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Abstract

This thesis forms part of an existing research programme to further improve the QanTiM time
domain service load simulation system. Service load simulation is the reproduction of actual
service responses in full scale laboratory tests, on dynamically loaded multiple axis computer
controlled servo-hydraulic test rigs. A well-developed science in the frequency domain
contrasts with the relatively new time domain service load simulation techniques. It is thus
necessary to gain a better understanding of this time domain simulation technique and
operation thereof. Furthermore, the existing time domain techniques use linear modelling
techniques, which may be a limitation when simulating practical non-linear systems. The
improvement of time domain simulation is addressed in two parts, firstly the effect of varying
input parameters and operating procedures for the existing linear techniques, and secondly the
development and implementation of non-linear time domain based system identification
routines for use within service load simulation.

* The investigation into improved performance of the existing linear techniques was based
on practical test rig experience and empirical research. Numerous simulations were
conducted internationally using both single and multiple axis test rigs. This research
resulted in a set of rules and guidelines for improved and simplified simulation. Some of
these rules have been implemented in revisions of the existing simulation package and
various guidelines for further research into improved and simplified simulation practices
were established.

e Investigation into possible non-linear simulation was preceded by literature survey into
appropriate modelling techniques. The Non-linear Auto Regressive with eXogenous input
[NARX] - model description was adapted and implemented for general non-linear
modelling and system identification, and subsequently applied in service load simulation.
The NARX non-linear modelling technique proved ideal for general non-linear modelling
and system identification problems, even for non-square systems with severe geometrical
non-linearity. It does however demand immense computational power, and is plagued by
potential numerical instability. The increased accuracy gained by modelling the non-
linearity in practical simulations does presently not warrant the additional computational

effort and possible instability problems.
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Nomenclature

t Time

u(t) Dynamic input signal

(1) Dynamic response signal

(1) Predicted dynamic response signal

e(t) Error signal

X Regression matrix

G abp Model parameters

m Number of model parameters

na Dynamic model order for output y(1)

nb Dynamic model order for input u(t)

nk Time delay

g Model order for output channel & (ARX “full order™)
nu Number of input channels

ny Number of output channels

L Degree of non-linearity

PSD Power spectral density

SISO Single Input, Single OQutput

MISO Multiple Input, Single Output

MIMO Multiple Input, Multiple Qutput

ARX Auto Regressive with eXogenous output
NARX Non-liner Auto Regressive with eXogenous output

FEM Finite Element Method
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A standard set of terminology exists within the QanTiM test and simulation software
package. Terminology regarding time history data sets and data processing will, where
possible, follow the standards set within QanTiM. Standard file names and processes

are presented below, together with a simplified diagram of the QanTiM simulation

process.
IDDRV Identification drive time history data
IDRES Identification response time history data
FIELD Measured field response time history data. During simulation, an identifying number is

usually appended to the file name, e.g. FIELD21. This number is applied to all
subsequent files that relate to this field file
DESRES Desired response time history data (DESRS21)

RITRES ‘Raw’ iteration response file. Normally used as RTTOIRES where the number 01 indicates
the first iteration
ITRES Iteration response file, subsequent to general response processing (ITOIRES)

FINDRV Final drive time history data, for use in laboratory simulation (FINDRV21)

FINRES Final response time history data, as measured during laboratory simulation (FINRES21)
F2D FIELD to DESRES - User definable function for processing field data

PREPRO User definable function to pre-process IDRES prior to inclusion into UYDAT
GPREPRO  General response pre-processing function, applies bandwidth filtering, de-trending
UYDAT Combined IDDRV and IDRES, subsequent to processing by PREPRO and GPREPRO

General
-Response

Calibration processin

General
Response
processin

1D signal details:
PSD

Amplitude

Adapt desired
response

DESRES

— T
l‘ﬂl RITOORES
i i S

ITOORES

ITOODRY F
ITO1RES
ITo2RES

FINRES21

i
L
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Chapter 1

Introduction

Mechanical design engineers are being presented with ever more powerful and capable
analytical design tools. This is principally driven by continuous improvement in the
price-performance ratio of digital computer systems and the strive for optimised
designs with lower safety factors and increased reliability. The competitive market of
today however demands these optimised designs to be backed by extensive product
development and testing. Lund and Donaldson [ 42 ] recognised the important role of
testing in design, especially laboratory testing of full scale prototypes or components.
The same authors stated: “The most rapid advances in testing technology in recent
years have occurred in the area of service history simulation.” The importance of this
ability to reproduce actual measured service conditions in a controlled laboratory
environment is further stressed by Zomotor, Schwarz and Weiler [ 63 ] for evaluating
passenger car ride comfort and fatigue strength of vehicle components. Similar views
have been expressed from various fields in industry ranging from aerospace [ 33 ] [ 27
] to agriculture, [ 30 ]. The numerous reports on varied applications of laboratory

simulation testing and the importance thereof warrant further investigation.
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Overview

Dynamic response reconstruction, also termed service load simulation testing,
or service history simulation [ 42 ], enables the replication of actual service
response data on a dynamically loaded test structure in a laboratory
environment using multiple axis computer controlled servo-hydraulic
actuators. Service load simulation testing offers the only method of reliably

conducting interactive multiple-axial fatigue tests.

This thesis forms part of a research programme to further improve a time
domain service load simulation system developed by Raath [ 52 ] and
implemented into a multi-axis test and control package (QanTiM) [ 34 ]. Two
global aspects are addressed, firstly the effect of varying input parameters and
operating procedures for the existing linear techniques, and secondly the

inclusion of non-linear modelling elements within the existing linear package.

Historical profile

The field of simulation testing is relatively new, driven mostly by the
automotive industry since the early 1960’s. The use of servo-hydraulic
actuators to simulate dynamic input loads for vehicle suspension systems was
reported in the mid 1960’s by Hodkin [ 31 ]. Scott [ 57 ] reported a road
simulator erected in Coventry in 1967 that made use of an open-loop
simulation system similar to a gramophone player. A six-foot diameter rotating
table was “paved with bits of shattered, toughened-glass windshield to
represent cobble stones”, four transducers positioned on radial arms over the
rotating surface measured “wheel inputs”. Displacements recorded by these
transducers were amplified by an electronic control system and applied to the

vehicle’s wheels by means of four vertical servo-hydraulic actuators.
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A positive step towards simulation was reported in 1968 by Barrowcliff and
Ehlert [ 3 ] in the paper: “Full Scale Road Simulated Endurance Test”. The
authors recorded the vehicle’s wheel acceleration responses during normal
driving conditions. In the laboratory these measured accelerations were
integrated twice to obtain displacement drive signals for the servo-hydraulic
actuators of the road simulator. A more direct method for finding displacement
drive signals for road simulators involved road profile measurements, typical
examples were documented by Engels [ 25 ] and Whittemore [ 62 ]. The
geodetic road profile measurement apparatus presented in 1968 by Engels
proved accurate, but extremely time consuming. The “General Motors Road
Profilometer” as presented by Whittemore in 1972 measured the relative
displacement between the road surface and the moving vehicle. These
dynamic displacement responses were used, along with an analytical model of

the vehicle, to calculate drive signals for a servo-hydraulic road simulator.

In 1972 Dodds [ 23 ] proposed a technique in which a dynamic mathematical
model of the test system (test specimen and rig) is used to calculate actuator
drive signals from service measured responses. Dodds made use of frequency
domain characterisation techniques to derive a Frequency Response Function
(FRF) of the test system. This model was capable of predicting actuator
displacements as a function of measured road responses [ 21 ][ 22 ]. This
frequency domain analysis, later also proposed by Craig [ 19 ], paved the way
for development of advanced service load simulation systems such as the
“Remote Parameter Control” (RPC) by MTS Systems Corporation (USA) and
the “Tterative Transfer Function Compensation” (ITFC) method by Schenck
AG (Germany). These systems set the standard for simulation testing and are

employed world-wide in various sectors of industry.

A recent development in simulation testing was introduced in the PhD
dissertation by Raath [ 52 ] in 1992 titled “Structural Dynamic Response
Reconstruction in the Time Domain”. This method was implemented into the

QanTiM [ 34 ] multi-axis time domain based test and control package. The
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time domain promises various advantages over the frequency domain

techniques, which will be briefly discussed in Section 1.4, yet the principal

operation proved similar to that of methods developed in the frequency

domain. This basic operation and philosophy is discussed in the next Section.

Principles of structural dynamic response reconstruction

Over the past two and a half decades the accuracy of simulations has improved

greatly due to the use of closed loop computer controlled simulation systems

and an understanding of the dynamic relationship between the actuator input

and the response transducer output signals [ 23 ][ 19 ][ 51 ]. Present response

reconstruction techniques are generally governed by the following four steps.

1 Measurement:

2 Identification:

3 Linear drive :

4 Iteration:

The structure to be tested is instrumented with suitable
transducers, and the response under operational conditions
recorded.

The instrumented structure is transferred to the test
laboratory and placed on a servo-hydraulic test rig.
Synthetic drive signals are used to drive the rig and
subsequent responses are recorded from the same
transducers used for the operational response
measurement. The known input-output data is used to
calculate a dynamic model for the complete system. ( i.e.
rig, controllers, test structure, etc.)

The measured field responses are passed through the
dynamic model to find actuator drive signals, which when

applied to the test rig should force the same measured
responses.

Due to inherent rig non-linearity, an iterative procedure

around this first approximation finally yields accurate
simulation results.
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Frequency vs. time domain

The operation of systems in the frequency and time domain is, from a user
point of view, very similar. The frequency domain however boasts a set of
well-developed modelling techniques applicable to dynamic response
reconstruction. This poses the question why a time domain simulation system
was developed considering the long standing standards set by its frequency
domain counterparts? Various discussions on the advantages, and
disadvantages, of time domain modelling are found [ 28 ][ 49 ], most relevant

is the one presented by Raath [ 52 ].

In general it has been shown that the newly developed time domain techniques
have some principal advantages over its frequency domain predecessors.
These advantages include shorter identification time [ 28 ], fewer iterations to
convergence and, more important, the time domain techniques are capable of
handling offsets and low frequency trends with ease. Frequency domain
methods on the other hand have difficulty simulating offsets, and low
frequency, high amplitude behaviour of the test specimen. Offsets in the
desired response data coincide with non-zero mean structural stresses, whereas
low frequency, high amplitude loading causes high peak stress levels within the
structure. Inaccurate simulation of these mean stresses and low frequency, high
amplitude stress conditions is detrimental from a fatigue analysis point of view.
On the other hand, the main disadvantage of the time domain is the
requirement of having to specify the structure and order of the dynamic system
prior to the identification process. This problem has been overcome by using a
generalised parametric time domain model description combined with a state-

space formulation.
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Dynamic system identification

The identification, more correctly, dynamic system identification, is the most
significant phase within the response reconstruction framework. It is the
platform on which response reconstruction techniques have been built and
facilitated the quantum leap from the open loop gramophone system to present-
day sophisticated commercial simulation systems. Dynamic system
identification involves constructing a mathematical model of a dynamic system
using measured input and output data from the system. System identification
has found application in an extremely wide field covering engineering, socio-

economics, ecology and medicine, to name but a few.

The inverse dynamic model

Most applications of dynamic system identification are conducted so that the
system outputs are modelled as a function of the system inputs. An inverse
dynamic model is however a requisite for response reconstruction. Here the
system inputs (actuator drive signals) must be dynamically modelled as a
function of system outputs (transducer responses from field measurements).
Inversion of the dynamic model is however not trivial since the inverse model
is frequently found to be unstable. Various inversion methods are presented for

both the frequency and time domain [ 23 ][ 19 ][ 34 ][ 51 ].
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Operational research into time domain application

Frequency domain methods have been in use and under development for more
than two decades. In this period a wealth of knowledge and experience has
been gained from its use on many service load simulation test rigs throughout
the world. On the other hand, the time domain state space methods to date not

have had this exposure simply because of its recent development.

Because of the limited application experience of time domain methods,
operating procedures and optimisation of input parameters for the existing
linear QanTiM system were researched empirically using various practical
single and multiple-axis test rigs. The first aspect investigated was the effect of
various band limiting filter operations on simulation results. This was
followed by research into the optimal frequency content of the synthetic
identification excitation signals. The concept of split spectra modelling was
also investigated, where the broad spectrum dynamic behaviour of the system
is split and modelled by a combination of narrow frequency bandwidth time

domain models.

The experience gained during this research paved the way for further
experiments and produced a set of guidelines for the practical implementation
of QanTiM for various test systems. These guidelines include filter
specifications for desired response data as well as synthetic identification data.
Guidelines for creating optimal synthetic identification signals have proved
valuable in multiple-axis test applications. Similarly split spectra modelling

showed potential in rigs with dominant resonant behaviour.
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Non-linear implementation

The linear time domain QanTiM techniques proved successful in simulating
the dynamic response of most practical test systems. In a few isolated cases
however the response of a system could not be simulated. Various possible
reasons for poor simulation results were suggested including, static and
dynamic non-linear system elements, rig resonance problems, numerical
instability due to model inversion, orthogonal load paths between actuators and
transducers, physically unrealisable response data (PUD), poor rig coherence,
etc. Non-linear elements within the test system (springs, dampers, friction,
servo-hydraulics, etc.) may be a likely cause of poor modelling and simulation

results.

It was thus proposed to complement the linear time domain techniques by
implementing non-linear modelling capabilities within the existing time
domain techniques. A non-linear system identification technique well suited to
response reconstruction, yet capable of seamless integration with the existing
linear package was needed. An emphasis was placed on finding a black-box
type model which is easy to use and requires minimal structure definition prior

to identification.

The field of non-linear system identification, although relatively new, has been
well researched, especially under the guidance of Billings [ 5 1[ 6 1[ 7 1[ 8 ]
[ 14 ][ 38 ]. Yet a coherent body of economical, well tried and widely
applicable non-linear identification techniques does not exist. Furthermore, to
the author’s knowledge no attempt has been made at identifying a non-linear

inverse model, as required by response reconstruction.

A literature survey revealed various non-linear modelling techniques which
showed potential for implementation into dynamic response reconstruction.
Several of these methods were implemented, and in certain cases adapted by

the author. The applied system identification techniques were verified through
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testing, firstly in a normal sense to evaluate non-linear modelling capabilities
and secondly for application in response reconstruction where an inverse model
was required. This process showed a group of polynomial non-linear auto-
regressive exogenous input (NARX) model formulations as presented by
Billings [ 5 ] to be ideally suited. The author subsequently developed non-
linear simulation algorithms and an associated condensed non-linear model

description for multiple-input-multiple-output (MIMO) systems.

The result was a set of system identification routines capable of modelling
severely non-linear dynamic systems, and yet requiring minimal user input or
knowledge of the system. However, the non-linear structure (that is linear,
quadratic, cubic, etc.) within the system must be estimated prior to
identification. The developed NARX routines are capable of both normal, and
inverse dynamic non-linear modelling. Evaluation of the NARX system is
presented for both synthetic and practical systems, revealing certain
limitations:

e No procedure capable of practically detecting non-linearity within a servo-
hydraulic test system could be found. The only indication of non-linear
behaviour was thus a comparison of linear and non-linear simulation results.

e In the case of large MIMO systems the algorithms proved taxing for current
computational capabilities.

e Application proved limited since the implemented non-linear algorithms
showed some inherent stability problems, which were accentuated in the
inverse model.

e Polynomial non-linear techniques proved ideal to facilitate ease of use and
convenient integration with existing software, but may not be completely
relevant for modelling vehicle dynamics. (A typical suspension element
such as a jounce bump can only be modelled using a discontinuous non-

linear technique.)

The NARX formulation showed potential as a general modelling and

simulation tool, especially if combined with frequency splitting techniques.
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Document overview

Only the most relevant theory is included in the body of the thesis, with more
detail contained in the appendices. The thesis is presented in two parts, the
first part covering empirical research into improved response reconstruction.
Aspects such as rig repeatability, simulation bandwidth and split spectra
modelling are introduced. The investigation into application of non-linear time
domain techniques is presented in part two. As part of the literature survey,
system identification theory is introduced in chapter 4 for linear systems, and
expanded to non-linear systems in chapter 5. Chapter 6 shows various case
studies of implementation of non-linear techniques. Appendices A through D
contains the detail of the literature survey as presented in chapters 4 and 5. A
summary of condensed NARX Matlab ‘toolbox’ of functions is presented in

Appendix F. A brief description of QanTiM is presented in Appendix G
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Chapter 2

Research task

Application experience with the recently developed QanTiM time domain based
simulation package is limited if compared with its frequency domain counterparts.
Considering a development span of less than half a decade, the achievements in the
field of time domain based service load simulation is most definitely laudable, yet
little has been published on the industrial application thereof. This is simply due to the
very recent development of time domain simulation techniques. On the other hand, for
more than two decades operational experience using frequency domain simulation
techniques have been documented and published by both users and manufactures of
these systems. [ 63 ][ 25 ][ 19 ][ 20 ]. RPC and ITFC user group meetings, of typically
100 delegates, where application experience is shared amongst other users are not
uncommon. It was thus proposed to embark on a research program that would attempt
to improve the general application of the QanTiM system and partly alleviate this
information backlog. The research was aimed directly at improving the existing
QanTiM package and will regularly refer to associated aspects. Details on the

functioning and operation of QanTiM are presented in Appendix G.

11
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Typical simulation problems

The state-space time domain compensation technique proved effective in
modelling and subsequently simulating service responses for most structural
test rigs [ 45 ][ 50 ][ 61 ]. There are however rigs for which a good dynamic
model could not be found, resulting in poor simulation results. Typical

examples of simulation problems include:

e Difficulty in recreating high response amplitudes.

e Inaccurate simulation of high frequency responses.

e A Jarge number of iterations is required before accurate simulation
results are achieved.

e Failure of iterations to converge to desired response.

e Divergent linear solutions.

e Difficulty in handling structural resonance within the normal operating
spectrum,

e and in extreme cases a general inability to model the dynamic

behaviour of the system.

Most of these problems are simply due to limited experience in time domain
modelling, more specifically, a lack of knowledge on input parameters and
operating procedures for QanTiM. Possible causes and solutions to these

problems were sought and are presented in the following Sections.

12
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Origins of poor simulation

The success of system identification for response reconstruction, or more
specifically QanTiM, is to a certain extent governed by user definable input
parameters. There are unfortunately also parameters that are rig specific and
can not easily be modified by the system identification engineer. On the other
hand, certain test rig integrity factors such as servo-control accuracy,
mechanical backlash in links, incorrect instrumentation settings, etc. are
usually easy to trace and rectify, but often confused for modelling problems.

Some of the aspects that could adversely affect simulation results are presented

in Figure 2.1.

Possible origins of poor simulation

Rig integrity I——I

Synthetic identification signals |

Servo control accuracy
Repeatability

Resonance

Coherence

Desired response spectrum
outside test rig ability

Excitation amplitude

Excitation signal length

Spectrum for identification drive

Filter frequencies for identification response

| Physically unrealisable desired response data I——‘

Non-linearity

l System A/D sampling rate I—

Too low sampling rate
(Alliasing)
Too high sampling rate
(Numerical instability)
&

(Frequency biasing)

Figure 2.1: Possible causes of inaccurate simulation

The origins of poor simulation as suggested in Figure 2.1 were derived from
practical experience on various single and multi-axial servo-hydraulic test rigs.

