parameters.
Hence, the vector of constraints may be written as
g(r)=Qyn(l—m)=0 (5.39)

where Qx=1 — X(X'X) "X’. This implies that the restricted ML estimate 7 will be fitted such
that In (1 — ) is orthogonal to the error space of X with matrix of partial derivatives

og (m
G, = @B
™
. aQX In (1 — 7T)
B on
= QXDﬂ'
where
Jln(1—m)
D, = —————=
on
= —{diag[1 —#]}"" . (5.40)
The ML estimator for ¢ follows
a=(X'X)""X'In(1-7) (5.41)
with asymptotic covariance matrix
Cov (@) = {(X'X)"'X'D,.} Cov(7) {(X'X)'X'D,} . (5.42)

Define the vector of parameters for the Pareto distribution

K a1
B = = <a2> . (5.43)
0 exp | —
a1

(The parameterization follows from (5.38).)

Therefore the ML estimates for x and 0 are

PN -~ a
k=a; and Hzexp(A—2>

03]
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implying that
—~ K
B~=N ,B Cov(a)
where
B :a— — (6% a
T\ Gm(e) L)
al 1 1

5.4 Generalization

In this section a short summary of fitting the distributions, tabulated in Table 5.1 will be given.

Table 5.1: Characteristics of distributions considered.

PDF and CDF Mean and Variance
, flasp) = el z
Exponential
F(:c;u)=1—6*l’/“ o? =
flz;p,0%) =@ (x — M)
Normal ma_ :
F(:):;,u,az):@( a o?
g
; 79 - iﬂ -l — (% " 9 F
Weibull f(a;k,0) = ea™ " exp (9) } M= [ ( )]
F(x;5,0) =1 —exp [~ (5)"] 0?0 (1+2) -T*(1+;)]
0 k—1 — _1
P B R TG R
Log-logistic (1 —; e ) 0% = exp (=2) [ (14 2)T (1 - 2)
F(z;5,0) = ———
14+ e’z —P2(1+) (_)
s ,0) = w02 (D pe 2
TyR,0) =K (r =
Pareto A r—1 102
. - _ _ 2 et
F(a,0) =1- (3) (i1 (r—2)
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In the case of the distributions F' (z; 3), specified in Table 5.1, the requirement
F(x;8)=m (5.44)

where F' (x;3) denotes the distribution function at the upper class boundaries x with parameter
vector 3, may be transformed into the linear model

h(m) = Xa (5.45)

which implies that the estimation procedure may be performed in the three steps outlined below.

Step 1: The vector of constraints is given by

g(m) = Qxh(m) =0 (5.46)
with matrix of partial derivatives
G,= QxD, (5.47)
where Qx=1I — X(X'X) 'X’ and Dwzag—:’).
Step 2: The ML estimate of « follows as
a= (X'X)"'X'h(7) (5.48)
with asymptotic covariance matrix
Cov (&) & {(X'X)"'X'D, } Cov (%) {(X'X)"'X'D,} . (5.49)

Step 3: The ML estimates of the original parameters namely B are obtained from a with

Cov (B) ~ B Cov (@) B’ (5.50)

0 .. )
where B :8—ﬂ' From the multivariate delta theorem, it follows that
o

B~ N(3,BCov(a)B) . (5.51)

To fit the various continuous distributions in Table 5.1 to grouped data by means of the three steps
listed above, a summary of the constraints and derivatives are given in Table 5.2(A) & Table 5.2(B).
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Table 5.2(A): Constraints

h(7) = Xa
3 h(m) X 6"
Exponential p== In(1—m) (—x) m
Q2 1
Normal ( s ) = ( a ) & 1(m) (x -1 ) ( 7 )
o L u
Weibull ) | [ mEma-m) | (mx -1) )
= o - — nx —
0 ear k1n 6
K o K
Log-logistic = ' In (L) ( Inx 1 )
0 g 1-—-7 0
Pareto A 032 In(1—) < —Inx 1 > "
0 e~ k1n 6
Table 5.2(B): Derivatives
_ Oh(m) 0B
D= o B _Ja
Exponential — (diag [1 — #]) " =
Qg 1
Normal (diag [¢ (@ (7))]) " ( o . )
= 0
j | N , 1 0
Weibull — (diag[In (1 — )])” " (diag [1 — =]) s L e
—G.em  Loew
Log-logistic (diag [])” + (diag[1 — =])
01
) 1 1 0
Pareto — (diag [1 — =]) s oy
_0‘_3 eal L. eor
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Example 5.1

A typical example was taken from a data set with n = 206 insurance policies. The annual income
(in R1000) of the policy holders is reported in Table 5.3.

Table 5.3: Income of a group of insurance policy holders.

Income (in R1000) || [0,40) | [40,75) | [75,125) | [125,175) | [175, o)
Frequency 9 37 67 63 30

For this example the normal, Weibull and log-logistic distributions are fitted and the results are given
in Table 5.4.

Table 5.4: Estimates of parameters and test statistics

MLE Wald Discrep-
E Estimate | Std. Error 1 o | Statistic | df | prob ancy
| 118.4 3.7604
Normal || & 51.4 3.0834 1184 | 514 | 3.980 | 2 |0.1367 || 0.019
k| 2.4647 0.1675
Weibull | 6 | 134.44 4.2552 119.2 | 51.7 1.293 2 | 0.5240 0.006
Log- k| 3.3337 0.2293
logistic 6| —15.710 | 1.0883 129.7 | 88.0 || 8731 | 2 |0.0127 | 0.042

According to the Wald statistic the Weibull distribution provided the best fit, followed by the normal
distribution. The distributions are illustrated in Figure 5.2. In constructing the histogram, it is
assumed that the income of all the policy holders in the sample is less than R500 000. The
distributions were all fitted with the SAS program FIT.SAS listed in Appendix A.
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Chapter 6
Multifactor design

Consider any single-factor or multifactor design resulting in a cross classification of T' different
cells to be analysed. The response vector in each cell is a frequency distribution of an underlying
continuous response variable, categorised in k class intervals. The focus is to model the behavior
of this grouped response variable over the T" cells to evaluate the effect of the explanatory variables
on the dependent variable. The basic formulation of the grouped response variable, to be modeled
over the T cells of the multifactor design is summarised in Table 6.1.

Table 6.1: Grouped data in a multifactor design.

Class interval
Cells | (—o0,x1) | [z1,22) | -+ | [Th—2,Tk-1) | [Tk-1,00)
1 fun fi2 e fip—1 fik
2 fa fa2 e for—1 for
T fr fro e frr—1 fre

49
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6.1 Formulation
Considering the frequencies tabulated in Table 6.1, let
Juu Sfizoo fipa f]
B £
F = f_” f_” fz”_“ B I B L N (6.1)
Jri fr2 o freer fr

be the matrix where the rows of F' denote the T cells of the multifactor design and the columns of F
denote the first (k — 1) class intervals of the grouped response variable. Similarly to the estimation
of distribution functions done in Part |, only the first (k — 1) class intervals need to be considered

for each cell.
Define
f
f;
veeF)=1| = |:T(k-1)x1 (6.2)
fr

as the so-called concatenated frequency vector where the 7" rows of F in (6.1) are stacked row by
row in a single column vector. The frequency vector for the ¢-th cell in (6.2) is

Jer—1

and consists of the first (k — 1) frequencies with corresponding vector of upper class boundaries

T

T2

Tl—1
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Note: The definition of vec (F) (6.2) differs from the standard definition where the columns of
F (6.1) are stacked as a single column vector. (See Muirhead (1972) (p.17)). However, by
stacking the rows below each other coincides with the definition of the function in
SAS which is used extensively in this thesis for the computer programming of applications of
grouped data in a multifactor design.

It is assumed that the vector f is a product multinomial vector with fixed subtotals

ny
n=| " (6.5)
nr
allocated to each of the T cells.
Define
Po1 n%ﬁ
Po = p:OQ = ”%’:ﬁ = ((diag ) ® Liq)-f (6.6)
Por %fT

as the concatenated vector of relative frequencies for the T cells. Hence, let
o1

o2
E(po) = _ = T

then
Vo 0 O 0

COV(pg) = : : y : = Vo (67)
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where )
Cov (por) = - (diag (mor) — wormy,) = Vor — , t=1,---,T (6.8)

t
is the covariance matrix for the vector of relative frequencies for the ¢-th cell.

Following (6.7) and (6.8) the covariance matrix of py may be expressed in terms of Kronecker
products

Vo = {(diag [n])f1 ® Ik,l} . {diag [o] — diag [mo] (IT® (11@7112_1)) diag [71'0]} (6.9)

where 1,4 is a (k — 1) vector of ones.

Define the concatenated vector of cumulative relative frequencies

P1 Cpo
C
p=| =] " | = mec) (6.10)
Pr Cpor
where
1 0 - 0
11 -+ 0
cC=|( . = o k-1)x(k—1). (6.11)
11 1
In (6.10) p; = Cpy, for t = 1,2,--- , T is the cumulative relative frequency vector for the ¢-th cell

in the multifactor design.

The random vector p consists of the cumulative relative frequencies from 7" independent multinomial

populations, therefore let
Bp)=| © |=n (6.12)

where
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is the expected value for the vector of cumulative relative frequencies for the ¢-th cell and

V., 0 - 0
0 V, -~ 0

Cov(p) = _ o _ =V
0 0 --- Vg

where

Cov(p;) = nit {Cdiag (C™'m;) C' — mm}}
— VvV, . t=1,.---.T

is the covariance matrix for the vector of cumulative relative frequencies for the t-th cell.
From (6.10) it follows that the covariance matrix of p may also be expressed by
V = (I;®C) V, (I;®C)’

where V is the covariance matrix of pg in (6.9).

53

(6.13)

(6.14)

(6.15)

Note: For simplicity the class boundaries x are assumed to be constant over the different cells. The

extension to the situation where this is not the case, can be done in a straight forward way.

6.2 Estimation

The ML estimation procedure entails that distribution fitting be done under the restriction that the

cumulative relative frequencies equal the cumulative distribution curve at the upper class boundaries,

for every cell in the multifactor design, i.e.

Fy <X> 51) ™
Py (%, 8,) ur

Fr(x,Br) v

(6.16)
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with
B
I (617)
Br
the concatenated vector of original parameters to be estimated.
Utilizing the ML estimation procedure, the vector of constraints to be imposed is
Py (x,8) ™
F; (x, ™
gm=| PP T, (6.18)
Fr (%, Br) vy
In the case where (6.16) may be transformed into the linear model
XOll
Xa2
h(m) = _ =(Ir®X)a (6.19)
Xa2
with
031
Qo
o= _ (6.20)
ar

a simultaneous distribution fitting for the 7" frequency distributions is outlined in the following three

steps.
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Step 1: The restricted ML estimate 7 is obtained by implementing the vector of constraints,
g(m) = 0, with
g(m) = (Ir ® Qx) h () (6.21)

and matrix of partial derivatives

Gr= (Ir ® Qx) D5 (6.22)

h
where Qx=1I — X(X'X) 'X’ and Dwzaa(ﬂ-> in the ML estimation process.
™

Step 2: The ML estimate of « follows as
a= (Ir ® (X'X)"'X) h(w) (6.23)
with asymptotic covariance matrix

Cov (&) = {I; ® (X'X)"'X'D, } Cov (%) {I; ® (X'X)"'X'D,} . (6.24)

Step 3: The ML estimates of the original parameters namely B are obtained from a with

Cov (B) ~ B Cov (&) B’ (6.25)

0 .. )
where B :—ﬂ. From the multivariate delta theorem, it follows that

Jda
BN (B,BCov(@)B') . (6.26)

It follows from (6.23) that each of the 7" estimated distribution functions will have its own set of
parameter estimates characterising the shape and locality of the distribution. Certain parameter
structures may now be defined which may be incorporated to evaluate the effect of the factor(s) on
the respons variable in any multiway design.
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Chapter 7
Normal distributions

In this chapter it will be shown how to fit normal distributions simultaneously to the T' cells of
a multifactor design. Under equality of variances a multifactor model is discussed to explain the
influence of the factors of the multifactor design. An application of a single factor model is presented

to illustrate the theory.

7.1 Estimation of distributions

To fit normal distributions simultaneously to the T' cells of any multifactor design it is required that

d(z)=m (7.1)
where
Xx—ml
VAl 01
X — [iy1
a=| 2 | = 7 (7.2)
ar
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is the concatenated vector of standardised upper class boundaries and

™

™2

™

is the concatenated vector of cumulative relative frequencies.

Taking the inverse normal function from (7.1) leads to the linear model

o' (my)

i = | T

o' (7r)

o

ar

Xa1

Xa2
- | -wrex)a (7.4)

XaT

where
X = ( x -1 ) (7.5)

is the design matrix for normality within each cell and
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is the concatenated vector of natural parameters with

1
o -
at: 1t = Z/ltf t:l...T
Qg a_
t

the natural parameters for the t-th cell.

From (7.4) the vector of contraints for normality, g,o.(7) = 0, follows where

Qx® ! (71)
Qxd! (72)
gnor(Tr) — )
Qx® ' (7r)
= Ir®Qx) @' (m)
and
_ O8nr(m)
Gror(m) = o
9 _
= on {Ir®Qx) - ® ! (7)}
= (IT ® QX) : D7r
-1
with Qx=1I — X(X'X) X’ the projection matrix orthogonal to X and D7r:—aq)a () _
s
-1
To solve Dﬂ:a(I)Tﬂ.(ﬂ-) setv =@ ! (ﬂ.) then ® (V) — 7t and hence
ov
D - &
" om

B
%)

= (diag[p(v)))™
= (diag [¢(®'(m))])

-1

58

(7.8)

(7.9)

(7.10)
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Employing the maximum likelihood procedure in Proposition 1 with vector of constraints
g(ﬂ-) = gnor(ﬂ')
= (I;®Qx)- @' (m) (7.11)
and matrix of partial derivatives
Gﬂ' = Gnor(ﬂ-)
= (Ir®Qx) - Ds (7.12)

the restricted ML estimate 7 follows, with asymptotic covariance matrix
Cov () ® V- (GﬂV)' (GWVG;)* (G,V) .

For each of the T subpopulations, the vector of restricted cumulative relative frequencies 7t; for
t=1,2,---,T follow a cumulative normal distribution curve at the upper class boundaries of x.
Each ® () for t = 1,2,---,T is a linear combination of the columns of X characterising a
specific fitted normal distribution with its own set of parameter estimates.

The ML estimate of « follows from (7.4)

& = (IT ® (X'X) ! X’) B (7) (7.13)
which consists of two sets of estimators namely
811 1/6’1
N &12 ]_/6'\2
oy = = )
arr 1/or
- (IT ® [(X’X)‘1 X] 1) B (7) (7.14)
and
a21 ﬁl/a—l
~ Qa2 I2/T2
Oy = = .
Qo lir/oT
- (IT ® [(X'X)*l X] ) B (7). (7.15)
2
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Note: In (7.14) [(X'X) ™" X'], is the first row of the matrix (X'X) ™" X' and in (7.15) [(X'X) ™" X'],
is the second row of the matrix (X'X) ™' X'

It follows that

Cov (@) = (g—:) Cov (7) (g—:)/

- {(IT ® (X'X)™! X> DW} Cov (%) {(IT ® (X'X)™! X) DW}/ . (7.16)

Q

The ML estimates for ;o and o are obtained from

Hy Qa1 /0
a | P || fmiee | _a (717)
: : G
% ot /0t
and
5'1 1/&11
. o 1/a 1
s | || Yo S (7.18)
: &
or 1/aqr
Q 1
Note: An element wise division for == and — are understood in (7.17) and (7.18).
o 231
Let
1 0
B = JUae + |1 o®
0 1
B
_ ?2 (7.19)

Br
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be the concatenated vector of original parameters with

/Bt: . = a2t/a1t t:1727
Ot 1/0(115
Hence
-\ 0B - 36'
Cov (,6) ~ (8—a) Cov (@) (8—04)
= BCov(a)B
where
B, 0 --- 0
B 0 By, -~ 0
0 0 --- Brp
with
JB,
B, = —
t <8at)
Low L
= O‘th 1t t=1,2,---,T
—— 0
Q7

the partial derivatives for the ¢-th cell.

In terms of Kronecker products the matrix B in (7.22) can be calculated from

B=|-2p +[=o + -5
aq 00 Qg 00 (841

Consequentely it follows that the asymptotic covariance matrices for i1 and & are

Cov (1) = B, Cov (a)B'

B,— (Z—% ® (1 0)) + (ail ® (0 1))

where

~

61

(7.20)

(7.21)

(7.22)

(7.23)

—~~

7.24)

(7.25)

(7.26)
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and

where

7.2 Equality of variances

Equality of variances

01 — 029 0
01— 03 0
o1 —O0T 0

is expressed in terms of matrix notation as

Hoq =0
where
1 -1 0 0
1 0 -1 0
H =
1 0 0 -1
= ( Loy —I-y )
is a matrix of contrasts and
11 0'1_1
192 0'2_1
aqr 0';1

62

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)
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is a subset of the vector of natural parameters o formulated in (7.6) and (7.7).
Hence, the vector of constraints for equality of variances is ga (7) = 0, with
gar(m) = H- (L@ [(XX) ' X] ) - &7 () (7.33)
and matrix of partial derivatives
Og(m)
G"var -
() o
- H (IT ® [(X'X)*1 X] ) D, (7.34)
1
(D, previously derived in (7.10).)
The restricted ML estimate of 7 follows by implementing
nor (TT)
g(m) =
gvar(ﬂ-)
Ir®
- (Ir ?X)_l / & (m) (7.35)
H- (IT® [(XX) XL)
and
Gnor ™
o _ [ Gl
Gar ()
I ®
_ (Ir ®Qx) 1 .D, (7.36)
H- (IT ® [(X’X)* X’]l)
in the ML estimation procedure.
The restricted ML estimate 7 is now estimated such that:
1. 7, (t=1,2,--- ,T) follows a cumulative normal distribution curve at the upper boundaries

of x and

2. the fitted normal distributions have equal variances over the T' cells.
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7.3 Multifactor model

To explain the effect of the factors on the grouped response variable, a linear model may be formu-
lated on the cells of the multifactor design. Since a normal distribution is fitted to each cell, the
mean p, of the fitted normal distribution will be used as a representative measure for each cell.

Formulate the linear model
n=Y~y (7.37)

where Y is the matrix specifying a specific design and -y is the vector of parameters.

Suppose e.g. that there exists a linear relationship between the dependent variable and one of the
explanatory variables, the model becomes

L
1
p=| o (7.38)
Y1
L yr
where (y1, 41, ,yr) are the corresponding values of one of the factors in the design.

Model (7.38) implies that p is a linear combination of the columns of Y. Therefore, the linear

model (7.38) on the treatment means implies the constraints

Bmod() = Qv =0 (7.39)

where Qy=1—Y (YY) 'Y’ is the projection matrix orthogonal to the colums of Y.

Under equality of variances it follows from (7.15) that

H1
1 o Q21
Mo
1 J — (0%%)
o :
U
KT — GQor
o

leading to an equivalent formulation of the vector of constraints

gnos(1) = Qraz = Qy (L& [(X'X) ' X ) - @7 (m) (7.40)

2
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which is expressed in terms of the so-called standardised means. The matrix of partial derivatives is

Gimog () = Qy% —Qy <IT ® [(X'X)*1 X’L) .D,. (7.41)

Utilizing the maximum likelihood procedure with

gnor(ﬂ')
g(m) = 8var ()
Emod (77)
(Ir ® Qx)
= | H- (Ir® [(XX)"'X],) | &' (m) (7.42)
Qv (Ir ® [(X'X) ™ X],)
and
Gor ()
G, = Guar(m)
Gmod (Tl')
(Ir ® Qx)
= | H (Ir® [(XX)"'X'],) | D (7.43)

Qr (1 [(XX) ' X],)

leads to the restricted ML estimate of 7t with the following properties:

1. w,fort =1,2,--- T follows a cumulative normal distribution curve at the upper boundaries

of x
2. the fitted normal distributions have equal variances

3. the ML estimate g satisfy the multifactor design in (7.36)

It is now possible to evaluate the effect of the factor(s) by means of the ML estimate
¥y=XY)YLn (7.44)
with asymptotic covariance matrix

Cov(7) = {(Y'Y)"Y'} Cov (&) { (YY) Y'} . (7.45)
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7.4 Application: Single-factor model

A total of 898 students who were enrolled for a first year Statistics course at the University of
Pretoria were included in this investigation. The students were all enrolled for Statistics (STATS)
for the first time and obtained at least an E symbol for Grade 12 Mathematics (MATHS) on the
higher grade. The aim of this study is to investigate the effect of achievement in MATHS on the
performance of STATS. The STATS exam paper counted out of 108 marks and the results were
classified into a total of 5 categories to illustrate the technique. The data is summarised in Table
7.1.

Table 7.1: Data set of 898 first year students.

STATS
MATHS || [0 — 40) | [40 — 50) | [50 — 60) | [60 — 75) | [75 — 108] | Total
A 0 4 19 53 84 160
B 3 17 35 65 19 139
C 24 44 56 68 19 211
D 43 57 82 48 6 236
E 59 53 26 13 1 152
Total 129 175 218 247 129 898
Take
39.5
X = 495 (7.46)
59.5
74.4

as the vector of upper class boundaries. Since the exam mark is treated as a continuous variable
and recorded to the nearest integer, the upper class boundaries in x are taken half-way between the
gaps of the respective class intervals. The performance in STATS will now be evaluated over the 5
levels of MATHS, specifing the 5 cells of the single-factor design. A total of 4 models will be fitted
with the SAS program FACTORI listed in Appendix Bl to explain the effect of MATHS on the
grouped variable STATS.
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7.4.1 Model 1: Unequal variances

It is assumed that the STATS mark is normally distributed for each level of MATHS. Therefore,
normal distributions are fitted simultaneously to the 5 levels of MATHS, i.e. the 5 levels of the

single-factor design. Normality within each cell is estimated such that ®~! (7r;) for t =1,2,---5 is

X = (x -1)

395 —1
495 —1

= (7.47)
59.5 —1

744 -1

a linear combination of

or equivalently such that ®! (7r;) is orthogonal to

Qy=L-X(X'X)"'X . (7.48)

Since rank (Qx) = 2 the vector of constraints g,o (7) = 0, with

(1)
(7r2)
gor(m) = | Qx®'(ms)
(7r4)
(75)

= ;®Qx) &' (m) (7.49)
consists out of 10 linear independent functions.

Utilizing the ML estimation procedure, the restricted ML estimate for 7 is obtained leading to the
ML estimates for the fitted normal distributions summarised in Table 7.2.
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Table 7.2: ML estimates for model with unequal variances.
~ -~ ~M
1 o
MATHS STATS n ~ ~ ~
@) @) | @)
0.047
003t
0.02{ /\
0017
75.2 13.7 17.7
A | 0 160
05 0 0 P . 100 (1.38) (1.30) (1.17)
0.047
003t
0.021
001t
62.2 114 4.8
B | } — | 139
o (1.03)  (0.82) | (0.94)
0.047
003t
0.027 7?
0017
56.1 13.8 —1.3
C —— | } — |21
o = (1.00)  (0.83) | (0.91)
0.047
0037 Li
0.027
0.017
51.0 12.1 —6.5
D 0 : T 2361 083y (0.70) | (0.81)
0 20 40 60 80 100
0.047 B
0.037 N
0.027 XY
0.01
42.7 12.2 —14.7
E 0 : L 1521 q13) 105 | (1.00)
0 20 40 60 80 100
To 57.4
(62,) (0.49)
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A definite positive monotone trend in STATS over the levels of MATHS is evident from Table 7.2.
The 71 -values range from 42.7 for an E-symbol in MATHS, up to 75.2 for an A-symbol in MATHS.
There is a slight variation with regard to the & -values, revealing that students with a B symbol in
MATHS had the smallest variation in STATS. According to the goodness of fit statistics tabulated
in Table 7.3 the model fitted the data extremely well. The degrees of freedom in Table 7.3 follows

from the number of linear independent constraints in (7.49).

Table 7.3: Goodness of fit statistics for model with unequal variances.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value

1 10| 7.059 | 0.7199 6.356 | 0.7845

The mean in the i -th level of MATHS may be expressed in terms of the single factor model

=70+  i=1,2---5 (7.50)

where

7o = overall mean

™™ = effect for the i-th level of MATHS 1=1,2,---5

(3

In matrix notation (7.50) leads to

pn =LA
where
1 1 0 0 0
1 0 1 0 0
L=|11 0 0 1 0 :H XD (7.51)
1 0 0 0 1
1 -1 -1 -1 -1
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and A\ denotes the vector of estimable parameters

A=| M (7.52)

with the last parameter 7M = — Z?Zl 7M | the effect for an E symbol for MATHS, ommitted.
From the restricted ML estimate 7, the ML estimate of \ is
A= (L) 'U% (7.53)

with asymptotic covariance matrix

Cov (X) ~ {(UL)'I/} Cov (&) {(L'L) 'L/} . (7.54)

The full set of ML estimates in (7.50) is obtained from
7 =SA (7.55)

where

(7.56)

QD
I

and

6%5 . (7.57)

o o o = O
o O = O O
- o O O O

-1 -1 -1 -1

o O o o o
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The asymptotic covariance matrix for 7 follows from

/

Cov (7) & S Cov (X) S (7.58)

From the effects for the single factor model (7-values) listed in Table 7.2 it can be concluded that
the average STATS mark for students with an A symbol in MATHS is 17.7 higher than the overall
average of 7o = 57.4. The 7-values drop substantially over the categories of MATHS indicating the
strong effect of MATHS on STATS. The average STATS mark for C-symbol students is significantly
lower than the overall average on the 10% level of significance, since the p-value is

o <f§4>  » (—1.3)
O _u 0.91
73
= & (—1.428)
= 0.08.

