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Appendix A

Survey of non-linear system identification models

Linear system identification boasts with a host of widely applicable, well tried

techniques, however the identification of non-linear systems has not received such

attention or exposure. This can of course be attributed to the inherent complexity of

non-linear systems, and the difficulty of deriving identification algorithms that can be

applied to a reasonably large class on non-linear systems. This survey presents nomn-

linear model formulations, extracted from published literature, for possible application

in response reconstruction. The available models are presented in three groups,

functional series methods, block-orientated methods and finally input-output model

descriptions.

A.l.

Functional series methods

In a survey of non-linear system identification techniques, Billings [ 5 ]
indicated that functional series all stem from the analytic funtionals introduced
by Volterra in 1887. Among these methods are the two formulations postulated
by Weiner and the Volterra-series methods. Volterra’s functional series can be

represented as:

y(t) = i[...jhn(rl,rz,...,rn )f[u(t - 7,)dr,

2 A-1
. (A1)

The functions hy(7},7;,..., 7;) are known as the Volterra kernels that form the

basis of the identification of non-linear systems represented by functional

series.
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Weiner methods

One of the first authors to consider non-linear system identification was
Weiner who devised two distinct approaches using functional series
methods. In theory, these methods are functionally elegant, but Billings
[ 5] indicated Weiner methods to be impractical due to the excessive
number of coefficients required. Further discussions on the Weiner
methods are not included in this study, as it holds no practical use in

any applications.

Volterra-series methods

Consider a system that can be described by just the first two Volterra

kemels [5][ 6 ]:

y(t):]zhl(fl)u(r—-fl)dr, + TJhZ(r,,rz)u(I—'rl)u(r—z‘z)df,drz (A-2)
0 0

Many methods of identifying the kernels can be found [ 5 ][ 8 ][ 9 ].
These methods however require extensive data and great computational
effort. Due to the complexity of the models, the first two kernels as
shown above represent the largest practical model of this type. To
specify the first two Volterra kernels for a simple quadratic non-
linearity in cascade with a first order linear system Billings and Voon [
8 ] predict 400-500 coefficients would be needed. Again the model
would prove to be impractical in actual system identification

techniques.
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Block-orientated systems

A number of systems consisting of interconnections of linear dynamic systems
and non-linear static elements have been formulated to reduce the complexity
and computational effort involved with the functional-series methods. One of
the most studied models, known as the General model, consists of a linear
system followed by a non-linear element in cascade (Figure. A.1 ). Examples
of such models are the Hammerstein model and the Urysons’s model, shown in
Figure A.2 (See Billings [ 5 ]). For the block oriented models, A(t) represents
the dynamic linear part, while H(e) or F(e) represents the non-linear part.

Schematically such models may be represented as [ 55 ]:

“ﬁ—,m hi() ’—’JI F() }—.—» Y

Figure. A.1The General Model

Billings [ 5 ] indicated that the Hammerstein model is found by omitting k(1)
from the general model. It then represents a realisation of the Hammerstein
operator, and Urysons’s model consists of several Hammerstein models in

parallel.

H, [u()]= [ h(t, 7)Flz,u(r)ldz (A-3)

ho

y(t)
uft) | H2(.) h2(t)

Figure A.2 Schematic representation of Urysons’s model
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Input - output model descriptions

Billings [ 5 ] and Sales [ 55 ] indicated that input-output model descriptions are
generally applicable to systems of which little or no a priori information is
available. Furthermore, these systems can be represented by extensions of
linear models and thus form linear-in-the-parameters models. Systems of this
kind form the focus of this study, to enable a general non-linear system
identification technique for multiple-input, multiple-output (MIMO) systems.

A special case of the input/output model description is the so-called NARMAX

model.

