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CHAPTER 4 

4. Structural equation modelling in extended TAM 

 

In this chapter an overview on the structural equation modelling (SEM) 

technique is provided and the use of SEM to validate the extended TAM model is 

proposed. SEM is also used to test the hypothesis of the proposed model. In 

section 4.1 an overview and some of the history of SEM is provided. The nature 

and objectives of SEM are described. The advantages of SEM over other 

comparable techniques are discussed in section 4.2. In section 4.3 methods used 

to estimate the parameters associated with SEM are discussed along with 

measures of model fit. Many of the statistical tests associated with SEM depend 

on the assumption of multivariate normality in the sample data. Sample 

normality and multicollinearity are described in section 4.4 along with 

approaches to dealing with non-normal data.  Sample size relative to SEM is 

explained in section 4.5.  

 

A SEM model consists of two parts – a measurement component and a structural 

component. In section 4.6 the measurement component, namely confirmatory 

factor analysis (CFA), is described. The various components of a CFA are 

discussed along with the nomenclature associated with the technique. The 

mathematics that underpins CFA is briefly described while the requirements to 

conduct a CFA are presented. This section concludes with the CFA conducted on 

the proposed extended TAM model. In section 4.7 the structural part of a SEM 

model, path analysis, is discussed. An explanation of the various components of a 
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path analysis is presented and the mathematics that underpins it isdiscussed. 

The various aspects of the structural model including specification, identification 

and estimation are described. Modification and evaluation of the path analysis 

are presented and the outcome of the path analysis is tabled. This chapter 

concludes in section 4.8 with a discussion of the outcome of the SEM.  

 

4.1. Structural Equation Modelling – an overview 

SEM is a statistical technique for testing and estimating causal relations 

between variables using a combination of statistical data and qualitative causal 

assumptions. This definition of SEM was articulated by Wright (1921), Simon 

(1953) and formally defined by Pearl (2000).  SEM models allow both 

confirmatory and exploratory modelling and are suited to both theory 

confirmation and theory development. Confirmatory modelling starts out with a 

hypothesis that is represented in the form of a causal model. The concepts used 

in the model are then tested. The hypothesis in the model is tested against 

empirical data to determine how well the model fits the data. With an initial 

model SEM can be used inductively by specifying a corresponding model and 

using data to estimate the values of the parameters. The initial hypothesis may 

require adjustment in light of model evidence. When SEM is used purely for 

exploration this is normally in the context of an exploratory factor analysis.  

 

In SEM, interest usually focuses on latent constructs. Latent constructs are 

abstract concepts that cannot be directly observed and measured. Examples of 

latent factors include intelligence and attitude. In place of direct measurement, 

variables that are assumed to indirectly measure the latent construct are 

analysed. SEM allows multiple measures, called manifest variables, to be 
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associated with a single latent factor. Once the model parameters have been 

estimated, the resulting model-implied covariance matrix can then be compared 

to an empirical covariance matrix. If the two matrices are consistent with one 

another then the SEM model can be considered a plausible explanation for the 

measured data. SEM is widely used because it provides a quantitative method 

for testing substantive theory and it explicitly accounts for measurement error 

(Raykov and Marcoulides, 2006). SEM models are divided into two parts, a 

measurement component and a structural component. The measurement 

component deals with the relationship between manifest variables and latent 

variables, whereas the structural component deals with the relationship between 

latent factors only.  

 

4.2. Advantages of using SEM over other techniques 

There are several aspects of SEM that set it apart from the other multivariate 

techniques. SEM takes a confirmatory rather than exploratory approach to data 

analysis. By demanding the pattern of inter-variable relations be specified 

apriori, SEM lends itself well to the analysis of data for inferential purposes. 

Many other multivariate techniques are essentially descriptive by nature and 

consequently hypothesis testing is difficult. SEM further provides explicit 

estimates of measurement error (Byrne, 2006). Alternative techniques rooted in 

regression analysis assume that error in the manifest variables vanishes. 

Applying multiple regression analysis when there is an error in the manifest 

variables is equivalent to ignoring an error that may lead to inaccuracies. SEM 

can also incorporate both latent variables (unobserved) and manifest variables in 

a single model. This allows SEM to be useful in understanding abstract concepts. 

Because SEM has the capability to model multivariate relationships, it allows 
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comparison between groups such as gender, age and education level within a 

single model (Byrne, 2006). SEM has further been found to be superior to other 

techniques in testing whether a proposed model successfully accounts for the 

actual relationships observed in a sample (Kline, 2004). 

 

Whilst SEM has significant advantages over alternative techniques, it does have 

disadvantages. SEM cannot test directionality in relationships. The direction of a 

relationship in a SEM model represents a researcher’s hypotheses of causality 

within a system. The researcher’s choice of variables and pathways represented 

will thus limit the SEM ability to recreate the sample covariance and variance 

patterns that have been observed. There may thus be several models that fit the 

data equally well and consequently SEM can provide confirmation for a proposed 

model, but cannot exclude other models that may explain the data equally well. 

In spite of this shortcoming the SEM approach remains useful in understanding 

relational data in multivariate systems. The abilities of SEM to distinguish 

between indirect and direct relationships, among variables and to analyse 

relationships between latent variables without random error differentiate SEM 

from other relational modelling techniques. 

 

4.3. Model estimation and fit 

The estimator takes the measured data as input and produces an estimate of the 

parameters, which can explain the observed behaviour in the data. Fitting a 

model is thus an iterative process that begins with an initial fit, tests how well 

the model fits, adjusts the model, tests the fit again and so forth, until the model 

fits well enough. The most common methods of estimation used in SEM are 

Maximum Likelihood (ML), Generalised Least Squares (GLS) and Weighted 
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Least Squares (WLS). When a hypothesized model is correctly specified and 

manifest variables are multivariate normal, it has been shown that ML, GLS and 

WLS produce estimates that converge to the same number (Browne, 1984a, 

1984b).  

 

Model specification involves determining apriori which parameters are fixed, 

which are free and what the relationships are between the variables. Under ideal 

conditions the choice between methods is thus arbitrary. Under the more 

realistic assumption of miss-specified models and data that are not always 

multivariate normally distributed, the different procedures may not converge to 

the same optimum (Olsson et.al, 2000). A comparison of the three estimation 

methods in the presence of mild misspecification of models showed that ML 

compared to GLS under conditions of misspecification provides more realistic 

indices of overall fit and less biased parameter values for paths that overlap with 

the true model. WLS under no conditions was preferable to the two other 

estimation procedures in terms of parameter bias and fit (Olsson et.al, 2000). It 

has further been found that ML is much less biased than WLS estimators for all 

distributions and sample sizes (Yuan and Bentler, 1997). The accuracy of 

alternative estimation method to ML (i.e. GLS and WLS) was investigated for 

different sample sizes using a Monte Carlo simulation (Rhee, 1992). As the 

number of non-normal variables increased, outcomes produced by WLS became 

worse whilst GLS was only slightly inferior to ML.  

 

The objective of the estimation technique is to obtain estimates for each 

parameter of the model. These parameters include factor loadings, factor 

variances and covariances, manifest error variances and manifest error 
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covariances. The outcome of this estimation is a predicted variance–covariance 

matrix ( ) that resembles the data sample variance–covariance matrix ( ) as 

closely as possible. The ML technique entails using a fitting function to minimize 

the difference between and . The fitting function that is minimized in ML is: 

 

  [4.1] 

 

where | | is the determinant of the input variance–covariance matrix, | | is 

the determinant of the predicted variance–covariance matrix,  is the order of 

the input matrix (i.e., the number of input indicators) and  is the identity 

matrix.  

