
Chapter 1

Introduction

In many situations, data are only available in a grouped form. Typical continuous variables such as

income, age, test scores and many more are for various reasons classified into a few class intervals.

The implication is that the usual statistical techniques employed for continuous variables can no

longer be applied in the usual sense. Often when researchers are confronted with grouped data,

the underlying continuous nature of the variable is ignored and the data do not comply to the

requirements of the statistical tests applied.

The maximum likelihood (ML) estimation procedure of Matthews and Crowther (1995) will be

utilized to fit a continuous distribution to a grouped data set. This grouped data set may be a

single frequency distribution or various frequency distributions that arise from a cross classification of

several factors in a multifactor design. It will also be shown how to fit a bivariate normal distribution

to a two-way contingency table where the two underlying continuous variables are jointly normally

distributed.

This thesis is organized in three different parts, each playing a vital role in the explanation of analysing

grouped data with the ML estimation of Matthews and Crowther. All the examples, applications

and simulations are done with the SAS procedure IML, listed in the Appendix.
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Part I

The ML estimation procedure of Matthews and Crowther is formulated. This procedure plays an

integral role and is implemented in all three parts of the thesis. In Part I the exponential distribution

is fitted to a grouped data set to explain the technique. Two different formulations of the constraints

are employed in the ML estimation procedure and provide identical results. The justification of the

method is further motivated by a simulation study. Similar to the exponential distribution, the

estimation of the normal distribution is also explained in detail. Part I is summarized in Chapter 5

where a general method is outlined to fit continuous distributions to a grouped data set. Distributions

such as the Weibull, the log-logistic and the Pareto distributions can be fitted very effectively by

formulating the vector of constraints in terms of a linear model.

Part II

In Part II it is explained how to model a grouped response variable in a multifactor design. This

multifactor design arise from a cross classification of the various factors or independent variables to

be analysed. The cross classification of the factors results in a total of T cells, each containing a

frequency distribution. Distribution fitting is done simultaneously to each of the T cells of the mul-

tifactor design. Distribution fitting is also done under the additional constraints that the parameters

of the underlying continuous distributions satisfy a certain structure or design. The effect of the

factors on the grouped response variable may be evaluated from this fitted design. Applications of a

single-factor and a two-factor model are considered to demonstrate the versatility of the technique.

Part III

A two-way contingency table where the two variables have an underlying bivariate normal distribution

is considered. The estimation of the bivariate normal distribution reveals the complete underlying

continuous structure between the two variables. The ML estimate of the correlation coefficient ρ is

used to great effect to describe the relationship between the two variables. Apart from an application

a simulation study is also provided to support the method proposed.

 
 
 



Part I

Fitting distributions to grouped data
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Chapter 2

The ML estimation procedure

In this chapter the ML estimation procedure of Matthews and Crowther (1995) is presented. This

procedure is employed to find the ML estimates in the statistical analysis of grouped data. The

formulation and explanation of the ML estimation procedure described in this chapter will be used

throughout the thesis.

2.1 Formulation

Consider a total of n observations tabulated in a frequency distribution with k classes.

Table 2.1: General formulation of a frequency distribution.

Class Interval Frequency

(−∞, x1) f1

[x1, x2) f2
...

...

[xk−2, xk−1) fk−1

[xk−1,∞) fk
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The observations in Table 2.1 originate from a continuous distribution and information concerning

the distribution is now only available in grouped form. In Table 2.1 the first and last intervals of the

frequency distribution may be open ended class intervals.

Denote the vector of the first (k − 1) frequencies in Table 2.1 by

f =




f1

f2
...

fk−1




(2.1)

with corresponding vector of upper class boundaries

x =




x1

x2
...

xk−1




. (2.2)

It is assumed that the vector f is a random vector with some discrete distribution such as Poisson,

multinomial or product multinomial. Assume multinomial sampling and define

p0 =
1

n
f (2.3)

as the vector of relative frequencies. Let π0 denote the vector of probabilities, where the i-th element

of π0 is the probability that an observation falls in the i-th class interval. Hence, the expected value

of p0 is

E(p0) = π0 (2.4)

with covariance matrix

Cov(p0) =
1

n
(diag [π0]−π0π′0) = V0 (2.5)

where diag [π0] is a diagonal matrix with the elements of π0 on the diagonal.

The vector of cumulative relative frequencies is denoted by

p = Cp0 (2.6)
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where C is a triangular matrix such that

C : (k − 1)× (k − 1) =




1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0
...
...
...
. . .

...

1 1 1 · · · 1




. (2.7)

The expected value of p is

E(p) = Cπ0

= π (2.8)

with covariance matrix

Cov(p) = CV0C
′

= C

{
1

n
(diag [π0]−π0π′0)

}
C′

=
1

n

{
Cdiag

[
C−1π

]
C′ − ππ′

}

= V . (2.9)

2.2 Estimation

The frequency vector f is distributed according to a multinomial distribution and consequently

belongs to the exponential class. Since the vector of cumulative relative frequencies is a one-to-one

transformation of f , the random vector p may be implemented in the ML estimation procedure

of Matthews and Crowther (1995) presented in Proposition 1. Utilizing the ML estimation, it is

possible to find the ML estimate of π, under the restriction that π satisfies the constraints defined

in the ML estimation procedure.

The basic foundation of this research are given in the following two propositions. The proofs are

given in Matthews and Crowther (1995).
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Proposition 1 (ML estimation procedure)

Consider a random vector of cumulative relative frequencies p, which may be considered as a

non-singular (one-to-one) transformation of the canonical vector of observations, belonging to the

exponential family, with

E(p) = π and Cov(p) = V .

The observed p is the unrestricted ML estimate of π and the covariance matrix V may be a

function of π. Let g(π) be a continuous vector valued function of π, for which the first order

partial derivatives,

Gπ=
∂g(π)

∂π
(2.10)

with respect to π exist. The ML estimate of π, subject to the constraints g(π) = 0 is obtained

iteratively from

π̂= p− (GπV)′ (GpVG
′
π)
∗
g(p) (2.11)

where Gp =
∂g(π)

∂π

∣∣∣∣
π=p

and (GpVG
′
π)
∗
is a generalized inverse of (GpVG

′
π).

The iterative procedure implies a double iteration over p and π. The procedure starts with the

unrestricted ML estimate of π, as the starting value for both p and π. Convergence is first obtained

over p using (2.11). The converged value of p is then used as the next value of π, with convergence

over p starting again at the observed p. In this procedure V is recalculated for each new value of

π in the iterative procedure. Convergence over π ultimately leads to π̂, the restricted ML estimate

of π .

Proposition 2 The asymptotic covariance matrix of π̂, under g(π) = 0, is

Cov (π̂) � V− (GπV)′ (GπVG
′
π)
∗
(GπV) (2.12)

which is estimated by replacing π by π̂.

In Matthews and Crowther (1995) it is assumed that the restrictions are linearly independent, but

in Matthews and Crowther (1998), it is shown that if the restrictions are linearly dependent, it leads

to the generalized inverse, (GπVG
′
π)
∗
, to be introduced in (2.11) and (2.12).

The objective is now to find the ML estimate of π, under the constraints that the cumulative relative

frequencies π, equal the cumulative distribution curve, F (x) at the upper class boundaries x. This
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implies that the ML estimate of π is to be obtained under the restriction

F (x) = π (2.13)

which means that the vector of constraints in (2.11) may be formulated as

g(π) =F (x)− π = 0 . (2.14)

The set of constraints in Proposition 1 is essentially not unique and may be dependent. Any function

say g1(π), that implies the same constraints on π as g(π), may be used and will provide the same

results. The objective now is to choose g(π) in such a way to simplify the calculation of derivatives

and to streamline the estimation process. In some instances it is possible to find the ML estimate

of π under constraints, by making use of traditional methods, but the procedure suggested in

Proposition 1 provides an elegant and straightforward method for obtaining the ML estimates.