A.3.1. The NARMAX model

The non-linear difference equation model known as the NARMAX
model (Non-linear Auto Regressive Moving Average with eXogenous
inputs) is presented by Billings & Leontaritis [ 38 ] to have advantages
over functional-series and block representations. The NARMAX
model, (which is a non-linear extension of the linear ARMAX model)

may be represented as:

y(@) = F'[y(k=1),...,y(k —na),u(t),...,u(t — nb),e(t —1),...,e(t — nc)] + e(t)
(A-4)

With FL[e] some non-linear polynomial function, normally the degree
of the polynomial, L=1,2,3. Various special cases of the NARMAX
model have been identified, some of which are presented in the next

Sections.
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A.3.2. Bilinear model

The bilinear input-output model takes the following form [ 18 ]:

Yy onu

y(t)=a0+Zaj Y=+ D bu(t—i)+ 3 Y ¢, y(t—i)-u(t— j)

i=1 i=1 j=1

(A-5)

In state space formulation the model representation is:

x@+D=A-x(t1)+ B -u(t)+u(t) -C-x(¢)
y(t) =D-x(t)

where: x(1)= state vector

(A-6)

A = state matrix
B = input matrix
C = output matrix

D =direct transmission matrix
According to Chen & Billings [ 18 ] it is however impossible to

approximate all discrete-time systems within the class of discrete-time

bilinear systems.
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Output-Affine and rational models

Chen et al. [ 18 ] presented rational and subsequently output-affine
models for identification of non-linear dynamic systems. The rational
model with polynomial order » and finite polynomials a(e) and b(e)

may be written as:

3 b-(y(t—-l),---,y(r—r),u(t—l),---,u(r—r)) (A7)
a-(y(r—l),---,y(t—r),u(t—l),---,u(t—r))

y(1)

The output affine model is a logical expansion of the rational model:

_Ca (=) (= eul=r) ag)
A T e A N P

These two models are globally valid, however, the response function is

restricted to polynomial response.

The NARX-model

The NARMAX model may be reduced to NARX (Non-linear Auto
Regressive with eXogenous input) by removal of the noise model and
moving average terms (See Billings [ 5 ] and Peyton Jones [ 46][ 47 ]).
NARX is a parametric difference equation that forms a convenient
linear-in-the-parameters equation capable of describing systems with
severe non-linearity. The NARX model description was selected to
investigate the application of non-linear system identification in
dynamic response reconstruction. The NARX model is discussed in

detail in Chapter 5.

y(t) = FL[y(k 1)y, y(k = na),u(t),... u(t — nb)] (A-9)

With FL[e] again some non-linear polynomial function
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Appendix B
NARX Regression techniques

Various methods were developed to rewrite the NARX difference equation of ( 5-8 )
into a matrix notation for implementation within Matlab. The first and most logical
method was to directly implement the difference equation in a sample point loop
algorithm. This however proved extremely slow, especially for MIMO systems with
large numbers of inputs and outputs. The advantages of Matlab were slightly
shadowed by the inherent difficulty to execute loop structures efficiently. On the other
hand lateral use of Matlab’s matrix manipulation capabilities did, in a way,

compensate for the lacking loop performance.

B.1. General sample point loop approach

Direct implementation of the NARX difference equation [ 44 ] resulted in an
extremely slow method. The algorithm made use of a sample point loop, as
well as loop functions to calculate the non-linear terms. It clearly illustrates the
NARX construction and served as a solid foundation on which improved

algorithms were built.
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Algorithm B.1: Sample point loop regression of the NARX difference

equation
INPUT: Dynamic system input/output data: uy(t), us(t) ..., g (t)
Yi(t) yAt) ..., Yuyl(t)
Dynamic model order for each o/p channel: ny.
Degree of non-linearity for each o/p channel: Ly
Number of sample points to use in regression N
Number if input and output channels nu, ny
OUTPUT: Regression matrix for each o/p channel X, X0, Xy

FORk=1.2,..ny
FOR t=12,...N

FOR a=1.2,...ny
FOR i=12,..m
Xi(1i) = ya(1-i)
FOR b=12,..,nu
FOR j=0.2,.n

Xe(tm+14j) = uy (t-i)

IF L, >=2
=
ML.' = 2ﬂk+]

FOR p=12,.., My,
FOR q= p+j, p+2,..., Mu'
c=c+l

Xe(tMy+ c) = Xi(t,p) - Xi(t.q)

IFL,>=3
Mg =2+ 1 +c¢
c=1
FOR p=12,.., My,
FOR q = p+1, p+2,..., My,
FOR r=g+1, g+2,..., My,

c=c+l

Xe(t M+ c) = X (tp) - X (t,q) - Xi(L,r)

Main loop: output channels

Sample point loop

Linear regression
Output channel loop
Output delay loop
Include response data
Input channel loop
Input delay loop

Include drive data

Quadratic manipulation
Counter

Number of linear terms

Increment counter

Calculate quadratic terms

Cubic manipulation

Number of quadratic terms

Reset counter

Increment counter

Calculate cubic terms
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Column-wise Linear regression of the NARX difference equation

An improved method was devised to compute the linear part of the regression
matrix without executing the sample point loop. The algorithm made use of
Matlab’s matrix manipulation capabilities. In each step an entire column is
appended to the regression matrix by selecting the correct indices within the
input-output data. This reduced calculation times from hours, to seconds.
Various methods to further remove the channel and delay order loops were also

developed, but proved too cumbersome to warrant practical implementation.