Although not all of these problems are addressed in this study, proposed

research as to their solutions are detailed in Section 2.3.
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Proposed investigation for improved time domain simulation

The reasons for poor simulation are discussed and where applicable, a line of
research into the improvement thereof suggested. The framework presented in

Figure 2.1 is maintained for this discussion.

2.3.1. Test rig integrity

Poor modelling and simulation are often related to problems concerning
the test rig configuration. The most obvious problem, servo-control
loop accuracy, is normally easy to rectify. More intricate problems

include poor coherence, non-repeatable rig behaviour, etc.

2.3.1.1. Servo-control accuracy

The accuracy with which the actuator can maintain a drive
signal is normally managed by a closed loop servo-control
system. Failure to optimise the control loops for a specific rig
prior to testing will place unnecessarily high demands on the
system identification routines. QanTiM will thus have to model
not only the dynamic behaviour of the test structure, but also

compensate for the incorrect gain settings in the control system.

2.3.1.2. Desired response spectrum outside test rig capabilities

Limitations of the servo-hydraulic testing equipment can fall
within the desired response spectrum. Incorrect application of
hydraulic actuators, accumulators, servo-valves, etc., may be the
reason for failure to achieve high simulation amplitudes and or
frequencies. This can further be aggravated by careless design of
cranks and links in the test system. Care should be taken in
designing and building a test rig so that it will be able to apply

the required loading.

14
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2.3.1.3. Repeatability

The time domain modelling routines within QanTiM are not
capable of describing, chaotic or stochastic system behaviour. It
was thus proposed to develop a method of quantifying rig
repeatability prior to system identification. A scheme for
finding a repeatability number applicable to response
reconstruction with servo-hydraulic test rigs is presented in

Section 3.1.

2.3.1.4. Resonance

QanTiM has difficulty in simulating data over areas of system
resonance [ 15 ]J[ 45 ]. If the resonance is rig related, that is a
function of the rig fixtures, actuators, links, cranks, etc., a
redesign of the rig is necessary. If however the test specimen
shows resonant frequencies within the desired response data,
careful modelling is needed to correctly simulate this behaviour.
Two methods were proposed to deal with rig resonance namely:
split spectra modelling (Section 3.2) and anti-resonance
identification (Section 3.3) both these methods attempt to model
only the forced response of the rig, thus ignoring the free, or

resonant, system behaviour.
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2.3.1.5. Coherence

Coherence describes the extent to which the system response is
linearly related to the excitation [ 60 ]. A high level of
coherence between a system’s individual input - output pairs
simplifies the modelling process. A good design policy implies
designing test rigs in which each response transducer is closely
correlated to its corresponding actuator. Coherence, as such, is
fundamentally applicable to the frequency domain. Accurate
coherence calculations are not possible using the short Sections
of data common to time domain modelling. A time domain
equivalent to coherence may shed some light on many

modelling problems.

2.3.2. Physically unrealisable desired response data

For the purpose of service history simulation testing all desired
response data should ideally be taken from field measurements done
with the same test structure to be used in the laboratory, using exactly
the same transducers. This implies that all data will be physically
realisable. Some sort of signal processing will however invariably be
performed on the field data prior to response reconstruction. This pre-
processing of field data may include: low-pass filtering to remove
system noise, de-glitching to remove spikes, scaling, removing of DC-
offsets, etc. If care is not taken when pre-processing field data, the data
could be modified to such an extent that it is no longer characteristic of

the response of the system.
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Analogue to digital conversion

Computer analysis of measured data invariably requires the use of some
analogue to digital conversion system. This step from continuous to
discrete time presents the test engineer yet another obstacle: the correct
sampling rate. Selecting a too low sampling rate may result in alliasing,
and an inaccurate representation of the system responses, which is
particularly problematic for fatigue testing where accurate achievement
of load cycle turning points is imperative. On the other hand, a too
high sampling rate can have detrimental effects on the numerical
stability of system identification algorithms. It is hypothesised that an
optimum relationship exists between the system sampling rate, the

simulation bandwidth and the dynamic model order.

Synthetic identification signals

Synthetic excitation signals are generated from a prescribed power
spectral density (PSD) function and conceptually constitute pseudo
random, shaped white noise. These signals are sent simultaneously to
all actuators, thereby exciting the entire test rig, while at the same time
recording the responses from the same transducers used during field
measurements. This input - output data is then used to calculate a time

domain model for the entire test system.

2.3.4.1. Identification drive spectrum

The shape of the PSD function from which the identification
drive signals are generated adversely influences the accuracy of
the model. Investigation into an optimum excitation spectrum
for a specific rig would prove of immense value. A method was
devised to calculate an excitation PSD, which would minimise
the effect of system resonance and optimise coherence for
MIMO systems. This automatic PSD generation function is

described in Section 3.3.
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2.3.4.2. Identification signal length

The length of the identification signal proved relatively
insignificant to the simulation results. Identification signals in
the region of 15 ~ 30 seconds are typically used. It is however
proposed that an optimal signal length be calculated
automatically. Such an optimal identification signal length is
likely to be a function of the system sampling rate, the

simulation bandwidth and the number of channels.

2.3.4.3. Filter frequencies for identification responses

The identification response signal is invariably filtered in a pre-
processing routine prior to system modelling. The effect of
filtering and filter frequencies of the identification response

signal is addressed in Section 3.4.

2.3.5. Non-linear modelling capabilities

All commercially available response reconstruction packages, including
QanTiM are limited to linear modelling techniques. The ability to
model non-linear system behaviour could have a notable effect on
accuracy and general applicability of the package. Non-linear
behaviour in the system could be due to geometrical non-linearity, tyre
characteristics, leaf springs, rubber and other synthetic elements,
friction, backlash, etc. A comprehensive investigation into
implementation of non-linear modelling techniques to complement the

existing linear software package is included in Part II of this study.

18
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Research summary

Simulation results are not always as accurate as desired, examples of typical

simulation problems were presented, and possible solutions suggested. The

research into implementation of these solutions can be divided into three

categories:

1. Problems that can be solved by accurate engineering decisions concerning

test rig design, servo-control accuracy, transducer type and placement, etc.

2. Problems to which solutions can be found empirically through research on

various practical test rigs. These include identification parameters, pre-

processing of desired response data, repeatability quantification and

sampling rates for optimal numerical stability and modelling sensitivity.

3. Non-linear modelling: Investigation concerning the implementation and

application of non-linear modelling capabilities within the existing system.

Not all the solutions suggested in Section 2.3 are addressed in this thesis. The

issues, which are addressed, correspond to Categories 2 and 3 above, and are

discussed according to Table 2.1.

Table 2.1: Research summary

PARTI

Empirical research for improved linear

PART II

Investigation into the possible implementation

simulation of non-linear response reconstruction
Section: Chapter:
Repeatability quantification 2| Linear background 4
Split spectra modelling 3.2 Non-linear system identification 5
Optimal identification drive 3.3 Application of non-linear system 6
: : ; : identification and response
Pre-processing of identification data. 34 :
: ; reconstruction
(filtering, de-trending, etc.)
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PART I:. Empirical research into improved linear simulation
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Chapter 3

Empirical research into improved linear simulation

Due to the relatively short development span of time domain simulation techniques, in
particular the QanTiM software suite, a large research effort was engaged to alleviate
the resultant lack of application expertise and simulation experience. This lack of
application experience is presently a handicap, considering that frequency domain
simulation techniques can boast with decades of experience and applications at major
testing installations worldwide. The work presented in this Section attempts to clarify
some of the uncertainties surrounding time domain simulation, more specifically it
addresses input parameters to, and general simulation techniques for, improved time
domain response reconstruction. Section 3.1 introduces a procedure to quantify a test
rig’s input — output repeatability. To the author’s knowledge, these repeatability
functions are novel. Split-spectra modelling and simulation techniques are introduced
in Section 3.2. These functions were developed over a time span of years at LGI
Structural Mechanics and Dynamics, by amongst others, the author. Optimal excitation
characteristics are briefly discussed in Section 3.3. The procedures developed by the
author are based on principles introduced by Barnard [ 2 ]. Some of the effects of filter
frequencies and bandwidth selections on simulation and modelling results are
discussed in Section 3.4. Part I is concluded in Section 3.5 with recommendations for

future research.
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Rig repeatability

The most fundamental assumption made prior to modelling and simulating
field responses on a test rig, is dynamic input-output repeatability. The linear
system identification techniques used within QanTiM are not capable of
modelling chaotic or stochastic rig behaviour. It is thus important for the
simulation engineer to evaluate rig repeatability prior to modelling and
simulation. Two methods are proposed, the first deals with repeatability as a
function of excitation frequency, the second attempts to calculate a general

repeatability number (scalar).

The test, described in Figure 3.1 makes use of random drive signals created
with a prescribed PSD function. The rig is driven five times with the same
drive signal while subsequent responses are recorded. A mean response is then
calculated from the five response signals. The frequency related repeatability
number Ry is defined so that perfect repeatability is achieved at Ry = 100. The
repeatability vs. frequency plot is useful to identify frequencies that should be
avoided while modelling. The repeatability number should provide the
engineer with a quick indication of the system’s repeatability, and subsequently

modelability.

The performance of the proposed repeatability functions is demonstrated at the

hand of four application examples, namely:

e Electro-dynamic linear actuator with an accelerometer mounted directly on

the output shaft.
e Vehicle damper unit in a servo hydraulic test rig
e Motorcycle rear wheel road simulator

e Radiator vibration test rig
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Figure 3.1: Repeatability test procedure
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3.1.1. Repeatability function application 1: Electro-dynamic shaker

In an attempt to create a test system with near perfect repeatability
characteristics, an accelerometer was mounted directly on the output
shaft of an electro-dynamic linear actuator. This test system should
represent near perfect repeatability due to the absence of properties such
as backlash and friction. The repeatability vs. frequency plot is shown in

Figure 3.2. The repeatability number for the test system is 99.75 %.

Percentage repeatabiltiy vs. frequency
100 : , .
99.995F 1
99.99+
Repeatability
(%] 99.985
99.98+
99-975 1 1 L 1 1 1 1
0 10 20 30 40 50 60 70 80
Frequency [Hz]

Figure 3.2 Repeatability vs. frequency

The electro-dynamic shaker rig displayed near perfect repeatability
characteristics for the 0~80 Hz frequency bandwidth. Two fundamental
repeatability problems are however evident in the repeatability plot for
the electro-dynamic shaker.
e Poor accelerometer response at low frequencies:
The repeatability plot shows relatively low repeatability from DC to
10 Hz. This can be attributed to transducer insensitivity at low
frequencies.
e Power line noise:
The repeatability plot further shows a decline in the region of 50 Hz.

This can be attributed the 50 Hz alternating current power supply.
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3.1.2. Repeatability function application 2: Vehicle damper test rig

A single axis servo-hydraulic test rig was set up for qualification testing
of heavy vehicle damper units (shock absorbers). The test system is
shown in Figure 3.3. The qualification tests required accurate control
of specimen loading, which could not be achieved by the analogue

servo control system. Response reconstruction techniques were

employed to achieve the desired specimen loading.

igre 3.3 per test rig

Two damper attachment systems were used (Figure 3.3). The first made
use of a threaded connector that rigidly locked the damper to the
actuator shaft and the load cell. The second method attached the
damper via two rubber bushes. This rubber bush mounting assembly

resulted in mechanical play and backlash in the load path.
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proposed that the backlash associated with the rubber mounting bushes
might be the cause of the unsatisfactory simulation results. The
repeatability for each of the two damper mounting methods was
assessed with the defined repeatability functions. The damper
qualification test prescribed a simulation bandwidth between 0 Hz and
10 Hz. Subsequently the repeatability drive file was randomly generated

from O to 10 Hz, with a triangular PSD. The repeatability results are

presented in Table 3.1 below.

Table 3.1 Damper rig repeatability

Threaded mounting assembly Rubber bush mounting assembly

nﬂ1 ;- ) A A h
i e AT
mtin R o \{;

T
W
|

Repeatability [%]

o
2 4 [ 8 10 “o 2 4 [} 8
Frequancy [Hz) Fraquency [Hz]

Repeatability Number = 98.49 % | Repeatability Number = 98.45%

The results for the two tests proved similar, the calculated repeatability
numbers differed by only 0.04 percentage points. Furthermore, the
repeatability vs. frequency plots for the two tests show similar trends for
the OHz to 10 Hz simulation bandwidth. The repeatability results
indicate that the load response through the rubber bush assembly,
including the backlash behaviour, is indeed repeatable. These responses
may however be non-linear. Non-linear modelling of the damper unit is

presented in Part II of this thesis.
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3.1.3. Repeatability function application 3: Motorcycle road simulator

A single axis test rig was set up to simulate road inputs to the rear
suspension of a motorcycle. The test rig is shown in Figure 3.4. Input to
the system was the actuator displacement drive signals, system
responses were recorded from an accelerometer on the wheel spindle,

and strain gauges applied to the coil spring.

Figure 3.4 Motorcycle rear wheel road simulator

The repeatability drive file was created under a triangular PSD with a
bandwidth of 0 Hz to 30 Hz. The repeatability results for the

acceleration and strain responses are compared in Table 3.2.
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Table 3.2 Motorcycle rear wheel simulator repeatability results

Acceleration response Strain response
100 100
T ) TV T o [
80 ok U W W \l 1
= 60 = 04 “ l
5 g
z Z, \
‘% 40 E b
5 ?
T 20| £ g
i 84
= 5 10 15 20 25 a0 825 5 10 15 20 25 30
Fraquency [Hz] Frequency [Hz]
Repeatability number = 97.80 % | Repeatability number = 98.15 %

The repeatability results for the motorcycle rear wheel road simulator
show the distinct differences between the characteristics of acceleration
and strain responses. Accelerometers, and acceleration as such, exhibit
poor sensitivity at low frequencies. Strain responses on the other hand
show good low frequency response, with less sensitivity at increasing
frequencies. Poor sensitivity gives rise to poor signal to noise ratios and

subsequently poor repeatability.

Repeatability function application 4: Radiator test rig

Vibration tests were conducted on a vehicle radiator assembly. The test
rig made use of a rigid mounting frame, installed vertically on a servo-
hydraulic actuator. Mounting pins on the top and bottom radiator tanks
fitted into doughnut shaped rubber mounts. These rubber mounts were
fitted to the rigid mounting frame. Play between the mounting pins and
the rubber mounts allowed some free movement of the radiator, both

vertically and horizontally.

Acceleration responses were recorded on the base of the mounting
frame, and on the top tank of the radiator. The repeatability of the base
and top tank accelerations are compared in Table 3.3 for a simulation

bandwidth of 0 Hz to 25 Hz.
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Table 3.3 Radiator test rig repeatability results

Mounting base acceleration

Radiator top tank acceleration
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Repeatability number = 97.76 %

Repeatability number = 96.95 %

The repeatability results are similar for both transducer locations. The

repeatability numbers differ with only 0.81 percentage points.

A second frequency related repeatability test was conducted on the top

tank accelerometer response. A 0 Hz to 200 Hz drive signal was used to

excite the tests system. The results for this wide-band test are shown in

Figure 3.5. Figure 3.5(a) shows the repeatability vs. frequency graph for

the OHz to 200 Hz excitation bandwidth. Figure 3.5(b) is the same set

of results, presented over a wider 0 Hz to 400 Hz frequency band.
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Figure 3.5 Radiator top tank repeatability, 0Hz — 200 Hz

The repeatability of the radiator top tank acceleration response is

relatively constant between 5 Hz and £ 60 Hz, except for a slight

decline at 50 Hz (alternating current power supply). Globally, the
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repeatability graphs decreases from frequencies above 100 Hz, which
coincides with the frequency response of the hydraulic servo control
valve. Some distinct minima are evident from the repeatability plot at
70 Hz, 150 Hz and 170 Hz. These minima coincide with the natural
frequencies of the system.

The excitation drive file contained frequencies from 0 Hz to 200 Hz,
the anti-alliasing filter of the data acquisition system was however set at
333 Hz. Figure 3.5 (b) indicates that the repeatability function
calculates better repeatability for the input noise between 200 Hz and

333 Hz, than for large sections of the 0 Hz to 200 Hz signal.
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3.1.5. General discussion of repeatability test procedure and results

The scalar and frequency related repeatability functions defined in

Section 3.1 provide the test engineer with some indication on the

repeatability of the test system’s input/output behaviour. These

functions do however require further refinement, as both are not ideally
suited for application in time domain modelling and simulation.

e Accurate frequency analysis, such as PSD calculations, requires long
sections of time data. One of the drives behind time domain
simulation is the capability of using short excitation data for model
identification. The advantages of short identification signals would
become irrelevant considering the lengthy sections of data needed to
compute such a frequency related repeatability function. Further
investigations into accurate frequency analysis using shorter sections
of data could place a new perspective on a function of repeatability
vs. excitation frequency.

e The validity of comparing PSD amplitudes to determine frequency
related repeatability is questionable. The radiator test rig example
showed better repeatability for frequencies above the test bandwidth
(1.e. system noise), than for sections of the driven system response.

e Typical scalar repeatability numbers are in the region of 98% ~
99.9%. The linear percentage scale is not sensitive enough to clearly
show the effect of repeatability on simulation. A more sensitive

parameter is needed to quantify test rig repeatability.
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3.2.  Split spectra modelling and simulation

The concept of split spectra time domain modelling was initially proposed to
reduce the effect of resonant peaks in the system response on simulation
results. The philosophy is to model the broad-spectrum behaviour of a system
with two or more narrow bandwidth time domain models. The procedure is

illustrated in Figure 3.6 for a two-way split of O ~ 80 Hz data.

MODEL A MODEL B
0-~40Hz 40 ~ 80 Hz

IDDRV
G A0 H - _ IDRES

IDDRV
(40 ~ 80 Hz)

foay

BP-FILTER

BP-FILTER
0~40Hz

40 ~ 80 Hz

QANTIM IDENTIFY

DESRES
(0 ~ 80 Hz)
\f\
Y Y \ Y
Model A BP-FILTER BP-FILTER Model B
(0 ~ 40 Hz) 0~ 40 Hz 40 - 80 Hz (40 ~ 80 Hz)

A A
QANTIM SIMULATION QANTIM SIMULATION
Post pro: BP-Filter Post pro: BP-Filter
(0~40Hz) (40 ~ 80 Hz)

A A
ITOODRV A ITOODRV B
(0 ~ 40 Hz) - {40 ~ 80 Hz)

[
ITOORES
(0 ~ 80 Hz)

Figure 3.6: Split spectra modelling
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The concept of split spectra modelling was further extended by using separate
transducers for different frequency bandwidths. This was done to optimally
utilise each transducer frequency response. A typical example being the
measurement of wheel movements of a motorcycle as presented in Section
3.2.2. A flow diagram illustrating split spectra modelling and simulation with

separate transducers is shown in Figure 3.7.