2.3 Goodness of fit

In order to test the deviation of the observed probabilities p from the restricted ML estimates π̂,

imposed by the constraints g(π) = 0, it is convenient to formulate and test the null hypothesis

H0 : g(π) = 0

by some goodness of fit statistic like the Pearson χ2-statistic

χ2 =
k∑

i=1

(pi − π̂i)
2

π̂i
(2.15)

or the Wald statistic

W = g(p)′(GpVG
′
p)
∗
g(p) . (2.16)

Both the Pearson and the Wald statistic have a χ2-distribution with r degrees of freedom, where r

is equal to the number of linear independent constraints in g(π).

Another useful measure, is the measure of discrepancy

D =W/n (2.17)

which will provide more conservative results for large sample sizes. As a rule of thumb the observed

and expected frequencies are considered to not deviate significantly from each other if the discrepancy

is less than 0.05.

 
 
 



Chapter 3

The exponential distribution

To illustrate the underlying methodology of fitting a distribution via the ML estimation process

described in Proposition 1, it will be shown how to fit an exponential distribution to the frequency

data in Table 2.1.

The probability density function (pdf) of an exponential random variable with expected value µ is

given by

f(x;µ) =
1

µ
e−x/µ (3.1)

and the cumulative distribution function (cdf) is given by

F (x;µ) = 1− e−x/µ . (3.2)

To fit an exponential distribution it is required (see 2.13) that

1− exp(−θx) = π (3.3)

where 1 : (k − 1)× 1 is a vector of ones, x is the vector of upper class boundaries and θ = µ−1.

From this requirement (3.3) two alternative ways of performing the estimation procedure are de-

scribed. In Sections 3.1 and 3.2 it will be shown that although the specifications of the two sets of

constraints, g(π) = 0, seem completely different, the final results obtained are identical.
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3.1 Direct set of constraints

A direct set of constraints in (2.11) follows from (3.3) with

g(π)= {1− exp (−θx)} − π . (3.4)

The parameter θ is expressed in terms of the cumulative probabilities in (3.3) and hence

θ = −x
′ ln(1− π)
x′x

. (3.5)

The chain rule for matrix differentiation is employed in (3.6) to obtain the following matrix of partial

derivatives

Gπ =
∂g(π)

∂π

=
∂ ({1− exp (−θx)} − π)

∂π

= −∂ exp (−θx)

∂π
− ∂π

∂π

= −∂ exp (−θx)

∂θ
· ∂θ
∂π

− I (3.6)

= −

∂




exp (−θx1)

exp (−θx2)
...

exp (−θxk−1)




∂θ
·
(
− x′

x′x

)
·

∂




ln(1− π1)

ln(1− π2)
...

ln(1− πk−1)




∂π
− I

=




exp (−θx1) · x1
exp (−θx2) · x2

...

exp (−θxk−1) · xk−1



·
(
− x′

x′x

)
· diag




−(1− π1)
−1

−(1− π2)
−1

...

−(1− πk−1)
−1



− I

= − (diag [exp (−θx)]) ·Px ·Dπ − I (3.7)

where

Px= x (x
′x)

−1
x′ (3.8)
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is the projection matrix of x and

Dπ =
∂ ln(1− π)

∂π
= − (diag [1− π])−1 . (3.9)

The estimation procedure in Proposition 1 utilizes a double iteration over π and p starting with the

observed vector of cumulative relative frequencies as the initial values for both convergencies over

π and p. The iterative procedure may be summarised as follows:

p† = observed cumulative relative frequencies

p = p†

Px= x (x
′x)−1 x′

DO OVER π

π = p

V = 1
n
{Cdiag [C−1π]C′ − ππ′}

θπ = −x
′ ln(1− π)
x′x

Dπ=− (diag [1− π])−1

Gπ = − (diag [exp (−θπx)]) ·Px ·Dπ − I
p = p†

DO OVER p

θp = −
x′ ln(1− p)

x′x

Dπ=− (diag [1− π])−1

Gp = − (diag [exp (−θpx)]) ·Px ·Dp − I
g(p)= {1− exp (−θpx)} − p
p = p− (GπV)′ (GπVGp)

∗
g (p)

END

END
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From the above it follows that convergence is first obtained over p where the parameter θp, the vector

of constraints g(p) and the matrix of partial derivatives Gp are all functions of p. Convergence

over p leads to the next value of π with convergence over p starting again at the observed vector of

cumulative relative frequencies namely p†. The values of V, θπ and Gπ are recalculated for every

value of π when iterating over π. Convergence over π ultimately leads to π̂, the restricted ML

estimate of π under g (π)= 0 with corresponding ML estimator

θ̂ = −x
′ ln(1− π̂)
x′x

(3.10)

and hence the ML estimator for the exponential distribution

µ̂ =
1

θ̂
= −

(
x′ ln(1− π̂)

x′x

)−1
(3.11)

follows. The iterative process is illustrated in Example 3.1.

Example 3.1

Consider n = 100 observations simulated from an exponential distribution with expected value

µ = θ−1 = 50. The grouped data set is shown in Table 3.1.

Table 3.1: Simulated data set from an exponential distribution.

Class interval Frequency

[0, 12.5) 17

[12.5, 25) 14

[25, 50) 31

[50, 100) 26

[100,∞) 12

Table 3.2 shows the various values of π and p in the double iteration process, with corresponding

values for µ = θ−1. The results in Table 3.2 can be calculated directly, or can be obtained using the

SAS program EXP1.SAS listed in Appendix A.1.
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Table 3.2: Double iteration process.

Iteration over p

Iteration over π j = 1 j = 2 j = 3 j = 4

i = 1




0.1700

0.3100

0.6200

0.8800







0.1700

0.3100

0.6200

0.8800







0.2373

0.4184

0.6620

0.8862







0.2380

0.4194

0.6629

0.8863







0.2380

0.4194

0.6629

0.8863




µπ = 48.83 µp = 48.83 µp = 46.03 µp = 45.99 µp = 45.99

i = 2




0.2380

0.4194

0.6629

0.8863







0.1700

0.3100

0.6200

0.8800







0.2137

0.3820

0.6186

0.8563







0.2147

0.3833

0.6197

0.8553







0.2147

0.3833

0.6197

0.8553




µπ = 45.99 µp = 48.83 µp = 51.63 µp = 51.72 µp = 51.72

i = 3




0.2147

0.3833

0.6197

0.8553







0.1700

0.3100

0.6200

0.8800







0.2143

0.3829

0.6196

0.8570







0.2152

0.3841

0.6207

0.8561







0.2152

0.3841

0.6207

0.8561




µπ = 51.72 µp = 48.83 µp = 51.49 µp = 51.57 µp = 51.57

i = 4




0.2152

0.3841

0.6207

0.8561







0.1700

0.3100

0.6200

0.8800







0.2143

0.3828

0.6196

0.8570







0.2152

0.3841

0.6207

0.8561







0.2152

0.3841

0.6207

0.8561




µπ = 51.57 µp = 48.83 µp = 51.49 µp = 51.58 µp = 51.58

i = 5




0.2152

0.3841

0.6207

0.8561







0.1700

0.3100

0.6200

0.8800







0.2143

0.3828

0.6196

0.8570







0.2152

0.3841

0.6207

0.8561







0.2152

0.3841

0.6207

0.8561




µπ = 51.58 µp = 48.83 µp = 51.49 µp = 51.58 µp = 51.58
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The procedure starts with the unrestricted ML estimate of π

π = p =




0.1700

0.3100

0.6200

0.8800




(the observed vector of cumulative relative frequencies) and after convergence the restricted ML

estimate of π

π̂ =




0.2152

0.3841

0.6207

0.8561




is obtained. The elements of π̂ follow a cumulative exponential curve at the upper class boundaries

and hence the ML estimate

µ̂ = −
(
x′ ln(1− π̂)

x′x

)−1
= 51.58

follows. The estimated exponential distribution is therefore

f(x) =
1

51.58
exp(− x

51.58
)

and is shown in Figure 3.1, together with the observed frequency distribution (blue line) and esti-

mated frequency distribution (red line).
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Figure 3.1: The estimated exponential distribution with the observed and estimated frequency

distribution.

