

Construction of a new peptide insertion site in the top domain of major core protein VP7 of African horsesickness virus

BY

JOANNE ELIZABETH RILEY

Submitted in partial fulfilment of the requirements for the degree MSc(Agric) in the Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria January 2003

ACKNOWLEDGEMENTS

I would sincerely like to thank the following people for their contributions:

My supervisor, Professor H. Huismans for his guidance in this study.

Dr. F. F. Maree for his initial input and direction in this study.

My colleagues, Quinton Meyer, Michelle Freeman, Karen de Lange and Ruan van Rensburg, for their input and support.

Alan Hall and Chris van der Merwe from the Laboratory for Microscopy and Microanalysis for their help in preparation and analysis of samples for microscopy analysis.

Mario Smuts from the Biomedical Research Institute for the preparation of antiserum.

My family and friends for their patience and good humour.

The Tiger-Dragon Muay Thai and Kickboxing School for providing me with an alternative focus and an outlet for my frustrations.

Ш

SUMMARY

Construction of a new peptide insertion site in the top domain of major core protein VP7 of African horsesickness virus.

BY

JOANNE ELIZABETH RILEY

Supervisor: Prof Henk Huismans Department of Genetics University of Pretoria

For the degree MSc(Agric)

VP7 is the major core protein of AHSV. It is a 38kDa protein composed of 349 amino acids. VP7 is a highly insoluble protein and when expressed in large quantities in AHSV-infected cells (Burroughs *et al.*, 1994) or by recombinant baculovirus in insect cells (Chuma *et al.*, 1992; Maree *et al.*, 1998a; Maree *et al.*, 1998b), it aggregates into large crystal structures that are visible under the light microscope. These crystals, with a large surface area for the display of multiple epitopes, show potential for use as a vaccine delivery system. Two requirements for this system would be the ability of VP7 to accommodate epitope sequences without affecting its structural characteristics and, secondly, to present the epitope sequences in an effective manner to the immune system to generate a protective immune response. These two conditions were investigated in this study.

Two sites for the insertion of epitope sequences had been created by Maree (2000). In this study, a third site was created between amino acids 144 and 145 of AHSV-9 VP7. Restriction enzyme sites *Sma1*, *Eco*R1 and *Xho1* were introduced by PCR amplification. The effect of the insertion was investigated in terms of its influence on VP7 structure, its association into trimers and further aggregation into VP7 crystalline structures. In the second stage of the investigation, a twenty-five amino acid sequence of a VP2 neutralising epitope (Venter *et al.*, 2000; Bentley *et al.*, 2000; Martínez-Torrecuadrada *et al.*, 2001) was chosen to insert into the created site at position 144. This was achieved by PCR-amplification of the VP2 epitope to introduce *Eco*R1 and *Xho1* sites for directional cloning into site 144. The appropriate presentation of the insert was investigated in terms of its effect on VP7 structure, its effect on trimer formation and further aggregation of trimers into

crystalline particulate structures. Furthermore, the presentation of the insert was investigated in terms of its ability to generate antibodies with the potential to provide a protective immune response.

The insertion of restriction enzyme sites and resulting six amino acids at position 144, as well as the further insertion of the twenty-five amino acid VP2 epitope, did not affect the ability of VP7 to form trimers. The subsequent association of trimers into particulate structures was affected by an increase in the proportion of smaller structures, in comparison to that observed for the wild-type VP7. This was concluded to be a consequence of an increase in solubility of the proteins, caused by weakened hydrophobic interactions between trimers. This resulted in a reduced stability of larger particulate structures. The efficient presentation of the VP2 epitope could not be determined. A poor immune response was generated against the VP7mt144-VP2 trimer in comparison to other proteins. The result was an inability of the antiserum to recognise native AHSV-9 VP7 and VP2 protein by western blot analysis. More informative conclusions regarding the presentation of the VP2 epitope on the surface of the VP7 epitope display vehicle may be drawn from a future virus neutralisation assay.

ABBREVIATIONS

African horsesickness
African horsesickness virus
African horsesickness virus serotype 9
Ammonium Acetate
ampicillin
ammonium persulphate
Baby hamster kidney
base pairs
Bluetongue virus
Degrees Celsius
complementary DNA
Core-like particle
dimethylsulphoxide
Deoxyribonucleic acid
distilled water
deionized distilled water
deoxyribonucleoside-triphosphate
double-stranded
ethylenediaminetetra-acetic acid
Equine encephalosis virus
exempli gratia (for example)
Epizootic hemorrhagic disease virus
<i>et alia</i> (and others)
Freund's complete adjuvant
Fetal calf serum
Freund's incomplete adjuvant
Figure
gram
Hepatitis B core antigen
Hepatitis B virus
hour

۷

i.e.	Id Est (that is to say)
IPTG	isopropyl-β-D-thiogalactopyranoside
KAc	Potassium Acetate
kDa	kilodalton
kb	kilobase pairs
kV	kilovolts
D	litre
LB	Luria Bertani
log	logarithmic
Μ	molar
MCS	multiple cloning site
mg	milligram
min	minutes
ml	millilitre
mM	millimolar
MOI	Multiplicity of Infection
Mr	molecular weight
mRNA	messenger ribonucleic acid
NaAc	sodium acetate
ng	nanogram
NS	non-structural
OD	optical density
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PCR	polymerase chain reaction
pmol	picomol
polh	polyhedrin
PSB	protein solvent buffer
RNA	ribonucleic acid
RNase	ribonuclease
rpm	revolutions per minute
SDS	sodium dodecyl sulphate
S.E.M.	scanning electron microscopy

