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Chapter 5

Non-linear time domain system identification:
NARX

Successful implementation of linear ARX - state-space algorithms presented a further
challenge: Non-linear system identification for use in response reconstruction. This
could greatly improve simulation results, and eradicate the need for iterative
linearization of the non-linear system. Investigation into inclusion of non-linear
modelling in the QanTiM simulation system started with a survey of applicable
modelling techniques. This survey is presented in Appendix A. Non-linear model
requirements facilitating inclusion into response reconstruction are similar to that

presented by Raath [ 51 ] for the linear case:

Discrete.

Multivariable.

Time invariant.

Black-box.

Allow stable inversion.

Allow use of model for simulation purposes.

e Accommodate simultaneous multiple-actuator identification.

Furthermore the model would be required to:

e Model highly non-linear systems (cubic polynomials).

e Include non-linear capabilities with minimal extra user input.

e Allow inclusion into existing QanTiM software.
This study investigates the NARX formulation, a polynomial non-linear extension of
the ARX model used by QanTiM. Raath and Verwey [ 54 ], showed that the NARX
model formulation satisfied all the above requirements, especially so for ease of use
and possible compatibility with existing linear software. Detailed descriptions of the
NARX model formulation, as well as the application thereof are given. Non-linear
simulation and its limitations are discussed as well as modifications to the NARX

structure for improved performance and QanTiM compatibility.
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The NARX model

NARX (Non-linear Auto Regressive with eXogenous input) is a parametric
difference equation that forms a convenient linear-in-the-parameters set of
equations capable of describing systems with severe non-linearity. It is a
special case of the general NARMAX [ 18 ] model in which only the system
dynamics are taken into account. The NARMAX model is reduced to NARX
by removal of the noise model and moving average terms, presented by

Billingsetal.[5] [9] and Peyton Jones [46][47].

y(t)=F*[y(k =1),..., y(k — na),u(t — nk),...,u(t — nk — nb)| (5-1)

With FL[ e] some non-linear polynomial function.

5.1.1. MISO-NARX formulation

Consider the MIMO non-linear dynamic system presented in Figure
5.1. As with the linear ARX model, the MIMO-NARX consists of a
combination of MISO models. Combining the NARX MISO models
could however not be done as elegantly as for the ARX models. A
system is identified for each output channel and the MISO NARX
models are then combined in a one-step-ahead simulation routine as
described in Section 5.4. The most general form of the MISO-NARX
model [ 56 ] as shown in equation ( 5-2 ) describes each output y(z) as

a function of inputs () and outputs y;(z). With F"“[e] some non-linear

function.

) — )
(1) Non linear — i)
T MIMO
llnu(t) i E—’yny(t)

Figure 5.1. Non-linear MIMO system
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yk(t)=F"k[y](t—l),...,y](t—na]),yz(t—l),...,yz(t—nag),...y“y(t—1),...,yny(r—nany),...
oottt =nky Yoo (t =0k = nb, Y,y (t —nk, ), u{E—nk, —nb,),...
censthy (E— 1K, )t (E =0k —nb_ )]

nu

(5-2)
where for channel k&: L, = The degree of non-linearity within F
nar = dynamic model order for output y(z)
nbr = dynamic model order for input u(?)

nk,  =time delay

The full order approach as proposed by Raath [ 53 ] is, as with the
linear ARX model, used to greatly simplify modelling. Using this
approach the model format is predicted with only two parameters per
output channel namely: n, the dynamic model order, and L, the degree

of non-linearity. Thus for each channel y() the following applies:

na,=mn,
nbj:ni +1 i:l’z’...,ny
nkj=0 j=12,---,nu

5-3
£ Loy (5-3)

By substituting the full order model parameters ( 5-3 ) into equation

( 5-2 ) the NARX formulation is reduced as shown in equation ( 5-4 ):

V. (8)=F"[y,(t=1,...y,(t = 1), y,(t =1),..., y,(t = By Jsse: g C — Discs Py U — By s
sl (L Jssnsstl (L — 0, AN Y il (F— Ry 1)
wwog e (O Ve 2 (=, +-1)]

(54)
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For a value of L; = I, the NARX model is identical to the linear ARX
so that F*[ARX]|= NARX. NARX is thus a non-linear extension of

the linear ARX as shown in the next Section.