MODEL A MODEL B
Strain Acceleration
0 ~ 4.5 Hz 4.5 ~ 50 Hz
IDDRV IDDRV
(0~ 45Hz) (4.5 ~ 50 Hz)
2] i
BP-FILTER BP-FILTER
0~45Hz 4.5 ~ 50 Hz
FIELD DATA
(0 ~ 80 Hz)
={ QANTIM IDENTIFY }=— “»{ QANTIM IDENTIFY J=—
Y A
um ACCELRATION DESRES ¥
(0 ~ 80 Hz) (0 ~ 80 Hz)
Model A Model B
(0 ~ 4.5 Hz) ( (4.5 ~ 50 Hz)
BP-FILTER BP-FILTER
0~45Hz 4.5 ~50Hz ,
QANTIM SIMULATION QANTIM SIMULATION
Post pro: BP-Filter Post pro: BP-Filter
(0~45Hz) (45 ~50Hz)

)

ITOODRV B
(4.5 ~ 50 Hz)

ITOODRV A
(0 ~4.5Hz)

y*

ITOODRV
(0 ~ 50 Hz)

ITOORES
(0 ~ 50 Hz)

Figure 3.7 Split spectra modelling, using separate transducers
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3.2.1. Application of split spectra simulation on a fuel tank test rig

A simulation test on a delivery vehicle fuel tank assembly is discussed
as an example of the implementation of split spectra modelling. The
basic steps of service load simulation testing, as introduced in chapter
1.3 is again presented in Figure 3.8 for the fuel tank test rig [ 50 ]. The
fuel tank assembly was mounted on two vertical actuators, and response

measured from two vertical accelerometers, fore and aft.

Field tests
R : ) Desired

Laboratory tests and simulation

Identification
Drive

Identification
Responsa

i

Laboratory Labaratory
Drive Response

Figure 3.8: Service load simulation testing of a vehicle fuel tank

assembly

The spectral input-output relationship for the two-channel rig is shown
in Figure 3.9. The dynamic behaviour of the system was split into two
parts, a low frequency area below 12 Hz and a high-frequency area
above 12 Hz. The low and high frequency systems were modelled
individually and their results superimposed. Arbitrary simulation results
for both low and high frequency models are shown in Figure 3.10 and
Figure 3.11. In each case the red line represents actual field measured

responses and the blue line laboratory simulated responses.
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Comparative results for the combined split spectra models and a full
spectrum model are shown in Table 3.4 Figure 3.12 The error values
(see Section 5.7) for each channel quantifies the advantages of split

spectra modelling.

Table 3.4: QanTiM error values for split and full spectra simulation
Channel 1 Channel 2

Full spectra model 46 46

Combined split spectra model 20 19

Total - Ch 1 Total - Ch 2

5.4 5.6
time [sec]

Desired response:
Full spectrum medel:

Split spectra model:

Figure 3.12: Split spectra vs. full spectrum simulation results

The two channel fuel tank test system clearly exhibits the potential of
split spectra modelling and simulation to improve results for systems
with resonant field response. The resonant peak within the simulation
bandwidth resulted in unsatisfactory modelling and subsequent
simulation. Split spectra modelling of the two frequency bands does
involve increased computational effort, but is rewarded with improved
simulation results. A similar split spectra technique was employed on a
three-axis heavy vehicle chassis simulator with equally favourable

results.[ 45 ]
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3.2.2. Application of split spectra simulation on motorcycle simulator

A simulation example using multiple transducer split-spectra modelling
is presented for the rear suspension of a motorcycle on a single axis
road simulator. The motorcycle rear suspension road simulator was
presented in Section 3.1.3. Typical simulation of field response data is
normally conducted using a single remote parameter transducer for
each simulation channel. In the case of vehicle simulations, spindle
mounted accelerometers, or strain gauges applied to the coil springs,
are normally used. Due to inherent transducer characteristics neither
strain gauges nor accelerometers provide sufficiently sensitive response
over the typical bandwidths related to automotive testing. The small
strain amplitudes associated with high frequency responses make strain
gauges less sensitive with an increase in frequency. Accelerometer
sensitivity, on the other hand, is proportional to frequency, resulting in

poor sensitivity in the low frequency ranges.

The recorded field data clearly showed these typical strain gauge and
accelerometer characteristics. The strain gauge data contained energy
from DC to approximately 8 Hz, whereas the accelerometers showed

energy from approximately 8 Hz to 30 Hz.

PSD Amplitude

Frequency [Hz]

Figure 3.13 Motorcycle rear suspension desired response PSD
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From the spectral plots in Figure 3.13 it was decided to split the
responses at 8 Hz. The upper limit for simulation was chosen at 30Hz.
Subsequently the strain responses were low-pass filtered at 8 Hz and
the acceleration responses band-pass filtered between 8 Hz and 30Hz.
The simulation results for the multiple transducer split spectra
procedure are presented in Figure 3.14. The split spectra results are
subsequently compared to results obtained with broad spectrum, single
transducer simulations. In order to compare the effect of the modelling
techniques, only the linear solution results are presented i.e. no

iterations are performed subsequent to simulation.

Figure 3.15, Figure 3.16 and Figure 3.17 compare the simulation results

of the conventional single transducer, broad-spectrum QanTiM

simulations, with that of the split spectra, multiple transducer technique.

e The broad spectrum strain simulation results in a generally good
simulation of both strain and acceleration response. The strain
simulation does however produce too large amplitudes at low
frequencies, and small amplitudes at higher frequencies.

e The broad-spectrum acceleration simulation provides good high
frequency results, but poor simulation of the low frequency strains.

e The split spectra model results in improved simulation over the full

simulation bandwidth.
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Figure 3.14 Multiple transducer split spectra simulation results
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Figure 3.15 Broad- spectrum simulation results: Coil spring strain
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Figure 3.16 Broad- spectrum simulation results: Spindle acceleration
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Figure 3.17 Split spectra simulation results
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Table 3.5 Comparative results: split-spectra vs. broad-spectrum

Strain Acceleratio
n
QanTiM errors: Broad spectrum, single transducer simulation
e Coil spring strain gauge simulation 56 51
e Spindle accelerometer simulation 78 31
QanTiM errors: Split spectra, multiple transducer simulation
e Low frequency model (strain) 50 N/A
e High frequency model (acceleration) N/A 15
e Combined split spectra simulation results 50 29

The result summary presented in Table 3.5 indicates that strain gauges
are more effective than accelerometers as single transducer, remote
simulation parameters. More important, multiple transducer, split-
spectra simulation proved more accurate than conventional broad

spectrum, single transducer QanTiM simulations.

The principle of split-spectra, multiple transducer simulation was
introduced at the hand of a relatively simple, single-axis application
example. Vehicle simulation tests on four post road simulators benefit
from the extended frequency bandwidths achievable with this
technique. Low frequency, high amplitude response, such as body twist,
can be accurately reproduced using this split spectra technique. The
accurate simulation of such low frequency responses may have a

marked effect on fatigue predictions.
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Optimal excitation characteristics

The PSD function from which the identification drive signals are generated can
have notable effect on the simulation outcome. Frequency domain simulation
systems usually make use of a I/f" PSD function to create identification drive
signals. The I/fPSD, as shown in Figure 3.18a, is normally representative of a
servo hydraulic actuator’s dynamic capabilities. A similar approach is
generally followed for time domain identification, although a triangular PSD

function is found to give better results [ 15 ], [ 131, [ 24 ].

a) b)

1/f PSD Triangular PSD

1

1

0.9
0.8f
0.71

0.8r
0.8r
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0.6f 0.6f
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Q.41

0.3f

051
0.4f
0.3f

0.2F 0.2f

Q.1 0.1

0
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Frequency [Hz] Frequency [Hz]

Figure 3.18: 1/f and triangular PSD functions for identification drive signals.

The I/f " and triangular PSD functions proved limited for systems with
intricate dynamic behaviour [ 17 ]. A method for finding an optimised PSD
function is needed, especially for multi-axial test rigs. Based on the work by
Barnard [ 2 ], the author devised a simple method of anti-resonant excitation to
create an identification drive signal well suited to a specific test rig. This
purely intuitive method limits the excitation PSD function in the areas of
system resonance. The procedure for finding a set of rig specific identification
drive PSD’s is described briefly in Algorithm 3.1 and an application example is
given. The example in Figure 3.19 shows the sine sweep drive and response
PSD functions as well as the modified rig specific PSD function for a single
axis test rig. A detailed application example is presented in Section 3.3.1 for a

seven-channel fuel tank test rig.
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Algorithm 3.1: Rig specific identification PSD’s

Step I:

Step 2:

Step 3:

Step 4:

Step 5:

Excite all channels of the rig with a low amplitude linear sine sweep within the
typical frequency bandwidth of the system. Simultaneously record the responses
[from the relevant transducers.

For each channel calculate the PSD functions of both the drive and response
signals so that:

drvpsd = PSD(sweepdrive)
respsd = PSD(sweepres)

Where drvpsd and respsd are matrices with row entries containing the PSD
amplitudes at each specified spectral line for all the input and output channels of
the system.

Calculate the mean value of the PSD amplitudes in drvpsd and respsd for each
channel:

meandrvpsd = MEAN(drvpsd)
meanrespsd = MEAN(respsd)

Calculate the modified drive PSD function at each speciral line for each channel,
with Ns the number of spectral lines and Ny the number of system ouiput channels.

FORk = 1,2,...,.Ny
Forj=12,..,Ns
respsd
psdamp , = meandrvpsd,| 2 — ——————
meanrespsd,

Create a random identification drive signal using the modified PSD function.

100+ —————————r——

drvpsd

respsd
psdamp

0 5 10
Frequency [Hz]

Figure 3.19: Rig specific PSD calculation
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3.3.1. Application on a seven channel fuel tank test rig

QanTiM was used to drive a MTS 498 seven-channel full chassis fuel
tank test rig [ 17 ] (courtesy of Ford motor co. Dearborn). The inputs to
the rig consisted of vertical displacements at the four corners, as well as

The

responses were measured from accelerometers mounted near the

two lateral displacements, and a longitudinal displacement.

actuator connecting points.

Table 3.6: Test rig summary

Test rig drive characteristics Model response
Ch # | Description | Control mode | Full scale Description
1 L/F vertical | Displacement L L/F vertical acceleration
2 R/F vertical | Displacement 3” R/F vertical acceleration
3 L/R vertical | Displacement 3% L/R vertical acceleration
4 R/R vertical | Displacement 3 R/R vertical acceleration
5 Front lateral | Displacement 3" Front lateral acceleration
6 Rear lateral | Displacement 3% Rear lateral acceleration
) Longitudinal | Displacement 3r Longitudinal acceleration

Despite the rig’s apparent simplicity, numerous modelling iterations
were performed without any success. Typical triangular and I/f drive
PSD’s with various amplitudes were used, all with equally poor results.
The best results were achieved with a triangular PSD ranging from
1~40Hz used along with relatively high excitation amplitudes. A totally
different approach using rig-specific drive PSD’s proved more

successful and produced modelling errors within acceptable limits.
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In order to gain some knowledge of the rig characteristics, a 0~40Hz
linear, small amplitude, (0.015”) sine sweep was driven through the
four vertical actuators. The PSD’s of the sweep input / output data
were used to create a drive PSD that would minimise energy in the rig’s
regions of resonance. This proved effective for the vertical channels
and the process was repeated for all seven actuators. The result was a
set of seven unique PSD’s from which the identification drive signals
were generated. The modelling results improved drastically and
showed some potential for rig-specific PSD’s. The models created with
the rig-specific PSD’s seemed inherently stable, as is shown in a typical
model order selection plot. (The concept of QanTiM model orders are
discussed in Section 4.2) The modelling error tended to decrease with

order without signs of instability; this seemed to be the case for all

channels.

Table 3.7: MISO rig specific modelling results

IDDRV GPREPRO Modelling
Parameters Filter cut-off frequencies results

Ch Description PSD | Amp Low High order | error
1 L/F vertical R 1 1 Hz. 40 Hz. 4 20
2 R/F vertical S 1% 1 Hz. 40 Hz. 9 22
3 L/R vertical T 1 1 Hz. 40 Hz. 6 19
4 R/R vertical U 1 1 Hz. 40 Hz. 7 29
5 Front lateral V 0.2” 1 Hz. 40 Hz. 5 23
6 Rear lateral W 02 1 Hz. 40 Hz. 7 19
7 Longitudinal X 0.2” 1 Hz 40 Hz. 6 37
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Figure 3.20: Rig specific PSD functions
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Figure 3.21: Model error vs. order for channel 1
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The effect of filter frequencies on modelling and simulation results

Varying filter frequencies can have a marked effect on the success of modelling
and simulation exercises. It was proposed to investigate the effect of filtering
identification drive/response data on normal modelling results and on QanTiM
inverse modelling and simulation. All results presented in Section 3.4 are
derived form SISO tests conducted on an electro-dynamic actuator with an
accelerometer mounted directly thereon. This test set-up is considered to be
near ideal for evaluating the sensitivity of modelling to various input
parameters. Results obtained from this rig indicate fundamental, yet practical
and realistic modelling characteristics, without being clouded by rig related

complexities such as backlash, coherence difficulties, etc.

Results summary:

1. IDDRYV and IDRES should contain the same frequency bandwidth.
Good simulation results are achieved if the same filtering frequencies are
applied to IDDRYV, IDRES, DESRES and RITRES (iteration results).

3. Higher frequencies appear to improve modelling results.

4. The frequency bandwidth of IDDRV and IDRES should typically be
broader than that of DESRES.

5. Models identified from broad spectrum data showed good iteration
characteristics

Points number 1 and 2 led to the implementation of general simulation
bandwidth parameters within QanTiM (See Appendix G). Points number 4 and
5 suggest that a simulation bandwidth broader than that of the desired response
may have a marked effect on simulation accuracy, especially during the

iteration stage.
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3.4.1. Normal modelling

Two sets of filtering exercises were conducted using normal QanTiM
(ARX)-models. Firstly models were calculated for a system excited
with a broad-spectrum random signal and band filtered responses.

Thereafter both identification drive and response signals were band

pass filtered prior to modelling.

lower cut off [Hz] Upper cut off [Hz]

IDDRV 0 80

IDRES 0~8

16 ~ 80

Filtering only the IDRES data, as presently done in QanTiM, showed
high modelling errors as the signal bandwidth decreased. This is shown

in Figure 3.22 were the modelling error is plot against IDRES

bandwidth.
Normal modelling: Filter IDRES
10% 5
10"
error
10°>
0
40
60 e
80 O Lower cut off [Hz]
Upper cut off [Hz]

Figure 3.22: Normal modelling error vs. IDRES bandwidth

48



University of Pretoria- etd Cater, CR (1997)

Using a band-pass filter on both IDDRV and IDRES prior to modelling
greatly improved results. Modelling errors were generally reduced by a
factor ten and showed good results for all frequency bandwidths wider

than 20 Hz.

lower cut off frequency [Hz] Upper cut off frequency [Hz]
IDDRV 0~8 16 ~ 80
IDRES 0~8 16 ~ 80

Normal modelling: Filter IDDRV & IDRES

20 5

g0 0 Lower cut off [Hz]

Upper cut off [Hz]

Figure 3.23: Normal modelling error vs. IDRES & IDDRV bandwidth

The results from the normal modelling exercises suggest that band-pass
filtering should be applied to both identification drive and response

data.
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3.4.2. The effect of bandwidth on simulation

Tests were conducted to investigate the effects of modelling bandwidths
on simulation results. The tests were conducted using desired response
data recorded from the electro-dynamic test system wile driving with

either a0 ~ 50 Hz or a 0 ~ 80 Hz random drive.

The results from the normal modelling exercise suggested that band-
pass filtering should be applied to both identification drive and
response data prior to modelling. This concept was further investigated
for inverse QanTiM type models. The same band-pass criteria were
applied to identification data, desired response data and post-processing
iteration data. The test showed improved simulation at high cut-off
frequencies and very little sensitivity to the value of the lower cut-off
point. This low frequency insensitivity may however be related to the

accelerometer’s frequency response function.

Simulation, Filter: iddrv, idres, desres, itres

15 ~

10+
Error [%]

Lower cut off [Hz]

Upper cut off [Hz]

Figure 3.24: The effect of bandwidith on simulation
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3.4.3. Wide spectrum simulation

A series of tests were conducted to investigate the effect of
identification bandwidth on simulation of a fixed desired response
signal.  Identification drive/response data was generated using a
triangular full spectrum (0~80 Hz) PSD. Subsequently ten narrower
bandwidth signals were generated by low-pass filtering according to
Figure 3.25a. The desired response data was recorded from the system
driven with the 0~50 Hz triangular PSD drive in Figure 3.25b. Prior to
modelling a 2 Hz high-pass filter was used to compensate for low
accelerometer sensitivity in the low frequency regions. No post-

processing filtering operations were performed on the iteration response

data
a) b)
i Iddrv & Idres bandwidths ; Desired response drive PSD
0.9 0.9t
0.8 0.8
0.7 0.7
0.6 1 0.6
0.5 0.5
0.4 0.4
0.3f - 0.3}
0.2r 0.2
0.1 0.1
Co 16 20 =30 4 50 80 70 80 % 10 =0 a0 e 0 e 70 &0
Frequency [Hz] Frequency [Hz]

Figure 3.25: Drive spectra for varied bandwidth modelling

The simulation error vs. upper identification frequency for the first and
final iteration is shown in Figure 3.26. The error dropped sharply for
identification frequencies above 50 Hz, and remained stable up to 80
Hz (which returned the most accurate results after 4 iterations).
Simulations using models identified with sub 50 Hz data tended to
diverge during iteration, whereas the broader bandwidth models

converged to a small error value.(Figure 3.27).
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Figure 3.26: Simulation errors for iteration 0 and iteration 4
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Figure 3.27: Iteration errors for various ID upper frequencies
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PSD’s of the iteration error signals are shown in Figure 3.28 fora 0 ~
50 Hz model and a 0 ~ 80 Hz model. The narrower bandwidth model
was not capable of correcting error values with a frequency content of
more than 50 Hz. The errors in the higher frequency ranges
accumulated and caused the iteration results to diverge. On the other
hand, the wide spectrum model was capable of correcting errors in the

upper frequency ranges, hence the converging iteration results.

PS8SD ofiteration error: 50Hz model, 50Hz desres

0.14 T T -
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Figure 3.28: Iteration error frequency content
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Conclusion and recommendations for further research - Part I

Valuable information concerning simulation accuracy was gained form the

empirical research as presented in this chapter. The research results are

summarised below.

e Testrig
repeatability

e Data processing

e Split spectra
simulation

e Optimal
identification
excitation

Test rig repeatability was identified as a potential cause
of poor simulation results. Two repeatability functions
were developed and implemented. The information
provided by the functions proved valuable, but these
functions are however not optimally suited to
application time domain simulation.

A fixed simulation bandwidth should apply throughout
the QanTiM process. This implies that the same
filtering functions should be applied to DESRES,
IDDRYV, IDRES, and ITRES time history data.

Additionally, the frequency bandwidth of IDDRV and
IDRES should typically be 20% broader than that of
DESRES and ITRES. The broader modelling bandwidth
results in improved iteration performance.

Models identified from broad spectrum data showed
good iteration characteristics

Higher frequencies appear to improve modelling results.

Dividing the broad-spectrum characteristics of a system
into two smaller bandwidth models proved valuable in
simulating systems with resonant behaviour. Multiple
transducer, split-spectra modelling proved valuable to
compensate for transducer insensitivity in certain
frequency bandwidths.

An elementary method was developed for calculating an
identification drive PSD functions specifically suited to
the dynamic behaviour of the test rig. These rig specific
identification drive signal PSD functions improve
model accuracy and model stability.
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Further research in QanTiM specific repeatability functions will provide the
simulation engineer with valuable information with which to assess test rig

integrity prior to modelling.

