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Abstract

The structural and electronic properties of graphene and graphene-related materials

have been intensively investigated using the plane wave based periodic density func-

tional theory (DFT). The Vienna ab initio simulation package (VASP) code employing

the generalized gradient approximation (GGA) for the exchange correlation potential

was used. In all calculations, the geometry optimization option was employed in allow-

ing the structure to fully relax.

Hydrogen adatoms were adsorbed on C, Si and SiC in the graphene structure in-

volving (1x1),(2x2),(3x3) and (4x4) two dimensional unit cells. The density of states

reveals that the adsorption of 50% hydrogen makes the system metallic but 100% cover-

age at the on top sites generates a band gap. Our results show that SiC in the graphene

structure is a plausible structure with a wide band gap.

For adsoption of lithium adatoms, we considered various configurations involving

the (1x1), (2x1) and (2x2) two-dimensional unit cells, and we consider the isolated Li

dimer on graphene. We consider more detailed configurations than have been studied

 
 
 



before, and our results compare favourably with previously calculated results where

such results exist.

For 100% coverage, we have new results for Li on the on-top site, which suggests

a staggered configuration for the lowest energy structure for which the Li adatoms are

alternately pushed into and pulled out of the graphene layer. For 50% coverage, Li

favours the hollow site. We discovered that a careful relaxation of the system also

shows a staggered configuration, a result that has not been investigated before.
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C, and at the “high” distance of 4.43Å above the C. The Li-Li bond is
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of supercells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 The calculated equilibrium height dpuck (Å), silicon-carbon [Si-C (Å)]
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1

Introduction

Quantum mechanical modelling is the most accurate computational method used in

calculating the energies and predicting the equilibrium structures of solid state and

molecular systems. Such modelling provides quantitative predictions for a broad range

of systems and is not limited to any type of materials. This gives us the assurance that

by solving the quantum mechanical equations of a system, we can achieve a greater

understanding of a large number of physical phenomena related to the properties of

real material systems.

In this work, quantum mechanical modelling enables us to understand the electronic

structure of graphene and to predict some of the not-as-yet experimentally discovered

structures related to graphene. We employed density functional theory (DFT) methods

to determine the energies of the systems. Our results are comparable with experiment

where such results exist, which shows the accuracy of the DFT method.

The calculated energies enables us to find the equilibrium lattice constant by plot-

ting the energies versus cell volumes which we fit to the Birch-Murnaghan equation

of state. The energies were obtained by running several calculations at different vol-
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umes. For the graphene structure, we plotted the energies versus lattice constants.

The equilibrium lattice constant value coincides with the minimum total energy of the

graphene. This is a well established method for accurately predicting the equilibrium

lattice constants, bulk moduli, cohesive energies and transition pressures of the systems

[33, 93].

We employ methods that replaces the chemically inert core electrons with pseudopo-

tentials. Commonly used pseudopotentials are the norm conserving [109] pseudopoten-

tial followed by the ultrasoft pseudopotential [53]. Nowadays, the most popular is the

projector-augmented wave (PAW) method introduced by Blochl [19]. In this project,

the self consistent density functional theory is applied, using the generalized gradi-

ent approximation for the exchange and correlation potential to study the electronic

structure of our systems. This enables us to accurately classify whether the system is

metallic, insulator or semimetallic by computing the band structures and densities of

states (DOS).

Our work is centred on altering the electronic structure of graphene using var-

ious adatoms. Hydrogen is the most obvious choice of dopant, and hydrogenated

graphene, which is more commonly referred to as graphane[76, 95], has been stud-

ied very extensively[38]. The main results for our purposes are two fold: firstly, the

energetically most favoured site for a single isolated hydrogen adatom on graphene is

the on-top site and, secondly, 100% coverage at the on-top sites results in insulating

behaviour, with the lowest energy configuration corresponding to hydrogen adatoms

attaching alternately above and below the graphene layer. Simple electron counting

arguments suggest that all the dangling bond states are saturated in this case which

results in insulating behaviour. Electronic structure calculations of this system yield a

relatively large band-gap in the region of 3.5eV [104]for this material.

2

 
 
 



Li on graphene has also been studied previously by several authors[27, 65, 30], and

here we extend this study to newer configurations. We furnish more detailed structural

and electronic results. In our computations, we consider Li at the on-top site. For

100% coverage for Li on the on-top sites, we find results that are opposite to those of

hydrogen on graphene. We establish that Li attaching on the same side of the graphene

sheet is lower in energy compared with Li attaching alternately on opposite sides of the

graphene sheet. We have calculated the detailed staggering of the Li adatoms in this

case. The most favoured site for a single isolated Li adatom on graphene is the hollow

site. This means that the maximum coverage that is attainable for Li at the hollow

sites is only 50%. This results in an under-saturation of the dangling bond states and

this gives rise to metallic behaviour. Our detailed relaxations show that the Li adatoms

are staggered on the graphene layer.

For different coverages we have different ground state configurations. Our work

shows that for 100% coverage on the on-top site, the ground state corresponds to

Li attaching on the same side in a staggered configuration. For 50% coverage, we

have demonstrated that the hollow site is favoured over the on-top site. The ground

state configuration for this coverage corresponds to Li attaching on the same side in

a staggered configuration. For even lower coverages, the hollow site is deemed to be

more favourable. However, for very low coverages, the attachment on the same side or

on opposite sides of the graphene sheet becomes degenerate.

1.1 Problem statement

Graphene, a single layer of graphite, has stimulated enormous scientific interest. The

interest in graphene is primarily due to its unique (unusual) properties. It was discov-

3

 
 
 



ered that graphene has high electronic mobility and high charge carrier concentrations

which makes graphene an interesting candidate for applications in electronic devices

especially nano-scaled devices. The graphene structure is easily accessible and it is

cheap to make.

Its many unique properties are still not properly understood, and need further investiga-

tions. Computer modelling in the past few years has contributed to the understanding

of graphene. There is still more effort needed to understand the unique properties

of this material. Hopefully, if such challenges are resolved, graphene will find more

applications in nanotechnology.

4

 
 
 



1.2 Aims and objectives

The main aim of this project is to investigate graphene and graphene-related materials,

involving Si and C. All calculations have been performed using the Vienna ab initio

simulation package (VASP) code within the framework of density functional theory.

Our work focuses on the following: firstly bulk carbon, bulk silicon in the diamond

structure and silicon carbide in the zinc blende structure, followed by carbon, silicon

and silicon carbide (SiC) in the graphene structure. We adsorb hydrogen as well as

lithium adatoms on the graphene structures involving different supercell sizes. Our

aim is to determine the structural and electronic properties of these different systems.

Adsorption is used to generate and control the band gaps of the materials. To validate

our work, our calculated results are compared with experimental results and other

theoretical results obtained previously. The objectives of this study are the following:

1. To find the kinetics energy cutoffs for the plane wave expansion of the wavefunc-

tions.

2. Determine the k-points sampling for the Brillouin zone of the systems.

3. Determine the structural properties of the systems such as the equilibrium lattice

constant, volume and bond lengths.

4. Determine the bulk moduli of cubic systems.

5. Determine the electronic properties of the systems, i.e. density of states, band

structures and charge densities that give an indication of the nature and bonding

type of the systems.

5

 
 
 



1.3 Outline of the dissertation

This dissertation is divided into five chapters. The review of graphene and graphene-

related materials including experimental and theoretical work is presented in Chapter

2. Chapter 3 covers the theoretical background of density functional theory and its

implementations. In Chapter 4, we present and discuss our results. Chapter 5 contains

our concluding remarks.
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2

Literature review

2.1 Background of carbon material

Carbon was discovered by early human beings as charcoal and was named by A.L.

Lavoisier in 1789 [2]. It is widely distributed in nature. Carbon is found in planatery

bodies such as stars, the sun etc. It exists in several allotropes such as diamond,

graphite, carbonnanotubes and more lately graphene. All allotropes of carbon are

thermodynamically stable and require a high temperature before they can react[2].

Carbon exhibits a variety of interesting structural and electronic properties because of

its propensity to form both sp2 and sp3 bonds[29]. This gives rise to a range of interest-

ing magnetic, transport and physical properties exhibited by carbon and carbon-based

materials - especially nanoscaled materials.

Diamond is a hard form of carbon found in the Kimberlite of ancient volcanic

erosion around the world. The carbon atoms are tetrahedrally bonded to each other

in the diamond. This makes the structure three dimensional and cubic. The bonding

hybridization that occurs in diamond structure is sp3. The electronic properties reveal

that diamond is an insulating material with a wide band gap between the valence and

7

 
 
 



conduction bands.

Figure 2.1: The conventional unit cell of carbon in the diamond structure

Diamond possesses strong physical properties but poor electronic ones. Diamond

has a high density of 3.515 g.cm−3 [7]. It is considered to be a hard material because

of its high bulk modulus of 442 GPa and Young ’s modulus of 1050 GPa [7]. Its ther-

mal conductivity ranges from 900 to 2300Wm−1K−1 [7] which indicates poor electrical

conductivity. Most applications of diamond are found to be for industrial purposes,

mostly because of its hardness and low electrical conductivity. Diamond is used for

grinding, drilling, polishing and cutting.

Graphite is a soft carbon material that is found in large quantities around the world.

Graphite was recognised long ago by the ancient Romans and was used as a writing

tool because of its black colour. In graphite, carbon atoms are bonded trigonally to

three other carbon atoms in a plane. This kind of bonding makes the structure to be

a two dimensional layer with sp2 type of hybridization. These layers form graphite
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when they are stacked on each other. Any two layers are loosely bonded through the

weak van der Waals force and this is responsible for the softness of graphite. This

force causes interactions between the covalently bonded layers. The delocalization

of one of the outer electrons of each atom forms a π cloud which makes graphite

an electrical conductor, but only in the plane of each covalently bonded layer. The

nearest neighbour distance between carbon atoms is 1.42Å and the interlayer distance

is 3.34Å [51] with the stacking sequence of ABAB.... The natural graphite has been

determined experimentally to have an interplanar cohesive energy of 42.6 meV [51].

Figure 2.2: The 1x1 unit cell of graphite struture.

Unlike diamond, graphite has interesting technological applications due to its prop-

erties. Graphite possesses a low thermal conductivity which ranges from 119 to 165

Wm−1K−1 [7] and a density of 2.267 g.cm−3 [7]. The electronic properties reveal that

graphite is a semiconducting material with a narrow band gap between the conduc-

tion and valence bands. This makes graphite a promising material for technological

applications.
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2.2 The graphene structure

For many years, graphene was the missing allotrope of carbon, after the discovery of

graphite, diamond, carbon nanotubes and fullerenes. Graphene was discovered in the

late 2004 at the centre for Mesoscopic and Nanotechnology of the University of Manch-

ester in the United Kingdom, directed by A.K. Geim and K.S. Novoselov [84, 85].

Graphene was obtained by the cleavage of a single atomic layer from a sample of

graphite using a piece of sticky tape [41]. Graphene is a one-atom thick sheet of car-

bon atoms, arranged in a honeycomb (hexagonal) lattice and is two dimensional [8].

Graphene as one allotrope of carbon is black in colour and is a very soft material com-

pared to hard diamond. The softness of graphene is due to the fact that it has out of

plane vibrational modes (phonons) which are absent in three dimensional solids.

To date, graphene is the building block of all other modern allotropes. By rolling it

in one dimension it becomes a carbon nanotube while by stacking in three dimensions, it

becomes graphite and it can be wrapped to form a zero dimensional fullerene [29]. Most

theoreticians doubted the existence of graphene thinking that it might be highly ther-

modynamical unstable until it was found that its stability is similar to that of graphite.

Whenever one writes with a pencil, it releases black pieces containing graphene layers.

The first graphene membrane was produced with an area of 1mm2 [50]. Electrons

in graphene behave as ‘Dirac Fermions’ and mimic the dynamics of hyper-relativistic

electrons [42]. The Dirac Fermions move at a speed of 106m/s which is 300 times

less than the speed of light. They behave differently to ordinary electrons especially

when exposed to a magnetic field [52]. It was observed that graphene exhibits high

carrier mobilities of electrons which display unusual dependence on the concentration

of impurities [42].
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2.2.1 Structural properties of graphene

Graphene has a two dimensional hexagonal structure with a space group of P6/mmm

with the lattice vectors expressed as follows,

a1 =
a

2
(3,
√

3), a2 =
a

2
(3,−

√
3). (2.1)

The nearest neighbour distance (carbon-carbon distance) is represented by the letter

a in equation (2.1) and is approximately 1.42Å (a ≈ 1.42Å). Graphene has lattice

constants of a1 = a2 = 2.46Å [50] and is a triangular lattice with a basis of two atoms

per unit cell. When extending the graphene layer, we consider the other three next

nearest neighbour vectors given by,

σ1 =
a

2
(1,
√

3), σ2 =
a

2
(1,−

√
3), σ3 = −a(1, 0). (2.2)

There are two types of graphene structure, namely the zigzag and armchair type.

These structures differ according to their orientations and the directions of the edges.

By looking at figure (2.3) and considering the edge along the y axis, we see an armchair

structure. Using the edge along the x-axis, we see the zigzag structure.

Bonding of graphene

Graphene, just like graphite, consists of the sp2 hybridization of one s orbital and two

p orbitals. This sp2 makes the structure trigonal planar which causes a sigma (σ) bond

between the two carbon atoms. The distance between carbon atoms in the graphene

structure is 1.42Å[50] which is shorter than that in cubic diamond. The σ bonds occur

in all allotropes of carbon and are responsible for the robustness of the lattice structure.

Graphene also contains π bond formed by the covalent bonding between two carbon
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Figure 2.3: The lattice structure of graphene, made out of two interpenetrating
triangular lattices (a1 and a2 are the lattice unit vectors and σ1, σ2 and σ3 are
the nearest neighbour vectors)

atoms and occurs in the p orbital states. This π bond is responsible for the band

structure of graphene being semimetallic with the unusual linear dispersion of the Dirac

Fermions [42]. The π bond shows that the graphene layer has clouds of electrons above

and below which is responsible for its semimetallic nature.

2.2.2 The electronic properties of graphene

The electronic properties of a material enable us to classify materials as metals, semi-

metals or insulators. This classification is derived from the densities of states and band

structures of the material.

2.2.2.1 The electronic band structure of graphene

Electrons in graphene have the unique property of posessing extraordinary mobility

vf which plays a vital role in the applications of graphene. The electronic structure

of graphene was found to have the form of the relativistic Dirac equation which is

12

 
 
 



massless. The Brillouin zone of graphene consists of two momentum positions (Dirac

points) at the corners of the zone labelled as K and K′ respectively. We define their

positions as follows,

K = (
2π
3a
,

2π
3
√

3a
), K′ = (

2π
3a
,− 2π

3
√

3a
). (2.3)

These Dirac points are presented on figure (2.4), where the gamma (Γ) point is

found at the centre of the Brillouin zone and is non degenerate.

Figure 2.4: The Brillouin zone of the graphene structure.

The band structure of graphene was first studied by Wallace et al. in 1947 using

the tight binding method [112]. This was done in order to research the low energy

properties of graphite considering the outer layer [112]. The tight binding method is

based on the Hamiltonian of the graphene being written as,

H = −t
∑
n,σi

a†nbn+σi + anb
†
n+σi

. (2.4)
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Figure 2.5: The band structure of the graphene structure.

Where t is the hopping parameter, an and bn+σi are the annihilation operators and

a† and b† are the creation operators corresponding to sublattices of graphene. After

diagonalizing the Hamiltonian equation, the operators are solved as follows:

an =
1
N

∑
k

eikaa(k), bn+σi =
1
N

∑
K

eik(a+σi)b(k) (2.5)

where N is the number of primitive unit cells. Substituting the annihilation operators

into (2.4) and applying the summations, we obtain the wavefunctions of graphene as

follows:

ψ(k) = −teikxa/
√

3[1 + 2e−i
kxa

√
3

2 cos(
kya

2
)]. (2.6)
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Theoretically, the energy bands are derived by the eigenvalues

ε(K) = ±|ψ(k)|. (2.7)

The equation (2.8) is responsible for the theoretical calculations of the band structure

of graphene materials.

ε(K) = ±t

√
1 + 4cos2(

kya

2
) + 4cos(

kya

2
)cos(

√
3kxa
2

). (2.8)

Figure (2.5) shows the tight binding calculated band structure for graphene from equa-

tion (2.8). We observe that the band dispersion is conical at the Dirac points, unlike

that in some crystal materials which have a parabolic dispersion. The dashed line,

which is called the Fermi level, lies exactly at the intersection points. This phenomenon

reveals to us that graphene material is a gapless semiconductor.

2.2.2.2 The electronic density of states of graphene

Figure (2.6) depicts the theoretical DOS of graphene showing semimetallic behaviour.

This DOS of graphene is completely different to that of diamond which has a wide

band gap. Figure (2.6) shows that the density of states for graphene has a zero band

gap between the valence and conduction band.

The density of states (DOS) is derived from (2.9) and its expression is written as

follows:

ρ(E) =
4
π2

|E|
t2

1√
Z0
g(
π

2
,

√
Z1

Z0
). (2.9)

The function g denotes the elliptic integral while Z0 and Z1 are the phases of the

graphene. The equation(2.9) is approximated by equation (2.10) near the Dirac point.

E±(q) ≈ ±vf |q|+ 0[(
q

K
)2] (2.10)
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Figure 2.6: The density of states of the graphene structure.

The function q is the momentum obtained relative to the Dirac points. This approxi-

mation reduces the DOS of graphene to

ρ(E) =
2Ac
π

|E|
v2
f

(2.11)

per unit cell.