5.1.2. Non-linearity in the NARX model

The NARX-model of ( 5-4 ) is described in terms of some non-linear
function FL[e]. This function finds all unique combinations of Lj-
degree multiples of the linear model terms. The non-linear structure is
introduced in Example 5.1 for a specific MISO system to precede the

more general formulation [ 12 ].

Example 5.1: NARX formulation for a simple MISO system

Non linear

(1)
2x 1 MISO i

The second order linear ARX difference equation for a two-input single
output system is:
y»(@®)=y-1)-a +y,(#-2)aq +
w(t)-b +u(t=1)-b +u(-2)-b +
u,(1)-b, +u,(t—1)-b +u,(t-2)-b_ (5-5)

Using vector notation, we may further reduce it to:

Xun(®)=[n(t=1) »(t=2) w() - w(t-2)] and
Ol:[al, a, b - blﬁ]T
T

=[61, 512 913 913]
= (5-6)

8
y,(t)= 2 Xy (1,i)-6,
i=1
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Now extend this model to the non-linear second order quadratic
NARX-formulation by adding all quadratic combinations of the linear

regression vector Xri,(t).

J=(9,10,--,44)
y,(8) = ZXu](t i)-6, +ZZXL,1(: 7)) Xen (t,8,) 6,
Ry=1R,=1
: (5-7)
=ZX1(I’i)'91f
i=l
=X,(r)*0©
where

X](I)= XLrl(t) XLZI(I) , and

Linear Quadratic

Xio()=[n=1 %(-Dx3(-2) ~ w(e-2)]

This quadratic model contains 44 terms, compared with the eight of the
linear model( 5-6 ). A complete polynomial expansion of ( 5-7 ) is

given in Appendix E.

The general form of the non-linear model is shown below for cubic

(L=3) non-linearity [ 14 ][ 56 1:

¥, ()= quk(r i)-6, +22XUA(I &) Xi1,(1,2,)-6, +222XU,¢(I %) Xit (tr,) X1, (1,8,)- 6, +.

R=IR,=I R=1R,=1Ry=1
Linear part Quadratic part Cubic part
L=1 =2 L=3
R=ny-n+nu(n+1) J=(Mp LM 42, M) J(My+1L M 42,00, M )

(5-8)
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The variable M represents the maximum number of coefficients in the

NARX-equation. In Equation( 5-8 ) the terms M;, and Mj3

respectively represent the number of terms for the quadratic and cubic
parts of the NARX-model. The non-linear model is still linear-in-the-
parameters even though it can describe systems with severe non-

linearity.

Coefficients in the NARX model

For the SISO system the maximum number of coefficients is defined by

Billings & Voon [ 7 ] as M:

L

M=zlni

i=1

_ e -(matnbti—1)

=

, wheren, =1 (5-9)
1

The author [ 14 ] showed that this equation does not hold for non-linear
MIMO systems. Such a system’s maximum number of coefficients for a

specific output channel can be expressed by the following equations:

ottt

R=1 Ry=1 R =1

R:ny-nk+nu-(nk+1) (5-10)

The number of coefficients explodes with increasing degrees of non-
linearity, prompting investigation into reduced parameter modelling [ 8
1 [ 38 ][ 39 ]. Reduction of the number of model parameters can be
done by structure selection prior to modelling, as discussed in Section
5.5, or by making use of a reduced parameter estimation technique, as

discussed in Section 5.3
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NARX regression

Transformation of input-output data into the NARX formulation of Equation
(5-4)and (5-8)is done in such a manner as to maintain generality at all
times. Based on the work by Leontaritis [ 38] for NARMAX systems, Equation
( 5-8 ) is written in matrix formulation, with the non-linear extensions
appended to the linear ARX regression matrix so as to maintain a linear-in-

the-parameters set of equations.

where: Vil = (1) yi(2) ... yi(t) ... y(N)]
O =I[6, 6,, - 6;,]

X =[XL] X X ]

k
(XD X (12) - X, (LM)]
X,2) X.(22) - X.(0M)
T X)) X2 - X(LM)
_Xk(N,l) X, (N,2) - X,((N,M)_

The procedure of finding a MISO NARX regression matrix is to be repeated
for each output channel of the MIMO system. A number of such regression
methods were developed by the author, a summary of these algorithms is
presented in Appendix B. The next step in the system identification process is
to find the NARX coefficient matrix ©;. Methods in which these coefficients

can be estimated are the subject of the next Section.
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NARX parameter estimation

Parameter estimation is the process of finding the unknown coefficients & for
the NARX equation and thus identifying the dynamic characteristics of the
system. A number of well-studied methods are available for parameter

estimation, most of which are well suited to the NARX model.