In SAS the matrices L (7.51) and S (7.57) may be programmed as:

e L =|J(51,1) || DESIGNF(CUSUM(J(5,1,1)))

e S =|BLOCK(1, DESIGNF(CUSUM(J(5,1,1))))

where 5 is the number of levels for the single factor MATHS.
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7.4.2 Model 2: Equal variances

From Table 7.2 it is clear that the standard deviations of the normal distributions stayed fairly stable
over the levels of MATHS, implying that the additional constraints of equal variances g,.,(7) = 0,
with

Bvar (77) - Hal

- H.<IT®[(X’X)‘1X'] )-cIrl () (7.59)
2
where
1/0’1
1 -1 0 0 O
1/0’2
1 0 -1 0 O o
H= and oy =0 =| 1/o3
1 0 0 -1 0
1/0’4
1 0 0 0 -1
1/0’5
are feasible.

Note: Since the rows of H are all orthogonal to the vector of ones, an equivalent formulation of

the vector of constraints may be constructed with

gvar(ﬂ') = Quoy

where Qi = I; — 111/, is the projection matrix orthogonal to the vector of ones.
5 proj g

After employing the ML procedure with the vector of constraints

g(m) = golm) ) g (7.60)

Zuar(T)

the restricted ML estimate 7 was obtained and the results for Model 2 are summarised in Table 7.4.
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Table 7.4: ML estimates for model with equal variances.
m =~ ~M
MATHS STATS n Iy 7
(Oﬁ) (03) (/U\?M)
0.047
0.037
0.027
0.017
74.7 12.7 17.3
A j | \ 160
05 o o o 8o 10 (1.15)  (0.40) | (1.01)
0.047
0.037 \
0.027
0.017
62.3 12.7 5.0
5 0 ‘ — * —1 11390 13y (040) | (0.99)
0 20 40 60 80 100
0.047
0.037
0.027
C o /| q| 561 127 | 12
0 ‘ , : — (0.91)  (0.40) | (0.85)
0 20 40 60 80 100
0.047
0.037
0.027 71
0.017
50.9 12.7 —6.4
D ‘ , ‘ 236
5 o w0 o o 10 (0.87)  (0.40) | (0.82)
0.047 -
0.037 N\
0.027 XY
0.01
42.5 12.7 —14.8
E 0 : S 21 (113)  (040) | (0.99)
0 20 40 60 80 100
7o 57.3
(02) (0.47)
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No substantial changes with regard to the ji-values were obtained from that of Model 1, with the
o-values now estimated constant with @ = 12.7. The values of the goodness of fit statistics in Table
7.5 increased somewhat from that of Model 1, but still provided a satisfactory fit.

Table 7.5: Goodness of fit statistics for model with equal variances.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value

2 14 | 13.218 | 0.5094 || 12.374 | 0.5763

The degrees of freedom for this model is 14, since an additional 4 constraints were imposed in (7.59)

for equality of variances.

7.4.3 Model 3: Ordinal factor

Due to the very strong monotone trend in STATS over the categories of MATHS, MATHS will now

be incorporated as an ordinal factor in the ML estimation process. The single factor model on the
levels of MATHS is

H= Y573 (7.61)
where
1 2
1 1
Ys=| 1 0 and 3= M
1 1 V2
1 -2

The complete set of vector of constraints for Model 3 is

gnor(ﬂ')
g8(m) =] gualm)
8mod3 ()

—0 (7.62)
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where

gmod3(M) = Quo
) & () (7.63)

and Qy, =I5 — Y35 (Y4Y3) ' Y4

Note: The vector of constraints in (7.63) is formulated in terms of aw, since i, is a scalar multiple

of g in (7.61) under equality of variances.

Utilizing the ML estimation procedure with the vector of constraints (7.62) the restricted ML esti-

mate 7 is estimated such that the vector p is a linear combination of Y3. (See Table 7.6.)
The ML estimate for v is
¥ o= (Y3Ys) ' Yij
M
V2
27.3
7.5

indicating that the estimated average STATS mark for students with a C symbol for maths is 57.3
and that every increase of one symbol in MATHS implies an estimated increase of 7.5 in STATS.
(See Table 7.6.) The standard errors of v,

. [ o
0533 = ~
07,

0.4563
0.3521

enable the construction of confidence intervals and the testing of relevant hypotheses.
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Table 7.6: ML estimates for model with an ordinal factor.
1 o M
MATHS STATS n L ~ -
Gn) (05) (02u)
0.047
0.037
a _/74{71
0oLy \ 72.3 12.7 15.0
A 0 i — 160 os7)  (0.40) | (0.70)
0 20 40 60 80 100
0.047
0.037 \
0.027
0.017
64.8 12.7 7.5
B 0 ——1 | =1 | B39 g60)  (040) | (0.35)
0 20 40 60 80 100
0.047
0.037
0.027
0.017
57.3 12.7 0.0
c 0 \ >~—— |20} g46) (040) | (0.00)
0 20 40 60 80 100
0.047
0.037
0.027
0.017
49.8 12.7 —7.5
D 0 1 | \ 236 | (055 (0.40) | (0.35)
0 20 40 60 80 100
0.047
0.037
0.027 /
0.01
42.4 12.7 | —15.0
E 0 1 SN 21 0s81)  (040) | (0.70)
0 20 40 60 80 100
To 57.3
(07,) (0.46)
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The value of the Pearson and Wald statistic in Table 7.7 increased substantially from that of the

previous model indicating a weaker fit.

Table 7.7: Goodness of fit statistics for model with an ordinal factor.

Pearson Wald
Model | df || Statistic | p-value || Statistic | p-value
3 17 || 25.150 | 0.0914 || 24.388 | 0.1093

Since rank(Qy,) = 3, an additional 3 linear independent constraints are included in the vector of

constraints leading to 17 degrees of freedom for Model 3.

7.4.4 Model 4: Regression model

Since the original scale of measurement for MATHS was done on an interval scale, the following

class midpoints were taken as representative values for the five levels of MATHS.

MATHS

A |B

C|D

E

Class Midpoint

90 | 75

65 | 55

45

The implication of this is that the "distances” between the MATHS categories are not the same as

in the case of Model 3.

The linear model measuring a linear trend in MATHS is

where

=Yy,
1 90
1 75
1 65 and ~,= e
1 55 2
1 45
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The complete set of vector of constraints for Model 4 is
gnor(ﬂ-)
g(m) =1 gulm) |[=0 (7.64)
gmod4(7r)

where

gmods (M) = Qy,
— Qv (e [0 x|

and Qy, =I; =Y, (YZYO*I Y.

The ML estimation procedure with vector of constraints (7.64) yields the ML estimate

~

= (Vi) ' Yia
:)\/1

A,

12.2

0.68

suggesting a slope of 0.68 for STATS on MATHS. This means that an increase of one mark in
MATHS will lead to an estimated increase of 0.68 marks in STATS. From the vector of standard
errors

0’74

this increase is significant, since

068

55,  0.0319
— 21.317.

See Table 7.8 for the complete set of the ML estimates.
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Table 7.8: ML estimates for regression model.
-~ ~ ~NM
u o
Maths Stats n (57) (35) (Go)
0.047
0.037
0.027
0.01]
73.8 12.7 16.4
A j ‘ \ 160
0 - 0 0 . 100 (0.93) (0.40) (0.77)
0.047
0.037
0.027 \
0.01]
63.6 12.7 6.2
B 7 o~ 139
0 - 0 0 - % (0.56) (0.40) (0.29)
0.047
0.037
0.027 74/\
c 0011 /] o1 | 567 127 | 0.7
; ]
0 o 0 0 - 0 (0.45) (0.40) (0.03)
0.047
0.03t L
0.02]
0.017
49.9 12.7 —7.5
D : | ‘ 236
0 pos 0 - ” 00 (0.55) (0.40) (0.35)
0.047 L
0.037 N
0.02] LY
0.01
43.0 12.7 —14.4
E 0 1 S 21 077 (040) | (0.67)
20 40 60 80 100
To 57.4
(6,) (0.46)
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According to the goodness of fit statistics tabulated in Table 7.9, this model showed a substantial

better fit than the previous model where MATHS was modelled on an ordinal scale.

Table 7.9: Goodness of fit statistics for regression model.

Pearson Wald
Model | df || Statistic | p-value || Statistic | p-value
4 17 || 16.813 | 0.4671 || 16.010 | 0.5168
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Chapter 8
Log-logistic distributions

In the case where the grouped response vector has a positive skew distribution, the log-logistic
distribution may be fitted very effectively to the T" frequency distributions of a multifactor design.
Due to the skewness of the response variable, the median of the fitted log-logistic distributions will

be used as a representative measure for each of the 1" frequency distributions.

From the cdf of the log-logistic distribution

0,.k
e’r
Flz:k,0) = ———
(3 %, 6) 1+ efar
the median v is obtained from
v 05
1+efprs

leading to

v=ewm (1) (8.1)

In the multifactor model the medians will be employed in a linear model to determine the effect of
the explanatory variables or so-called factors on the grouped response variable.

81
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8.1 Estimation of distributions

Analogous to Section 5.2, where a log-logistic curve was fitted to a single frequency distribution,
the log-logistic curve may be fitted simultaneously to the T cells of a multifactor design using

Uy
In

1—7\'1
T2

In
ln<L> — 1—m
1—-= :

™r
In
(1 — 7'l'T)

K1 In X+(911

Ko Inx+651

kr Inx—+0r1

X(Xl
XQQ

XOCT
- LX) a (8.2)

where
X:(lnx 1) (8.3)

is the design matrix for a log-logistic distribution and

(83]
e" K
a= _2 where a; = ' ,t=1---T (8.4)
. 675
ar

is the concatenated vector of parameters.
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The linear model (8.2) suggests the vector of constraints

8log (m)=0

where

3

1
1—71'1
T2

Qxln

QX In
8log(T) = 1 —m

T
QXlIl (1 —7TT>

™

~ (reQo) (7

1-7

83

(8.5)

with Qx=I — X(X'X) "X’ the projection matrix orthogonal to the columns of X given in (8.3).

The matrix of partial derivatives is

dg(m)
o
= (IT & QX) ' D7r

Glog(ﬂ')

where

0 2y
D, = gln (E)
= a%{ln(ﬂ')—ln(l—ﬂ')}
= {diag (m)} " + {diag (1 —7)} " .

Employing the maximum likelihood procedure with
g(m) = glog(ﬂ') and  G=Giog()
the restricted ML estimate of 7 follows with asymptotic covariance matrix

Cov (%) & V= (G, V) (G,VG.)" (G, V) .
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From the restricted ML estimator 7, it is possible to obtain the ML estimator of «

& = (IT ® (X/X)_lX’> ‘In < m )

1-7

which consists out of two sets of estimators namely

R1
r=| ™| = (tr o [xx) "' x7] ) 1o <1 f%)
R
and )
01
6= 92 - (IT ® [(X’X)_lX’L) In (1 7_?7?)
Or

The asymptotic covariance matrix of & is

Cov(@) = {(Tr o (XX) " X') D, } Cov (@) { (Tr & (XX) " X') D, }

with D given in (8.7).

The asymptotic standard errors of K and 0 can be calculated directly from

Cov (R) = {(IT ® [(X'X)—l X’] )Dﬂ} Cov (%) {(IT ® [(X’X)_lX’]l) D,T}/

1

and

Cov (5) ~ {(IT ® [(X'X)‘1 X]

2

) D:} Cov (@) {(tr@ [(x%) 7 X'] ) Dﬂ}' |

84

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)
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8.2 Multifactor model

In the case where log-logistic distributions are fitted simultaneously to a grouped positive skew
response variable in a multifactor design, the median (8.1) will be used as a representative measure
for each cell. The medians of the fitted log-logistic distributions will be employed in a linear model
to evaluate the effect of the explanatory variables on the response variable over the T' cells of the

multifactor design.

The concatenated vector of medians for the 7" cells in the multifactor design is

0
141 R1
2 0

v _2
v = .2 = exp K2 = exp <_E) . (8.16)

vr _H_T

kT

Let

v=Y~ (8.17)

specify the the multifactor model. The objective is to estimate 7t such that v is in the vector space

generated by the columns of Y implying the vector of constraints

Emod (77) - QY’/ =0 (818)

with Qy=1 — Y(Y’Y)le’ the projection matrix orthogonal to the columns of Y. Implementing
the chain rule the matrix of partial derivatives

0Qyv

Gmod(ﬂ') - (5;;
ov Ja
= ¥ 90 on

= Qv A (e (XX)'X)D, (8.19)
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follows, where
A, O 0
v 0 A, --- O
A_a—a_ : . 5 (8.20)
0O 0 Ar
and
81/,5
A, = t
! 8at
0 exp (—&)
ol ™
0,

= ( H_EGXP (—&) —i exp (—@) ) ,t=1---T. (821)
R K¢ K¢ K¢

0 0
-3 eXp| ———
K7 K1
b exp b 0 0
a,= | K3 R = — exp (——) (8.22)
: K K
Or ( 9T>
— exp | ——
T kr
and
1 0,
K1 K¢
L exp (-2 1 0
e exp [ =2
ag = K2 Kt = ——exp <——) : (8.23)
: K K
1 ( t9t>
KT Kt

Using (8.22) and (8.23) the matrix A may be calculated from

A= <diag [a,] ® ( 10 >) + (diag lag] ® ( 0 1 >) . (8.24)
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Employing the ML estimation procedure with
og\T Go ™
g(m) = Bog (7) and G,= oz(7) (8.25)
C""mod (77) Gmod (77)
leads to the restricted ML estimate of 7r such that:
1. the elements of 7, 75, - - - w7 follow T' log-logistic curves at the upper boundaries of x and
2. the ML estimate N
v=exp| —=<
K
is a linear combination of Y in (8.17).
The asymptotic covariance matrix of v is
~ 0 (o)’
Cov (V) = {%} Cov () {%}
= ACov(a)A'. (8.26)
The effect of the factors for the multifactor design can be explained from the ML estimate
5=(YY)'YD (8.27)

and for the purpose of statistical inference, the standard errors are obtained from the asymptotic

covariance matrix ,
Cov (7) = {(Y’Y)*ly'} Cov () {(Y’Y)*lv} . (8.28)
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8.3 Application: Two-factor model

The premiums of 8334 policyholders in the short-term insurance are classified into the 5 categories
listed in Table 8.1.

Table 8.1: Frequency distribution of PREMIUM.

PREMIUM | Frequency
R51-R200 1920
R201-R300 2726
R301-R400 1677
R401-R500 930

R500-R1000 1081

The objective is to explain the effect of the age of the policyholder (AGE) and the type of product
(PRODUCT) on the PREMIUM of the policy. The variable AGE is classified into 4 categories, while
PRODUCT consists out of three types of insurance policies. A cross classification of these two

factors result in a total of 12 cells summarised in Table 8.2.

Table 8.2: Contingency table of AGE and PRODUCT.

PRODUCT
AGE I [l [l || Total

20-29 || 930 | 415 | 461 | 1806
30-39 || 1105 | 800 | 1017 || 2922
40-49 || 832 | 764 | 656 | 2252
50-59 || 448 | 416 | 490 | 1354

Total || 3315 | 2395 | 2624 || 8334

The 12 cells in Table 8.2 are to be modeled in a two-factor design. Due to the positive skew nature
of PREMIUM a log-logistic curve will be fitted to the frequency distribution of PREMIUM in each
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of the 12 cells. The variable PREMIUM is modeled in hundreds of rands, which implies that the

vector of upper class boundaries is

- W N

(8.29)

5

(See Table 8.1.) The median of the fitted log-logistic curves will be modeled over the 12 cells to
investigate the effect of the two factors AGE and PRODUCT on PREMIUM. This will be described in
a total of 4 models. The results for all 4 models were all obtained from the SAS program FACTOR2
listed in Appendix B2.

8.3.1 Model 1: Saturated model

A log-logistic curve is fitted to every cell in the two-factor design, such that

ln< e ) Ct=1,2,---,12
]_—Tft

is in the column space of

In2 1
In3 1
X=(Inx 1)- (8.30)
In4 1
In5 1
Implementing the vector of constraints g(7) = gjog(7) = 0 with
1 1
QX H 1-— T
P
Qx In
glog(’ﬂ') = 1—m (831)
Qx In < UL )
1-— 12

where Qx=1— X(X'X)_lX’, in the ML estimation procedure, a total of 12 log-logistic distribu-
tions are fitted simultaneously to the frequency distributions of the two-factor design listed in Table
8.3.
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Table 8.3: Descriptive statistics for the saturated model.

90

PRODUCT
AGE | 1| i
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 01 \ 0.1 N
20.29 °0 2 4 6 8 10 % 2 4 6 8 10 %0 2 4 & 8 10
[=3097 D=2842 [=3462 D=3143 [ —=4.031 ©=3.447
o =1427 o5 =0.038 oc=1715 o5 =0.066 o =278 05 = 0.086
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
30.39 00 2 4 6 8 10 % 2 4 6 8 10 % 2 4 & 8 10
[—3080 D—=2712 7—=2790 D—2538 A—=4260 =358
c=1.831 o5 = 0.040 oc=1.365 05 =0.039 o =3.167 o5 = 0.063
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0 L ==
40.49 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
[=2941 D=258 [=2496 7=2235 [=4173 D =3.588
oc=1.768 0, =0.045 c=1349 05 =0.039 oc=2806 o0, =0.074
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
50-59 °0 2 4 6 8 10 % 2 4 6 8 10 % 2 4 6 8 10
n=2903 v =2544 n=2295 v=2019 n=4131 v =3.443
c=1.768 0, =0.061 oc=1372 05 =0.054 o =3.223 05 = 0.090
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The log-logistic curves tabulated in Table 8.3 provide an excellent fit for PREMIUM. This is further
motivated by the goodness of fit statistics reported in Table 8.4. The degrees of freedom follows

from the 24 linear independent constraints in (8.31).

Table 8.4: Goodness of fit statistics for the saturated model.

Pearson Wald
Model | df || Statistic | p-value || Statistic | p-value
1 24 || 30.799 | 0.1597 || 30.266 | 0.1761

Evaluating the means (7i) and medians (V) in Table 8.3 it is clear that Product Il is the most
expensive product. The standard deviations (o) indicate that the variation in PREMIUM is the
highest for Product Il which can also be seen from the some-what flatter log-logistic curves displayed
in Table 8.3. Product Il portrays the most drastic drop in PREMIUM over the categories of AGE
indicating a possible interaction between AGE and PRODUCT.

Define the following functions of the medians:

AP

median in (ij)-th cell

average median for i-th level of AGE

average median for j-th level of PRODUCT

overall average median
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The median of the (ij)-th cell may be expressed by the two-factor model
vj=To+Ti+7r+75"0 ,i=1,2,34 and j=1,23 (8.32)
where
To = U . overall median
o= vl -1 .
. effect for the i-th level of AGE
= vA-v
Tf = Df — To .
. effect for the j-th level of PRODUCT
= vy —v
it = v’ —(ro+ 71 +7)  interaction effect for the i-th level of AGE
= AP 5 —vP 4+ and j-th level of PRODUCT
Since
4 3 4 3
ZT?IZTf:ZTf}P:ZTgPIO (8.33)
i=1 j=1 i=1 j=1
it follows for the main effects that
3 2
Tf = — ZTZA and 7'5 = — ZTf (8.34)
i=1 j=1

and for the interaction effects that

3 2
AP __ § { AP AP __ § : AP
i=1 j=1
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In matrix notation, the saturated model (8.32) may be written as

v = ZA\
Vi 1 1 0 0 1
V12 1 1 0 0 O
V13 1 1 0 0 -1
Vo 1 0 1 0 1
V22 1 0 1 0 O
Vo3 B 1 0 1 0 -1
V31 N 1 0 0 1 1
V32 1 0 0 1 0O
V33 1 0 0 1 -1
Vit 1 -1 -1 -1 1
Vo 1 -1 -1 -1 0
Va3 1 -1 -1 —1 -1

93
O 1 0 0 0 0 0 o
1 0 1 0 0 0 0 4
-1 -1 -1 0 0 0 0 s
O 0 0 1 0 0 © T4
1 0 0 0 1 0 0 =t
-1 0 0 -1 -1 0 0 ¥
O 0 0 0 0 1 0 T4
1 0 0 0 0 0 1 4P
-1 0 0 0 0 -1 -1 il
0 -1 0 -1 0 -1 0 T4
1 0-1 0 -1 0 -1 4
-1 1 1 1 1 1 1 T4

(8.36)

where Z : (12 x 12) is the design matrix and A : (12 x 1) consists out of the estimable parameters.

Since AGE has 4 levels and PRODUCT has 3 levels define the design matrices

1 0 0
0O 1 O
Dy =
0 0 1
-1 -1 -1

with corresponding vectors of ones

—_ = =

1 0
and Dp= 0 1 (8.37)
1 -1
1
and 1p=| 1 (8.38)
1
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The saturated model (8.36) may therefore be partitioned as
v = ZA\
To
A\A
~ (1 24 2o Zar) - (8.39)
AAP

with a description of the submatrices and parameters listed in Table 8.5.

Table 8.5: Partitioning of the saturated model.

Submatrices Parameters

1=1,®1p: (12 x 1) 7o : overall median

Z,=D,®1p: (12 x 3) A4 4 | = effects for AGE

Zp=1,0Dp:(12x2) | A" = effects for PRODUCT

Note: The operator ® in Table 8.5 performs a direct product on all rows of Z4 and Zp. The
result has the same number of rows as Z 4 and Zp and the number of columns is equal to the
product of the number of columns of Z4 and Zp. See (8.36).
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The ML estimate for X is
A=(Z'2)"'Z'v

with asymptotic covariance matrix

!/

Cov (X) ~ {(Z’Z)‘1 z’} Cov (D) {(Z’Z)‘1 z’}

The complete set of effects for the two-factor design may be obtained from

7 =S\
where
S — Block (1 D, Dy DA®DP>
1 0 0 0
B 0 Dy O 0
0 0 Dp 0
0 0 0 D,®Dp
and
To
?A
T = B 1 (20 x 1)
T
~AP

~P
A T
=
~A 2 B _ ~P
= and 77 =| 7,
T3 ~P
A T3

95

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

(8.45)
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with the interaction effects included in

~AP
T11

~AP
T12
~AP
T13
~AP
Ta1
~AP
T2
/7:AP
~AP 23

~AP

T31

~AP
T32
~AP
T33
~AP
T41
~AP
T4

~AP
T43

The asymptotic standard errors for 7 are calculated from

Cov (7) = S Cov (X) S (8.47)

A complete summary of all the effects (7) with standard errors (o;) is given in Table 8.5. The
overall median is R289. Investigating the main effects a decreasing monotone trend in PREMIUM
over the categories of AGE is evident. Starting with a premium of R25 above the overall median
for the youngest policyholders and dropping down to a premium of R22 below the overall median
for the oldest policyholders. PRODUCT Il is the most expensive product with a PREMIUM of R63
above the overall median. The premiums for PRODUCT | and PRODUCT Il are both below average
with premiums of R22 and R41 below the overall median respectively. The interaction effects, i.e.
the 747 _values, show a very clear interaction structure between AGE and PRODUCT. Apart from
the overall decreasing effect in the PREMIUM over the categories of AGE, the PREMIUM drops
even more drastically over the AGE categories for PRODUCT II. This is contrasted with PRODUCT
[I1, which is a relatively cheaper policy for the younger policyholders. All the standard errors are
included which enable the testing of certain hypotheses and the construction of confidence intervals.
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Table 8.6: Effects for the saturated model.
PRODUCT 74
AGE I 1 i Gaa
0.5 0.5 0.5
0.4 0.4 04
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
R m—— ' 0 &J o= %
20_29 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
7AP — _0.08 7AP — 0.41 74P — _0.32 0.25
Goar = 0.038 Goar = 0.045 Goar = 0.053 0.032
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0= — ! 0" ‘ ‘ 0- ‘ : %
30_39 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
74P — _0.01 74P — 0.00 74P —0.02 0.06
Goar = 0.034 Goar = 0.034 Goar = 0.044 0.027
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
0 ' — 0~ ' " 0~ ' "
40_49 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
74P —0.00 74P — _0.16 74P — 0.16 —0.09
Goar = 0.036 Goar = 0.036 Goar = 0.047 0.028
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 >
0 ' — 0~ ' 0~ ' "
50_59 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
74P —0.10 FAP — .24 74P —0.15 ~0.22
Goar = 0.044 Goar = 0.043 G.ar = 0.055 0.034
7F —0.22 —0.41 0.63 To = 2.89
Gar 0.022 0.023 0.029 05, = 0.018
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8.3.2 Model 2: No interaction model
In the case of no interaction between AGE and PRODUCT the two-factor model is
vy=To+T{+75 ,i=1,234 and j=1,23. (8.48)
In matrix notation the medians are to be fitted such that
v = Yoy,
1 1 0 0 1 0
1 1 0 0 0 1
1 1 0 0 -1 -1
1 0 1 0 1 0 Y
1 0 1 0 0 1 Yo
1 0 1 0 -1 -1 V4
1 0 0 1 1 0 Y4
1 0 0 1 0 1 Vs
1 0 0 1 -1 -1 Ve
1 -1 -1 -1 1 0
1 -1 -1 -1 0 1
1 -1 -1 -1 -1 -1
To
= ( 1 Zy4 zp) A4 (8.49)
AP
where
To="71 overall median
714 Yo
2\ = 7-124 = | effects for AGE
T§4 Ya
P Tf Vs
AT = = effects for PRODUCT
P
D) Y6



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

“ UNIVERSITEIT VAN PRETORIA

4

99

See Table 8.5 for an explanation of the submatrices 1, Z 4 and Zp in (8.49).

It follows that 7r is to be estimated such that v is in the column space of Y5 and therefore implies

the constraints
Emod2(T) = Qy,v =0 (8.50)

where Qy, = I — Y, (Y,Y2) ' Y).