 

Model fit refers to the ability of a model to reproduce the observed data. The fit of 

a model is evaluated using a fit index. A good-fitting model is one that is 

reasonably consistent with the observed data and a good-fitting model is required 

before interpreting the causal paths of the structural model. In recent years 

computer software programs such as SAS, SPSS, Lisrel, EQS and others have 

made the fitting of SEM models to data much easier. As a consequence there has 

been a significant increase in the number of fit indices available to researchers. 

With regards to which fit indices should be reported, it is not necessary or 

realistic to include every index included reported in a program’s output as it may 

burden both reader and reviewer (Hooper et.al, 2008). Given the plethora of fit 

indices, it becomes a temptation to choose those fit indices that indicate the best 

fit. This should be avoided.  
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Fit indices can be broadly characterized as falling into three categories: absolute 

fit; fit adjusting for model parsimony and comparative or incremental fit. This 

typology is not perfect, as some fit indices have features of more than one 

category. Researchers are advised to consider and report at least one index from 

each category when evaluating the fit of their models (Jackson et.al, 2009). It has 

also been recommended that the acceptability of a fitted SEM solution should be 

evaluated on the basis of three major aspects: (a) overall goodness-of-fit; (b) the 

presence or absence of localized areas of strain in the solution and (c) the 

interpretability, size and statistical significance of the model parameter 

estimates (Brown, 2006). Jackson (2009) reviewed a number of papers that 

reported model fit indices and found that after  values the most commonly 

reported measures of fit were the Comparative Fit Index (CFI), Root Mean 

Square Error of Approximation (RMSEA) and the Tucker-Lewis Index (TLI). 

Nearly all papers reported  values. The number of fit measures reported in 

studies was three or four.  

 

It has been recommended to report fit indices that have different measurement 

properties such as absolute fit indices, an incremental fit index such as the CFI 

and a residuals-based fit index, such as SRMR (Hu and Bentler, 1999).  Absolute 

fit indices assess model fit at an absolute level.  They assume the reasonability of 

the hypothesis that S =  without taking into account other aspects such as fit 

in relation to more restricted solutions. Absolute fit indices assess how well 

apriori model reproduces the sample data. Incremental fit indices evaluate the fit 

of a user-specified solution in relation to a more restricted, nested baseline 

models. Typically, the baseline model is a “null” or “independence” model in 

which the covariance’s among all input indicators are fixed to zero. A 
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comparative measure of fit is only interpretable when comparing two different 

models.  

 

The CFI (Bentler, 1990) is a statistic that performs well even when sample size is 

small (Tabachnick and Fidell, 2007). The CFI is defined by the following formula; 

 

  [4.2] 

 

where  is the value of the target model,  is the degree of freedom (  of 

the target model,  is the  value of the baseline (null) model and  is the 

 of the baseline model. The CFI has a range of possible values of 0.0 to 1.0, 

with values closer to 1.0 implying good model fit.  

 

Another popular fit index falling under this category is the TLI (Tucker and 

Lewis, 1973). The TLI has features that compensate for the effect of model 

complexity and includes a penalty function for adding freely estimated 

parameters that do not markedly improve the fit of the model. The TLI is 

calculated using the formula: 

 

  [4.3] 

 

where as with CFI,  is the value of the target model,  is the  of the 

target model,  is the  value of the baseline (null) model and  is the  of 

the baseline model. The TLI is interpreted in a fashion similar to the CFI in that 
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values approaching 1.0 are interpreted in accord with good model fit. 

Methodologists have noted that CFI and TLI values below 0.90 should lead the 

researcher to strongly suspect the solution.  CFI and TLI values in the range of 

0.90 – 0.95 may be indicative of acceptable model fit (Bentler, 1990).  

 

Having a model with relatively few free parameters and high complexity means 

that the estimation process is dependent on the sample data. This may result in 

a less rigorous theoretical model that paradoxically produces better indices 

(Mulaik et al, 1989; Crowley and Fan, 1997). To overcome this problem Mulaik et 

al (1989) developed the Parsimony Goodness-of-Fit Index (PGFI). The PGFI is 

based upon the standard goodness-of-fit index and adjusts it for the loss of 

degrees of freedom (Mulaik et al 1989). The index penalizes model complexity 

and results in parsimony fit index values that are considerably lower than other 

goodness-of-fit indices. While no threshold levels have been recommended for 

these indices, Mulaik et al (1989) noted that it was possible to obtain parsimony 

fit indices within the 0.50 region while other goodness-of-fit indices achieve 

values over 0.90 (Mulaik et al 1989). 

 

The RMSEA is an “error of approximation” index and assesses the extent to 

which a model fits reasonably well in the population (Steiger and Lind, 1980). 

RMSEA is a fit adjusting for the model parsimony and is a population-based 

index. RMSEA is calculated as 

 

  [4.4] 
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where  is the value of the target model,  is the  of the target model 

and  is the number of samples. The RMSEA values can be classified into four 

categories: good fit (0.00 – 0.05), fair fit (0.05 – 0.08), mediocre fit (0.08 – 0.10) 

and poor fit over 0.10). RMSEA smaller than 0.05 indicates good fit and the non-

central  distributions can be used to obtain confidence intervals for RMSEA (a 

90 percent interval is typically used). The confidence interval indicates the 

precision of the RMSEA point estimate. Methodologists recommend including 

this confidence interval when reporting the RMSEA (MacCallum et al., 1996). 

Additional support for the fit of the solution would be evidenced by a 90 percent 

confidence interval of the RMSEA whose upper limit is below these cut-off 

values.  

 

The SRMR is an absolute measure of fit and is defined as the standardized 

difference between the observed correlation and the predicted correlation.  It is a 

positively biased measure and an absolute measure of fit.  The bias is greater for 

small or for low .  This measure tends to be smaller as sample size 

increases and as the number of parameters in the model increases. The SRMR 

has no penalty for model complexity. The SRMR is the root of the mean of the 

squared standardized residual and is calculated as; 

 

  [4.5] 

  

where  is the sample size,  is the  element of the covariance matrix 

and  is the  element of the predicted model matrix. The SRMR can take a 

range of values between 0.0 and 1.0, with 0.0 indicating a perfect fit. A value less 
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than 0.08 is generally considered a good fit (Hu and Bentler, 1999). From the 

review of recommended fit indices to report, this study will report CFI, PCFI, 

RMSEA, SRMR and TLI as measures of fit. 

 

4.4. Assessment of normality and multicollinearity 

Multivariate normality of the sample data is assumed for most SEM estimation 

methods, including ML. Research has found that the failure to meet the 

assumption of multivariate normality can lead to an overestimation of the  

statistic and to an inflated type 1 error (Curran et.al, 1996; Powell and Schafer, 

2001). It may also lead to downward biased standard errors (Bandalos, 2002; 

Nevitt and Hancock, 2001). Where there is a significant departure from the 

assumption of multivariate normality in the sample data the assumptions 

inherent in several ancillary fit measures may be undermined (Yuan, 2005). It 

should be noted that ML estimation might perform well with mild departures 

from multivariate normality (Chou et.al, 1991; Fan and Wang, 1998). When 

conducting a SEM researchers are advised to report on both univariate and 

multivariate normality (Jackson et.al, 2009).  