Algorithm B.2: Linear regression without sample point loop

FOREk=12,..,ny Main loop: output channels
Linear regression
FOR a =12, ny Output channel loop
FOR = L2, ny Output delay loop
Xe=1X, yalme+1-i:N-1)] Include response data
FOR b=1.2,..,nu Input channel loop
FOR j=02,.n Input delay loop
Xe=[Xy up(np+1-j:N-1)] Include drive data

Non-linear regression

Construction of the non-linear part of the regression matrix proved difficult to
implement generally for all degrees of non-linearity, hence the cubic modelling
limitation. Calculating the non-linear terms as described in Algorithm B.1

proved computationally expensive, prompting the development of more elegant

methods.
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B.3.1. Loop methods:

As described in Algorithm B.1 a combination of L nested loops
construct the correct indices of the linear regression matrix to be
multiplied for each non-linear term. This method proved extremely

slow, especially if combined with a sample point loop as shown in

Algorithm B.3.

Algorithm B.3: Loop method for calculation of non-linear terms

IFL,>=3
My =2n.+1 +c¢
ci=vl
FOR p=12,..., My,
FOR g =p+1, p+2,..., My,
FOR r=gqg+1, g+2,..., My,
c=ctl

Xe(tMpa+ c) = X (t,p) - Xi(tq) - X (t,r)

B.3.2. Matrix manipulation methods

Matlab’s matrix manipulation capabilities were used in a method for
finding the non-linear parts of the regression matrix and proved the
forerunner of more advanced methods. This method presented a
substantial improvement over the loop method of Algorithm B.3, but

was still restricted by a sample point outer loop.

Algorithm B.4: Matrix manipulation of non-linear terms

FORk=12,...,ny
FORt=12,..N
Find XL1(t) the linear part of the regression matrix Xi(t) as in Algorithm B.1
Xu, ()=[y,(¢-1) - y, (t—na) - w(@) w(-1) - u,(t—nb)]

Step 1: =[X.k|(r} sz(t) ka(f)]
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Create the first term matrix. A square matrix called P 1(1‘) is created by multiplying a
(MIx1) unity column matrix with XLI(t).

1 Xk.(r) Xkl(f) ...... ka(t)

1 X, X, @) - - X l8)
P()=|i[X, 0 X, @) - - X,, 0] ; “ :

: Xy (0) "X e e Xy (1)

Create the second term matrix, Pp(t) by simply transposing Py(t):

P,()=P,(0)"

The matrices P7(t) and Pp(t) are then reduced by discarding their upper triangular
parts. Taking the elements in a column-wise fashion matrix Py(t) and Py(t) are
reshaped into vectors.

X, (1)
X, () X, (@0
Pin=|" =
X @) X, @) - o Xy, ()
PO=[X, () X, ) -~ X, () X, () = X @ - - X, 0]
Similarly
X, (1)
X, (1) X, (0
Piri=lhens =
X’f.m(r) ka(t) . ka(l)
P,(O=[X, () X (1) = X, () X () - X () o o X, (0]

The non-linear part of Xy(t) is found by multiplying vectors Py(t) and P(t) in an
element-by-element fashion. The regression matrix Xy(t) if formed by appending XL1}(1)
and XL2y(t) ( -* implies element-by-element multiplication.)