3.2 Constraints in terms of a linear model

An alternative formulation of the vector of constraints may be developed. The linear model

ln(1− π) = −θx (3.12)

follows from the requirement (3.3) implying that ln(1 − π) is a scalar multiple of the upper class
boundaries, x. Or equivalently, ln(1− π) is in the vector space generated by x.

Since Qx= I− x (x′x)−1 x′ is the projection matrix of the vector space orthogonal to x, the vector
of constraints, g(π) = 0, may now be expressed in terms of a new g(π) namely

g(π) = Qx ln(1− π) . (3.13)
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The rationale behind the constraints (3.13) is that ln(1 − π) is an element of the vector space of
x if and only if ln(1− π) is orthogonal to the error space of x (i.e. vector space orthogonal to x)
in which case Qx ln(1 − π) = 0. The vector of constraints (3.13) consists out of (k − 2) linear

independent functions, since

rank(Qx) = rank (I)− rank
(
x (x′x)

−1
x′
)

= (k − 1)− rank (x)

= (k − 1)− 1

The matrix of partial derivatives is now much simpler than the previous formulation (3.7) with

Gπ =
∂g(π)

∂π

=
∂

∂π
{Qx ln(1− π)} (3.14)

= QxDπ (3.15)

where Dπ=− (diag [1− π])−1 (previously derived in (3.9)).

The restricted ML estimate of π namely π̂ is obtained after convergence of the iterative procedure

and leads to the ML estimators

θ̂ = −x
′ ln(1− π̂)
x′x

and

µ̂ =
1

θ̂
.

Using the multivariate delta theorem (see Bishop, Fienberg and Holland (1975) p.492) the asymp-

totic variance of θ̂ follows

Var(θ̂) �

{
∂θ

∂π

}
Cov(π̂)

{
∂θ

∂π

}′

=

{
x′

x′x
Dπ

}
Cov(π̂)

{
x′

x′x
Dπ

}′
(3.16)

where Cov (π̂) is given in Proposition 2 (2.12).
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Applying the multivariate delta theorem again it follows that

Var(µ̂) �

{
∂µ

∂θ

}2

Var(θ̂)

=
1

θ4
Var(θ̂) (3.17)

and hence

µ̂ � N

(
µ,

1

θ4
Var(θ̂)

)
. (3.18)

Example 3.2

In this example the estimation of the exponential distribution to the simulated frequency distribution

in Table 3.1 is revisited. The vector of constraints (3.13) is now formulated in terms of a linear model.

The results are exactly the same as in the previous formulation (3.4), although the intermediate

iterations differ. The restricted ML estimate of π is tabulated in Table 3.3.

The restricted and unrestricted ML estimate of (− ln(1− π)) are tabulated in Table 3.3.

Table 3.3: The restricted and unrestricted ML estimates.

Upper class Unrestricted MLE Restricted MLE

boundaries p − ln(1− p) π̂ − ln(1− π̂)

12.5 0.1700 0.18633 0.21522 0.24235

25 0.3100 0.37106 0.38412 0.48471

50 0.6200 0.96758 0.62069 0.96941

100 0.8800 2.1203 0.85613 1.9388

According to (3.12) the plot of ln(1 − π̂) against x should follow a straight line. In Figure 3.2

the unrestricted ML estimates are indicated with blue dots, while the restricted ML estimates are

indicated with red circles. The circles follow the straight line

y = 0.019388x

implying that θ̂ = 0.019388 and consequently µ̂ = 0.019388−1 = 51.578.
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Figure 3.2: The values of − ln (1− π̂) follow a straight line.
Other relevant statistics are summarised in Table 3.4.

Table 3.4: ML estimates and goodness of fit statistics.

MLE Goodness of fit

Estimate Std. error Statistic Value df prob

µ̂ = 51.578 σ̂µ̂ = 5.654 Pearson 4.376 3 0.2236

Wald 4.295 3 0.2313

As can be expected, the Pearson and Wald statistics indicate an adequate fit.

For a 95% confidence interval for µ

µ̂± 1.96 (σ̂µ̂)

the margin of error is 1.96 (5.654) = 11.082, resulting in the confidence interval

(40.496 , 62.660) .
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The SAS program EXP2.SAS listed in Appendix A.2 estimates the exponential distribution utilising

the vector of constraints as a linear model.

3.3 Simulation study

In this study 1000 samples were simulated from an exponential distribution with expected value

µ = 50. Each sample consisted of 100 observations and were classified into the 5 class intervals

of Table 3.1. Since the data was simulated from an exponential distribution with expected value

µ = 50 the true population value for π follows from

π = 1− exp
(
− x
50

)
=




0.2212

0.3935

0.6321

0.8647




which implies that the standard error for µ̂ is

σµ̂ �

√
504Var(θ̂)

= 5.458

(Var(θ̂) derived in (3.16)). This compares well with the standard deviation of 5 of the mean of an

ungrouped sample of 100 observations from this exponential distribution.

The ML estimate for µ as well as its estimated standard error were calculated for each of the 1000

generated frequency distributions. The true theoretical values as well as the descriptive statistics for

the ML estimates are summarised in Table 3.5.

Table 3.5: Simulation results for the exponential distribution.

MLE Theoretical Value Mean Std. deviation P5 Median P95

µ̂ 50 50.127 5.727 41.381 49.676 59.956

σ̂µ̂ 5.458 5.487 0.716 4.421 5.418 6.732
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From Table 3.5 it follows that the mean and median of the ML estimates are relatively close to the

theoretical values. Further it is known that approximately 90% of the µ̂-values should be within

1.645 standard deviations from µ = 50 i.e. 1.645σµ̂ = 8.978. This is in accordance with the fifth

and the ninety-fifth percentile of the µ̂-values tabulated in Table 3.5. The standard deviation of the

µ̂-values is also quite close to the standard error σµ̂.

In Table 3.6 the percentiles of the estimated 1000 Pearson and Wald statistics are tabulated. The

critical values of a χ2-distribution with 3 degrees of freedom is also shown in Table 3.6.

Table 3.6: Percentiles of the Pearson and Wald statistic.

Percentiles

P5 P10 P25 P50 P75 P90 P95

Pearson 0.4370 0.6794 1.2829 2.5617 4.3586 6.5765 8.1324

Wald 0.3529 0.6299 1.2751 2.5533 4.2654 6.4586 8.0703

Critical values of a χ2-distribution with 3 degrees of freedom.

χ20.05 χ20.10 χ20.25 χ20.50 χ20.75 χ20.90 χ20.95

χ2 (3) 0.3518 0.5844 1.2125 2.366 4.1083 6.2514 7.8147

From Table 3.6 it is clear that the empirical percentiles of the Pearson and Wald statistics correspond

very well to the theoretical percentiles of a χ2-distribution with 3 degrees of freedom.

The simulation study was done with the SAS program EXPSIM.SAS listed in Appendix A.3.

 
 
 



Chapter 4

The normal distribution

Analogous to the exponential distribution described in Chapter 3 the normal distribution with pdf

f (x;µ, σ) =
1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2}
(4.1)

will be fitted to grouped data using a direct set of constraints and also constraints specified in terms

of a linear model. The mean and variance of the normal distribution are µ and σ2 respectively.

By means of standardisation, z = x−µ
σ
, the standard normal distribution with pdf

φ (z) =
1√
2πσ

exp

{
−1

2
z2
}

(4.2)

is obtained. The cdf of the standard normal distribution is denoted by Φ (z).