The majority of the parameter estimation techniques can be placed into two
categories: Prediction error methods and Correlation methods. [ 7 ][ 8 ][ 18 ]
[ 36 ] The first being concerned with minimising some error function for the
identification model. Correlation techniques are however concerned with
finding the solution for some function. Various authors [ 1 J[ 4 ][ 7 1[ 51 ]
showed prediction error methods to be best suited to practical system
identification. In this thesis the focus will thus remain on the prediction error

methods for finding the parameter vector of the NARX-model.

Aloss function J[¢] can be defined with the following form:

N
J=— f(e(2)) (5-12)
N z=I
With f(¢) some positive function of the identification error &(z) = y(z) - X(1)-© .

The basis of the prediction error methods now lies with finding a set of
parameters © associated with minimising this loss function.  Various
techniques are based on this principle, including Least Squares [ 52 ] ,
Extended Least Squares [ 8 ], and Maximum Likelihood [ 7 ] parameter
estimation. The Least Squares technique is inherently suited to the NARX-
model and computationally simple to apply. According to Strejc [ 58 ] “It may
be stressed that in the field of parameter estimation the Least Squares
technique has reached a significant level of popularity and perfection.” It is
thus the only technique that will be covered in this study. Various solutions to

the Least Squares problem are however given.
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5.3.1. The Least Squares problem

Gauss defined: “the most probable value of the unknown quantities
will be that one for which the sum of the squares of the differences
between the actually observed and computed values multiplied by
numbers that measure the degree of precision is a minimum”. In a Least
Squares form the loss function of Equation ( 5-12 ) is thus described
with f(e) a quadratic function of g(#) which can be minimised with

respect to ©: Equation [ 29 ]

1 N
I= S (o) (513)

7=1

This defines the Least Squares equation ( 5-13 ) for a specific output

channel.

YVil(t)=X(1) Oy + £4(1) :

1= (e ()
N&YE
T
=8k2'8*' fif: Y,=X,-0,+¢,}

(5-14)

Substitute into €, =Y, - X, -®, into ( 5-14 ) and expand the

expressions to obtain the following equation for the loss function.

B, -E,
Tpsnin
=(Yk _Xk 'Ok)T '(Yk _Xk 'ek)
2
Y, ¥, —2: (Y, X, 0, )+(X,:0,)'X, -0, (5-15)

2
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The Least Squares estimation of ®y is found by minimising the loss

function J; with respect to ©x

d

(7 )=X*T'X"'®"‘XRT‘Y*' (5-16)
diBy o

2

and Ji(©y) is thus a minimum for :

XT.X-0-X"Y=0
[}

(5-17)

o=[X"-X] -X"Y

This is the familiar Least Squares equation [ 8 ][ 52 ][ 58 ] which is

valid only if [XT-X]-! exists which proved not trivial for various

reasons, including:

Table 5.1: Obstacles in finding the inverse [XT-X ]-1

Size The large number of terms in the NARX regression
matrix presented a problem for existing inversion
processes.

1I- More often than not, the NARX regression matrix

conditioning showed signs of ill conditioning

Linear Incorrect sampling rates captured data with similar

dependency samples, resulting in a regression matrix with
linearly dependant rows.

A survey of finding the solutions to the Least Squares equation ( 5-17 )
is presented in Appendix C and D for full, as well as condensed
parameter sets. This survey of parameter estimation techniques showed
that methods based on orthogonal decomposition to be the most
effective for finding the inverse [XT-X]-1. The concepts of a condensed
model structure and the associated parameter estimation techniques are

discussed in Section 5.3.2.
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5.3.1.1. Orthogonal decomposition

Parameter estimation techniques based on orthogonal
decomposition [ 36 ], [ 58 ] of the NARMAX and, similarly, the
NARX regression matrix proved the most effective. These
methods all have in common that a matrix X can be transformed
into an orthogonal matrix Q and an upper triangular matrix R so

that.