 

Multivariate normality implies that all variables in the data set under 

consideration are univariate normally distributed, the distribution of any pair of 

variables is bivariate normal and all pairs of variables have linear and 

homoscedastic scatterplots (Kline, 2004). The overall distribution of the data 

should also be normal. To determine the multivariate and univariate normality 

of the sample data, IBM SPSS Statistics 20.0.0 software was used to determine 

the skewness and kurtosis of the data, as well as the Mardia co-efficient. 

Mardia’s coefficient is determined by  where  is the number of observed 
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variables. According to Bollen (1989), if Mardia’s coefficient is lower than 

, then the combined distribution of the variables is multivariate normal. 

In table 4.1 below are the values for skewness and kurtosis used to test for 

normality, as well as the Mardia co-efficient. 

Table 4.1: Data normality assessment. 

Variable min max skew c.r. kurtosis c.r. 

Q147K 1.000 7.000 -.303 -2.287 .521 1.964 

Q152C 1.000 7.000 -.334 -2.522 -.059 -.222 

Q152E 1.000 7.000 .080 .600 -.139 -.525 

Q152H 1.000 7.000 -.427 -3.217 .399 1.505 

Q135BA .000 1.000 1.332 10.040 -.226 -.853 

Q135AS .000 1.000 1.253 9.443 -.431 -1.625 

Q135AC .000 1.000 1.332 10.040 -.226 -.853 

Q135M .000 1.000 .803 6.051 -1.356 -5.111 

Q145 1.000 10.000 -1.105 -8.328 .748 2.820 

Q144 1.000 10.000 -1.216 -9.167 1.031 3.885 

Q143 1.000 10.000 -1.122 -8.456 .943 3.554 

Q142 1.000 10.000 -1.139 -8.588 .841 3.171 

Q147L 1.000 7.000 -.308 -2.325 -.318 -1.198 

Q147M 1.000 7.000 -.280 -2.114 .146 .551 

Q147D 1.000 7.000 -.101 -.762 .096 .361 

Q147B 1.000 7.000 -.387 -2.920 .049 .185 

Q147J 1.000 7.000 -.070 -.530 -.239 -.900 

Q147G 1.000 7.000 -.129 -.975 -.433 -1.632 
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Q147C 1.000 7.000 -.186 -1.401 .026 .100 

Q152A 1.000 7.000 -.302 -2.274 -.155 -.584 

Q152G 1.000 7.000 .095 .714 -.780 -2.940 

Q152J 1.000 7.000 .051 .383 -.745 -2.809 

Q156H .000 1.000 3.449 26.004 9.898 37.311 

Q156G .000 1.000 3.117 23.498 7.716 29.083 

Q156E .000 1.000 1.505 11.343 .264 .994 

Q156D .000 1.000 3.757 28.320 12.112 45.656 

Q152D 1.000 7.000 -.245 -1.844 .413 1.558 

Q147H 1.000 7.000 -.239 -1.804 .338 1.275 

Q147E 1.000 7.000 -.351 -2.649 .469 1.769 

Mardia     256.439 55.838 

 

A Mardia value of 256.439 was obtained which is lower than the Mardia 

coefficient cut-off of 449.50 obtained with  = 29 observed variables. To test for 

univariate normality, the skewness and kurtosis for each variable in the data set 

was determined.  There is no consensus regarding an acceptable degree of non-

normality, but cut-off values of 3.00 for univariate skewness and 7.00 for 

univariate kurtosis have been proposed (Finney and DiStefano, 2006). Inspection 

of the assessment of normality table shows that there are 3 variables (Q156H, 

Q156G and Q156D) which displays skewness > 3.00 and kurtosis > 7.00. From 

the total of 29 variables, 89.7 percent of the variables are thus normally 

distributed. It is concluded that the sample data is not multivariate normal but 

instead displays mild non-normality, whilst the overall data distribution meets 

the criteria for normality. 
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One means of addressing multivariate non-normal data is through the use of a 

procedure known as the bootstrapping. While Mardia's statistic shows that the 

data is normally distributed and consequently it should be possible to use 

estimation techniques that are suited for data that are normally distributed, the 

presence of 3 variables in the sample data set that are non-normal is cause for 

caution. The sample data set does not meet the strict criteria for multivariate 

normality that all variables in the data set being normally distributed. With non-

normal data, the  statistics may be inflated when using ML. Bootstrapping is 

best described as a resampling procedure in which the original sample is 

considered to represent the population. Multiple sub-samples of the same size as 

the parent sample are drawn randomly with replacement from the population. 

The subsamples provide the data for an empirical investigation of parameter 

estimates and indices of fit.  

 

Bootstrapping is based on the notion that when the assumptions of normality in 

a distribution are violated, a sampling distribution can be relied upon to describe 

the actual distribution of the population (Varian, 2005). Cases from the original 

data set are randomly selected with replacement to generate other data sets, 

usually with the same number of cases as the original. Because of sampling with 

replacement, (1) the same case can appear in more than one generated data set 

and (2) the compositionof cases will vary slightly across the generated samples. 

When repeated many timesbootstrapping simulates the drawing of numerous 

random samples from apopulation (Kline, 2011). The bootstrapped averaged 

estimates and their standard errors can be compared against the results from the 

original sample to evaluate the stability of model parameters. Nevitt and 
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Hancock (2001) suggested that using bootstrapping standard errors from 

complete data sets may be unwise with a sample size of 100 and recommended 

sample sizes of 200 or above. The sample size in the study was 341. Inspection of 

the sample data found that there were no missing values in any of the 341 cases 

and no adjustment for missing data was needed.  

 

When using bootstrapping the Bollen-Stine  value can provide corrected values 

for the goodness-of-fit statistic (Bollen and Stine, 1992). The Bollen-Stine  

value adjusts the standard error of the path estimates to help adjust for the non-

normality of the estimation. Using a conventional significance level of 0.05, the 

model would be rejected if the -value was smaller than 0.05. If p-value were 

larger then 0.05, the model would not be rejected. When conducting a bootstrap 

exercise, it is recommended that at least 2000 bootstraps be utilised (Nevitt and 

Hancock, 2001). A potential limitation of the bootstrap confidence intervals is 

that two researchers analysing the same set of data may obtain different 

confidence intervals because the bootstrap samples generated by each researcher 

may be different (Gleser, 1996; MacKinnon et al., 2004). The differences should 

be negligible when the number of bootstrap samples is large. 

 

In order that the results of the analysis were valid, it was important to check the 

data for multicollinearity. Multicollinearity refers to a situation in which two or 

more explanatory variables in a model are highly and linearly related. In perfect 

multicollinearity the correlation between two independent variables is equal to 1 

or -1. Multicollinearity increases the standard errors of the coefficients that in 

turn mean that coefficients for some independent variables may be found not to 

be significantly different from 0. Without the presence of multicollinearity these 
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same coefficients might have been found to be significant and the researcher may 

not have come to null findings. Multicollinearity may thus inflate standard errors 

and make some variables statistically insignificant where they should be 

otherwise significant Very high multicollinearity can result in matrix entries 

that approach 0. Given that SEM uses covariance matrices as input, very high 

multicollinearity may cause the model-fitting program to be empirically under 

identified and thus to generate estimates which are not reliable (Kline, 2004).  