To fit a normal distribution to the frequency data in Table 2.1 it is required that

Φ

(
x− µ1

σ

)
= π (4.3)

where Φ (·) is the (vector valued) cdf of the standard normal distribution, 1 is the (k − 1) vector

of ones and x is the vector of upper class boundaries defined in (2.2).

21
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4.1 Direct set of constraints

To fit a normal distribution to grouped data a direct set of constraints, g (π)= 0, with

g (π) = Φ (z)−π (4.4)

follows from (4.3). The vector of standardised upper class boundaries in (4.4) is a function of the

parameters to be estimated namely

z =

(
x− µ1

σ

)

=
(
x −1

)



1
σ

µ
σ




= Xα (4.5)

with

X =
(
x −1

)
(4.6)

and

α =


 α1

α2


 =




1
σ

µ
σ


 (4.7)

the vector of so-called natural parameters.

Under normality (see 4.3)

Φ−1 (π) =

(
x− µ1

σ

)

= Xα (4.8)

which leads to the expression

α = (X′X)
−1
X′Φ−1 (π) . (4.9)

The parameters of the normal distribution are now specified in terms of the cumulative relative

frequencies π. Hence, from (4.5) and (4.9) the standardised upper class boundaries may be expressed

as

z = PXΦ
−1 (π) (4.10)

where

PX = X (X′X)
−1
X′ (4.11)
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is the projection matrix generated by the columns of X. This implies that, under normality the

vector z is the projection of Φ−1 (π) on the vector space of X.

From the chain rule for matrix differentiation, employed in (4.12), it follows that the matrix of partial

derivatives is

Gπ =
∂g (π)

∂π

=
∂Φ (z)

∂π
− ∂π

∂π

=
∂Φ (z)

∂z
· ∂z
∂π

− I (4.12)

= diag [φ (z)] ·PX ·Dπ−I (4.13)

where

Dπ=
∂Φ−1 (π)

∂π
. (4.14)

To solve (4.14) set ν = Φ−1 (π) then Φ (ν) = π and hence

Dπ =
∂ν

∂π

=

(
∂π

∂ν

)−1

=

(
∂Φ (ν)

∂ν

)−1

= (diag [φ (ν)])−1

=
(
diag

[
φ
(
Φ−1 (π)

)])−1
(4.15)

with φ (·) the vector valued pdf of the standard normal distribution.

The vector of constraints (4.4) and the matrix of partial derivatives (4.13) may be implemented in

the ML estimation procedure, where the restricted ML estimate π̂ is obtained iteratively in a double

iterative procedure.
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The iterative procedure may be summarized as follows:

p† = observed cumulative relative frequencies

p = p†

PX= X (X′X)−1X′

DO OVER π

π = p

V = 1
n
{Cdiag [C−1π]C′ − ππ′}

Dπ=(diag [φ (Φ−1 (π))])
−1

zπ = PXΦ
−1 (π)

Gπ = diag [φ (zπ)] ·PX ·Dπ−I
p = p†

DO OVER p

Dp=(diag [φ (Φ−1 (p))])
−1

zp = PXΦ
−1 (p)

Gp = diag [φ (zp)] ·PX ·Dp−I
g(p)= Φ (zp)−p
p = p− (GπV)′ (GπVGp)

∗
g (p)

END

END

For convergence over p the vector of upper class boundaries zp, the matrix of partial derivatives Gp

and the vector of constraints g(p) are all functions of p. Utilizing

p = p− (GπV)′ (GπVGp)
∗
g (p)

convergence is obtained over p resulting in a new value for π. For convergence over π the covariance

matrix V, vector of upper class boundaries zπ and the matrix of partial derivatives Gπ are all

functions of π. Convergence over π leads to the restricted ML estimate π̂ which follows a cumulative
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normal distribution curve at the upper class boundaries x. From the restricted ML estimate π̂ the

ML estimator

α̂ =


 α̂1

α̂2


 = (X′X)

−1
X′Φ−1 (π̂) (4.16)

follows and consequently the ML estimators for the normal distribution are

µ̂ =
α̂2
α̂1

(4.17)

and

σ̂ =
1

α̂1
. (4.18)

See (4.7) for the formulation of the parameters.

Example 4.1

The normal distribution will now be fitted to 100 observations simulated from a normal population

with mean 58 and standard deviation 15. The data is shown in Table 4.1.

Table 4.1: Simulated data set from a normal distribution.

Class Interval Frequency

[0, 40) 9

[40, 50) 26

[50, 60) 24

[60, 75) 27

[75, 100) 14

The various values for p and π in the double iteration process are calculated with the SAS program

NORM1.SAS (listed in Appendix A.4) and tabulated in Table 4.2. The corresponding values for µ

and σ are also listed in Table 4.2.
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Table 4.2: Double iteration process.

Iteration over p

Iteration over π j = 1 j = 2 j = 3 j = 4

i = 1




0.0900

0.3500

0.5900

0.8600







0.0900

0.3500

0.5900

0.8600







0.0950

0.2721

0.5375

0.8734







0.0951

0.2713

0.5367

0.8736







0.0951

0.2713

0.5367

0.8736




µπ = 57.79 µp = 57.79 µp = 58.68 µp = 58.69 µp = 58.69

σπ = 14.76 σp = 14.76 σp = 14.27 σp = 14.26 σp = 14.26

i = 2




0.0951

0.2713

0.5367

0.8736







0.0900

0.3500

0.5900

0.8600







0.1196

0.3094

0.5670

0.8791







0.1206

0.3078

0.5667

0.8796







0.1206

0.3078

0.5667

0.8796




µπ = 58.69 µp = 57.79 µp = 57.50 µp = 57.49 µp = 57.49

σπ = 14.26 σp = 14.76 σp = 14.92 σp = 14.92 σp = 14.92

i = 3




0.1206

0.3078

0.5667

0.8796







0.0900

0.3500

0.5900

0.8600







0.1188

0.3084

0.5666

0.8794







0.1197

0.3068

0.5663

0.8799







0.1197

0.3068

0.5663

0.8799




µπ = 57.49 µp = 57.79 µp = 57.52 µp = 57.52 µp = 57.52

σπ = 14.92 σp = 14.76 σp = 14.88 σp = 14.89 σp = 14.89

i = 4




0.1197

0.3068

0.5663

0.8799







0.0900

0.3500

0.5900

0.8600







0.1188

0.3084

0.5666

0.8794







0.1197

0.3068

0.5663

0.8799







0.1197

0.3068

0.5663

0.8799




µπ = 57.52 µp = 57.79 µp = 57.52 µp = 57.52 µp = 57.52

σπ = 14.89 σp = 14.76 σp = 14.89 σp = 14.89 σp = 14.89
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From Table 4.2 it can be seen that the ML procedure converges extremely fast. The procedure

starts off with the unrestricted ML estimate for π (observed cumulative relative frequencies)

π = p =




0.0900

0.3500

0.5900

0.8600




and converges ultimately to the restricted ML estimate of π

π̂=




0.1197

0.3068

0.5663

0.8799




.

The elements of π̂ follow a cumulative normal distribution curve at the upper class boundaries of x

and hence the ML estimates of the natural parameters follows from (4.16) with

α̂ =


 α̂1

α̂2


 =


 0.06717

3.86338


 .

From (4.17) and (4.18) the ML estimates for the normal distribution are

µ̂ = 57.52 and σ̂ = 14.89 .

The estimated normal distribution is shown in Figure 4.1, together with the observed frequency

distribution (blue line) and estimated frequency distribution (red line).
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Figure 4.1: The estimated normal distribution with the observed and estimated frequency

distribution.

4.2 Constraints in terms of a linear model

In the previous section a normal distribution was fitted to a grouped data set utilizing a direct set

of constraints. In this section the constraints will be formulated in terms of a linear model.