X=Q-R (5-18)

Transform the Least Squares equation, in order to find the

parameter vector ©.

@=[XT-X]"-XT-Y
X".X.0=X"Y

(5-19)
Substitute X=Q R

[Q R]"-Q-R-©=[Q-R["-Y (5-20)

Q"-R"-Q-R-©=Q"-RT'Y

but Q" -Q=1I
R"-R-©=Q" -RT-Y (5-21)
R-©=[R"] Q" R"-Y

thus (5-22)

o=[R"]"-Q7 Y
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Methods for solving the Least Squares equation using
orthogonal decomposition include:

e (lassical Gram Schmidt methods [ 11 ]

e Modified Gram Schmidt methods [ 10 ], [ 32 ] and

e Householder transformations [ 32 ]

These methods are discussed in Appendix C and D

5.3.2. Full vs. reduced parameter modelling

Korenberg [ 36 ] indicated that “provided the significant terms in the
model can be detected, models with fewer than ten terms are usually
sufficient to capture the dynamics of highly non-linear processes.” This
presents the problem of structure detection for the NARX equation.
Appendix D details various methods for finding a reduced set of
parameters i.e. discarding terms in the NARX equation which do not
contribute to the dynamic behaviour of the system. These methods all
require the full set of NARX coefficients to be available for evaluation,
thus an initial full set regression and parameter estimation is required
prior to structure detection. Further the structure detection processes
proved computationally cumbersome. More importantly simulation of
the NARX models proved insensitive to the number of terms involved.
The author found that the amount of effort concerned with model
reduction does not warrant the implementation thereof. Full parameter
set modelling proved more practical to investigate the implementation

of NARX in structural response reconstruction.
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Simulation of NARX systems

In the linear case a state space representation of the ARX model was calculated
prior to simulation. This MIMO state space system proved convenient,
especially so for linear application within Matlab [ 53 ]. A non-linear
equivalent of this model format conversion, that is NARX to state space, can
be done in the same way for a specific system. Formulation of a general NARX
to state space procedure is however not trivial and the simulation of non-linear
differential state space equations is computationally taxing. The non-linear
state space simulation algorithms created and implemented by the author
proved too complex and mathematically expensive to warrant further
investigation, application or discussion. The purpose of this study does not
warrant an extensive investigation into general NARX to state space
conversion algorithms. A simulation algorithm that made use of a step-ahead-
predictor nested in a sample point loop proved an effective method for
simulation non-linear systems. This non-linear simulation algorithm makes full
use of the linear-in-the-parameters structure of the NARX model, in principle

done according to Algorithm 5.1. It is a direct implementation of Equation ( 5-

4).

Algorithm 5.1: NARX simulation

INPUT: Dynamic system input data: wp(t), ua(t)..., thy, (1)
NARX model coefficients for each o/p channel O,
Dynamic model order for each o/p channel: B
Degree of non-linearity for each o/p channel: Ls
Number of sample points to use in regression N
Number if input and output channels ni, ny

OUTPUT: Dynamic system output data: Yi(t) y2(t) e, Yump(t)

FOR =012 ., N Sample point loop

FORk=1,2, .., ny Channel loop
Xy (1) = flu,y,na,L) Calculate non-linear regression vector for channel k at

sample point
V(1) = Xi(1) -6,

M
=X(1)-6, = ¥ X, (t.7)- 6,

i=1
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This basic simulation loop ( Algorithm 5.1 ) however proved extremely slow
due to the regression operation at each sample point. This regression includes
the process of finding the appropriate combinations of linear model terms to
form the non-linear extensions to the ARX format. Another limitation is the
use of a sample point main loop, which implies the simulation may become
slow for large data sets. Due to the one-step-ahead nature of the algorithm a
more elegant method than this sample point loop could not be found. The
problem of regression and NARX structure formulation at each sample point is
solved by careful use of Matlab’s matrix capabilities. This was done by
defining a condensed NARX model structure which, once identified, could
easily be passed to the simulation algorithm and thus eradicate the need to

recalculate the NARX structure.