 

If a data set has variables that are multi-collinear, the researcher should possibly 

consider combining them into a single variable or drop one or more of the affected 

variables from the data set. Multicollinearity can be detected the correlations 

between independent variables are larger than 0.80 or 0.90. In general if the 

correlation value between two items is higher than 0.90, multicollinearity is a 

problem in data analysis (Hair et. al., 1998). Kline (2004) suggested the cut-off of 

0.85 as the border of “extreme”. In appendix 8.11 the matrix of implied 

correlations between the independent variables in the data is shown. The highest 

value is 0.831, which is below the cut-off proposed by Kline (2004). It was 

concluded that there was no multicollinearity in the sample data set and 

consideration of dropping any variables from the data set need not be given. 

 

4.5. SEM sample size 

Where structural equation modelling (SEM) is proposed as the basis for testing a 

research hypothesis it is further necessary to determine the optimal sample size 

for an SEM. Ad hoc rules of thumb requiring the choosing of 10 observations per 

indicator in setting a lower bound for the adequacy of sample sizes have been 

widely used since their original articulation (Nunnally, 1967). Justifications for 
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this rule of 10 appear in several publications (Barclay et al. 1995, Chin, 1998, 

Kahai and Cooper, 2003). The rule of 10 couches the sample size question in 

terms of the ratio of observations (sample points) to free parameters. Bollen 

(1989) stated that ‘‘though I know of no hard and fast rule, a useful suggestion is 

to have at least several cases per free parameter” and Bentler (1989) suggested a 

5:1 ratio of sample size to number of free parameters. Sample size in SEM can be 

computed through two methods: the first as a function of the ratio of indicator 

variables to latent variables and the second as a function of minimum effect, 

power and significance. Software and methods for computing both have been 

developed (Westland, 2010).  

 

A meta-study into lower bounds on sample sizes in structural equation modelling 

found that there was a systematic bias towards choosing sample sizes that were 

significantly too small (Westland, 2010). Actual sample sizes averaged only 50 

percent of the minimum needed to draw the conclusions the studies claimed. 

Overall, 80 percent of the research articles in the meta-study drew conclusions 

from insufficient sample sizes. An algorithm for computing the lower bound on 

sample size required to confirm or reject the existence of a minimum effect in an 

SEM at given significance and power levels has been developed (Westland, 2010).  

Whereas the sample size for hypothesis testing is typically determined from a 

critical value ( ) that defines the boundary between the rejection (set by ) and 

non-rejection (set by ) regions the minimum sample size that can differentiate 

between (null hypothesis) and (alternative hypothesis) occurs where the 

critical value is exactly the same under the null and alternative hypotheses. To 

just detect the minimum effect size  
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  [4.6] 

  [4.7] 

 

The minimum sample size  is given by  

 

 [4.8

] 

 

and where  

 

  [4.9] 

 
 

[4.10] 

  [4.11] 

 
 [4.12] 

 

 
[4.13] 

 

where  is the effect size. Specifically an apriori solution is sought viz. a sample 

size that will be sufficient given the prior requirement on what the minimum 

effect is that the tests will need to detect. Minimum effect, in the context of SEM, 

is the smallest correlation between latent variables that should be detectable 

with the sample size and model parameters.  

 

Using the above methodology software has been developed that can compute the 

sample size required for a study that uses a SEM model given the number of 
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observed and latent variables in the model, the anticipated effect size and the 

desired probability and statistical power levels (Soper, 2012). The software also 

determines the minimum sample size required to detect the specified effect and 

the minimum sample size required given the structural complexity of the model. 

The proposed SEM to validate the extended TAM model has 9 latent constructs 

and 29 observed variables. Using the software developed by Soper (2012) with an 

anticipated size effect of d = 0.2, a desired statistical power level of 0.8 and a = 

0.05 the minimum sample size to detect effect is 157. The minimum sample size 

for model structure is 170.  These findings yields a recommended minimum 

sample size of 170 at the p=0.05 level. For a probability level of 0.01 the 

minimum sample size to detect effect rises to 222 while the minimum sample size 

for model structure remains 170. With the data set having 341 observations it is 

concluded that the data set is large enough to detect effect and determine model 

structure at both the p=0.05 and p=0.01 levels. From the analysis it was found 

that the sample of 341 was large enough to conduct an SEM analysis. 

 

4.6. Measurement model - Confirmatory factor analysis 

The first component of an SEM is the measurement model, conducted using CFA. 

CFA tests hypothesized relationships between the manifest variables and latent 

constructs or factors. When a CFA is conducted, the researcher uses a 

hypothesized model to estimate a population covariance matrix that is then 

compared with the observed covariance matrix. Latent factors are theoretical in 

nature and they cannot be observed directly. Consequently latent factors cannot 

be measured directly either. To measure a latent factor, researchers capture 

indicators that are assumed to represent the underlying construct. The indicators 

are directly observable and believed by the researcher to accurately represent the 
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construct that cannot be observed. An example of a latent factor is happiness. 

Happiness cannot be measured directly as it is a state of mind. A researcher can 

identify manifest variables that together would define the factor happiness - such 

as being healthy; being in love, being financially secure etc. All of these manifest 

variables are assumed to be indicators of happiness.   

 

CFA explicitly tests the priori hypotheses about relationships between manifest 

variables and latent factors. CFA is often the analytic tool of choice for 

developing and refining measurement instruments, assessing construct validity, 

identifying method effects and evaluating factor invariance across time and 

groups (Brown, 2006). A key aspect of CFA evaluation is the ability of the 

parameters from the measurement model to reproduce the observed relationships 

among the indicators. The results of CFA can provide evidence of the convergent 

and discriminant validity of theoretical constructs.  

 

Convergent validity refers to the degree to which scores on a test correlate with 

scores on other tests that are designed to assess the same construct. Convergent 

validity is indicated by evidence that different indicators of theoretically similar 

or overlapping constructs are strongly interrelated. Discriminant validity is the 

degree to which scores on a test do not correlated with scores from other tests 

that are not designed to assess the same construct. A fundamental strength of 

CFA is that the resulting estimates of convergent and discriminant validity is 

adjusted for measurement error. CFA provides a stronger analytic framework 

than traditional methods such as ordinary least squares approaches or multiple 

regressions, which assume variables in the analysis are free of measurement 

error. Brown (2006) states that the fundamental intent of CFA is to determine 
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the number and nature of latent constructs that account for the variation and co-

variation among a set of manifest variables. The observed measures are inter-

correlated because they share a common underlying construct. If the latent 

construct were removed the correlations among the manifest measures would be 

zero.  

 

In CFA the researcher must specify all aspects of the model. The number of 

factors, pattern of indicators–factor loadings and so forth. In figure 4.1 below the 

structure of typical CFA along with its notation and components is shown. Latent 

factors are drawn as circles or ellipses , manifest variables are drawn as 

squares  with the error associated with the manifest variables drawn as a 

circle . Single headed arrows indicate the causal paths between latent factors 

with the factor loading denoted as . Double-headed arrows denote either 

correlation between the error terms of manifest variables or latent factors. 