From (4.3) it is possible to formulate the linear model

Φ−1 (π) =

(
x− µ1

σ

)

= Xα (4.19)

where

X =
(
x −1

)
(4.20)
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is the design matrix and

α =


 α1

α2


 =




1
σ

µ
σ


 (4.21)

is the vector of natural parameters.

The linear model (4.19) implies the vector of constraints

g (π) = QXΦ
−1(π) = 0 (4.22)

to be imposed in the ML estimation procedure, where

QX= I−PX (4.23)

is the projection matrix orthogonal toX and PX is previously defined in (4.11). According to (4.22)

the vector of cumulative probabilities will be fitted such that Φ−1(π) is orthogonal to the error

space of X or equivalently such that Φ−1(π) is in the vector space of X.

The matrix of partial derivatives follows

Gπ =
∂QXΦ

−1(π)

∂π
= QXDπ (4.24)

where Dπ = (diag [φ (Φ−1 (π))])
−1
is already derived in (4.15).

Employing the vector of constraints (4.22) and the matrix of partial derivatives (4.24) in the ML

estimation procedure the restricted ML estimate, π̂, is obtained. It follows from (4.19) that the ML

estimator of α is

α̂=


 α̂1

α̂2


 = (X′X)

−1
X′Φ−1 (π̂) (4.25)

with asymptotic covariance matrix

Cov (α̂) �

(
∂α

∂π

)
Cov(π̂)

(
∂α

∂π

)′

=
{
(X′
X)−1X′Dπ

}
Cov(π̂)

{
(X′
X)−1X′Dπ

}′
. (4.26)

The ML estimators

µ̂ =
α̂2
α̂1

and σ̂ =
1

α̂1
(4.27)
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follows from (4.25) and (4.21).

Let

β =


 µ

σ


=




α2
α1

1
α1


 (4.28)

denote the vector of original parameters for the normal distribution. To find the asymptotic distrib-

ution for the ML estimate β̂, the multivariate δ-theorem is once again implemented and hence

β̂ � N
(
β,Cov(β̂)

)
(4.29)

= N




 µ

σ


 ,BCov(α̂)B′


 (4.30)

where

B =
∂β

∂α

=

∂


 µ

σ




∂


 α1

α2




=


 −α2

α21

1
α1

− 1
α21

0


 . (4.31)

Example 4.2

The normal distribution will now be fitted to the frequency distribution tabulated in Table 4.1, now

employing the vector of constraints as a linear model (4.22). By making use of the SAS program

NORM2.SAS in Appendix A.5, the ML estimation procedure yields exactly the same restricted ML

estimate for π, as in Example 4.1, namely

π̂=




0.1197

0.3068

0.5663

0.8799



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although the intermediate iterations differ. The elements of

Φ−1 (π̂) =




−1.17652
−0.50480
0.16691

1.17448




are the estimates of the inverse normal probabilities (standardised upper class boundaries) and

PX = X (X′X)
−1
X′

=




0.64486 0.40187 0.15888 −0.20561
0.40187 0.30841 0.21495 0.07477

0.15888 0.21495 0.27103 0.35514

−0.20561 0.07477 0.35514 0.77570




is the projection matrix generated by the columns of X. Multiplying these two matrices lead to

PXΦ
−1 (π̂) = Φ−1 (π̂)

which means that Φ−1 (π̂) is in the vector space of X and consequently Φ−1 (π̂) is a linear combi-

nation of the columns of X in (4.20). It is also clear that

QXΦ
−1 (π̂) = 0

indicating that Φ−1 (π̂) is orthogonal to the error space of X. (See 4.22 and 4.23.)

The ML estimates and goodness of fit statistics are summarized in Table 4.3

Table 4.3: ML estimates and goodness of fit statistics for the normal distribution.

MLE Goodness of fit

Estimate Std. error Statistic Value df prob

µ̂ = 57.515 σ̂µ̂ = 1.556 Pearson 4.654 2 0.0976

σ̂ = 14.887 σ̂σ̂ = 1.327 Wald 4.855 2 0.1455
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According to the goodness of fit statistics summarized in Table 4.3, the null hypothesis of an

adequate fit is not rejected at a 5% level of significance. The adequate fit is further illustrated in

Figure 4.1.

The estimated standard errors σ̂µ̂ and σ̂σ̂ in Table 4.3 follows from the estimated covariance matrix

Ĉov
(
β̂
)
= Ĉov


 µ̂

σ̂


 =


 2.4219 0.0353

0.0353 1.7622




which is estimated by substituting the restricted ML estimate π̂ in Cov (π̂).

The 95% confidence intervals for µ and σ are tabulated in Table 4.4.

Table 4.4: 95% confidence intervals for µ and σ.

Parameter Margin of error Confidence interval

µ 1.96 (1.556) = 3.049 (54.951, 61.049)

σ 1.96 (1.327) = 2.601 (12.286, 17.488)

From the confidence intervals reported in Table 4.4 the population parameters µ and σ do not differ

significantly from the theoretical values 58 and 15.

4.3 Simulation study

Similar to the simulation study done for the exponential distribution in the previous chapter, 1000

samples were simulated, each containing 100 observations. These samples were all simulated from a

normal population with mean µ = 58 and standard deviation σ = 15. The descriptive statistics for

the 1000 sample means and sample standard deviations of the ungrouped data sets are summarised

in Table 4.5.
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Table 4.5: Descriptive statistics for sample statistics of ungrouped data sets.

Statistic Mean Std. deviation P5 Median P95

x̄ 57.993 1.489 55.582 57.919 60.446

s 14.902 1.078 13.244 14.881 16.673

Evaluating the sample statistics for the ungrouped data sets, the mean and median are very close

to the theoretical values. The standard deviation of x̄ is close to the standard error of x̄, i.e.

σx̄ =
σ√
n
=

15√
100

= 1.5 .

The 1000 simulated data sets were all classified into the same set of class intervals as that of Table

4.1. The normal distribution was fitted to each of the 1000 generated frequency distributions and

the descriptive statistics for the ML estimates are tabulated in Table 4.6.

Table 4.6: Simulation results for the normal distribution.

MLE Theoretical Value Mean Std. deviation P5 Median P95

µ̂ 58.000 57.993 1.548 55.512 57.945 60.598

σ̂µ̂ 1.569 1.562 0.146 1.343 1.550 1.826

σ̂ 15.000 14.915 1.384 12.797 14.823 17.376

σ̂σ̂ 1.341 1.340 0.171 1.091 1.320 1.653

In the case of a normal distribution with µ = 58 and σ = 15 the theoretical value for π is

π= Φ

(
x− 58 (1)

15

)
= Φ




−1.2000
−0.5333
0.1333

1.1333




=




0.11507

0.29690

0.55304

0.87146




leading to the asymptotic covariance matrix

Cov


 µ̂

σ̂


 �


 2.46085 0.05201

0.05201 1.79748



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and yielding the standard errors σµ̂ = 1.569 and σσ̂ = 1.341 tabulated in Table 4.6. In view of

the fact that the standard error for a random sample from a N(58, 152) distribution is 15√
100

= 1.5,

not much accuracy has been lost by using a grouped sample in the estimation of µ. As is evident

from Table 4.6 the mean and median of each of the ML estimates compare extremely well with

the theoretical values (approximate in the case of σµ̂ and σσ̂). It is also interesting to note that

standard deviations for µ̂ and σ̂ are close to the standard errors σµ̂ and σσ̂. To evaluate the fifth

and the ninety fifth percentiles the margin of error for the 90% confidence intervals are summarised

in Table 4.7.

Table 4.7: 90% margin of error for the ML estimators of the normal distribution.

Estimate Std. Error Margin of Error

µ̂ σµ̂ 1.645σµ̂ = 2.581

σ̂ σσ̂ 1.645σσ̂ = 2.206

It is known that approximately 90% of the µ̂-values should be in the interval (55.419, 60.581),

while 90% of the σ̂-values should be in the interval (12.794, 17.206). This compares well with the

simulated values in Table 4.6.