Note: The vector of constraints
gmodZ(ﬂ-) = Z£4PV =0 (851)

with Z 4p also defined in Table 8.5 is simply a reformulation of (8.50) and will provide exactly
the same results. This follows since the columns of Z 4p generate the orthogonal vector space
of Y, or simply because the model is to be fiited such that all the interaction effects in A"

(see Table 8.5) are zero.

The no interaction model is obtained by employing the vector of constraints

g(m) = [ 27 ) —o

Emod2 (ﬂ-)

in the ML estimation procedure. The ML estimate of -, in (8.49) is

T %o 2.8775
72 7 0.2879
7= (YY) YD = s | _ ?’z: _ | 0.0761
Ya 7 —0.1160
Vs 7 —0.2305
o ) —0.4380

containing the effects for the no interaction model.

The fitted log-logistic curves under the constraints of no interaction between AGE and PRODUCT are
displayed in Table 8.8 and Table 8.9. In Table 8.8 the estimated medians proportionately reflect the
row and column effects tabulated in Table 8.9. The strong negative linear trend in PREMIUM over
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the AGE categories is evident, with PRODUCT Ill the most expensive product. All the interaction
effects in Table 8.9 are now equal to zero.

From the goodness of fit statistics tabulated in Table 8.7, Model 2 shows a substantial drop in fit
from that of Model 1. (See Table 8.4.) This is due to the clear interaction pattern seen in Model
1 where the saturated model was fitted. However, by calculating the measure of discrepancy the fit
is still satisfactory, since D = 0.015 < 0.05.

Table 8.7: Goodness of fit statistics for no interaction model.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value

2 30 | 1248 | <0.0001 | 125.7 | <0.0001

The degrees of freedom for Model 2 is 30, since an additional 6 linear independent constraints are
included in gmod2(7) = 0. See (8.50) and (8.51).
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Table 8.8: Descriptive statistics for the no interaction model.
PRODUCT
AGE P1 P2 P3
05 05 05
0.4 0.4 0.4
03 03 03
0.2 0.2 B 0.2
0.1 01 0.1 N\
0 2 4 & 8 10 00 2 4 & 8 10 % 2 4 & 8 10
20-29
nw=3.199 v =2935 w=3.053 v=2727 n=4539 v=3834
o=1.476 o5 =0.033 oc=1.673 05 =0.039 o =23.328 05 =0.050
05 05 05
0.4 0.4 0.4
03 03 03
0.2 02 0.2
0.1 01 0.1
0 S ' 0 S 0 P
30-39 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
w=3.092 v=2723 1n=2766 v=2516 n=4302 v=3.622
o =1.837 o5 =0.031 o =1.357 05 =0.031 0 =23.204 o5 =0.043
05 05 05
0.4 0.4 0.4
03 03 03
0.2 02 0.2
0.1 01 0.1
0 0 0 L ==
40.49 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
=288 =253 [=2590 7=2323 =399 ¥ =3.430
oc=1.749 o5 =0.033 oc=1384 0;=0.031 o =2.691 o5 =0.045
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 02 0.2
0.1 01 0.1
04— 04— o LI =]
50-50 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
w=2.755 v =2.399 1n=2475 v=2192 n=3962 v=3.298
oc=1.740 o5 =0.041 o =1.427 o5 =0.040 o =23.109 o5 =0.050
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Table 8.9: Effects for the no interaction model.
PRODUCT 7r
AGE | 1 1 O-p
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 0.2
0.1 01 01 N
20-29 % 2 1 10 00 2 4 6 8 10 % 2 4 6 8 10
74P = 7P — 74P = 0.29
a\?AP = O 85_\41) == O (/j\?AP = 0 0028
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 0.2
0.1 01 01 N
30-39 0 2 4 6 10 % 2 4 & 8 10 % 2 4 6 8 10
7P =0 7P =0 7P =0 0.08
(/J'\;I:AP =0 b\'?AP =0 (/7\?,4}9 =0 0.024
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 0.2
0.1 0.1 01
0 -t 0 ‘ ot L =]
40-49 0 2 4 6 10 0 2 4 6 8 10 0 2 4 6 8 10
AP _ AP _ 24P _ —0.12
Ganr = 0 Gasr =0 Gasr =0 0.025
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 0.2
0.1 0.1 01 N
50-59 ° 2 4 s 10 % 2 4 & 8 10 % 2 4 6 8 10
AP _ AP _ AP _ —0.25
Gosr =0 Ganr =0 Gar = 0 0.030
74 —0.23 —0.44 0.67 To = 2.88
8«7:A 0.021 0.021 0.028 8?0 =0.017
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8.3.3 Model 3: Regression model with no interaction

The decreasing monotone trend in PREMIUM over the categories of AGE can be modeled more

effectively by incorporating AGE as a so-called covariate. Instead of the 3 dummy variables used in

Z,=D,®1p =

0 O
1

1 0
@1 1

0 1
1

-1 -1

o O O O O = ==

o

—1
-1
-1

the effect of AGE on PREMIUM can be modeled with the single covariate

EA:ZA®1PI

24.5
1

34.5
@11

44.5
1

04.5

24.5
24.5
24.5
34.5
34.5
34.5
44.5
44.5
44.5
54.5
54.5
54.5

0 0
0 0
0 0
1 0
1 0
oo :12x 3
0 1
0 1
0 1
-1 -1
-1 -1
-1 -1
12 x 1 (8.52)
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!
where z4 = ( 245 34.5 44.5 54.5 > represents the vector of class midpoints for AGE.
The model to be fitted is
v = Ysvy;
1 245 1 0
1 245 0 1
1 245 -1 -1
1 34.5 1 0
1 345 0 1 Y1
1 345 -1 -1 Yo
1 445 1 0 Y3
1 445 0 1 o
1 445 -1 -1
1 54.5 1 0
1 545 0 1
1 545 -1 -1
71
~ Y
- ( 1 34 7Zp ) 2 (8.53)
V3
Ya
Model (8.53) implies
gmod3(7r> = QY3V =0
to be implemented in the vector of constraints
oo (7T
a(m) = | 8= (854)
gmod?;(ﬂ-)

where Qy, = I— Y5 (Y4Y3) 'Y}, Since rank (Ys) = 4 a total of 8 linear independent constraints
are included in gmod3(m) = 0. The total number of linear independent constraints in (8.54) are

equal to 32.
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After employing the ML estimation procedure the restricted ML estimate 7, yields the ML estimate

7, 3.5897
~ —0.01817
Fs= (VY)Y = | 2 | = | (8.55)
Vs —0.22774
oA —0.44003

It follows from (8.55) that the effects for Product Il and Product IlI are
7P =7, =-0.22774 and 7 =7, = —0.44003 (8.56)
respectively and hence the effect for Product Il is
78 = — (73 +7,) = — (—0.22774 — 0.44003) = 0.66777 (8.57)
meaning that the estimated median for Product Il is R66.78 above the overall median.

The estimated two-factor model is

Uiy = (3.5807 +77) —0.018172 | i=1,2,3,4and j =1,2,3 (8.58)
where
V;; = estimated premium in the ij-th category
24 = the class midpoint for the i-th category for AGE

7 = effect for the j-th category for PRODUCT

According to (8.58) the PREMIUM drops with R1.82 per year, or equivalently the PREMIUM drops
with R18.17 per age category of 10 years. This rate of change in PREMIUM over AGE is the same
for all three products, since no interaction between AGE and PRODUCT was assumed. See the
estimated medians in Table 8.10.
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Table 8.10: Descriptive statistics for no interaction regression model.
PRODUCT
AGE | 1 11
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 - 0.2
0.1 0.1 0.1 N

20.29 °0 2 4 6 8 10 00 2 4 & 8 10 %0 2 4 & 8 10
=317 v =2917 nw=3.034 v=2705 1 =4.508 v=3.812
o =1465 05 =0.028 c=1682 o5 =0.033 o =23.286 0,5 =0.045

05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 \

30.39 0 2 4 6 8 10 % 2 4 6 8 10 % 2 4 & 8 10
n=3106 v =2.735 n=2774 v=2523 n=4313 v=23.631
oc=1844 0,5 =0.022 oc=1359 05 =0.024 oc=3214 o, =0.039

05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0 L ==

40.49 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
n=2908 v =2.554 n=2610 v=2.341 n=4.012 v=3.449
oc=1.756 05 =0.025 c=1394 0;=0.024 oc=2701 o5 =0.039

05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
e oA oL =]

50.59 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
[=2730 D=2372 [=2439 7=2160 [i=3928 ¥ =3.267
oc=1."743 05 =0.035 o =1405 05 =0.031 oc=3.093 0, =0.044
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From (8.58) the regression lines for each of the three products may be constructed. These regression
lines have the same slope with different intercepts and are tabulated in Table 8.11. The regression
lines reported in Table 8.11 agree with the estimated medians reported in Table 8.10.

Table 8.11: Estimated regression lines for regression model with no interaction.

PRODUCT Vi
| 3.36196 — 0.018172"
I 3.14967 — 0.01817z
1l 4.25747 — 0.01817z

In Table 8.13 the effects for AGE reveal the same pattern as that of an ordinal variable. This follows
since the distances between the class midpoints are equal. The effects of AGE show a constant drop
of R18 per AGE category. Since all the interaction effects (?AP) are zero the medians in Table 8.10
proportionately reflect the row and column effects in Table 8.13.

Comparing the goodness of fit statistics of Model 3 (see Table 8.12) with that of Model 2 (see
Table 8.7), the fit for the two models stayed practically the same. This motivates that the inclusion
of AGE as a covariate in the model is doing practically just as good as the three dummy variables
in the previous model, emphasizing the solid linear trend in PREMIUM over AGE.

Table 8.12: Goodness of fit statistics for regression model with no interaction.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value

3 32 || 126.0 | <0.0001 | 126.8 | <0.0001
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Table 8.13: Effects for no interaction regression model.
PRODUCT 74
AGE | 1] ] O-a
05 05 05
0.4 0.4 0.4
03 03 0.3
0.2 0.2 B 0.2
0.1 0.1 0.1 N
20-29 ° 2 1 & 10 00 2 4 & 8 10 % 2 4 6 8 10
7P =0 7P =0 7 =0 0.273
a\-;r\AP - O 8/7:AP - O 85:AP - 0 0022
05 05 05
0.4 0.4 0.4
03 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N\
30-39 °0 2 2 & 10 % 2 4 & 8 10 % 2 4 6 8 10
7P =0 7P =0 7P =0 0.091
a\-;r\AP - O 8/7:AP - O 85:AP - 0 0007
05 05 05
0.4 0.4 0.4
03 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
40-49 °0 2 4 &6 10 % 2 4 & 8 10 % 2 4 6 8 10
7P =0 7P =0 7P = —0.091
a\-;r\AP - O 8/7:AP - O 85:AP - 0 0007
05 05 05
0.4 0.4 0.4
03 03 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
50-59 °0 2 4 &6 10 % 2 4 6 8 10 % 2 4 6 8 10
7P =0 7P =0 7P = —0.273
E;I_\AP — 0 6-\/7:AP — O 6-\5:AP — O 0022
7 —0.228 —0.440 0.668 2.872
O-p 0.021 0.021 0.028 0.017
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Since the PREMIUM of the three products do not change at the same rate over the categories of

AGE, different slopes for each PRODUCT will be introduced leading to the model

v = Yy,
1
1
1

— = = = e e = e

24.5
24.5
24.5
34.5
34.5
34.5
44.5
44.5
44.5
54.5
54.5
54.5

1

0
1

24.5

0
—24.5
34.5

0
—34.5
44.5

0
—44.5
54.5

0
—54.5

- (12 2 @0z))

0

24.5
—24.5
0

34.5
—34.5
0

44.5
—44.5
0

54.5
—54.5

71
2
3
Va
s

Ve

71
V2
V3
Va
Vs
Ve

(8.59)

where z is defined in (8.52) and Z, is previously defined in Table 8.5. The vector of constraints

to be imposed in the ML estimation procedure is

g(m) =

8log ()
8mods (77)

=0

(8.60)

where gnoqs (1) = Quu with Qu =1-Y, (YQY4)71 Y/, the projection matrix orthogonal to Y.
A total of 6 linear independent constraints are included in gnod4 () bringing the total number of
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linear independent constraints in g (7) to 30.

Employing the ML estimation procedure with the vector of constraints (8.60) the ML estimate for

Y is

1 3.4879
Yo —0.01532
Vi = (YZYD& YU = ?3 = —0.022 (8.61)
on 0.33708
Y5 0.00447
e —0.01963

implying that the overall trend in PREMIUM over AGE is
Ui =7y + 792 = 3.4879 — 0.0153227" . (8.62)

Due to the interaction that exists between AGE and PRODUCT, the three regression equations for
PREMIUM are as follows:

PRODUCT I:
Ui = (3.4879 +7;) + (—0.01532 +7;) 2
= (3.4879 — 0.39227) + (—0.01532 + 0.00447) 2"
= 3.0956 — 0.01085z;" (8.63)
PRODUCT Il

Un = (3.4879+7,) + (—0.01532 + 7)) 2"
= (3.4879 + 0.33708) + (—0.01532 — 0.01963) z;*
= 3.8250 — 0.034962;" (8.64)

PRODUCT IlI: For PRODUCT Il the effect on the overall intercept (8.62) is

— (J5 +7,) = — (—0.39227 + 0.33708) = 0.05519

and the effect on the overall slope (8.62) is

— (95 +76) = — (0.00447 — 0.01963) = 0.01516
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leading to the regression line

Dis = (3.4879 4 0.05519) + (—0.01532 4 0.01516) z*

%

= 3.5431 — 0.000162; (8.65)

See Table 8.16 where all the estimated medians are tabulated. For each product the estimated
medians follow an unique trend over AGE. For PRODUCT | the premium drops with an estimated
R1.09 per year, while for PRODUCT Il the premium drops with an estimated R3.50 per year. For
PRODUCT I no real trend over AGE is evident with a slope that is practically equal to zero.

Investigating the effects in Table 8.17, the marginal and the partial trend over AGE may be examined.
Overall, the PREMIUM starts with R23 above the overall median of R288.30 and drops down linearly,
with an estimated R15.30 per age category, to R23 below the overall median. It is interesting to note
that this overall drop in PREMIUM seen by the 7_values is cancelled out by the interaction effects
for PRODUCT Ill, the 74”-values, implying no trend over AGE for PRODUCT III. For PRODUCT
[l the effect of AGE on PREMIUM is rather drastic. Starting with R29.40 above the marginal effect
for the youngest policy holders and dropping to R29.40 below the marginal effects for the oldest
policy holders.

According to Table 8.15 the fit of Model 4 is much better than that of Model 5 indicating different
trends in PREMIUM over AGE for the three products. This satisfactory fit further explained in Table
8.18 where the observed and expected frequencies are reported.

Table 8.15: Goodness of fit statistics for regression model with interaction.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value
4 30 49.9 0.0127 50.0 0.0122
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Table 8.16: Descriptive statistics for regression model with interaction.
PRODUCT
AGE P1 P2 P3
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
20.29 °0 2 4 6 8 10 00 2 4 & 8 10 %0 2 4 & 8 10
[—3084 7=2830 [=32719 7=2969 fi—4142 7 =3.539
c=1422 o5 =0.033 o0 =1654 05 =0.046 o =2874 05 =0.068
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 — ! 0 — 0 L =]
30.39 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
=300 7=2721 [=2879 7=2619 [i—=4199 7 =3.538
0c=1.836 o0, =0.022 o =1.406 o5 =0.027 o =3.117 0, =0.042
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0 L ==
40-49 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
nw=2972 v=2613 n=2532 v=2269 n=4111 v =3.536
c=1.782 0, =0.028 oc=1.359 o5 =0.026 o =2761 0, =0.044
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
50-59 °0 2 4 6 8 10 % 2 4 6 8 10 ° 2 4 6 8 10
w=2860 v=2504 n=2210 v=1.920 n=4246 vV =3.534
oc=1.753 05 =0.045 oc=1411 o5 =0.043 c=23332 0, =0.072
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Table 8.17: Effects for regression model with interaction.
PRODUCT 74
AGE I 1 1 Gan
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 >
0~ — ! 0 j ! ! 0~ ' "
20_29 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
74P — _0.067 74P — 0.294 74P — _0.227 0.230
Goar = 0.031 Goar = 0.034 Goar = 0.042 0.026
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N\
0~ — 1 0 ! Oy ' "
30_39 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
74P — _0.022 74P — 0.008 74P — _0.076 0.077
Goar = 0.010 Goar = 0.011 G.ar = 0.014 0.009
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N\
0- — 0 ! 0~ ' "
40_49 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
74P — 0.022 74P — _0.008 74P — 0.076 —0.077
Goar = 0.010 G.ar = 0.011 G.ar = 0.014 0.009
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 >
0- ' " 0 j Oy ' "
50_59 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
74P — 0.067 74P — _0.294 7AP — 0,227 —0.230
Goar = 0.031 G.ar = 0.034 Goar = 0.042 0.026
Tp —0.216 —0.438 0.654 2.883
Gsp 0.021 0.022 0.028 0.017
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PRODUCT
AGE | 1]

Premium | f | m Premium | f | m Premium | f | m

R51-R200 | 157 | 166 R51-R200 | 49 | 68 R51-R200 | 69 | 61

20-29 R201-R300 | 371 | 359 R201-R300 | 148 | 144 R201-R300 | 108 | 108
R301-R400 | 232 | 239 R301-R400 | 101 | 109 R301-R400 | 103 | 107
R401-R500 | 93 | 96 R401-R500 | 62 | 51 R401-R500 | 81 | 73

R500+ 77 70 R500+ 55 | 44 R500+ 100 | 112

Premium | f | m Premium | f | m Premium | f | m

R51-R200 | 267 | 271 R51-R200 | 213 | 194 R51-R200 | 132 | 145

30-39 R201-R300 | 400 | 378 R201-R300 | 328 | 317 R201-R300 | 249 | 235
R301-R400 | 212 | 237 R301-R400 | 147 | 174 R301-R400 | 211 | 226
R401-R500 | 115 | 109 R401-R500 | 71 | 66 R401-R500 | 156 | 155
R5004 111 | 109 R5004 41 | 49 R500+ 269 | 256

Premium | f | m Premium | f | m Premium | f | m

R51-R200 | 241 | 229 R51-R200 | 302 | 289 R51-R200 | 73 | 84
40-49 R201-R300 | 278 | 289 R201-R300 | 275 | 283 R201-R300 | 168 | 155
R301-R400 | 167 | 167 R301-R400 | 117 | 117 R301-R400 | 151 | 155
R401-R500 | 84 | 74 R401-R500 | 40 | 42 R401-R500 | 94 | 105
R500+ 62 | 72 R500+ 30 | 33 R500+ 170 | 156

Premium | [ | m Premium | f | m Premium | f | m |

R51-R200 | 135 | 139 R51-R200 | 205 | 223 R51-R200 | 77 | 73
50-59 R201-R300 | 150 | 155 R201-R300 | 130 | 120 R201-R300 | 121 | 112
R301-R400 | 89 | 83 R301-R400 | 49 | 43 R301-R400 | 98 | 106
R401-R500 | 40 | 36 R401-R500 | 18 | 16 R401-R500 | 76 | 73
R500+ 34 | 35 R500+ 14 | 15 R500+ 118 | 126
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Chapter 9
Bivariate grouped data

Consider a bivariate data set with n observations classified in a two-way contingency table with I
rows and J columns. The frequencies of the I.J cells are denoted by f;; in Table 9.1.

Table 9.1: Contingency table with I rows and J columns.

X
Y (=00, 1] (v1,92] (Yr—2,954] (yr-1,9J]
(—oo, $1] Ji1 Ji2 J10-1 S
(71, 72] fa1 fo2 fa,7-1 fas
($172,$171] f171,1 f171,2 f171,J71 flfl,J
(zr-1, 1171] In J12 Jr.o1 J17

The objective is to fit a bivariate distribution curve to the two-way grouped data set in Table 9.1.

116
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9.1 Formulation
The vectors of upper class boundaries are
T hn
x
X = _2 and y = y_2 (9.1)
Tr-1 Yi-1
with
Ju fiz o fiaa Jis
Jar fa2 o faga Jar
F=| : = .. : : (9.2)
Jn o Jro oo froig Jrog
fn Jfr2 o froa J1s
the matrix of frequencies listed in Table 9.1.
Define
f = vec (F) (9.3)

as the column vector where the elements of F are stacked row by row below each other. It is

assumed that f has a multinomial distribution i.e.

f ~mult (n, ) .

Let .
— 9.4
Po o (9.4)
denote the vector of relative frequencies. Hence
E (Po) = mo (9.5)

and

Cov (pg) = % (diag (7o) — o)
— V. (9.6)
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Define the matrix of relative frequencies

1
P, = —F
n

118

(9.7)

where F' is given in (9.2). The matrix with cumulative relative frequencies may be obtained from

P=C;-Py-Cy

where
100 -+ 0
110 0
C,-(IxD=]111 -0 and C;:(JxJ)=
111 - 1

From Muirhead (1982) (p.74) it follows that

vec (P) = vec(Cr-Py-Cy)
= (C; ® Cj)vec (Py)
= (C;®Cr)po

From (9.10) the random vector of cumulative relative frequencies is

p = Cp,
with

C=(C,®C .

The expected value and covariance matrix of the random vector p is

E(p) = E(Cpy)
= C’Tl'o

= T

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)
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and
Cov(p) = Cov(Cp)
1
= —C{diag(mo)—momy} C’
n
1
= —{Cdiag (C'w) C' — 7rr'}
n
= V. (9.14)
9.2 Estimation
Estimation of the bivariate distribution curve F' (z,y), is obtained such that
fort =1,2,---,Iand j =1,2,---,J where 7;; is the expected cumulative relative frequency in

(9.13). The complete set of expected cumulative relative frequencies is given in Table 9.2.

Table 9.2: Expected cumulative relative frequencies for a bivariate grouped data set.

Y
X (—o0,y1] (1, 92] (Yo-2,95-1)  (ys-1,94]
(—o00, z1] 11 T12 T1,0-1 T1g
(901,$2] 21 22 T2,J—1 Tog
($1—2,IE1—1] Tr—-1,1 Tr—1,2 Tr—1,0-1 Tr—1,J
(II—1, II] T T2 Tr,J—1 TrJg

Imposing the restriction (9.15) in the ML estimation procedure, leads to the ML estimate of 7 under

constraints, that will satisfy the characteristics of the specified bivariate continuous distribution.
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Chapter 10
The bivariate normal distribution

In this chapter a few of the basic concepts of the bivariate normal distribution will be discussed.
These concepts are of importance in the estimation of the bivariate normal distribution to a two-way
contingency table. It will also be shown how to calculate bivariate normal probabilities by making use
of a series of gamma functions. The one-to-one relationship between the correlation coefficient and
the bivariate normal probabilities is explained in detail since it plays a major role in the estimation
of the bivariate normal distribution discussed in the next chapter.

10.1 Joint distribution

The bivariate normal distribution with pdf

B 1 1 T — [y ’
Jw.y) = QWOnyﬂ'exp{_Q(l_[ﬂ) [( Tu >

AEEE) ]

where —oco < p,, p, < 00, 0 < 04y 0, <00 and —1 < p < 1is to be fitted to the two-way
contingency table in Table 9.1. The pdf of the bivariate normal distribution involves 5 parameters

and a special notation for this joint distribution is

(x,y) ~ BVN (11, 1, 05,02, p) -

120
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10.2 Marginal distributions

When = and y are jointly normally distributed, each of the two marginal distributions by itself is
normally distributed. The marginal distribution of = is normal with mean p, and standard deviation

) = 22% - exp {—% <x ;m“x)Q} . (10.2)

The marginal distribution of y is normal with mean 4, and standard deviation o, i.e.

fly) = \/%ay - exp {—% (y;—f"y} . (10.3)

Oy, 1.€.

10.3 Standard bivariate normal distribution

By making use of standardisation it is possible to obtain the standard bivariate normal distribution

1

2my/1 — p? .

where z, = (m) and z, = (y — ,uy)' In this case

O Oy

f(zzy2y) = exp {—ﬁ (22 — 2pzp2 + 2]] } (10.4)

(24, 2y) ~ BVN(0,0,1,1, p)

with
p=—2v (10.5)

040y
where 0,, = Cov(x,y), the only parameter determining the shape of the bivariate normal distribu-
Yy Y y g

tion.

The standard bivariate normal curve is displayed in Table 10.1 to illustrate the effect of the correlation
coefficient p.
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Table 10.1: The effect of the correlation coefficient p.

Case 1l: p=0

Case 2: p=10.7

Case 3: p=-0.7
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Table 10.1 is summarised as follows:

Case 1: p=0
The contour curves are circles, indicating no relationship between = and . For all other values

of p the contour curves are ellipses.

Case 2: p=0.7
When = and y are positively related so that p > 0, the principal axis has a positive slope,
implying that the surface tends to run along a line with a positive slope. It is clear that high
x values are related with high y values and visa versa.

Case 3: p=-0.7
When z and y are negatively related, p < 0, the principal axis has a negative slope and the

surface runs along a line with a negative slope.

10.4 Conditional distributions

The density function of the conditional distribution of x for any given value of y is

f(z,y)
f(y)

where f(z,y) is the joint density function of x and y and f(y) is the marginal density function of

f(zly) =

y. When z and y are jointly normally distributed the conditional pdf of x for any given y is

L Ly
fzly) Vamow p[ 2( - )] (10.6)

where

Oz
Hapy = Het (P~ ) (V= 1)

Y

2y = A=)

o : : : :
The parameter oy, = 11, — (p—x) 1, is the intercept of the line of regression of x on y and the
Ty

Oy . .
is the slope of this line.

parameter 3, = p—
Ty
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The conditional distribution of y for any given x follows similarly with

RUNNE B N N ST
fylz) oo p[ 2( - )] (10.7)

where
g
e = s (62
e = A=)

o . . : :

The parameter o, = 1, — (p—y> i, is the intercept of the line of regression of y on x and the
O-.Z'

g

parameter 3, = p—~

Oy

is the slope of this line.