2.2.3 Physical properties and possible applications of graphene

Since the discovery of graphene, several experiments have been done revealing remark-

able properties. These properties indicate that graphene is versatile and scalable in a

variety of applications.
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Graphene was reported to have a high Young’s modulus of 1.100GPa [102] and a

fracture strength of 125GPa [36]. It possesses a thermal conductivity of 5000Wm−1K−1 [13].

The thermal conductivity depends on the lateral dimensions of the graphene flakes. The

surface area, which was measured by Stoller et al., was found to be 2.630m2g−1 [106].

The above properties were measured at room temperature (300K) and are suitable for

graphene to be used in nanotechnology applications. Graphene can be used as a gas

sensor due to the fact that it possesses unique electron properties, which are easily

affected by gas molecules touching the graphene surfaces.

Graphene can also be used as a support membrane for transmission electronic mi-

croscopy. This is due to the fact that the fracture strength and the Young’s modulus of

graphene make it very strong with bonds that are not easily broken. Graphene can also

be used to hold micro and macroscopic objects (nanoparticles, DNA) to make them

visible through an electron microscope. In addition, graphene is made out of carbon

atoms only which will be simple to differentiate from other material during observation.

Graphene is useful in transistor production because it is a thin material. This

makes controlling the conduction easier when applying an electric field to the material.

The speed Vf of the electrons in the graphene enables the transistor to run at high

frequencies. This offers the possibility of fabricating a graphene based integrated circuit

(IC). Graphene is also not easily reactive with acids and alkalines and is a possible

candidate for inert coatings to protect objects such as metals from these reagents.

2.3 Review of experimental work on graphene

In this section we review the experimental preparation of graphene and its properties.

When doing so we discover that the key instruments employed to study graphene layers
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are the scanning tunnelling microscope (STM) and Raman spectrometer.

2.3.1 Preparation of graphene

Currently graphene has been prepared using three different techniques i.e, microme-

chanical cleavage of graphite [84], the epitaxial growth on SiC substrates [16] and

Hummers method[61]. The micromechanical cleavage of graphite is used to obtain high

quality graphene but is restricted to small sample dimensions and low visibility. The

epitaxial growth on SiC substrates can produce a large amount of graphene in a small

period of time but the quality still needs to be improved.

Our focus is on the Hummers method [61], which requires the sample to be trans-

ferred to an insulating substrate in order to make useful devices. This method involves

pre-exfoliation of graphite by microwave heating. The heating expands the graphite

into a thinner layered structure. This approach produces a high amount of large single

layer graphite up to 0.002m2 in size in a smaller period of time. The small amount

of expandable graphite is sealed in a glass vial and purified with a high quantity of

nitrogen for 2 hours [45]. The glass vial is then placed in a microwave oven and heated

for less than two seconds [73]. The pieces of graphite are carefully checked to ensure

that all of them have fully expanded. Those which did not expand are isolated. Five

grams of K2S2O8 and P2O2 are dissolved in 30 ml of concentrated sulphuric acid at

a temperature of about 90◦C. The expanded graphite is added to this solution and

stirred at a temperature of 80◦C for 4 hours.

The mixture is then added to de-ionized water and filtered through a 0.2 micron

Nylon Millipore filter. The filtrated mixture is washed with water until the pH level

is neutral. The light and soft graphite oxide is dried in air at 60◦C for 3 hours and

then mixed with 100ml of concentrated sulphuric acid. This mixture is placed in ice
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cubes. After a while, 60g of KMnO4 is added slowly to the solution until it dissolves

completely. The solution is placed in a microwave at the temperature of 35◦C for 2

hours and added to 1000 ml of de-ionized water, then stirred for two hours.

Hydrogen peroxide H2O2 is added gently to the solution and the solution is left for

24 hours at ambient temperature. The solution is then separated leaving the sediments

at the bottom of the container. The remaining solution is then centrifugated and washed

with 10% HCl solution three times and washed again ten times with deionized water.

After washing, the remaining product is the graphene oxide which is a very viscous and

brownish transparent solution. The corrosive ions are removed by dialysing against

deionized water, applying a tubing process with a 12,000MW cutoff. In order to obtain

pure graphene, 10mL of 98% hydrazine solution is added into 10mL of graphene Oxide

product. The solution is then placed at a temperature of 50◦C for 12hours. The

graphene flakes are then obtained through filtration and washed with deionized water.

2.3.2 Scanning tunnelling microscope (STM) and scanning tunnelling

spectroscopy (STS)

The scanning tunnelling microscope was invented by Russell Young [118] in 1965 and

was further developed in 1981 by Gerd Binning and Henrich Rohrer [17] in Zurich.

In 1977 they were awarded the Nobel Prize in Physics. The STM is regarded as a

powerful tool for obtaining images of surfaces at the atomic scale. The STM senses the

corrugations in the electron density of the surface that indicate the location of atoms.

It operates when the surface is 0.1nm lateral and 0.01nm in depth [9]. The STS is also

known as a counter of electrons, and is the method employed on STM to observe the

local density of states and the surface of the materials [86]. This method observes the

changes in the current topograph with a tip-sample bias and measures the tunnelling

conductance dI/dV .
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2.3.3 Application of STM and STS to graphene layer

In this section we review the STM and STS applied to graphene layers to analyze the

band gap. We reviewed in detail the two types of graphene used (i.e pristine and ro-

tated graphene where STM and STS were successfully applied).

Stolyarova et al. [43] used the STM to examine the single layer graphene crystal under

high ultravacuum conditions. Their analysis reveals that graphene sample is highly con-

ductive, since the tunnelling of electrons occurs between the STM tip and the graphene

layer. In other words the graphene layer consists of a cloud of electrons which indicates

the conductivity of the material. This concept was first revealed by Elias et al. [38].

When measurements were conducted, the sample potential bias was set at 1V and the

tunnelling current was chosen to be 1nA. The voltage must be high in order to avoid the

structure becoming unstable. Their STS images clearly show the hexagonally symmet-

ric honeycomb structure without any defects present. Stolyarova et al. [43] concluded

that the whole layer consists of atoms contributing equally to the tunnelling images.

Vital et al. [110] used the STS at low temperature to investigate the local electronic

structure of mono-layer graphene. They made use of a rotated layer with a periodicity

of (6
√

3X6
√

3)R30◦ in the interface structure. The STS image observed by Vital et

al. exhibits two peaks at energies close to the Dirac point which indicates that the

π bands are separated by an energy gap. They discovered that the Dirac point, as

determined by the median of two π bands, is shifted with respect to the Fermi level by

about -460 MV. Their STM measurement reveals that the peak positions vary in energy

according to the periodicity of the interface structure and that the gap size was found

to be 220 mV. The STM image for structural characterisation reveals some defects on

the structure which is contrary to the observation of stable graphene by Stolyarova et

al.
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2.3.4 Raman microscope and spectroscopy

The Raman effect was observed by Sir C.V. Raman in 1928 in India [49]. Two years

later he was awarded the Nobel Prize in Physics [49]. Raman Spectroscopy is the

method used to investigate how systems vibrate and rotate [4]. It depends on the

inelastic scattering (sometimes called the Raman scattering) of mono-chromatic light.

This mono-chromatic light is generated by a laser in the ultraviolet range. Its purpose

is to interact with phonons in the material. In solid state, Raman spectroscopy is also

used to orientate samples and characterize materials. Raman spectra can be obtained

from both molecular samples and some metals [64].

2.3.5 Raman spectroscopy applied to graphene

It was found that in most investigations, Raman spectroscopy produces both qualitative

and quantitative results [3]. It has been applied to graphene single layers, bilayers etc

by different researchers. Some of their results are discussed below and were of quality

to allow the layer to be investigated thoroughly.

Zhenhua et al. [82] used the Raman spectroscopy to study the following: (i) deter-

mine the number of graphene layers, (ii) determine the strong signal of graphene on

a SiO2/Si substrate in terms of peaks, (iii) investigate the effect of substrates on the

physical and electronic structure of graphene and (iv) investigate epitaxial graphene on

an Sic substrate. They started by applying Raman spectroscopy to compare graphene

and graphite on an SiO2 substrate. The laser power was set to be less than 0.1mW

in order to avoid heating the sample. The Raman signal of graphene was found to be

strong and comparable to that of graphite. The major Raman frequency of graphene

and graphite was found to be 1580cm−1 for the G-band and 2670cm−1 for the 2D band.

The G-band originates from in-plane vibrations of sp2 carbon atoms and is a double

degenerate phonon mode at the centre of the Brillouin zone [94].
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The 2D band originates from a two phonon double resonance Raman process and is

closely related to the band structure of graphene layers. The only difference observed

by Zhenhua Ni et al. [82] for the Raman spectra is on the 2D band spectra: for graphene

the 2D band is fitted with a sharp peak while for graphite it is fitted with two peaks.

However the 2D band becomes broad when the graphene thickness starts to increase

from one layer to multi layer graphene. A feature of Raman spectroscopy in determining

the number of layers is that it does not depend on the substrate used.

Park et al. [87] measured the Raman spectra from single to triple layers of graphene

as a function of laser excitation energy. They observed that the G-band Raman peak

of 2650cm−1 intensity decreases with the increases in the number of graphene lay-

ers. Their Raman intensity calculations show that each peak position depends on its

wavevector. They suggest that the G-band of two layers graphene can be described by

two components and three layers graphene with five components. This phenomenon is

due to the fact that the split width of the energy band near the Fermi level depends

on the interlayer distance, which they fixed at 0.34 nm.

The interlayer distance decreases with the increase of the energy band [46]. Their

results show that the increament from one layer to two layers decreases the G band

frequency from 20cm−1 for two layers to 10cm−1 for three layers. Their conclusion was

that the G band width of graphite is less than the G band width of two layers graphene

and that the G peak intensity depends on the laser excitation energy which is predicted

to decrease with the decrease in the electron photon matrix element.
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2.4 Review of first principles work on graphene

The discovery of graphene by Novoselov et al. [84] in 2004 has caused much interest in

these unique two dimensional systems because of the enormous potential in exploiting

the electronic, magnetic and optical properties. These systems also provide theoreti-

cians with the opportunity to explore novel methods for modelling these systems be-

cause of their ideal two dimensional nature. A great effort recently has been centred

on altering the electronic structure of graphene using various dopants to generate the

band gap. Hydrogen is the most frequently used choice of dopant in modelling as was

evident in experiments.

Leenaerts et al. used the ABINIT software [44] employing GGA for the exchange

correlation potential [91]. The pseudopotential used was the Troullier-Martins type [108].

Leenaerts et al. [75] investigated the adsorption of two different molecules on a graphene

namely ammonia (NH3) and nitrogen dioxide (NO2). For the adsorption of NH3, they

looked at its two different orientations on the graphene surfaces. In the first orienta-

tion, all hydrogen atoms are pointing up away from the surface while in the second all

hydrogen atoms are pointing downwards to the surfaces. Their observations were that

there was a small charge transfer of 0.03e from the ammonia to the graphene layer in

the upwards orientation whereas in the case of the downwards orientation, the charge

transferred was found to be zero.

Leenaerts et al. [75] explained this phenomenon in terms of highest occupied (HOMO)

and lowest occupied (LUMO) molecular orbitals of NH3. In the upwards orientation

of NH3 the HOMO and LUMO of the molecule are close to the Dirac point which

causes charge transfer through hybridization with graphene orbitals. In the case of the

downward orientation, both HOMO and LUMO of the NH3 are able to interact with
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graphene which leads to competing charge transfers to and away from the graphene

layer, leaving an absence of net charge transfer. They concluded that the upwards

orientation is favoured, energetically speaking. They compared the amount of charge

transferred for an upward orientation with the value obtained for a carbon nanotube

(CNT) of 0.04e investigated by Bradley et al. [21] and their value was less.

For the adsorption of the NO2 molecule, Leenaerts et al. [75] examined different

orientations: N-O pointing upwards followed by N-O pointing downwards. In all orien-

tations, they obtained values of charge transfer higher than the value of ammonia on

graphene. They observed that in all orientations charge transfers occur. Their highest

observed value was found to be around 0.102e less than the experimental value of 1e

obtained by Schedin et al [99]. All calculations were performed on a 4x4 graphene

supercell with a distance of 16Å between adjacent layers. Leenaerts et al. decided to

perform the same type of calculation, varying the size of the supercell to check the size

effects on the charge densities. They observed an increase in charge transfer with an

increase of the supercell sizes. Their conclusion was that the charge transfer may be

very large, depending strongly on the size of the supercell used.

Denis et al [34] investigated the adsorption of hydrogen on perfect graphene and

stone whale defect graphene (one carbon being rotated upto 90◦) using the Siesta

code [105]. They employed supercells sizes of 4x4 and 5x5 having 32 and 50 atoms

respectively. They optimized the unit cell along the a and b directions while the c pa-

rameter was set to 30Å to prevent interaction between adjacent sheets. Their structural

properties reveal a depucking height of 0.49Å more than the one obtained by Casolo et

al. [25] by only 0.01Å and the distance between carbon and hydrogen was found to be

1.138Å. The hydrogen carbon distance for perfect graphene was found to be larger than

that for stone whales graphene sheet, which is 1.127Å. The binding energy of perfect
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graphene was found to be less compared to the one for stone whales graphene. They

concluded that the stone whales defect is highly reactive with hydrogen and which was

also confirmed by Meyer et al [80].

Denis et al. [34] plotted the electronic density of states which indicated that for

both pristine graphene and stone whales graphene there exists a zero band gap. In the

case of adsorption of hydrogen on both layers modification was observed: in the case

of pristine graphene the band gap was opened even though the peak was observed at

the centre of the gap, revealing that the structure was not fully saturated. A different

observation occurs in the stone whales graphene where the electronic structure reveals

metallic properties. Their conclusion was that in both sheets, higher hydrogenation is

needed to induce a band gap.

Roman et al. [96] employed the Dacapo software [54] to investigate the pairing of

hydrogen adatoms on graphene. Dacapo implements a supercell approach to density

functional theory using ultrasoft pseudopotential for the frozen core atoms. A pair of

hydrogen adatoms was adsorbed on a 4x4 graphene supercell and a geometry optimi-

sation option calculation was employed to give the hydrogen adatom complete degree

of freedom. Their binding energy calculations reveal that the graphene contains two

different sublattices. The first sublattice is stable but the other is not. This was found

to be in agreement with the work done by Hornekaer et al. [60] and Andree et al. [12]

for the adsorption of deuterium.

Chan et al. studied the equilibrium properties of a single isolated Li adatom on

graphene [27]. They considered a (4x4) conventional cell, which they argued was suf-

ficiently large to minimize adatom-adatom interactions. They found that the hollow

site, with a binding energy of 1.096eV , was energetically most favourable, followed by

the bridge site, with a binding energy 0.773eV , itself followed by the ontop site with a
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binding energy of 0.754eV . Furthermore, Chan et al. concluded that the binding was

ionic in nature with charge being transferred from the Li to the graphene substrate

with no significant change to the occupied graphene bands.

Chih-Kai Yang [30] calculated the binding energies of Li adatoms adsorbed on the

graphene employing (1x1) and 2x2 cells. He considered Li adatoms alternating above

and below the graphene layer [30]. After a careful analysis, Yang concluded that the

(1x1) cell was adequate to describe this system. Yang found the counter-intuitive struc-

ture, where the C atoms are pushed into the plane, a direct reversal of the situation

in graphane where the H adatoms are responsible for pulling the C atoms out of the

plane. Yang found strong metallic behaviour in this case, involving Li on graphene

with a peak in the electronic density of states at the Fermi level.
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3

Theoretical background

3.1 Electronic structure calculations

In order to describe the properties of crystals from first principle methods, we need to

know the Hamiltonian of the system consisting of the number of electrons and nuclei:

H = −~2
∑
i

∇2
i

2m
− ~2

∑
I

∇2
I

2MI
+

1
2

∑
i6=j

e2

|ri − rj |
−

∑
i,j

Zie
2

|ri −RI |
+

1
2

∑
I 6=J

ZIZJe
2

|RI −RJ | .

(3.1)

Where ri denotes the position of the ith electron, RI is the position of the Ith nucleus,

ZI is the atomic number of the nucleus. m is the mass of the ith electron and MI is the

mass of the Ith nucleus respectively. In order to accurately describe the influence of all

interactions in the system, all terms are considered including the complicated electron-

electron and nucleus-nucleus interaction terms. Since most systems consist of a large

number of atoms, it is impossible to solve the stationary Schrodinger equation for the

above Hamiltonian (3.1) directly even when using the largest and fastest computers.

This requires simplifications to the Hamiltonian which involves several approximations.

The simplification of the Schrodinger equation is core to electronic structure theory.
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The Schrodinger equation may be simplified by the development of approximations

to the electronic correlations with sufficient accuracy to enable the prediction of vari-

ous properties of matter. The first approximation involves the separation of electrons

into valence and core electrons. The core electrons are those found in the fully oc-

cupied orbitals: e.g in the case of the carbon atom,the orbitals are as follows: 1s2.

Such electrons occur around the nuclei and group together with the nuclei to form an

ion core. In the Schrodinger equation, I and J denote the core ions and i signifies the

valence electrons which occur in the incomplete orbital i.e 2s2,2p2 in the case of carbon.

The second approximation is the Born-Oppenheimer or adiabatic approximation

[20] which involves the separation of the degrees of freedom connected with the motion

of nuclei from those of the electrons. The ions are much heavier than the electrons

which results in the ions moving much slower compared to the latter. This makes the

nuclei kinetic energy term negligible in the Schrodinger equation. This approximation

reduces the many-body problem to the dynamics of the electrons with some frozen-

ion configuration of the nuclei. The ion-ion interaction term is not ignored because

their position can be varied in order to determine the minimum energy of the system

(ground state). In this approximation the nuclei are treated classically. Their ground

state is obtained as the minimum of their potential energy ignoring quantum spins.