XL2,(t) =P (t)-*P,(1) =

[X, (0 X, (1) X, ()X, (1) X, (0 X, () X, ()X, (1) = X, ()X, 0]

kHI

X, ()= [Xuk(t) Xsz(t)]
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B.3.3. Indexed matrix manipulation methods

The limiting factor in the matrix manipulation technique of Algorithm
B.4 remained the sample point loop (the number of samples, N, is
typically in the order of 10%). A more general method in which the non-
linear calculations need not be done for each sample was devised. This
indexed matrix manipulation method creates a set of matrices
containing the indices for non-linear combinations of the linear terms.
The procedure is similar to that of Algorithm B.4, but does not
manipulate the actual ARX-terms, only the indices thereof.  The
indexed matrix manipulation method presented in Algorithm B.5 may
be used with techniques that implement sample point loops ( Algorithm
B.1 ) as well as those that do not (Algorithm B.2). If used in
conjunction with a sample point loop algorithm, the index vectors P;
and P, must be calculated prior to initiating the loop. The non-linear

terms, XL24(t), are then calculated for each sample by evaluating:

X2, (t) = Xu, (¢, R)- Xle(t, 102)
= Xu, (. [LLL 2.2, My ) Xoy (1 [123,...,2.3,..., M, |

(B-1)

The indexed matrix manipulation method is best suited for use with
column-wise linear regression (Algorithm B.2). The linear regression is
completed for each channel k prior to finding the non-linear
combinations. Combining Algorithm B.2 and Algorithm B.5 provides a
system capable of easily calculating the NARX regression matrix, with

minimal use of loop structures.
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Algorithm B.5: Indexed matrix manipulation of non-linear terms

FORk=1.2,.. .,ny

Step 1:  Create the first term matrix. A square matrix called Py is created by multiplying a (M1x1)
unity column matrix with the vector [1,2,3,...,My,].

1 1 2vig M,
1 . & .3 M,
P=[i- 23 . M]=|1 2 3 M,
1 1 2 M,

Step 2:  Create the second term matrix, Py by simply transposing Py

P’

P
b i1
3. 12 &2 2
=3 3 3 3
M“ MJ'] Mﬂ M”

Step 3: The matrices P; and Py are again reduced by discarding their upper triangular parts.

Taking the elements in a column-wise fashion matrix Py and Py are reshaped into

vectors.
1 1
1.2 2
Po={ 23 = P,=| 3 3 8 =
] 2 3 MLI MLI MLI MLI
P|=[1 i e lts 1 R e Mu] P2=[1 AT e D3 sawe 3 wau Mu]

Step 4:  The vectors P, and P, are the indices of the linear regression matrix XL, to be multiplied
to form the non-linear XL2; so that

Xi2, =Xle(.',P1)'*Xle(.',P2)

Step 5:  Lastly the matrices XL1; and XL2; are appended to form the complete regression matrix:

X, = [Xuk Xsz]
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Appendix C

NARX Parameter estimation: full parameter set

solutions

Parameter estimation for NARX models was presented in Section 5.3, defining the

concept of orthogonal decomposition to solve the Least Squares equation. Consider

again the Least Squares Equation ( 5-17 ) for finding the NARX coefficient vector O .

X" X.0-X"Y=0
U

o=[x" x| -X"-Y

(C-1)

The simplest method would be to implement Matlab functions to directly solve the

inverse [ X"-X | and then find the ©; according to ( C-1).

C.1.

Solving the normal Least Squares equation

Implementation within Matlab gives access to a multitude of numerical
functions and toolboxes which are easily and generally applied to most
engineering problems. It was thus a logical first choice to make use of
Matlab's matrix INVERSE function to find a solution to the Least Squares
equation. The algorithm for finding the NARX parameter vector for channel k,

Oy, can thus be written as shown in Algorithm C.1

Algorithm C.1: Solving the Least Squares equation using Matlab

INPUT: Dynamic system output data: Yi(t), yat) ..., Yuy(t)
Regression matrix for each channel Xy
Number of output channels ny
OUTPUT: NARX coefficient vector for each o/p channel B 05 iy Op
fork =1,2, ..., ny Loop channel numbers
& = INVIX,"*X,) * X" *y, Calculate NARX coefficient vector using

INVERSE and matrix manipulation functions
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This simple and effective solution is unfortunately not ideally suited for
application in large NARX systems. It has major limitations concerning the
size of the system and ill-conditioning of matrices. It is not uncommon for the
NARX matrix [ X"-X ] to consist of more than 10° elements, which poses a

problem for conventional matrix inversion techniques.