10.5 Bivariate normal probabilities

10.5.1 Calculation of bivariate normal probabilities
The probability

b a 1 1

corresponds to the volume under the surface of the standard bivariate normal distribution over the
region —oo < 2z, < a and —oo < z, < b. The lines 2z, = 0 and 2, = 0 divide the domain in 4
so-called quadrants. See Table 10.2.

Table 10.2: The four quadrants of the bivariate normal distribution.

Quadrant Region
Q1 —00< 2, <0 —00< 2z <0
Q- —00<2, <0 0<z, <00
Qs 0<z2, <00 —00<z, <0
Q4 0< 2z, <0 0<2 <00
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Define

b a 1 1
Do(a,b; p) = ————exp [ - [% — 2p2,2, + 22 )dzxdz 10.9

as the integral where integration of the standard bivariate normal distribution takes place in the
positive quadrant, (4. See Figure 10.1.

15

y | //7
AN/

/7y

-1.5 T T T T

Figure 10.1: Integration region of ®¢(a, b; p)

Due to the symmetry of the bivariate normal distribution, any bivariate normal probability ®(a, b; p)
in (10.8) can be calculated as a linear combination of ®¢(a, b; p)-values in (10.9), summarised in
Table 10.3.
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Table 10.3: Bivariate normal probabilities in the four quadrants.

Quadrant 2: (a <0 and b>0) Quadrant 4: (¢ >0and b > 0)

15 15

y y
05T O 057 O
e /70

05T / 05T

e }-1 }»0‘5 0 10.5 1 }1.5 e 4 ‘05 0 10.5 1 }1.5
@(a,b; p) = q)()(O0,00,p) - (I)O(_CL?OO;p) C:D(a, bv p) = q)()(O0,00,p) +(I)0(CL, oQ; _p)

+ (1)0(007 b; _p) - (I)O(_aa b; _p)

+ (I)0<OO> b; _p) + (I)O(CL, b; p)

Quadrant 1: (a <0 and b < 0)

15

. )

7

-15

| | J
t t t t f
-1 -0.5 0 0.5 1 15

X

®(a,b;p) =
— ®y(00, =b; p) + Po(—a, —b; p)

@0(007 o0, p) - (I)0<_a7 05 p)

Quadrant 3: (¢ >0 and b < 0)

15

")

177
5

| J
t t t t f
-1 -0.5 0 05 1 15

KA

CI)(a? b; p) = (1)0(007 00; p) + (I)O(aa oQ; _p)
— ®y(00, —b; p) — Pola, —b; —p)
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In Algorithm 1 it will be shown how to calculate the bivariate normal probability in the positive

Quadrant ()4, as a series of gamma functions.

Algorithm 1
Do (a, b; p) / / exp (—é [zg — 2p2p2y + zz]) dzydz,
0 2my/1— p? 2(1=p?) !
B ZQp\/l— F2(z+1) G( a? i+1) G< b? z'—l—l)
—~  4mil 2 2(1—p2)" 2 2(1—p%)" 2
for a,b >0 (10.10)

x
where G (z, k) = / ﬁt’**le*tdt is the gamma distribution with shape parameter k.
0

Proof. Since

)
> _ 52
exp ( P22y ) _ Z AL=p) (10.11)
it follows that
Do(a,b;p) = /b/a;exp (—; (22 — 2pz,2 —i—zﬂ) dz,dz
)Yy 0 0 o /—1_p2 2(1_p2) T ag} Y Wy

_ P

> 1 ‘1
Zo:%m—p? (1—p2> a!
a b
z . z .
. exp | ——————— | z'dz, - exp | ———4— | 2'dz
/0 p( 2(1—p2>> : / p( 2<1—p2>) v

22 3
in [ e 20 2idz yields

Substitution of s = 2(1%2)

¢ 2 —ipr i itl
/ e 20" dy = /2(1 S (28)71 (1—p) 7 ds
0 0
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and therefore
o0

1 p \'1 ., 2\ i+1 -2 <i—|—1)
Pq(a, b; = -2 (1= r
dotin) = Yoo () 52 0-A (5

2 - 2 :

. a ’Z—l-l Ve b ’z—l—l

2(1—p2)" 2 2(1=p%)" 2
[e’e] 7 — 9 . 2 . 2 .
_ 2(2,0) 1 pFQ 1 +1 e a ’Z-i—l e b ’Z-i-l
, 473! 2 2(1—p2)" 2 2(1—p2)" 2

=0

The probability ®y(a, b; p) can be calculated by making use of the SAS program Phi0.SAS listed
in the Appendix. The probability ®(a,b;p) can be obtained by making use of the SAS function
PROBBNRM(a,b,p) | or by making use of the SAS program Phi.SAS also listed in the Appendix.

10.5.2 Calculation of p

Integration over each of the four quadrants tabulated in Table 10.2 leads to the definition of the
following four probabilities or so-called volumes

1

VOL1 = 22— 2pZ02y + 2| } dz,dz, (10.13)

1

1
—.eX —_——
/szm/l—p2 p{ 2(1—p2)[
1 1
VOL3 = — . eXp ———————— zﬁ—Q 2p2y + 22 }dzxdz 10.15
/Q/QW /—1—[)2 p{ 2<1_p2)[ Pzzzy y} Y ( )

1 1
VOL4 = //—-ex {—— Zi -2 Zy R —{—2’2 }dzzdz 10.16
2 27T /—1—[)2 p 2<1_p2)[ p Y y} Y ( )

The probability or the total volume of the positive quadrant (), may be expressed in terms of the

VOL2 = 22— 2pz2y + 2. } dz,dz, (10.14)

correlation coefficient ) .
arcsin p
=VOL4 — - 10.17
2 4 ( )

which is referred to as Sheppard’s theorem on median dichotomy (1898). (See Kendall and Stuart
(1958) p.351). Due to the symmetry of the bivariate normal distribution i.e.

VOL1=VOL4 and VOL2=VOL3
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and the property
VOL1+VOL2 +VOL3+VOL4=1
it follows that 5
—arcsin p = (VOL1 + VOL4) — (VOL2 + VOL3)
s
which leads to the expression of p
p = sin (g (VOL1 + VOL4) — (VOL2 + VOL 3)]) . (10.18)

As an illustration of the one-to-one relationship between the volumes of the respective quadrants
of the bivariate normal distribution and the correlation coefficient p consider Table 10.4 and Table
10.5.

Table 10.4: Relationship between p and the four volumes of the bivariate normal distribution.

(VOL1+ VOL4) | (VOL2 + VOL3) P

1 0 sin (7/2) = 1

0.9 0.1 sin (1/2(0.8)) = 0.95106
0.8 0.2 sin (1/2(0.6)) = 0.80902
0.7 0.3 sin (7/2(0.4)) = 0.58779
0.6 0.4 sin (7/2(0.2)) = 0.30902
0.5 0.5 sin (r/2(0)) = 0.0
0.4 0.6 sin (7/2(-0.2)) = —0.30902
0.3 0.7 sin (1/2(—0.4)) = —0.58779
0.2 0.8 sin (7/2(—0.6)) = —0.80902
0.1 0.9 sin (7/2(-0.8)) = —0.95106
0 1 sin (—m/2) = -1

In the case where p =0
VOL1=VOL2=VOL3=VOL4=0.25,

resulting in an even distribution of the volumes over the four quadrants.
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For a slight positive relationship of p = 0.2 (see Table 10.5), the volumes of the positive and negative
quadrants are slightly higher than the two mixed quadrants. Comparing p = 0.5 with p = —0.5 it
is clear that the two graphs are mirror images of each other. Further, it is also clear that a stronger
positive relationship is associated with higher volumes in the positive and negative quadrants, while
a stronger negative relationship is associated with higher volumes in the two mixed quadrants. (See
Table 10.5.)
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Chapter 11

Estimating the bivariate normal
distribution

In this chapter the estimation procedure to fit a bivariate normal distribution (10.1) to the two-way

contingency table in Table 9.1 is described.

11.1 Bivariate normal probabilities

After standardising the vector of upper class boundaries x in (9.1), the vector of standardised upper

class boundaries is

— 1
g = Xl
Og
1
_ o
= (X —1) 1y
O
~ Xa, (11.1)
with
2z
Xz(x —1> and o, = Zw . (11.2)
0.

132
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Similarly it follows from standardising y in (9.1) that
—u,1
g = Yl
Oy
S
= (v )| &
Oy
- Ya, (11.3)
with
1
Y = ( y -1 > and o, = Zz . (11.4)
ay

The vectors o, in (11.2) and ay, in (11.3) are referred to as the vectors of so-called natural

parameters.
The bivariate normal probabilities
Dij = F (20,,%0,) = P(Zy < 20, Zy < 2,) (11.5)

with corresponding standardised upper class boundaries are tabulated in Table 11.1.

Table 11.1: Bivariate normal probabilities.

Zyl Zyz Znyl ZZJJ
2z Dy D9 Dy 5 Dy
Zxo Dy Dy ®, J—1 (I)QJ

Zr(r_1) Qi1 Proae Qi1 Pro1g
Zxr dn Do O 3

To fit a bivariate normal distribution to the contingency table in Table 9.1 it is required that the
bivariate normal probabilities should equal the corresponding cumulative relative frequencies i.e.

(@], =[], fori=1,2,--- Tandj=1,2,-,J (11.6)

v
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where
Py Q1 o Dy Dy
Qo1 Py o Doy Doy
b — ; : . : : (11.7)
Qro1n Pro12 0 Prorgar Proay
Qn Py o Prya D1y
is the matrix with bivariate normal probabilities defined in (11.5) and
11 12 T T1,0-1 T1,J
21 22 Tt T2,J—1 T2, J
I1 = : : . : : (11.8)
Tr—11 7Tr-12 - Tr-1Jj-1 T1-1J
Il Tr2 Tt Tr,J—1 mrJ
is the corresponding matrix with expected cumulative relative frequencies defined in (9.15).
It follows from (11.6), that the following three conditions must hold:
1. Marginal distribution of x:
(I);r = Ty
Dy T1,J
) T
2 - > (11.9)
(I)Ifl,J Tr—-1,J
(First (I — 1) elements of last columns of ® (11.7) and IT (11.8).)
2. Marginal distribution of y:
¢, = mw,
!/ !
( O Dy - ‘I)I,JA ) - ( T 7Tr2 -+ TrJj-1 > (11-10)

(First (J — 1) elements of last rows of ® (11.7) and II (11.8).)
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3. Joint distribution of x and y:
b, = my
Dy Dy T ®1,J—1 11 12 T T1,J-1
Dy Doy Tt q)2,J71 21 22 Tt T2,J-1
vec = vecC
@171,1 @171,2 ce q)Ifl,Jfl mr—11 Tr-1,2 -+ Tr-1,J-1
(11.11)

(First (I — 1) (J — 1) elements of ® (11.7) and II (11.8).)
In ®,, and 7., the elements of the joint bivariate probabilities and the elements of the joint

cumulative relative frequencies are stacked row by row as a single column vector.

11.2 Parameters

The bivariate normal distribution depends on five parameters i.e.

(x,y) ~ BVN (1t 1y, 02,02, p)

where —oco < p,, p, < 00, 0 < 0, 0y < oo and —1 < p < 1. The parameters p, and o, are
functions of the marginal distribution of , while the parameters y, and o, are functions of the

marginal distribution of . The parameter p is a function of the joint distribution of x and y.

11.2.1 Marginal distribution of x

From the properties of the bivariate normal distribution it follows that the marginal cumulative
relative frequencies

Ty = " (11.12)



<
=

“ UNIVERSITEIT VAN PRETORIA

4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

136

follow a cumulative N (u,, 02) distribution curve at the upper class boundaries of x and hence

! (7)) = 2

= Xa, (11.13)

which leads to ]
a,=| 9 | = (X'X)"'X'® ! (7r,) . (11.14)

ox

Under normality (11.13), the standardised upper class boundaries z,, is a function of the natural
parameters . By substituting (11.14) in (11.13) it follows that z, is the projection of ®~* (r,)
on the vector space of X i.e.

z, = Px® ! (m,) (11.15)

where
Px =X (X'X)"' X/ (11.16)

is the projection matrix of the vector space generated by the columns of X.

11.2.2 Marginal distribution of y

The cumulative relative frequencies

!
Ty = ( T Tre =+ Trj-1 ) (11.17)

follow a cumulative N (uy, 02) distribution curve at the upper class boundaries of y and hence

o (my) = 1z

- Yo, (11.18)
which leads to 1
a, = Zz; - Y'Y)'Y® ! (x,) . (11.19)
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Under normality (11.18), the standardised upper class boundaries z,, is a function of the natural
parameters «,. By substituting (11.19) in (11.18) it follows that z, is the projection of &~ (mr,)
on the vector space of Y i.e.

z, =Py® ! (m,) (11.20)

where
Py =Y (YY)'Y'. (11.21)

11.2.3 Joint distribution of x and y

The one-to-one relationship between the correlation coefficient and the volumes of the four quadrants
of the bivariate normal distribution

p=sin (g [(VOL1 + VOL4) — (VOL2 + VOL 3)]) (11.22)

is explained in the previous chapter. The four quadrants of the bivariate normal distribution are
denoted by ()1, @2, @3 and Q4 and by adding the relative frequencies in the 4 quadrants it is possible
to calculate the volume for each quadrant. In matrix notation the vector of relative frequencies is

mo=C ' . (11.23)
(See (9.12) for an explanation of the matrix C.)
The expressions for the 4 volumes are as follows:

11.24
11.25
11.26
11.27

VOL1 = vimy=vVv/,C'w
VOL2 = vimg=vyClw
VOL3 = vimy=viC'w
VOL4 = vimy=vV,C'w

—~~ N ~~
~— ~— ~— —

where
v, =vec(V,) for ¢=1{1,2,3,4} (11.28)

and V, is an (I x J) indicator matrix such that:



<
=

“ UNIVERSITEIT VAN PRETORIA
4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

138

1. [Vg];; =1 ifthe (i,j)-thcell € @y for ¢={1,2,3,4}
2. [Vgl;; =0 if the (i, j)-th cell ¢ Q, for ¢={1,2,3,4}

3. Cells containing the lines z, = 0 or 2, = 0, i.e. belonging to more than one quadrant, should
be allocated proportionately to the standard bivariate normal distribution, depending on the

value of p.

This implies that

4
> v, =1 (11.29)
qg=1

and following from (11.22) it is now possible to express p as

p = sin (g (V) 4+ V) — (V) + V5] C_17r> . (11.30)

11.3 Vector of constraints

The vector of constraints, g (m) = 0, with

)
g(m)=| g,(m) (11.31)

consists out of three sets of constraints.
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11.3.1 Marginal distribution of x
g (m) = &, —m, (11.32)
= ®(z,) — 7,
Dy, T
. Doy B T2J
(I)I—LJ Tr—-1,J

The (I — 1) constraints in g, () refer to the marginal cumulative relative frequencies 7, that has
to follow a cumulative normal distribution curve at the standardised upper class boundaries x. This
follows from the properties of the bivariate normal distribution, since the marginal distribution of x
is

r~N (,ux, ai) .

11.3.2 Marginal distribution of y

gy(m) = &, —m, (11.33)
= ®(z,)—m,
O3 4§
o (I)I,Z B 1,2
(DI,Jfl Tr,J—1

The (J — 1) constraints in g, (7) refer to the marginal cumulative relative frequencies 7, that has
to follow a cumulative normal distribution curve at the upper class boundaries y. This follows since

the marginal distribution of y is
y~N (:“y’ 012/) :
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11.3.3 Joint distribution of x and y

Sy (77) = (I)acy — Ty (1134)

The (I —1)(J — 1) constraints in g,, (7) refer to the joint cumulative relative frequencies 7,
that has to follow a cumulative bivariate normal distribution curve at the intersections of the upper

class boundaries x and y. The bivariate normal distribution to be fitted is such that

(,y) ~ BVN (1, 1, 05,05, p) -

The elements of

Dy Dy Dy 54
Dy Doy Dy 71
= vec
Qi1 @i o0 P g

are the cumulative probabilities from the standard bivariate normal distribution at the intersections
of the class boundaries z, and z, stacked row by row below each other as a single column vector

and the elements of

11 T12 T1,J-1
21 T22 te T2,J—1
Ty = VEC
Tr—11 7Tr-12 -+ T1-1J-1

are the cumulative relative frequencies, also stacked row by row below each other.
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11.4 Matrix of Partial Derivatives

As in the case of the vector of constraints, the matrix of partial derivatives of g (7r) with respect to

™

g, ()
om
G, -2 | Og(m) (11.35)

or or
0guy ()

or

also consists out of three sets and will be derived below.

11.4.1

where

Since z, =

tiation

where

Marginal distribution of x

g, () 0P, B o,

or or or
0% (z)
= o I, (11.36)
on,
I, = o (I—-1)x1J. (11.37)

Xa, with o, = (X'X) ™' X'® ! (7r,) it follows from the chain rule for matrix differen-

0P (z,) 0P (z,) 0z, OJa, Om,

o 0z, Oa, Om, Ox
= diag[¢(z,)]- Px-D, -1, (11.38)
-1
p, - 2% (m) (11.39)

o,
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To solve (11.39) set v = &' (7r,) then ® (v) = 7, and hence
ov

o, »

(&)
(%5")

— (diag[¢ (v)]) "

= (diag [¢ (®7(,))])"

D,

1

11.4.2 Marginal distribution of y

O, (x) _ 0%, om,

or om o
_ 8@ (Zy) . I
n or Y
where 5
Fis
Iyza—ﬂ_y:(J—l)xIJ.

142

(11.40)

(11.41)

(11.42)

Since z, = Xa, and a, = (YY) ' Y'®' (m,) it follows from the chain rule for matrix differen-

tiation
o®(z,) _ 0®(z) 0zy Oay Om,
or N 0z, ay Om, Om
= diag[¢(z,)]- Py -D, -1,
where
Dy — a@_l (ﬂ-y)
om,

- (e[ (eim)]) "

(11.43)

(11.44)
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11.4.3 Joint distribution of x and y
From the chain rule for matrix differentiation it follows that
Oy (m) _ 0By Oy
o T or
Zy
0 z,
B 0®,, p _ Omyy
a or or
Zy
0 z,
p
0z,
om
(4)
oe,, 09, 0P, 0z,
= ( 0z, 0z, op ) | om | Ly (11.45)
(1) 2) (3) (5)
@
or
(6)
where 5
Ty
Ixyza—ﬂ_y:(l—l)(J—l)xIJ. (11.46)

A total of 6 derivatives that are labled in (11.45), are simplified in (1) to (6) below.
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0
0%,

F o)
a / N / o { L : }
B ————eXP — 55 (31 — 2pa122t+ 2 dzdz
" . 1 2 2 }
N P s R o1 — 2y o T 2 222 T 2 dz
/;oo QWM p{ 2(1_p2)( i P i ~2 2) 2
! (Zgz B pzzgi) /Zyj { 1 ( )2}d
= ————— .exp{ ——t—— expld oL (s pan .
RV BTV R VAN BT R
2
= L Py 5% exp{d —= [ 2% d
2Wﬂ p{ 2 Zz} —00 P 2( 1_p2> 2

Set w = <M> then
1—p2

and consequentely

It now follows that

0®,, <ac1>xy 0%, 0%, )

0z, 02p, 0z, o 024,
= (vec(E1A,),vec (ExA,), -+ ,vec(Er_1A,)) (11.47)
where
/ 1 _ _ - 1/
A, = diag (¢ (z,)) - @ <(Z"’ LE2) 1 ple. @ )) (11.48)
—p

andE;: (/—1xI—-1), i={1---1—1} is a matrix such that

El],, =1 if i=r=s
[E;]., = 0 elsewhere. (11.49)

rSs
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0

02y,

Zg, — P2y,
F@Mm=w%w(——ij
and therefore it follows that

0®,, 0Py 0%,y 0Py
0z, Dzyy 0z, 0z, ,
= (vec (A Eq),vec (A Es), -+, vec(AE;_1))

where

%@MJ—M%®hﬂ>.
A, = - dia, z

andE;: (J—1xJ—-1), j={1,---,J — 1} is a matrix such that

E;] = 1if j=v=w

[E;]., = 0 elsewhere.

or (zxi, zyj)

1

dp
3 /Zyj /Zz ; cexpl ————— [2’2 — 2pz129 + 22} dz1dz
ap —o00 J —00 277'\/1—,02 2<1_p2) ! ! 2 !

145

(11.50)

(11.51)

(11.52)

R A 1 1, 2}
= — ——————=p - eXPR ——— |2] — 2p2120 + 25| p dz1d2ze +
/—oo /—oo 80{271'1/1_,02} p{ 2(1_p2>[1 pPr1%2 2} 1029

0

Zy]' Zx; 1 1 ) )
oI =2 Op 5 1A 2 dzyd
/—oo /—oo 2my/1 — p? dp exp{ 2(1— p?) [21 pz172 + 22]} z1dzs

p [ [ 1 1
e — .eX e —
1_p2/—oo/;00277'\/1—p2 p{ 2(1—,02)[
1

A . 2 2}
————=&XP|{ —5 7 o X1 2Pzt 2 )
/oo/oo QWM p{ 2(1—[)2)[1 pz1z2 2}
0 1

3 [~ 2 ] f

g

2 — 2pz12 + 73] } dzidze +
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Simplification of the derivative above leads to

0 1
37 (5t )
Z1%22 p
B T A
p (1= p?) + 207 p
= — 222%—1— 2 2122—72223
(1=p?) (1—p?) (1=p?)
and therefore
OF ('Zl’wzyj) P 5 P =
8—p = 1_p2\11(z$i,zyj,0,0;p)—mq/(zxi,zyj,Q,O;p)—l—
1+p° = P =
——— VU (23,24, 1, 1;p) = ——=V (24,,24,,0,2; p)(11.53
(1 . p2)2 ( i) Y5 p) (1 . 02)2 ( Yj p)( )
where
T . SCH 1 kI 1 2 2
\Il (in, Zij k, l, p) — . . m Zl Z2 eXp _2(1—_p2) [Zl - 2[)21»22 ‘I— 22i| ledZQ

(11.54)
Define the integral

\TJO (z N l'p) = /zyj /ZI ; 2kl exp (—; [z2 — 2pz129 + zQ]) dz1dzs
o o Jo 2#@\1/2 2(1—p2) 2
(11.55)
where integration takes place from the origin. Depending on the specific location of (in, zyj),

U (2a,, 2y, k. 15 p) (11.54) can be expressed in terms of 0, (22, 2y, k. 1; p) (11.55) as follows:
Quadrant 1: (z,, <0, z, <0)

v (in, 2y, K, l;p) = \Tlo(oo, 00, k, 15 p) — \T/g(—zxi, 00, k,l; p) —
@0(00, —Zy]., k7 lv p) + EI0<_Z:Ifi7 _Zij k? l7 10)
(11.56)

Quadrant 2: (z,, <0, 2, >0)

{I; (ina Zyja ka la p) - :I}O<OO> 0, k? la /0) - \AI}O(_ZIN 0, k? l? p) +
(_1)k {\1}0(007 “yjs k7 l’ _IO) - (_1)k EJO(_ZIN Ryss k: lv _p)
(11.57)
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Quadrant 3: (z,, >0, 2z, <0)

(I; (fowzijkal;p) = (IVIU(Oov 00, k;l7p> + (_1)l (I;O(Zﬂﬁw o0, k,l; _10) -

W (00, —2y,, ki 15 p) — (—1) Wo(20,, —24,5 Ky [; —p)
(11.58)

Quadrant 4: (z,, >0, z, >0)

i} (Za:m Zyj7 k? la 10) - \’170(007 Q3 Py k7 l) + (_]—)l E’O(zmia o0, —p, ka l) +
(_1)k (Iv]0<oov Zij k, l; _P) + CI}O(’ZQL'H Zij /f, l; p)
(11.59)

The integral \Tlo(zxi, 2y, k,[; p) is expressed as a series of gamma functions in Algorithm 2.

Algorithm 2

2y, 2z, 1 1
\IJO (’ZIN Zyj7 k7 l, p) = ; /0 m ZfZé exp (—m [Z% — 2p212’2 + Z%]) ledZQ
ktltl oo i . .
_ 2 - 5 (20)' [ (itk 1\ (il
im £\l 2 2

2 itk Z i+l
'G(Q(l—pQ)’ 2 )'G 2(1-p%) 2 (11.60)

x
where G (; k) = / ﬁt’“le*tdt is the gamma distribution with shape parameter k.
0

Proof. Since

i
) 212
PL122 - Zi:o (/i:pg)
exp ( = il

it follows that

_ Zy; Zz; 1 1
\IIO (in, 2y k7 l, p) = / e Z]fZé exp (_2(1——p2) [Z% - 2,02122 + Zg}) ledZQ

. - exp —72% Pl P " exp —723 2 d
0 2(1—-p7)) " 7 2(1—p7)) 2 7
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See (11.43).
. From (11.30) it follows that

0 {Sin <7r

I 5 (Vi +V))

@
om

cos (5 [(vi 4+ i) = (vp+vi) €' - (

148
from (10.12) it follows that
EjO (Zmiazy'7k7l;p) = f: ! ( P )l
! — 2mily/1—p2 \1—p?
k-1 ki1 (i k41 2 i+k+1
2 1-p%) 7 121 - 2
S () e )
it e (441 Z i+l
277 (1-p°)7 T (——— 2
- (s )G<urwa’ 2 )
oo i": (20)' (it k1 (it
N A ~\ i 2 2
of . itkt1y Zy i+l+1
2(1—p2) 2 2(1—p%)’ 2
u
. Since z, = Xa, and o, = (X'X) ' X'® ! (7r,) it follows that
0z, 0z, Oa, Om,
or  da, Omw, Ox
- Py D, L (11.61)
See (11.38).
. Similarly as in 4 above, z, = Yo, and o, = (YY) Y'®! (r,) and therefore
Oz, _ Oz, OJoy Om,
o oay Om, Om
= Py D, I, (11.62)

—(

vh+v4)] C

™))

v+l - (v + vl C)

-1

N |
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11.5 Iterative procedure
A very short outline of the iterative procedure is as follows and will be discussed briefly.

p! = observed cumulative relative frequencies

p=p'
DO OVER 7
T=p

Calculate V = Cov ()
Calculate z, , z, » and p, from .
Calculate G (as a function of )
p =p
DO OVER p
Calculate z, ,, z, , and p, from p.