The electron kinetic energy term is

Telec = −1
2

∑
i

∇2
i (3.2)

applying the Hartree atomic units where ~ = me = e = 4πε = 1. The electron-ion

potential is written as follows,

Vion−elec = −
∑
i,I

ZI
|ri −RI |

. (3.3)
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The potential energy due to electron-electron interaction is

Velec−elec =
1
2

∑
i6=I

ZI
|ri − rj |

(3.4)

and the potential energy due to ion-ion interaction is

Vion−ion =
1
2

∑
I 6=J

ZIZJ
|RI −RJ |

. (3.5)

The Hamiltonian of the system is now reduced to

H = Telec + Vion−elec + Velec−elec + Vion−ion. (3.6)

The Hamiltonian can be further modified by employing pseudopotentials that replace

the ion-ion interaction potential of the core electrons.

3.1.1 Independent-electron approximation

The most important task is to solve the Schrodinger equation of a system having more

than one electron even if the principles behind the calculations are well understood.

There are many effects occurring in the system, i.e. electron-electron, ion-ion interac-

tions which create many forces that causes the solution to be highly complex. Several

approaches have been developed to deal with such kinds of problems, with and without

success. One approach is the independent-electron approach. It assumes the electron-

electron contributions can be dealt with by a clever choice of periodic potential V (r)

in the one-electron Schrodinger equation below,

[Telec + V (r)]ψk(r) = ε(k)ψk(r) (3.7)
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The subscript k is a wave vector and r denotes the position of the electron. However

a problem arises in describing a system of more than one electron. The potential V (r)

must be chosen to describe the interaction of periodic ions and the interactions of other

electrons, but in order to establish this the (3.7) is needed to be solved for all other

electrons first. Which means that in order to know the potential one need to know the

solution, but to discover the solution one needs to know the potential: this require some

methematical efforts. This leads to the failure of independent electron approximations.

In 1920, Douglas Hartree [56] developed an approach named after himself called the

Hartree approximation.

The Hartree approximation is capable of solving the multi-electron Schrodinger

equation of the wave function of the form ψ(r1s1, r2s2,−−−, rnsn). This approximation

defines the potential by separating it into an electron potential (Velec) and an ion

potential Vion. During the interaction, one electron feels the electric field of other

electrons. This leads to the remaining electrons being treated as a smooth distribution

of negative charge with their charge density defined as follows,

ρi(r) = −e
∑
i

| ψi(r) |2 (3.8)

The subscript i assumes that electrons are uncorrelated and obey the Pauli exclusion

principle. The electron potential can be modified by substituting the charge density

(3.8) as follows,

Velec = e2
∑
i

∫
dr′|ψi(r′)|2

1
|r − r′|

. (3.9)

Then, substituting the above equation and the ordinary ion-ion interaction potential

(Vion) in the equation (3.7) we obtain the Hartree equation

εiψi(r) = [Telec + Vion(r) + Velec(r)]ψi(r). (3.10)
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The Hartree approximation fails to work when the electron is removed from the averaged

N electrons, and it is only capable of describing the field experienced by the electron

from the other remaining electrons but it provides good results. Improving the Hartree

approximation is a difficult task. In the next section we focus on the Hartree-Fock

approximation which is just the inclusion of another term called the exchange term in

the Hartree equation.

3.1.2 Hartree-Fock approximation

The main purpose of the Hartree-Fock [47] approximation is to correct the failure of

the Hartree approximation. This approach is also based on the independent electron

approximation. The independent electron approximation is given by the sum of a single

one-electron Hamiltonian as follows:

Happ =
N∑
i=1

[Telec + V (ri)]. (3.11)

V (ri) is the one electron potential energy in the field of all the nuclei and N is the

number of electrons in the system. The solution of the Schrodinger equation is a

product of one-electron states and is expressed as follows:

ψ(x1, ..., xn) = ψ1(x1)...ψN (xN ). (3.12)

Where ψ1,ψ2.....ψN are eigenstates of the one-electron Schrodinger equation. These

eigenstates are orthogonal and uncorrelated due to the fact that each particle is in-

dependent of the other. The terms xi are the combination of spin si and orbital

co-ordinate position ri and are written as follows:

xi = (ri, si). (3.13)
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The probability density of finding the electrons in the orbital co-ordinates is given by

ρ(xi, x2....xN ) = |ψ1(x1)|2|ψ(x2)|2.....ψ|(xN )|2. (3.14)

This equation is the product of one electron probability densities and is uncorrelated.

A state ψ(xi) with the permutation of xi is also a solution of the Schrodinger equation,

but we require the state to be antisymmetric with the interchange of any two electrons

in order to satisfy the Pauli’s exclusion principle. The solution of the Schrodinger

equation can be determined by replacing the trivial wave function ψ(r) by a Slater

determinant [103] of one-electron wave functions.

ψ(x1, x2, ...., xN ) =
1√
N !
Det[ψ(x1), ψ(x2), ...., ψ(xN )] (3.15)

The Slater determinant above is helpful in obtaining the exchange term

−1
2

∑
j

∫
d3r′ψ∗j (r

′)ψi(r′) 1
|r−r′|ψj(r) that acts between electrons of the same spin. Ap-

plying this third term to the Hartree equation leads to the Hartree-Fock equation. The

latter equation is written as follows:

εiψ(r) = [Telec + Vion(r) + Velec]ψi(r)−
1
2

∑
j

∫
d3r′ψ∗j (r

′)ψi(r′)
1

|r − r′|
ψj(r) (3.16)

The exchange term introduces some complications to the Hartree equation and causes

the Hartree-Fock equation to be difficult to solve because of its non-local nature. This

results in the Hartree-Fock approximation not being an improvement as such. In some

calculations it gives less satisfactory results than the Hartree approximations. This

approximation fails due to the ignored Coulomb repulsion of the electrons in the ap-

proximation referred to as the correlation of the electrons. But it yields some better

results for molecules and is employed in chemistry calculations for this reasons. This

approximation fails to completely describe the properties of metals especially their den-
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sity of states. The electrons that contribute most to metallic properties are those close

to the Fermi energy, these electrons are calculated to have infinite velocities within the

Hartree Fock theory. The DOS function which should closely resemble that of a free

electron gas instead approaches zero at the Fermi energy.

It is therefore important to closely examine and understand density functional the-

ory method that operates differently from the Hartree-Fock method. It is in principle

an exact theory, but in practice useful approximations are derived for the exchange-

correlation potential.

3.1.3 Density functional theory

Introduction

Density functional theory (DFT) is today one of the most important tools for pre-

dicting the ground-state properties of electronic systems (metals, semiconductors and

insulators). The reason for the widespread use of this tool is its accuracy and high

computational efficiency. The DFT started to be popular in the 1970’s and in 1998,

one of its creators, Walter Kohn [10], was honoured by receiving the Nobel Prize in

Chemistry. To date it is still one of the leading tools for calculation of electronic struc-

ture in solid state physics and chemistry. The DFT yields results regarding electronic

structure which are quite comparable to experimental results. The DFT is a different

approach to the Hartree Fock method [47]. The Hartree Fock method focuses on the

many body wavefunctions as the fundamental variable of the system while DFT de-

scribes the entire number of interacting electrons through their density. The Hartree

Fock approximation is computationally very costly and fails particularly for metals.

DFT separates the total energy into three terms, starting with the kinetic energy

term, the (coulomb energy term which includes the classical electrostatic interactions

between the electrons and nuclei in the system) and the exchange-correlation term
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that includes the many body interactions. Although DFT is significant, it fails to

properly describe the van der Waals forces in sparse materials [1]. The DFT also

underestimates the band gaps of semiconductors and some other electronic properties

of highly correlated systems. It is still a current focus of improvement in research.

3.1.3.1 Basics of density functional theory

Density functional theory is based on the statement of Hohenberg and Kohn [59] in 1964

that the total energy of an electron gas enclosed in a large box is a unique functional

of electron density ρ(r) and that the ground state energy expectation value depends

uniquely on the ground state density of the electrons. To prove the Hohenberg and

Kohn statement, we need to consider the following Theorem: If two densities ρ(r)

and ρ′(r) based on the two ground states of different potentials V (r) and V ′(r) are

equal i.e ρ(r, V ) = ρ′(r, V ′) then the potentials V (r) and V ′(r) differ by a constant.

Proof: Considering the above mentioned theorem, several assumptions are made. The

potentials V (r) and V ′(r) produce Hamiltonians as follows: H = T + U + V and

H = T + U + V ′ respectively with their two different wavefunctions (ψ(r) and ψ′(r))

in a ground state.

1. The ground state is non degenerate and V (r)−V ′(r) 6= constant, with the ground

state wavefunctions not identical (ψ(r) 6= ψ′(r))

2. The ground state wavefunctions must be normalized 〈ψ(r), ψ(r)〉 = 1 and 〈ψ′(r), ψ′(r)〉 =

1. Their coresponding ground state energies are given by E = 〈ψ(r)|H|ψ(r)〉 and

E′ = 〈ψ′(r)|H ′|ψ′(r)〉

3. The ground state density ρ(r) is exact. If the wavefunction ψ′(r) is not a ground

state eigenstate of Hamiltonian (H) compared to the ground state ψ(r) it is always
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large. The ground state energy corresponding to the potential V (r) is

E = 〈ψ(r)|H|ψ(r)〉 < 〈ψ′(r)|H|ψ′(r)〉. (3.17)

The last term can be extended by assuming the identity of the two densities :

〈ψ′(r)|H|ψ′(r)〉 = 〈ψ′(r)|H ′|ψ′(r)〉+
∫

(V − V ′)ρ(r)d3r. (3.18)

We have assumed that the term 〈ψ′(r)|H ′|ψ′(r) = E′〉. Then equation(3.18) is

reduced to

〈ψ′(r)|H|ψ′(r)〉 = E′ +
∫

(V (r)− V ′(r))ρ(r)d3r. (3.19)

The strict inequality results from the variational principle whereby the wavefunc-

tion ψ(r) is the ground state and is non degenerate. We now consider the same

relation as above but in the case where the ground state energy is E′. The Hamil-

tonian operator differs only in the potentials: then the ground state energy E′ is

written as,

E′ = 〈ψ′(r)|H ′|ψ′(r)〉 < 〈ψ(r)|H ′|ψ(r)〉 (3.20)

where the first term can be expanded as follows:

〈ψ(r)|H ′|ψ(r)〉 = 〈ψ(r)|H|ψ(r)〉+
∫

(V ′(r)− V (r))ρ(r)d3r (3.21)

leading to

〈ψ(r)|H|ψ(r)〉 = E +
∫

(V ′(r)− V (r))ρ(r)d3r. (3.22)

The addition of(3.19) and (3.22) yields the following inconsistent results

E + E′ < E + E′. (3.23)
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This contradiction indicates the failure of two different potentials i.e V ′(r) and

V (r) to be produced by the same ground state density ρ(r). In conclusion, since

the density ρ(r) determines the potential V (r), it will determine the ground state

energy and all other electronic properties of the material.

3.1.3.2 The Kohn-Sham equations

A year later after Hohenberg and Kohn’s theorem [59], Kohn-Sham [67] continued to

prove the theorem which states that the total energy of the system depends only on

the electron density of the system.

E = E[ρ(r)] (3.24)

Kohn-Sham [67] made their contributions in advancing the calculation of the energy

of the electrons and the forces of atoms [68]. Their concern was with the difficulty

of understanding the ground state kinetic energy of electrons in the system. They

developed DFT in such a way that all the real electrons of a system are replaced by the

effective electrons of the same mass, and charge density distribution. The DFT maps

the electrons of the interacting system onto a non-interacting electronic system moving

in an effective potential represented in the Kohn-Sham equations [88]. This was done

in order to accurately calculate the contributions to the ground state kinetic energy of

the system. The other infomation which can accurately be evaluated by this approach

concerns the electronic, structural and dynamical properties of the systems. The DFT

is always based on the density of an electron as a scalar function given by:

ρ(r) =
∑
i

ni|ψi(r)|2. (3.25)

The ni denotes the occupation number of the eigenstate i while r is any point in real

space. The electron density ρ(r) can be varied by changing the wavefunction ψ(r) of
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the system. If the electron density ρ(r) corresponds to the said wavefunction, then its

total energy is the minimized energy and the whole system is in a ground state. The

total energy of the system depends on the positions of the atoms and can be written

as,

E(ρ) = T0[ρ(r)] + Vext[ρ(r)] + Velec−elec[ρ(r)] + Exc[ρ(r)]. (3.26)

The ground state kinetic energy term T0[ρ(r)] is given by the sum of all contributing

effective electrons in the system. All effective electrons are described by wave functions

in the state i. The ground state kinetic energy term T0[ρ(r)] of all effective electrons is

written as follows:

T0[ρ(r)] =
∑
i

ni

∫
ψ∗i (r)[

−~2

2m
∇2]ψi(r)dr. (3.27)

The external potential Vext[ρ(r)] is the electrostatic potential representing the nuclei

interactions and is expressed for the entire positions of all nuclei as follows,

Vext[ρ(r)] =
∫
Vext(r)ρ(r)d3r. (3.28)

The third term is the electron-electron interactions potential,

Velec−elec = e2
∫ ∫

ρ(r1)ρ(r2)
|r1 − r2|

d3r1d
3r2, (3.29)

which describes the repulsion between electrons in the system while e is the elementary

charge of the electron. Considering the case of a non-interacting system, the total

energy of the system will be given in terms of the kinetic energy T0[ρ(r)] and the

external potential Vext[ρ(r)] ignoring the interacting terms. The ground state non

interacting total energy is given by,

E(ρ) = T0[ρ(r)] + Vext[ρ(r)] (3.30)
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In this case the charge density ρ(r) for the occupied state will be calculated self-

consistency by solving the Kohn-Sham equation (3.31) below. To simplify other terms

of the Kohn-Sham equation we consider the use of Hartree atomic units whereby

~ = me = e = 4πε0 = 1. The simplified Kohn-sham equation is written as follows:

[−∇
2

2
+ Vext]ψi(r) = εiψi(r). (3.31)

The wavefunction ψi(r) needs to be normalized in order for the density ρ(r) to satisfy

the normalisation condition for the number of electrons N,

∫
ψ∗i (r)ψj(r)dr = σij (3.32)

where i and j are the eigenstates of the wavefunctions. The eigenstates are ordered

according to the increase in the eigenvalues. In the case of a non-interacting system,

the ground state total energy of the system is solved easily with one external potential.

Then the information from the non-interacting system is applied in the situation of an

interacting system. In the case of an interacting system, all the ignored terms of the

total energy of non-interacting system are now fully considered and the total energy

term is written as follows:

E(ρ) = T0[ρ(r)] + Vext[ρ(r)] + Velec−elec[ρ(r)] + Exc[ρ(r)]. (3.33)

However the kinetic energy term T0[ρ(r)] is still that of the noninteracting system

and the external potential Vext[ρ(r)] term is perturbed and generalised into effective

potential Veff .

Veff = Vext + VHartree + Vxc (3.34)
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The Hartree potential term VHartree is the potential due to the interactions of electrons

and is expressed as follows:

VHartree = e2
∫

ρ(r′)
|r − r′|

d3r′. (3.35)

The last term (Vxc) is called the exchange correlation potential which is the functional

derivative of exchange-correlation energy Exc: it contains all the unknown contributions

and is also independent of the external potential.

Vxc =
∂Exc[ρ(r)]
∂ρ(r)

(3.36)

Now we can write the Schrodinger equation for one electron as follows:

[−∇
2

2
+ Vext + VHartree + Vxc]ψi(r) = εiψi(r). (3.37)

This is the set of Kohn-Sham equations for an interacting system and must again obey

the condition of orthonomality. So far we have described the Kohn-Sham equation in

the case of non-spin-polarized material whereby the magnetic moment of the material

is zero. Now we consider spin-polarized or magnetic material. Here the Kohn-Sham

equation is based on the electron density for both spins,

ρ(r) = ρ↑(r) + ρ↓(r) (3.38)

and the spin density σ of the material. The spin density of the material is the inclusion

of both spins, up and down. Some of the terms in the effective potential depend on

the spin density, especially the exchange correlation potential Vxc. The spin-polarized

Kohn-Sham equation of an interacting system is expressed as follows:

[−∇
2

2
+ Vext + VHatree + V σ

xc]ψ
σ
i (r) = εσi ψ

σ
i (r). (3.39)
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The eigenstates ψi and the eigenvalues εi also depend on the spin density σ(r) of the

material. If both spins are equal, the spin density σ vanishes for the whole system [48],

which means the spin density relies on the asymmetry of the spin occupancy.

Summary of Kohn-Sham equations

The Kohn-Sham equations are solved in a self consistent manner in order for occupied

states to generate a charge density that will produce the potential used in the construc-

tion of the equations. In most cases, the solution of Kohn-Sham equations is achieved

successfully, once the exchange correlation energy Exc is correctly approximated. The

ground state total energy of the system can be obtained by minimization of the energy

functional E[ρ(r)] with respect to the electron density ρ(r), self consistently. This is

for calculating the properties of the system (insulator, semiconductor and metals). The

spin-polarized Kohn-Sham equation is better than the non-spin-polarized in calculat-

ing the structural properties. The non-spin polarized is accurate in constructing the

charge densities, so it is better to start with the non-magnetic calculation and followed

by magnetic (spin-polarized) calculations.

