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PART II: Investigation into the possible implementation

of non-linear response reconstruction

This second part of the thesis presents an investigation into the possible implementation of
polynomial non-linear system identification routines in response reconstruction. Non-linear
system identification has been well researched from a mathematical formulation point of view
—see Billings efal. [5][61[ 7] Chen [ 18 ], Fasol [ 26 ], Korenberg [ 36 ], etc. To the
author’s knowledge, non-linear dynamic system identification has not previously been applied

to the field of response reconstruction.

The development of a non-linear response reconstruction technique is presented in a concise,
almost chronological manner. Only the most relevant theory is included in the body of the
thesis, with more detail included in the appendices. Linear system identification is introduced
in Chapter 4, at the hand of the ARX [ 40 ][ 41 ] time domain model formulation. The ARX
fundamentals are extended to accommodate polynomial non-linear modelling capabilities with
the NARX [ 9 ][ 46 ] model structure in Chapter 5. Application of the developed NARX
modelling and response reconstruction techniques is presented in Chapter 6. Finally some

conclusions and recommendations for future research are made in Chapter 7.
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Chapter 4

Linear time domain system identification: ARX

Dynamic response reconstruction for fatigue tests has the global aim to reproduce
operational measured response stresses in the test structure as accurately as possible
using servo-hydraulic actuators. To calculate actuator drive signals from knowledge of
operational measured responses a dynamic model that describes the complete system is
required. Such a dynamic model is found by using some system identification
formulation. In choosing from the multitude of different system identification model
types and structures, two factors are of prime importance: accuracy and ease of
operation. System identification for use in response reconstruction is predominantly
frequency based, and linear. Accuracy, ease of use, low calculation time, and minimal
computing requirements prompted investigation into a time domain approach. More
specifically the ARX model format, as presented by Ljung [ 40 ][ 41 ] combined with
a time domain state space description was indicated by Raath [ 51 ] to be ideal for use
in response reconstruction. The characteristics of the ARX model structure and the

modifications thereof are briefly discussed.
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ARX model structure

A basic single input, single output (SISO) dynamic system is presented in
Figure 4.1, with a system input u(1), output y(z) and a disturbance signal e(?);
t=1,2,..., N. The development of the ARX model from the generalise time-

invariant model structure is adapted from the work presented by Ljung [ 40 ].

l e(t)
u(t)

fe B SISO ___,,.V(f)

Figure 4.1: Basic SISO configuration

Assuming the signals are related by a linear system, we can write:

1) = Glau(t) + (1) (41)

where ¢ is the shift operator and G(q)u(t) is short for

Gla)u)= 3. liuls 1) )

In ( 4-1) v(t) is an additional, unmeasurable disturbance (noise). Its properties

can be expressed in terms of its spectrum ® (&), which is defined as:

@,(0)= LR (7)™ e

r=—oo

where R,(?) is the covariance function of v(#) with E the mathematical

expectation.

R, (7)=Ev(t)v(t-1) (4-4)

Alternatively, the disturbance v(#) can be described as filtered white noise:

v(t) = H(t) e(t) (4-5)
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Substitution into ( 4-1 ) gives the complete time domain description for the

system of Figure 4.1.
() = Glq)u(1) + H(1) e(1) (4-6)

To be able to estimate the functions G and H they typically have to be
parameterized, most often as rational functions in the delay operator g so that

the generalised time-invariant parameterized model structure takes the form

(Ljung [ 40 ]):

A(g)y(t) = Mu(t) +%e(r) (4-7)

F(q) D(q)

where A(q), B(q), C(q), D(g) and F(g) are polynomials in the delay operator
g-1. Various simplifications can be applied, one of which leads to the ARX-

model (Auto Regressive with eXogenous input).

A(q)y(t) = B(q)u(r) + e(t) (4-8)
with:
A(g)=1+ alq‘1 - a_,_q'2+- ~+a, q " (4-9)

B(q)=b,+bq " +b,qg +-+b,q " (4-10)

If nk is the number of delays from input to output the model is usually written

as.

A(q) y(t) = B(q)u(t — nk) + (1) (4-11)
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If expanded, the ARX’ polynomial structure may be written as a linear
difference equation of the form:
y@)=a;-y@t—D+---+a,, - y(t—na)+--- (4-12)
ot+by - u(t—nk)+b, -u(t—nk —=1)+---+b,, - u(t —nk — nb)

This is the one-step-ahead predictor for a SISO system. A novel method of
expanding the ARX formulation for MIMO systems was proposed by Raath
[ 52 ]. For a system with ny outputs, the ARX difference equation of ( 4-12 )
is expanded to ny multiple input, single output (MISO) one step ahead
predictors, so that for each output channel &:

¥ () = 3, (¢ — D)oo, 3, (£ — 1a,), y,(¢ - 1),..., ¥, (¢ — na,),... y, (£ = 1),..., yny(z‘ — n.any),...
i (t — 1k, 14 (¢ — 0k, — nby ), w,(t — 1k, ),...,u (t — nk, — nb, ),...
vyl (= k)50, (E=nk, —'nb, )

(4-13)

These MISO models are combined into a MIMO discrete state space model

description where:

xk+]=®xk+ruk (4_14)
¥, =Cx, +Du,

and: x, = state vector
u, = input vector
y, = output vector
@ = state matrix
= input matrix
C = output matrix

D = direct transmission matrix

For brevity the combination of MISO models into a single MIMO model
description is not included in this thesis, it is however presented in detail by
Raath [ 51 ][ 52 ]. To further simplify the model description the “full order”

approach to structure detection is presented in the next Section.
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ARX Structure selection

For application in response reconstruction a black box model, which requires
minimal information about the system prior to modelling is needed. The ARX
formulation in ( 4-13 ) is a general black-box type model capable of accurately
describing the dynamic behaviour of most linear engineering structures. It is
however required to estimate the model structure prior to modelling, which for
each output channel & involves:

e Selection of the number of a parameters, nay

e Selection of the number of b parameters, nby

e Selection of the number of delays, nk;

For MIMO systems the number of model structure parameters to be estimated
explodes for increasing numbers of channels. This problem is solved by
utilisation of the “full order” approach, presented by Raath [ 51 ], which
defines that for each output channel yu(z) only the dynamic model order, #,
must be selected. Equation ( 4-15 ) presents the relation between the
parameters na, nb, and nk and the dynamic model order n for each output

channel k:

na. =n, )

b o 1 i=12,---,ny

no; =n; + i Lol s (4-15)
nk.=0

Each MISO model is identified for increasing model orders to detect the
optimal model structure, a relatively simple procedure, even for MIMO

systems with large numbers of channels.

This full order MIMO-ARX model is the basis of the linear QanTiM package,
and showed potential to be extended to include non-linear modelling terms.
This expansion of the linear ARX model to the non-linear NARX model is

presented in the next chapter.
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