The goodness of fit statistics were calculated for each of the 1000 fitted normal distributions.

From Table 4.8 it follows that the Pearson and Wald statistics correspond very well to that of a

χ2-distribution with 2 degrees of freedom.

Table 4.8: Percentiles of the Pearson and Wald statistic.

Percentiles

P5 P10 P25 P50 P75 P90 P95

Pearson 0.1291 0.2355 0.5945 1.3728 2.7147 4.6345 5.8393

Wald 0.1066 0.2054 0.5925 1.3742 2.7591 4.6721 6.1128

Percentiles of a χ2-distribution with 2 degrees of freedom.

χ20.05 χ20.10 χ20.25 χ20.50 χ20.75 χ20.90 χ20.95

χ2 (2) 0.1026 0.2107 0.5754 1.3863 2.7726 4.6052 5.9915

 
 
 



Chapter 5

The Weibull, log-logistic and Pareto

distributions

In this chapter it will be shown how to fit the Weibull, log-logistic and Pareto distributions to a

grouped data set. Estimation will be done by constructing the vector of constraints in terms of a

linear model. This method is preferred due to the simplicity and the overall generalization of the

technique. This generalization is outlined in 3 easy steps where the estimation of the exponential

and normal distributions are also considered.

5.1 The Weibull distribution

The pdf of the Weibull distribution is

f(x;κ, θ) =
κ

θκ
xκ−1 exp

[
−
(x

θ

)κ]
(5.1)

with cdf

F (x;κ, θ) = 1− exp
[
−
(x

θ

)κ]
. (5.2)

The parameter κ is a shape parameter with θ the so-called scale parameter. The three basic shapes

of the Weibull distribution are illustrated in Figure 5.1.
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Figure 5.1: Weibull distributions with θ = 50.

The mean and variance of the Weibull distribution are

µ = θ

[
Γ

(
1 +

1

κ

)]
(5.3)

and

σ2 = θ2
[
Γ

(
1 +

2

κ

)
− Γ2

(
1 +

1

κ

)]
(5.4)

respectively.

To fit a Weibull distribution it is required that

π = 1− exp
[
−
(x
θ

)κ]
(5.5)

which implies that

ln (1− π) = −
(x
θ

)κ

. (5.6)

Taking the natural logarithm of (5.6) yields the linear model

ln [− ln (1− π)] = κ lnx− (κ ln θ)1

=
(
lnx −1

)

 κ

κ ln θ




= Xα (5.7)

where

X =
(
lnx −1

)
(5.8)
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is the design matrix and

α =


 α1

α2


 =


 κ

κ ln θ


 (5.9)

is the vector of natural parameters.

The vector of constraints

g(π) = QX ln [− ln (1− π)] = 0 (5.10)

follows from (5.7) where QX= I−X(X′
X)−1X′ is the projection matrix orthogonal to X. The

matrix of partial derivatives becomes

Gπ =
∂g(π)

∂π

=
∂ {QX ln [− ln (1− π)]}

∂π
= QXDπ (5.11)

where

Dπ =
∂ ln [− ln (1− π)]

∂π

= {diag [− ln (1− π)]}−1 ∂

∂π
{− ln (1− π)}

= −{diag [ln (1− π)]}−1 {diag [1− π]}−1 . (5.12)

The restricted ML estimate π̂ is estimated such that ln [− ln (1− π̂)] is a linear combination of X
leading to the ML estimator

α̂ = (X′
X)−1X′ ln [− ln (1− π̂)] (5.13)

with asymptotic covariance matrix

Cov(α̂) �
{
(X′
X)−1X′Dπ

}
Cov(π̂)

{
(X′
X)−1X′Dπ

}′
. (5.14)

The parameters of the Weibull distribution are

β =


 κ

θ


 =


 α1

exp
(

α2
α1

)

 . (5.15)
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Hence, the ML estimator for β is

β̂ =


 κ̂

θ̂


 =


 α̂1

exp
(

α̂2
α̂1

)

 (5.16)

with asymptotic covariance matrix

Cov(β̂) � BCov(α̂)B′ (5.17)

where

B =
∂β

∂α

=

∂


 κ

θ




∂


 α1

α2




=


 1 0

−α2
α21

exp
(

α2
α1

)
1
α1

exp
(

α2
α1

)

 . (5.18)

According to the multivariate delta theorem the asymptotic distribution of β̂ is

β̂ � N(β,BCov(α̂)B′) .

5.2 The log-logistic distribution

The log-logistic distribution is defined in a manner analogous to the definition of the lognormal

distribution. If log(x) follows a logistic distribution then x is said to follow a log-logistic distribution.

The pdf of the log-logistic distribution is

f(x;κ, θ) =
eθκxκ−1

(1 + eθxκ)2
(5.19)

with cdf

F (x;κ, θ) =
eθxκ

1 + eθxκ
. (5.20)
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Setting F (x;κ, θ) = π it follows that
eθxκ

1 + eθxκ
= π

and therefore

π

1− π
=

(
eθxκ

)
/
(
1 + eθxκ

)

(1 + eθxκ − eθxκ) / (1 + eθxκ)

= eθxκ . (5.21)

The mean and variance are given by

µ = exp

(
−θ

κ

)[
Γ

(
1 +

1

κ

)
Γ

(
1− 1

κ

)]
(5.22)

and

σ2 = exp

(
−2θ

κ

)[
Γ

(
1 +

2

κ

)
Γ

(
1− 2

κ

)
− Γ2

(
1 +

1

κ

)
Γ2

(
1− 1

κ

)]
(5.23)

respectively.

Implementing π =F (x), it follows from (5.21) that

π

1− π = eθxκ

resulting in the linear model

ln

(
π

1− π

)
= κ lnx+ θ1

=
(
lnx 1

)

 κ

θ




= Xα (5.24)

where

X =
(
lnx 1

)
(5.25)

and

α =


 κ

θ


 . (5.26)

 
 
 



40

The constraints formulated in terms of a linear model is

g (π) = QX ln

(
π

1− π

)
= 0 (5.27)

with matrix of partial derivatives

Gπ =
∂g (π)

∂π

=
∂QX ln

(
π

1−π
)

∂π
= QXDπ

where QX = I−X (X′X)−1X′ and

Dπ =
∂

∂π

{
ln

(
π

1− π

)}

=
∂

∂π
{ln (π)− ln (1− π)}

= {diag [π]}−1 + {diag [1− π]}−1 . (5.28)

In the ML estimation procedure π̂ is estimated such that ln
(

π̂

1−π̂
)
is in the vector space of X. The

ML estimator α̂ follows from the linear model (5.24)

α̂ =


 κ̂

θ̂


 = (X′

X)−1X′ ln

(
π̂

1− π̂

)
(5.29)

with asymptotic covariance matrix

Cov (α̂) = Cov


 κ̂

θ̂


 =

{
(X′
X)−1X′Dπ

}
Cov (α̂)

{
(X′
X)−1X′Dπ

}′
(5.30)

where Dπ is derived in (5.28). As in the case of the Weibull distribution, the ML estimators of the

log-logistic are approximately normally distributed.
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5.3 The Pareto distribution

The Pareto distribution has been successfully used to model the income of a population (Johnson

& Kotz (1970)). The pdf and cdf of the Pareto distribution are

f(x, κ, θ) = κθκx−(κ+1) (5.31)

and

F (x) = 1−
(x

θ

)−κ

(5.32)

for x > θ, θ > 0 and κ > 0 .

The mean and variance for the Pareto distribution are given by

µ =
κθ

κ− 1
κ > 1 (5.33)

and

σ2 =
κθ2

(κ− 1)2 (κ− 2)
κ > 2 (5.34)

respectively.