3.1.4 Exchange-correlation potential

The last term of the Kohn-Sham equations (3.31) involves the exchange-correlation

which includes all the remaining complicated electronic contributions. Basically we

know that the electrons are indistinguishable (Fermions) which means that the wave-

functions of the many body electron system must always be antisymmetric. If they are

not it means the electrons have the same spin and by the Pauli exclusion principle those

electrons are avoiding each other by a certain distance which reduces the coulomb inter-

action. The energy gained during the reduction is called exchange energy. Considering

the electrons of opposite spin, their energy difference is termed the correlation energy

Ecor. This energy difference is caused by the small decrease in the coulomb energy
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due to the small separation of the electrons of different spin caused by their charges.

In terms of the explanation above, the correlation energy is always less than the ex-

change energy. The correlation energy helps in defining the length and the strength

of interatomic bonds. In a sparse material the correlation is merely approximate since

it is difficult to calculate exactly because correlation affects both kinetic and potential

energy. The exchange-correlation energy is a combination of the exchange energy and

correlation energy.

Exc = Ex + Ec (3.40)

In detailed form, the exchange corelation energy can be expresed as a function of

charge density ρ(r). The exchange-correlation energy has been successfully calculated

by many approaches including quantum Monte Carlo methods [26], molecular dynamics

methods [83] etc. Considering the situation of two electrons of opposite spin satisfying

the exchange correlation principle, then the exchange correlation energy is written as

follows:

Exc[ρ(r)] =
1
2

∫ ∫
ρ(r1)ρ(r2)V (r1 − r2)d3r1d

3r2. (3.41)

This exchange-correlation energy Exc[ρ(r)] is required for evaluating the total energy

E[ρ(r)] of the system and is related to the exchange-correlation potential by,

Vxc =
∂Exc
∂ρ(r)

. (3.42)

This exchange correlation potential Vxc is useful in solving the density functional Kohn

Sham equations.

3.1.4.1 Approximations to the exchange-correlation potential

There are several approximations to the exchange correlation, namely local density ap-

proximation(LDA), generalised gradient approximation (GGA), Meta GGA and Hybrid
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functionals. In this section we focus in detail on the LDA and GGA.

Local density approximation (LDA)

In the local density approximation, the electron density ρ(r) which specifies that elec-

tron density locally (over a distance comparable to the inverse Fermi wavevector k)

varies smoothly. We consider the electron density ρ(r) at each point r in the system

and assume that: the electron at that point r experiences the same effect from the

combination of the surrounding electrons as if the density of the surrounding electrons

had possessed the same values throughout the entire space. We may approximate the

exchange-correlation energy as the summation (integral) of the electron contribution

from a volume which depends on the electron density ρ(r)

Exc =
∫
ρ(r)εxc[ρ(r)]d3r. (3.43)

Where εxc is the exchange-correlation energy per particle of a homogenous electron gas

which can successfully and accurately be measured experimentally. From a theoretical

point of view, εxc is parameterized by Hedin and Lundqvist [57]. In some of the work

where LDA is applied instead of GGA, the Perdew and Zunger [89] parameterization

is employed. LDA is found to be exact for transition metals due to the fact that

the electron density varies smoothly. The reason that the LDA is exact is to fulfil

the correct sum rule for the exchange correlation hole. The said hole is explained as

electrons avoiding each other at a point r, thus obeying the Pauli exclusion principle.

Their exchange-correlation energy includes the coulomb interaction of each electron

Exc[ρ(r)] =
1
2

∫ ∫
ρ(r)ρxc(r, r′)v(r − r′)d3rd3r′. (3.44)

The density ρxc(r, r′) is regarded as the conditional density due to the fact that if the

separation between these two particles approaches zero, it disappears and leaves a hole
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which is called the exchange-correlation hole.

Generalized gradient approximation (GGA)

The generalized gradient approximation is another form of exchange correlation which

is non local. GGA takes into account the density of the electron and its gradient

at each point in the space. GGA is constructed by starting from the second order

density gradient expansion for the exchange correlation hole surrounding the electron

in a system by slowly varying the densities [74, 14]. It is exceptionally successful for

small molecules but fails for delocalized electrons in simple metals. It takes a form

which includes the gradient density

Exc =
∫
εxcf [ρ,∇ρ]ρ(r)d3r. (3.45)

This equation depends only on the general feature of the real space construction where

f is a parametrized analytic function, and ∇ is the gradient density of the electrons.

The equation above is only based on the systems of non-spin electrons. If we consider

the system containing electrons with different spins, the system exhibits magnetism

and is a straightforward spin polarised material. Now the equation above will take the

form of spin densities,

Exc[ρ↑, ρ↓] =
∫
εxcf [ρ↑, ρ↓,∇ρ↑,∇ρ↓]ρ(r)d3r. (3.46)

GGA in most cases improves upon the LDA in the description of atoms and solids [90]

and it also tends to improve the total energies and atomization energies [119, 55].

The local density approximation (LDA) underestimates the lattice constants by 1%

while the GGA overestimates the lattice parameters by 1%. It also reduces the chronic

overbinding of the local density approximations [66]. It tends to improve the energy

band gap between valence and conduction bands in the cases of semiconductor and

43

 
 
 



insulator materials [114]. The genaralised gradient approximation is efficient in com-

putational cost and is numerically accurate and reliable. We can conclude that GGA

tends to satisfy the demands of quantum mechanics and solid state physics.

3.1.4.2 Solution of the Kohn Sham equation:the self-consistency iteration

procedure

When constructing the Kohn-Sham equations of the system, firstly the wavefunctions

that construct the electronic charge ρ(r) must be known. These wavefunctions are the

solution of the Kohn Sham equation, which means the estimated solution of the Kohn-

Sham problem must be known before it can be solved. This problem can be solved

iteratively by several steps.

The geometries of the system for density functional calculation are constructed us-

ing experimental bulk lattice constants, atomic positions and cell angles. Sometimes

even the results from previous first principle calculations are used. The electronic

density is constructed from the wavefunction and even in the case of a spin polarized

wavefunction, the involvement of involving structural geometries is the fundamental

requirement in defining the Kohn-Sham equation of the system completely. From the

Kohn-sham equation, the Poisson ’s equation is constructed and solved in order to ob-

tain the electrostatic Coulomb potential.

Subsequently explicit form of the exchange correlation potential is used and the

exchange correlation operator is constructed. Taking into consideration this variational

basis set {φj}, the Hamiltonian Hij and overlap matrix Sij elements are calculated.

Subsequently the matrix H− εS is diagonalized. The diagonalization equation involves
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unknown coefficients as follows,

(H − εS)cij = 0 (3.47)

which result in a set of one particle eigenvalues with their corresponding coefficients cij

of expansion. The coefficients of expansion produce the related wavefunction as follows,

ψi(r) =
∑
j

cijφi(r) (3.48)

which are then used to construct the electron density ρ(r). The constructed electron

density is called the output electron density. If the output electron density is not equal

to the input one, it will be used as an input and the procedure explained above is

repeated self-consistency until the output density is the same as the input. This is

known as the self consistent field cycle (SCf). The resulting electron density is used in

calculating the total energy of the system E[ρ(r)] since it was proved in the previous

chapter that the total energy of the system depends on the electron density of that

system. The forces Fr = ∂E
∂r of the atom in the system can also be calculated using the

output charge density.

3.1.5 The Plane wave formalism

In a solid or crystal, the wavefunctions ψ(r) of the free electrons can be extended in

terms of plane waves. By ignoring the potentials causes by ions, the plane waves be-

come exact solutions of the Kohn Sham equations. An atom possessing one electron

has a potential which is relatively smooth and is treated as a perturbation. Taking

the example of the hydrogen atom which has potential −1
r , its wavefunction diverges

at the origin and decays exponentially with increasing distance. However in systems

containing more than one atom their wavefunctions in the core states are highly compli-

cated and the potential is not smooth. Because of such complications, the plane waves
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become difficult to implement due to the requirements of the plane wave components.

Two types of plane waves that are used, Augmented and Orthogonalised.

The augmented plane wave is based on the solution of the Schrodinger [100] equa-

tion for the atom with a spherical region around it. This solution to the atomic problem

was implemented in 1937 by Slater [103]. The augmentation solution of the augmented

plane wave solution assumes the potential to be symmetric inside the spheres and zero

outside. The construction of the augmented plane wave makes it identical to the orig-

inal plane wave outside the sphere. The augmented plane wave solution is constructed

so that its wavefunction is continuous at the radius r = R whereby,

φ(r) = eik.r. (3.49)

Since the wavefunction is continuous at r = R, the requirements of the Schrodinger

equation of the system are not clearly met and its wavefunctions do not join smoothly.

The expansion of the augmented plane waves gives the correct approximation of the

system ’s Schrodinger equation. The wavefunction of the expanded augmented plane

waves can be written in terms of the reciprocal lattice vectors G

ψ(r) =
∑
G

cGψk+G(r). (3.50)

This plane wave is the one which is applicable in most computational calculations

nowadays and is highly accurate in terms of energy values. The second type of plane

wave is the orthogonal plane wave which was introduced by Herring in 1940 [58]. This

method is not accurate because it lacks the other terms but is better in approximating

the bands in the materials, especially in sp-bonded metals.
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3.1.6 Crystal Lattices

Crystalline solids can be described as a Bravais lattice in which small units are repeated

in a periodic array. The units may be atoms, ions or molecules and the crystal may be

described as primitive, Wigner-seitz, conventional unit cells etc. This crystalline solid

can contain a large number of electrons (approximately 1023) moving in a field produced

by a similarly large number of ions. This large number of electrons is extremely difficult

to use in computations. Bloch’s theorem is employed to reduce this large number to as

little as half the number of electrons in the unit cell of the crystal.

3.1.6.1 Bloch’s theorem

The Bloch’s theorem can be stated as follows: in a periodic solid, the eigenstates ψi(r)

of an electron are given in the form of plane waves times the cell-periodic gi(r),

ψi(r) = eik.rgi(r). (3.51)

The Bloch’s theorem introduces wave vectors k which are always in the primitive cell

of the reciprocal lattice and satisfy the expression eik.r = 1 for all lattice points. The

potential gi(r) is cell periodic and can be expressed as a fourier expansion of plane

waves whose wave vectors are reciprocal lattice vectors of the crystal

gi(r) =
∑
q

ci, qe
iq.r. (3.52)

Where q is the reciprocal lattice vectors defined by the reciprocal of lattice vector

l as follows,

q.l = 2πn (3.53)

and n is any integer. Now each electronic wavefunction can be expressed as the sum of
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all plane waves,

ψi(r) =
∑
q

ci,k+qe
i(k+q).r. (3.54)

The ci,(k+q) are the coefficients for the plane waves that need to be solved and depend

on the kinetic energy cut-off.

3.1.7 The plane wave energy cut-off and representation of the Kohn-

Sham equations in reciprocal space

In a crystal, the wavefunction at each k-point can be expanded as a plane wave basis

and the convergence of kinetic energy cut-off Ecut can be obtained. This convergence

with respect to energy is illustrated by figure (3.1)

Figure 3.1: An illustration of the convergence energy with respect to energy
cut-off

The Fourier coefficients Ci,(k+q) with small kinetic energies are large and become

small when the kinetic energy increases. The plane wave expansion can be truncated to
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contain the plane waves that consist of the kinetic energy less than the energy cut-off.

~2

2m
|k + q|2 < Ecut (3.55)

However the truncation of the plane wave expansion at a small energy cutoff will lead

to an error when computing the total energies of the system. This error may decrease

when the energy cut-off increases. The expansion of the electronic wavefunctions in

terms of the plane waves basis set allows the Kohn-Sham equations to be represented

in a reciprocal space. The electronic wavefunction expressed in terms of all plane waves

equation (3.54) is substituted into the Kohn Sham equation (3.31) and, integrated over

the region r, gives the equation

∑
q′

[
~2

2m
|k + q|2σqq′ + Vion(q − q′) + VH(q − q′) + Vxc(q − q′)]ci,k+q′ = εici,k+q′ . (3.56)

In this equation (3.56), the kinetic energy is diagonal and the potentials are expressed

in terms of their Fourier components. The Hamiltonian matrix in the square brackets

of this equation (3.56) is diagonal: the size of the matrix was determined by the energy

cut-off

Ecut =
~2

2m
|k + q|2. (3.57)

3.1.8 k-point sampling

The first Brillouin zone can be mapped out by a continuous set of k-points throughout

the region of reciprocal space. These k-points represent the localies where the elec-

tronic states are found in a solid system. If there is an infinite number of electrons

in a solid system there exists an infinite number of k-points in the Brillouin zone. In

the calculation, the basis sets are required to represent the wavefunctions at a finite

number of k-points. However the basis sets calculations are still infinite even if the

energy cut-off is chosen to be very small. In the previous section, we discussed Bloch’s
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theorem which enables us to consider a finite number of wavefunctions in the unit cell

at an infinite number of k-points within the Brillouin zone.

The electronic states calculated at a set of k-points contribute to the electronic

potential of the solid system and are determined by the shape of the Brillouin zone.

This is done since the electronic wavefunctions at the k-points that are close together

will be identical, which causes the electronic wavefunctions to be represented over a

region of reciprocal space at a single k-point. This enables us to calculate the electronic

potential and the total energy of the solid system at a finite number of k-points. The

error occurring during calculations can be made small by choosing a heavier set of

k-points in the Brillouin zone. For example in a metallic system, dense k-points are

needed since it is very difficult to define the Fermi surface with a few points. The

dense k-points still make the computational time lenthly and still offer a challenge in

research.

Special k-points method in the Brillouin zone

Now we consider the special k-point method of choosing the sets of points in the Bril-

louin zone, which makes the calculation simple and accurate. This method is based on

an integrated function (3.58) averaged over a Brillouin zone.

F (r) =
Ω

(2π)3

∫
BZ

f(k)d3k (3.58)

where f(k) is the Fourier transformation of F (r) and the function represent complete

symmetry of the lattice. The expression Ω is the volume of the unit cell. The Fourier

transform may be written in terms of Am(k) as follows:

f(k) = fo +
∑
m=1

Am(k) (3.59)
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where Am(k) is the transformation expression defined by ,

Am(k) =
∑

eik.r (3.60)

where m is any integer. The expression Am(k) is associated with any shell of the lattice

vector and is a real function. This method obtains an approximate value for the integral

in the equation F(r). The approximated value can be exact if the term Am(k) is zero,

Am(k) = 0. (3.61)

These sets of points are identical with the ones generated by Monkhorst and Pack [81],

and this method is an unbiased one for choosing the set of k-points for sampling the

Brillouin zone in fractional co-ordinates. It gives the points in a rectangular grid

of points, i.e (kx, ky, kz). The Monkhorst and Pack k-points are sometimes called k-

meshes. When the k-meshes are large, the sampling is expected to be fine and accurate.

The selection of points depends on the type of crystal. Simple cubic has k-points

different to those of body centred cubic (bcc). In the face centred cube (fcc) structure,

a good choice for starting points k = (kx, ky, kz) is to select (1
2 ,

1
2 , 0) and (1

2 ,
1
2 ,

1
2). These

chosen points can satisfy the expression Am(k) for the infinite set of nearest-neighbour

shells represented by the lattice vectors.

3.1.9 Atomic pseudopotential approximations

Overview of the atomic pseudopotential

The atomic pseudopotential approximation causes the wave function to be expanded

employing the basis set of plane waves. This phenomenon occurs when the strong po-

tential of the nucleus and the effects of the tightly bonded core electrons are replaced by

an effective ionic potential acting on the valence electrons. This approximation allows
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the expansion of the wavefunctions to be possible using smaller plane waves, no matter

how bounded the orbital is [92]. This permits the calculation to require small amount of

computational time in order for convergence to be reached. The atomic wavefunctions

are eigenstates of the atomic Hamiltonian, which causes the atomic wavefunctions to be

orthogonal: this is illustrated in figure (3.2) where the pseudo wavefunctions oscillate

Figure 3.2: An illustration of the pseudopotential for valence wavefunction of
silicon 3p electrons

less compared to the original wavefunctions. This requires a smaller number of plane

waves than the original wavefunctions. The pseudo wave functions appear to be very

smooth within the core region and are applicable to quite number of systems.

3.1.9.1 The projector augmented wave (PAW) pseudopotential method

The projector augmented wave method was first introduced by Blochl [19] in 1994.

This method improves on the norm conserving [109] and ultrasoft pseudopotential

methods [53]. The advantage of the PAW method is that it is very computationally
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efficient and accurate compared to ultrasoft pps but it is complex to implement. The

PAW method is based on a transformation, that maps the physically all electron (AE)

valence wavefunctions onto non-interacting pseudo wave functions [78]. The transfor-

mation is designated by the character τ .

This transformation completely transforms the shape of the Schrodinger equation

wavefunction into the image of Heisenberg [19]. The transformation is assumed to be

unity τ = 1 unless the atom is centred on the nucleus.