5.4.1. Condensed NARX model structure

The NARX coefficient vector @, completely characterises the k"
channel of the system. Thus if all ny coefficient vectors are known the
system can be considered thoroughly identified. This format is
however not convenient for simulation purposes since for each channel
a separate set of coefficients must be stored, and passed to various
functions. Furthermore, for the purpose of simulation, the NARX
model structure, i.e. the non-linear combinations of linear ARX terms

to be multiplied must be recalculated.

The author defined a model structure that contains the coefficient
vectors for all system channels, as well as model information such as
model order and degree of non-linearity for each channel. This
condensed NARX structure further contained the combinations of all
non-linear terms within the model. The elements contained in the

condensed model structure for each channel are described in Table 5.2.
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Table 5.2. Model descriptors for output channel k

NARZX coefficient vector @kT = [6 5 6k2 6kM] (I xM,)
Model parameters Model order: | n, (Txl)
Degree of non-linearity: | L; (4 %)
Number of model terms: | My (ExT)
Number of quadratic terms: | ML2, (Ixd)
Number of cubic terms: | ML3, (Ix1)
Non-linear combination Quadratic combinations: | 112, (2xMrL2,)
HefpLors Cubic combinations: | 13, ( 3x ML3, )

The model parameters of Table 5.2 are written into a model parameter

matrix Mpary for each channel k. These MISO models are then

appended into a single model parameter matrix for all system channels,

as shown in Equation ( 5-23 )} The condensed NARX model structure

was implemented to accommodate, at most, cubic (L=3) non-linear

models.
n L, M, M, L?A]
i/ 2 M, -

Mpar,=||1 2 2 |
| 2 M,
1 1 2 e 2 o M, |13,
12 2 2 M,
[ Mpar,
Mpar

Mpar = p -
Mparn),

(Tx M,)

(5-23)
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The condensed NARX model structure has the capability to model so

called non-square systems. That is a dynamic system of which the

number of inputs differs from the number of outputs. The author

developed simulation algorithms using this condensed NARX model

structure that are sufficiently fast to allow implementation in general

non-linear system identification and response reconstruction. The

computation time of the algorithm is directly proportional to the length

of the data. A linear regression operation must still be performed at

each sample point, but the non-linear combinations thereof need not be

done. A revised simulation procedure is presented in Algorithm 5.2

Algorithm 5.2: NARX condensed model structure simulation

INPUT: Dynamic system input data: wilt) uz(t) ..., (1)
NARX condensed model parameter matrix Mpar
OUTPUT:  Dynamic system output data: Yi(th y2(t) o, Yuy(t)

FORk=12, .., ny

Mpary, = f (Mpar)

6. =f(Mpar,)
nay  =f(Mpar)
Ly =f(Mpary)
M,  =f(Mpar,)
Mr2, = f(Mpar;)
ML3, = f(Mpar; )
12,  =f(Mpar,)
1B, =f(Mpar,)

FORt=12,..,N

FORKk=12, .., ny
XL1(1) = flu,y,na)
X2 (1) =f( XL1(r), T2, )
XL3,(t) = f( XLy (t), IT3, )
X (t)= [XL1 () XL2,. (1) XL3, (1)]
Yi(t) = X, (1) -G,

Channel loop
Extract model parameter matrix for channel k
Extract NARX coefficient vector for channel k

Extract model parameters for channel k

Extract non-linear combination matrices for
channel k

Sample point loop
Channel loop

Calculate linear regression vector for channel k at
sample point t

Calculate the non-linear terms of the regression
matrix using the linear ARX terms and the non-
linear combination vectors.

Calculate the value for output channel y, at sample
point .
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Modified NARX systems

The number of terms in the NARX formulation tends to explode for systems
with high degrees of non-linearity and large numbers of input and output
channels. Furthermore, numerical techniques tend to become unstable for
models with large numbers of non-linear terms. It would thus be ideal to limit
the number of terms within the NARX model. The concept of reduced
parameter modelling was introduced in Section 5.3.2, which concluded sub-set
selection techniques to be computationally too taxing to warrant
implementation. An alternative route is to select a non-linear model structure
prior to identification. A number of special cases of the NARX model were

defined and are presented in Sections 5.5.1. through 5.5.4.

