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Summary

The maximum likelihood (ML) estimation procedure of Matthews and Crowther (1995: A maximum
likelihood estimation procedure when modelling in terms of constraints. South African Statistical
Journal, 29, 29-51) is utilized to fit a continuous distribution to a grouped data set. This grouped
data set may be a single frequency distribution or various frequency distributions that arise from
a cross classification of several factors in a multifactor design. It will also be shown how to fit a
bivariate normal distribution to a two-way contingency table where the two underlying continuous
variables are jointly normally distributed. This thesis is organized in three different parts, each playing
a vital role in the explanation of analysing grouped data with the ML estimation of Matthews and
Crowther.

In Part | the ML estimation procedure of Matthews and Crowther is formulated. This procedure
plays an integral role and is implemented in all three parts of the thesis. In Part | the exponential
distribution is fitted to a grouped data set to explain the technique. Two different formulations
of the constraints are employed in the ML estimation procedure and provide identical results. The
justification of the method is further motivated by a simulation study. Similar to the exponential
distribution, the estimation of the normal distribution is also explained in detail. Part | is summarized
in Chapter 5 where a general method is outlined to fit continuous distributions to a grouped data
set. Distributions such as the Weibull, the log-logistic and the Pareto distributions can be fitted
very effectively by formulating the vector of constraints in terms of a linear model.

In Part Il it is explained how to model a grouped response variable in a multifactor design. This
multifactor design arise from a cross classification of the various factors or independent variables to
be analysed. The cross classification of the factors results in a total of 7' cells, each containing a
frequency distribution. Distribution fitting is done simultaneously to each of the T cells of the mul-
tifactor design. Distribution fitting is also done under the additional constraints that the parameters
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of the underlying continuous distributions satisfy a certain structure or design. The effect of the
factors on the grouped response variable may be evaluated from this fitted design. Applications of a

single-factor and a two-factor model are considered to demonstrate the versatility of the technique.

A two-way contingency table where the two variables have an underlying bivariate normal distribution
is considered in Part Ill. The estimation of the bivariate normal distribution reveals the complete
underlying continuous structure between the two variables. The ML estimate of the correlation
coefficient p is used to great effect to describe the relationship between the two variables. Apart

from an application a simulation study is also provided to support the method proposed.
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