 

ε1� ε4�ε3�ε2�

λ11� λ21� λ32� λ42�

X1� X2� X3� X4�

F1� F2�

φ21�

θ12�

 

Figure 4.1: Typical CFA model 
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Correlations between manifest variables are denoted by while that between 

latent factors is denoted by . The fundamental equation of the common factor 

model is the variable  explained in terms of the latent factor is,  

 

  [4.14] 

 

where  is the th manifest variable,  represents the th latent factor and 

 the factor loading relating the th variable to the th factor.  represents 

the variance that is unique to the variable . A series of equations will result, 

one for each variable associated with a latent factor. This set of equations can be 

summarized into a single equation that expresses the relationships among 

observed variables , latent factors  and unique variances : 

 

  [4.15] 

 

or in expanded matrix form: 

 

  [4.16] 

 

where  is the  symmetric correlation matrix of  indicators,  is the 

 matrix of factor loadings ,  is the  symmetric correlation 

matrix of the factor correlations and  is the  diagonal matrix of unique 

variances . Matrices are represented in SEM by uppercase Greek letters (e.g., 
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,  and ) and specific elements of these matrices are denoted by lowercase 

Greek letters (e.g., ,  and ) 

 

In order to estimate the parameters in CFA the model must be identified. A 

model is identified if, on the basis of known information it is possible to obtain a 

unique set of parameter estimates for each parameter in the model whose values 

are unknown (e.g., factor loadings, factor correlations, etc.). Model identification 

pertains in part to the difference between the number of freely estimated model 

parameters and the number of pieces of information in the input variance–

covariance matrix. In order to conduct a CFA every latent factor must have its 

scale identified. By definition latent factors are unobserved and thus have no 

defined units of measurement. The researcher must set these units of 

measurement and two methods exist to establish scales for latent factors. In the 

first method the researcher fixes the metric of the latent factor to be the same as 

one of its indicators. The indicator selected to pass its metric onto the latent 

factor is referred to as a marker or reference indicator. In the second method the 

variance of the latent variable is fixed to a specific value, usually 1.0 (Brown, 

2006).  

 

This approach produces both a standardized and an unstandardized solution. 

Although the latent factors would have been standardized (i.e., their variances 

are fixed to 1.0) the fit of this model is identical to the unstandardized model (i.e., 

models estimated using marker indicators). Besides scaling the latent variable, 

the parameters of a CFA model can be estimated only if the number of freely 

estimated parameters does not exceed the number of pieces of information in the 

input variance/covariance matrix. For these and other reasons such as increased 
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statistical power and precision of parameter estimates researchers recommend 

that latent factors be defined by a minimum of three indicators (Marsh et.al, 

1998). 

 

4.6.1. CFA specification and estimation 

The CFA for the extended TAM model is shown in figure 4.2. The model 

comprises of the nine latent factors hypothesized in the extended TAM model 

along with the 29 manifest variables that are loaded onto the respective latent 

constructs. For each of the manifest variables an error term is included. The 

manifest variables each loaded onto a single latent factor and no cross loadings 

were permitted. Whilst CFA does allow for the covariance of error terms across 

manifest variables that load onto a single factor, the researcher excluded any 

covariance between error terms. The covariance of error terms would need 

empirical justification and none was readily identified in then literature to 

support any cross loading. Figure 4.2 shows covariance between latent factors, 

but for simplicity in drawing figure4.2 not all covariances between latent facts 

were shown. It should be noted that all latent factors were covaried with each 

other in the model. To conduct the CFA, the researcher used SPSS AMOS. A ML 

minimization function using 3,000 bootstrap samples was used to evaluate the 

CFA. 
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Figure 4.2: CFA for the extended TAM model 

	
  

Before conducting the CFA it is essential to ensure that the proposed model is 

properly identified. CFA models must be identified to enable the estimation of 

parameters. When a model is identified, it is possible to fit unique estimates for 

each parameter with unknown values in the model. It further implies that there 

is one best value for each parameter in the model whose value is not known. To 
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be properly identified CFA models must consequently have degrees of freedom 

( ) greater than 0 for models (Kline, 2004). The proposed model had 434 distinct 

sample moments and 112 parameters, producing 322 . The measurement 

model was thus identified. The researcher utilized IBM SPSS AMOS version 

20.0.0 to conduct the model fit. The indices reported on (CFI, TLI, PCFI and 

RMSEA) are shown in the table 4.2 below. The complete set of fit indices 

generated by the software is included in appendix 8.12 

 

Table 4.2: CFA model fit values 

Model NFI 
Delta1 

RFI 
rho1 

IFI 
Delta2 

TLI 
rho2 CFI 

Default model 0.891 0.874 0.960 0.953 0.959 

Saturated model 1.000  1.000  1.000 

Independence model 0.000 0.000 0.000 0.000 0.000 

Model PRATIO PNFI PCFI 

Default model 0.860 0.766 0.825 

Saturated model 0.000 0.000 0.000 

Independence model 1.000 0.000 0.000 

Model RMSEA LO 90 HI 90 PCLOSE 

Default model 0.039 0.032 0.046 0.997 

Independence model 0.180 0.176 0.185 0.000 

 

The Bollen-Stine -value = 0.083 which was above the 0.05 cut-off for rejecting 

the null hypothesis that the model does not describe the sample data. The CFI 

for the model was 0.964, which is above 0.95 indicating a good fit. The TLI for the 

analysis was 0.957, which is above 0.95 also indicating a good fit. The RMSEA for 

the model is 0.038, which is below 0.05 indicating a good fit. Furthermore the 90 

percent confidence interval for RMSEA is (0.030 - 0.045) which is below 0.05 
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indicating a good fit at the 90 percent confidence interval. The Standardized Root 

Mean Square Residual (SRMR) = 0.0427 which is less than 0.08 indicating a good 

fit. The PCFI is 0.825, which was also acceptable. 

 

Goodness-of-fit indices provide a global descriptive summary of the ability of the 

model to reproduce the input covariance matrix, but the other two aspects of fit 

evaluation, localized strain and parameter estimates, provide more specific 

information about the acceptability and utility of the solution. There are three 

matrices associated with the typical CFA model: the sample variance–covariance 

matrix (S), the model-implied or predicted variance–covariance matrix (Σ) and 

the residual variance–covariance matrix which reflects the difference between 

the sample and model-implied matrices. In some instances, overall goodness-of-

fit indices suggest acceptable fit despite the fact that some relationships among 

indicators in the sample data have not been reproduced adequately. Large, 

positive standardized values in the residual variance–covariance matrix may 

indicate that additional parameters are needed in the model to better account for 

the covariance between the indicators. Negative standardized residual suggests 

that the model’s parameters overestimate the relationship between two 

indicators to some extent.  

 

Standardized residuals that greater than |1.96| are regarded as significant 

because this value corresponds to a statistically significant  score at p < 0.05. In 

general, larger sample sizes are associated with larger standardized residuals 

because the size of the standard errors of the fitted residuals is often inversely 

related to sample size. For this reason, some methodologists recommend the use 

of larger cut-off values of |2.58| which corresponds to the 0.01  level (Byrne, 
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1998). The standardized CFA residual matrix is included in appendix 8.13. The 

sample size of 341 was characterized as a large sample. The values in the matrix 

ranged from -1.743 to +2.654. There was only a single value (+2.654), which was 

outside the acceptable range and consequently it was concluded that the solution 

does not have areas of localized strain.  

 

Another aspect of model evaluation that focuses on specific relationships in the 

solution is the modification index (Sorbom, 1989).  Modification indices can be 

computed for each fixed and constrained parameter in the model.  The 

modification index reflects an approximation of how much the overall model fit 

index would improve if the fixed or constrained parameter were freely estimated. 

Researchers undertaking modifications may capitalize on chance variations in 

the obtained sample and any such modifications should be viewed as tentative 

until cross-validated on an independent sample. The researcher did not 

undertake any modification to the CFA. As part of its standard output AMOS 

provides modification indices and these have included this in appendix 8.14. 

Inspection of the table indicated that the implied parameter change for the 

proposed modification indices were small, indicating that minimal improvement 

in fit would be obtained if modification indices had been used to improve the fit of 

the model. 

