
Chapter 13

Simulation study

The purpose of this sumulation study is to prove that a bivariate normal distribution can be fitted

accurately to a two-way contingency table by employing the ML estimation procedure presented in

Part III of this thesis. A total of 1000 samples were simulated from a bivariate normal distribution

such that

(x, y) ∼ BVN
(
11, 48, 32, 82,−0.7

)
.

Each of the data sets consisted of 1000 observations and the descriptive statistics for the sample

statistics are listed in Table 13.1. From Table 13.1 it can be concluded that the sample statistics of

the simulated data sets correspond very well to the theoretical values.

Table 13.1: Descriptive statistics for the sample statistics.

Stat Mean Std.dev P05 Median P95

x 11.008 0.0957 10.849 11.008 11.157

sx 2.9972 0.0655 2.887 2.998 3.110

y 47.978 0.2620 47.550 47.970 48.403

sy 7.9952 0.1765 7.703 7.994 8.291

r −0.6999 0.0163 −0.7273 −0.7000 −0.6734

The next step will be to cross tabulate each of the bivariate data sets into a two-way contingency

table and to fit a bivariate normal distribution to each of the 1000 bivariate grouped data sets. This
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simulation study was done with of the SAS program BVNSIM.SAS listed in the Appendix C4.

13.1 Theoretical distribution

The simulated data sets were all categorised in a two-way contingency table, with the following

upper class boundaries

x =




8

10

12


 and y =




45

50

55


 .

The first and last class intervals, for both variables were treated as open ended class intervals and

the frequency distribution for the theoretical distribution is given in Table 13.2.

Table 13.2: Theoretical frequency distribution for BVN(11, 48, 32, 82,−0.7) distribution.

X Y

(−∞, 45) [45, 50) [50, 55) [55,∞) Total

(−∞, 8) 4.722 18.436 41.402 94.095 158.655

[8, 10) 27.011 55.569 69.373 58.832 210.786

[10, 12) 79.095 86.607 65.581 29.834 261.117

[12,∞) 243.002 84.264 34.150 8.026 369.441

Total 353.830 244.876 210.507 190.787 1000

The cumulative relative frequencies for the theoretical distribution, expressed in terms of matrix

notation, is

Π =




0.00472 0.02316 0.06456 0.15866

0.03173 0.10574 0.21651 0.36944

0.11083 0.27144 0.44780 0.63056

0.35383 0.59871 0.80921 1.00000




. (13.1)
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The ML estimators of the 5 parameters of the bivariate normal distribution are all asymptotically

normally distributed with standard errors functions of (13.1). The standard errors and percentiles

of the ML estimators are listed in Table 13.3.

Table 13.3: Theoretical values for the ML estimators of the bivariate normal distribution.

ML estimate Standard error Margin of error Percentiles

P05 Median P95

µ̂x σµ̂x = 0.1054 1.645σµ̂x = 0.1733 10.827 11 11.173

σ̂x σσ̂x = 0.1123 1.645σσ̂x = 0.18466 2.8153 3 3.1733

µ̂y σµ̂y = 0.2788 1.645σµ̂y = 0.45854 47.541 48 48.459

σ̂y σσ̂y = 0.3065 1.645σσ̂y = 0.50415 7.4958 8 8.1733

ρ̂ σρ̂ = 0.021085 1.645σρ̂ = 0.03468 −0.7347 −0.7 −0.6653

The descriptive statistics for the ML estimates of the 1000 fitted bivariate normal distributions are

summarised in Table 13.4.

Table 13.4: Simulation results of 1000 fitted bivariate normal distributions.

MLE Theoretical Value Mean Std.dev P05 Median P95

µ̂x 11 11.010 0.1042 10.842 11.008 11.178

σ̂µ̂x 0.1054 0.1055 0.0045 0.0980 0.1055 0.1130

σ̂x 3 3.0007 0.1166 2.8063 3.0006 3.1978

σ̂σ̂x 0.1123 0.1125 0.0066 0.1017 0.1124 0.1238

µ̂y 48 47.973 0.2829 47.503 47.971 48.426

σ̂µ̂y 0.2788 0.2788 0.0121 0.2590 0.2785 0.2996

σ̂y 8 7.9938 0.3203 7.4700 7.9914 8.5373

σ̂σ̂y 0.3065 0.3066 0.0187 0.2763 0.3062 0.3387

ρ̂ −0.7 −0.7006 0.0243 −0.7421 −0.7002 −0.6604
σ̂ρ̂ 0.021085 0.0211 0.0013 0.0189 0.0211 0.0231
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It is evident from Table 13.4, that the mean for all the ML estimates are remarkably close to the

theoretical values. It is also interesting to note that the standard deviation of the 5 ML estimates

µ̂x, σ̂x, µ̂y, σ̂y and ρ̂ are very close to the mean of its standard errors. E.g. the standard deviation

of the µ̂x-values is 0.1042 and the mean of the σ̂µ̂x-values is 0.1055. The percentiles of the ML

estimates in the simulation study (see Table 13.4) correspond extremely well to that of the theoretical

distribution given in Table 13.3.

A comparison between the descriptive statistics of the sample statistics of the ungrouped bivariate

data sets in Table 13.1 with that of the descriptive statistics of the ML estimates of the grouped

data sets tabulated in Table 13.4 shows are very close to each other. This motivates that not too

much accuracy is being lost with a grouped data set, when analysed correctly.