Calculate Gy, (as a function of p)

® (2, ,) P.
g(p) = P (z, ,) - | p,
vec (<I> (in;m Zy p pp)) Py
P=p—(G:V) (G:VG,) g (p)
END
END

The procedure starts off with the unrestricted vector of cumulative relative frequencies. Convergence
is first obtained over p utilizing

where the vectors of standardised upper class boundaries are calculated from

Zy p= Px® ' (p,) and Zy p= Py®! (py) (11.64)
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projecting @ (p,) and ® ! (p,) into the respective vector spaces of X and Y. These standardised
upper class boundaries divide the cells of the contingency table into 4 so-called quadrants leading
to an estimate for

p, = sin (g (V] +Vv)) — (v + v3)] C’lp) : (11.65)
Care should be taken to the cells belonging to more than one quadrant, since allocation of the
relative frequencies p should be done proportionately to the bivariate distribution, thus depending
on the value of p,. The calculation of p, will therefore be done iteratively, starting at a value say,
p = 0, untill iteration over (11.65) leads to a unique estimate for p,. (Explained in detail in the
next chapter.) The vector of constraints g(p) and the matrix of partial derivatives G,, are now all

functions of p and convergence over p ultimately leads to a new value for 7.

For convergence over 7 the covariance matrix V and the matrix of partial derivatives G, are all
functions of 7. Convergence over 7 leads to the restricted ML estimate of 7, i.e. 7, that satisfies
all the properties of the bivariate normal distribution.

11.6 ML estimates

The ML estimates of the bivariate normal distribution can be obtained from the restricted ML

estimate 7, discussed in the previous section. In matrix notation 7 can be represented as

%11 %12 e %I,J—l %L]
%21 %22 e %2,;771 %2(]
= (11.66)
/7%171,1 %171,2 s /7%171”171 %Ifl,J
%Il %12 e %I,J—l /77\-IJ

where 7;; corresponds to the restricted ML estimate of the cumulative relative frequency for the
i-th row and the j-th column of the two-way contingency table. The asymptotic covariance matrix
of 7 is

Cov () ® V- (G,V) (G,VG.)" (G, V) .
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The ML estimates of the vectors of natural parameters are functions of the restricted ML estimate

7 with .
~ Qg1 G NV Ll g -1 (o
o, = | = = (X'X) X'® " (7,)
Q2 =
Og
and )
Qy1 G, _
~ Y o y o / I~xrrad—1 /2
G- = 7 -ntyet @y
Qy2 =
Oy
where
g
~ Tag ~ PN - !
Ty = . and 7"y:<7Tfl Trg - 7TI,J—1) .
Tr—-1,J

See the last column and row of II (11.66).

The corresponding covariance matrices are

/

Cov (6,) = {(X’X)‘1 X’DIII} Cov (7) {(X’X)‘1 X’Dxlw}

Cov (&) = {(Y’Y)‘1 Y’Dny} Cov (%) {(Y’Y)‘1 Y’Dny}/

where .

D, = (diag [¢ (®7(m,)]) ", D, = (diag |6 (27'(m,))])

and
B o, B %

I = = .
oo Y o

(11.67)

(11.68)

(11.69)

(11.70)

(11.71)
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11.6.2 ML estimates of the original parameters

The ML estimates of the original parameters namely s, p,, 0., 0, and p with their standard errors
are all functions of the restricted ML estimate 7 and will be discussed briefly. The ML estimates for
the p's and ¢'s follow from (11.67) and (11.68) and according to the multivariate delta theorem

B, =" =x||"].B.Cov(a)B. (11.72)
O fo
and
2 'ay ~ Hy ~ /
B, = ~N ,B, Cov (a) B, | - (11.73)
ay Oy

The matrices of derivatives in (11.72) and (11.73) are

__ Qg2
B:r — aﬂx — 04?51 o751
8ax _aé 0

xl

and
_ Qw2 1
B, = a’By 0‘51 Ayl
y = =

Oax, = 0

ayl

The only parameter that remains is p and is estimated from
% = sin (g [(\TO\M +\70\L4> . (\TO\L2+\TO\L3>D
— sin (g (V] 4+ V) — (V) + V)] C*lﬁ) . (11.74)
In (11.74) the restricted ML estimates of the relative frequencies of the 4 quadrants are simply
added to obtain the ML estimates for the 4 so-called volumes. For the cells belonging to more
than one quadrant, the relative frequencies are added proportionately to the fitted bivariate normal

distribution. This requires that p is to be solved iteratively over (11.74) beginning at any starting
point, say p = 0 untill convergence leads to the unique ML estimate for p. The variance of p follows

vor(o) = (S—Q) v (%)l (11.75)
where
56 —cos (F10v1 i) = (v + v € 'p) - (i vi) = (3]0 )
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11.7 Goodness of fit

Since the vector of constraints in

8uy ()

consists out of (I — 1)+ (J —1) + (I —2)(J — 2) linear independent constraints, the degrees of
freedom for the Pearson ? statistic

1 J
X2 = ZZ@J%—;J (11.76)

and the Wald statistic
W =g(p)(G,VG,)"g(p)

df=1J—T—J+2. (11.77)

In (11.76) p;j fori =1,2,--- T and j =1,2,---,J is the observed cumulative relative frequency
in the (7, j)-th cell (see (9.11)) and in matrix notation the observed cumulative relative frequencies

may be represented as

P11 pi2 - Prj-1 P1y
P21 P22 - P21 P2y
P = : : . : : . (11.78)
Pr-11 Pr-i12 - Pi-1,J-1 Pi-1,J
pbnn P2 - DPrj-1 PrJ

The elements of P are also referred to as the unrestricted ML estimates of 7r. The elements of II
in (11.66) are the restricted ML estimates of 7 obtained from the ML estimation procedure and

satisfies the properties of the bivariate normal distribution.
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Chapter 12
Application

The association between Grade 12 Mathematics (MATHS) and first year Statistics (STATS) is
investigated. First year students who had Mathematics on HG and who were enrolled for Statistics
for the first time in 2004 were included in the sample. The results are shown in Table 12.1.

Table 12.1: Two-way contingency table of 746 first year students, row percentages in brackets.

MATHS STATS (y)

() 0-49 50-59 60-74 | 75100 | Total
0-59 106 90 35 5 236
(44.92%) | (38.14%) | (14.83%) | (2.12%)

60-69 57 73 59 22 211
(27.01%) | (34.60%) | (27.96%) | (10.43%)

70-79 15 40 57 27 139
(10.79%) | (28.78%) | (41.01%) | (19.42%)

80-100 2 14 45 99 160
(1.25%) | (8.75%) | (28.13%) | (61.88%)

Total 180 217 196 153 746

(24.13%) | (29.09%) | (26.27%) | (20.51%) || (100%)

154
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The row percentages in Table 12.1 reveal a definite interaction structure between MATHS and
STATS. Low MATHS marks correspond with low STATS marks and vice versa, identifying a positive
correlation between the two variables. The Pearson x? test of independence, x? = 326

(df =9, p value<0.001), shows a very strong association between the two variables.

Traditionally researchers might have been tempted to use the class midpoint as an estimate for the

values within a particular class interval. By using this approach the sample correlation coefficient is
r = 0.5495 (12.1)

with an estimated regression line of
y=25.8+0.5187z . (12.2)

Since we are dealing with a bivariate grouped data set, the basic assumptions for applying these
statistical techniques are not met and the results obtained in (12.1) and (12.2) might be incorrect.

In this chapter a bivariate normal distribution will be fitted to the data in Table 12.1. It is justified to
assume that MATHS (x) and STATS (y) are jointly normally distributed and therefore the estimation
of the correlation structure between these two variables may be done more effectively by fitting a
bivariate normal distribution. By doing this, the complete underlying bivariate continuous structure

between the two variables will be taken into account.

12.1 ML estimation procedure

The vectors of upper class boundaries are

59.5 49.5
x=1| 69.5 and y=| 595 (12.3)
79.5 74.5

respectively.
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The projection matrix for

59.5 —1
X=(x -1)=] 695 1
795 —1

0.83333 0.33333 —0.16667
Px = 0.33333  0.33333 0.33333 (12.4)
—0.16667 0.33333 0.83333

and the projection matrix for

495 —1
Yz(y —1)= 59.5 —1
745 —1

0.76316 0.39474 —0.15789
Py =] 0.39474 0.34211 026316 | . (12.5)
—0.15789 0.26316 0.89474

These two projection matrices play a major role in the estimation of the bivariate normal distribution,
since the standardised upper class boundaries are estimated such that z, is in the vector space

generated by X and z, is in the vector space generated by Y.

A step by step explanation of the results during the iterative procedure will be presented to give
more insight into the ML estimation procedure.

e Firstly, the estimates for the unrestricted ML estimate p will be given. The vector p is the
observed vector of cumulative relative frequencies and is used as the starting point for the
iterative ML estimation procedure.

e Secondly the estimates for the restricted ML estimate 7t will be given. The estimates obtained
from 7t are the ML estimates for the bivariate normal distribution. This follows since the vector
7 is the ML estimate of 7 under the constraints (11.31), obtained iteratively from the ML

estimation procedure.
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12.1.1 Unrestricted estimates
The observed frequencies are elements of
106 90 35 5
57 73 59 22
F= (12.6)
15 40 57 27
2 14 45 99

and the matrix with unrestricted (observed) cumulative relative frequencies is

0.14209 0.26273 0.30965 0.31635
0.21850 0.43700 0.56300 0.59920

P= . (12.7)
0.23861 0.51072 0.71314 0.78552

0.24129 0.53217 0.79491 1.00000

Marginal distribution of MATHS

The unrestricted estimates for the marginal distribution of MATHS are tabulated in Table 12.2 and
will be discussed briefly.

Table 12.2: Unrestricted estimates obtained from the marginal distribution of x.

0.31635 —0.44634
0.06345

0.59920 66.535079 | 15.76167 0.18811
4.22132

0.78552 0.82256

Note: The elements of p, are elements contained in the last column of P (12.7).

Since the marginal distribution for MATHS has to follow a normal distribution, the vector of stan-
dardised upper class boundaries for x follows by projecting ! (p,.) into the vector space of X

Z, = Px® ' (p,) (12.8)



ﬂ UNIVERSITEIT VAN PRETORIA
A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

158
and is employed in the vector of constraints
In SAS IML: | ® (2,) = PROBNORM(z,)
The unrestricted estimate for the vector of natural parameters
1
&, = g — (X'X)"' X'®! (p,) (12.10)
Te

leads to the unrestricted estimates for 7i, and 7, indicating that the average mark for MATHS is
66.5 with a standard deviation of 15.8.

Marginal distribution of STATS

The unrestricted estimates for the marginal distribution of STATS are tabulated in Table 12.3.

Table 12.3: Unrestricted estimates obtained from the marginal distribution of y.

Py Oy My Oy Zy
0.24129 —0.63404
0.06021
0.53217 60.04601 | 16.63317 —0.03283
3.61002
0.79491 0.86899

Note: The elements of p, are elements contained in the last row of P (12.7).

Following the same rationale for the standardised upper class boundaries for y, the vector of stan-
dardised upper class boundaries
z,=P,® ' (7,) (12.11)

is employed in the vector of constraints

gy(ﬂ) =@ (Zy) -7, =0. (12.12)
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At this initial step of the iterative procedure it follows from Table 12.3 that the average mark for
STATS is 60.5, with a standard deviation of 16.6.

Joint distribution of MATHS and STATS

From the estimates of the standardised upper class boundaries (see Table 12.2 and Table 12.3) it
follows that the origin (Z;,%,) = (0,0) is located in the second class interval for MATHS and the
third class interval for STATS. In Figure 12.1 a contour diagram of the bivariate normal distribution

with the four quadrants and the standardised upper class boundaries is shown.

15
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Figure 12.1: Contour diagram of the bivariate normal distribution with the four quadrants and

the standardised upper class boundaries.
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(12.13)

The volumes are estimated by the total of the observed relative frequencies located in each of the

four quadrants. In matrix notation the observed relative frequencies are

0.14209 0.12064
1 0.07641 0.09786

746 0.02011 0.05362
0.00268 0.01877

0.04692 0.00670
0.07909 0.02949
0.07641 0.03619
0.06032 0.13271

(12.14)

For those cells situated in only one quadrant, the relative frequencies can simply be added, but for

cells situated in more than one quadrant, allocation has to be done proportionately to the bivariate

normal distribution, thus depending on the value of p. Since p is to be estimated, the value of p

is obtained iteratively over (12.13), starting at any value between -1 and 1. In Table 12.4 various

starting points for p were being used, all leading to the same unique unrestricted estimate for p.

(Convergence criterion = 1e-10.)

Table 12.4: Unrestricted estimate for p obtained iteratively

Starting point | Starting point | Starting point
5=-05 =0 =05

1. 0.6128852 | 1. 0.6383751 | 1. 0.6616935
2. 0.6708946 | 2. 0.6735298 | 2. 0.6761977
3. 0.6773286 | 3. 0.6776614 | 3. 0.6780025
4. 0.6781484 | 4. 0.6781915 | 4. 0.6782358
5. 0.6782547 | 5. 0.6782603 | 5. 0.6782661
6. 0.6782685 | 6. 0.6782692 | 6. 0.6782700
7. 0.6782703 | 7. 0.6782704 | 7. 0.6782705
8. 0.6782705 | 8. 0.6782706 | 8. 0.6782706
9. 0.6782706 | 9. 0.6782706 | 9. 0.6782706
10. 0.6782706 | 10. 0.6782706 | 10. 0.6782706
11. 0.6782706 | 18. 0.6782706 | 11. 0.6782706
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Evaluating the estimates for the 4 volumes of the bivariate normal distribution in Table 12.5, it is
clear that the property of symmetry has not been met and p is now estimated from the observed
frequencies (unrestricted ML estimate for ).

Table 12.5: Unrestricted estimates for the volumes of the four quadrants

Quadrant Unrestricted estimates for VOL
Q1:2, < 0,2, <0 VOL1 = 0.3979789
Qi 20 < 0,2, >0 VOL2 = 0.1177174
Qs : 2, > 0,2, <0 VOL3 = 0.1450123
Qu:zp>0,2, >0 VOL4 = 0.3392913

From Table 12.5 it follows that

5 = sin (g [(0.3979780 + 0.3392013) — (0.1177174 + 0.1450123)])
— sin (g [0.737 27 — 0.262 73])
— sin (g [0.474 54])
— 0.67827 (12.15)

indicating a positive relationship between MATHS and STATS.

This estimate for p is now being used in the vector of constraints g,,(m) = 0 where

8uy(m) = ®uy — Puy
0.14209 0.26273 0.30965
= ®((2,®14),(14®%,),p) —vec | 0.21850 0.43700 0.56300
0.23861 0.51072 0.71314

In SAS IML: |® (z,, z,, p) = PROBBNRM(z,, 2, p)
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12.1.2 ML estimates

After convergence of the ML estimation procedure the restricted ML estimate for 7 in matrix

notation is
0.17170 0.25637 0.31180 0.31869
~ 0.22874 0.38802 0.53638 0.56766
II= (12.16)
0.25077 0.45896 0.70922 0.79166

0.25569 0.48298 0.81013 1.00000

and possesses all the properties of the bivariate normal distribution. The matrix of expected fre-

quencies is

128.0903 63.1637 41.3464 5.1455
42.5489  55.6571 69.3300 18.1950

M = (12.17)
16.4324 36.4943 76.0140 38.1641
3.6702 14.2495 57.3636 80.1349

and according to the Pearson and Wald statistics tabulated in Table 12.6, the bivariate normal

distribution did not provide an extremely good fit.

Table 12.6: Goodness of fit statistics

Statistic | Value | df | p-value
Pearson | 45.191 | 10 | 2.0089E-6
Wald | 44.994 | 10 | 2.1799E-6

However, taking into account the rather large sample size, the measure of discrepancy

W 44.994
D— 220 12.1
T (12.18)

is only just higher than the cut off value of 0.05, suggesting that the fit is not too poor. This is
further motivated by comparing the observed frequencies in F (12.6) with the expected frequencies
in M (12.17).
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Marginal distribution of MATHS

The ML estimates obtained from the marginal distribution of x are tabulated in Table 12.7.

Table 12.7: ML estimates for the marginal distribution of x.

7, &, i 5, %

0.31869 —0.47135
0.06418

0.56766 66.84445 | 15.58162 0.17043
4.28995

0.79166 0.81221

Note: The elements of 7, are elements contained in the last column row of II (12.16).

The marginal cumulative relative frequencies 7, follow a cumulative normal distribution at the upper

class boundaries x and therefore

—0.47135 0.31869
$,=®Z,)=®| 017043 | =| 056766 | =7, . (12.19)
0.81221 0.79166

The estimated standard errors for 71, and 7, are
G5 = 0.62047 and G5, = 0.67075 (12.20)
and therefore a 95% confidence interval for p, is

(65.628,68.061) .
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Marginal distribution of STATS

The ML estimates obtained from the marginal distribution of y are tabulated in Table 12.8.

Table 12.8: ML estimates for the marginal distribution of y.

Ty Qry Hy Ty Zy
0.25569 —0.65670
0.06140
0.48298 60.19482 | 16.28563 —0.04266
3.69619
0.81013 0.87839

Note: The elements of 7, are elements contained in the last row of II (12.16).

Similarly to the marginal distribution of x, it follows that the marginal cumulative relative frequencies
7, follow a cumulative normal distribution at the upper class boundaries of y

—0.65670 0.25569
®,=®(z,)=®| —004266 | = | 048208 | =7, . (12.21)
0.87839 0.81013

The estimated standard errors for i, and 7, are
G5 =0.63040 and G5, = 0.64606 . (12.22)

and may be used for inferential purposes.
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The joint cumulative relative frequencies at the intersections of the standardised upper class bound-

aries are equal to the probabilities of the bivariate normal distribution i.e.

0.17170 0.25637 0.31180

~

®,, = vec (® (Z,,2),)) = vec

0.22874 0.38802 0.53638

= Tay -

0.25077 0.45896 0.70922

Note: The elements of 7, are the first (1 — 1) (J —

1) elements contained in II (12.16).

The ML estimate for p is estimated by adding the appropriate relative frequencies under constraints

0.17170 0.08467
1 0.05704 0.07461
746 0.02203 0.04892
0.00492 0.01910

(see (12.17)).
Table 12.9.

The symmetrical nature of the fitted

0.05542
0.09294
0.10190
0.07690

0.00690
0.02439
0.05116
0.10742

(12.23)

bivariate normal distribution is portrayed by

Table 12.9: ML estimates for the volumes of the four quadrants

Quadrant ML estimates for VOL
Qr:2 <0, z,<0| VOLIL= 0366415
Q2:2,<0, z,>0| VOL2=0.133585
Q3:2,>0, z,<0| VOL3=0.133585
Qs:2 >0, 2,>0| VOL4 = 0366415




The ML estimate for p is

with a standard error of

Since
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sn1<g[2(0366415)——2(0133585ﬂ)
shl<g[073283——02671ﬂ)

sm(gmA&mq)
0.667 95

55 = 0.0303 .

t= =22
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(12.24)

(12.25)

(12.26)

the null hypothesis of Hy : p = 0 is rejected, indicating a significant association between MATHS

and STATS.

The estimated regression line of STATS (y)on MATHS (z) is

where

is the intercept and

yylx = ay|x + 6y|x$

. ~ Oy \ ~
Qyla = My = | P=" | Ha
Oz

= 12.528
~ R 8y
53;\3: = a-\_;z:
= 0.6981

is the slope, yielding the regression equation

/y\y|z =13.5+0.70x .

(12.27)

According to this regression line it is clear that for every increase of 1% in MATHS, the STATS
mark increases with 0.7%. The estimated correlation coefficient and regression equation for the
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fitted bivariate normal distribution, differ substantially from that where the class midpoint values
were used as an estimate for the values within a class interval emphasizing the importance of the
technique. Compare with (12.1) and (12.2).

All the results for this application were obtained from the SAS program BVN.SAS listed in Appendix
C3.



Chapter 13

<

Simulation study

The purpose of this sumulation study is to prove that a bivariate normal distribution can be fitted
accurately to a two-way contingency table by employing the ML estimation procedure presented in
Part Il of this thesis. A total of 1000 samples were simulated from a bivariate normal distribution

such that

Each of the data sets consisted of 1000 observations and the descriptive statistics for the sample
statistics are listed in Table 13.1. From Table 13.1 it can be concluded that the sample statistics of
the simulated data sets correspond very well to the theoretical values.

UNIVERSITEIT VAN PRETORIA
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(z,y) ~ BVN (11,48,3% 8%, -0.7) .

Table 13.1: Descriptive statistics for the sample statistics.

Stat Mean | Std.dev Pos Median Pys
T 11.008 | 0.0957 10.849 11.008 11.157
S 2.9972 | 0.0655 2.887 2.998 3.110
Y 47.978 | 0.2620 47.550 47.970 48.403
Sy 7.9952 | 0.1765 7.703 7.994 8.291
r —0.6999 | 0.0163 || —0.7273 | —0.7000 | —0.6734

The next step will be to cross tabulate each of the bivariate data sets into a two-way contingency

table and to fit a bivariate normal distribution to each of the 1000 bivariate grouped data sets. This
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simulation study was done with of the SAS program BVINSIM.SAS listed in the Appendix C4.

13.1 Theoretical distribution

The simulated data sets were all categorised in a two-way contingency table, with the following

upper class boundaries

8 45
x= 1|10 and y =150
12 55

The first and last class intervals, for both variables were treated as open ended class intervals and
the frequency distribution for the theoretical distribution is given in Table 13.2.

Table 13.2: Theoretical frequency distribution for BVN (11,48, 3% 8% —0.7) distribution.

X Y
(—00,45) [45,50) [50,55) [55,00) | Total
(—00,8) | 4.722 18436 41.402  94.095 | 158.655
[8,10) | 27.011  55.569 69.373 58.832 | 210.786
[10,12) | 79.095  86.607 65.581 29.834 | 261.117
[12,00) | 243.002  84.264 34.150 8.026 | 369.441
Total |353.830  244.876 210.507 190.787 | 1000

The cumulative relative frequencies for the theoretical distribution, expressed in terms of matrix

notation, is
0.00472 0.02316 0.06456 0.15866

0.03173 0.10574 0.21651 0.36944
I = . (13.1)
0.11083 0.27144 0.44780 0.63056

0.35383 0.59871 0.80921 1.00000
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The ML estimators of the 5 parameters of the bivariate normal distribution are all asymptotically
normally distributed with standard errors functions of (13.1). The standard errors and percentiles
of the ML estimators are listed in Table 13.3.

Table 13.3: Theoretical values for the ML estimators of the bivariate normal distribution.

ML estimate | Standard error Margin of error Percentiles
Pos Median Pys
1L, op, = 0.1054 | 1.64505, = 0.1733 | 10.827 11 11.173
Oy 05, = 0.1123 | 1.64505, = 0.18466 | 2.8153 3 3.1733
Ty o5, = 0.2788 | 1.64507; = 0.45854 | 47.541 48 48.459
Oy oz, = 0.3065 | 1.64505, = 0.50415 | 7.4958 8 8.1733
P o; = 0.021085 | 1.6450; = 0.03468 | —0.7347 | —0.7 | —0.6653

summarised in Table 13.4.

The descriptive statistics for the ML estimates of the 1000 fitted bivariate normal distributions are

Table 13.4: Simulation results of 1000 fitted bivariate normal distributions.

MLE || Theoretical Value Mean | Std.dev Pos Median Py
1L, 11 11.010 | 0.1042 || 10.842 11.008 11.178
on, 0.1054 0.1055 | 0.0045 || 0.0980 | 0.1055 | 0.1130
Oy 3 3.0007 | 0.1166 || 2.8063 | 3.0006 | 3.1978
O, 0.1123 0.1125 | 0.0066 || 0.1017 | 0.1124 | 0.1238
Ty 48 47973 | 0.2829 || 47.503 | 47.971 48.426
o, 0.2788 0.2788 | 0.0121 || 0.2590 | 0.2785 | 0.2996
Oy 8 7.9938 | 0.3203 || 7.4700 | 7.9914 | 8.5373
05, 0.3065 0.3066 | 0.0187 || 0.2763 | 0.3062 | 0.3387
1) -0.7 —0.7006 | 0.0243 || —0.7421 | —0.7002 | —0.6604
05 0.021085 0.0211 | 0.0013 || 0.0189 | 0.0211 0.0231
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It is evident from Table 13.4, that the mean for all the ML estimates are remarkably close to the
theoretical values. It is also interesting to note that the standard deviation of the 5 ML estimates
Hy» Oz, I1,, 0y and p are very close to the mean of its standard errors. E.g. the standard deviation
of the i -values is 0.1042 and the mean of the 75 -values is 0.1055. The percentiles of the ML
estimates in the simulation study (see Table 13.4) correspond extremely well to that of the theoretical
distribution given in Table 13.3.

A comparison between the descriptive statistics of the sample statistics of the ungrouped bivariate
data sets in Table 13.1 with that of the descriptive statistics of the ML estimates of the grouped
data sets tabulated in Table 13.4 shows are very close to each other. This motivates that not too

much accuracy is being lost with a grouped data set, when analysed correctly.

The Wald and Pearson goodness of fit statistics were calculated for each of the 1000 estimated
bivariate normal distributions. The percentiles of these two statistics are tabulated in Table 13.5
and agrees with a y2-distribution with 10 degrees of freedom.

Table 13.5: Percentiles of the Pearson and Wald statistic.