A field that poses potential for further investigation concerns the system
analogue to digital sampling rate. The use of a localised sampling rate is
suggested. This implies a constant ratio between sampling rate and signal
frequency. It is however not possible to sample at various rates, a high
sampling rate would thus be used and the signals then decimated prior to
modelling and simulation. As a first implementation, a scheme similar to that
presented for split spectra modelling is suggested. Each separate model will
however utilise a different sampling rate. It is proposed that the use of such
localised sampling rates would improve model accuracy and eliminate errors

related to numerical instability.

Further research into optimal identification excitation signals is most definitely
necessary. The effect of excitation signal characteristics proved extremely
significant and yet it is the part of the simulation procedure, which involves the
most black magic. An automated excitation routine would greatly improve the

versatility and ease of use of the existing QanTiM package.

The concept of a fixed simulation bandwidth has been implemented within
QanTiM, but additional research is required into modelling and simulating with

a bandwidth broader than that of the desired response data.

At present it appears that non-linear modelling capabilities are however the
most likely to have a significant effect on simulation results. Research into
non-linear system identification and response reconstruction is presented

formally in part II of this thesis.

53



University of Pretoria- etd Cater, CR (1997)

PART II: Investigation into the possible implementation

of non-linear response reconstruction

This second part of the thesis presents an investigation into the possible implementation of
polynomial non-linear system identification routines in response reconstruction. Non-linear
system identification has been well researched from a mathematical formulation point of view
—see Billings efal. [5][61[ 7] Chen [ 18 ], Fasol [ 26 ], Korenberg [ 36 ], etc. To the
author’s knowledge, non-linear dynamic system identification has not previously been applied

to the field of response reconstruction.

The development of a non-linear response reconstruction technique is presented in a concise,
almost chronological manner. Only the most relevant theory is included in the body of the
thesis, with more detail included in the appendices. Linear system identification is introduced
in Chapter 4, at the hand of the ARX [ 40 ][ 41 ] time domain model formulation. The ARX
fundamentals are extended to accommodate polynomial non-linear modelling capabilities with
the NARX [ 9 ][ 46 ] model structure in Chapter 5. Application of the developed NARX
modelling and response reconstruction techniques is presented in Chapter 6. Finally some

conclusions and recommendations for future research are made in Chapter 7.
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Chapter 4

Linear time domain system identification: ARX

Dynamic response reconstruction for fatigue tests has the global aim to reproduce
operational measured response stresses in the test structure as accurately as possible
using servo-hydraulic actuators. To calculate actuator drive signals from knowledge of
operational measured responses a dynamic model that describes the complete system is
required. Such a dynamic model is found by using some system identification
formulation. In choosing from the multitude of different system identification model
types and structures, two factors are of prime importance: accuracy and ease of
operation. System identification for use in response reconstruction is predominantly
frequency based, and linear. Accuracy, ease of use, low calculation time, and minimal
computing requirements prompted investigation into a time domain approach. More
specifically the ARX model format, as presented by Ljung [ 40 ][ 41 ] combined with
a time domain state space description was indicated by Raath [ 51 ] to be ideal for use
in response reconstruction. The characteristics of the ARX model structure and the

modifications thereof are briefly discussed.
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ARX model structure

A basic single input, single output (SISO) dynamic system is presented in
Figure 4.1, with a system input u(1), output y(z) and a disturbance signal e(?);
t=1,2,..., N. The development of the ARX model from the generalise time-

invariant model structure is adapted from the work presented by Ljung [ 40 ].

l e(t)
u(t)

fe B SISO ___,,.V(f)

Figure 4.1: Basic SISO configuration

Assuming the signals are related by a linear system, we can write:

1) = Glau(t) + (1) (41)

where ¢ is the shift operator and G(q)u(t) is short for

Gla)u)= 3. liuls 1) )

In ( 4-1) v(t) is an additional, unmeasurable disturbance (noise). Its properties

can be expressed in terms of its spectrum ® (&), which is defined as:

@,(0)= LR (7)™ e

r=—oo

where R,(?) is the covariance function of v(#) with E the mathematical

expectation.

R, (7)=Ev(t)v(t-1) (4-4)

Alternatively, the disturbance v(#) can be described as filtered white noise:

v(t) = H(t) e(t) (4-5)
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Substitution into ( 4-1 ) gives the complete time domain description for the

system of Figure 4.1.
() = Glq)u(1) + H(1) e(1) (4-6)

To be able to estimate the functions G and H they typically have to be
parameterized, most often as rational functions in the delay operator g so that

the generalised time-invariant parameterized model structure takes the form

(Ljung [ 40 ]):

A(g)y(t) = Mu(t) +%e(r) (4-7)

F(q) D(q)

where A(q), B(q), C(q), D(g) and F(g) are polynomials in the delay operator
g-1. Various simplifications can be applied, one of which leads to the ARX-

model (Auto Regressive with eXogenous input).

A(q)y(t) = B(q)u(r) + e(t) (4-8)
with:
A(g)=1+ alq‘1 - a_,_q'2+- ~+a, q " (4-9)

B(q)=b,+bq " +b,qg +-+b,q " (4-10)

If nk is the number of delays from input to output the model is usually written

as.

A(q) y(t) = B(q)u(t — nk) + (1) (4-11)
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If expanded, the ARX’ polynomial structure may be written as a linear
difference equation of the form:
y@)=a;-y@t—D+---+a,, - y(t—na)+--- (4-12)
ot+by - u(t—nk)+b, -u(t—nk —=1)+---+b,, - u(t —nk — nb)

This is the one-step-ahead predictor for a SISO system. A novel method of
expanding the ARX formulation for MIMO systems was proposed by Raath
[ 52 ]. For a system with ny outputs, the ARX difference equation of ( 4-12 )
is expanded to ny multiple input, single output (MISO) one step ahead
predictors, so that for each output channel &:

¥ () = 3, (¢ — D)oo, 3, (£ — 1a,), y,(¢ - 1),..., ¥, (¢ — na,),... y, (£ = 1),..., yny(z‘ — n.any),...
i (t — 1k, 14 (¢ — 0k, — nby ), w,(t — 1k, ),...,u (t — nk, — nb, ),...
vyl (= k)50, (E=nk, —'nb, )

(4-13)

These MISO models are combined into a MIMO discrete state space model

description where:

xk+]=®xk+ruk (4_14)
¥, =Cx, +Du,

and: x, = state vector
u, = input vector
y, = output vector
@ = state matrix
= input matrix
C = output matrix

D = direct transmission matrix

For brevity the combination of MISO models into a single MIMO model
description is not included in this thesis, it is however presented in detail by
Raath [ 51 ][ 52 ]. To further simplify the model description the “full order”

approach to structure detection is presented in the next Section.
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ARX Structure selection

For application in response reconstruction a black box model, which requires
minimal information about the system prior to modelling is needed. The ARX
formulation in ( 4-13 ) is a general black-box type model capable of accurately
describing the dynamic behaviour of most linear engineering structures. It is
however required to estimate the model structure prior to modelling, which for
each output channel & involves:

e Selection of the number of a parameters, nay

e Selection of the number of b parameters, nby

e Selection of the number of delays, nk;

For MIMO systems the number of model structure parameters to be estimated
explodes for increasing numbers of channels. This problem is solved by
utilisation of the “full order” approach, presented by Raath [ 51 ], which
defines that for each output channel yu(z) only the dynamic model order, #,
must be selected. Equation ( 4-15 ) presents the relation between the
parameters na, nb, and nk and the dynamic model order n for each output

channel k:

na. =n, )

b o 1 i=12,---,ny

no; =n; + i Lol s (4-15)
nk.=0

Each MISO model is identified for increasing model orders to detect the
optimal model structure, a relatively simple procedure, even for MIMO

systems with large numbers of channels.

This full order MIMO-ARX model is the basis of the linear QanTiM package,
and showed potential to be extended to include non-linear modelling terms.
This expansion of the linear ARX model to the non-linear NARX model is

presented in the next chapter.
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Chapter 5

Non-linear time domain system identification:
NARX

Successful implementation of linear ARX - state-space algorithms presented a further
challenge: Non-linear system identification for use in response reconstruction. This
could greatly improve simulation results, and eradicate the need for iterative
linearization of the non-linear system. Investigation into inclusion of non-linear
modelling in the QanTiM simulation system started with a survey of applicable
modelling techniques. This survey is presented in Appendix A. Non-linear model
requirements facilitating inclusion into response reconstruction are similar to that

presented by Raath [ 51 ] for the linear case:

Discrete.

Multivariable.

Time invariant.

Black-box.

Allow stable inversion.

Allow use of model for simulation purposes.

e Accommodate simultaneous multiple-actuator identification.

Furthermore the model would be required to:

e Model highly non-linear systems (cubic polynomials).

e Include non-linear capabilities with minimal extra user input.

e Allow inclusion into existing QanTiM software.
This study investigates the NARX formulation, a polynomial non-linear extension of
the ARX model used by QanTiM. Raath and Verwey [ 54 ], showed that the NARX
model formulation satisfied all the above requirements, especially so for ease of use
and possible compatibility with existing linear software. Detailed descriptions of the
NARX model formulation, as well as the application thereof are given. Non-linear
simulation and its limitations are discussed as well as modifications to the NARX

structure for improved performance and QanTiM compatibility.
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The NARX model

NARX (Non-linear Auto Regressive with eXogenous input) is a parametric
difference equation that forms a convenient linear-in-the-parameters set of
equations capable of describing systems with severe non-linearity. It is a
special case of the general NARMAX [ 18 ] model in which only the system
dynamics are taken into account. The NARMAX model is reduced to NARX
by removal of the noise model and moving average terms, presented by

Billingsetal.[5] [9] and Peyton Jones [46][47].

y(t)=F*[y(k =1),..., y(k — na),u(t — nk),...,u(t — nk — nb)| (5-1)

With FL[ e] some non-linear polynomial function.

5.1.1. MISO-NARX formulation

Consider the MIMO non-linear dynamic system presented in Figure
5.1. As with the linear ARX model, the MIMO-NARX consists of a
combination of MISO models. Combining the NARX MISO models
could however not be done as elegantly as for the ARX models. A
system is identified for each output channel and the MISO NARX
models are then combined in a one-step-ahead simulation routine as
described in Section 5.4. The most general form of the MISO-NARX
model [ 56 ] as shown in equation ( 5-2 ) describes each output y(z) as

a function of inputs () and outputs y;(z). With F"“[e] some non-linear

function.

) — )
(1) Non linear — i)
T MIMO
llnu(t) i E—’yny(t)

Figure 5.1. Non-linear MIMO system
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yk(t)=F"k[y](t—l),...,y](t—na]),yz(t—l),...,yz(t—nag),...y“y(t—1),...,yny(r—nany),...
oottt =nky Yoo (t =0k = nb, Y,y (t —nk, ), u{E—nk, —nb,),...
censthy (E— 1K, )t (E =0k —nb_ )]

nu

(5-2)
where for channel k&: L, = The degree of non-linearity within F
nar = dynamic model order for output y(z)
nbr = dynamic model order for input u(?)

nk,  =time delay

The full order approach as proposed by Raath [ 53 ] is, as with the
linear ARX model, used to greatly simplify modelling. Using this
approach the model format is predicted with only two parameters per
output channel namely: n, the dynamic model order, and L, the degree

of non-linearity. Thus for each channel y() the following applies:

na,=mn,
nbj:ni +1 i:l’z’...,ny
nkj=0 j=12,---,nu

5-3
£ Loy (5-3)

By substituting the full order model parameters ( 5-3 ) into equation

( 5-2 ) the NARX formulation is reduced as shown in equation ( 5-4 ):

V. (8)=F"[y,(t=1,...y,(t = 1), y,(t =1),..., y,(t = By Jsse: g C — Discs Py U — By s
sl (L Jssnsstl (L — 0, AN Y il (F— Ry 1)
wwog e (O Ve 2 (=, +-1)]

(54)
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For a value of L; = I, the NARX model is identical to the linear ARX
so that F*[ARX]|= NARX. NARX is thus a non-linear extension of

the linear ARX as shown in the next Section.

5.1.2. Non-linearity in the NARX model

The NARX-model of ( 5-4 ) is described in terms of some non-linear
function FL[e]. This function finds all unique combinations of Lj-
degree multiples of the linear model terms. The non-linear structure is
introduced in Example 5.1 for a specific MISO system to precede the

more general formulation [ 12 ].

Example 5.1: NARX formulation for a simple MISO system

Non linear

(1)
2x 1 MISO i

The second order linear ARX difference equation for a two-input single
output system is:
y»(@®)=y-1)-a +y,(#-2)aq +
w(t)-b +u(t=1)-b +u(-2)-b +
u,(1)-b, +u,(t—1)-b +u,(t-2)-b_ (5-5)

Using vector notation, we may further reduce it to:

Xun(®)=[n(t=1) »(t=2) w() - w(t-2)] and
Ol:[al, a, b - blﬁ]T
T

=[61, 512 913 913]
= (5-6)

8
y,(t)= 2 Xy (1,i)-6,
i=1
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Now extend this model to the non-linear second order quadratic
NARX-formulation by adding all quadratic combinations of the linear

regression vector Xri,(t).

J=(9,10,--,44)
y,(8) = ZXu](t i)-6, +ZZXL,1(: 7)) Xen (t,8,) 6,
Ry=1R,=1
: (5-7)
=ZX1(I’i)'91f
i=l
=X,(r)*0©
where

X](I)= XLrl(t) XLZI(I) , and

Linear Quadratic

Xio()=[n=1 %(-Dx3(-2) ~ w(e-2)]

This quadratic model contains 44 terms, compared with the eight of the
linear model( 5-6 ). A complete polynomial expansion of ( 5-7 ) is

given in Appendix E.

The general form of the non-linear model is shown below for cubic

(L=3) non-linearity [ 14 ][ 56 1:

¥, ()= quk(r i)-6, +22XUA(I &) Xi1,(1,2,)-6, +222XU,¢(I %) Xit (tr,) X1, (1,8,)- 6, +.

R=IR,=I R=1R,=1Ry=1
Linear part Quadratic part Cubic part
L=1 =2 L=3
R=ny-n+nu(n+1) J=(Mp LM 42, M) J(My+1L M 42,00, M )

(5-8)
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The variable M represents the maximum number of coefficients in the

NARX-equation. In Equation( 5-8 ) the terms M;, and Mj3

respectively represent the number of terms for the quadratic and cubic
parts of the NARX-model. The non-linear model is still linear-in-the-
parameters even though it can describe systems with severe non-

linearity.

Coefficients in the NARX model

For the SISO system the maximum number of coefficients is defined by

Billings & Voon [ 7 ] as M:

L

M=zlni

i=1

_ e -(matnbti—1)

=

, wheren, =1 (5-9)
1

The author [ 14 ] showed that this equation does not hold for non-linear
MIMO systems. Such a system’s maximum number of coefficients for a

specific output channel can be expressed by the following equations:

ottt

R=1 Ry=1 R =1

R:ny-nk+nu-(nk+1) (5-10)

The number of coefficients explodes with increasing degrees of non-
linearity, prompting investigation into reduced parameter modelling [ 8
1 [ 38 ][ 39 ]. Reduction of the number of model parameters can be
done by structure selection prior to modelling, as discussed in Section
5.5, or by making use of a reduced parameter estimation technique, as

discussed in Section 5.3
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NARX regression

Transformation of input-output data into the NARX formulation of Equation
(5-4)and (5-8)is done in such a manner as to maintain generality at all
times. Based on the work by Leontaritis [ 38] for NARMAX systems, Equation
( 5-8 ) is written in matrix formulation, with the non-linear extensions
appended to the linear ARX regression matrix so as to maintain a linear-in-

the-parameters set of equations.

where: Vil = (1) yi(2) ... yi(t) ... y(N)]
O =I[6, 6,, - 6;,]

X =[XL] X X ]

k
(XD X (12) - X, (LM)]
X,2) X.(22) - X.(0M)
T X)) X2 - X(LM)
_Xk(N,l) X, (N,2) - X,((N,M)_

The procedure of finding a MISO NARX regression matrix is to be repeated
for each output channel of the MIMO system. A number of such regression
methods were developed by the author, a summary of these algorithms is
presented in Appendix B. The next step in the system identification process is
to find the NARX coefficient matrix ©;. Methods in which these coefficients

can be estimated are the subject of the next Section.
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NARX parameter estimation

Parameter estimation is the process of finding the unknown coefficients & for
the NARX equation and thus identifying the dynamic characteristics of the
system. A number of well-studied methods are available for parameter

estimation, most of which are well suited to the NARX model.

The majority of the parameter estimation techniques can be placed into two
categories: Prediction error methods and Correlation methods. [ 7 ][ 8 ][ 18 ]
[ 36 ] The first being concerned with minimising some error function for the
identification model. Correlation techniques are however concerned with
finding the solution for some function. Various authors [ 1 J[ 4 ][ 7 1[ 51 ]
showed prediction error methods to be best suited to practical system
identification. In this thesis the focus will thus remain on the prediction error

methods for finding the parameter vector of the NARX-model.

Aloss function J[¢] can be defined with the following form:

N
J=— f(e(2)) (5-12)
N z=I
With f(¢) some positive function of the identification error &(z) = y(z) - X(1)-© .

The basis of the prediction error methods now lies with finding a set of
parameters © associated with minimising this loss function.  Various
techniques are based on this principle, including Least Squares [ 52 ] ,
Extended Least Squares [ 8 ], and Maximum Likelihood [ 7 ] parameter
estimation. The Least Squares technique is inherently suited to the NARX-
model and computationally simple to apply. According to Strejc [ 58 ] “It may
be stressed that in the field of parameter estimation the Least Squares
technique has reached a significant level of popularity and perfection.” It is
thus the only technique that will be covered in this study. Various solutions to

the Least Squares problem are however given.
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5.3.1. The Least Squares problem

Gauss defined: “the most probable value of the unknown quantities
will be that one for which the sum of the squares of the differences
between the actually observed and computed values multiplied by
numbers that measure the degree of precision is a minimum”. In a Least
Squares form the loss function of Equation ( 5-12 ) is thus described
with f(e) a quadratic function of g(#) which can be minimised with

respect to ©: Equation [ 29 ]

1 N
I= S (o) (513)

7=1

This defines the Least Squares equation ( 5-13 ) for a specific output

channel.

YVil(t)=X(1) Oy + £4(1) :

1= (e ()
N&YE
T
=8k2'8*' fif: Y,=X,-0,+¢,}

(5-14)

Substitute into €, =Y, - X, -®, into ( 5-14 ) and expand the

expressions to obtain the following equation for the loss function.

B, -E,
Tpsnin
=(Yk _Xk 'Ok)T '(Yk _Xk 'ek)
2
Y, ¥, —2: (Y, X, 0, )+(X,:0,)'X, -0, (5-15)

2
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The Least Squares estimation of ®y is found by minimising the loss

function J; with respect to ©x

d

(7 )=X*T'X"'®"‘XRT‘Y*' (5-16)
diBy o

2

and Ji(©y) is thus a minimum for :

XT.X-0-X"Y=0
[}

(5-17)

o=[X"-X] -X"Y

This is the familiar Least Squares equation [ 8 ][ 52 ][ 58 ] which is

valid only if [XT-X]-! exists which proved not trivial for various

reasons, including:

Table 5.1: Obstacles in finding the inverse [XT-X ]-1

Size The large number of terms in the NARX regression
matrix presented a problem for existing inversion
processes.