Alternatively the Least Squares equation may be considered as a set of linear
equations and solved by a Gaussion elimination scheme. Rewrite Equation

( C-1) into the familiar Ax = b format for systems of linear equations:

X" X-0-X"Y=0

l
[X"-X]@=X"-Y
)
A=[X"-X]
A-x=b {x=0
b=X"Y (C-2)

An elegant and effective method for solving Equation (C-2 ) is by Crout

factorisation of Algorithm C.2, as presented by Burden and Faires [ 11 ].

The matrix X*-X may further tend to be ill-conditioned, which makes inversion
by conventional techniques impossible. If inversion of an ill conditioned X"-X
matrix is possible the NARX coefficient vector ©® may be inaccurate due to an
accumulation of round off errors within the inversion process. The ill
conditioning of a matrix X can be quantified by its rank K[X], the ratio of the
largest to the smallest non-zero singular value of X [ 37 ]. According to Chen
[ 18 ], a normal equation for solving the Least Squares problem can not be used
unless K[X] < 2M2 | with M the number of NARX coefficients within ©. This

creates the demand for more general solution methods.
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Algorithm C.2: Crout factorisation

A=X"*X,
b= XkT * Ve
n = max(size(A));
A=[Ab];
I(1,1) = A(1,1);
u(1,2) = A(1,2)/1(1,1);
fori=2:n-1
I(i,i-1) = A(i,i-1);
I(i,i) = A(1,1)-1(1,i-1) *u(i-1,i);
u(li+1) = a(i,i+1)/1(ii);
l(n,n-1) = A(n,n-1);
l(n,n) = A(n,n)-l(n,n-1)*u(n-1,n);
(1) =a(l,n+1)/1(1,1);

fori=2:n

(i) = (a(in+1)-1(i,i-1)%*z(i-1))/1(i,i);
x(n) = z(n);
fori=n-1:-1:1

x(i) = 2(i) - ufi,i+1)*x(i+1);

Gk =X T)-

Create A matrix

Create b vector

Calculate number of columns in A
Create augmented matrix

Initialise lower triangular matrix L

Initialise upper triangular matrix U

Backward substitution

INPUT: Dynamic system output data: Yi(t), yoft) ..., yny(t)
Regression matrix for each channel X
Number of output channels ny
OUTPUT: NARX coefficient vector for each o/p channel Q,,0,, ...
fork=1, 2, ..; ny Loop channel numbers
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Singular value decomposition

The solution to the Least Squares problem is no longer unique if the rank of X
is less then 22, The singular value decomposition offers a general solution to
the Least Squares problem. The procedure starts with the singular value
decomposition theorem as presented by Marcus [ 43 ]:

The matrix can be the product of a diagonal matrix, S, of the same dimension
as X and with nonnegative diagonal elements in decreasing order, and unitary

matrices Uand V.

S=diag[s1,52,,5] (C-4)

The pseudo-inverse of S is defined as:

(C-5)
S+=diag[s;*,59%, 5371
1
" —, for.s, >0
Npe= si
0, fors, =0
So that:
X+=V.§+. [T (C-6)
Thus the solution to the Least Squares problem is:

Finding the NARX parameters using the singular value decomposition scheme
proved accurate, but time consuming due to the complexity of finding the

singular values of a large matrix (C-3 ).
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C.3. Orthogonal decomposition

Matrix inversion methods based on orthogonalization of the matrix X'-X
proved the most convenient for parameter estimation applications of large
NARX systems [ 18 ][ 36 ]. These methods are generally fast and can be
implemented to be insensitive to low matrix ranks and thus produce accurate

results for most systems.

Recall that a matrix X can be transformed into an orthogonal matrix Q and an

upper triangular matrix R so that [ 32 ].

X=Q R (C8)

Transform the Least Squares equation, in order to find the parameter vector
o.
o=[x" x| -X".¥
XT".X.-0=X"T.Y
(C-97)
Substitute X=Q - R

[Q-R]T-QvR-G:[Q-R]T-Y (C-10)
Q" R"-Q-R-®&=Q"-R".Y

but QT -Q=1I
RTRG):QTRTY (C"].l)
R-0=[R"] . Q"-R"-Y

thus (C-12)

o=[R"]" Q.Y
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Again direct implementation of built in Matlab functions provided a simple
and convenient first approach to finding the NARX parameter vector ©.

Algorithm C.3 shows the use of Matlab s QR orthogonalization function.