Percentiles
b5 Py Pos Pso Prs Fyo Pos
Pearson || 3.8374 | 4.8481 | 7.1377 | 9.8363 | 13.3152 | 16.7631 | 18.9273
Wald 4.0572 | 5.2029 | 7.6182 | 10.6859 | 14.6539 | 19.3063 | 23.5933

Percentiles of a x2-distribution with 10 degrees of freedom.

2 2 2 2 2 2 2
X0.05 X0.10 X0.25 X0.50 X0.75 X0.90 X0.95

X% (10) || 3.9403 | 4.8652 | 6.7372 | 9.3418 | 12.5489 | 15.9872 | 18.3070

It can therefore be concluded that the empirical and theoretical distributions of the Pearson and
Wald statistics correspond to each other.
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Chapter 14
Résumeé

The main objective of this research is to provide a theoretical foundation for analysing grouped data,
taking the underlying continuous nature of the variable(s) into account. Statistical techniques have
been developed and applied extensively for continuous data, but the analysis for grouped data has
been somewhat neglected. This creates numerous problems especially in the social and economic
disciplines, where variables are grouped for various reasons. Due to a lack for the appropriate sta-
tistical techniques to evaluate grouped data, researchers are often tempted to ignore the underlying
continuous nature of the data and employ e.g. the class midpoint values as an alternative. This

leads to an oversimplification of the problem and valuable information in the data is being ignored.

The first part of the thesis demonstrates how to fit a continuous distribution to a grouped data
set. By implementing the ML estimation procedure of Matthews and Crowther (1995: A maximum
likelihood estimation procedure when modelling in terms of constraints. South African Statistical
Journal, 29, 29-51) the ML estimates of the parameters are obtained. The standard errors of the
ML estimates are derived from the multivariate delta theorem. It is interesting to note that not
much accuracy has been lost by grouping the data, justifying that statistical inference may be done
effectively from a grouped data set. The main concern of this part of the thesis was to foster the
basic principles. The examples and distributions discussed are merely used to illustrate and explain
the philosophy from basic principles. The fit of various other continuous distributions, not mentioned
in the thesis, such as the gamma distribution and the lognormal distribution can also be done using
the same approach.
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The second part of the thesis concentrates on the analysis of generalised linear models where the
response variable is presented in grouped format. A cross classification of the independent variables
leads to various so-called cells, each containing a frequency distribution of the response variable.
Due to the nature of the response variable the usual analysis of variance and covariance models
etc. can no longer be applied in the usual sense. A completely new approach, where a specified
underlying continuous distribution for the grouped variable is fitted to each cell in the multifactor
design is introduced. Certain measures such as the average, median or even any other percentile
of the fitted distributions are modelled to explain the influence of the independent variables on the
response variable. This evaluation may be done by means of a saturated model where no additional
constraints are employed in the ML estimation procedure or by means of any other model where
certain structures with regard to the independent variables are incorporated. The main objective is
ultimately to provide a satisfactory model that describes the data as effectively as possible, revealing
the various trends in the data. Employing the multivariate delta theorem, the standard errors for
the ML estimates are calculated, enabling testing of relevant hypotheses. The goodness of fit of the

model is evaluated with the Pearson and Wald statistics.

Two applications of multi-factor models are presented. In the first application normal distributions
are fitted to the cells in a single factor design. The behavior of the mean of the fitted normal
distributions revealed the effect of the single independent variable. Various models are employed to
explain the versatility of the technique. Apart from the single factor model a two factor model was
employed for data from short term insurance. The positive skewness of the grouped response variable
suggested that a log-logistic distribution is to be fitted to the data. The median of the log-logistic
distributions was modelled in a two factor model to explain the effect of the independent variable
on the response variable. It is also illustrated how to incorporate a grouped independent variable
as a covariate or regressor in the model. In the past where researchers might have been restricted
to tabulations and graphical representations it is now shown that the possibilities of modelling a
grouped response variable in a generalised model are in principle unlimited. The application of a
three factor model or any higher order model follows similarly. A typical example pursue from the
population census data where the grouped variable income can be explained utilising independent
variables such as gender, province, population group, age, education level, occupation, etc.

A final intriguing contribution, given in the third part, is the fit of a bivariate normal distribution to
a two-way contingency table. In the case where the underlying distribution of two grouped response
variables are jointly normally distributed it is often required to investigate the association between
two variables. Traditionally, classical measures such as kappa and McNemar were employed, but
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are limited in the sense that the complete bivariate structure between the two variables are not
revealed. Since all five parameters are estimated, statistical inferences are possible with regard to
the marginal as well as the partial distributions. The estimation of the parameter p, the correlation
coefficient, explains the relationship between the two variables. The calculation of p is done by
implementing Sheppard’s theorem on median dichotomy (1898), which is based on the volumes
of the four quadrants of the bivariate normal distribution. It is shown that the calculation of the
correlation coefficient, using the standard regression techniques, could lead to incorrect results due
to the fact that the required conditions are not met. The method proposed is motivated by a
simulation study.

Although various aspects of modelling grouped data are addressed in this thesis, this forms the basic
building blocks for the beginning of a completely new and promising field of research with unlimited
possibilities and exciting applications to be analysed.
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Appendix A

SAS programs: Part |

A.1 EXP1.SAS

proc iml worksize= 60;
£={17,14,31,26,12}; n=f[+];
x={12.5,25,50,100};
c={1 000,
1100,
1110,
1111}
CI=inv(C);
k=nrow(f); kil=k-1;
vi=J(k1,1,1);
Px=x*inv(x‘*x)*x‘;
p=C*f[1:k1]/n;
i=0; pO=p; diffil=1;
do while (diffl > 1e-9);
i=i+1; pi=p; p=p0;
V=(C*diag(CI*pi)*C‘-pi*pi‘)/n;
thetapi=-(x‘*log(vl-pi))/(x‘*x); mupi=1/thetapi;
Dpi=-inv(diag(v1l-pi));
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Gpi=-diag(exp(-thetapix*x))*Px*Dpi - I(k1);

j=0; diff=1;

do while (diff > 1e-9);
j=j*1; pv=p;
thetap=-(x‘*log(vi-p))/(x‘*x); mup=1/thetap;
Dp=-inv(diag(vi-p));
Gp=-diag(exp(-thetap*x))*Px*Dp - I(k1);
g=(vl-exp(-thetap*x))-p;
print i j g pi p thetapi mupi thetap mup;
p=p- (Gpix*V) ‘*ginv (Gp*V*Gpi‘)*g;
diff=sqrt ((p-pv) ‘*(p-pv));

end;

diffil=sqrt ((p-pi) ‘*(p-pi));

end;

A.2 EXP2.SAS

proc iml worksize= 60;

£={17,14,31,26,12}; n=f[+];

x={12.5,25,50,100};

k=nrow(f); kil=k-1;

C=J(k1,1,1)@cusum(J(1,k1,1))<=J(1,k1,1)C@cusum(J(k1,1,1));

CI=inv(C);

p=C*f [1:k1]/n;

vi=J(k1,1,1);

Q=I (k1) -x*inv(x‘*x)*x*;

i=0; pO=p; diffi=1;

do while (diffl > 1le-9);
i=i+1; pi=p; p=p0;
Dpi=inv(diag(pi-v1));
Gpi=Q*Dpi;
V=(Cxdiag(CI*pi)*C‘-pi*pi‘)/n;
j=0; diff=1;
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do while (diff > 1e-9);
j=j*1; pv=p;
Dp=inv(diag(p-v1));
Gp=Q+Dp;
g=Q*log(vi-p);
print i j p pi;
p=p- (Gpix*V) ‘*ginv (Gp*V*Gpi‘)*g;
diff=sqrt ((p-pv) ‘*(p-pv));
if i=1 & j=1 then do;
Wald=g‘*ginv (Gp*V*Gp‘)*g;
GpV=Gp*V;
df=trace (GpV*ginv (GpV ‘*GpV) *GpV ) ;
discr=wald/n;
end;
end;
diffi=sqrt ((p-pi) ‘*(p-pi));
end;
Cov_pi=V-(Gpi*V) ‘*ginv(Gpi*V*Gpi‘)*(Gpi*V);
theta=-(x‘*log(vl-pi))/(x‘*x);
Var_theta=((x‘*Dpi)/(x‘*x))*Cov_pi* ((x‘*Dpi)/(x‘*x))*;
mu=1/theta;
SE_mu=sqrt (Var_theta/(theta**4)) ;

e=(CI*pi*n)//(n-(CI*pi*n) [+]);
Pearson=(((f-e)##2)/e) [+];
P_pvalue=1-probchi(Pearson,df);
W_pvalue=1-probchi(Wald,df) ;

print mu SE_mu Pearson P_pvalue Wald W_pvalue df;
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A.3 EXPSIM.SAS

proc iml;
rep=1000; n=100; thetal0=50;
matrix=J(rep,4,0);
x={12.5,25,50,100};
x1=0//%;
xu=x//250;
mid=(xl+xu)/2;
mlb=J(n,1,1)0x1°¢;
mub=J(n,1,1)0xu‘;
k=nrow(xu); ki=k-1;
C=J(k1,1,1)@cusum(J(1,k1,1))<=J(1,k1,1)C@cusum(J(k1,1,1));
CI=inv(C);
vi=J(k1,1,1);
Q=I (k1) -x*inv(x‘*x)*x*;
do r=1 to rep;
y=thetaO#ranexp(J(n,1,r));
my=y@J(k,1,1) ‘;
t=((my>mlb)=(my<=mub) ) ;
f=t[+,]1°¢;
p=C*f[1:k1]/n;
i=0; pO=p; diffil=1;
do while (diffl > 1e-9);
i=i+1; pi=p; p=pO;
Dpi=inv(diag(pi-v1));
Gpi=Q*Dpi;
V=(Cxdiag(CI*pi)*C‘-pi*pi‘)/n;
j=0; diff=1;
do while (diff > 1e-9);
j=j*1; pv=p;
Dp=inv(diag(p-v1));
Gp=Q+Dp;
g=Q*log(v1i-p);
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p=p- (Gpi*V) ‘*ginv (Gp*V*Gpi‘)*g;
diff=sqrt ((p-pv) ‘*(p-pv));
if i=1 & j=1 then do;
Wald=g‘*ginv (Gp*V*Gp*)*g;
GpV=Gp*V;
df=trace (GpV*ginv (GpV‘*GpV) *GpV ‘) ;
pvalue=1-probchi(Wald,df) ;
discr=wald/n;
end;
end;
diffi=sqrt ((p-pi) ‘*(p-pi));
end;
theta=-(x‘*log(vl-pi))/(x‘*x);
mu=1/theta;
Cov_pi=V-(Gpi*V) ‘*ginv (Gpi*V*Gpi‘)*(Gpi*V);
Var_theta=((x‘*Dpi)/(x‘*x))*Cov_pi*((x‘*Dpi)/(x‘*x))*;
SE_mu=sqrt (Var_theta/(theta**4));
e=(CI*pi*n)//(n-(CI*pi*n) [+]);
Pearson=(((f-e)##2)/e) [+];
matrix[r,1]=mu;
matrix[r,2]=SE_mu;
matrix[r,3]=Pearson;
matrix[r,4]=Wald;
end;
create d from matrix[colname={’mu’ ’SE_mu’ ’Pearson’ ’Wald’}];

append from matrix;

proc means data=d n mean std p5 p50 p95;
var mu SE_mu wald;

run;

proc univariate data=d normal plot;
var Pearson;
output out=pp pctlpts=5 10 25 50 75 90 95 pctlpre=pp;
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run;

proc univariate data=d normal plot;
var Wald;
output out=pw pctlpts=5 10 25 50 75 90 95 pctlpre=pw;

run;

proc print data=pp;
run;
proc print data=pw;

run;

A.4 NORMI1.SAS

proc iml worksize= 60;

£={9,26,24,27,14}; n=f[+];

x={40,50,60,75};

k=nrow(f); kl=k-1;

Cc=J(k1,1,1)Qcusum(J(1,k1,1))<=J(1,k1,1)0@cusum(J(k1,1,1));

CI=inv(C);

vi=J(k1,1,1);

XD=x|J(k1,1,-1);

XXX=inv(XD‘*XD) *XD*¢;

Px=XD*inv (XD‘*XD)*XD* ;

p=C*f [1:k1]/n;

i=0; pO=p; diffi=1;

do while (diff1l > 1e-9);
i=i+1; pi=p; p=p0;
V=(Cxdiag(CI*pi)*C‘-pi*pi‘)/n;
alphapi=XXX*probit (pi);
mupi=alphapi[2]/alphapi[1]; sigmapi=1/alphapil[1];
zpi=XD*alphapi;
Dpi=inv(diag(pdf (’normal’,probit(pi))));
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Gpi=diag(pdf (’normal’,zpi))*Px*Dpi - I(k1);
j=0; diff=1;
do while (diff > 1e-9);
j=j*1; pv=p;
alphap=XXX*probit (p);
mup=alphap[2] /alphap[1]; sigmap=1/alphap[1];
zp=XD*alphap;
Dp=inv(diag(pdf (’normal’,probit(p))));
Gp=diag(pdf (’normal’,zp))*Px*Dp - I(kl);
g=probnorm(zp)-p;
print alphap i j g pilformat=6.4] p[format=6.4] mupi sigmapi mup sigmap;
p=p-(Gpi*V) ‘*ginv (Gp*V*Gpi ‘) *g;
diff=sqrt ((p-pv) ‘*(p-pv));
end;
diffi=sqrt ((p-pi) ‘*(p-pi));

end;

A.5 NORM2.SAS

proc iml worksize= 60;
£={9,26,24,27,14}; n=f[+];
x={40,50,60,75};

n=f [+];

k=nrow(f); kil=k-1;
C=J(k1,1,1)@cusum(J(1,k1,1))<=J(1,k1,1)@cusum(J(k1,1,1));
CI=inv(C);

p=C*f[1:k1]/n;
vi=J(k1,1,1);
XD=x|1J(k1,1,-1);

XXX=inv (XD‘*XD)*XD¢;
Px=XD*inv (XD ‘*XD)*XD*;
Q=I(k1)-Px;
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*x** Theoretical value **x*;
*p=(probnorm((x-58)/15)) ;
*HkK 3
i=0; pO=p; diffil=1;
do while (diffl > 1e-9);
i=i+1; pi=p; p=p0;
Dpi=inv(diag(pdf (*normal’ ,probit(pi))));
Gpi=Q*Dpi;
V=(C*diag(CI*pi)*C‘-pi*pi‘)/n;
j=0; diff=1;
do while (diff > 1e-9);
j=j+1; pv=p;
Dp=inv(diag(pdf (’normal’,probit(p))));
Gp=Q*Dp;
g=Q*probit (p);
p=p- (Gpix*V) ‘*ginv (Gp*V*Gpi‘) *g;
print i j p pi;
diff=sqrt ((p-pv) ‘*(p-pv));
if i=1 & j=1 then do;
Wald=g‘*ginv (Gp*V*Gp*)*g;
GpV=Gp*V;
df=trace (GpV*ginv (GpV‘*GpV) *GpV ‘) ;
discr=wald/n;
end;
end;
diffil=sqrt ((p-pi) ‘*(p-pi));
end;
Cov_pi=V-(Gpi*V) ‘*ginv (Gpi*V*Gpi‘)* (Gpi*V) ;
alpha=XXX*probit (pi);
Cov_alpha=(XXX*Dpi)*Cov_pi* (XXX*Dpi) ‘;
mu=alpha[2]/alpha[1l]; sigma=1/alphal1l];
print mu sigma;

beta=mu//sigma;
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B=J(2,2,0);
B[1,1]=-alpha[2]/((alpha[1])**2);
B[1,2]=1/(alphal1]);
B[2,1]=-1/((alphal[1])**2) ;
Cov_beta=B*Cov_alpha*B*;
SE_beta=sqrt(diag(Cov_beta));

e=(CI*pix*n)//(n-(CI*pi*n) [+]);

Pearson=(((f-e)##2)/e) [+];

P_pvalue=1-probchi(Pearson,df) ;

W_pvalue=1-probchi(Wald,df);

print beta Cov_beta SE_beta, mu sigma, Pearson P_pvalue Wald W_pvalue df;

probitp=probit(p);

Pprobitp=Px*probitp;

Qprobitp=Q*probitp;

print probitp [format=9.7] Pprobitp[format=9.7] Qprobitp[format=9.7];

A.6 NORMSIM.SAS

proc iml worksize= 60;

rep=1000; n=100; mu0=58; sigmalO=15; x={40,50,60,75};
matrix=J(rep,8,0);

kil=nrow(x); k=kl+1;
C=J(k1,1,1)@cusum(J(1,k1,1))<=J(1,k1,1)@cusum(J(k1,1,1));
CI=inv(C);

vi=J(k1,1,1);

XD=x||J(k1,1,-1);

XXX=inv(XD‘*XD)*XD*¢;

Px=XD*inv (XD‘*XD)*XD* ;

Q=I(k1)-Px;

x1=0//x; xu=x//100;

mlb=J(n,1,1)0x1¢; mub=J(n,1,1)0xu‘;
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start data;
sp=mu0*J(n,1,1)+sigmaO*rannor (J(n,1,r));
xbar=sp[+]/n;
xstd=sqrt (sp‘*sp/n-xbar**2) ;
sss=sp@J(1,k,1);
t=(sss>mlb)=(sss<=mub) ;
f=t[+,]1¢;
p=C*f [1:k1]/n;

finish;

start fit;
i=0; pO=p; diffl=1;
do while (diffl > 1e-9);
i=i+1; pi=p; p=pO;
Dpi=inv(diag(pdf (’normal’ ,probit(pi))));
Gpi=Q*Dpi;
V=(Cxdiag(CI*pi)*C‘-pi*pi‘)/n;
j=0; diff=1;
do while (diff > 1e-9);
j=j*1; pv=p;
Dp=inv(diag(pdf (’normal’,probit(p))));
Gp=Q*Dp;
g=Q*probit(p);
p=p-(Gpi*V) ‘*ginv (Gp*V*Gpi ‘) *g;
diff=sqrt ((p-pv) ‘*(p-pv));
if i=1 & j=1 then do;
Wald=g‘*ginv (Gp*xV*Gp ‘) *g;
GpV=Gp*V;
df=trace (GpV*ginv (GpV ‘*GpV) *GpV ‘) ;
discr=wald/n;
end;
end;

diffi=sqrt ((p-pi) ‘*(p-pi));
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end;
Cov_pi=V-(Gpi*V) ‘*ginv (Gpi*V*Gpi‘)*(Gpi*V);
alpha=XXX*probit (pi);
Cov_alpha=(XXX*Dpi)*Cov_pi* (XXX*Dpi) ¢;
mu=alpha[2]/alpha[l]; sigma=1/alphal[1l];
beta=mu//sigma;

B=J(2,2,0);
B[1,1]=-alpha[2]/((alpha[1])**2);
B[1,2]=1/(alphal1]);
B[2,1]1=-1/((alpha[1])**2);
Cov_beta=B*Cov_alpha*B‘;
SE_beta=diag(sqrt(diag(Cov_beta)));

e=(CI*pi*n)//(n-(CI*pi*n) [+]);
Pearson=(((f-e)##2)/e) [+];
P_pvalue=1-probchi(Pearson,df) ;
W_pvalue=1-probchi(Wald,df);

matrix[r,1]=xbar;
matrix[r,2]=xstd;
matrix[r,3]=mu;
matrix[r,4]=(SE_betall,1]);
matrix[r,5]=sigma;
matrix[r,6]=(SE_betal[2,2]);
matrix[r,7]=Pearson;
matrix[r,8]=Wald;

finish;

do r=1 to rep;
run data;
run fit;

end;

create d from
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matrix[colname={’xbar’ ’xstd’ ’mu’ ’SE_mu’ ’sigma’ ’SE_sigma’ ’Pearson’ ’Wald’}];

append from matrix;

proc means data=d maxdec=3 n mean std p5 p50 p95;
var xbar xstd mu SE_mu sigma SE_sigma;

run;
proc means data=d maxdec=4 p5 pl0 p25 p50 p75 p90 p95;

var Pearson Wald;

run;

A.7 FIT.SAS

proc iml worksize= 60;

ook ok ok ok ok ok ok ok ok ok ok ok okok okok kok kok ko kok

* Exponential =’E’ *;
* Normal =N’ *;
* Weibull ='W’ *;
* Log-logistic="L’ *;

* Pareto ='p’ *;

*x===>; distr="W’;
x===>; f={9,37,67,63,30}; x={40,75,125,175}; x=x-0.5;

n=f [+];

k=nrow(f); kl=k-1;
Cc=J(k1,1,1)0Qcusum(J(1,k1,1))<=J(1,k1,1)0@cusum(J(k1,1,1));
CI=inv(C);

vi=J(k1,1,1);

p=C*f[1:k1]/n;

start X;



if
if
if
if
if

finish;

start h;
if
if
if
if
if

finish;

distr="E’
distr="N’
distr="W’
distr=’"L"
distr="P’

distr="E’
distr="N’
distr="W’
distr="L"
distr="P’

then
then
then
then
then

then
then
then
then
then

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

“ UNIVERSITEIT VAN PRETORIA

4

XD=-x;

XD=x|| (-v1);
XD=log(x) | | (-v1);
XD=log(x) | |v1;
XD=-log(x) | |v1;

h=log(vi-p);
h=probit(p);
h=log(-log(v1l-p));
h=log(p/(vi-p));
h=log(vi-p);

start D(Dp,p) global(distr,vl);

if
if
if
if
if

finish;

distr="E’
distr="N’
distr="W’
distr="L"
distr="P°

start beta;

if
if

distr="E’
distr="N’

then
then
then
then
then

then
then

Dp=inv(diag(p-v1));

Dp=inv(diag(pdf (’normal’,probit(p))));
Dp=-inv(diag(log(v1i-p)))*inv(diag(vi-p));
Dp=inv(diag(p))+inv(diag(vi-p));
Dp=-inv(diag(vi-p));

beta=1/alpha;
do;

beta[1]=alpha[2]/alpha[1];
beta[2]=1/alphal1];

end;

if (distr="W’

end;
if distr=’L’ then beta=alpha;

| distr="P’) then do;
beta[l]l=alphall];
beta[2]=exp(alpha[2]/alphall]);

191



finish;

start B;
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if distr=’E’ then B=-1/(alpha**2);

if distr=’N’ then do;
B[1,1]=-alpha[2]/((alpha[1])**2);
B[1,2]=1/(alpha[1]);
B[2,1]=-1/((alphal[1])**2);

end;

if (distr="W’
B[1,1]=

| distr="P’) then do;

1

B[2,1]=-(alpha[2])/((alpha[1])**2)*exp((alpha[2])/(alphal1]));
B[2,2]=inv(alpha[1])*exp((alpha[2])/(alphal[1]));

end;

if distr="L’ then B=I(nrow(alpha));

finish;

start wald;

Wald=g‘*ginv (Gp*V*Gp‘)*g;

GpV=Gp*V;

df=trace (GpV*ginv (GpV ‘*GpV) *GpV ‘) ;

finish;

start mu;
if distr="E’
if distr=’N’
if distr="W’
if distr="L"

if distr="P°

finish;

start sigma;
if distr="E’

then
then
then
then

then

then

mu=beta;
mu=betal[1];
mu=beta[2] * (gamma (1+1/betal1]));
mu=exp (-beta[2] /betall])

xgamma (1+1/beta[1])*gamma (1-1/betal1]);
mu=(betal[1]*betal[2])/(betal1]-1);

sigma=beta;



if distr=’N’
if distr="W’

if distr="L"

if distr=’"P’

finish;

run X;

then
then

then

then
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sigma=betal2];
sigma=sqrt (beta[2] **2

* (gamma (1+2/beta[1]) - (gamma(1+1/beta[1]))**2)) ;
sigma=sqrt (exp(-2xbeta[2] /betal1])

*xgamma (1+2/beta[1])*gamma (1-2/beta[1])

- (gamma(1+1/betal[1])*gamma(1-1/betal[1]))**2));
sigma=sqrt ((beta[1]*beta[2]**2)

/ ((betal[1]-1)**2*(betal1]-2)));

Q=I(k1)-XD*inv(XD‘*XD)*XD‘;

i=0; pO=p; diffil=1;

do while (diffl > 1e-9);
i=i+1; pi=p; p=pO0;

run D(Dpi,pi)
Gpi=Q*Dpi;

b

V=(Cxdiag(CI*pi)*C‘-pi*pi)/n;

j=0; diff=1;

do while (diff > 1e-9);

j=j*1; pv=p;
run D(Dp,p);

run h;

Gp=Q*Dp;

g=Q+*h;

print i j p pi g;
p=p- (Gpi*V) ‘*ginv (Gp*V*Gpi‘)*g;

diff=sqrt ((p-pv) ‘*(p-pv));

if i=1 & j=1 then run wald;

end;

diffi=sqrt ((p-pi) ‘*(p-pi));

end;

Cov_pi=V-(Gpi*V) ‘*ginv (Gpi*V*Gpi‘)* (Gpi*V);
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alpha=inv (XD‘*XD)*XD‘x*h;
Cov_alpha=(inv(XD‘*XD) *XD ‘*Dpi)*Cov_pi* (inv (XD ‘*XD)*XD‘*Dpi) ;
SE_alpha=sqrt(diag(Cov_alpha)*J(nrow(alpha),1,1));

print alpha Cov_alpha SE_alpha;

beta=J(nrow(alpha),1,0); run beta;
B=J(nrow(alpha) ,nrow(alpha),0); run B;
Cov_beta=B*Cov_alpha*B*;
SE_beta=sqrt(diag(Cov_beta)*J(nrow(beta),1,1));
print beta Cov_beta SE_beta;

run mu; run sigma;

print mu sigma;

e=(CI*pix*n)//(n-(CI*pi*n) [+]);
Pearson=(((f-e)##2)/e) [+];
P_pvalue=1-probchi(Pearson,df) ;
W_pvalue=1-probchi(Wald,df);
discr=wald/n;

print Pearson P_pvalue Wald W_pvalue df discr;