 

4.6.2. Outcome of the measurement model 

The measurement model contained no double-loading indicators and all 

measurement error was presumed to be uncorrelated. The model was over 

identified with 322 . As noted in the introduction section, the data was 

gathered from 341 respondents. All 341 cases had complete data and there were 
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no missing values. Prior to the CFA analysis, the data was evaluated for 

univariate and multivariate normality by examining inter-item and item to total 

correlations for each variable loading onto latent factors. Normality of the data 

was examined using SPSS AMOS 20.0.0 and the joint test of non-normality in 

terms of skewness and kurtosis, Mardia’s co-efficient, was not significant.  

 

The CFA was analysed using SPSS AMOS 20.0.0 and a maximum likelihood 

minimization function using 3,000 bootstrap samples was used. Goodness-of-fit 

was evaluated using PCFI, RMSEA and its 90 percent confidence interval, CFI 

and the TLI. Multiple indices were used because they provided different 

information about model fit. When used together these indices provided a more 

conservative and reliable evaluation of the solution. Each of the overall goodness-

of-fit indices suggested that the nine-factor model fits the data well. Bollen-Stine 

-value = 0.083, SRMR = 0.046, RMSEA = 0.038 (90 percent CI = 0.030; 0.045; 

CFit = 0.99), TLI = 0.957 and CFI = 0.964. Inspection of standardized residuals 

and modification indices indicated no significant localized points of ill fit in the 

solution.  It can thus be concluded that the latent factors and associated 

variables are a good measurement fit for the data. 

 

4.7. Structural model – Path Analysis 

The second component of a SEM is the structural model. The structural model in 

SEM is essentially a path analysis. Path analysis is a statistical technique used 

to examine causal relationships between two or more variables. It is based upon 

a linear equation system and was first developed by Sewall Wright in the 1930s 

for use in phylogenetic studies. Path analysis is different from other linear 

equation models in that in path analysis mediated pathways viz. those acting 
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through a mediating variable can be examined. Pathways in path models 

represent hypotheses of the researcher. The introduction of a measurement 

model in SEM has the effect that the estimated parameters in the structural 

model are free from the influence of measurement errors. As a result of this the 

errors in the structural model are separated from the errors in the measurement 

model.  

 

The parameters of a structural model are the variances, regression coefficients 

and covariances among variables. In figure 4.3 below a typical structural model 

is shown along with its key components.  The nomenclature for structural models 

used in SEM is similar to that used for CFA. Latent factors are drawn as circles 

or ellipses , observed variables are drawn as squares  with the error 

associated with the observed variables drawn as a circle . Endogenous latent 

variables are in a sense dependent and consequently have a residual error 

associated with them. This residual is drawn as a circle and denoted  and 

measures the portion of the variance in the latent variable unexplained by the 

exogenous latent variables. Single headed arrows indicate the causal paths 

between latent variables with the factor loading denoted as . 
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Figure 4.3: Typical SEM structural model 

 

As with CFA the factor loadings between the observed variables and the 

exogenous latent factors are denoted (𝜆!"). Double-headed arrows denote either 

correlation between the error terms of observed variable (denoted by Θ!") or 

between exogenous latent factors (denoted by (𝜙!"). The causal model illustrated 

in fig 4.2 can be written as a series of equations: 

  𝐹! = 𝛼!"𝐹! + 𝛽!"𝐹! + 𝛿! [4.17] 

and; 

 

 𝑋! = 𝜆!!𝐹! + 𝜀!                    𝑋! = 𝜆!"𝐹! + 𝜀!                    𝑋! = 𝜆!"𝐹! + 𝜀!  

 𝑋! = 𝜆!"𝐹! + 𝜀!                    𝑋! = 𝜆!"𝐹! + 𝜀!                    𝑋! = 𝜆!"𝐹! + 𝜀! [4.18] 

                 

in order to estimate the regression coefficient 𝛽!" between two latent factors 𝑖  and 

𝑗 a simple regression model is used. This is described by 

 

 𝑌 = 𝛽𝑋 + 𝛿 [4.19] 
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where both X and Y are observed variables and it is assumed that both variables 

are measured as deviations from their average. Under this assumption the 

following expected values E arise 

  

  [4.20] 

 

and further: 

 

  [4.21] 

 [4.22] 

  [4.23] 

 

now: 

 

  [4.24] 

 

because  following the usual assumption of regression analysis and 

from the above; 

 

  [4.25] 

  [4.26] 

  [4.27] 

  

which can then be written as two covariance matrices: 
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  [4.28] 

 

the simple regression model implies a functional connection between the 

theoretical covariance matrix and the parameters of the model namely  and . 

If the empirical values are substituted for the theoretical ones, the above 

becomes 

 

  [4.29] 

 

It cannot be expected that the two matrices to be exactly equal, but the better the 

model describes the data the more equal the matrices will be. If there is a one to 

one correspondence between the sample covariance matrix and the parameters of 

a model assumed to have generated the sample then the model can be estimated, 

its fit tested and measures of fit can be calculated based on the difference 

between the two matrices which is the residual matrix given by: 

 

  [4.30] 

  

minimising the elements of the residual matrix leads to the traditional estimates 

of  and  

  [4.31] 

  [4.32] 
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The above is the basis in which estimation is built. The model formulation 

implies a certain form of the covariance matrix of the manifest variables and the 

parameters are estimated as the values that minimise the difference between the 

sample covariance matrix and the implied covariance matrix or residual matrix.  

 

4.7.1. Path analysis specification and identification 

In order to conduct the path analysis the model must be specified. Model 

specification involves determining every relationship and parameter in the model 

that is of interest to the researcher.  In this step theparameters, which are set to 

be fixed or free, are determined. Fixed parameters are not estimated from the 

sample data and are typically fixed at zero indicating no relationship between 

variables. Free parameters are estimated from the observed data and are 

hypothesized by the researcher to be non-zero. Determining which parameters 

are fixed and which are free in a SEM is important because it determines which 

parameters will be used to compare the hypothesized model with the sample 

population variance and covariance matrix in testing the fit of the model. The 

choice of which parameters are free and which are fixed in a model is up to the 

researcher. This choice represents the researcher’s apriori hypothesis about 

which pathways in a system are important in the generation of the observed 

system’s relational structure.  

 

In figure 4.4 the proposed structural model for the data is illustrated.In chapter 2 

the proposed model to explain financial services adoption through an 

intermediary was derived and in figure 4.4 this is expressed as a path diagram in 

SEM.  
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Figure 4.4: Proposed SEM model 

 

The proposed model can be reduced to a set of simultaneous equations that the 

estimation will optimize and obtain parameter estimates for. As for a CFA, a 

path analysis uses two different kinds of variables, namely exogenous and 

endogenous variables. The distinction between these two types of variables is 

whether the variable regresses on another variable or not. An exogenous variable 

is influenced by other variables in the path diagram. An endogenous variable is 

free from the influence of other variables in the model. The set of equation 

describing the model is shown below; 

 

 𝐵𝐼 =   𝛽!"𝑃𝑈 + 𝛽!"𝐴𝑇𝑇 + 𝛽!"𝑆𝑂𝐶 + 𝛿!" [4.33] 

 𝑃𝑈 = 𝛽!!𝐻𝐸𝐷 + 𝛽!"𝑃𝐸𝑂𝑈 + 𝛽!"𝐴𝑇𝑇 + 𝛽!"𝑆𝑂𝐶 + 𝛿!" [4.34] 

 𝑃𝐸𝑂𝑈 = 𝛽!!𝐻𝐸𝐷 + 𝛽!"𝑇𝐴𝑆𝐾 + 𝛽!"𝑇𝑆𝐸 + 𝛿!"#$ [4.35] 
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  [4.36] 

  

where  represents the path co-efficient between the latent factors  and  

and  represents the error associated with the latent exogenous factor . The 

latent factors behavioural intent (BI), perceived usefulness (PU), perceived ease 

of use (PEOU) and attitude (ATT) are exogenous factors. Each of these factors 

consequently has an error term associated with them that explains the portion of 

the variance that is unexplained by the dependent latent factors in our model. 