Algorithm C.3: Parameter estimation using Matlab orthogonal

decomposition
INPUT: Dynamic system output data: yi(t) yaAt) ..., ymlt)
Regression matrix for each channel X,
Number of output channels ny
OUTPUT: NARX coefficient vector for each o/p channel 7500 s Ol
Jorde= 1y 2.0 Loop channel numbers
1O, R} =0R(X ) Orthogonal decomposition of regression
vector X, using Matlab‘s QR function
Ok = INV(RT ) * 0" %y, Calculate NARX coefficient vector using

INVERSE and matrix manipulation functions

The parameter estimation technique presented in Algorithm C.3 proved
accurate and extremely convenient, but is unfortunately slow for large non-
linear systems. A faster, more elegant approach to orthogonal decomposition
was needed. Various methods are discussed: Golub [ 29 ] reviews methods
applicable to matrix orthogonalization, Chen ef all. [ 18 ] present a classical
and modified Gram Schmidt process specifically for application in parameter
estimation. A Gram Schmidt process as presented by Burden and Faires [ 11 ]
as well as a method proposed by Householder [ 32 ] was modified by the

author for application in NARX parameter estimation.
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C.3.1. Gram Schmidt

The Gram Schmidt process is commonly used in numerical analysis for
applications ranging from finding eigen values, solving sets of
numerical equations, finding matrix inverses and more specifically
orthogonalization of matrices. A typical example is that presented by
Burden and Faires [ 11 ]. A more formal Gram Schmidt approach,
specifically adapted for parameter estimation, is presented by Chen er
all [ 18 ]. This procedure is an adaptation of the method presented by
Golub [ 29 ] and makes use of an auxiliary model:

Y=W-g (C-13)

With W an orthogonal regression matrix and g an auxiliary parameter
vector. Consider the factorisation of the regression matrix X into a
upper triangular matrix A and an orthogonal matrix W. The matrices W

and A are calculated according to Algorithm C.4

X=W-A
1 Xy Gy 0 Quy )
Loy - gy
A= B
Loy
— 1 -
W=[w, - w,] (C-14)

The N by M matrix W has orthogonal columns that satisfy:

WLW =D (C-15)

With D a positive diagonal matrix such that:

X".X = ADA (C-16)
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Algorithm C.4: Calculation of W and A for Gram Schmidt process

INPUT: Regression matrix for each channel X
Number of NARX parameters M
OUTPUT:  Orthogonal regression matrix W
upper triangular matrix A
W, =X, Initiate process by setting column 1 of W

equal to column 1 of X

fork=23 ..M

foriad B Calculate the k™ column of W and k™ row of

-7 4
Q. = WX, (for W and X the subscript indicates the
oW W, column number)

The auxiliary parameter vector g is defined so that:

g=D"W'Y (©17)

Using back substitution, the parameter vector © can now readily

be calculated from:

AB®=¢ (C-18)

This classical Gram Schmidt process proved fast, but is very

sensitive to round-off errors [ 18 ].
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C.3.2. Modified Gram Schmidt

Due to the inherent inaccuracies associated with the classical Gram
Schmidt process, Chen et all [ 18 ] further presented a modified Gram
Schmidt procedure for finding the NARX coefficients. The
orthogonalization process for the modified Gram Schmidt method is

presented in Algorithm C.5

Algorithm C.5: Calculation of W and A for modified Gram

Schmidt process

INPUT: Regression matrix for each channel X,
Number of NARX parameters M
OUTPUT:  Orthogonal regression matrix W
upper triangular matrix A
X% =x Initiate process by setting the matrix X%
equal to X
Jork=l1, 2,3 ., M1
WO =y 6 Calculate the k" column of W and k" row of
k =l A

fori=12, .., k-1 (for W and X the subscript indicates the

W =Xy column number)
4 k=1
w,Tx
= :
ki T
W
W) _ o D
LS, —OuW,
— g (M=T)
Wy =Xy

The elements of the auxiliary parameter vector g are calculated

according to Algorithm C.6.
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Algorithm C.6: Calculation of auxiliary parameter vector g for the

modified Gram Schmidt process

INPUT: Orthogonal regression matrix w
Number of NARX parameters M
OUTPUT:  Auxiliary parameter vector g
y©@ =y Initiate process by setting Y equal to X

fork=1,2,3,.., M-I

WkT .Y *h Calculate the k™ element of g and rewrite Y*
g, =—— N
) w kT W, (for W the subscript indicates the column
: = number
YO =YD g )