τ = 1 +
∑

τo (3.62)

The wavefunction of the system is characterized by two different features: the smooth

wave function at the valence (bonding) region and the oscillating wavefunction around

the nucleus. The oscillation of the wavefunction is caused by the attractive potential

of the nucleus. In the PAW method, the Bra and Ket notations are used whereby the

wave function ψi(r) is denoted in terms of ket |ψi(r)〉 and its complex conjugate ψ∗i (r)

is denoted by the Bra notation 〈ψi(r)|. The smooth wavefunctions are differentiated

by tilde (∼) from the all electron wavefunctions and are written as

|ψ̃i(r)〉 =
∑
i

ci|ψ̃i(r)〉. (3.63)

The corresponding all electron wave functions are

|ψi(r)〉 =
∑
i

ci|ψi(r)〉. (3.64)

The coefficients ci are identical in both expansions and are the scalar products of the

smooth wave functions

ci = 〈P̃i|ψ̃i〉 (3.65)
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for the linear transformation τ . The transformation from the smooth electron wave

function to the all electron wave function is as follows,

|ψi(r)〉 = τ |ψ̃i(r)〉. (3.66)

After the transformation, the full wave function in the entire space is expressed as

follows,

|ψ(r)〉 = |ψ̃〉 −
∑
i

ci[|ψi〉 − |ψ̃i〉]. (3.67)

Substituting the coefficients ci in equation (3.67) the full wavefunctions becomes,

|ψ(r)〉 = |ψ̃〉 −
∑
i

(〈P̃i|ψ̃i〉)[|ψi〉 − |ψ̃i〉]. (3.68)

The above mentioned transformation can be determined by the following: the all elec-

tron partial waves |ψi(r)〉 are obtained radially by integrating the Schrodinger equation

of the atomic energy and the orthogonalization of the core states. The smooth partial

wave function, which coincides with the coresponding all electronic partial wave func-

tion, and the projector function |p̃i〉 for the smooth partial wave function obeys the

relation

〈p̃i|ψ̃j〉 = σij (3.69)

and is localized in the augmentation region. However in the PAW method, when varying

the parameters, the smooth wave function plays a more role than the all electron

function. Then the expectation value of the smooth wavefunction is needed, and is

called the smooth operator and transforms the operators (τ, τ †). The smooth operator

is written as follows

Ã = τ †Aτ = A+ |
∑
i,j

|p̃i〉[〈ψi|A|ψj〉 − 〈ψ̃i|A|ψ̃j〉]〈p̃i| (3.70)
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This operator is needed for evaluating the charge density and total energy of materials.

The said density can be divided into smooth charge density ñ(r), which is evaluated

on regular grids in Fourier or real space while the outer centre charge densities n1(r)

and ñ1(r) are evaluated on radial grids in angular momentum. The charge density at

point r in real space is given by

n(r) = ñ(r) + n1(r)− ñ1(r). (3.71)

The point r is the expectation value of the real space projection operator |r〉, 〈r| while

the charge density for smooth wavefunction is

ñ(r) =
∑
m

fm〈ψ̃m|r〉〈r|ψ̃m〉| (3.72)

whereby

n1(r) =
∑
n,(i,j)

fm〈ψ̃m|p̃i〉〈ψi|r〉〈r|ψj〉〈̃pj |ψ̃m〉 (3.73)

and the last term is

ñ1(r) =
∑
n,(i,j)

fm〈ψ̃m|p̃i〉〈ψ̃i|r〉〈r|ψ̃j〉〈p̃j |ψ̃m〉 (3.74)

The charge densities n1(r) and ñ1(r) are localized around each atom. The PAW method

has been implemented in many codes such as VASP code [71, 72, 69, 70], ABINIT soft-

ware [5], SOCORRO code [11] etc. This implementation has been successfully allowing

the self consistent calculations of density functional theory (DFT). This method has

been found to be accurate in calculation of the electronic structures.
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3.2 Introduction to the VASP code

Introduction

Our calculations have been done using the VASP (Vienna ab initio simulation pack-

age) code [71, 72, 69, 70]. This code was written by George Kresse and Jurgen

Furthmuller [71, 72] many years ago, and it has been developed at the University of

Vienna in Austria by the group led by Proffesor Jurgen Hafner [69, 70].

The resources (hardware and software) required to run VASP code are very effec-

tive but commercially demanding. The operating system employed must be windows

2000/XP or Vista. The processor needed must be at least 64 bit with Opteron AMD or

Itanium Intel. A more advanced one which is quad/dual Core AMD,Intel can perform

better. At least 1 or 2 Gbytes RAM per CPU are necessary for memory requirements

together with the hard drive space of 5 GB for MEDEA installation and a minimum

of 60 to 300 GB for data staroge. A 17 inch monitor for visualization is sufficient but

a larger one is better for graphics editing.

In order for the VASP code to operate one must be connected to the network: fast

ethernet of at least 100 MBit or more is necessary. When working on a system of

more than 30 atoms or on adsorption, such kinds of calculations must be submitted to

cluster servers which are highly powerful and will reduce the computational cost, but

for accuracy are the same as the local configurations explained above.

The developed code has been used to successfully predict the energies and properties

of various solid state systems. It is based on the density functional theory method [10].

The VASP code satisfies the DFT method by its speed and accuracy. Together with

the all-electron projector augmented wave potentials [19], VASP offers the accuracy
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of the all-electron method while maintaining the speed and advantages of a plane wave

method.

3.2.1 Types of calculations occurs in the VASP code

The VASP 4.6 code consists of four types of calculations i.e single point energy, structure

optimization, ab initio molecular dynamics and MT-for elastic properties.

3.2.1.1 Single point energy

The single point energy calculates only the energy of the structure with the input

geometries without relaxing any parameter. The only output interest is the structural

energy. However in most cases after fully relaxing the structure we employ the single

point energy to calculate the properties of the materials such as density of the states

(DOS) and band structures. Since the single point energy converges quickly, sometimes

we perform it to test the K-points and the plane wave cut-off convergence.

3.2.1.2 Structure optimization

Structure optimization is also known as geometry optimization which is concerned with

relaxing the cell parameters, with or without the cell constraints. This optimization

is performed at the temperature of 0 Kelvin. The said optimization is based on the

three options, i.e relaxing atom positions, allowing cell shape and cell volume to change.

When relaxing atomic positions, atoms are allowed to move until the residual forces

between any atoms are smaller than the convergence in eV/Å.

The relax atom positions can be considered alone when relaxing a surface, adsorbing

a molecule on a surface and relaxing a structure around a vacancy/defect. The cell

volume is allowed to change by varying the volume in keeping constant the ratios of

a:b:c without changing the cell angles. This option is normally applicable alone when

the pressure is applied to the system. The cell shape is allowed to change by varying
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the ratio a:b:c of the lattice constants and altering the angles. The three options can be

employed together in the case of fully optimizing the structure which yields the ground

state’s total energy and the equillibrium lattice parameters of the systems.

3.2.2 Types of properties occurs in the VASP code

In order to compute the properties of materials such as the energies, forces, band struc-

tures, densities of states, etc accurately, we need to integrate over all the occupied

electron states. The computational cost increases linearly with the number of mo-

mentum space sampling points (k-points) in the Brillouin zone. DFT codes such as

VASP [71, 72, 69, 70] and CASTEP [88] can approximate the k-spacing integrals with

a finite sampling number of k-points. The special k-points scheme have been developed

to use the fewest possible k-points to yield accurate results, thereby reducing the com-

putational cost. The most commonly used scheme is that of Monkhorst and Pack [81]

which generates efficient and accurate sets of special points in the Brillouin zone. The

number of momentum k-points used mostly depends on the system as the treatment of

metals, semimetals and insulators is different.

The VASP 4.6 code is able to calculate the following properties: the charge den-

sity, band structure, total local potential, density of states (DOS), electron localization

function, work function and the wavefunctions of the systems. In this work, the focus is

on the charge density, band structure and the density of states (DOS). These properties

were calculated in two independent steps. The first step is to relax the structure and

then reload the relaxed structure to calculate the properties using single point energy

type of calculation.

The DOS of a system enables us to understand the number of states at each energy

level that are available to be occupied by the electrons. If the DOS at the specific
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energy is high, it means there are many states to be occupied. The DOS of a system is

generally calculated by the equation (3.75) given below,

g(E) =
1
V

dN

dE
. (3.75)

V is the volume of the system and N is the number of electrons in it. The electronic

band structure of the material describes the range of energy that an electron is forbid-

den, or allowed, to have [6]. This is possible due to the diffraction of the quantum

mechanics electron waves in the system. The band structure enables us to understand

the electronic and optical properties of the materials. The allowed energies for the elec-

trons also depend on the wavevector (k) [6]. The wavevector k takes on values within

the Brillouin zone corresponding to the crystal lattice. The points in the Brillouin zone

are assigned according to the conventional name. A band structure is shown as a plot

of electronic energies E(k) as a function of the momentum k. The relation is given by

the equation (3.76) below,

E(k) = E0(k) +
~2(k − k0)2

2m
(3.76)

where E0 and k0 are the energy and momentum wavevector at the origin of the Brillouin

zone which is known as the gamma point.

3.2.3 Types of integration schemes which occur in the VASP code

The purpose of the integration scheme is to enable the code to clearly integrate the

density of states of the material. The VASP code consists of the following schemes:

Methfessel-Paxton, Fermi, Gaussian, tetrahedron and tetrahedron with Blochl correc-

tion. These integration schemes focus on the k-space in the Brillouin zone, mostly

on the region that divides the conduction and valence band. Each integration scheme

function well on specific group of material. The gaussian and tetrahedron schemes are
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employed on the insulators and semiconductors but for metals the Methfessel-Paxton

is employable.
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4

Results and discussion

4.1 Convergence tests of carbon and silicon structures.

Before any calculations such as electronic properties, geometry optimisation, etc, can

commence, it is advisable to check the convergence of the system by calculating the

total energy versus cut-off energy and total energy versus number of momentum k-

points for the plane wave expansion of the wavefunction. Different cut-off energies

have been tested for both carbon and silicon. The cut-off energies of 850 eV for carbon

and 450 eV for silicon were found to be suitable.

Higher cut-off energies give minimum energies lower than that given by 850 eV and

450 eV: however the differences are very small (less than 1meV) and do not affect the

accuracy of the results. We chose these cut-off energies to reduce computational cost.

For the carbon atom, the 2p orbital is strongly localized because of the lack of a p core

state. A large number of plane waves is required to achieve a high degree of accuracy.

We observe that the cut-off energy for carbon is almost double that for silicon. In the

case of silicon carbide we employed 850 eV in order to accommodate the carbon atoms.

The k-points are set according to the Monkhorst Pack scheme [81]. A 10x10x10
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Figure 4.1: The convergence of computed total energies of carbon as a function
of cut-off energy.

Figure 4.2: The convergence of computed total energies of carbon as a function
of k-points.
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Figure 4.3: The convergence of computed total energies of silicon as a function
of cut-off energy.

Figure 4.4: The convergence of computed total energies of silicon as a function
of K-points.
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mesh was used for both carbon and silicon, since it gives good convergence at a rea-

sonable computational cost. The exchange correlation potential used in this work is

the generalized gradient approximation(GGA) with projected augmented wave (PAW)

pseudopotentials. The generalised gradient approximation (GGA) tends to overesti-

mate the electronic properties i.e band gaps, but yields good cohesive energies and

overestimates the lattice constants. We performed geometry optimization to fully relax

the atom positions, cell volumes and cell angles of the systems. For adsorption calcu-

lations, we relax the atomic position. For electronic properties, we took the relaxed

structure and perform the single point energy calculations.

4.2 Carbon, silicon in the diamond structure and SiC in

the zincblende structure

In this section we investigate the structural and electronic properties of the following

cubic structures, namely carbon in the diamond structure, silicon in the diamond struc-

ture and SiC in the zincblende structure. Consideration was given to the stability of

the structures.

4.2.1 Structural properties

When calculating the properties of the materials, it is important to ensure that the

system is in equilibrium. One way to do this is to minimize the energy and calculate

the equilibrium parameters of the system that corresponds to the minimum energy. A

large number of algorithms are available for energy minimization which are classified

according to the order of the derivative of the total energy function employed in the

calculation. The structures were minimized using the geometry optimization option

found in the VASP code.

The total energy of the systems was calculated by self-consistent total energy methods.
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The equilibrium lattice constants (a0), equilibrium volume (Vo), the bulk modulus

(Bo) and the pressure derivative of the bulk modulus (B′0) were calculated by fitting

the energy versus volume data to the Birch Murnaghan equation of state [18] given by

the equation (4.1):

E(V ) = − 9
16
B0[(4−B′)V

3
0

V 2
− (14− 3B′0)

V 7/3

V 4/3
+ (16− 3B′0)

V 5
0 /3
V 2/3

] + E0. (4.1)

Energies as a function of volume for carbon, silicon in the diamond structure and silicon

carbide in the zincblende structure are shown in figures 4.5, 4.6 and 4.7. The parameters

derived from the Birch Murnaghan equation of state [18] are listed in the table on

page 69, combined with the results from other calculated works and experimental data.

The minimum point on the curve corresponds to the equilibrium volume of the unit

cell which gives us the equilibrium lattice parameter.

Figure 4.5: The total energy versus lattice parameter of carbon in the diamond
structure.

Our calculated equilibrium lattice constant for carbon in the diamond structure

was found to be 0.28% greater than the result reported by Chang et al. [28] employing
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Figure 4.6: The total energy versus lattice parameter of silicon in the diamond
structure.

Figure 4.7: The total energy versus lattice parameter of SiC in the zincblende
structure.
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LDA [57] and 0.112% greater than the experimental result. We observe that our cal-

culated equilibrium lattice constant is closer to the experimental value when compared

to the work reported by Chang et al. [28]. Our calculated bulk modulus was found

to be 2.257% less than the experimental bulk modulus and 1.14% less than that done

by Chang et al. The use of GGA underestimates the bulk modulus compared to the

use of LDA. Our calculated bond length was found to be 3.870% less than the calcu-

lated work reported by Chang et al. [28] and 4.54% less than the experimental value.

The overall results show that carbon in the diamond structure is a stiff (hard) material.

In the case of silicon in the diamond structure, our calculated equilibrium lattice

constant was found to be 0.626% more than the value calculated by Ying et al. [116].

When compared to the experimental work, our value was found to be 0.699% more.

This shows that our calculation employing GGA is an improvement over the value

calculated by Ying et al. [116]. We observe that silicon has a greater lattice constant

compared to carbon. This is caused by the excess of p core states in the silicon atom

having large atomic radius than carbon atom. Our calculation for the bulk modulus is

3.52% less than the calculated work reported by Ying et al. [116] and 10% less than the

experimental value. Our calculated bond distance was found to be 1.73% more than

the work done by Ying et al. [116] and 0.08% more than the experimental work. This

long bond length is responsible for the underestimation of bulk modulus which reveal

that silicon in the diamond structure is not as stiff (hard) as carbon.

In our calculations for SiC in the zincblende structure, our lattice parameter was

found to be 4.38Å, which is 0.45% more than in the work of Chang et al [28] and the

experimental data. Our calculated lattice constant was found to be more than that of

carbon but less than that of silicon. The calculated bond length was found to be 0.2%

less than the experimental data. The calculated bulk modulus was found to be 6% less
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than the experimental data and 1.5% less than the value reported by Chang et al. [28].

Our results reveal that SiC the zincblende structure falls under Hard material.

4.2.2 Cohesive energies

The cohesive energies were calculated as the energy difference between the total energy

of the free atoms and the bulk solid as given by the equation below:

Ecoh = Eatom − Esolid. (4.2)

The table on page 69 shows that our calculated cohesive energy for carbon in the

diamond structure is 3% less than that calculated by Chang et al. [28] employing LDA.

This demonstrates the overbinding of the LDA compared to GGA. Our calculated

cohesive energy using GGA is higher than the experimental work. Our result indicates

a lesser overbinding when compared to the one calculated by Chang et al. [28]. In the

case of silicon in the diamond structure, our calculated cohesive energy was found to

be 0.4% less than that reported by Ying et al. [116]. Even in this case we observe the

greater overbinding of the calculated results when using LDA rather than GGA. Our

calculated cohesive energy was found to be equal to experimental data. These kinds of

result indicate that GGA is the better exchange correlation to use when approximating

the cohesive energies of the materials. In the case of SiC in the zincblende structure,

our calculated cohesive energy is clearly comparable with both LDA and experimental

data. Even in this case, we observe that our calculated result using GGA is closer to

the experimental data with a percentage difference of 0.3%.
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4.2.3 Electronic properties

In this section, we calculated the electronic properties of carbon, sillicon in the diamond

structure and SiC in the zincblende structure. The fully relaxed structures were used

to evaluate the electronic properties.

4.2.3.1 Density of states

The total density of states for carbon and silicon in diamond structure and SiCin

zincblende structure is depicted in figures 4.8, 4.9 and 4.10 respectively. We observe

that in all cases, the conduction and valence bands are separated by energy band gaps.

Figure 4.8: The total density of states for carbon in the diamond structure.

The figure 4.8 indicates the plot of the total density of states for carbon in the

diamond structure. It shows a wide band gap of 4.31eV which is less than the exper-

imental value of 5.46eV measurements which Clark et al. [31] observed using neutron

diffraction. Our calculated band gap shows an improvement when compared to the

4.0eV calculated by Ruedi et al. [23] using EHMO-ASED [98]. This kind of band gap

is predicted by sp3 type of bonding which suggests that the structure is an insulator.

Considering the electronic contributions from lower to higher energy we discuss the
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Figure 4.9: The total density of states for silicon in the diamond structure.

Figure 4.10: The total density of states for SiC in the zincblende structure.
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peaks as follows: we observe the sharp peak at −12eV which indicates the (σ) bond

at the valence band. At −5eV we observe the highest peak even though it is not the

sharpest peak, which suggest that the highest states are fully occupied but the bonding

is still (σ). We observe the reduction of the density of states towards the Fermi level

until 0eV where the density of states varnishes completely.

Figure 4.9 gives the total density of states for silicon in the diamond structure with

a small band gap of 0.579eV . Our calculated band gap is less than the experimental

value of 1.12eV reported by [107]. Our calculated band gap shows an improvement

compared to the value of 0.52eV calculated by Cohen et al. [32] using LDA. This indi-

cates that GGA tends to improve the band gap predicted by LDA but is still less that

the experimental value. This size of the band gap gives a clear indication that silicon

in the diamond structure is a semiconductor material.