The remaining factors hedonistic (HED), task (TASK), technology self-efficacy 

(TSE) and social (SOC) are endogenous variables, which are independent and do 

not have error terms associated with them.  

 

The proposed model is also recursive in that there are no feedback loops in the 

proposed relationship between the latent factors. Recursive models can pose a 

problem when trying to estimate parameters in a model.Once a structural 

equation model has been specified the next step is to determine whether the 

model is identified. An identified model is a model where a specific parameter 

value uniquely identifies the model and no other equivalent formulation can be 

given by a different parameter value. Model identification was determined by 

first checking the order condition. The order condition requires that the number 

of free parameters to be estimated must be less than or equal to the number of 

distinct values in the matrix S. In the model there are 97 free parameters that 

need to be estimated. There are a total of 29 observed variables. The number of 

distinct values in the matrix S is equal to  where  is the number of 

observed variables. Consequently the number of distinct values in the S matrix is 

406, which is larger than the number of free parameters and consequently the 
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model order condition is acceptable. The model has 464 distinct sample moments 

and 102 parameters that need to be estimated. The model consequently had 362 

degrees of freedom and is identified.  With the model meeting the order condition 

and being identified it was possible to obtain unique estimates for the model 

parameters. 

 

4.7.2. Path analysis estimation 

In path analysis estimation start values of the free parameters are chosen in 

order to generate an estimated population covariance matrix, , from the model. 

Start values can be chosen by the researcher from prior information or by 

computer programs used to build SEMs. For the SEM the software estimated 

start values. For the analysis bootstrapping using the ML estimator and 3,000 

samples was used to deal with the mild non-normality. SPSS AMOS version 

20.0.0 software was used to conduct the analysis. Using this technique a Bollen-

Stine  = 0.079 was obtained. As this is greater than 0.05 the null hypothesis is 

rejected and it was concluded that the model fits the data well. The indices 

reported on (CFI, TLI, PCFI and RMSEA) are shown in the table 4.3 below. The 

complete set of fit indices generated by the software is included in appendix 8.15 

 
Table 4.3: SEM Model fit values. 

Model NFI 
Delta1 

RFI 
rho1 

IFI 
Delta2 

TLI 
rho2 CFI 

Default model 0.889 0.875 0.960 0.954 0.959 

Saturated model 1.000  1.000  1.000 

Independence model 0.000 0.000 0.000 0.000 0.000 

Model PRATIO PNFI PCFI 

Default model 0.892 0.792 0.855 
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Saturated model 0.000 0.000 0.000 

Independence model 1.000 0.000 0.000 

Model RMSEA LO 90 HI 90 PCLOSE 

Default model 0.038 0.032 0.045 0.999 

Independence model 0.180 0.176 0.185 0.000 

 

All the values indicate that the model is a good fit to the data. The RMSEA for 

the hypothesized model had a value of 0.38. The confidence interval at the 90 

percent level was 0.31 to 0.45. Both RMSEA and the confidence interval are 

within the values that indicate good fit. In addition, the researcher noted that 

the PGFI indicated good parsimony fit for the model. For the hypothesized model 

a PGFI of 0.777 was obtained that indicated a good fit. The CFI for the 

hypothesized model was 0.963 that is above the cut-off of 0.95 indicating a good 

fit.  

 

4.7.3. Path analysis modification and evaluation 

If the covariance matrix estimated by the model does not adequately reproduce 

the sample covariance matrix, the initial hypotheses can be adjusted and the 

model retested. To adjust a model, new pathways are added or original ones 

removed. In modification parameters are changed from fixed to free or from free 

to fixed. It should be noted that adjusting a model after initial testing increases 

the chance of making a Type I error. There are benefits and disadvantages to 

using model modification. Any re-specification of the model implicitly changes its 

meaning in some way. In many instances a change in model specification results 

in a trivial or unimportant corresponding alteration of the model’s substantive 

meaning, but in other cases model modification can foreshadow a strong shift in 

the model’s meaning from a theoretical standpoint. A second consideration to 
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take into account when modifying a model is that there is a reliance on empirical 

data rather than theory to help specify the model.  

 

The more empirically based modifications that are incorporated into the final 

model, the less likely the model is to be replicated in new samples of data. For 

these reasons modification of models should be based upon theory as well as the 

empirical results provided by the modification indices. Appendix 4.6 shows the 

modification indices for the SEM analysis. The threshold for modification Indices 

allows one to specify what level of change is required for a path to be included in 

the modification index output. The default value is 4.00 because it slightly 

exceeds the tabled critical value of a chi-square distribution with one degree of 

freedom that is 3.84. Inspection of the modification indices shows that despite 

several large modification indices identified, the impact on model fit 

improvement would be relatively small and none of the suggested modifications 

could be readily supported by the theory or derivation of the model. Consequently 

the researched decided against modifying the model using modification indices. 

 

With the model having an acceptable fit to the data, the researcher analysed the 

parameter estimates to identify the significance of specific model paths. The 

values associated with each path are standardized regression coefficients. These 

values represent the amount of change in  given astandard deviation unit 

change in . Because standardized residuals can be roughly interpreted as  

scores, the  score values that correspond to conventional statistical significance 

levels are employed as practical cut-offs. The size of standardized residuals is 

influenced by sample size. In general larger samples sizes are associated with 

larger standardized residuals because the size of the standard errors of the fitted 
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residuals is often inversely related to sample size. For this reason, some 

methodologists recommend the use of larger cut-off values such as |2.58| which 

corresponds to the .01  level (Byrne, 1998). Confidence intervals can be created 

for parameters estimated with SEM by the bootstrap method. In table 4.4 the 

unstandardized regression weights for the paths in the proposed model are 

shown 

 

Table 4.4: Bootstrap unstandardized regression weights with 95 percent 

confidence intervals 

Regression path Estimate S.E. Lower Upper C.R. 