1I- More often than not, the NARX regression matrix

conditioning showed signs of ill conditioning

Linear Incorrect sampling rates captured data with similar

dependency samples, resulting in a regression matrix with
linearly dependant rows.

A survey of finding the solutions to the Least Squares equation ( 5-17 )
is presented in Appendix C and D for full, as well as condensed
parameter sets. This survey of parameter estimation techniques showed
that methods based on orthogonal decomposition to be the most
effective for finding the inverse [XT-X]-1. The concepts of a condensed
model structure and the associated parameter estimation techniques are

discussed in Section 5.3.2.
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5.3.1.1. Orthogonal decomposition

Parameter estimation techniques based on orthogonal
decomposition [ 36 ], [ 58 ] of the NARMAX and, similarly, the
NARX regression matrix proved the most effective. These
methods all have in common that a matrix X can be transformed
into an orthogonal matrix Q and an upper triangular matrix R so

that.

X=Q-R (5-18)

Transform the Least Squares equation, in order to find the

parameter vector ©.

@=[XT-X]"-XT-Y
X".X.0=X"Y

(5-19)
Substitute X=Q R

[Q R]"-Q-R-©=[Q-R["-Y (5-20)

Q"-R"-Q-R-©=Q"-RT'Y

but Q" -Q=1I
R"-R-©=Q" -RT-Y (5-21)
R-©=[R"] Q" R"-Y

thus (5-22)

o=[R"]"-Q7 Y
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Methods for solving the Least Squares equation using
orthogonal decomposition include:

e (lassical Gram Schmidt methods [ 11 ]

e Modified Gram Schmidt methods [ 10 ], [ 32 ] and

e Householder transformations [ 32 ]

These methods are discussed in Appendix C and D

5.3.2. Full vs. reduced parameter modelling

Korenberg [ 36 ] indicated that “provided the significant terms in the
model can be detected, models with fewer than ten terms are usually
sufficient to capture the dynamics of highly non-linear processes.” This
presents the problem of structure detection for the NARX equation.
Appendix D details various methods for finding a reduced set of
parameters i.e. discarding terms in the NARX equation which do not
contribute to the dynamic behaviour of the system. These methods all
require the full set of NARX coefficients to be available for evaluation,
thus an initial full set regression and parameter estimation is required
prior to structure detection. Further the structure detection processes
proved computationally cumbersome. More importantly simulation of
the NARX models proved insensitive to the number of terms involved.
The author found that the amount of effort concerned with model
reduction does not warrant the implementation thereof. Full parameter
set modelling proved more practical to investigate the implementation

of NARX in structural response reconstruction.
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Simulation of NARX systems

In the linear case a state space representation of the ARX model was calculated
prior to simulation. This MIMO state space system proved convenient,
especially so for linear application within Matlab [ 53 ]. A non-linear
equivalent of this model format conversion, that is NARX to state space, can
be done in the same way for a specific system. Formulation of a general NARX
to state space procedure is however not trivial and the simulation of non-linear
differential state space equations is computationally taxing. The non-linear
state space simulation algorithms created and implemented by the author
proved too complex and mathematically expensive to warrant further
investigation, application or discussion. The purpose of this study does not
warrant an extensive investigation into general NARX to state space
conversion algorithms. A simulation algorithm that made use of a step-ahead-
predictor nested in a sample point loop proved an effective method for
simulation non-linear systems. This non-linear simulation algorithm makes full
use of the linear-in-the-parameters structure of the NARX model, in principle

done according to Algorithm 5.1. It is a direct implementation of Equation ( 5-

4).

Algorithm 5.1: NARX simulation

INPUT: Dynamic system input data: wp(t), ua(t)..., thy, (1)
NARX model coefficients for each o/p channel O,
Dynamic model order for each o/p channel: B
Degree of non-linearity for each o/p channel: Ls
Number of sample points to use in regression N
Number if input and output channels ni, ny

OUTPUT: Dynamic system output data: Yi(t) y2(t) e, Yump(t)

FOR =012 ., N Sample point loop

FORk=1,2, .., ny Channel loop
Xy (1) = flu,y,na,L) Calculate non-linear regression vector for channel k at

sample point
V(1) = Xi(1) -6,

M
=X(1)-6, = ¥ X, (t.7)- 6,

i=1
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This basic simulation loop ( Algorithm 5.1 ) however proved extremely slow
due to the regression operation at each sample point. This regression includes
the process of finding the appropriate combinations of linear model terms to
form the non-linear extensions to the ARX format. Another limitation is the
use of a sample point main loop, which implies the simulation may become
slow for large data sets. Due to the one-step-ahead nature of the algorithm a
more elegant method than this sample point loop could not be found. The
problem of regression and NARX structure formulation at each sample point is
solved by careful use of Matlab’s matrix capabilities. This was done by
defining a condensed NARX model structure which, once identified, could
easily be passed to the simulation algorithm and thus eradicate the need to

recalculate the NARX structure.

5.4.1. Condensed NARX model structure

The NARX coefficient vector @, completely characterises the k"
channel of the system. Thus if all ny coefficient vectors are known the
system can be considered thoroughly identified. This format is
however not convenient for simulation purposes since for each channel
a separate set of coefficients must be stored, and passed to various
functions. Furthermore, for the purpose of simulation, the NARX
model structure, i.e. the non-linear combinations of linear ARX terms

to be multiplied must be recalculated.

The author defined a model structure that contains the coefficient
vectors for all system channels, as well as model information such as
model order and degree of non-linearity for each channel. This
condensed NARX structure further contained the combinations of all
non-linear terms within the model. The elements contained in the

condensed model structure for each channel are described in Table 5.2.
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Table 5.2. Model descriptors for output channel k

NARZX coefficient vector @kT = [6 5 6k2 6kM] (I xM,)
Model parameters Model order: | n, (Txl)
Degree of non-linearity: | L; (4 %)
Number of model terms: | My (ExT)
Number of quadratic terms: | ML2, (Ixd)
Number of cubic terms: | ML3, (Ix1)
Non-linear combination Quadratic combinations: | 112, (2xMrL2,)
HefpLors Cubic combinations: | 13, ( 3x ML3, )

The model parameters of Table 5.2 are written into a model parameter

matrix Mpary for each channel k. These MISO models are then

appended into a single model parameter matrix for all system channels,

as shown in Equation ( 5-23 )} The condensed NARX model structure

was implemented to accommodate, at most, cubic (L=3) non-linear

models.
n L, M, M, L?A]
i/ 2 M, -

Mpar,=||1 2 2 |
| 2 M,
1 1 2 e 2 o M, |13,
12 2 2 M,
[ Mpar,
Mpar

Mpar = p -
Mparn),

(Tx M,)

(5-23)
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The condensed NARX model structure has the capability to model so

called non-square systems. That is a dynamic system of which the

number of inputs differs from the number of outputs. The author

developed simulation algorithms using this condensed NARX model

structure that are sufficiently fast to allow implementation in general

non-linear system identification and response reconstruction. The

computation time of the algorithm is directly proportional to the length

of the data. A linear regression operation must still be performed at

each sample point, but the non-linear combinations thereof need not be

done. A revised simulation procedure is presented in Algorithm 5.2

Algorithm 5.2: NARX condensed model structure simulation

INPUT: Dynamic system input data: wilt) uz(t) ..., (1)
NARX condensed model parameter matrix Mpar
OUTPUT:  Dynamic system output data: Yi(th y2(t) o, Yuy(t)

FORk=12, .., ny

Mpary, = f (Mpar)

6. =f(Mpar,)
nay  =f(Mpar)
Ly =f(Mpary)
M,  =f(Mpar,)
Mr2, = f(Mpar;)
ML3, = f(Mpar; )
12,  =f(Mpar,)
1B, =f(Mpar,)

FORt=12,..,N

FORKk=12, .., ny
XL1(1) = flu,y,na)
X2 (1) =f( XL1(r), T2, )
XL3,(t) = f( XLy (t), IT3, )
X (t)= [XL1 () XL2,. (1) XL3, (1)]
Yi(t) = X, (1) -G,

Channel loop
Extract model parameter matrix for channel k
Extract NARX coefficient vector for channel k

Extract model parameters for channel k

Extract non-linear combination matrices for
channel k

Sample point loop
Channel loop

Calculate linear regression vector for channel k at
sample point t

Calculate the non-linear terms of the regression
matrix using the linear ARX terms and the non-
linear combination vectors.

Calculate the value for output channel y, at sample
point .
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Modified NARX systems

The number of terms in the NARX formulation tends to explode for systems
with high degrees of non-linearity and large numbers of input and output
channels. Furthermore, numerical techniques tend to become unstable for
models with large numbers of non-linear terms. It would thus be ideal to limit
the number of terms within the NARX model. The concept of reduced
parameter modelling was introduced in Section 5.3.2, which concluded sub-set
selection techniques to be computationally too taxing to warrant
implementation. An alternative route is to select a non-linear model structure
prior to identification. A number of special cases of the NARX model were

defined and are presented in Sections 5.5.1. through 5.5.4.

5.5.1. Purely Quadratic NARX

An approach similar to the bi-linear model (Appendix A.3.2) was used
to limit the number of model terms, yet maintain a high degree of non-
linear modelling capability. The purely quadratic NARX, as shown in
Equation ( 5-24 ) for a SISO system, includes all quadratic
combinations of the linear ARX model, without any non-linear cross-

coupling terms.

n+l 2ng+l

n : . . 22:;t+l 5 ( 5_24 )
y,.(£)=a, +2a,. Syt -0+ Eb, u(t—i)+ 2 C. ’(L{(I—E)) 2 d, -(y(r—z))
=l i=1 i=1 i=1

Parameter estimation for the purely quadratic NARX is done exactly

the same as for the full parameter set NARX model.
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5.5.2. Quasi-Static NARX

Block orientated models (Appendix A.2) include the concept of
modelling system dynamics linearly and only the static system
behaviour with a non-linear model. An implementation of such a
modelling approach was presented by Billings and Fakhouri [ 4 ].
Their approach utilised the first two kernels in the Volterra series
expansion, which proved too complex for practical application. The
author implemented a similar approach for NARX models, where only
the static part of the system behaviour is modelled non-linearly. A
simple method to implement this quasi-static NARX, is to include the
entire linear ARX model but append only the static combinations
(dynamic order = 0) in the non-linear extension. Consider again the
two input single output system presented in Example 5.1 Equation ( 5-
25 ) shows only the static relation between the two input channels and

the output squared.

yl(t):yl(t—])-all+yl(t—2)-ai2+ (5_25)
(1) by, +u(t=1)-b, +1,(t—2)-b, +
()b, +uy (1 =1)-b +u,(t-2)-b_+

(ul(t))z ey 7k (uz(r))l "G,

A more direct approach is to apply the split-spectra modelling concept

as presented in Section 3.2 to non-linear systems.
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5.5.3. Split spectra linear-non-linear modelling

The linear-non-linear split spectra modelling procedure presented in
Figure 5.2 is similar to the linear system split spectra approach, only
here the low frequency part of the data is modelled with non-linear

algorithms, and the high frequency dynamics with the conventional

linear ARX formulation.

Non-Linear Low

Linear
frequency

High Frequency

(n'?fmz) < = IDRES IDDRV IDRES
= = T
Lﬁ NARX IDENTIFY m QANTIM IDENTIFY J=
9 I
Nnr:ig:ar LO::’[:EAHSS Linear Model

' Y

NARX SIMULATION J‘* 4>{ QANTIM S[MULATIOI\J
4
Non-linear Linear

IToODRV

HIGH-PASS
FILTER

ITOORES

ﬂ ¥ 'Q

Figure 5.2: Linear-non-linear split spectra modelling

The linear-non-linear split spectra modelling technique proved ideal to
model the low frequency high amplitudes associated with non-linear

response, as well as the high frequency linear dynamics of a system.
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5.5.4. Non-linear error signal modelling

E=A
L
Linear

Model

I

Quadratic
NARX i
Y
Quadratic
Non-Linear

Model

IDDRV Cubic

error-res

NARX

A

Cubic
Non-Linear
Model

o Linear

<2 Model /
DESRES -

Quadratic
Non-Linear
Model

sim L=2

Cubic

Non-Linear =
Model /

simL=3

ITOODRV

Figure 5.3: Non-linear error signal modelling
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Non-linear error signal modelling is based on the assumption that the
error in a linear modelling scheme is due to non-linearity within the
actual system. A linear ARX model is thus first applied and the
subsequent error is then assumed to be non-linear and caused by the
inability of the linear model to describe the non-linear part of the
system dynamics. A NARX system identification technique is then
used to identify a relation between the input and this non-linear error

signal. The concept is illustrated in Figure 5.3.

Synthetic non-linear systems

Qualification of the non-linear modelling techniques presented in the previous
Sections was first done with synthetic non-linear systems. Procedures and
algorithms were typically qualified for aspects such as accuracy, speed, and
mathematical stability. A procedure was required to generate random non-
linear MIMO dynamic systems on which the NARX system identification
algorithms could be evaluated. These synthetic non-linear systems had to be
random, yet create input/output (drive/response) data sets of representative

real-life systems.

Two methods were used to generate non-linear input/output data. The first was
an analytical state-space modelling scheme, the second was based on

modelling of random data sets.

5.6.1. State space modelling of non-linear systems

The familiar state space method for simulation of differential equations
can be extended to model non-linear systems. An analytical state-space
model can generate a set of non-linear input/output data. The author
found the selection of elements within the matrices of the random non-
linear state-space system to be non-trivial. The synthetic systems were
prone to being unstable. The creation of suitable, stable random non-
linear state space systems required implementation of optimisation and
non-linear control system techniques [ 48 ]. Subsequently, a more

simplistic alternative approach was devised.
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5.6.2. Random non-linear input/output data

A more general and easy to use system for creating synthetic non-linear
dynamic systems was needed. The desired input parameters to such a
random model generation technique would include the number of
channels, model order for each channel, as well as the degree of non-
linearity for each channel. Randomly selecting a set of NARX
coefficients within these given parameters will generally result in an
unstable system. The author devised a technique to create random
stable non-linear dynamic systems. The input/output data from these
systems could then be used to test the various non-linear algorithms.
The random non-linear model generator as shown in Figure 5.4 makes
use of a random signal generator to create two sets of random data. The
first set will be used as a pseudo drive and the second as a pseudo
response for the random model. These random data sets comply with
the desired number of system channels. A NARX identification routine
is then used to find a model parameter matrix which best describes the
relation between the pseudo drive and response data, resulting in a
random non-linear model. Valid non-linear input/output data can now
be obtained by simulating drive data through the model and recording
the subsequent responses. These random models proved ideal for

evaluation of the various parameter estimation techniques as described

in Appendix C.
Random
Random signal ' \
Generator NARX Identify I nk ‘
| Random ke

Y

Mpar

Figure 5.4: Random non-linear model generator
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Error functions

It is important to be able to quantify the success of a simulation exercise. The
QanTiM fit value [ 34 ] as used in the linear simulation package also proved
ideally suited to judge non-linear simulation accuracy. An error function ey is
defined by subtracting the achieved simulation response from the desired

response.
e,(t)= y(r)- () (5-26)

The QanTiM fit value is then calculated for each channel for N data points.
(5-27)
1, =100 x H——

The error function as presented in ( 5-27 ) is inappropriate for responses with
high DC offsets. The error value, 7, for a response signal with a DC offset will
be factored by the DC value and thus be lower than actually is the case.
Removing all DC offsets prior error quantification can however rectify this
problem. In Equation ( 5-28 ) the author revised the QanTiM fit value. This
DC-corrected function is used for evaluation of all simulation results.
3o(t) = (1)~ DC(y(1)
5u(r) = 5()- DC(5(¢)
eo(t)= ¥o(t)— 3o(t)
N
2 feo(r)

N, =100x—— [%]

Z,|y@(r)| (5-28)
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Detecting non-linearity

Ideally a system should be classified as linear, or non-linear prior to modelling
and thus warrant the use of a non-linear model. The general problem with non-
linear modelling is determining which type of non-linearity, if any, is
applicable. This could be polynomial, exponential, dead bands, signum
functions or any other type of non-linearity. This difficulty is not encountered
in linear systems modelling, which has largely attributed to the popularity of

linear modelling.

Billings and Fadzil [ 6 ] suggested to plot the system gain against amplitude for
a series of step inputs of varying amplitudes. This method is however not
suited to practical mechanical systems, especially so for servo-hydraulic testing

applications. Another method as suggested by Billings and Voon [ 8 ] showed
that whenever the input: u(t) + b, -z;(t)=0, b #0 is applied to a system, the
system cannot be linear if Z, () # z(¢) where Z,(¢)and Z(z) are the mean levels

of the system output for the inputs b (i.e. u(z) = 0 ) and u(t)+b respectively. In
theory, this method based on evaluation of system mean responses is applicable
to most servo-hydraulic test systems. In practice, however, comparison
between linear and non-linear modelling of a system proved the best practical
method of detecting non-linearity. Typically a system which proved difficult to
model linearly was then identified using the NARX formulation. Generally the
optimal model order as found in the linear case was then used along with a
quadratic polynomial. If the modelling results improved, but remained
unsatisfactory, a cubic model could be used. Application examples were the
use of NARX techniques did improve modelling and simulation results are

presented in Chapter 6.
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Chapter 6

Application of non-linear system identification

The principles introduced in chapter 5 were implemented into a comprehensive
toolbox of NARX related Matlab M-functions (see Appendix F). These functions
include non-linear system identification and simulation tools that allow relative easy
access to complex mathematical routines capable of modelling severely non-linear
MIMO dynamic systems. All applications, NARX and the various modifications
thereof, make use of a full parameter set estimation technique based on the orthogonal

decomposition method described in Section 5.3.

In general, practical test systems did not warrant the use of the non-linear techniques.
NARX techniques did not necessarily render improved simulation results on test
systems for which the linear QanTiM techniques failed to accurately simulated system

responses. Typical examples of such test systems are listed in Table 6.1.

Table 6.1 Test rigs were NARX did not alleviate problems encountered with QanTill

No. of axis Test specimen / configuration Desired response
7 Commercial vehicle load body [ 13 ] Operational acceleration response
7 Commercial vehicle load body [ 59 ] Operational acceleration response
7 Chassis mounted fuel tank [ 17 ] Operational acceleration response
5 Aircraft engine cradle [ 12 ] Pre-defined flight load spectrum
4 Full vehicle road simulation [ 24 ] Operational acceleration response
3 Heavy vehicle engine assembly [ 45 | Operational acceleration response
2 Commercial vehicle fuel tank assembly [ 50 ] Operational acceleration response
1 Motorcycle rear wheel simulator (LGI) Operational strain response

Some test systems did however render improved simulation results with NARX
techniques. Furthermore, the NARX technique showed potential as a general
modelling tool, capable of accurately modelling highly non-linear dynamic systems.
Examples of NARX modelling and simulations are presented for five practical test

systems.

86



6.1.

University of Pretoria- etd Cater, CR (1997)

Case study 1: Non-linear elastomeric damper

Elastomeric damper units generally show highly non-linear stiffness
characteristics.  The static displacement / load relationship of an elastomeric
cabin mounting damper used on off-road vehicles is shown in Figure 6.1(a).