Considering the electronic contributions from lower to higher energy we discuss the

peaks as follows: At the energy of −6.5eV , we observe the sharp peak which mainly

possesses an electrons of s orbital character. This peak indicates a higher density of

states compared to the region of −4eV which have less electrons contribution. At −2eV

we observe the two high peaks which mainly consists more electrons contribution of p

orbital. Beyond −2eV , we observe a reduction of density of states until to 0 eV (Fermi

energy) where the electrons contribution vanishes completely.

Figure 4.9 depicts the total density of states for silicon carbide in the zincblende

structure with a band gap of 1.530eV . Our calculated band gap is better than the band

gap of 1.37eV calculated by Karch et al. [62] employing (LDA). Our calculated band

gap is still lower than the experimental value of 2.39eV found by Madelung et al. [77].

This band gap shows that SiC in the zincblende structure is a semiconductor material.

Considering the electronic contributions from lower to higher energies, we discuss the

peaks of different energies (positions). Our calculated peak positions of −3.0,−5.0,−8.0
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and −12.0eV compare well with the experimental values −3.0,−5.0,−8.5 and −12.8eV

obtained using soft x-ray valence spectrums, reported by G. Wiech [113]. They also

compare well with the calculated work done by K. Karch et al. [62] employing LDA.

We observe the highest sharp peak at −8.0eV formed by the contribution of electron

of s orbitals for the carbon and silicon atoms. This peak reveals that there are more

electrons contribution compared to other regions. At −3.0eV , there exists a rough peak

which indicates the contribution of electrons of p orbitals for both silicon and carbon

atoms. This peak shows the less electrons contribution comparared to the previous

one. The bonding occurring in silicon carbide is polar covalent whereby silicon acts as

a cation and carbon as anion.

4.2.4 Discussion

The lattice constant of carbon in the diamond structure was found to be much less

than that of silicon and silicon carbide (SiC). This is due to the deep pseudopotentials

of carbon particularly in the p state. Our calculated errors to experimental values were

found to be within the acceptable range of DFT. The lattice constant of SiC in the

zincblende is smaller by 0.143Å than the geometric average of the lattice constants

for silicon and carbon. This reduction of the lattice constant is stated clearly in alloy

theory and is known as Vegard’s rule [35]. This is caused by the charge transfers

from the silicon atom to the carbon atom, due to the strong 2p potential of carbon.

We observe that our calculated cohesive energy for SiC is larger than the geometric

average of silicon and carbon. We conclude that SiC in the zincblende structure is

thermodynamically stable.
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4.3 Carbon, silicon and silicon carbide in the graphene

structure

In this section three types of graphene related structures namely: two dimensional

carbon, silicon and silicon carbide honeycomb are investigated. The carbon and silicon

in the graphene structure are already experimentally existing [84, 40] while silicon

carbide in this structure has not been synthesised but is a possible structure. All our

structures contain two atoms basis in the 1x1 primitive unit cell.

Figure 4.11: The (1x1) unit cells of two dimensional graphene structures (a)
carbon in the graphene structure, (b) silicon in the graphene structure and (c)
silicon carbide in the graphene structure.

4.3.1 Structural properties

We calculated the structural and electronic properties of C, Si and SiC in the graphene

structures employing geometric optimization. Carbon in the graphene structure is pla-

nar in all geometric arrangements with the lattice vectors a = b = 2.47Å and c = 15Å.

The lattice vector c was set large enough in order to avoid interlayer-spacing inter-

actions. The calculated total energies in relation to lattice constants are shown in
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figures 4.12, 4.13 and 4.14. The minimum points on each curve indicate the equilib-

rium lattice constant at the ground state total energy. Our calculated parameters and

cohesive energies are summarized in the table 4.2. There are no experimental results

for SiC in the graphene structure but there are results from previous work to validate

our results [15].

Our calculated lattice constant for carbon in the graphene structure was found

to be 0.5% more than the experimental data and the result reported by [15]. The

corresponding bond length was found to be 0.42% more than the experimental bond

length. Our estimated structural parameters for carbon in the graphene structure

relative to experimental data are within acceptable limits. The structure of carbon

in the graphene structure is predicted to be planar because of the formation of a π

bond between the two nearest neighbour carbon atoms. The strong covalent σ bond

from sp2 hybridization between adjacent carbon atoms is also responsible for the planar

geometry. This also causes the unusual electronic properties of carbon in the graphene

structure.

Table 4.2: The calculated and experimental equilibrium lattice constants (a0), equ ilib-
rium bond distances (bd) and cohesive energies(Ecoh). All data of other work are from
reference [15], experimental data for carbon in the graphene structure and silicon in the
graphene are from references [84],[40]

This work structure space group a0(Å) bd(Å) Ecoh(eV )
Carbon in graphene P6/mmm 2.471 1.426 8.730
Silicon in graphene P6/mmm 3.848 2.222 4.330

SiC in graphene P6/mmm 3.096 1.787 13.140
Other work

Carbon in graphene P6/mmm 2.465 1.420 10.400
Silicon in graphene P6/mmm 3.830 2.200 4.900

SiC in graphene P6/mmm 3.070 1.770 15.250
Experimental

Carbon in graphene P6/mmm 2.46 1.420 7.600
Silicon in graphene P6/mmm 3.900 2.240 ....

SiC in graphene P6/mmm .... .... ....
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Figure 4.12: The total energy versus lattice parameter of carbon in the
graphene structure.

Figure 4.13: The total energy versus lattice parameter of silicon in the graphene
structure.
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Figure 4.14: The total energy versus lattice parameter of silicon carbide in the
graphene structure.

In the case of silicon in the graphene structure, we observe a lattice constant of

0.77% lower than the experimental data [40]. This underestimated lattice constant is a

surprising result since we are aware that GGA tends to overestimate the experimental

lattice constants. We notice that our underestimated value is still within the accept-

able limits. However our calculated lattice constant shows an improvement compared

to the other calculated values employing LDA. Our calculated bond length of 2.222Å

is clearly comparable with the experimental result of 2.240Å and the calculated result

of 2.200Å done by Kara et al. [39]. Because silicon in the graphene structure is two

dimensional, we expect it to behave like carbon in the graphene structure since kara

et al. [39] reported that its charge carriers are also massless relativistic Dirac fermions.

The structure also appears to be two dimensional with a strong σ bond between two ad-

jacent silicon atoms. There also exists π bonding between silicon atoms. This π bonds

are responsible for the structure being semimetallic with unusual electronic properties.

This is revealed by the calculations of electronic properties.
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In the case of SiC in the graphene structure, our calculated lattice constant appear

to be 0.85% more than the calculated results reported from reference [15] while our

calculated bond length appears to be 1% more. In all systems, the percentage errors

are within the computational acceptable limits. We compared our parameters with the

results performed using LDA calculations employing ultrasoft pseudopotentials. The

interesting part is that our calculations perform better than those done using LDA.

We further tested the stability of the structure by displacing the atoms 0.5Å away

from their original positions and allowing the structure to fully relax. After relaxation,

all atoms returned to their original positions and the layer remained flat (planar). This

observation implies that the structure is stable with one ground state. We continued

by further investigating the stability of SiC: calculating the density of states (DOS)

and analyzing the peaks. In the case of SiC in the graphene structure, we observe

the reduction of the lattice constant for carbon, which implies that the volume of the

unit cell of silicon carbide is smaller than that of carbon in the graphene structure but

greater than that of silicon in the graphene structure.

4.3.2 Cohesive energy

Cohesive energies were calculated by taking the energy difference between the equilib-

rium energy of the atoms in the graphene structure and the energy of the independent

atoms stated from (4.2). Our calculated cohesive energy for carbon in the graphene

structure was found to be 12.98% more than the experimental value, which shows

overbinding in the exchange correlation used. However, our calculated cohesive energy

indicates less overbinding compared to the other calculated results reported by [15] em-

ploying the local density approximation. These results show an overbinding of 36.842%

more than the experimental results. In the case of silicon and SiC in the graphene
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structure there are only theoretical results to compare with ours. Our calculated cohe-

sive energy shows an underestimation compared to other calculated results [15].

4.3.3 Density of states

Electronic properties were calculated at an equilibrium (ground state) structure em-

ploying single point energy calculations. We give a brief description of the electronic

behaviour of three structures. In these calculations, the electronic states were occupied

in accordance with the Fermi distribution function with a Fermi smearing parameter

of kBT = 0.2eV . We choose 18x18x1 for the Monkhorst-Pack grid. This is considered

to be a high density of sampling for integrating in the Brillouin zone which we employ

to minimize numerical errors.

The corresponding densities of states for carbon, silicon and SiC in the graphene

structures are shown in figures 4.15, 4.16 and 4.17 respectively. Figure 4.15 gives the

total density of states for carbon in the graphene structure. We notice that the DOS

plot gives no band gap between conduction and valence bands (no band gap but also no

overlap between conduction and valence band) at the Fermi energy. This property was

also revealed by Wallace et al. [112]. This absence of band gap is caused by the joining

of conduction and valence bands at the bottom of the Fermi energy at the Γ-point of

the Brillouin zone. Theoretically, a zero band gap reveals that carbon in the graphene

structure is semimetallic.

We observe the first long peak located at an energy of −14eV of an s orbital char-

acter. This is essential for non-bonding orbitals at the core states. We also observe

peaks ranging from −4 to −7eV for 2sp2 hybridization states with the pz orbital per-

pendicular to the plane. The electrons at these states are energetically active and are

capable of providing the upper bound for the valence band. However the pz orbital is
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Figure 4.15: The total density of states for carbon in the graphene structure.

Figure 4.16: The total density of states for silicon in the graphene structure.
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Figure 4.17: The total density of states for silicon carbide (SiC) in the graphene
structure.

responsible for the joining of the conduction and valence band energies at the bottom

of Fermi energy. The figure 4.15 shows a conical (linear) dispersion with respect to the

Γ-point. This reveals that the bands contain massless Dirac Fermion states.

The plot of the density of states (DOS) for silicon in the graphene structure indi-

cates no band gap at the Fermi energy. This behaviour was also observed by Ciraci

et al. [15], which indicates that the bands cross the bottom of the Fermi level at the

corners of the Brillouin zone. This also reveals that silicon in the graphene structure is

semimetallic. The peaks range from −2 to −4eV , showing that electrons for the 2sp2

hybridization states are energetically excited and there is strong σ bonding between

the Si atoms. These peaks are caused by the electronic contribution of pz orbitals

which is perpendicular to the plane and is responsible for π bondings (bands). These

π bondings are weak and cross at the bottom of the Fermi level. We observe a flat

reduction of the electronic states from −1 to 0eV (Fermi) energy. Comparing the peaks

for silicon in the graphene structure with that of carbon in the graphene structure, we

observe a higher peak of 2.0 states/eV in the silicon graphene structure. This peak
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is 0.5 states/eV more than that of carbon in the graphene structure. This might be

due to the fact that carbon makes a lesser electronic contribution than silicon in the p

orbital. Theoretically, the long peak shows more electrons contribution, which reveals

that silicon in the graphene structure is less stable than carbon in the same structure.

Figure 4.17 depicts the total density of states (DOS) for silicon carbide (SiC) in the

graphene structure. We observe that the valence and conduction bands are separated

by a wide band gap of 2.542eV . This band gap indicate that SiC in the graphene struc-

ture is a semiconducting material. We observe the highest peak of 1.5 states/eV at an

energy of 0.30eV . This peak is due to the contribution of electrons for 2sp2 hybridiza-

tion. Even in this structure, the bonding occurring between the atoms is covalent with

the electron moving from silicon to carbon atoms.

Comparing the peaks of the three structures, we observe that carbon in the graphene

has the lowest peak. Careful analysis of the SiC structure shows that the peak is just

slightly higher than that of carbon in graphene. This indicates that SiC in the graphene

structure is less stable than carbon in the graphene structure. Our results for SiC in

the graphene structure indicate that it is a plausible structure.

4.4 Carbon, silicon and silicon carbide in the graphane

structure

4.4.1 Adsorption of a single hydrogen atom and a pair on carbon in

the graphene structure

In this section, the adsorption of single and pairs of hydrogen adatoms on different sizes

of supercells of carbon in the graphene structure, i.e (1x1), (2x2), (3x3) and (4x4) is

considered. We started by employing the (1x1) unit cell for the adsorption of a hydrogen
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adatom to establish the most favourable site between the ontop and hollow sites. Our

calculations reveal that the hydrogen adatom prefers to be adsorbed on the ontop site.

The minimum energy for the hollow site adsorption was found to be 0.323eV more than

the ontop site adsorption. Our calculated bond distance between carbon and hydrogen

was found to be 0.043Å less than the distance between the hollow site and hydrogen

adatom. This revealed to us that the ontop site adsorption displays stronger bonding

than the hollow site. For the other supercell sizes, we adsorbed hydrogen adatoms on

the ontop site.

We continued to investigate whether a pair of hydrogen adatoms prefer to be ad-

sorbed on the same side or alternating sides. The minimum energy for alternating

adsorbed hydrogen adatoms was found to be 1.877eV less than the minimum energy

for hydrogen adatoms adsorbed on the same side. Our calculated bond distance between

carbon and hydrogen atoms for the alternating case was found to be 1.102Å symmetric

for both hydrogen adatoms. For hydrogen adatoms adsorbed at the same side, their

distance from the layer was found to be 1.110Å symmetric. For both situations, we

applied different configurations, including placing the hydrogen adatoms assymetrically

and moving them slightly along the xy direction. However, after relaxation both two

hydrogen adatoms remained symmetric on top of carbon atoms. Therefore our calcu-

lations reveal that the hydrogen adatoms prefer the alternating adsorption case. We

decided to consider various configurations on the other supercells by adsorbing the hy-

drogen adatoms on the same side in order to be able to make a comparison with the

work on adsorption of lithium adatoms and to include the effect of the force of repulsion

between hydrogen adatoms on the same side.

Our calculated geometric parameters and binding energies are summarized in the

table on page 85. Our calculated results compare well with the other calculated data
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and in most cases show an improvement. This suggests that GGA is a better exchange

correlation to use than the LDA. Our results were strongly affected by the sizes of the

unit cells and imply that (3x3) and (4x4) supercells have better degrees of freedom

than the others. This also suggests that, for (1x1) unit cells, there are high interactions

(repulsion) between hydrogen atoms due to symmetry operations whereas for a (4x4)

supercell, the hydrogen atom is in an isolated state where the interactions are minimal.

For our calculations of electronic properties we employed the (4x4) unit cell.

Our binding energies were calculated as follows:

Ebind = EHC − EH − EC (4.3)

where EHC is the energy per hydrogen adatom of the carbon in the graphene unit cell,

EH is the total energy of an isolated hydrogen adatom and EC is the energy of pristine

graphene unit cell. Our calculated binding energies are greatly affected by the increase

in the supercell sizes and were in agreement with the other calculated results. We

observe that the binding energy for single hydrogen adsorption on a (4x4) unit cell is

0.948eV , which is in agreement with the 0.890eV result in Denis et al. [34]. For pairing

of hydrogen adatoms, we considered five pairs which are illustrated by figure 4.18 and

labelled as P1, P2, P3, P4 and P5. Our calculated binding energies show that the odd

pairs are energetically more favourable than the even pairs. The binding energies for

odd pairs appear to be greater than those of the two isolated adsorbed atoms; however

these pairs are regarded as the stable ones. This suggests that the odd pair are in a

good position as regards the hydrogenation process. But this does not mean the even

pairs fail: they may but will require a high amount of energy. When considering odd

pairs, we discovered that stability decreases with the increase of the H-H separation.

We can conclude that P1 is the most stable configuration which is in agreement with
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Figure 4.18: Structure of carbon in the graphene structure for a (4x4) super-
cell. The letters P0 indicate the position where a single hydrogen adatom was
adsorbed and is the first hydrogen to be paired with others. P1 to P5 is the
route used for pairing with P0.
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the work done by Roman et al. [96]. This reveals that the hydrogen-hydrogen inter-

actions are also responsible for stabilising the structure. The (2x2) supercell indicates

that P3 is also the most stable configuration but we doubt the size of the cell for the

hydrogenation process. Our calculated binding energies for the higher concentration

indicate greater stability, which makes carbon in the graphene structure a candidate

for hydrogen storage.

In this paragraph the geometrical properties of the most stable configuration (P1)

for different supercells only are discussed. The binding energies discussed above are

correlated clearly with the geometric parameters. These parameters were found after

the addition of hydrogen adatoms on top of the carbon in the graphene sheet. For a

(1x1) unit cell after adsorption of single hydrogen adatoms, we observe the depuckering

height of 0.299Å which increases to 0.458Å when hydrogen adatoms are paired. This

tells us that the layer is no longer flat but buckled. The calculated H-C distance for

single hydrogen was found to be 1.181Å for a (1x1) cell but decreased when the super-

cell is increased. The adsorption of single hydrogen adatom breaks the double bond

and releases unpaired electron. This requires us to adsorb the second hydrogen adatom

so that all bonds are saturated. We observed the decrease of H-C bond distances when

the second hydrogen adatom is adsorbed.

The two hydrogen adatoms pairs appear to be symmetrical after relaxation. This

symmetric behaviour tells us that if the hydrogen adatoms can be clustered, they can

form a flat layer on top of buckled carbon atoms in the graphene layer. We observe that

this H-C bonding is also affected by this greater size of the cell. We observe that our

result of C-C bonding for single hydrogen adatom was not affected by this size of the

unit cells, but was only affected by the addition of the second hydrogen adatom. Our

calculated C-C bonding results are found to be greater than the value of pure graphene
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of 1.426Å, which reveals that there exists a transformation of the sp2 hybridization

in the pristine carbon located in the graphene structure, to sp3 hybridization in the

hydrogenated carbon graphene. Our calculated value is still less than the 1.540Å of

pure carbon in the diamond structure.