This modified Gram Schmidt procedure is not as fast as the classical
method, but proved numerically superior and very accurate since round
off errors are not accumulated. The modified Gram Schmidt procedure
is slow due to the complex loop structures required during the
orthogonalization process. An adapted version of this modified Gram
Schmidt algorithm proved to be the most effective method for NARX
parameter estimation. This method combined the classical Gram

Schmidt technique with Matlab's QR function as shown in Algorithm
7.
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Algorithm C.7: Combined Matlab Gram Schmidt parameter

estimation

INPUT: Dynamic system output data:
Regression matrix for each channel

Number of output channels

Jork=1 2 ..,ny
[Q,R]=0R(X,)

[dum,M]=size(X; );

g=0"y
O (M) = g(M)/R(M,M);
forj=M-1:-1:1
6 (j) =
(8U)-(R(.j+1:M)*O (j+1:M,1)))/R(j.j)

Yi(t), yat) ..., ynyt)
Xi

Ty,

OUTPUT: NARX coefficient vector for each channel 67,165, O

Loop channel numbers

Orthogonal decomposition of
regression  vector X, using
Matlab‘s QR function

Calculate number of columns in
regression matrix X

Calculate NARX  coefficient
vector
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C.3.3. Householder

A parameter estimation technique based on the orthogonalization proposed by
Householder [ 32 | and again presented by Golub [ 29 ] and Chen [ 18 ] for
application in parameter estimation, is given in Algorithm C.8. Augment the
matrix Q with a further N-M orthonormal columns to make up a full set of N

orthonormal vectors for an N-dimensional Euclidean space:

QZ[Q aMH aN]:[QMQN—M] (C-19)

Then

Lo R (C-20)
X=QR=0Q
0
Where R is a M x M upper triangular matrix and QTcan be used to

triangularize X.

If Q"y is partitioned into:

. }M (C-21)
e y_QL’j }N_M
We have:
ly-x-0l=[0"0-X-0)f -y -Re6f+fy]  ©2)

The Least Squares estimates can therefore be obtained by solving the triangular

system:

R-O=y, (C-23)

148



University of Pretoria- etd Cater, C R (1997)

Algorithm C.8: Householder parameter estimation

INPUT: Dynamic system output data: Yi(t), ya(t) ..., Yuy(t)
Regression matrix for each channel X
Number of output channels ny

OUTPUT: NARX coefficient vector for each channel By TS O

[N, M]=size(x);

x=[xy];

forj=1:M;
sj = norm(x(j:N,j));
bj = 1/(sj*(sj+abs(x(j,j));
vj = zeros(N,1);
Vi, 1) = x(j.j)+sign(x(j.j)) *sj;
Vi(j+1:N,1) = x(j+1:N,j);
X = x - vi*hjryj

zl = x(1:M,M+1);

22 = x(M+1:NM+1);

x=x(1:M,1:M);

th = inv(x)*z1;
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Appendix D
NARX Parameter estimation: Reduced parameter set

solutions

Because the number of possible NARX candidate terms can easily run iﬁto several thousands
even for ‘moderately’ non-linear MIMO systems optimal multiple selection methods could
reduce the computational effort involved in the system identification process. Unfortunately
the model structure of real systems is rarely known a priori and methods of model structure
determination must therefore be developed and included as a vital part of the identification
procedure. Korenberg [ 36 ] indicates that “provided the significant terms in the model can be
detected, models with fewer than ten terms are usually sufficient to capture the dynamics of
highly non-linear processes.” Various studies [ 38 ][ 36 ][ 6 ], have been undertaken into
structure detection for non-linear parametric models. More specifically Chen [ 18 ] surveyed
methods for finding a reduced NARX equation i.e. discarding terms in the NARX equation
which do not contribute to the dynamic behaviour of the system. These structure reduction
schemes are presented for the parameter estimation techniques of Appendix C. These
methods all require the full set of NARX coefficients to be available for evaluation, thus an
initial full set regression and parameter estimation is required prior to structure detection.
Research into finding the significant terms within the NARX model prior to parameter

estimation proved fruitless. The basic structure detection scheme is presented in Figure D.1.
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R
Dynamic idres
m System —
N ——
NARX
Regression

% |
Parameter estimation
Reduced parameter

Full parameter set st

Sub-set
selection

Indices for reduced
parameter set

Create new regression
matrix using reduced
parameter sub-set

Parameter estimation

Figure D.1: Reduced sub-set selection

The structure detection processes proved computationally cumbersome. More importantly
simulation of the NARX models proved insensitive to the number of terms involved. The
general conclusion is that the amount of effort concerned with model reduction does not
warrant the implementation thereof. Full parameter set modelling proved more practical.