The damper unit showed severe non-linearity including hystiresis.

a) b)

3 y
z '
£ //
82 A, o
g | 7
el
Q I"’_:;_:“J—V -
-1 e e
o] 2 4 6 8
Displacement [mm)]

Figure 6.1 Elastomeric damper static stiffness characteristics and test set-up

Two application examples are presented for the elastomeric damper test
system shown in Figure 6.1(b):

e Test1l: A road simulation test, reproducing damper load responses
measured while travelling through an obstacle on a rough gravel
road.

o Test2: The damper test system is utilised to demonstrate the application

of non-linear error signal modelling.
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Reconstruction of elastomeric damper field load response

The damper unit was subjected to tests that simulate loads measured
whilst negotiating a slow ditch. The dynamic response of the damper
unit was simulated using linear QanTiM methods, as well as the
condensed NARX model structure described in Section 5.4.1. The
simulation procedures and results are summarised in Table 6.2 and
Table 6.3. The simulation error values (see Section 5.7) are calculated
for simulation results prior to any iteration, i.e. a comparison of

DESRES with ITOORES.

Table 6.2 Elastomeric damper road simulation test — System summary

Test description: ~ Simulation of elastomeric damper load response

Model bandwidth: 0 Hz to 25 Hz Bandwidth

System Inputs System Outputs

Actuator displacement drive Damper load response

Table 6.3 Elastomeric damper simulation results

Simulation procedure Simulation error
QanTiM 6™ order model (inverse) 57 %
NARX 4™ order quadratic model (inverse) 24 %

A 6" order QanTiM model showed the best simulation results, with no
further improvement in accuracy with an increase in model order. The
6™ order QanTiM model made use of 13 polynomial terms. The full
parameter set NARX description made use of 54 terms for the 4™ order
quadratic model. The results for both model types are shown in Figure

6.2.
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Force [kN]
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QanTiM achieved response
NARX achieved response
Figure 6.2 QanTiM vs. NARX simulation results

The NARX simulation technique shows clear advantage over the linear
QanTiM technique. QanTiM failed to accurately model, and
subsequently simulate the severe non-linear behaviour of the
elastomeric damper unit. Simulations conducted with NARX show

good reconstruction of load response over a broad amplitude range.
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6.1.2. Non-linear error signal modelling of an elastomeric damper

The elastomeric damper test system presented in Figure 6.1 is utilised to

demonstrate the potential of the non-linear error signal modelling

technique presented in Section 5.5.4. The test system was excited with a

random drive signal (SIMDRV) and the subsequent pseudo desired

response recorded (DESRES). The test system was then identified using

both normal QanTiM and NARX error signal modelling techniques.

SIMDRYV was used as input to these models and the simulated response
(SIMRES) compared with DESRES.

Linear ARX

Linear

/

A
Quadratic error-res
NARX

I

Quadratic
Non-Linear
Model

Linear \

Model

SIMRES

Quadratic
Non-Linear
Model

Figure 6.3 Quadratic non-linear error signal modelling
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A 3% order linear normal QanTiM model was used to characterise the
damper unit’s linear response. A 2% order quadratic model was then
used to model the error signal. No cubic model was used. The non-
linear error signal modelling process is shown in Figure 6.3. The

modelling results are shown in Figure 6.4.

Table 6.4 Elastomeric damper modelling — System summary

Identification and modelling of elastomeric damper load

Test description:
response

Model bandwidth: 0 Hz to 25 Hz

System Inputs System Outputs

Actuator displacement drive Damper load response

Table 6.5 Elastomeric damper modelling resulis

Model description Modelling error

QanTiM 3¢ order model (normal) 67 %

Combined QanTiM 3 order (normal) and
NARX 2¢ order (normal) non-linear error
signal model

35 %

The error signal modelling technique showed a marked improvement
over normal QanTiM (ARX) modelling. The combination of the normal
QanTiM and NARX error signal models did tend to produce oscillating

results.

Although the principle of non-linear error signal modelling proved
useful in modelling and identifying the non-linear elastomeric damper
system, the added complexity does not warrant its use above that of the

condensed NARX formulation.
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Measured signal
Linear model response (Sim L=1)
Non-linear error signal model response (Sim L=2)

Linear + non-linear error signal modelling response (SIMRES)

Figure 6.4 Non-linear error signal modelling response for an elastomeric
damper
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Case study 2: Pneumatic independent trailer suspension

A comprehensive stress analysis exercise was conducted on an independent
pneumatic suspension system for heavy commercial vehicle trailers. The basic
layout of the suspension system is shown in Figure 6.5(a) (Courtesy of ASTAS
Automotive). Finite element analysis and design procedures were
complimented by full-scale simulation testing on a servo-hydraulic test rig.
Strain inputs to both the FEA and simulation testing were measured during
normal trailer operation. The suspension system was instrumented with 10
strain gauges, as well as a pressure transducer in the pneumatic spring unit, as

indicated in Figure 6.5(b).

Figure 6.5 Independent pneumatic suspension: layout and instrumentation

The most critical stress area was found to be on the top flange of the
suspension swing arm, in the region of strain channel three. While driving with
an over-laden trailer on rough road conditions, a substantial DC shift was
recorded for channel three (see Figure 6.8 — measured data). Such a large DC
shift could typically indicate plastic deformation of the component.
Alternatively, instrumentation errors, or so-called welding shakedown could
cause the DC shift. Due to the critical location of channel three, it was of
paramount importance to determine whether plastic deformation did indeed

occur in the suspension swing arm.
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Part of the investigation into the possible plastic deformation involved
modelling strain (or approximate stress) responses with NARX techniques. A
dynamic model was identified between the pressure response in the pneumatic
spring unit, and the strain response at channel three. The dynamic model was
identified and validated on Sections of true data, and subsequently used to
predict the suspect strain response at channel three as a function of the pressure

in the pneumatic spring.

Linear normal QanTiM models failed to model strain response as a function of
pneumatic spring pressure, whereas NARX models provided accurate results
(see Table 6.6 through Table 6.7). Model identification and validation were
conducted with the pressure and strain response time histories shown in Figure
6.6 and Figure 6.7. The measured DC shifts in channel three, as well as the

NARX model simulated stress values are presented in Figure 6.8.

Table 6.6 Pneumatic suspension modelling — System summary

Identification and modelling of independent pneumatic suspension

Test description: ! 8
system strain response

Model bandwidth: 0 Hz to 25 Hz

System Inputs System Outputs

Pneumatic spring unit pressure response Channel three strain response

Table 6.7 Pneumatic suspension modelling results

Model description Modelling error
QanTiM 5™ order model (normal) 95 %
NARX 3¢ order quadratic model (normal) 34 %
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Figure 6.6 Modelling and validation response time histories for the independent

suspension system
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Figure 6.7 Linear vs. non-linear modelling results for the independent
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Figure 6.8 Measured vs. simulated channel three stress response
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The stress levels predicted from the pneumatic spring pressure are well below
the yield strength of the trailing arm material and plastic deformation was ruled
out as a cause for the DC shift. Further investigation attributed the DC shift to

welding shakedown.

The application of NARX modelling techniques allowed accurate simulation of
dynamic stress conditions. If plastic deformation of the suspension trailing arm
did occur, additional design modifications would have been required. The
simulated stress results obtained with the NARX model averted any such

modifications.
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Case study 3: Light truck front suspension

Two examples are presented where split spectra linear-non-linear modelling
techniques were used to describe the dynamic behaviour of systems too
complex for linear normal QanTiM modelling. The two applications further
show the capability of the condensed NARX model formulation to describe
non-square systems (number of inputs # number of outputs). Both application
examples are concerned with modelling, and subsequently simulating,
suspension system stresses as a function of wheel loads for the front
suspension of a light truck [ 16 ] (courtesy of GM corporation, Pontiac,
Michigan). The front suspension of the truck was extensively instrumented
with strain gauges. The wheels were instrumented to measure input loads to the
suspension system. The first example models the longitudinal force in the
upper suspension ball joint as a function of the wheel input loads. The second
example models forces in, and displacements of the upper and lower
suspension control arms as a function of the wheel input loads. A schematic

representation of the suspension system is shown in Figure 6.9.
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Figure 6.9 Light truck front suspension system
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6.3.1. Light truck suspension: Wheel = upper ball joint forces

The upper ball joint longitudinal reactions are modelled to wheel input
loads. This MISO system illustrates the effect of the non-linear terms,

and its improved accuracy achieved over linear modelling.

Table 6.8 Light truck front suspension modelling — System summary

g Identification and modelling of light truck front suspension
Test description: :
system strain response

Model bandwidth: 0 Hz to 25 Hz

System Inputs System Outputs

e Spindle longitudinal force X e Longitudinal forces at the upper
e Spindle lateral force Y suspension ball joint

e  Spindle vertical force Z
e Moment about X axis

e Moment about Y axis

e  Moment about Z axis

Table 6.9 Light truck front suspension modelling results

Model description Modelling error
QanTiM 5™ order model (normal) 46 %
Split spectra NARX model: Frequency split at 2Hz
Low frequency: 34 %
NARX 0™ order (static), quadratic model (normal)
High frequency:

QanTiM 2° order model (normal)
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Both drive and response data are split using a 4™ order digital filter. A
static quadratic model is used to describe the low frequency part,
whereas a second order linear model is used for the high frequency
part. The two frequency ranges are modelled and simulated
independently, the responses are summed to obtain simulation over the

whole spectrum.

The measured and simulated response signals for both the low and high
frequency ranges are shown in Figure 6.10. Note that the low
frequency model produced a near perfect fit (in the graph below, the
two lines are plotted on one another), but the high frequency model is

less accurate.

Low frequency model
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Figure 6.10 Split spectra model response
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Figure 6.11 Split spectra NARX vs. QanTiM modelling response

The modelling of the split spectrum data proved more accurate (see
Figure 6.11) than linear modelling over the entire frequency range. Full
spectrum normal NARX models were unstable, even for low model
orders. The split spectra modelling technique provided accurate

simulation of low frequency non-linear behaviour

A similar technique was used on a MIMO system between the wheel

inputs and the control arm outputs.
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6.3.2. Light truck suspension: Wheel = ball joints

Force [kN]

Again the non-linear-linear modelling technique was used, but this time
to model all the ball joint reactions as a function of the wheel forces.
Modelling results are presented for a non-square MIMO split spectra
NARX model (Table 6.10, Figure 6.12 through Figure 6.20 - Red:
Measured, Blue: Simulated). A static, quadratic NARX model was

combined with a second order linear model.

Table 6.10 Light truck front suspension modelling — System summary

Identification and modelling of light truck front suspension

Test description: :
system strain response

Model bandwidth: 0 Hzto 25 Hz

System Inputs System Outputs

e Spindle Longitudinal force (X) | ® Upper control arm front bushing vertical

e  Spindle lateral force (Y) e  Upper control arm front bushing lateral
e  Spindle vertical force (Z) e  Upper control arm rear bushing vertical
e  Moment about X axis e  Upper control arm rear bushing lateral

e Moment about Y axis e Lower control arm front bushing vertical
e  Moment about Z axis e  Lower control arm front bushing lateral

e Lower control arm rear bushing vertical

e Lower control arm rear bushing lateral

e Lower control arm angular displacement

Time [sec]

Figure 6.12 Upper control arm front bushing vertical modelling results
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Figure 6.13 Upper controf arm front bushing lateral modelling results
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Figure 6.14 Upper control arm rear bushing vertical modelling results
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Figure 6.15 Upper control arm front bushing lateral modelling results
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Figure 6.16 Lower control arm front bushing vertical modelling results
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Figure 6.18 Lower controf arm rear bushing vertical modelling results
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Figure 6.19 Lower control arm rear bushing lateral modelling resuits
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Figure 6.20 Lower control arm angular displacement modelling results
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Case study 4: Radiator test rig

Application of the condensed NARX model formulation in response
reconstruction is demonstrated on a single axis commercial vehicle radiator
test rig [ 15 ]. The radiator test rig is shown in Figure 6.21(a) and is similar to
the one used in the repeatability function application example of Section 3.1.4.
The test rig made use of a rigid mounting frame, installed vertically on a servo-
hydraulic actuator. Mounting pins on the top and bottom radiator tanks fitted
into doughnut shaped rubber mounts. These rubber mounts were fitted to the

rigid mounting frame as per normal vehicle installation.

Two series of tests were conducted on the radiator assembly:
e Testl: A road simulation test, reproducing vertical acceleration
responses measured on the radiator top tank while traversing a
gravel road test route.

e Test2: The vehicle manufacturer specified a constant acceleration,

linear swept sine test.

Figure 6.21 Radiator fest rig

105



University of Pretoria- etd Cater, C R (1997)

6.4.1. Reconstruction of radiator top tank field acceleration response

Structural durability tests required the field acceleration response,
recorded on the radiator top tank, to be reproduced in the laboratory.
Figure 6.21 (b) shows an accelerometer applied to the top tank of the
test vehicle’s radiator for field measurements. An additional
accelerometer was applied to the vehicle chassis, centred below the
radiator. Field responses were recorded while travelling on a gravel road

test route.

Results are presented for three simulation exercises, namely a linear
QanTiM simulation, a NARX simulation and a non-square NARX
simulation. The non-square simulation utilises both the acceleration
response channels to predict the actuator drive signals. The non-square
dynamic system is shown schematically in Figure 6.22. The use of a
second response transducer serves as an aid to improve top tank

acceleration simulation.

Base Acceleration

Actuator drive  —#~ Radiator test rig
EEEEEE——

Top tank acceleration

Figure 6.22 Non-square dynamic system

The accuracy of simulation is determined by the accuracy with which
the top tank acceleration is reproduced. The simulation results are
presented in Table 6.12. The simulation error values (see Section 5.7)

are calculated for simulation results prior to any iteration, ie. a

comparison of DESRES with ITOORES.
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Table 6.11 Radiator road simulation test - System summary

Test description: ~ Simulation of radiator acceleration response

Model bandwidth: 2 Hz to 30 Hz

System Inputs System Qutputs

e  Radiator top tank acceleration

*  Actuator displacement drive e  Radiator base acceleration (only for

non-square simulation)

Table 6.12 Radiator simulation results

Simulation procedure Simulation error
QanTiM 6™ order model (inverse) 35 %
NARX 6™ order quadratic model (inverse) 16 %
Non-square NARX 6™ order quadratic model 14 %
(inverse) (base acceleration: 12 %)

The NARX simulation procedure produced results superior to that of
the linear QanTiM techniques. The NARX procedure allows accurate
simulation of high acceleration peaks, at which the linear techniques
tend to overshoot (Figure 6.23). The improved results may be attributed
to non-linear behaviour of the rubber mounts. The non-square NARX
simulation achieved the best results, even though only marginally so.
The results from the non-square NARX simulation appear identical to

that of the SISO NARX and are not shown.
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Figure 6.23 Radiator simulation test, QanTiM vs. NARX results

Radiator sine sweep tests

The second phase of the radiator test series consisted of a constant
acceleration swept sine test. The test prescribed a 10 Hz to 50 Hz swept
sine response at a constant acceleration amplitude of 1.5 g, measured at
the base of the mounting frame. Due to inherent system resonance, the
prescribed test response fell beyond the capabilities of the actuator’s
servo control system. A response reconstruction technique was
subsequently employed, with the 1.5 g swept sine as desired response
(DESRES).

The aim of the simulation procedure was to identify a model between
the actuator displacement drive signal and the acceleration response on
the radiator mounting frame’s base. This model would then be used to
calculate actuator drive signals, which compensate for the system
resonance, resulting in the desired test response. It is known that
QanTiM has difficulty simulating over areas of resonance [ 45 ][ 50 ].
This application will indicate whether the NARX techniques improve

simulation results over areas of resonance.
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QanTiM and NARX simulation results are compared (Table 6.13 and
Table 6.14)

Table 6.13 Radiator swept sine test —QanTiM simulation summary

Test description: ~ Simulation of radiator swept sine desired response

QanTiM 9" order (inverse)

Miodel description: 8 Hz to 60 Hz Bandwidth

System Inputs System Outputs

Actuator displacement drive Radiator base acceleration

Table 6.14 Radiator swept sine test - NARX simulation summary

Test description: ~ Simulation of radiator swept sine desired response

NARX 6" order quadratic (inverse)

Mozl fieseription: 8 Hz to 60 Hz Bandwidth

System Inputs System Outputs

Actuator displacement drive Radiator base acceleration

The PSD graphs of QanTiM and NARX simulation results (ITOORES)
are presented in Figure 6.24. The graphs show the constant PSD
amplitude of the desired response, and the achieved resonant for both
QanTiM and NARX responses. It is important to note that the effects of
resonance appear worsened in the NARX simulation. The best results
were achieved with extensive iteration of QanTiM simulation results, as
shown in Figure 6.25. Small iteration gain factors were used throughout
the iteration process, but even this approach did not relieve the

resonance problems.
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Figure 6.24 Radiator swept sine test simulation results (ITOORES)
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Figure 6.25 Radiator swept sine test simuliation and iteration results

110



University of Pretoria- etd Cater, C R (1997)

Case study 5: Vehicle damper test rig

The vehicle damper (shock absorber) test rig introduced in Section 3.1.2 is used
to demonstrate NARX simulation procedures. The NARX simulation tests
were conducted on damper units that utilise rubber bush connections (see
Figure 3.3). In addition to exhibiting non-linear load / displacement

characteristics, the rubber bush connections allow play in the damper load path.

For the purpose of this example, a random drive file was used to generate a set
of pseudo field (and subsequently desired) response data. This random drive

file will be referred to as DESDRY, and the subsequent response as DESRES.

The damper test rig was modelled with QanTiM and NARX simulation

procedures.

Table 6.15 Damper simulation - System summary

Test description: ~ Simulation of damper load response

Model bandwidth: 0 Hz to 10 Hz Bandwidth

System Inputs System Outputs

Actuator displacement drive Damper load response

Table 6.16 Damper simulation results

Simulation procedure Simulation error
QanTiM 4" order model (inverse) ITOORES 27 %
QanTiM 4™ order model (inverse) ITOSRES 17 %
NARX 4" order cubic model (inverse) ITOORES 18 %

NARX simulation results surpassed linear results achieved with QanTiM.
Iteration of the QanTiM results improved on the NARX achievement and

produced the best simulation.
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Both the QanTiM and NARX techniques rendered good simulation results, i.e.
good response reconstruction. Good response reconstruction intuitively implies
good reconstruction of system inputs. Thus if FINRES is equal to DESRES,
then FINDRV should intuitively be equal to DESDRV. For the damper test rig
however, the final drive displays no similarity to the drive used to create the
desired response, i.e. FINDRYV is not equal to DESDRV. Figure 6.26 compares
DESDRV with the NARX (ITOODRV) and QanTiM (ITOSDRV) simulation

drive files. The corresponding response files are compared in Figure 6.27

40

Fiel:ﬁr:ﬁive
—— QanTiM simulation drive
— ﬁARx simuiatﬁm dr?ue

Displacement [mmj

Time [sec]

Figure 6.26 Damper test rig drive reconstruction
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Figure 6.27 Damper test rig response reconstruction
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Chapter 7

Conclusions and recommendations for further research -
Part 11

Research into the application of non-linear time domain system identification
techniques in general modelling and simulation of dynamic systems, and more
specifically implementation into structural response reconstruction, was prompted by a
large scale research program surrounding the time domain based QanTiM simulation
software package. Structural response reconstruction is the process where actuator
drive signals are calculated to force rig responses close to actual measured field
responses. Actuator drive signals are found by simulating measured field responses
through an inverse dynamic model of the test system. This inverse dynamic model is
found by using a dynamic system identification technique. In the case of QanTiM, a

linear parametric time domain system identification technique is used.