To fit a Pareto distribution it is required that

π = 1−
(x
θ

)−κ

. (5.35)

Taking the natural logarithm of (5.35) leads to

ln (1− π) = −κ ln
(x
θ

)

= −κ (lnx− ln θ)

=
(
− lnx 1

)

 κ

κ ln θ




= Xα (5.36)

where

X =
(
− lnx 1

)
(5.37)

is the design matrix and

α =


 α1

α2


 =


 κ

κ ln θ


 (5.38)
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is the vector of natural parameters.

Hence, the vector of constraints may be written as

g(π) = QX ln (1− π) = 0 (5.39)

where QX= I−X(X′
X)−1X′. This implies that the restricted ML estimate π̂ will be fitted such

that ln (1− π) is orthogonal to the error space of X with matrix of partial derivatives

Gπ = QX
∂g (π)

∂π

=
∂QX ln (1− π)

∂π
= QXDπ

where

Dπ =
∂ ln (1− π)

∂π
= −{diag [1− π]}−1 . (5.40)

The ML estimator for α follows

α̂ = (X′
X)−1X′ ln (1− π̂) (5.41)

with asymptotic covariance matrix

Cov (α̂) =
{
(X′
X)−1X′Dπ

}
Cov(π̂)

{
(X′
X)−1X′Dπ

}′
. (5.42)

Define the vector of parameters for the Pareto distribution

β =


 κ

θ


 =




α1

exp

(
α2
α1

)

 . (5.43)

(The parameterization follows from (5.38).)

Therefore the ML estimates for κ and θ are

κ̂ = α̂1 and θ̂ = exp

(
α̂2
α̂1

)
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implying that

β̂ � N




 κ

θ


 ,BCov(α̂)B′




where

B =
∂β

∂α
=




1 0

−α2
α21
· exp

(
α2
α1

) 1

α1
· exp

(
α2
α1

)

 .

5.4 Generalization

In this section a short summary of fitting the distributions, tabulated in Table 5.1 will be given.

Table 5.1: Characteristics of distributions considered.

PDF and CDF Mean and Variance

Exponential
f(x;µ) = 1

µ
e−x/µ

F (x;µ) = 1− e−x/µ

µ

σ2 = µ2

Normal
f(x;µ, σ2) = φ

(
x− µ

σ

)

F (x;µ, σ2) = Φ

(
x− µ

σ

) µ

σ2

Weibull
f(x;κ, θ) = κ

θκ
xκ−1 exp

[
−
(
x
θ

)κ]

F (x;κ, θ) = 1− exp
[
−
(
x
θ

)κ]
µ = θ

[
Γ
(
1 + 1

κ

)]

σ2 = θ2
[
Γ
(
1 + 2

κ

)
− Γ2

(
1 + 1

κ

)]

Log-logistic
f(x;κ, θ) =

eθκxκ−1

(1 + eθxκ)2

F (x;κ, θ) =
eθxκ

1 + eθxκ

µ = exp
(
− θ

κ

) [
Γ
(
1 + 1

κ

)
Γ
(
1− 1

κ

)]

σ2 = exp
(
−2θ

κ

)
[Γ

(
1 + 2

κ

)
Γ
(
1− 2

κ

)

−Γ2
(
1 + 1

κ

)
Γ2

(
1− 1

κ

)
]

Pareto
f(x;κ, θ) = κθκx−(κ+1)

F (x;κ, θ) = 1−
(x

θ

)−κ

µ =
κθ

κ− 1

σ2 =
κθ2

(κ− 1)2 (κ− 2)
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In the case of the distributions F (x;β), specified in Table 5.1, the requirement

F (x;β) = π (5.44)

where F (x;β) denotes the distribution function at the upper class boundaries x with parameter

vector β, may be transformed into the linear model

h(π) = Xα (5.45)

which implies that the estimation procedure may be performed in the three steps outlined below.

Step 1: The vector of constraints is given by

g(π) = QXh(π) = 0 (5.46)

with matrix of partial derivatives

Gπ= QXDπ (5.47)

where QX= I−X(X′
X)−1X′ and Dπ=

∂h(π)

∂π
.

Step 2: The ML estimate of α follows as

α̂= (X′
X)−1X′h(π̂) (5.48)

with asymptotic covariance matrix

Cov (α̂) �
{
(X′
X)−1X′Dπ

}
Cov (π̂)

{
(X′
X)−1X′Dπ

}′
. (5.49)

Step 3: The ML estimates of the original parameters namely β̂, are obtained from α̂ with

Cov
(
β̂
)
� BCov (α̂)B′ (5.50)

where B =
∂β

∂α
. From the multivariate delta theorem, it follows that

β̂ � N(β,BCov(α̂)B′) . (5.51)

To fit the various continuous distributions in Table 5.1 to grouped data by means of the three steps

listed above, a summary of the constraints and derivatives are given in Table 5.2(A) & Table 5.2(B).
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Table 5.2(A): Constraints

h(π) = Xα

β h(π) X α

Exponential µ = 1
α

ln (1− π) (−x) 1
µ

Normal


 µ

σ


 =




α2
α1

1
α1


 Φ−1(π)

(
x −1

)



1
σ

µ
σ




Weibull


 κ

θ


 =


 α1

e
α2
α1


 ln [− ln (1− π)]

(
lnx −1

)

 κ

κ ln θ




Log-logistic


 κ

θ


 =


 α1

α2


 ln

(
π

1− π

) (
lnx 1

)

 κ

θ




Pareto


 κ

θ


 =


 α1

e
α2
α1


 ln (1− π)

(
− lnx 1

)

 κ

κ ln θ




Table 5.2(B): Derivatives

D =
∂h(π)

∂π
B =

∂β

∂α

Exponential − (diag [1− π])−1 − 1
α2

Normal (diag [φ (Φ−1(π))])
−1


 −α2

α21

1
α1

− 1
α21

0




Weibull − (diag [ln (1− π)])−1 (diag [1− π])−1

 1 0

−α2
α21
· e

α2
α1

1
α1
· e

α2
α1




Log-logistic (diag [π])−1 + (diag [1− π])−1

 1 0

0 1




Pareto − (diag [1− π])−1

 1 0

−α2
α21
· e

α2
α1

1
α1
· e

α2
α1



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Example 5.1

A typical example was taken from a data set with n = 206 insurance policies. The annual income

(in R1000) of the policy holders is reported in Table 5.3.

Table 5.3: Income of a group of insurance policy holders.

Income (in R1000) [0, 40) [40, 75) [75, 125) [125, 175) [175,∞)

Frequency 9 37 67 63 30

For this example the normal, Weibull and log-logistic distributions are fitted and the results are given

in Table 5.4.

Table 5.4: Estimates of parameters and test statistics

MLE Wald Discrep-

β̂ Estimate Std. Error µ̂ σ̂ Statistic df prob ancy

µ̂ 118.4 3.7604

Normal σ̂ 51.4 3.0834 118.4 51.4 3.980 2 0.1367 0.019

κ̂ 2.4647 0.1675

Weibull θ̂ 134.44 4.2552 119.2 51.7 1.293 2 0.5240 0.006

Log- κ̂ 3.3337 0.2293

logistic θ̂ −15.710 1.0883 129.7 88.0 8.731 2 0.0127 0.042

According to the Wald statistic the Weibull distribution provided the best fit, followed by the normal

distribution. The distributions are illustrated in Figure 5.2. In constructing the histogram, it is

assumed that the income of all the policy holders in the sample is less than R500 000. The

distributions were all fitted with the SAS program FIT.SAS listed in Appendix A.
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Figure 5.2: Income distribution of policy holders.

Normal: Green Weibull: Red Log-logistic: Blue

 
 
 



Part II

Linear models for grouped data
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Chapter 6

Multifactor design

Consider any single-factor or multifactor design resulting in a cross classification of T different

cells to be analysed. The response vector in each cell is a frequency distribution of an underlying

continuous response variable, categorised in k class intervals. The focus is to model the behavior

of this grouped response variable over the T cells to evaluate the effect of the explanatory variables

on the dependent variable. The basic formulation of the grouped response variable, to be modeled

over the T cells of the multifactor design is summarised in Table 6.1.