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

b
W UNIVERSITEIT VAN PRETORIA
A 4

Appendix B

SAS programs: Part Il

B.1 FACTORI1.SAS

data d;

set phdabc.wisk;

if jaar=2003 & vlak=1 & wisk in(’A’,’B’,’C’,’D’,’E’) & 0<=finaal<=108;
maths=wisk;

if 0<=eksamen<40 then stats=40;

if 40<=eksamen<50 then stats=50;

if 50<=eksamen<60 then stats=60;

if 60<=eksamen<75 then stats=75;

if 75<=eksamen<=108 then stats=108;

keep maths stats;

run;

proc freq data=d noprint;
tables maths / out=factorl;
tables stats / out=class;
tables maths*stats / out=freq;

run;

195



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

“ UNIVERSITEIT VAN PRETORIA

4

196

**x*x Start: Empty cells *x*x;
data t;

maths=’A’; stats=39; count=0;
output;

run;

data freq; set freq t;

run;

proc sort data=freq;

by maths stats;

run;

*kk Finish: Empty cells **x;

proc transpose data=freq out=freq prefix=c;
by maths;
var count;

run;

proc iml worksize=200 symsize=2000;
use freq; read all var{cl c2 c3 c4 cb} into freq;
use class; read all var{stats} into class;

use factorl; read all var{maths} into factoril;

n=freq[+];

nt=nrow(freq) ;

k=nrow(freq); kl=k-1;

x=class[1:k1]; x=x-0.5;

nn=freql[,+];

f=colvec(freq[,1:k1]); £=£<>0.0001;
C=J(k1,1,1)0cusum(J(1,k1,1))<=J(1,k1,1)0cusum(J(k1,1,1));
CI=inv(C);

vi=J(k1,1,1);
po=inv(diag(nn)@I (k1) )x*f;
p=(I(nt)QC)*po;

print freq factorl class x;
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XD=x||-v1;

XXX=inv(XD‘*XD)*XD¢; XXX1=XXX[1,]; XXX2=XXX[2,];
Px=XD*inv (XD‘*XD)*XD*;

Q=I(k1)-Px;

nor=(I(nt)eQ);

H=J(nt-1,1,1) | |-I(nt-1);
var=Hx* (I (nt)@XXX1);

nfacl=nrow(factorl);

*Yar={2,1,0,-1,-2}; *<=== Factor A: ordinal ***;
Yar={90,75,65,55,45}; *<=== Factor A: linear sx*x;
YD=J(nt,1,1) | |Yar;

YYY=inv (YD¢*YD) *YD*;

Qr=I(nt)-YD*inv(YD‘*YD)*YD*;

reg=Qr* (I(nt)0XXX2);

*ZD=nor; *<=== Model 1;
*ZD=nor//var; *<=== Model 2;
ZD=nor//var//reg; *<=== Model 3-4;

i=0; pO=p; diffil=1;

do while (diffl > 1e-9);
i=i+1; pi=p; p=p0;
Dpi=inv(diag(pdf (’normal’,probit(pi))));
Gpi=ZD*Dpi;

pio=(I(nt)@CI)*pij;
Vo=inv(diag(nn)@I (k1) )*(diag(pio)
-(diag(pio))*(I(nt)@(vixvi‘))*(diag(pio)));
V=(I(nt)@C)*Vo*(I(nt)@C) ‘;
j=0; diff=1;
do while (diff > 1le-9);
j=j+1; pv=p;
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Dp=inv(diag(pdf (’normal’,probit(p))));
Gp=ZD*Dp;

hp=probit (p) ;

g=ZD*hp;

* print i j p pi g;
p=p-(Gpi*V) ‘*ginv (Gp*V*Gpi ‘) *g;
diff=sqrt ((p-pv) ‘*(p-pv));
if i=1 & j=1 then do;

Wald=g‘*ginv (Gp*V*Gp‘)*g;
GpV=Gp*V;
df=trace (GpV*ginv (GpV ‘*GpV) *GpV ‘) ;
discr=wald/n;
end;
end;
diffi=sqrt ((p-pi) ‘*(p-pi));
end;

Cov_pi=V-(Gpi*V) ‘*ginv (Gpi*V*Gpi ‘) * (Gpi*V);

alpha=(I(nt)@XXX)*hp;

alphal=(I(nt)@XXX1)*hp;

alpha2=(I(nt)@XXX2)*hp;
Cov_alpha=((I(nt)@XXX)*Dpi)*Cov_pi*((I(nt)@XXX)*Dpi) ‘;

mu=alpha2/alphal;

sigma=1/alphal;
beta=(mu@{1,0})+(sigma@{0,1});
Bll=-alpha2/(alphai#alphal) ;
B12=1/alphal;

B21=-1/(alphai#alphal);
111=J(2,2,0);I12=J(2,2,0);I21=J(2,2,0);
I11[1,1]1=1;T12[1,2]=1;1I21[2,1]=1;
B=(diag(B11)@I11)+(diag(B12)@I12)+(diag(B21)QI21);
Cov_beta=B*Cov_alpha*B‘;
Bi=(diag(B11)@{1 0})+(diag(B12)@{0 1});
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B2=(diag(B21)@{1 0});

Cov_mu=B1*Cov_alpha*B1°‘;
Cov_sigma=B2*Cov_alpha*B2‘;

SE_mu=sqrt (diag(Cov_mu)*J(nrow(mu),1,1));
SE_sigma=sqrt (diag(Cov_sigma)*J(nrow(sigma),1,1));
print mu SE_mu, sigma SE_sigma;

gamma=YYY*mu;
Cov_gamma=YYY*Cov_mu*YYY‘;
SE_gamma=sqrt (diag(Cov_mu) *J (nrow(gamma) ,1,1));

print gamma SE_gamma;
Za=designf (cusum(J(nfacl,1,1)));

LD=J(nt,1,1)||Za;

LLL=inv(LD‘*LD)*LD¢;

lambda=LLL*mu;
lambda=choose (abs (lambda)<le-9,0,lambda) ;
Cov_lambda=LLL*Cov_mu*LLL*;
Cov_lambda=choose (abs (Cov_lambda)<le-9,0,Cov_lambda) ;
SE_lambda=sqrt (diag(Cov_lambda)*J (nrow(lambda),1,1));
print lambda SE_lambda;

TTT=block(1,Za);

tau=TTT*lambda;

Cov_tau=TTT*Cov_lambda*TTT*;
SE_tau=sqrt(diag(Cov_tau)*J(nrow(tau),1,1));
print tau SE_tau;

count=cusum(1//nfaci);

tauO=taul[count[1] :count[1]]; SE_tau0=SE_tau[count[1] :count[1]];
taul=taulcount[1]+1:count[2]]; SE_taul=SE_taulcount[1]+1:count[2]];

print tau0 SE_tauO, taul SE_taul;
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piom=(shape(pio,nt));
expl=piom#(repeat(nn,1,k1));
exp2=nn-expl[,+];

exp=expl| |exp2;

Pearson=(((freq-exp)##2) /exp) [+];
P_pvalue=1-probchi(Pearson,df);
W_pvalue=1-probchi(Wald,df);

print freq exp, Pearson P_pvalue Wald W_pvalue df;

B.2 FACTOR2.SAS

proc freq data=phdabc.sbib noprint;
tables product / out=product;

tables agegrp / out=agegrp;

tables agec / out=agec;

tables premium / out=class;

tables agegrp*product*premium / out=b;

run;

proc transpose data=b out=freq prefix=c;
by agegrp product;
var count;

run;

proc iml worksize=200 symsize=2000;

use freq; read all var{cl c2 c3 c4 c5} into freq;
use class; read all var{premium} into class;

use agegrp; read all var{agegrp} into factoril;
use product; read all var{product} into factor2;

print freq factorl factor2; print class;
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n=freq[+];

nt=nrow(freq) ;

k=nrow(class); ki=k-1;
x=class[1:k1];

nn=freql[,+];

f=colvec(freq[,1:k1]); £=£<>0.0001;
C=J(k1,1,1)0cusum(J(1,k1,1))<=J(1,k1,1)0cusum(J(k1,1,1));
CI=inv(C);

vi=J(k1,1,1);
po=inv(diag(nn)@I (k1) )x*f;
p=(I(nt)QC)*po;

XD=log(x) | |v1;

XXX=inv(XD‘*XD)*XD*; XXX1=XXX[1,]; XXX2=XXX[2,];
Px=XD*inv (XD‘*XD)*XD* ;

Qx=I(k1)-Px;

nfacl=nrow(factorl);
nfac2=nrow(factor?2) ;

print n nt k x, £ po p ;

*Y1=designf (cusum(J(nfacl,1,1))@J(nfac2,1,1)); *<=== Factor A: dummy;
Y1={24.5,34.5,44.5,54.5}0J(nfac2,1,1); *<=== Factor A: linear;
Y2=designf (J(nfacl,1,1)@cusum(J(nfac2,1,1)));

Y12=hdir(Y1,Y2);

*YD=J(nt,1,1) | |Y1]]Y2; *<=== (Only main effects;
YD=J(nt,1,1)|1Y1]]Y2]|Y12; *<=== Main effects with interaction;
Py=YD*inv (YD ‘*YD)*YD* ;

Qy=I(nt)-Py;

201

start GGG(p,g,GG) global(nt,vl,Qx,XXX,XXX1,XXX2,Qy,h,D,kappa,theta,nu,A,Y12);

h=log(p/((J(nt,1,1)@v1)-p));
D=inv(diag(p))+inv(diag((J(nt,1,1)@v1)-p));
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glog=(I(nt)0Qx) *h;
GGlog=(I(nt)@Qx)*D;

kappa=(I(nt)©@XXX1)*h;
theta=(I(nt)©@XXX2)x*h;
nu=exp(-theta/kappa) ;
Al=nu#(theta/ (kappatkappa)) ;
A2=nu#(-1/kappa) ;
A=diag(A1)@{1 0} + diag(A2)@{0 1};
greg=Qy*nu;
GGreg=Qy*Ax*(I(nt)@XXX)*D;

* g=glog; *<=== Model 1;
*  GG=GGlog; *<=== Model 1;
g=glog//greg; x<=== Model 2-4;
GG=GGlog//GGreg; *<=== Model 2-4;
finish;

i=0; pO=p; diffil=1;
do while (diff1 > 1e-9);
i=i+1; pi=p; p=p0;
pio=(I(nt)@CI)*pij;
Vo=inv(diag(nn)@I(k1l))*(diag(pio)- (diag(pio))*(I(nt)@(vi*v1‘))*(diag(pio))‘);
V=(I(nt)@C)*Vox*(I(nt)@C) ¢;
run GGG(pi,gpi,GGpi);
j=0; diff=1;
do while (diff > 1e-9);
j=j+1; pv=p;
run GGG(p,gp,GGp);
print 1 j p pi gp;
p=p- (GGpi*V) ‘*ginv (GGp*V*GGpi ‘) *gp;
diff=sqrt ((p-pv) ‘*(p-pv));
if i=1 & j=1 then do;
Wald=gp ‘*ginv (GGp*V*GGp ‘) *gp;
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GpV=GGp*V;
df=trace (GpV*ginv (GpV ‘*GpV) *GpV ‘) ;
discr=wald/n;
end;
end;
diffil=sqrt ((p-pi) ‘*(p-pi));
end;
nnm=shape (nn,nfacl) ;
thetam=shape (theta,nfacl);
kappam=shape (kappa,nfacl) ;

Cov_pi=V-(GGpi*V) ‘*xginv (GGpi*V*GGpi ‘) * (GGpi*V) ;
Cov_alpha=((I(nt)@XXX)*D)*Cov_pi*((I(nt)@XXX)*D)*;

mu=exp (-theta/kappa) #gamma (J(nt,1,1)+1/kappa) #gamma (J(nt,1,1)-1/kappa) ;
sigma=sqrt (exp(-2*theta/kappa)
#(gamma (J(nt,1,1)+2/kappa) #gamma (J(nt,1,1)-2/kappa)
-(gamma (J(nt,1,1)+1/kappa)#gamma (J(nt,1,1)-1/kappa) ) ##2)) ;
mum=shape (mu,nfacl) ;
sigmam=shape (sigma,nfacl);

print mum sigmam;

Cov_nu=A*Cov_alpha*A‘;
SE_nu=sqrt (diag(Cov_nu)*J(nrow(nu),1,1));
num=shape (nu,nfacl); SE_num=shape(SE_nu,nfacl);

print num SE_num;

YYY=inv (YD ‘*YD)*YD‘;

gamma=YYY*nu;

Cov_gamma=YYY*Cov_nu*YYY‘;

SE_gamma=sqrt (diag(Cov_gamma) *J (nrow (gamma) ,1,1)) ;

print gamma SE_gamma;

Di=designf (cusum(J(nfac2,1,1)));
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DDD=block(1,1,D1,D1);

delta=DDD*gamma ;

Cov_delta=DDD*Cov_gamma*DDD‘ ;
SE_delta=sqrt(diag(Cov_delta)*J(nrow(delta),1,1));
print delta SE_delta;

Za=designf (cusum(J(nfacl,1,1))@J(nfac2,1,1)); #*<=== Factor A: dummy;
Zb=designf (J(nfacl,1,1)@cusum(J(nfac2,1,1)));

Zab=hdir(Za,Zb);

LD=J(nt,1,1)|1Zal |Zbl |Zab; *<== saturated model;
LLL=inv(LD‘*LD)*LD¢;

lambda=LLL*nu;

lambda=choose (abs (lambda)<1le-9,0,lambda) ;

Cov_lambda=LLL*Cov_nu*LLL*;
Cov_lambda=choose (abs (Cov_lambda)<1e-9,0,Cov_lambda) ;

print LD lambda;

S1=designf (cusum(J(nfacl,1,1)));

S2=designf (cusum(J(nfac2,1,1)));

S12=510S52;

S=block(1,81,82,S12);

tau=S*lambda;

Cov_tau=S*Cov_lambda*S*¢;
SE_tau=sqrt(diag(Cov_tau)*J(nrow(tau),1,1));
print tau SE_tau;

count=cusum(1//nfacl//nfac2//(nfacl*nfac2));

tauO=taul[1:1]; SE_tau0=SE_taul[1:1];
taul=taul[count[1]+1:count[2]]; SE_taul=SE_taul[count[1]+1:count[2]];
tau2=taul[count [2]+1:count[3]]; SE_tau2=SE_taul[count[2]+1:count[3]];
taul2=taul[count [3]+1:count[4]]; SE_taul2=SE_taulcount[3]+1:count[4]];
taul2m=shape(taul2,nfaci); SE_taul2m=shape (SE_taul2,nfacl);
print tau0 taul tau2 taul2m, SE_tau0 SE_taul SE_tau2 SE_taulZm;
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piom=(shape(pio,nt));
expl=piom#(repeat(nn,1,k1));
exp2=nn-expl[,+];

exp=expl| |exp2;

Pearson=(((freq-exp)##2) /exp) [+];
P_pvalue=1-probchi(Pearson,df);
W_pvalue=1-probchi(Wald,df);

print freq exp, Pearson P_pvalue Wald W_pvalue df;

**xkx Start: Graph *x*x*;

*xx FEerste fig: 4.5 en 3.5cm - Tweede fig: 4 en 3cm;
x1=0.5//class[1:k1];

xu=class;

width=xu-x1;

print x1 xu x width;
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Appendix C

SAS Programs: Part Il

C.1 Phi0.SAS

proc iml;
*===>;a=1; b=2; rho=0.5;

pi=(gamma(0.5))**2;
diff=1; PhiO=0; i=0;
do while (diff>1e-8);
vorige=PhiO;
PhiO=PhiO + ((2*rho)##i*sqrt(1-rho##2))/(4*pixgamma(i+1))*gamma((i+1)/2)##2
* probgam( (a##2/ (2% (1-rho##2))), (i+1)/2)
* probgam( (b##2/ (2x (1-rho##2))), (i+1)/2);
i=i+1;
diff=abs(PhiO-vorige) ;
end;
check=probbnrm(a,b,rho)-probbnrm(a,0,rho)-probbnrm(0,b,rho)+probbnrm(0,0,rho) ;
print PhiO check;
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C.2 Phi.SAS

proc iml;
x===>; a=1; b=2; rho=0.5;

pi=(gamma(0.5))**2;

start PhiO(PhiO,a,b,rho) global(pi);
diff=1; PhiO=0; i=0;
do while (diff>1e-8);
vorige=PhiO;
PhiO=PhiO + ((2*rho)##i *sqrt(l-rho##2))/(4*pi*xgamma(i+1))*gamma((i+1)/2)##2
* probgam( (a##2/ (2% (1-rho##2))), (i+1)/2)
* probgam( (b##2/ (2% (1-rho##2))), (i+1)/2);
i=i+1;
diff=abs(PhiO-vorige) ;
end;

finish;

if a<0 & b<0 then do;
run PhiO(PhiO1,10,10,rho);
run PhiO(Phi02,-a,10,rho);
run PhiO(Phi03,10,-b,rho);
run PhiO(Phi0O4,-a,-b,rho);
Phi=Phi01-Phi02-Phi03+Phi04;

end;

if a<0 & b>=0 then do;
run PhiO(Phi01,10,10,rho);
run PhiO(Phi02,-a,10,rho);
run PhiO(Phi03,10,b,-rho);
run PhiO(PhiO4,-a,b,-rho);
Phi=Phi01-Phi02+Phi03-Phi04;

end;
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if a>=0 & b<0 then do;
run PhiO(Phi01,10,10,rho);
run PhiO(Phi02,a,10,-rho);
run PhiO(Phi03,10,-b,rho);
run PhiO(PhiO4,a,-b,-rho);
Phi=Phi0O1+Phi02-Phi03-Phi04;

end;

if a>=0 & b>=0 then do;
run PhiO(Phi01,10,10,rho);
run PhiO(Phi02,a,10,-rho);
run PhiO(Phi03,10,b,-rho);
run PhiO(PhiO4,a,b,rho);
Phi=Phi01+Phi02+Phi03+Phi04;

end;

check=probbnrm(a,b,rho) ;

print Phi check;
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C.3 BVN.SAS

proc iml;

pie=gamma(0.5)##2;

freq={106 90 35 5 ,
57 73 59 22,
15 40 57 27,
2 14 45 99}

x={59.5,69.5,79.5};
y={49.5,59.5,74.5};

n=freq[+];

nfr=freq[,+];

nfc=freq[+,];

nr=nrow(freq); nril=nr-1; Er=J(ar,1,1); Er1=J(nri1,1,1);
nc=ncol(freq); ncl=nc-1; Ec=J(nc,1,1); Ecl=J(ncl,1,1);
rC=Nr*nc;
Cr=J(nr,1,1)0@cusum(J(1,nr,1))<=J(1,nr,1)0Qcusum(J(nr,1,1));
Cc=J(nc,1,1)0cusum(J(1,nc,1))<=J(1,nc,1)0@cusum(J(nc,1,1));
C=Cr@Cc; CI=inv(C);

fxy=colvec(freq);

p=C*xfxy/n;

XD=x||J(nr1,1,-1);
XXX=inv (XD‘*XD)*XD‘;
PmX=XD*inv (XD ‘*XD)*XD*‘;

YD=y||J(nc1,1,-1);
YYY=inv (YD ‘*YD) *YD*;

PmY=YD*inv (YD ‘*YD)*YD‘;

IV=cusum(j(rc,1,1)); IM=shape(IV,nr);
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xx=IM[1:nrl1,nc]; yy=IM[nr,1:ncl]; xy=IM[1:nr1,1:ncl];
Gmx=J(nrl,rc,0); Gmy=J(ncl,rc,0); Gmxy=J(nri*ncl,rc,0);
1j=0;
do i=1 to nril; Gmx[i,xx[i]]=1; end;
do j=1 to ncl; Gmyl[j,yy[jll=1; end;
do i=1 to nrl; do j=1 to ncl;
ij=1j+1;
Gmxy[ij,xy[i,j1]1=1;
end; end;

start FO(F0,z1,z2,rho,k,1) global(pie);
i=1; diff2=1;
FO= 2x*((k+1)/2) * (1-rho**2)*x((k+1+1)/2) / (4xpie)
* gamma((k+1)/2) * gamma((1+1)/2)
* probgam((z1**2/(2%(1-rho**2))) , (k+1)/2)
* probgam((z2**2/ (2% (1-rho**2))), (1+1)/2);
do while (diff2>1e-9);
vFO=FO0;
FO= FO+2x* ((k+1)/2)*(1-rho**2)**x((k+1+1)/2) / (4xpie)*(2*rho)**i
*x gamma ((i+k+1)/2) * gamma((i+1+1)/2) / gamma(i+1)
* probgam((z1**2/(2*(1-rho**2))), (i+k+1)/2)
* probgam((z2**2/ (2% (1-rho**2))), (i+1+1)/2);
diff2=abs (vF0-FO0) ;
i=i+1;
end;

finish;

start F (F,rho,zy,zx,k,1);
if zx<0 & zy<0 then do;
run FO(F1,10,10,rho,k,1);
run FO(F2,-zx,10,rho,k,1);
run FO(F3,10,-zy,rho,k,1);
run FO(F4,-zx,-zy,rho,k,1);
F=F1-F2-F3+F4;
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end;

if zx<0 & zy>=0 then do;
run FO(F1,10,10,rho,k,1);
run FO(F2,-zx,10,rho,k,1);
run FO(F3,10,zy,-rho,k,1); F3=F3%(-1)*x*k;
run FO(F4,-zx,zy,-rho,k,1); F4=F4x(-1)x*xk;
F=F1-F2+F3-F4;

end;

if zx>=0 & zy<0 then do;
run FO(F1,10,10,rho,k,1);
run FO(F2,zx,10,-rho,k,1); F2=F2*x(-1)*x]1;
run FO(F3,10,-zy,rho,k,1);
run FO(F4,zx,-zy,-rho,k,1); F4=F4*(-1)*x1;
F=F1+F2-F3-F4;

end;

if zx>=0 & zy>=0 then do;
run FO(F1,10,10,rho,k,1);
run FO(F2,zx,10,-rho,k,1); F2=F2%(-1)%*x*x]1;
run FO(F3,10,zy,-rho,k,1); F3=F3*(-1)*x*k;
run FO(F4,zx,zy,rho,k,1);
F=F1+F2+F3+F4;

end;

finish;

start prob (pp,x1,x2,y1,y2,rho);
pp=probbnrm(x2,y2,rho)-probbnrm(x2,y1,rho)
—-probbnrm(x1,y2,rho)+probbnrm(x1,yl,rho) ;
finish;
start volume(p,rho,vv,zx,zy,II,JJ) global(nr,nc,nrl,ncl,Er,Ec,CI,pie);
zx1=-10//zx; zx2=zx//10;
zyl=-10//zy; zy2=zy//10;

run prob(pplJ,zx[II-1],zx[II],zy[JJ-1],zy[JJ],rho);
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run prob(ppIJi,zx[II-1],0,zy[JJ-1],0,rho);
run prob(pplJ2,zx[II-1],0,0,zy[JJ],rho);
run prob(pplJ3,0,zx[II],zy[JJ-1],0,rho);
run prob(ppIJ4,0,zx[II],0,zy[JJ],rho);

run prob(ppI, ((zx[II-1])*Ec), ((zx[II])*Ec),zyl,zy2,rho);
run prob(ppIl, ((zx[II-1])*Ec), (0*Ec),zyl,zy2,rho);

run prob(ppI2, (0*Ec), ((zx[II])*Ec),zyl,zy2,rho);

run prob(ppJ,zxl,zx2, ((zy[JJ-1])*Er), ((zy[JJ])*Er) ,rho);
run prob(ppJi,zxl,zx2, ((zy[JJ-1])*Er), (0%Er) ,rho);

run prob(ppJ2,zx1,zx2, (0%Er), ((zy[JJ])*Er) ,rho);

volcl=J(nr,nc,0) ;volc2=J(nr,nc,0) ;volc3=J(nr,nc,0) ;volc4=J(nr,nc,0);

volc1[1:II-1,1:JJ-1]1=1;
volc2[1:II-1,JJ+1:nc]=1;
volc3[II+1:nr,1:JJ-1]1=1;
volc4[II+1:nr,JJ+1:ncl=1;

volc1[IT,1:JJ-1]1=(ppI1[1:JJ-1]/ppI[1:JJ-1])¢;
volc2[II,JJ+1:nc]=(ppI1[JJ+1:nc]/ppI[JJ+1l:nc]l)‘;
volc3[II,1:JJ-11=(ppI2[1:JJ-11/ppI[1:JJ-11)¢;
volc4[II,JJ+1:nc]=(ppI2[JJ+1:nc]/ppI[JJ+i:nc])‘;

volc1[1:11-1,J3J]1=(ppJ1[1:1I-1]/ppJ[1:I1I-1]);
volc2[1:11-1,JJ]1=(ppJ2[1:II-1]1/ppJ[1:1I-1]);
volc3[II+1:nr,JJ]=(ppJ1[II+1:nr]/ppJ[II+i:nr]);
volc4[II+1:nr,JJ]=(ppJ2[II+1:nr]/ppJ[II+1:nr]);

volc1[II,JJ]=ppIlJ1/pplJ;
volc2[II,JJ]=ppIlJ2/pplJ;
volc3[II,JJ]=ppIlJ3/pplJ;
volc4[II,JJ]=pplJ4/pplJ;