5.5.1. Purely Quadratic NARX

An approach similar to the bi-linear model (Appendix A.3.2) was used
to limit the number of model terms, yet maintain a high degree of non-
linear modelling capability. The purely quadratic NARX, as shown in
Equation ( 5-24 ) for a SISO system, includes all quadratic
combinations of the linear ARX model, without any non-linear cross-

coupling terms.

n+l 2ng+l

n : . . 22:;t+l 5 ( 5_24 )
y,.(£)=a, +2a,. Syt -0+ Eb, u(t—i)+ 2 C. ’(L{(I—E)) 2 d, -(y(r—z))
=l i=1 i=1 i=1

Parameter estimation for the purely quadratic NARX is done exactly

the same as for the full parameter set NARX model.
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5.5.2. Quasi-Static NARX

Block orientated models (Appendix A.2) include the concept of
modelling system dynamics linearly and only the static system
behaviour with a non-linear model. An implementation of such a
modelling approach was presented by Billings and Fakhouri [ 4 ].
Their approach utilised the first two kernels in the Volterra series
expansion, which proved too complex for practical application. The
author implemented a similar approach for NARX models, where only
the static part of the system behaviour is modelled non-linearly. A
simple method to implement this quasi-static NARX, is to include the
entire linear ARX model but append only the static combinations
(dynamic order = 0) in the non-linear extension. Consider again the
two input single output system presented in Example 5.1 Equation ( 5-
25 ) shows only the static relation between the two input channels and

the output squared.

yl(t):yl(t—])-all+yl(t—2)-ai2+ (5_25)
(1) by, +u(t=1)-b, +1,(t—2)-b, +
()b, +uy (1 =1)-b +u,(t-2)-b_+

(ul(t))z ey 7k (uz(r))l "G,

A more direct approach is to apply the split-spectra modelling concept

as presented in Section 3.2 to non-linear systems.
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5.5.3. Split spectra linear-non-linear modelling

The linear-non-linear split spectra modelling procedure presented in
Figure 5.2 is similar to the linear system split spectra approach, only
here the low frequency part of the data is modelled with non-linear

algorithms, and the high frequency dynamics with the conventional

linear ARX formulation.

Non-Linear Low

Linear
frequency

High Frequency

(n'?fmz) < = IDRES IDDRV IDRES
= = T
Lﬁ NARX IDENTIFY m QANTIM IDENTIFY J=
9 I
Nnr:ig:ar LO::’[:EAHSS Linear Model

' Y

NARX SIMULATION J‘* 4>{ QANTIM S[MULATIOI\J
4
Non-linear Linear

IToODRV

HIGH-PASS
FILTER

ITOORES

ﬂ ¥ 'Q

Figure 5.2: Linear-non-linear split spectra modelling

The linear-non-linear split spectra modelling technique proved ideal to
model the low frequency high amplitudes associated with non-linear

response, as well as the high frequency linear dynamics of a system.
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5.5.4. Non-linear error signal modelling

E=A
L
Linear

Model

I

Quadratic
NARX i
Y
Quadratic
Non-Linear

Model

IDDRV Cubic

error-res

NARX

A

Cubic
Non-Linear
Model

o Linear

<2 Model /
DESRES -

Quadratic
Non-Linear
Model

sim L=2

Cubic

Non-Linear =
Model /

simL=3

ITOODRV

Figure 5.3: Non-linear error signal modelling
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Non-linear error signal modelling is based on the assumption that the
error in a linear modelling scheme is due to non-linearity within the
actual system. A linear ARX model is thus first applied and the
subsequent error is then assumed to be non-linear and caused by the
inability of the linear model to describe the non-linear part of the
system dynamics. A NARX system identification technique is then
used to identify a relation between the input and this non-linear error

signal. The concept is illustrated in Figure 5.3.

Synthetic non-linear systems

Qualification of the non-linear modelling techniques presented in the previous
Sections was first done with synthetic non-linear systems. Procedures and
algorithms were typically qualified for aspects such as accuracy, speed, and
mathematical stability. A procedure was required to generate random non-
linear MIMO dynamic systems on which the NARX system identification
algorithms could be evaluated. These synthetic non-linear systems had to be
random, yet create input/output (drive/response) data sets of representative

real-life systems.

Two methods were used to generate non-linear input/output data. The first was
an analytical state-space modelling scheme, the second was based on

modelling of random data sets.