PEOU <--- TASKm -.153 .091 -.180 .005 -1.689 

PEOU <--- HED .585 .075 .611 .854 7.769 

PEOU <--- TSEm .034 .299 -.088 .098 .115 

ATT <--- TASKm 1.437 .287 .209 .388 5.000 

ATT <--- SOC .072 .098 -.110 .221 .732 

ATT <--- TSEm -1.022 .934 -.181 .042 -1.095 

ATT <--- HED .360 .169 -.018 .335 2.135 

PU <--- PEOU .973 .138 .572 1.035 7.045 

PU <--- SOC -.073 .035 -.283 .002 -2.056 

PU <--- ATT .033 .020 -.034 .207 1.648 

PU <--- HED .261 .091 -.007 .552 2.857 

BI <--- PU .903 .092 .718 .934 9.762 

BI <--- SOC .149 .039 .108 .415 3.853 

BI <--- ATT -.011 .025 -.146 .096 -.429 
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The critical ratio (CR) and 95 percent confidence interval values for the 

parameter estimates, indicated as Lower and Upper in the table, are also 

displayed. If the critical ratio associated with a path in the hypothetical model 

exceeds the critical value of |1.96|, (at =0.05) and the critical value of |2.58| 

(at =0.01) the null hypothesis that the parameter was equal to 0 is rejected and 

the hypothesized relationship is supported (Mueller, 1996). From the critical 

ratio six paths were identified that were significant at the  = 0.01 levels and 

two paths that were significant at the p = 0.05 level. The significant critical 

ratios are highlighted in the table. Unstandardized regression weights are 

indicated in the Estimate column. TASK has a significant effect on ATT (CR = 

4.998, Std. = 0.298) at the p=0.01 level. HED has a significant effect on ATT (CR 

= 2.130, Std. = 0.174) but only at the p=0.05 level. HED as a significant effect on 

PEOU (CR = 6.768, Std. = 0.781) at the p = 0.01 level whilst PEOU has a 

significant effect on PU (CR = 6.534, Std. = 0.908) at the p = 0.01 level. Finally 

PU has a significant effect on BI (CR = 5.288, Std. = 0.669) at the p=0.01 level as 

does SOC on BI (CR = 2.606, Std. = 0.192). None of the other paths in the 

hypothesized model have significance at either the p = 0.05 or the p =0.01 level. 

 

Cheiung and Lau (2008) have highlighted the importance of mediation effects in 

SEM and advised researchers to include these in any complete analysis of an 

SEM model. Mediation effect is frequently referred to as an indirect effect, where 

the effect of the independent variable  on the dependent variable  goes 

through a mediator . The mediation effect is commonly defined as the 

reduction in the regression coefficient of  on , when the effects of  are 

controlled for (Baron and Kenny, 1986; Judd and Kenny, 1981). When the 

suppression effect is not controlled for, the relationship between  and  would 

 
 
 



 

 131 

appear to be smaller (Cohen and Cohen, 1983). MacKinnon et. al. (2002; 2004) 

suggest using the bootstrap method to define the confidence intervals for 

mediation effects estimated with SEM by the bootstrap method. To determine the 

significance of the indirect effects a critical ratio was calculated by dividing the 

standard estimate generated from the 3,000 bootstrap examples by its associated 

standard error. In table 4.5 below the critical ratios for the indirect effects is 

shown. 

 

Table 4.5: Indirect effects 

 TASKm SOC TSEm HED ATT PEOU PU BI 

ATT 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

PEOU -0,308 -0,200 0,177 -0,235 0,000 0,000 0,000 0,000 

PU -1,496 -0,365 -0,408 3,732 -0,300 0,000 0,000 0,000 

BI -0,897 -0,939 0,160 2,014 0,606 2,198 0,000 0,000 

 

One indirect effects was significant at the =0.01 level and an additional two 

were significant at the p=0.05 level. The statistically significant indirect effects 

are highlighted in the table. HED has a significant indirect effect on BI (CR = 

2.014) at the p=0.05 level. PEOU has a significant indirect effect on BI (CR = 

2.198) at the p=0.05 level. HED will also have a significant indirect effect on PU. 

This is confirmed in the table at the p = 0.01 level (CR = 3.732). None of the other 

indirect paths in the hypothesized model have significance at either the p = 0.05 

or the p =0.01 level. 

 

The SEM standardized residual covariance matrix is included in appendix 8.17. 

Standardized residuals that are equal to or greater than +2.58 or less than -2.58 
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are used to identify localized areas of weakness. The values in the matrix ranged 

from +2.626 to -3.125. There was only a single value (+2.626) above the range 

and a single value (-3.125) below the range. It was concluded that the solution 

did not have significant areas of localized strain. Modification indices were 

computed for each fixed and constrained parameter in the model. The table of 

SEM modification indices is included in appendix 8.16. Inspection of the table 

indicated that the implied parameter change for the proposed modification 

indices were small, indicating that minimal improvement in fit would be 

obtained if these had been used to improve the fit of the model. Consequently no 

post hoc modification to the initial fit was undertaken. 

 

4.7.4. Outcome of the structural model 

The structural model was analysed with a maximum likelihood minimization 

function using 3,000 bootstrap samples. Goodness-of-fit was evaluated using the 

SRMR, RMSEA and its 90 percent confidence interval (90 percent CI), CFI and 

the PCFI. Each of the overall goodness-of-fit indices suggested that the nine-

factor structural model fit the data well. The Bollen-Stine -value = 0.079, 

SRMR = .046, RMSEA = 0.038 (90 percent CI = 0.030 – .045) and PCFI = 0.863. 

Inspection of standardized residuals and modification indices indicated no 

localized points of ill fit in the solution.  The final SEM model with significant 

paths is shown in figure 4.5 below. Path analysis identified five causal paths that 

had statistical significance at the  = 0.01 level (CR > 2.58) and one path that 

had statistical significance at the  = 0.05 level. Two latent factors were 

identified that had a direct causal effect on behavioural intent (BI) to utilize 

financial services through an intermediary (SOC, PU) and one latent factor was 
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identified that had a statistically significant indirect effect on behavioural intent 

through an intermediary (HED). 

	
  

	
  

Figure 4.5: Final SEM model with significant causal paths highlighted 

 

4.8. Conclusion 

This chapter provided an overview of the structural equation modelling (SEM) 

technique. The researcher has shown that SEM is well suited to test 

hypothesized causal models against measured data. The advantages of SEM over 

similar techniques are that it allows the researcher to take a confirmatory rather 

than an exploratory approach to the data analysis, obtain explicit estimates of 

measurement error variance and allow the incorporation of latent and observed 

variables into a single model. SEM is shown to consist of two parts, a 

measurement part and a structural part. The measurement part used for the 

analysis is confirmatory factor analysis (CFA), a special form of factor analysis. 

CFA is used to confirm that a set of latent factors constructed from a group of 

observed variables is able to account for the variance seen in the associated data. 
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The objective of CFA is to obtain estimates for each parameter in the 

measurement model and to identify measurement error explicitly before 

attempting the structural component of the model.  

 

The structural component of the model is derived using path analysis and allows 

researchers to confirm or reject the proposed causal relationships in a proposed 

model. A variety of model fit indices was described that are used equally for CFA 

as well as SEM model fits and the values associated with acceptable fits in the 

indices was also discussed. The analysis of the hypothesis extended TAM model 

for financial services adoption through an intermediary was conducted using 

structural equation modelling. The sample size of 341 was found to have the 

appropriate power to detect type II errors and was large enough to carry out a 

SEM analysis. The combined distribution of the data is assumed to be normal, 

however three of the 29 variables used were not univariate normal and the 

combined data was characterized as mildly non-normal.  

 

With the data distribution being mildly non-normal a bootstrap maximum 

likelihood estimation approach was used with 3,000 bootstrap samples. The 

observed variables that described the nine latent factors were tested and found to 

be valid and reliable indicators of the latent constructs. The SEM model 

comprised two components, the measurement component and the structural 

component. The measurement component of the model was tested using 

confirmatory factor analysis and showed good fit across all reported indices and 

no post hoc modification was deemed necessary. It was concluded that the eight 

latent factors were a good fit to the data. The structural equation component of 

the SEM was over identified, allowing estimation of the model parameters. The 
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structural model showed good fit across all reported indices. The hypothesized 

model was thus confirmed as a good fit to the data. The critical ratios of the path 

analysis identified six statistically significant relationships in the model. Two 

latent factors were found to directly affect behavioural intent and two latent 

factors were found to indirectly affect behavioural intent to adopt financial 

services through an intermediary. 
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