4.4.1.1 Density of states

The density of states was calculated in order to observe the electronic changes caused by

the adsorption of hydrogen adatoms on top of carbon in the graphene structure. Only

the DOS of the (4x4) supercell is shown since it has better stability than the others. We

started with the density of states for the adsorbed single hydrogen adatoms followed

by the adsorbed pair of hydrogen adatoms. We wanted to understand the effect of a

single hydrogen adatom on the layer which leaves one electron of carbon unpaired and a

fully saturated hydrogenated structure respectively. To obtain a self-consistent charge

density we employed higher meshes of 18x18x1 for the integration over the irreducible

part of the Brillouin zone.

Figure 4.19: The total electronic density of states for single hydrogen adatom
adsorbed on the carbon in the graphene structure.
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Figure 4.20: The total electronic density of states for pair of hydrogen adatoms
adsorbed on the carbon in the graphene structure.

Figure 4.19 depicts the resulting density of states for single hydrogen adsorbed on

the carbon in the graphene structure. We observe a great difference when compared to

the DOS of pure pristine carbon in the graphene structure. A tuned gap between the

valence and conduction band is observed. Furthermore, a long peak at the centre of the

gap along the Fermi level is present. We claim that this long peak around the Fermi

level is caused by the excess of unpaired electron. This reveals that single hydrogen

adatom adsorption possesses pure metallic properties in the system. At the energy of

-7 eV in the valence band we observe a peak which indicates strong bonding between

the electron from s orbital of the hydrogen adatom and the electron from the p orbital

of carbon atom.

Since we observed that the adsorption of a single hydrogen adatom leaves an un-

paired electron on the structure, we decided to adsorb another hydrogen atom. Fig-

ure 4.20 illustrates the density of states for a hydrogen adatoms paired structure. We

observe the disappearance of the long peak around the Fermi level with the valence

and conduction bands being separated by a band gap of 3.965eV . This gap is in agree-
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ment with the experimental one reported by Elias et.al [38] of 3.5eV . The said gap

reveals that the adsorption of paired hydrogen adatoms transforms the structure from

a semimetallic one to an insulator. The long peak at an energy of around −3eV on the

valence band demonstrates the contribution of sp2 for carbon but only s for hydrogen

which leads to strong sp3 hybridization. Since the valence band is dominated by the s

and p orbitals, it can be concluded that our observed insulating band gap is one of s-p

type bonding.

In these calculations, several factors are suspected of being responsible for the hy-

drogen adatom inducing a band gap. Such defect of the buckled layer is caused by the

adsorbed hydrogen adatom. We suggested this because the structure is taking a three

dimensional shape. The hydrogen H+ ionic core may be responsible for generating

the gap. We decided to take the fully adsorbed structure and remove the hydrogen

adatoms. We then recalculated the DOS of the buckled structure with their absence.

The recalculated DOS appears the same as the one for pristine planar carbon in the

graphene structure, with the absence of a band gap. We concluded that the H+ is

responsible for the generation of the large band gap and that the charge transfer from

hydrogen adatoms to carbon atoms indicates covalent bonding.

4.4.2 Adsorption of single and paired hydrogen adatoms on silicon in

the graphene structure

In this section, several configurations are also considered for the adsorption of hydrogen

adatoms employing different sizes of supercells. We started by adsorbing a single hy-

drogen adatom on top of silicon and on a hollow site. After relaxation, our calculated

binding energies reveal that the ontop site is lower in energy than the hollow site, by

an amount of 0.4meV . This energy difference is relatively very small, which shows that

under conditions of finite temperature, islands of hollow sites may co-exist with islands
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of ontop sites. This was also observed by Ryou et al. [97]for adsorption of hydrogen on

silicon nanotubes.

After relaxation, the hydrogen adatom moved from the hollow site directly to the

ontop site. The bond distance from the hydrogen to silicon (H-Si) for the ontop site

calculation was found to be 1.522Å, and 1.523Å for the hollow site calculation. This

short bond also proves that the ontop site is the preferred site. We continued further to

investigate whether a pair of hydrogen adatoms prefers to be adsorbed on the same side

or alternating sides. The minimum energy for alternating adsorbed hydrogen adatoms

was found to be 1.553eV less than the minimum energy of hydrogen adatoms adsorbed

on the same side. The energy difference indicates that the alternating adsorption is more

stable than the same side adsorption. As we stated earlier that this is a comparative

study we continue with the adsorption of hydrogen adatoms at the same side of the

silicon layer. Our calculated structural parameters and energies are summarized in the

table on page 92.

The binding energies are calculated using equation (4.3) and the adsorption of hy-

drogen adatoms was performed following the route indicated on figure 4.21 referring to

the layer of silicon adatoms in the graphene structure. In this calculation we observe

that an increase in the sizes of the unit cells affects the binding energies of the system.

For single hydrogen adatoms adsorption, we observe that the (4x4) supercell displays

the highest binding energy compared to the small supercells. This value shows that

hydrogen adatom has a good degree of freedom when interacting with silicon in the

graphene structure.

The coresponding depucking distance (outward movement of silicon atom) was

found to be 0.647Å. This value is reasonably large to indicate that the structure is
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Table 4.4: The calculated equilibrium height dpuck (Å), silicon-silicon [Si-Si (Å)] distance
and hydrogen-silicon [H-Si (Å)] corresponding to different sizes of supercells.

Geometric Parameters Bond distances
Single H adatom 1x1 2x2 3x3 4x4
d(H − Si) 1.522 1.492 1.513 1.511
d(Si− Si) 2.332 2.334 2.339 2.341
dpuck 0.474 0.334 0.637 0.647

Pair of H adatoms
d(H − Si) 1.493 1.495 1.515 1.513
d(Si− Si) 2.341 2.331 2.336 2.342
dpuck 0.492 0.456 0.779 0.848

Configurations Binding energies
1x1 2x2 3x3 4x4

P1 1.507 1.213 1.558 1.715
P2 ... 1.046 1.489 1.679
P3 ... 1.351 1.543 1.703
P4 ... 1.045 1.378 1.615
P5 ... .. 1.543 1.643
Single 0.778 0.514 0.711 0.834

no longer planar. This furthermore indicates that by adsorbing one hydrogen adatom

there is a transformation from sp2 to sp3 hybridization. Our calculated distance be-

tween two silicon adatoms (Si-Si) was found to be 2.341Å. This value is greater than

our calculated value of 2.222Å for pristine silicon in the graphene structure. Our cal-

culated value of 2.341Å is closer to the value of silicon in the diamond structure of

2.350Å. When hydrogen atoms were paired we still observe that the (4x4) supercell is

more stable than the others.

In terms of binding energies, we observe that the odd pairs (P1,P3,P5) bind better

than the even pairs (P2,P4) and that the closest pair (which is the P1) has the highest

binding energy. We noted that the hydrogen atoms formed a dimer. This is caused by

the hydrogen atoms interactions which are responsible for stabilizing the structure. We

also observed that the binding trend is weakened with the increases in H-H separation.

92

 
 
 



We noted that the even pairs have the lowest binding energy which reveals that they are

not favourable pairs. For the hydrogenation process, these even pairs are still required

but owing to the high amount of adsorption energy this is computationally expensive.

Figure 4.21: Structure of silicon in the graphene structure for a 4x4 supercell.
The letter P0 indicates the position where a single hydrogen adatom was ad-
sorbed and is the first hydrogen to be paired with others. P1 to P5 is the route
used for pairing with P0.

The geometrical parameters summarized in the table on page 92 are only from pair

p1 which was regarded as the most stable pair. Our value for the distance between hy-

drogen and silicon atoms (H-Si) was not clearly affected by the inclusion of the second

hydrogen atom. We observed that when hydrogen atoms are paired, after relaxation

they remained symmetric at 1.513Å. This symmetric position reveals that the hydro-

gen adatoms clustered are capable of making a planar layer on top of buckled up silicon

atoms.
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Unlike the situation of carbon in the graphene structure, the (H-Si) bond is longer

than the one for single hydrogen adsorption. Our results for the depucking height were

seriously affected by the pairing of hydrogen adatoms indicating a value of 0.848Å.

This value makes the buckled layer very conspicuous and allows silicon atoms to adopt

a structure closer to the one for sp3 hybridization. The distances between silicon atoms

were not seriously affected by the pairing of hydrogen atoms when compared to single

adsorption but a slight increment exist. This increase demonstrates that the structural

parameters were transformed to be close to the standard one for sp3 hybridizations.

4.4.2.1 Density of states

We calculated the DOS for hydrogen adatoms adsorbed on the silicon layer. The total

DOS for single hydrogen adsorbed on the layer is presented by figure 4.22. We observe

a long peak crossing the Fermi level and this is caused by the unpaired electron of

carbon. This long peak causes the structure to be metallic. In the valence band, we

note a peak of 5 states/eV at the energy of -4eV. This peak is caused by the high

contribution of s and p states hybridizations.

The total DOS for a pair of hydrogen adatoms adsorbed on the layer is depicted by

figure 4.23. We observe a large band gap of 2.13 eV between the valence and conduction

band gap. This band gap indicates that the structure is an insulating, material. Which

proves that the adsorption of hydrogen adatoms transforms the structure from sp2

to sp3 hybridization and that there are no longer any unpaired electrons. Even in

this figure, we still observe the peak at the energy of -4eV in the valence band, but

the peak has increased from 5 states/eV to 6 states/eV. This reveals that the second

hydrogen adatom increases the number of states by 1 states/eV in the structure. In

our calculations, the orbital’s contributions is of s and p states, which indicates that
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Figure 4.22: The total electronic density of states for a single hydrogen adatom
adsorbed on the silicon in the graphene structure.

Figure 4.23: The total electronic density of states for a pair of hydrogen
adatoms adsorbed on the silicon in the graphene structure.

95

 
 
 



our calculated band gap is of the s-p type of bonding.

4.4.3 Adsorption of single and pair of hydrogen atoms on SiC atoms

in the graphene structure

In this section, the adsorption of hydrogen adatoms on top of SiC atoms in the graphene

structure employing four different supercell sizes, i.e. (1x1),(2x2),(3x3) and (4x4), was

considered. Firstly, we started by employing the (1x1) unit cell for the adsorption of a

hydrogen adatom in order to find the most favourable site between the hollow and the

ontop site. Our results reveal that the ontop site is more favourable than the hollow

one. The minimum energy for the ontop site was found to be less than the minimum

energy for the hollow site by 1.048 eV.

We then considered pairing the hydrogen adatoms at the on top site. Next we de-

termined the most stable configuration between hydrogen adatoms paired at the same

side and when they did so on the alternating side. Our calculated binding energy for

the same side adsorption was found to be 2.011 eV whereas that for alternating ad-

sorption was found to be 2.835 eV. This binding energy reveals that the alternating

adsorption is the favourable configuration. The bond distance between the hydrogen

and silicon (H-Si) and hydrogen and carbon (H-C) was found to be 1.536Å and 1.133Å

respectively in the case of same side adsorption whereas on the alternating adsorption

the (H-Si) and (H-C) was found to be 1.497Å and 1.106Å respectively. These results

demonstrate that there is stronger bonding on the alternating configuration than on

the same side configuration.

The bond distance between carbon and silicon was found to be 1.812Å in the same

side adsorption whereas on the alternating side the distance was found to be 1.879Å.

This proves that there are stronger transformations from sp2 to sp3 hybridization in
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the alternating configuration than in the same side configuration. Even in this case, we

decided to resume our calculation considering the same side adsorption. Our calculated

geometric parameters and binding energies are summarized in the table on page 102.

Table 4.5: The calculated equilibrium height dpuck (Å), silicon-carbon [Si-C (Å)] distance
and hydrogen-silicon [H-Si (Å)] distance coresponding to different sizes of supercells.

Geometric Parameters Bond distances
Single H adatoms 1x1 2x2 3x3 4x4
d(H − Si) 1.537 1.523 1.520 1.508
d(H − C) 1.125 1.119 1.119 1.116
d(Si− C)[H-Si] 1.818 1.843 1.849 1.855
d(Si− C)[H-C] 1.894 1.898 1.899 1.898
dpuck[H-Si] 0.335 0.379 0.438 0.520
dpuck[H-C] 0.625 0.635 0.651 0.706

Pair of H adatoms
d(H − Si) 1.536 1.510 1.508 1.507
d(H − C) 1.133 1.127 1.118 1.117
d(Si− C) 1.812 1.840 1.843 1.843
dpuck[H-Si] 0.299 0.398 0.479 0.634
dpuck[H-C] ... 0.582 0.648 0.815

Configurations Binding energies
1x1 2x2 3x3 4x4

P1 2.011 2.240 2.219 2.294
P2 .... 1.353 1.549 1.482
P3 ... 2.215 2.095 1.987
P4 ... 1.352 1.354 1.352
P5 ... .... 2.090 1.896
Single[H-Si/H-C] 1.022/1.461 1.217/1.489 1.118/1.509 1.319/1.492

The table on page 92 indicates that the growth of the supercells affects our results.

In most cases the (4x4) supercell yields better results than the (1x1) unit cell. Starting

with the binding energies for single hydrogen adsorption, we observe greater binding

energy when hydrogen is on top of carbon than on top of silicon atoms. This reveals

that the hydrogen atom prefers to bond with carbon than silicon atoms.
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We decided to pair the hydrogen adatoms following the route indicated on fig-

ure 4.24. Our results demonstrates that the odd pairs P1, P3 and P5 are the most

stable, even if the stability decreased with the greater separation of hydrogen adatoms.

Our diagram illustrates that the odd pairs are for hydrogen adsorbed on top of carbon.

The even pairs P2, P4 and P6 are for hydrogen adatoms adsorbed on top of silicon

atoms and displays less stability. Our results show that the first pair P1 is the most

stable pair.

Figure 4.24: Structure of SiC in the graphene structure for a (4x4) supercell.
The letter P0 indicates the position where a single hydrogen adatom was ad-
sorbed and is the atom that was employed to pair with others. P1 to P5 is the
route used for pairing with P0.

Our presented geometrical parameters are from the P1 pair. The calculated geo-

metrical parameters show that for single hydrogen adsorption, there is higher bonding

between hydrogen and carbon than between hydrogen and silicon atoms. The depuck-

ing height for hydrogen adsorption on top of carbon is larger, sometimes twice as large,
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than the one for hydrogen adsorbed on top of silicon. This large depucking height

reveals the existence of a greater transformation of the structure.

This transformation is also indicated by the silicon-carbon distance of around 1.89Å

in the hydrogen carbon adsorption. This value is almost the same as the one for bulk

SiC in the zincblende structure. For the pairing of hydrogen adatoms we note that

their depucking heights are not equal. We observe that the SiC layer is buckled and

hydrogen adatom remained asymmetric, with the hydrogen adatom on top of silicon

being higher than the hydrogen adatom on top of the carbon atom. This is caused

by the lesser bonding of hydrogen atoms on top of silicon than on top of carbon. Our

results show that the silicon-carbon distance is not really affected by the pairing of

hydrogen adatoms. This is caused by the weaker bond of hydrogen with silicon atoms.

4.4.3.1 Density of states

The DOS for single and pair of hydrogen adatoms adsorbed on the SiC layer were

calculated in order to find out how the structure is modified. The figures 4.25 and 4.26

present the total DOS for single hydrogen adatoms adsorbed on top of carbon and

silicon respectively. The total DOS of paired hydrogen adatoms adsorbed on top of SiC

is presented by figure 4.27.

The DOS for single hydrogen adsorbed on top of carbon differs from that for the

2D SiC bulk structure. We observe a high peak crossing the Fermi level which indi-

cates that the structure is metallic. We also see this kind of long peak in the case of a

single hydrogen adatom adsorbed on top of silicon atoms. This shows that even in the

case of SiC, the hydrogen adatom breaks the double bond between silicon and carbon

and leaves a lone pair of electron which is responsible for the metalicity of the structure.

Figure 4.25 depicts a high peak at an energy of around −6eV in the valence band.
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Figure 4.25: The total electronic density of states for single hydrogen adatom
adsorbed on top of carbon atom on the SiC in the graphene structure.

Figure 4.26: The total electronic density of states for single hydrogen adatom
adsorbed on top of silicon atom on the SiC in the graphene structure.
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Figure 4.27: The total electronic density of states for paired hydrogen adatoms
adsorbed on the SiC in the graphene structure.

This long peak indicates that electrons are energetically excited due to the s and p

hybridization. Figure 4.27 illustrates a wide band gap of 3.899eV between the valence

and the conduction bands. This band gap reveals that the pairing of hydrogen atoms

makes the structure to be an insulator. The pairing of hydrogen adatoms in the SiC

saturates all the bonds. This band gap is larger than the band gap of pristine SiC in

the graphene structure which has a value of 2.542eV . This indicates that the addition

of hydrogen atoms is responsible for fine tuning the band gap. We note a high peak at

an energy of −2eV in the valence band which indicates that there is an increase in the

number of electrons in the structure during s and p state hybridizations.

Our calculated bond distances between carbon and silicon and depucking heights

for the paired hydrogen atoms do not indicate the serious changes when compared to

the single hydrogen adsorbed on top of carbon atoms. This reveals that the structural

deformation is not responsible for tuning the band gap. This gap is instead tuned by

the excess of hydrogen ions H+ on the structure.
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4.4.4 Adsorption of Li adatoms on carbon in the graphene

For adsoption of lithium adatoms, we considered various configurations involving the

(1x1), (2x1) and (2x2) two-dimensional unit cells. We considered different coverages

involving 25%, 50% upto 100% coverage.