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

“ UNIVERSITEIT VAN PRETORIA

4

213

vl=colvec(volcl);
v2=colvec(volc2);
v3=colvec(volc3);
vd=colvec(volc4);
vv=(v1+v4) - (v2+v3);

voll=v1‘*CI*p;
v012=v2‘*CI*p;
v0l3=v3‘*CI*p;
v0l4=v4 ‘*xCI*p;

finish;

start rho (p,rhop,vvp,zxp,zyp,lIp,JJp,drdp) global(pie,CI);
rhop=0; diffr=1;
do while (diffr > 1e-10);
rhov=rhop;
run volume(p,rhop,vvp,zxp,zyp,IlIp,JJp);
rhop=sin(pie/2* (vvp‘*CI*p));
diffr=sqrt ((rhop-rhov) **2) ;
drdp=cos(pie/2*(vvp‘*CI*p))*pie/2*vvp‘*CI;
end;

finish;

start GGxy(p,rho,zx,zy,Dx,Dy,drdp,GGxy) global(nrl,ncl,rc,Pmx,Pmy,Gmnx,Gny,Gmxy) ;

ZZx=zx0J(1,nc1,1);
ZZy=zy‘@J(nrl,1,1);
dFdzxm=diag(pdf (’normal’,zx) ) *probnorm((ZZy-rho*ZZx) /sqrt (1-rho**2) ) ;
dFdzym=probnorm((ZZx-rho*ZZy) /sqrt (1-rho**2) ) *diag(pdf (’normal’,zy) ) ;
do i=1 to nri;

EEr=J(nrl,nr1,0);

EEr[i,i]=1;

tyd=colvec (EEr*dFdzxm) ;

if i=1 then dFdzx=tyd;

else dFdzx=dFdzx| |colvec(tyd);
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end;
do j=1 to nci;
EEc=J(ncl,nc1,0);
EEc[j,jl=1;
tyd=colvec (dFdzym*EEc) ;
if j=1 then dFdzy=colvec(tyd);
else dFdzy=dFdzy| |colvec(tyd);
end;
dFdr=J(nrl,ncl1,0); rho2=rho**2;
do i=1 to nrl; do j=1 to ncl;
run F(F00,rho,zx[i],zy[j],0,0);
run F(F20,rho,zx[i],zy[j],2,0);
run F(F11,rho,zx[i],zy[j],1,1);
run F(F02,rho,zx[i],zy[j],0,2);
dFdr[i,jl=rho/(1-rho2)*F00 - rho/((1-rho2)**2)*F20
+ (1+rho2)/((1-rho2)**2)*F11 - rho/((1-rho2)**2)*F02;
end; end;
dFdr=colvec(dFdr) ;
dzxdp=Pmx*Dx*Gmx ;
dzydp=Pmy*Dy*Gmy ;
GGxy=(dFdzx| |dFdzy| |dFdr) * (dzxdp//dzydp//drdp) - Gmxy;

finish;

start marginal (px,alphaxp,muxp,sigmaxp,zxp,nr,IIp,Dxp,Gmx,XD,XXX,Pmx,GGxp) ;
alphaxp=XXX*probit (px) ;
zxp=XD*alphaxp;
muxp=alphaxp[2] /alphaxp[1];
sigmaxp=1/alphaxp[1];
do IIp=1 to nr until (zxp[IIp]>=0); end;
Dxp=inv(diag(pdf (*normal’ ,probit(px))));
GGxp=diag(pdf (’normal’,zxp) ) *Pmx*Dxp*Gmx - Gmx;

finish;

i=0; pO=p; diffi=1;
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do while (diff1l > 1e-8);
i=i+1; pi=p; p=p0;
V=(Cxdiag(CI*pi)*C‘-pi*pi‘)/n;
matrixpi=shape(pi,nr);
pix=matrixpil[l:nril,nc];
piy=matrixpi[nr,1:ncl]‘;
pixy=colvec(matrixpil[l:nrl,1:ncl]);
run marginal (pix,alphaxpi,muxpi,sigmaxpi,zxpi,nr,IIpi,Dxpi,Gmx,XD,XXX,Pmx,GGxpi) ;
run marginal (piy,alphaypi,muypi,sigmaypi,zypi,nc,JJpi,Dypi,Gmy,YD,YYY,Pmy,GGypi);
run rho(pi,rhopi,vvpi,zxpi,zypi,IIlpi,JJpi,drdpi);
run GGxy(pi,rhopi,zxpi,zypi,Dxpi,Dypi,drdpi,GGxypi);
GGpi=GGxpi//GGypi//GGxypi;
j=0; diff=1;
do while (diff > 1e-8);
j=j*1; pv=p;
matrixp=shape (p,nr) ;
px=matrixp[l:nril,nc];
py=matrixp[nr,1:ncl]‘;
pxy=colvec(matrixp[l:nrl,1:ncl]);
run marginal (px,alphaxp,muxp,sigmaxp,zxp,nr,IIp,Dxp,Gmx,XD,XXX,Pmx,GGxp) ;
run marginal (py,alphayp,muyp,sigmayp,zyp,nc,JJp,Dyp,Gmy,YD,YYY,Pmy,GGyp) ;
run rho(p,rhop,vvp,zxp,zyp,I1Ip,JJp,drdp);
run GGxy(p,rhop,zxp,zyp,Dxp,Dyp,drdp,GGxyp) ;
GGp=GGxp//GGyp//GGxyp;
gx=probnorm(zxp) -px;
gy=probnorm(zyp)-py;
gxy=probbnrm(zxp@Ec1,Er10zyp,rhop) -pxy;
g=gx//gy//gxy;
print i j g pi p, matrixp zxp zyp,
rhopi muxpi sigmaxpi muypi sigmaypi,
rhop muxp sigmaxp muyp sigmayp;
p=p- (GGpi*V) ‘*ginv (GGp*V*GGpi ‘) *g;
if i=1 & j=1 then do;
Wald=g‘*ginv (GGp*V*GGp ) *g;
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GGpV=GGp*V;
df=trace (GGpV*ginv (GGpV ‘ *GGpV) *GGpV ) ;
pvalue=1-probchi(Wald,df) ;
discr=wald/n;
Cov_rho=drdpi*V*drdpi°;
SE_rho=sqrt (Cov_rho) ;
end;
diff=sqrt ((p-pv) ‘*(p-pv));
end;
diffil=sqrt ((p-pi) ‘*(p-pi));
end;
mux=muxp; Sigmax=sigmaxp;
muy=muyp; Sigmay=sigmayp;
rho=rhop;

Cov_pi=V-(GGpi*V) ‘*ginv (GGpi*V*GGpi ‘) * (GGpi*V) ;

alphax=alphaxp;
Cov_alphax=(XXX*Dxpi*Gmx) *Cov_pi* (XXX*Dxpi*Gmx)  ;
Ax=J(2,2,0);

Ax[1,1]=-alphax[2]/((alphax[1])**2);
Ax[1,2]=1/(alphax[1]);

Ax[2,1]1=-1/((alphax [1])**2) ;
Cov_musigx=Ax*Cov_alphax*Ax‘;

SE_mux=sqrt (Cov_musigx[1,1]);
SE_sigmax=sqrt(Cov_musigx[2,2]);

alphay=alphayp;
Cov_alphay=(YYY*Dypi*Gmy) *Cov_pi* (YYY*Dypi*Gmy) ‘ ;
Ay=J(2,2,0);

Ay[1,1]=-alphay[2]/((alphay[1])**2);
Ay[1,2]=1/(alphay[1]);

Ay[2,1]=-1/((alphay [1])**2);
Cov_musigy=Ay*Cov_alphay*Ay‘;
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SE_muy=sqrt (Cov_musigy[1,1]);
SE_sigmay=sqrt (Cov_musigy[2,2]);

print mux SE_mux sigmax SE_sigmax,
muy SE_muy sigmay SE_sigmay,
rho SE_rho;

t_rho=rho/SE_rho;
p_rho=(1-probnorm(t_rho))*2;
print t_rho p_rho;

alpha_xy=mux-muy*rho*sigmax/sigmay;
beta_xy=rho*sigmax/sigmay;
alpha_yx=muy-mux*rho*sigmay/sigmax;
beta_yx=rho*sigmay/sigmax;

print alpha_xy beta_xy alpha_yx beta_yx;

exp=shape ((CI*pi*n) ,nr);
pearson=(((freq-exp)##2) /exp) [+];

print n freq exp Pearson Wald;
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proc iml worksize=30000 symsize=30000;
pie=gamma(0.5)##2;

n=1000;
rep=10;
number=1;
x={8,10,12}; y={45,50,55};
mu={11,48};
sig={9 -16.8,
-16.8 64};
call eigen(L,H,SIG);
sigl2=Hxdiag(sqrt(L))*H*;

nr=nrow(x)+1; nri=nr-1; Er=J(anr,1,1); Eri=J(nri,1,1);

nc=nrow(y)+1; ncl=nc-1; Ec=J(nc,1,1); Ecl=J(ncl,1,1);

TC=Nr*nc;

Cr=J(nr,1,1)0@cusum(J(1,nr,1))<=J(1,nr,1)0Qcusum(J(nr,1,1));
Cc=J(nc,1,1)0@cusum(J(1,nc,1))<=J(1,nc,1)@cusum(J(nc,1,1));

C=Cr@Cc; CI=inv(C);

XD=x||J(nr1,1,-1);
XXX=inv(XD‘*XD)*XD*;
PmX=XD*inv (XD ‘*XD) *XD* ;

YD=y||J(ncl,1,-1);
YYY=inv (YD¢*YD) *YD*;

PmY=YD*inv (YD‘*YD)*YD¢;

IV=cusum(j(rc,1,1)); IM=shape(IV,nr);

xx=IM[1:nrl1,nc]; yy=IM[nr,1:ncl]; xy=IM[1:nr1,1:ncl];
Gmx=J(nrl,rc,0); Gmy=J(ncl,rc,0); Gmxy=J(nri*ncl,rc,0);

1j=0;
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do i=1 to nrl; Gmx[i,xx[i]l]=1; end;
do j=1 to ncl; Gmyl[j,yy[jll=1; end;
do i=1 to nrl; do j=1 to ncl;
ij=ij+1;
Gmxy[ij,xy[i,j11=1;

end; end;

/*

**x*x Begin: Theoretical values **x*;
poprho=sig[1,2]/sqrt(sigll,1]*sig[2,2]);
popzx=((x-mu[1,1])/sqrt(sigl1,1]1))//10;
popzy=((y-mu[2,1])/sqrt(sigl[2,2]))//10;
poppi=probbnrm((popzx)@J(nc,1,1),J(nr,1,1)@(popzy) ,poprho) ;
fregq=shape (CI*poppi*n,nr) ;

fxy=colvec(freq);

p=Cxfxy/freq[+];

*x*x End: Theoretical values **x;

*/

start data;

sp=sigl2*rannor (J(2,n,number) )+ muxJ(1,n,1);

smu=sp[,+]/n;

Ssig=sp*sp‘/n-smuxsmu‘;
D=inv(sqrt(diag(ssig)));

scor=D*ssig*D;

smux=smu[1]; smuy=smul[2];
ssigx=sqrt(ssigll,1]); ssigy=sqrt(ssigl2,2]);
srho=ssigl[1,2]/sqrt(ssigll,1]*ssig[2,2]);

sp=sp‘;
spx=sp[,1];
spy=spl,2];
f=j(nr,nc,0);
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do k=1 to n;
t=j(nr,nc,0);
do IIT=1 to nrl until (spx[k] <
do JJJ=1 to ncl until (spylk] <
t[II1,JJJ]=1;
f=f+t;

x[III]); end;
y[JJJ]); end;

end;

freq=£f;
freq=freq<>le-6;
fxy=colvec(freq);
p=Cxfxy/freq[+];

finish;

start FO(F0,z1,z2,rho,k,1) global(pie);
i=1; diff2=1;
FO= 2%x((k+1)/2) * (1-rho**2)*x((k+1+1)/2) / (4xpie)
* gamma ((k+1)/2) * gamma((1+1)/2)
* probgam((z1**2/(2%(1-rho**2))) , (k+1)/2)
*x probgam((z2**2/ (2% (1-rho**2))), (1+1)/2);
do while (diff2>1e-9);
vFO=FO0;
FO= FO+2x*x((k+1)/2) *(1-rho**2)**x((k+1+1)/2) / (4*pie) * (2%rho)**i
*x gamma ((i+k+1)/2) * gamma((i+1+1)/2) / gamma(i+1)
* probgam((z1*x2/ (2% (1-rho**2))), (i+k+1)/2)
* probgam((z2**2/ (2% (1-rho**2))), (i+1+1)/2);
diff2=abs (vFO-FO) ;
i=i+1;
end;

finish;

start F (F,rho,zy,zx,k,1);
if zx<0 & zy<O then do;

run FO(F1,10,10,rho,k,1);

run FO(F2,-zx,10,rho,k,1);
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run FO(F3,10,-zy,rho,k,1);
run FO(F4,-zx,-zy,rho,k,1);
F=F1-F2-F3+F4;
end;
if zx<0 & zy>=0 then do;
run FO(F1,10,10,rho,k,1);
run FO(F2,-zx,10,rho,k,1);
run FO(F3,10,zy,-rho,k,1); F3=F3*(-1) **k;
run FO(F4,-zx,zy,-rho,k,1); FA=F4x (-1) *xk;
F=F1-F2+F3-F4;
end;
if zx>=0 & zy<0 then do;
run FO(F1,10,10,rho,k,1);

run FO(F2,zx,10,-rho,k,1); F2=F2* (-1) **1;
run FO(F3,10,-zy,rho,k,1);
run FO(F4,zx,-zy,-rho,k,1); FA=F4x(-1)*x*1;

F=F1+F2-F3-F4;

end;

if zx>=0 & zy>=0 then do;
run FO(F1,10,10,rho,k,1);
run FO(F2,zx,10,-rho,k,1); F2=F2x (—1)**1;
run FO(F3,10,zy,-rho,k,1); F3=F3%(-1) *xk;
run FO(F4,zx,zy,rho,k,1);
F=F1+F2+F3+F4;

end;

finish;

start prob (pp,x1,x2,yl,y2,rho);
pp=probbnrm(x2,y2,rho)-probbnrm(x2,y1,rho)
-probbnrm(x1,y2,rho)+probbnrm(x1,yl,rho);

finish;

start volume(p,rho,vv,zx,zy,II,JJ) global(nr,nc,nrl,ncl,Er,Ec,CI,pie);
zx1=-10//zx; zx2=zx//10;
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zyl1=-10//zy; zy2=zy//10;

run prob(pplJ,zx[II-1],zx[II],zy[JJ-1],zy[JJ],rho);
run prob(ppIJi,zx[II-1],0,zy[JJ-1],0,rho);

run prob(pplJ2,zx[II-1],0,0,zy[JJ],rho);

run prob(pplJ3,0,zx[II],zy[JJ-1],0,rho);

run prob(pplJ4,0,zx[II],0,zy[JJ],rho);

run prob(ppI, ((zx[II-1])*Ec), ((zx[II])*Ec),zyl,zy2,rho);
run prob(ppIl, ((zx[II-1])*Ec), (0*Ec),zyl,zy2,rho);

run prob(ppI2, (0*Ec), ((zx[II])*Ec),zyl,zy2,rho);

run prob(ppJ,zxl,zx2, ((zy[JJ-1])*Er), ((zy[JJ])*Er) ,rho);
run prob(ppJl,zxl,zx2, ((zy[JJ-1])*Er), (0xEr) ,rho);

run prob(ppJ2,zx1,zx2, (0%Er), ((zy[JJ])*Er) ,rho);

volc1=J(nr,nc,0) ;volc2=J(nr,nc,0) ;volc3=J(nr,nc,0) ;volcd4=J(nr,nc,0);

volc1[1:II-1,1:JJ-1]=1;
volc2[1:II-1,JJ+1:ncl=1;
volc3[II+1:nr,1:JJ-1]=1;
volc4[II+1:nr,JJ+1:ncl=1;

volc1[II,1:JJ-1]1=(ppI1[1:JJ-1]1/ppI[1:JJ-11)°;
volc2[II,JJ+1:nc]=(ppI1[JJ+1:nc]/ppI[JJ+i:nc])‘;
volc3[II,1:JJ-1]1=(ppI2[1:JJ-1]1/ppI[1:JJ-11)¢;
volc4[II,JJ+1:nc]=(ppI2[JJ+1:nc]/ppI[JJ+1i:nc])‘;

volc1[1:1I-1,J3J]=(ppJ1[1:II-1]1/ppJ[1:I1I-1]);
volc2[1:11-1,J3J]1=(ppJ2[1:1I-1]/ppJ[1:1I-1]1);
volc3[II+1:nr,JJ]=(ppJ1[II+1:nr]/ppJ[II+1l:nr]);
volc4[II+1:nr,JJ]=(ppJ2[II+1:nr]/ppJ[II+l:nr]);

volc1[II,JJ]=pplJ1/pplJ;
volc2[II,JJ]=ppIlJ2/pplJ;
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volc3[II,JJ]=ppIlJ3/pplJ;
volc4[II,JJ]=ppIlJ4/pplJ;

vl=colvec(volcl);
v2=colvec(volc2);
v3=colvec(volc3);
vd=colvec(volc4);
vv=(vi+v4) - (v2+v3);

voll=v1‘*CI*p;
vol2=v2‘*CI*p;
vol3=v3‘*CI*p;
v0l4=v4 ‘*xCI*p;

finish;

start rho (p,rhop,vvp,zxp,zyp,IIp,JJp,drdp) global(pie,CI);
i=0;
rhop=0; diffr=1;
do while ((diffr > 1e-10) & (i<100));
i=i+1;
rhov=rhop;
run volume(p,rhop,vvp,zxp,zyp,1Ip,JJp);
rhop=sin(pie/2* (vvp‘*CI*p));
diffr=sqrt ((rhop-rhov) **2) ;
drdp=cos (pie/2* (vvp ‘*CI*p))*pie/2*vvp‘*CI;
end;

finish;

start GGxy(p,rho,zx,zy,Dx,Dy,drdp,GGxy) global(nrl,ncl,rc,Pmx,Pmy,Gmnx,Gmy,Gmnxy) ;
ZZx=zx0J(1,nc1,1);
ZZy=zy‘@J(nrl,1,1);
dFdzxm=diag(pdf (’normal’,zx))*probnorm((ZZy-rho*ZZx) /sqrt (1-rho**2)) ;
dFdzym=probnorm((ZZx-rho*ZZy) /sqrt (1-rho**2))*diag(pdf (’normal’,zy)) ;
do i=1 to nril;
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EEr=J(nrl,nr1,0);
EEr([i,i]=1;
tyd=colvec (EEr*dFdzxm) ;
if i=1 then dFdzx=tyd;
else dFdzx=dFdzx||colvec(tyd);
end;
do j=1 to ncil;
EEc=J(ncl,nc1,0);
EEc[j,jl=1;
tyd=colvec (dFdzym*EEc) ;
if j=1 then dFdzy=colvec(tyd) ;
else dFdzy=dFdzy| |colvec(tyd);
end;
dFdr=J(nrl,ncl1,0); rho2=rho**2;
do i=1 to nrl; do j=1 to ncl;
run F(F00,rho,zx[i],zy[j],0,0);
run F(F20,rho,zx[i],zy[j],2,0);
run F(F11,rho,zx[i],zy[jl,1,1);
run F(F02,rho,zx[i],zy[j],0,2);
dFdr[i, jl=rho/(1-rho2)*F00 - rho/((1-rho2)**2)*F20
+ (1+rho2)/((1-rho2)**2)*F11 - rho/((1-rho2)**2)*F02;
end; end;
dFdr=colvec(dFdr) ;
dzxdp=Pmx*Dx*Gmx ;
dzydp=Pmy*Dy*Gmy ;
GGxy=(dFdzx| |dFdzy| |dFdr) * (dzxdp//dzydp//drdp) - Gmxy;

finish;

start marginal (px,alphaxp,muxp,sigmaxp,zxp,nr,IIp,Dxp,Gmx,XD,XXX,Pmx,GGxp) ;
alphaxp=XXX*probit (px) ;
zxp=XD*alphaxp;
muxp=alphaxp[2] /alphaxp[1];
sigmaxp=1/alphaxp[1];
do IIp=1 to nr until (zxp[IIp]>=0); end;
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Dxp=inv(diag(pdf (’normal’,probit(px))));
GGxp=diag(pdf (*normal’,zxp) ) *Pmx*Dxp*Gmx - Gmx;

finish;

start fit;
i=0; pO=p; diffil=1;
do while (diffl > 1e-8);
i=i+1; pi=p; p=pO;
V=(C*diag(CI*pi)*C‘-pi*pi‘)/n;
matrixpi=shape(pi,nr);
pix=matrixpil[l:nril,nc];
piy=matrixpil[nr,1:ncl]‘;
pixy=colvec(matrixpil[l:nrl,1:ncl]);
run marginal (pix,alphaxpi,muxpi,sigmaxpi,zxpi,nr,IIpi,Dxpi,Gmx,XD,XXX,Pmx,GGxpi) ;
run marginal (piy,alphaypi,muypi,sigmaypi,zypi,nc,JJpi,Dypi,Gmy,YD,YYY,Pmy,GGypi) ;
run rho(pi,rhopi,vvpi,zxpi,zypi,IIpi,JJpi,drdpi);
run GGxy(pi,rhopi,zxpi,zypi,Dxpi,Dypi,drdpi,GGxypi);
GGpi=GGxpi//GGypi//GGxypi;

j=0; diff=1;
do while (diff > 1e-8);
j=j+1; pv=p;

matrixp=shape(p,nr) ;

px=matrixp[l:nrl,nc];

py=matrixp[nr,1:ncl]‘;

pxy=colvec(matrixp[l:nrl,1:ncl]);

run marginal (px,alphaxp,muxp,sigmaxp,zxp,nr,IIp,Dxp,Gmx,XD,XXX,Pmx,GGxp) ;
run marginal (py,alphayp,muyp,sigmayp,zyp,nc,JJp,Dyp,Gmy,YD,YYY,Pmy,GGyp) ;
run rho(p,rhop,vvp,zxp,zyp,I1Ip,JJp,drdp);

run GGxy(p,rhop,zxp,zyp,Dxp,Dyp,drdp,GGxyp) ;

GGp=GGxp//GGyp//GGxyp;

gx=probnorm(zxp) -px;

gy=probnorm(zyp) -py;

gxy=probbnrm(zxp@Ec1,Er10@zyp,rhop) -pxy;

g=gx//gy//gxy;
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*print r 1 j g pi p,
rhopi muxpi sigmaxpi muypi sigmaypi,
rhop muxp sigmaxp muyp sigmayp;
p=p- (GGpi*V) ‘*ginv (GGp*V*GGpi ‘) *g;
if i=1 & j=1 then do;
Wald=g‘*ginv (GGp*V*GGp ‘) *g;
GGpV=GGp*V;
df=trace (GGpV*ginv (GGpV ‘ *GGpV) *GGpV ‘) ;
pvalue=1-probchi(Wald,df) ;
discr=wald/n;
Cov_rho=drdpi*V*drdpi‘;
SE_rho=sqrt (Cov_rho) ;
end;
diff=sqrt ((p-pv) ‘*(p-pv));
end;
diffi=sqrt ((p-pi) ‘*(p-pi));
end;
mux=muxp; sigmax=sigmaxp;
muy=muyp; sigmay=sigmayp;
rho=rhop;

Cov_pi=V-(GGpi*V) ‘*ginv (GGpi*V*GGpi ‘) * (GGpix*V) ;

alpha_xy=mux-muy*rho*sigmax/sigmay;
beta_xy=rho*sigmax/sigmay;
alpha_yx=muy-mux*rho*sigmay/sigmax;

beta_yx=rho*sigmay/sigmax;

alphax=alphaxp;
Cov_alphax=(XXX*Dxpi*Gmx) *Cov_pi* (XXX*Dxpi*Gmx) ¢ ;
Ax=3(2,2,0);

Ax[1,1]=-alphax[2]/((alphax[1])**2);
Ax[1,2]=1/(alphax[1]);

Ax[2,1]=-1/((alphax [1])**2);
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Cov_musigx=Ax*Cov_alphax*Ax‘;
SE_mux=sqrt (Cov_musigx[1,1]);
SE_sigmax=sqrt (Cov_musigx[2,2]);

alphay=alphayp;
Cov_alphay=(YYY*Dypi*Gmy) *Cov_pi* (YYY*Dypi*Gmy) ¢ ;
Ay=J(2,2,0);
Ay[1,1]=-alphay[2]/((alphay[1])**2);
Ay[1,2]=1/(alphay[1]);
Ay[2,1]=-1/((alphay[1])**2);
Cov_musigy=Ay*Cov_alphay*Ay‘;
SE_muy=sqrt (Cov_musigy[1,1]);
SE_sigmay=sqrt(Cov_musigy[2,2]);
exp=shape ((CI*pi*n) ,nr);
Pearson=(((freq-exp)##2) /exp) [+];

print r freq exp matrixp,
mux SE_mux sigmax SE_sigmax,
muy SE_muy sigmay SE_sigmay,
rho SE_rho;

finish;

start write;
stats[r,1]=number;
stats[r,2]=1i;
stats[r,3]=j;
stats[r,4]=smux;
stats([r,5]=ssigx;
stats[r,6]=smuy;
stats([r,7]=ssigy;
stats[r,8]=srho;
stats[r,9]=mux;
stats[r,10]=SE_mux;
stats[r,11]=sigmax;
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stats[r,12]=SE_sigmax;
stats[r,13]=muy;
stats[r,14]=SE_muy;
stats[r,15]=sigmay;
stats[r,16]=SE_sigmay;
stats[r,17]=rho;
stats([r,18]=SE_rho;
stats[r,19]=Pearson;
stats[r,20]=Wald;

finish;

stats=J(rep,20,0);
do r=1 to rep;
run data;
run fit;
run write;
number=number+1;

end;

create a from stats [colname={’number’ ’i’ ’j’ ’smux’ ’ssigx’ ’smuy’ ’ssigy’
’srho’ ’mux’ ’SE_mux’ ’sigmax’ ’SE_sigmax’ ’muy’ ’SE_muy’ ’sigmay’ ’SE_sigmay’
’rho’ ’SE_rho’ ’Pearson’ ’Wald’}];

append from stats;

quit;

proc means data=a mean std p5 p50 p95;

run;