Some of the reduction techniques investigated are listed in Table D.1.

Table D.1 Parameter reduction methods
1 | Stepwise regression

2 | Singular value decomposition

3 | Orthogonal decomposition

Gram Schmidt

Modified Gram Schmidt

Householder

4 | Diverse methods

5 | Eigen value methods
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Appendix E

Polynomial expansion of example 5.1

The polynomial expansion of a second orderquadratic 2-input, 1 -outputmodel.
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Appendix F

Summary of functions

The research into application of NARX system identification procedures led to the

development of a toolbox of Matlab M-functions for non-linear system identification, and

response reconstruction. Some of the M-functions, together with a short description, are listed

below:

NLID.M Non-linear system identification to condensed NARX formulation

NLSIM.M Simulation of SISO condensed NARX models

NLMIMO.M Simulation of MIMO condensed NARX models

NLINVID.M Inverse Non-linear system identification to condensed NARX
formulation for use in response reconstruction

NLINVSIM.M Inverse simulation of MIMO condensed NARX models for use in
response reconstruction

IDARX.M Linear ARX system identification. User friendly implementation of
Matlab’s ARX function

SIMARX.M Linear simulation of ARX models. User friendly implementation of
Matlab’s IDSIM function

THQR.M NARX parameter estimation using Orthogonal decomposition

REGRES.M Regression of time history data sets for use with NLID.M and
NLINVID.M

REPEAT.M Repeatability function

MAKEMOD.M Random non-linear model generator

NEWPSD.M Rig specific identification PSD generator

QFIT.M Modified QanTiM error function
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Appendix G

QanTiM: a practical solution to response reconstruction

Figure G.1 is a simplified schematic representation of the QanTiM simulation process
(See [ 34 ] & [ 35]). The flow diagram shows relevant file names, and their locations
within the process. The general response processing icon represents possible high-pass
and low-pass filtering, as well as DC-offset removal as applied to all response data.
The IDDRYV processing icon represents filtering operations to identification drive data.
Both these processing functions make use of parameters set up in the data processing
window and are implemented into QanTiM as a direct result of the empirical research

presented in Chapter 3.

General
Hesponse
processin

Calibration

General
Response
processin:

1D signal details:
PSD
Amplitude

~ UYDAT |a

IDENTIFY MODEL Adapt desired
response
|
SIM DESHRES

RITOORES
1
ITO2RES

R

General
Response
processing

w ITOODAY
ITO1DRY ‘
1

ITo20RV_ |

FINDRV21

Figure G.1 QanTiM process
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Filter F .
e Filter F,
Filter F g,
Filter Fy;
Subtract
DC

Response signal processing Identification drive signal processing

Figure G.2 General processing functions

Figure G.3 shows a map of QanTiM windows and relevant operations. Initial test
parameters such as the working directory, and the system configuration are applicable

to all QanTiM operations. Similarly, the data processing parameters, which include

filtering and DC offset removal functions, apply throughout the simulation module.

Matlab
QanTiM Software Suite

| Working directory |

Test Configuration
Hardware Set-up

Channel selection
Channel descriptions
Sample frequency
Filter frequencies
Full-scale gains

Eng unit calibration

1 I

SIGTA Test & Simulation

Dura

File Management ISimuIation parameters I—
Data Generation
Data Analysis
Data Editing

Simulation bandwidth
Use / ignore DC-offsets

Sequence editor
Test set-up
Trend monitroing
Test control

[ I I

Aquire Data | | Generate ID signals | | Identify Model

[

Simulate

Data acgisition

File descriptions
Plotting functions
PSD functions

f2d processing

Rig / Field calibration

Signal details

PSD generation
Execution of ID test
pre-processing

MISO model order selection
MIMO model identification
MIMO Model fit check

Iteration gains

Auto iterations

Plotting of drive & responses
PSD functions
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Figure G.3 QanTiM software map
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