5.6.1. State space modelling of non-linear systems

The familiar state space method for simulation of differential equations
can be extended to model non-linear systems. An analytical state-space
model can generate a set of non-linear input/output data. The author
found the selection of elements within the matrices of the random non-
linear state-space system to be non-trivial. The synthetic systems were
prone to being unstable. The creation of suitable, stable random non-
linear state space systems required implementation of optimisation and
non-linear control system techniques [ 48 ]. Subsequently, a more

simplistic alternative approach was devised.
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5.6.2. Random non-linear input/output data

A more general and easy to use system for creating synthetic non-linear
dynamic systems was needed. The desired input parameters to such a
random model generation technique would include the number of
channels, model order for each channel, as well as the degree of non-
linearity for each channel. Randomly selecting a set of NARX
coefficients within these given parameters will generally result in an
unstable system. The author devised a technique to create random
stable non-linear dynamic systems. The input/output data from these
systems could then be used to test the various non-linear algorithms.
The random non-linear model generator as shown in Figure 5.4 makes
use of a random signal generator to create two sets of random data. The
first set will be used as a pseudo drive and the second as a pseudo
response for the random model. These random data sets comply with
the desired number of system channels. A NARX identification routine
is then used to find a model parameter matrix which best describes the
relation between the pseudo drive and response data, resulting in a
random non-linear model. Valid non-linear input/output data can now
be obtained by simulating drive data through the model and recording
the subsequent responses. These random models proved ideal for

evaluation of the various parameter estimation techniques as described

in Appendix C.
Random
Random signal ' \
Generator NARX Identify I nk ‘
| Random ke

Y

Mpar

Figure 5.4: Random non-linear model generator
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Error functions

It is important to be able to quantify the success of a simulation exercise. The
QanTiM fit value [ 34 ] as used in the linear simulation package also proved
ideally suited to judge non-linear simulation accuracy. An error function ey is
defined by subtracting the achieved simulation response from the desired

response.
e,(t)= y(r)- () (5-26)

The QanTiM fit value is then calculated for each channel for N data points.
(5-27)
1, =100 x H——

The error function as presented in ( 5-27 ) is inappropriate for responses with
high DC offsets. The error value, 7, for a response signal with a DC offset will
be factored by the DC value and thus be lower than actually is the case.
Removing all DC offsets prior error quantification can however rectify this
problem. In Equation ( 5-28 ) the author revised the QanTiM fit value. This
DC-corrected function is used for evaluation of all simulation results.
3o(t) = (1)~ DC(y(1)
5u(r) = 5()- DC(5(¢)
eo(t)= ¥o(t)— 3o(t)
N
2 feo(r)

N, =100x—— [%]

Z,|y@(r)| (5-28)
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Detecting non-linearity

Ideally a system should be classified as linear, or non-linear prior to modelling
and thus warrant the use of a non-linear model. The general problem with non-
linear modelling is determining which type of non-linearity, if any, is
applicable. This could be polynomial, exponential, dead bands, signum
functions or any other type of non-linearity. This difficulty is not encountered
in linear systems modelling, which has largely attributed to the popularity of

linear modelling.

Billings and Fadzil [ 6 ] suggested to plot the system gain against amplitude for
a series of step inputs of varying amplitudes. This method is however not
suited to practical mechanical systems, especially so for servo-hydraulic testing

applications. Another method as suggested by Billings and Voon [ 8 ] showed
that whenever the input: u(t) + b, -z;(t)=0, b #0 is applied to a system, the
system cannot be linear if Z, () # z(¢) where Z,(¢)and Z(z) are the mean levels

of the system output for the inputs b (i.e. u(z) = 0 ) and u(t)+b respectively. In
theory, this method based on evaluation of system mean responses is applicable
to most servo-hydraulic test systems. In practice, however, comparison
between linear and non-linear modelling of a system proved the best practical
method of detecting non-linearity. Typically a system which proved difficult to
model linearly was then identified using the NARX formulation. Generally the
optimal model order as found in the linear case was then used along with a
quadratic polynomial. If the modelling results improved, but remained
unsatisfactory, a cubic model could be used. Application examples were the
use of NARX techniques did improve modelling and simulation results are

presented in Chapter 6.
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