Table 6.1: Grouped data in a multifactor design.

Class interval

Cells (−∞, x1) [x1, x2) · · · [xk−2, xk−1) [xk−1,∞)

1 f11 f12 · · · f1,k−1 f1k

2 f21 f22 · · · f2,k−1 f2k
...

...
... · · · ...

...

T fT1 fT2 · · · fT,k−1 fTk

49
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6.1 Formulation

Considering the frequencies tabulated in Table 6.1, let

F =




f11 f12 · · · f1,k−1

f21 f22 · · · f2,k−1
...

... · · · ...

fT1 fT2 · · · fT,k−1




=




f ′1

f ′2
...

f ′T




: T × (k − 1) (6.1)

be the matrix where the rows of F denote the T cells of the multifactor design and the columns of F

denote the first (k − 1) class intervals of the grouped response variable. Similarly to the estimation

of distribution functions done in Part I, only the first (k − 1) class intervals need to be considered

for each cell.

Define

vec (F) =




f1

f2
...

fT




: T (k − 1)× 1 (6.2)

as the so-called concatenated frequency vector where the T rows of F in (6.1) are stacked row by

row in a single column vector. The frequency vector for the t-th cell in (6.2) is

ft =




ft1

ft2
...

ft,k−1




t = 1, 2 · · ·T (6.3)

and consists of the first (k − 1) frequencies with corresponding vector of upper class boundaries

x =




x1

x2
...

xk−1




. (6.4)
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Note: The definition of vec (F) (6.2) differs from the standard definition where the columns of

F (6.1) are stacked as a single column vector. (See Muirhead (1972) (p.17)). However, by

stacking the rows below each other coincides with the definition of the COLVEC function in

SAS which is used extensively in this thesis for the computer programming of applications of

grouped data in a multifactor design.

It is assumed that the vector f is a product multinomial vector with fixed subtotals

n =




n1

n2
...

nT




(6.5)

allocated to each of the T cells.

Define

p0 =




p01

p02
...

p0T




=




1
n1
f1

1
n2
f2
...

1
nT
fT




=
(
(diag (n))−1 ⊗ Ik−1

)
· f (6.6)

as the concatenated vector of relative frequencies for the T cells. Hence, let

E(p0) =




π01

π02
...

π0T




= π0

then

Cov(p0) =




V01 0 0 0

0 V02 0 0
...

...
. . .

...

0 0 0 V0T




= V0 (6.7)
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where

Cov (p0t) =
1

nt
(diag (π0t)− π0tπ′0t) = V0t , t = 1, · · · , T (6.8)

is the covariance matrix for the vector of relative frequencies for the t-th cell.

Following (6.7) and (6.8) the covariance matrix of p0 may be expressed in terms of Kronecker

products

V0 =
{
(diag [n])−1 ⊗ Ik−1

}
·
{
diag [π0]− diag [π0]

(
IT⊗

(
1k−11

′
k−1

))
diag [π0]

}
(6.9)

where 1k−1 is a (k − 1) vector of ones.

Define the concatenated vector of cumulative relative frequencies

p =




p1

p2
...

pT




=




Cp01

Cp02
...

Cp0T




= (IT⊗C)p0 (6.10)

where

C =




1 0 · · · 0

1 1 · · · 0
...
...
. . .

...

1 1 · · · 1




: (k − 1)× (k − 1) . (6.11)

In (6.10) pt = Cp0t for t = 1, 2, · · · , T is the cumulative relative frequency vector for the t-th cell

in the multifactor design.

The random vector p consists of the cumulative relative frequencies from T independent multinomial

populations, therefore let

E(p) =




π1

π2
...

πT




= π (6.12)

where

E(pt) = πt , t = 1, · · · , T
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is the expected value for the vector of cumulative relative frequencies for the t-th cell and

Cov(p) =




V1 0 · · · 0

0 V2 · · · 0
...

...
. . .

...

0 0 · · · VT




= V (6.13)

where

Cov(pt) =
1

nt

{
Cdiag

(
C−1πt

)
C′ − πtπ

′
t

}
(6.14)

= Vt , t = 1, · · · , T

is the covariance matrix for the vector of cumulative relative frequencies for the t-th cell.

From (6.10) it follows that the covariance matrix of p may also be expressed by

V = (IT⊗C)V0 (IT⊗C)′ (6.15)

where V0 is the covariance matrix of p0 in (6.9).

Note: For simplicity the class boundaries x are assumed to be constant over the different cells. The

extension to the situation where this is not the case, can be done in a straight forward way.

6.2 Estimation

The ML estimation procedure entails that distribution fitting be done under the restriction that the

cumulative relative frequencies equal the cumulative distribution curve at the upper class boundaries,

for every cell in the multifactor design, i.e.




F1 (x,β1)

F2 (x,β2)
...

FT (x,βT )




=




π1

π2
...

πT




(6.16)
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with

β =




β1

β2
...

βT




(6.17)

the concatenated vector of original parameters to be estimated.

Utilizing the ML estimation procedure, the vector of constraints to be imposed is

g (π) =




F1 (x,β1)

F2 (x,β2)
...

FT (x,βT )



−




π1

π2
...

πT




= 0. (6.18)

In the case where (6.16) may be transformed into the linear model

h (π) =




Xα1

Xα2
...

Xα2




= (IT ⊗X)α (6.19)

with

α =




α1

α2
...

αT




(6.20)

a simultaneous distribution fitting for the T frequency distributions is outlined in the following three

steps.

 
 
 



55

Step 1: The restricted ML estimate π̂ is obtained by implementing the vector of constraints,

g(π) = 0, with

g(π) = (IT ⊗QX)h (π) (6.21)

and matrix of partial derivatives

Gπ=(IT ⊗QX)Dπ (6.22)

where QX= I−X(X′
X)−1X′ and Dπ=

∂h(π)

∂π
in the ML estimation process.

Step 2: The ML estimate of α follows as

α̂=
(
IT ⊗ (X′

X)−1X
)
h(π̂) (6.23)

with asymptotic covariance matrix

Cov (α̂) �
{
IT ⊗ (X′

X)−1X′Dπ

}
Cov (π̂)

{
IT ⊗ (X′

X)−1X′Dπ

}′
. (6.24)

Step 3: The ML estimates of the original parameters namely β̂, are obtained from α̂ with

Cov
(
β̂
)
� BCov (α̂)B′ (6.25)

where B =
∂β

∂α
. From the multivariate delta theorem, it follows that

β̂ � N(β,BCov(α̂)B′) . (6.26)

It follows from (6.23) that each of the T estimated distribution functions will have its own set of

parameter estimates characterising the shape and locality of the distribution. Certain parameter

structures may now be defined which may be incorporated to evaluate the effect of the factor(s) on

the respons variable in any multiway design.

 
 
 


	00FRONT
	CHAPTER 1-6
	CHAPTER 1
	Introduction
	Part I
	Part II
	Part III

	CHAPTER 2
	The ML estimation procedure
	2.1 Formulation
	2.2 Estimation
	2.3 Goodness of fit

	CHAPTER 3
	The exponential distribution
	3.1 Direct set of constraints
	3.2 Constraints in terms of a linear model
	3.3 Simulation study

	CHAPTER 4
	The normal distribution
	4.1 Direct set of constraints
	4.2 Constraints in terms of a linear model
	4.3 Simulation study

	CHAPTER 5
	The Weibull, log-logistic and Paretodistributions
	5.1 The Weibull distribution
	5.2 The log-logistic distribution
	5.3 The Pareto distribution
	5.4 Generalization

	CHAPTER 6
	Multifactor design
	6.1 Formulation
	6.2 Estimation


	CHAPTER 7-12
	CHAPTER 13-14
	BACK