QanTiM is capable of modelling and subsequently simulating dynamic responses in
most structures. It has however occurred that a dynamic structure could not be
modelled accurately, resulting in poor simulation results. The limitation of existing
linear system identification techniques used within QanTiM was seen as a potential
cause of such modelling difficulty, hence this study into non-linear system

identification and modelling

As outlined in the introduction, an appropriate non-linear system identification
technique was required to be well suited to application in response reconstruction, yet
capable of seamless integration with the existing linear techniques. Furthermore a
black-box type model which was easy to use, and required minimal structure definition
prior to identification was needed to allow implementation within the existing QanTiM
software. The NARX model structure, introduced under the guidance of Billings [ 5 ]
[ 46 ][ 47 ] proved ideal for these applications. The author subsequently developed
and implemented a condensed MIMO NARX model structure for application in

response reconstruction and general non-linear dynamic modelling.
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Non-linear system identification: The condensed NARX model

formulation

Non-linear system identification is relatively new, and limited practical case
study research contributions were available on the subject. Valuable research
contributions were made under the guidance of Billings, who presented the
NARX model formulation (See references[ 4 ] through [ 8 ][ 46 ] & [ 47 ]).
The NARX model formulation proved to be well suited to application within
time domain system identification and response reconstruction [ 54 ]. The
author subsequently combined the NARX formulation with the so called ‘full
order approach’ (suggested by Raath [ 53 ]). These techniques were adapted
and refined, resulting in a condensed NARX model structure, which evolved
into a time domain based non-linear system identification ‘toolbox’ of Matlab
functions. The condensed NARX model structure is capable of identifying,
modelling and simulating systems with polynomial non-linear behaviour. The
condensed NARX functions require minimal structure definition prior to
identification. Two parameters need to be specified for each response channel,

namely the model order and degree of non-linearity.

NARX as a general non-linear modelling tool

The NARX model formulation showed notable potential as a general non-
linear system identification and modelling tool, capable of accurately and
efficiently modelling MISO and MIMO non-linear dynamic systems. Chapter 6
presented four case studies in which the condensed NARX model structure
outperformed normal QanTiM modelling techniques. The NARX based
techniques proved valuable in modelling the dynamic behaviour of rubber and
elastomeric components. Section 6.2 implemented NARX techniques to model
stress levels as a function of pneumatic spring pressure in a trailer suspension
system. In Section 6.3, the condensed NARX model description was used to
identify a model between wheel inputs and ball joint loads for a vehicle front
suspension system. This application showed the condensed NARX model

structure’s ability to model both indeterminate and redundant non-square
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systems. The NARX techniques were further extended to make use of a split-

spectra modelling approach.

Application of the condensed NARX model structure in normal system

identification and modelling is summarised below:

® Accurate, and relatively easy, modelling of MISO and MIMO systems with
severe polynomial non-linearity.

e Well suited to modelling non-square systems, typically modelling more
than one output channels from a single input.

 Potential application would typically be modelling between critical points
on a complex dynamically loaded, non-linear structure.

e The NARX formulation excelled if used in a split-spectra modelling
technique to accommodate low frequency, high displacement non-linear

system behaviour.

NARX structural response reconstruction

In general, the NARX formulation did not allow successful simulation of
systems that could not be simulated using the linear QanTiM software. More
important, most test structures encountered did not show enough non-linearity
to warrant the extra computational effort required by the NARX technique.
Only in a few test systems did the NARX technique render improved
simulation results. Examples of successful non-linear response reconstruction
using the condensed NARX model structure were presented in Chapter 6. The
newly developed NARX techniques allowed accurate simulation of load
responses within an elastomeric damper unit. Similarly, NARX accurately
simulated required load responses within a vehicle suspension damper.
However, after four iterations the results achieved with QanTiM surpassed the
non-linear results. NARX outperformed QanTiM in the simulation of
operational acceleration responses of a vehicle radiator. The non-linear
techniques did however not improve on QanTiM in simulating responses in

areas of system resonance.
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Recommendations for further research

NARX system identification techniques were implemented and subsequently

applied in structural mechanics. The newly developed, condensed NARX

model formulation showed potential as a general, non-linear normal modelling

tool with limited potential in dynamic response reconstruction. The case studies

presented in Chapter 6 showed the potential of NARX techniques, and

prompted recommendations for feature research.

74.1.

74.2.

Alternative non-linear modelling capabilities

Test systems for which NARX modelling capabilities did not improve
on poor QanTiM simulation results were presented in Table 6.1. These
test systems were generally concerned with simulating operational
acceleration response. Furthermore, these test systems made use of
fixtures that allowed some backlash in the load path. The sensitivity of
accelerometer response to system backlash may be the cause of the poor
simulations. The NARX technique’s polynomial structure is not ideally
suited to model backlash response. Dead-band, non-linear system
identification and modelling techniques may resolve backlash related

problems, and improve simulation results.

Non-square modelling and simulation

The application examples showed potential in modelling and simulation
of non-square systems. Section 6.4.1 showed improved simulation
results when two remote response transducers were used to calculate the
actuator drive signals. Non-square modelling capabilities are not
restricted to the condensed NARX model structure. QanTiM techniques
can be modified to accommodate non-square systems. Non-square
simulation may prove valuable to calculate road simulator drive signals,

utilising two remote transducers for each drive channel.
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7.4.3. Modified NARX model structures

Split spectra techniques proved valuable to recreate high frequency
linear dynamics, together with low frequency non-linear behaviour. The
split spectra procedures are however computationally taxing. An
alternative approach to split spectra modelling may be the application of
the quasi-static modified NARX model formulation presented in

Section 5.5.2.
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Appendix A

Survey of non-linear system identification models

Linear system identification boasts with a host of widely applicable, well tried

techniques, however the identification of non-linear systems has not received such

attention or exposure. This can of course be attributed to the inherent complexity of

non-linear systems, and the difficulty of deriving identification algorithms that can be

applied to a reasonably large class on non-linear systems. This survey presents nomn-

linear model formulations, extracted from published literature, for possible application

in response reconstruction. The available models are presented in three groups,

functional series methods, block-orientated methods and finally input-output model

descriptions.

A.l.

Functional series methods

In a survey of non-linear system identification techniques, Billings [ 5 ]
indicated that functional series all stem from the analytic funtionals introduced
by Volterra in 1887. Among these methods are the two formulations postulated
by Weiner and the Volterra-series methods. Volterra’s functional series can be

represented as:

y(t) = i[...jhn(rl,rz,...,rn )f[u(t - 7,)dr,

2 A-1
. (A1)

The functions hy(7},7;,..., 7;) are known as the Volterra kernels that form the

basis of the identification of non-linear systems represented by functional

series.
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Weiner methods

One of the first authors to consider non-linear system identification was
Weiner who devised two distinct approaches using functional series
methods. In theory, these methods are functionally elegant, but Billings
[ 5] indicated Weiner methods to be impractical due to the excessive
number of coefficients required. Further discussions on the Weiner
methods are not included in this study, as it holds no practical use in

any applications.

Volterra-series methods

Consider a system that can be described by just the first two Volterra

kemels [5][ 6 ]:

y(t):]zhl(fl)u(r—-fl)dr, + TJhZ(r,,rz)u(I—'rl)u(r—z‘z)df,drz (A-2)
0 0

Many methods of identifying the kernels can be found [ 5 ][ 8 ][ 9 ].
These methods however require extensive data and great computational
effort. Due to the complexity of the models, the first two kernels as
shown above represent the largest practical model of this type. To
specify the first two Volterra kernels for a simple quadratic non-
linearity in cascade with a first order linear system Billings and Voon [
8 ] predict 400-500 coefficients would be needed. Again the model
would prove to be impractical in actual system identification

techniques.
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Block-orientated systems

A number of systems consisting of interconnections of linear dynamic systems
and non-linear static elements have been formulated to reduce the complexity
and computational effort involved with the functional-series methods. One of
the most studied models, known as the General model, consists of a linear
system followed by a non-linear element in cascade (Figure. A.1 ). Examples
of such models are the Hammerstein model and the Urysons’s model, shown in
Figure A.2 (See Billings [ 5 ]). For the block oriented models, A(t) represents
the dynamic linear part, while H(e) or F(e) represents the non-linear part.

Schematically such models may be represented as [ 55 ]:

“ﬁ—,m hi() ’—’JI F() }—.—» Y

Figure. A.1The General Model

Billings [ 5 ] indicated that the Hammerstein model is found by omitting k(1)
from the general model. It then represents a realisation of the Hammerstein
operator, and Urysons’s model consists of several Hammerstein models in

parallel.

H, [u()]= [ h(t, 7)Flz,u(r)ldz (A-3)

ho

y(t)
uft) | H2(.) h2(t)

Figure A.2 Schematic representation of Urysons’s model
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Input - output model descriptions

Billings [ 5 ] and Sales [ 55 ] indicated that input-output model descriptions are
generally applicable to systems of which little or no a priori information is
available. Furthermore, these systems can be represented by extensions of
linear models and thus form linear-in-the-parameters models. Systems of this
kind form the focus of this study, to enable a general non-linear system
identification technique for multiple-input, multiple-output (MIMO) systems.

A special case of the input/output model description is the so-called NARMAX

model.

A.3.1. The NARMAX model

The non-linear difference equation model known as the NARMAX
model (Non-linear Auto Regressive Moving Average with eXogenous
inputs) is presented by Billings & Leontaritis [ 38 ] to have advantages
over functional-series and block representations. The NARMAX
model, (which is a non-linear extension of the linear ARMAX model)

may be represented as:

y(@) = F'[y(k=1),...,y(k —na),u(t),...,u(t — nb),e(t —1),...,e(t — nc)] + e(t)
(A-4)

With FL[e] some non-linear polynomial function, normally the degree
of the polynomial, L=1,2,3. Various special cases of the NARMAX
model have been identified, some of which are presented in the next

Sections.
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A.3.2. Bilinear model

The bilinear input-output model takes the following form [ 18 ]:

Yy onu

y(t)=a0+Zaj Y=+ D bu(t—i)+ 3 Y ¢, y(t—i)-u(t— j)

i=1 i=1 j=1

(A-5)

In state space formulation the model representation is:

x@+D=A-x(t1)+ B -u(t)+u(t) -C-x(¢)
y(t) =D-x(t)

where: x(1)= state vector

(A-6)

A = state matrix
B = input matrix
C = output matrix

D =direct transmission matrix
According to Chen & Billings [ 18 ] it is however impossible to

approximate all discrete-time systems within the class of discrete-time

bilinear systems.
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Output-Affine and rational models

Chen et al. [ 18 ] presented rational and subsequently output-affine
models for identification of non-linear dynamic systems. The rational
model with polynomial order » and finite polynomials a(e) and b(e)

may be written as:

3 b-(y(t—-l),---,y(r—r),u(t—l),---,u(r—r)) (A7)
a-(y(r—l),---,y(t—r),u(t—l),---,u(t—r))

y(1)

The output affine model is a logical expansion of the rational model:

_Ca (=) (= eul=r) ag)
A T e A N P

These two models are globally valid, however, the response function is

restricted to polynomial response.

The NARX-model

The NARMAX model may be reduced to NARX (Non-linear Auto
Regressive with eXogenous input) by removal of the noise model and
moving average terms (See Billings [ 5 ] and Peyton Jones [ 46][ 47 ]).
NARX is a parametric difference equation that forms a convenient
linear-in-the-parameters equation capable of describing systems with
severe non-linearity. The NARX model description was selected to
investigate the application of non-linear system identification in
dynamic response reconstruction. The NARX model is discussed in

detail in Chapter 5.

y(t) = FL[y(k 1)y, y(k = na),u(t),... u(t — nb)] (A-9)

With FL[e] again some non-linear polynomial function
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Appendix B
NARX Regression techniques

Various methods were developed to rewrite the NARX difference equation of ( 5-8 )
into a matrix notation for implementation within Matlab. The first and most logical
method was to directly implement the difference equation in a sample point loop
algorithm. This however proved extremely slow, especially for MIMO systems with
large numbers of inputs and outputs. The advantages of Matlab were slightly
shadowed by the inherent difficulty to execute loop structures efficiently. On the other
hand lateral use of Matlab’s matrix manipulation capabilities did, in a way,

compensate for the lacking loop performance.

B.1. General sample point loop approach

Direct implementation of the NARX difference equation [ 44 ] resulted in an
extremely slow method. The algorithm made use of a sample point loop, as
well as loop functions to calculate the non-linear terms. It clearly illustrates the
NARX construction and served as a solid foundation on which improved

algorithms were built.
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Algorithm B.1: Sample point loop regression of the NARX difference

equation
INPUT: Dynamic system input/output data: uy(t), us(t) ..., g (t)
Yi(t) yAt) ..., Yuyl(t)
Dynamic model order for each o/p channel: ny.
Degree of non-linearity for each o/p channel: Ly
Number of sample points to use in regression N
Number if input and output channels nu, ny
OUTPUT: Regression matrix for each o/p channel X, X0, Xy

FORk=1.2,..ny
FOR t=12,...N

FOR a=1.2,...ny
FOR i=12,..m
Xi(1i) = ya(1-i)
FOR b=12,..,nu
FOR j=0.2,.n

Xe(tm+14j) = uy (t-i)

IF L, >=2
=
ML.' = 2ﬂk+]

FOR p=12,.., My,
FOR q= p+j, p+2,..., Mu'
c=c+l

Xe(tMy+ c) = Xi(t,p) - Xi(t.q)

IFL,>=3
Mg =2+ 1 +c¢
c=1
FOR p=12,.., My,
FOR q = p+1, p+2,..., My,
FOR r=g+1, g+2,..., My,

c=c+l

Xe(t M+ c) = X (tp) - X (t,q) - Xi(L,r)

Main loop: output channels

Sample point loop

Linear regression
Output channel loop
Output delay loop
Include response data
Input channel loop
Input delay loop

Include drive data

Quadratic manipulation
Counter

Number of linear terms

Increment counter

Calculate quadratic terms

Cubic manipulation

Number of quadratic terms

Reset counter

Increment counter

Calculate cubic terms
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Column-wise Linear regression of the NARX difference equation

An improved method was devised to compute the linear part of the regression
matrix without executing the sample point loop. The algorithm made use of
Matlab’s matrix manipulation capabilities. In each step an entire column is
appended to the regression matrix by selecting the correct indices within the
input-output data. This reduced calculation times from hours, to seconds.
Various methods to further remove the channel and delay order loops were also

developed, but proved too cumbersome to warrant practical implementation.

Algorithm B.2: Linear regression without sample point loop

FOREk=12,..,ny Main loop: output channels
Linear regression
FOR a =12, ny Output channel loop
FOR = L2, ny Output delay loop
Xe=1X, yalme+1-i:N-1)] Include response data
FOR b=1.2,..,nu Input channel loop
FOR j=02,.n Input delay loop
Xe=[Xy up(np+1-j:N-1)] Include drive data

Non-linear regression

Construction of the non-linear part of the regression matrix proved difficult to
implement generally for all degrees of non-linearity, hence the cubic modelling
limitation. Calculating the non-linear terms as described in Algorithm B.1

proved computationally expensive, prompting the development of more elegant

methods.

132



University of Pretoria- etd Cater, C R (1997)

B.3.1. Loop methods:

As described in Algorithm B.1 a combination of L nested loops
construct the correct indices of the linear regression matrix to be
multiplied for each non-linear term. This method proved extremely

slow, especially if combined with a sample point loop as shown in

Algorithm B.3.

Algorithm B.3: Loop method for calculation of non-linear terms

IFL,>=3
My =2n.+1 +c¢
ci=vl
FOR p=12,..., My,
FOR g =p+1, p+2,..., My,
FOR r=gqg+1, g+2,..., My,
c=ctl

Xe(tMpa+ c) = X (t,p) - Xi(tq) - X (t,r)

B.3.2. Matrix manipulation methods

Matlab’s matrix manipulation capabilities were used in a method for
finding the non-linear parts of the regression matrix and proved the
forerunner of more advanced methods. This method presented a
substantial improvement over the loop method of Algorithm B.3, but

was still restricted by a sample point outer loop.

Algorithm B.4: Matrix manipulation of non-linear terms

FORk=12,...,ny
FORt=12,..N
Find XL1(t) the linear part of the regression matrix Xi(t) as in Algorithm B.1
Xu, ()=[y,(¢-1) - y, (t—na) - w(@) w(-1) - u,(t—nb)]

Step 1: =[X.k|(r} sz(t) ka(f)]
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Create the first term matrix. A square matrix called P 1(1‘) is created by multiplying a
(MIx1) unity column matrix with XLI(t).

1 Xk.(r) Xkl(f) ...... ka(t)

1 X, X, @) - - X l8)
P()=|i[X, 0 X, @) - - X,, 0] ; “ :

: Xy (0) "X e e Xy (1)

Create the second term matrix, Pp(t) by simply transposing Py(t):

P,()=P,(0)"

The matrices P7(t) and Pp(t) are then reduced by discarding their upper triangular
parts. Taking the elements in a column-wise fashion matrix Py(t) and Py(t) are
reshaped into vectors.

X, (1)
X, () X, (@0
Pin=|" =
X @) X, @) - o Xy, ()
PO=[X, () X, ) -~ X, () X, () = X @ - - X, 0]
Similarly
X, (1)
X, (1) X, (0
Piri=lhens =
X’f.m(r) ka(t) . ka(l)
P,(O=[X, () X (1) = X, () X () - X () o o X, (0]

The non-linear part of Xy(t) is found by multiplying vectors Py(t) and P(t) in an
element-by-element fashion. The regression matrix Xy(t) if formed by appending XL1}(1)
and XL2y(t) ( -* implies element-by-element multiplication.)

XL2,(t) =P (t)-*P,(1) =

[X, (0 X, (1) X, ()X, (1) X, (0 X, () X, ()X, (1) = X, ()X, 0]

kHI

X, ()= [Xuk(t) Xsz(t)]
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B.3.3. Indexed matrix manipulation methods

The limiting factor in the matrix manipulation technique of Algorithm
B.4 remained the sample point loop (the number of samples, N, is
typically in the order of 10%). A more general method in which the non-
linear calculations need not be done for each sample was devised. This
indexed matrix manipulation method creates a set of matrices
containing the indices for non-linear combinations of the linear terms.
The procedure is similar to that of Algorithm B.4, but does not
manipulate the actual ARX-terms, only the indices thereof.  The
indexed matrix manipulation method presented in Algorithm B.5 may
be used with techniques that implement sample point loops ( Algorithm
B.1 ) as well as those that do not (Algorithm B.2). If used in
conjunction with a sample point loop algorithm, the index vectors P;
and P, must be calculated prior to initiating the loop. The non-linear

terms, XL24(t), are then calculated for each sample by evaluating:

X2, (t) = Xu, (¢, R)- Xle(t, 102)
= Xu, (. [LLL 2.2, My ) Xoy (1 [123,...,2.3,..., M, |

(B-1)

The indexed matrix manipulation method is best suited for use with
column-wise linear regression (Algorithm B.2). The linear regression is
completed for each channel k prior to finding the non-linear
combinations. Combining Algorithm B.2 and Algorithm B.5 provides a
system capable of easily calculating the NARX regression matrix, with

minimal use of loop structures.
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Algorithm B.5: Indexed matrix manipulation of non-linear terms

FORk=1.2,.. .,ny

Step 1:  Create the first term matrix. A square matrix called Py is created by multiplying a (M1x1)
unity column matrix with the vector [1,2,3,...,My,].