4.4.4.1 Adsorption of Li adatoms employing the (1x1) cell

For 50% coverage, we compare a single Li adatom at the ontop site with the hollow

site for a (1x1) cell of graphene. Our results for the fully relaxed systems indicate

that the hollow site is lower in energy compared to the ontop site by only 0.046eV .

This is a relatively small energy difference, which shows that under conditions of finite

temperature, islands of hollow sites may co-exist with islands of alternate ontop sites.

Not surprisingly, these systems are metallic in nature as can be deduced by simple

electron counting arguments. The Li-C bond length for the on-top site is 2.19Å and for

the hollow site is 1.85Å. The shorter bond length at the hollow site is understandable

since the Li ions are freer to approach the graphene plane in this case. For the ontop

site attachment, the graphene plane is marginally buckled with the C atom that is

attached to the Li atom pushed into the plane by less than 0.05Å. For the hollow site,

the graphene sheet remains planar.

Our calculations for 100% coverage on the ontop sites reveal that the Li adatoms

attaching on the same side of the graphene sheet possess a lower energy compared with

Li adatoms attaching alternately on opposite sides of the graphene sheet. This we

find to be a surprising result, since it is different from that of H on graphene. Yang

did not report on the case involving Li attaching on the same side of the graphene sheet.

We discovered that one needs to be very careful about the relaxation of the Li

adatoms at the ontop sites on the same side of the graphene sheet. For our initial

102

 
 
 



set of calculations, we considered a (1x1) cell. Initially, we placed the two Li adatoms

at a distance of 1.80Å directly above the two C atoms. In this case, the Li adatoms

relaxed symmetrically to a Li-C bond length of 2.13Å above the graphene sheet. The

graphene sheet still remained planar. The energy of this bonded system was higher

than the sum of the energies of the (1x1) graphene cell and that of two isolated Li

atoms by an amount of 3.69eV . On this basis, it is easy to dismiss the stability of the

Li adatoms attaching at the on-top sites on the same side of the graphene layer. For

this configuration, the Li-Li bonds are constrained to 1.44Å which should be compared

with the nearest-neighbour distance of 3.02Å for Li in the BCC structure. Clearly, this

is an energetically unfavoured situation which explains the high energy state of the

system. Surprisingly, the atomic relaxation scheme is unable to break this symmetry

as the following analysis shows.

Figure 4.28: The (1x1) cell depicting the two asymmetric on-top site adatoms
of Li on the same side of the graphene sheet after relaxation. Not drawn to
scale. C=carbon, Li=lithium at the “low” distance of 2.12Å above the C, and
at the “high” distance of 4.43Å above the C. The Li-Li bond is 2.72Å.

When we apply a slight staggering to the initial positions of the Li adatoms, a very

different scenario results. Here, we placed the Li adatoms asymmetrically at 1.88Å and
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1.73Å above the respective C atoms. After relaxation, the Li-C bond lengths relax to

4.43Å (“high”) and 2.12Å (“low”) respectively. The energy of this bonded system is

lower than the sum of the energies of the (1x1) graphene cell and of two isolated Li

atoms by an amount of 2.58eV . We refer to this energy difference as the binding energy

per (1x1) cell. The odd result is the rather large Li-C bond length of 4.43Å for the

“high” Li adatom. We propose that the Li-Li interactions stabilise this arrangement.

The shortest Li-Li bondlength is 2.72Å as shown in Figure4.28, which is less than the

nearest-neighbour distance of 3.02Å for Li in the BCC structure. An analysis of the

charge density distribution shows that the two Li adatoms in the calculational cell are

firmly bonded to each other. The “low” Li adatom is strongly bonded to the graphene,

but the “high” Li adatom is too far from the graphene sheet to be strongly bonded

directly to the graphene sheet. This Li adatom is strongly held in place due to its

bonding with its neighbouring Li adatoms. The co-ordination number for the “high”

Li adatom is 3, and for the “low” Li adatom is 4.

The energy of this system is lower than the sum of the energy of a single Li adatom

at the on-top site of the (1x1) graphene sheet and the energy of a single isolated Li

atom by an amount of 1.64eV which points to the fact that this is a strongly bonded

system.

We relaxed the graphene lattice constant for this system comprising the two Li

adatoms at the on-top sites on the same side of the (1x1) graphene sheet in the stag-

gered initial configuration. We found that the lattice expands from 2.47Å to 2.56Å, with

a relaxation energy of 0.15eV . The Li-C bond lengths remain essentially unchanged at

4.45Å and 2.12Å respectively.

For Li adatoms attached on alternate sides of the graphene layer, the Li adatoms
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relax symmetrically to a Li-C bond length of 2.03Å irrespective of whether the initial

positions of the two Li adatoms are symmetric or not. The binding energy per (1x1) cell

for this system is 2.36eV which is less than that for the case of both the Li adatoms at-

taching asymmetrically on the same side of the graphene sheet by an amount of 0.22eV .

Figure 4.29: The electronic density of states for (i) pure graphene (1x1) (solid),
(ii) the two asymmetric on-top site adatoms of Li on the same side of the
graphene sheet (dashed), and (iii) the two on-top site adatoms of Li on opposite
sides of the graphene sheet (dotted). The Fermi energy is set at 0eV

Figure4.29 shows the density of electronic states for (i) pure graphene (1x1), (ii)

the two asymmetric on-top site adatoms of Li on the same side of the graphene sheet,

and (iii) the two on-top site adatoms of Li on opposite sides of the graphene sheet. The

figure indicates that there are slight changes to the densities of states for (ii) and (iii)

compared to (i) far below the Fermi level, although the overall density of states for (ii)

is shifted downwards in energy compared with (i) and (iii). Both (ii) and (iii) show

significant changes to the density of states at the Fermi level compared with (i), with

(iii) having a greater peak just below the Fermi level. The plot indicates that there are

more electrons of high energy (just below the Fermi level) for (iii) compared with (ii).
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This gives some justification for the relative stability of (ii) over (iii). We conclude that

the bonding is ionic in nature with a net transfer of electronic density from the Li to

the graphene substrate.

Our (1x1) unit cell results suggest that we should really view the overlayer not as a

mono-layer, but as a bi-layer. Preliminary results for larger system sizes show that the

Li overlayer is not smooth with multiple low energy states with varying heights for the

Li adatoms. This is easily understood in terms of alternate Li adatoms being pushed

out of the plane to accommodate the larger more optimal Li-Li bonding. We do not

further consider the 100% coverage of Li at the on-top sites of graphene for the larger

calculational cells because this system with its high density of Li adatoms we consider

to be difficult to create experimentally. We conclude that it is difficult to force 100%

of the Li adatoms onto the on-top sites, which is a meta-stable site. The hollow sites

are more stable. At 50% coverage the system prefers the hollow sites.

For coverages beyond 50%, we propose that there will be an admixture of hollow

and on-top sites. It is for this reason that we have not considered any further the (1x1)

system with 100% coverage at the on-top sites. Caragiu and Finberg [24], in their

review of alkali metal absorption on graphite confirm our view that Li on graphene is

not properly understood and that the ground state configuration is yet to be confirmed.

Our submission, we believe, contributes to the understanding of the plausible structures

of Li on graphene for the various different levels of coverages.The hollow site is deemed

to be more favourable, and this is what we consider in the next subsection.

4.4.4.2 Adsorption of Li adatoms employing the (2x1) cell

Here we focus on the hollow site, and we expand the calculational cell to a (2x1) cell

to increase the number of degrees of freedom for the relaxation of the Li adatoms.
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Starting with symmetric initial positions for the Li adatoms at the hollow site set at

1.80Å above the graphene sheet, the system quickly relaxes to a symmetric final state

with both adatoms a distance of 1.85Å above the graphene sheet, consistent with the

equivalent system for the (1x1) cell.

This we find, however, is not the lowest energy configuration for this system. The

(2x1) cell comprising the two Li adatoms attaching on opposite sides of the graphene

sheet is lower in energy compared with the two Li adatoms attaching symmetrically

on the same side of the graphene sheet by an amount of 0.184eV per (2x1) cell. This

is still not the lowest energy configuration for this system. When we begin with two

Li adatoms attaching on the same side of the graphene sheet, but with slight asym-

metries in their initial positions set at 1.88Å and 1.73Å above the graphene sheet, the

symmetry is broken and the system is able to find an even lower energy after relaxation.

The (2x1) cell comprising the two Li adatoms attaching asymmetrically on the same

side of the graphene sheet is lower in energy compared with the two Li adatoms at-

taching symmetrically on the same side of the graphene sheet by an amount of 0.73eV

per (2x1) cell. The asymmetry is stark with one Li adatom pulled toward the graphene

layer to a distance of 2.02Å whilst the other being pushed away from the graphene layer

to a distance of 3.94Å. The graphene layer remains essentially planar with only slight

buckling. To the best of our knowledge, this staggered configuration of Li on graphene

has not been investigated before.

A careful analysis of the bond lengths in Figure4.30 shows that this system is

once again stabilised by the Li-Li interactions. There are chains of “high” Li adatoms

alternating with chains of “low” Li adatoms. This gives rise to a corrugation potential

on the surface which warrants further experimental investigation. The Li-Li bond
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length across the chains is 3.14Å, which is slightly greater than the nearest neighbour

distance in bulk Li. The Li-Li bond length along the chains is 2.49Å which is just the

distance between the hollow sites in graphene.

Figure 4.30: The fully relaxed (2x1) cell in front view with the Li adatoms
attaching asymmetrically on the same side at the hollow sites. Not drawn to
scale. C=carbon, Li=lithium at the “low” distance of 2.02Å above the C, and
at the “high” distance of 3.94Å above the C. The Li-Li bond is 3.14Å.

In Figure 4.31 we plot the electronic charge density of this system to investigate the

nature of the bonding of this system and the basis for the stability. The diagram indi-

cates that this system is stabilised by the Li-Li interactions along the chains, and there

is some distribution of electron density between the staggered Li adatoms. However,

the overall density of electrons is low (the iso-surface is set at 0.06eV/Å3). The bulk

of electronic density resides in the graphene layer, which suggests transfer of electronic

density from the Li to the graphene resulting in ionic bonding.

We spent a significant effort to investigate the extent to which this is indeed the

lowest energy configuration. In particular, we investigated the possible dimerization

of the Li adatoms. We considered several initial configurations of the Li adatoms at-
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Figure 4.31: The charge density plot for the fully relaxed (2x1) cell with the
iso-surface set at 0.06eV/Å3

taching asymmetrically on the same side of the graphene layer at the hollow sites and

with slight xy-displacements of the Li adatoms in the plane of the graphene layer. Our

extensive search leads us to conclude that there is no tendency for dimerization, and

that the Li adatoms prefer to remain located directly above the hollow sites in the

asymmetric final state.

4.4.4.3 Lower coverages of Li adatoms on graphene

We considered 25% coverage of Li adatoms attaching on the same side of the graphene

sheet at the hollow sites in the (2x2) cell. This constitutes rows of Li adatoms on the

graphene sheet alternating with valleys marked by the absence of Li adatoms. Because

of the hexagonal symmetry of the system, there are three degenerate cases all with the

same energy. Our fully relaxed calculations for this system show that along the rows

the Li adatoms remain centred at the hollow sites. There is no tendency for dimeriza-
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tion of the Li adatoms, with the Li-Li bond remaining at 2.46Å which is simply the

distance between the hollow sites.

Independent of the initial positions of the Li adatoms (i.e. symmetric or asymmetric

initial positions, with or without xy-displacements in the plane of the graphene layer),

the final relaxed configuration is symmetric, i.e. not staggered, with the Li adatoms

a distance of 1.83Å above the graphene sheet. The binding energy for this system is

2.64eV per (2x2) cell. This system has a relatively low density of Li adatoms compared

with the previous cases considered above. This enables the Li adatoms to relax readily

to a symmetric final configuration.

We also considered an isolated pair of Li adatoms attached on the same side of the

graphene sheet at two nearest-neighbour hollow sites. We model this system by con-

structing a (5x5) cell which is sufficiently large to minimize Li-Li interactions between

cells. We considered various initial positions of the Li adatoms, namely symmetric

and asymmetric initial positions, with or without xy-displacements in the plane of the

graphene layer. Our fully relaxed results show a configuration where the Li adatoms

repel each other slightly from a bond length of 2.46Å, which is the distance between

the hollow sites, to 2.91Å which may be compared with the Li bond length of 3.02Å in

the BCC structure.

The Li adatoms are pushed away slightly from the hollow sites, and are lodged at

a distance of 1.85Å above the graphene sheet. There is some buckling of the graphene

sheet in the neighbourhood of the Li adatoms. The binding energy of this system

is 2.62eV . This repulsive interaction between the Li adatoms gives credence to our

earlier conclusions that the Li adatoms prefer the hollow sites rather than the ontop

sites - the latter forces Li-Li interactions over shorter distances (compared with bulk
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Li) which is energetically unfavourable. This, of course, has enormous consequences for

the electronic structure and the metallic nature of this system.
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5

Conclusions

In this work we employed the first principles pseudopotential method within the density

functional theory (DFT) and the generalised gradient approximation (GGA, PBE) to

perform total energy calculations on bulk and adsorbed systems. We studied various

electronic and physical properties of the systems involving carbon, silicon and silicon

carbide in the cubic and graphene structures. We utilised the PAW pseudopotential

in a methodology based on the plane wave approach. The VASP simulation packages

developed at Vienna were used to perform the calculations.

In order to obtain accurate and comparable results to previously published work we

initially determined the total energy convergence of carbon and silicon with respect to

energy cutoff and k-points sampling of the Brillouin zone. The energy cutoff of carbon

was found to be high compared to silicon. The 2p states in carbon are localised because

of the lack of a p core state: hence a large number of plane waves is required to achieve

a high degree of accuracy.

Once the convergence was successfully tested, we proceeded to calculate the bulk

properties of carbon, silicon and silicon carbide in the diamond and graphene struc-
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tures. Our results were compared with previous theoretical and experimental results

which were available. Interestingly our results within the GGA are very close to the

experimental data when compared to the other work where LDA was employed. Since

the SiC in the graphene structure is a non-existing experimental structure, our results

shows that this structure is plausible and has an interesting properties.

When considering the adsorption of hydrogen adatoms on the graphene structure

employing different supercells, we conclude that the 4x4 supercell is suitable for the

evaluation of the electronic and physical properties of these systems. The hydrogen

adatom prefers to be adsorbed at the ontop site rather than on the hollow site. The

binding energies reveal that a pair of hydrogen adatoms prefers to be adsorbed in an

alternating manner, one above and one below the graphene plane. But when they are

forced to be adsorbed at the same side they form covalent bonds and remain symmet-

ric. This symmetry suggests that hydrogen adatoms prefer to form a planar monolayer

ontop of a buckled graphene layer.

But a different scenario occurs when hydrogen adatoms are adsorbed on SiC in the

graphene structure. They prefer to be adsorbed on top of a carbon atom rather than

ontop of a silicon atom. Our results suggests that we should really view the overlayer

of hydrogen adatoms as a bi-layer rather than a monolayer. Our results reveal that the

adsorption of hydrogen adatoms must always be paired to avoid the lone pair of carbon

electrons which makes the system metallic. When hydrogen adatoms are paired, the

bonds are all saturated and the system is transformed into an insulator with a wide

range of band gaps. We conclude that the bonding between hydrogen and carbon is

covalent. SiC in the graphene structure consists of a wide band gap and the adsorp-

tion of hydrogen adatoms increases the band gap even further. We conclude that the

hydrogen adatoms may be used to tune the band gap in the semiconductor materials.
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When considering Li adatoms on graphene, we conclude that for 100% coverage

at the on-top sites, the equilibrium configuration is staggered in nature with alternate

Li adatoms pulled in to a distance of 2.12Å(“low”) and pushed out to a distance of

4.43Å(“high”) from the graphene plane. The “high” Li adatoms are too far from the

graphene sheet to be bonded to the graphene. This system is stabilised by the Li-Li

interactions, which is verified by an analysis of the charge density distribution. Our

results suggest that we should really view the overlayer not as a mono-layer, but as a

bi-layer. For larger system sizes, we note that the Li overlayer is not smooth since it

possesses multiple low energy states with varying heights for the Li adatoms. This is

understood in terms of alternate Li adatoms being pushed out of the plane to accom-

modate the larger more optimal Li-Li bonding.

For 50% coverage at the hollow sites, our calculations on the (2x1) cell, which pro-

vides more degrees of freedom for relaxation and symmetry-breaking, demonstrate that

the lowest energy configuration corresponds to Li adatoms in alternate positions being

pulled into and pushed out of the graphene plane in a staggered configuration. There

are chains of “high” Li adatoms alternating with chains of “low” Li adatoms. The

Li-Li bond length across the chains is 3.14Å, which is slightly greater than the nearest

neighbour distance in bulk Li. The Li-Li bond length along the chains is 2.49Å which

is just the distance between the hollow sites in graphene.

The single isolated dimer displays a slight tendency towards repulsion when placed

at neighbouring hollow sites. This behaviour helps explain the staggered structure that

we observe for the more densely packed surfaces. Our results for the (2x2) cell at 25%

coverage at the hollow sites exhibit no staggering as the Li adatoms remain at the

hollow sites and relax symmetrically to a distance of 1.83Å above the graphene sheet.
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This constitutes rows of Li adatoms on the graphene sheet alternating with valleys

marked by the absence of Li adatoms.
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