VI

Sf	Spodoptera frugiperda	
SS	single-stranded	
TCA	trichloroacetic acid	
TEMED	N,N,N',N'-tetramethylethylenediamine	
tet	tetracyline hydrochloride	
Tris	Tris-hydroxymethyl-aminomethane	
TSB	Transformation suspension buffer	
TSBG	Transformation suspension buffer with glucose	
μg	microgram	
μ	microlitre	
U	units	
UV	ultraviolet	
٧	volume	
V	volts	
VIB	viral inclusion body	
VLP	virus-like particles	
VP	viral protein	
w	weight	
X-gal	5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside	

TABLE OF CONTENTS

Chapter One: Literature Review

1.1.	Introduction.	1	
1.2.	Classification.	1	
1.3.	Transmission, Epidemiology and Hosts of AHSV.	2	
1.4.	AHSV Structure. 1.4.1. Virus Genetics. 1.4.2. Virus Proteins. 1.4.2.1. Non-Structural Proteins. 1.4.2.2. Inner Core Proteins. 1.4.2.3. Outer Capsid Proteins.	3 3 3 4 4 9	
1.5.	Vaccination.	11	
1.6.	Epitope Vaccines.		
1.7.	Particulate Structures as Vaccine Delivery Systems.		
1.8.	Aims of this Study.	18	

Chapter 2: The Construction of Cloning Site 144 and Its Effect on the Characteristic VP7 Structural Features

2.1.	Introduction.		20	
2.2.	Materials and Methods.		22	
	2.2.1.	Materials.		22
	2.2.2.	Site-Direc	ted Mutagenesis of VP7 Gene by PCR.	22
	2.2.3.	Construct	ion of Modified VP7 Genes.	24
		2.2.3.1.	Restriction Endonuclease Digestion.	24
		2.2.3.2.	Analysis of DNA by Agarose Gel Electrophoresis.	24
		2.2.3.3.	Purification of DNA Fragments from Agarose.	25
		2.2.3.4.	Ligation and Transformation.	25
		2.2.3.5.	DNA Isolation and Purification.	26
		2.2.3.6.	Filling of Sticky Ends by Klenow.	26
	2.2.4.	Cycle Sequencing Reactions.		27
	2.2.5. ABI Prism [™] Sequencing.		[™] Sequencing.	27
		2.2.6. Hydropathy Predictions and Structural Modelling.		

NIVERSITY	VAN PRETORIA OF PRETORIA YA PRETORIA
	NIVERSITY

	2.2.7.	Baculoviru	us Expression of Modified Proteins.	28
		2.2.7.1.	Cell Culture.	28
		2.2.7.2.	Transposition of Bacmid DNA.	28
		2.2.7.3.		
			of Recombinant Baculovirus.	29
		2.2.7.4.	Expression of Recombinant VP7 Proteins.	29
	2.2.8.	Harvesting	g Cells.	30
	2.2.9. Protein Analysis by SDS-PAGE.			30
	2.2.10. Plaque Purification.			
	2.2.11. Sedimentation Analysis and Sucrose Gradients.			32
	2.2.12. Light Microscope Analysis.			
	2.2.13	. Scanning	Electron Microscopy (S.E.M.).	33
2.3.	Result	s.		34
	2.3.1.	Constructi	on of Cloning Site 144.	34
			Verification of VP7mt144 and VP7mt144/200.	36
	2.3.3.	Physicoch	emical Properties and	
		Structural	Modelling of the Modified Proteins.	41
	2.3.4.	Expression	n of the Modified VP7mt144 and VP7mt144/200 Proteins.	44
	2.3.5.	Light Micro	oscope Observations.	46
	2.3.6.	Solubility S	Studies of the Modified Proteins.	48
	2.3.7.	Scanning	Electron Microscopy (S.E.M.).	53
2.4.	Discus	sion.		55

Chapter 3: Insertion of AHSV VP2 Neutralising Epitope in the Modified VP7, VP7mt144, Its Effect on VP7 Structural Features and Immunogenicity

3.1.	Introdu	uction.		59
3.2.	Materials and Methods.		61	
	3.2.1.	Materials.	lification of a Small Antigenic Region of VP2.	61 61
			VP2 Epitope into the Modified VP7mt144 Gene.	62
	0.2.0.	3.2.3.1.	General.	62
		3.2.3.2.		62
		3.2.3.3.	Isolation of VP2 Epitope by β-Agarase	
			Digestion of Agarose.	62
	3.2.4.	Immune R	Response Investigations.	63
		3.2.4.1.	Preparation of Protein for Inoculation into Mice.	63
		3.2.4.2.	Inoculation of Mice with VP7mt144-VP2.	63
		3.2.4.3.	Western Blot Analysis of Immune Response.	64
			3.2.4.3.1. Sample Preparation.	64
			3.2.4.3.2. Western Blot.	64