1 1 2vig M,
1 . & .3 M,
P=[i- 23 . M]=|1 2 3 M,
1 1 2 M,

Step 2:  Create the second term matrix, Py by simply transposing Py

P’

P
b i1
3. 12 &2 2
=3 3 3 3
M“ MJ'] Mﬂ M”

Step 3: The matrices P; and Py are again reduced by discarding their upper triangular parts.

Taking the elements in a column-wise fashion matrix Py and Py are reshaped into

vectors.
1 1
1.2 2
Po={ 23 = P,=| 3 3 8 =
] 2 3 MLI MLI MLI MLI
P|=[1 i e lts 1 R e Mu] P2=[1 AT e D3 sawe 3 wau Mu]

Step 4:  The vectors P, and P, are the indices of the linear regression matrix XL, to be multiplied
to form the non-linear XL2; so that

Xi2, =Xle(.',P1)'*Xle(.',P2)

Step 5:  Lastly the matrices XL1; and XL2; are appended to form the complete regression matrix:

X, = [Xuk Xsz]
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Appendix C

NARX Parameter estimation: full parameter set

solutions

Parameter estimation for NARX models was presented in Section 5.3, defining the

concept of orthogonal decomposition to solve the Least Squares equation. Consider

again the Least Squares Equation ( 5-17 ) for finding the NARX coefficient vector O .

X" X.0-X"Y=0
U

o=[x" x| -X"-Y

(C-1)

The simplest method would be to implement Matlab functions to directly solve the

inverse [ X"-X | and then find the ©; according to ( C-1).

C.1.

Solving the normal Least Squares equation

Implementation within Matlab gives access to a multitude of numerical
functions and toolboxes which are easily and generally applied to most
engineering problems. It was thus a logical first choice to make use of
Matlab's matrix INVERSE function to find a solution to the Least Squares
equation. The algorithm for finding the NARX parameter vector for channel k,

Oy, can thus be written as shown in Algorithm C.1

Algorithm C.1: Solving the Least Squares equation using Matlab

INPUT: Dynamic system output data: Yi(t), yat) ..., Yuy(t)
Regression matrix for each channel Xy
Number of output channels ny
OUTPUT: NARX coefficient vector for each o/p channel B 05 iy Op
fork =1,2, ..., ny Loop channel numbers
& = INVIX,"*X,) * X" *y, Calculate NARX coefficient vector using

INVERSE and matrix manipulation functions
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This simple and effective solution is unfortunately not ideally suited for
application in large NARX systems. It has major limitations concerning the
size of the system and ill-conditioning of matrices. It is not uncommon for the
NARX matrix [ X"-X ] to consist of more than 10° elements, which poses a

problem for conventional matrix inversion techniques.

Alternatively the Least Squares equation may be considered as a set of linear
equations and solved by a Gaussion elimination scheme. Rewrite Equation

( C-1) into the familiar Ax = b format for systems of linear equations:

X" X-0-X"Y=0

l
[X"-X]@=X"-Y
)
A=[X"-X]
A-x=b {x=0
b=X"Y (C-2)

An elegant and effective method for solving Equation (C-2 ) is by Crout

factorisation of Algorithm C.2, as presented by Burden and Faires [ 11 ].

The matrix X*-X may further tend to be ill-conditioned, which makes inversion
by conventional techniques impossible. If inversion of an ill conditioned X"-X
matrix is possible the NARX coefficient vector ©® may be inaccurate due to an
accumulation of round off errors within the inversion process. The ill
conditioning of a matrix X can be quantified by its rank K[X], the ratio of the
largest to the smallest non-zero singular value of X [ 37 ]. According to Chen
[ 18 ], a normal equation for solving the Least Squares problem can not be used
unless K[X] < 2M2 | with M the number of NARX coefficients within ©. This

creates the demand for more general solution methods.
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Algorithm C.2: Crout factorisation

A=X"*X,
b= XkT * Ve
n = max(size(A));
A=[Ab];
I(1,1) = A(1,1);
u(1,2) = A(1,2)/1(1,1);
fori=2:n-1
I(i,i-1) = A(i,i-1);
I(i,i) = A(1,1)-1(1,i-1) *u(i-1,i);
u(li+1) = a(i,i+1)/1(ii);
l(n,n-1) = A(n,n-1);
l(n,n) = A(n,n)-l(n,n-1)*u(n-1,n);
(1) =a(l,n+1)/1(1,1);

fori=2:n

(i) = (a(in+1)-1(i,i-1)%*z(i-1))/1(i,i);
x(n) = z(n);
fori=n-1:-1:1

x(i) = 2(i) - ufi,i+1)*x(i+1);

Gk =X T)-

Create A matrix

Create b vector

Calculate number of columns in A
Create augmented matrix

Initialise lower triangular matrix L

Initialise upper triangular matrix U

Backward substitution

INPUT: Dynamic system output data: Yi(t), yoft) ..., yny(t)
Regression matrix for each channel X
Number of output channels ny
OUTPUT: NARX coefficient vector for each o/p channel Q,,0,, ...
fork=1, 2, ..; ny Loop channel numbers
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Singular value decomposition

The solution to the Least Squares problem is no longer unique if the rank of X
is less then 22, The singular value decomposition offers a general solution to
the Least Squares problem. The procedure starts with the singular value
decomposition theorem as presented by Marcus [ 43 ]:

The matrix can be the product of a diagonal matrix, S, of the same dimension
as X and with nonnegative diagonal elements in decreasing order, and unitary

matrices Uand V.

S=diag[s1,52,,5] (C-4)

The pseudo-inverse of S is defined as:

(C-5)
S+=diag[s;*,59%, 5371
1
" —, for.s, >0
Npe= si
0, fors, =0
So that:
X+=V.§+. [T (C-6)
Thus the solution to the Least Squares problem is:

Finding the NARX parameters using the singular value decomposition scheme
proved accurate, but time consuming due to the complexity of finding the

singular values of a large matrix (C-3 ).
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C.3. Orthogonal decomposition

Matrix inversion methods based on orthogonalization of the matrix X'-X
proved the most convenient for parameter estimation applications of large
NARX systems [ 18 ][ 36 ]. These methods are generally fast and can be
implemented to be insensitive to low matrix ranks and thus produce accurate

results for most systems.

Recall that a matrix X can be transformed into an orthogonal matrix Q and an

upper triangular matrix R so that [ 32 ].

X=Q R (C8)

Transform the Least Squares equation, in order to find the parameter vector
o.
o=[x" x| -X".¥
XT".X.-0=X"T.Y
(C-97)
Substitute X=Q - R

[Q-R]T-QvR-G:[Q-R]T-Y (C-10)
Q" R"-Q-R-®&=Q"-R".Y

but QT -Q=1I
RTRG):QTRTY (C"].l)
R-0=[R"] . Q"-R"-Y

thus (C-12)

o=[R"]" Q.Y
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Again direct implementation of built in Matlab functions provided a simple
and convenient first approach to finding the NARX parameter vector ©.

Algorithm C.3 shows the use of Matlab s QR orthogonalization function.

Algorithm C.3: Parameter estimation using Matlab orthogonal

decomposition
INPUT: Dynamic system output data: yi(t) yaAt) ..., ymlt)
Regression matrix for each channel X,
Number of output channels ny
OUTPUT: NARX coefficient vector for each o/p channel 7500 s Ol
Jorde= 1y 2.0 Loop channel numbers
1O, R} =0R(X ) Orthogonal decomposition of regression
vector X, using Matlab‘s QR function
Ok = INV(RT ) * 0" %y, Calculate NARX coefficient vector using

INVERSE and matrix manipulation functions

The parameter estimation technique presented in Algorithm C.3 proved
accurate and extremely convenient, but is unfortunately slow for large non-
linear systems. A faster, more elegant approach to orthogonal decomposition
was needed. Various methods are discussed: Golub [ 29 ] reviews methods
applicable to matrix orthogonalization, Chen ef all. [ 18 ] present a classical
and modified Gram Schmidt process specifically for application in parameter
estimation. A Gram Schmidt process as presented by Burden and Faires [ 11 ]
as well as a method proposed by Householder [ 32 ] was modified by the

author for application in NARX parameter estimation.
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C.3.1. Gram Schmidt

The Gram Schmidt process is commonly used in numerical analysis for
applications ranging from finding eigen values, solving sets of
numerical equations, finding matrix inverses and more specifically
orthogonalization of matrices. A typical example is that presented by
Burden and Faires [ 11 ]. A more formal Gram Schmidt approach,
specifically adapted for parameter estimation, is presented by Chen er
all [ 18 ]. This procedure is an adaptation of the method presented by
Golub [ 29 ] and makes use of an auxiliary model:

Y=W-g (C-13)

With W an orthogonal regression matrix and g an auxiliary parameter
vector. Consider the factorisation of the regression matrix X into a
upper triangular matrix A and an orthogonal matrix W. The matrices W

and A are calculated according to Algorithm C.4

X=W-A
1 Xy Gy 0 Quy )
Loy - gy
A= B
Loy
— 1 -
W=[w, - w,] (C-14)

The N by M matrix W has orthogonal columns that satisfy:

WLW =D (C-15)

With D a positive diagonal matrix such that:

X".X = ADA (C-16)
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Algorithm C.4: Calculation of W and A for Gram Schmidt process

INPUT: Regression matrix for each channel X
Number of NARX parameters M
OUTPUT:  Orthogonal regression matrix W
upper triangular matrix A
W, =X, Initiate process by setting column 1 of W

equal to column 1 of X

fork=23 ..M

foriad B Calculate the k™ column of W and k™ row of

-7 4
Q. = WX, (for W and X the subscript indicates the
oW W, column number)

The auxiliary parameter vector g is defined so that:

g=D"W'Y (©17)

Using back substitution, the parameter vector © can now readily

be calculated from:

AB®=¢ (C-18)

This classical Gram Schmidt process proved fast, but is very

sensitive to round-off errors [ 18 ].
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C.3.2. Modified Gram Schmidt

Due to the inherent inaccuracies associated with the classical Gram
Schmidt process, Chen et all [ 18 ] further presented a modified Gram
Schmidt procedure for finding the NARX coefficients. The
orthogonalization process for the modified Gram Schmidt method is

presented in Algorithm C.5

Algorithm C.5: Calculation of W and A for modified Gram

Schmidt process

INPUT: Regression matrix for each channel X,
Number of NARX parameters M
OUTPUT:  Orthogonal regression matrix W
upper triangular matrix A
X% =x Initiate process by setting the matrix X%
equal to X
Jork=l1, 2,3 ., M1
WO =y 6 Calculate the k" column of W and k" row of
k =l A

fori=12, .., k-1 (for W and X the subscript indicates the

W =Xy column number)
4 k=1
w,Tx
= :
ki T
W
W) _ o D
LS, —OuW,
— g (M=T)
Wy =Xy

The elements of the auxiliary parameter vector g are calculated

according to Algorithm C.6.
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Algorithm C.6: Calculation of auxiliary parameter vector g for the

modified Gram Schmidt process

INPUT: Orthogonal regression matrix w
Number of NARX parameters M
OUTPUT:  Auxiliary parameter vector g
y©@ =y Initiate process by setting Y equal to X

fork=1,2,3,.., M-I

WkT .Y *h Calculate the k™ element of g and rewrite Y*
g, =—— N
) w kT W, (for W the subscript indicates the column
: = number
YO =YD g )

This modified Gram Schmidt procedure is not as fast as the classical
method, but proved numerically superior and very accurate since round
off errors are not accumulated. The modified Gram Schmidt procedure
is slow due to the complex loop structures required during the
orthogonalization process. An adapted version of this modified Gram
Schmidt algorithm proved to be the most effective method for NARX
parameter estimation. This method combined the classical Gram

Schmidt technique with Matlab's QR function as shown in Algorithm
7.
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Algorithm C.7: Combined Matlab Gram Schmidt parameter

estimation

INPUT: Dynamic system output data:
Regression matrix for each channel

Number of output channels

Jork=1 2 ..,ny
[Q,R]=0R(X,)

[dum,M]=size(X; );

g=0"y
O (M) = g(M)/R(M,M);
forj=M-1:-1:1
6 (j) =
(8U)-(R(.j+1:M)*O (j+1:M,1)))/R(j.j)

Yi(t), yat) ..., ynyt)
Xi

Ty,

OUTPUT: NARX coefficient vector for each channel 67,165, O

Loop channel numbers

Orthogonal decomposition of
regression  vector X, using
Matlab‘s QR function

Calculate number of columns in
regression matrix X

Calculate NARX  coefficient
vector
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C.3.3. Householder

A parameter estimation technique based on the orthogonalization proposed by
Householder [ 32 | and again presented by Golub [ 29 ] and Chen [ 18 ] for
application in parameter estimation, is given in Algorithm C.8. Augment the
matrix Q with a further N-M orthonormal columns to make up a full set of N

orthonormal vectors for an N-dimensional Euclidean space:

QZ[Q aMH aN]:[QMQN—M] (C-19)

Then

Lo R (C-20)
X=QR=0Q
0
Where R is a M x M upper triangular matrix and QTcan be used to

triangularize X.

If Q"y is partitioned into:

. }M (C-21)
e y_QL’j }N_M
We have:
ly-x-0l=[0"0-X-0)f -y -Re6f+fy]  ©2)

The Least Squares estimates can therefore be obtained by solving the triangular

system:

R-O=y, (C-23)
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Algorithm C.8: Householder parameter estimation

INPUT: Dynamic system output data: Yi(t), ya(t) ..., Yuy(t)
Regression matrix for each channel X
Number of output channels ny

OUTPUT: NARX coefficient vector for each channel By TS O

[N, M]=size(x);

x=[xy];

forj=1:M;
sj = norm(x(j:N,j));
bj = 1/(sj*(sj+abs(x(j,j));
vj = zeros(N,1);
Vi, 1) = x(j.j)+sign(x(j.j)) *sj;
Vi(j+1:N,1) = x(j+1:N,j);
X = x - vi*hjryj

zl = x(1:M,M+1);

22 = x(M+1:NM+1);

x=x(1:M,1:M);

th = inv(x)*z1;
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Appendix D
NARX Parameter estimation: Reduced parameter set

solutions

Because the number of possible NARX candidate terms can easily run iﬁto several thousands
even for ‘moderately’ non-linear MIMO systems optimal multiple selection methods could
reduce the computational effort involved in the system identification process. Unfortunately
the model structure of real systems is rarely known a priori and methods of model structure
determination must therefore be developed and included as a vital part of the identification
procedure. Korenberg [ 36 ] indicates that “provided the significant terms in the model can be
detected, models with fewer than ten terms are usually sufficient to capture the dynamics of
highly non-linear processes.” Various studies [ 38 ][ 36 ][ 6 ], have been undertaken into
structure detection for non-linear parametric models. More specifically Chen [ 18 ] surveyed
methods for finding a reduced NARX equation i.e. discarding terms in the NARX equation
which do not contribute to the dynamic behaviour of the system. These structure reduction
schemes are presented for the parameter estimation techniques of Appendix C. These
methods all require the full set of NARX coefficients to be available for evaluation, thus an
initial full set regression and parameter estimation is required prior to structure detection.
Research into finding the significant terms within the NARX model prior to parameter

estimation proved fruitless. The basic structure detection scheme is presented in Figure D.1.
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R
Dynamic idres
m System —
N ——
NARX
Regression

% |
Parameter estimation
Reduced parameter

Full parameter set st

Sub-set
selection

Indices for reduced
parameter set

Create new regression
matrix using reduced
parameter sub-set

Parameter estimation

Figure D.1: Reduced sub-set selection

The structure detection processes proved computationally cumbersome. More importantly
simulation of the NARX models proved insensitive to the number of terms involved. The
general conclusion is that the amount of effort concerned with model reduction does not
warrant the implementation thereof. Full parameter set modelling proved more practical.

Some of the reduction techniques investigated are listed in Table D.1.

Table D.1 Parameter reduction methods
1 | Stepwise regression

2 | Singular value decomposition

3 | Orthogonal decomposition

Gram Schmidt

Modified Gram Schmidt

Householder

4 | Diverse methods

5 | Eigen value methods
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Appendix E

Polynomial expansion of example 5.1

The polynomial expansion of a second orderquadratic 2-input, 1 -outputmodel.
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Appendix F

Summary of functions

The research into application of NARX system identification procedures led to the

development of a toolbox of Matlab M-functions for non-linear system identification, and

response reconstruction. Some of the M-functions, together with a short description, are listed

below:

NLID.M Non-linear system identification to condensed NARX formulation

NLSIM.M Simulation of SISO condensed NARX models

NLMIMO.M Simulation of MIMO condensed NARX models

NLINVID.M Inverse Non-linear system identification to condensed NARX
formulation for use in response reconstruction

NLINVSIM.M Inverse simulation of MIMO condensed NARX models for use in
response reconstruction

IDARX.M Linear ARX system identification. User friendly implementation of
Matlab’s ARX function

SIMARX.M Linear simulation of ARX models. User friendly implementation of
Matlab’s IDSIM function

THQR.M NARX parameter estimation using Orthogonal decomposition

REGRES.M Regression of time history data sets for use with NLID.M and
NLINVID.M

REPEAT.M Repeatability function

MAKEMOD.M Random non-linear model generator

NEWPSD.M Rig specific identification PSD generator

QFIT.M Modified QanTiM error function
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Appendix G

QanTiM: a practical solution to response reconstruction

Figure G.1 is a simplified schematic representation of the QanTiM simulation process
(See [ 34 ] & [ 35]). The flow diagram shows relevant file names, and their locations
within the process. The general response processing icon represents possible high-pass
and low-pass filtering, as well as DC-offset removal as applied to all response data.
The IDDRYV processing icon represents filtering operations to identification drive data.
Both these processing functions make use of parameters set up in the data processing
window and are implemented into QanTiM as a direct result of the empirical research

presented in Chapter 3.

General
Hesponse
processin

Calibration

General
Response
processin:

1D signal details:
PSD
Amplitude

~ UYDAT |a

IDENTIFY MODEL Adapt desired
response
|
SIM DESHRES

RITOORES
1
ITO2RES

R

General
Response
processing

w ITOODAY
ITO1DRY ‘
1

ITo20RV_ |

FINDRV21

Figure G.1 QanTiM process
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Filter F g,
Filter Fy;
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Response signal processing Identification drive signal processing

Figure G.2 General processing functions

Figure G.3 shows a map of QanTiM windows and relevant operations. Initial test
parameters such as the working directory, and the system configuration are applicable

to all QanTiM operations. Similarly, the data processing parameters, which include

filtering and DC offset removal functions, apply throughout the simulation module.

Matlab
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Eng unit calibration
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Figure G.3 QanTiM software map
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