The Wald and Pearson goodness of fit statistics were calculated for each of the 1000 estimated

bivariate normal distributions. The percentiles of these two statistics are tabulated in Table 13.5

and agrees with a χ2-distribution with 10 degrees of freedom.

Table 13.5: Percentiles of the Pearson and Wald statistic.

Percentiles

P5 P10 P25 P50 P75 P90 P95

Pearson 3.8374 4.8481 7.1377 9.8363 13.3152 16.7631 18.9273

Wald 4.0572 5.2029 7.6182 10.6859 14.6539 19.3063 23.5933

Percentiles of a χ2-distribution with 10 degrees of freedom.

χ20.05 χ20.10 χ20.25 χ20.50 χ20.75 χ20.90 χ20.95

χ2 (10) 3.9403 4.8652 6.7372 9.3418 12.5489 15.9872 18.3070

It can therefore be concluded that the empirical and theoretical distributions of the Pearson and

Wald statistics correspond to each other.
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Chapter 14

Résumé

The main objective of this research is to provide a theoretical foundation for analysing grouped data,

taking the underlying continuous nature of the variable(s) into account. Statistical techniques have

been developed and applied extensively for continuous data, but the analysis for grouped data has

been somewhat neglected. This creates numerous problems especially in the social and economic

disciplines, where variables are grouped for various reasons. Due to a lack for the appropriate sta-

tistical techniques to evaluate grouped data, researchers are often tempted to ignore the underlying

continuous nature of the data and employ e.g. the class midpoint values as an alternative. This

leads to an oversimplification of the problem and valuable information in the data is being ignored.

The first part of the thesis demonstrates how to fit a continuous distribution to a grouped data

set. By implementing the ML estimation procedure of Matthews and Crowther (1995: A maximum

likelihood estimation procedure when modelling in terms of constraints. South African Statistical

Journal, 29, 29-51) the ML estimates of the parameters are obtained. The standard errors of the

ML estimates are derived from the multivariate delta theorem. It is interesting to note that not

much accuracy has been lost by grouping the data, justifying that statistical inference may be done

effectively from a grouped data set. The main concern of this part of the thesis was to foster the

basic principles. The examples and distributions discussed are merely used to illustrate and explain

the philosophy from basic principles. The fit of various other continuous distributions, not mentioned

in the thesis, such as the gamma distribution and the lognormal distribution can also be done using

the same approach.
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The second part of the thesis concentrates on the analysis of generalised linear models where the

response variable is presented in grouped format. A cross classification of the independent variables

leads to various so-called cells, each containing a frequency distribution of the response variable.

Due to the nature of the response variable the usual analysis of variance and covariance models

etc. can no longer be applied in the usual sense. A completely new approach, where a specified

underlying continuous distribution for the grouped variable is fitted to each cell in the multifactor

design is introduced. Certain measures such as the average, median or even any other percentile

of the fitted distributions are modelled to explain the influence of the independent variables on the

response variable. This evaluation may be done by means of a saturated model where no additional

constraints are employed in the ML estimation procedure or by means of any other model where

certain structures with regard to the independent variables are incorporated. The main objective is

ultimately to provide a satisfactory model that describes the data as effectively as possible, revealing

the various trends in the data. Employing the multivariate delta theorem, the standard errors for

the ML estimates are calculated, enabling testing of relevant hypotheses. The goodness of fit of the

model is evaluated with the Pearson and Wald statistics.

Two applications of multi-factor models are presented. In the first application normal distributions

are fitted to the cells in a single factor design. The behavior of the mean of the fitted normal

distributions revealed the effect of the single independent variable. Various models are employed to

explain the versatility of the technique. Apart from the single factor model a two factor model was

employed for data from short term insurance. The positive skewness of the grouped response variable

suggested that a log-logistic distribution is to be fitted to the data. The median of the log-logistic

distributions was modelled in a two factor model to explain the effect of the independent variable

on the response variable. It is also illustrated how to incorporate a grouped independent variable

as a covariate or regressor in the model. In the past where researchers might have been restricted

to tabulations and graphical representations it is now shown that the possibilities of modelling a

grouped response variable in a generalised model are in principle unlimited. The application of a

three factor model or any higher order model follows similarly. A typical example pursue from the

population census data where the grouped variable income can be explained utilising independent

variables such as gender, province, population group, age, education level, occupation, etc.

A final intriguing contribution, given in the third part, is the fit of a bivariate normal distribution to

a two-way contingency table. In the case where the underlying distribution of two grouped response

variables are jointly normally distributed it is often required to investigate the association between

two variables. Traditionally, classical measures such as kappa and McNemar were employed, but
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are limited in the sense that the complete bivariate structure between the two variables are not

revealed. Since all five parameters are estimated, statistical inferences are possible with regard to

the marginal as well as the partial distributions. The estimation of the parameter ρ, the correlation

coefficient, explains the relationship between the two variables. The calculation of ρ is done by

implementing Sheppard’s theorem on median dichotomy (1898), which is based on the volumes

of the four quadrants of the bivariate normal distribution. It is shown that the calculation of the

correlation coefficient, using the standard regression techniques, could lead to incorrect results due

to the fact that the required conditions are not met. The method proposed is motivated by a

simulation study.

Although various aspects of modelling grouped data are addressed in this thesis, this forms the basic

building blocks for the beginning of a completely new and promising field of research with unlimited

possibilities and exciting applications to be analysed.
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