
SPELL CHECKERS AND CORRECTORS:

A UNIFIED TREATMENT

By

Hsuan Lorraine Liang

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

MASTER OF SCIENCE (COMPUTER SCIENCE) IN THE FACULTY OF ENGINEERING, BUILT

ENVIRONMENT AND INFORMATION TECHNOLOGY, UNIVERSITY OF PRETORIA,

PRETORIA, SOUTH AFRICA

AT

NOVEMBER 2008

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

i

To my late grandfather, Shu-Hsin.

To my parents, Chin-Nan and Hsieh-Chen.

Abstract

The aim of this dissertation is to provide a unified treatment of various spell checkers

and correctors. Firstly, the spell checking and correcting problems are formally described

in mathematics in order to provide a better understanding of these tasks. An approach

that is similar to the way in which denotational semantics used to describe programming

languages is adopted. Secondly, the various attributes of existing spell checking and cor-

recting techniques are discussed. Extensive studies on selected spell checking/correcting

algorithms and packages are then performed. Lastly, an empirical investigation of various

spell checking/correcting packages is presented. It provides a comparison and suggests a

classification of these packages in terms of their functionalities, implementation strategies,

and performance. The investigation was conducted on packages for spell checking and

correcting in English as well as in Northern Sotho and Chinese. The classification pro-

vides a unified presentation of the strengths and weaknesses of the techniques studied in

the research. The findings provide a better understanding of these techniques in order to

assist in improving some existing spell checking/correcting applications and future spell

checking/correcting package designs and implementations.

Keywords: classification, dictionary lookup, edit distance, formal concept analysis, FSA,

n-gram, performance, spell checking, spell correcting.

Degree: Magister Scientia

Supervisors: Prof B. W. Watson and Prof D. G. Kourie

Department of Computer Science

iii

Acknowledgements

First and foremost, I would like to thank my supervisors, Bruce Watson and Derrick

Kourie, for directing my research, reviewing my ideas, and providing feedback on my work.

I would also like to take this opportunity to express my gratitude for their continuous

patience, support, and encouragement.

I would like to thank my parents, Chin-Nan and Hsieh-Chen Liang, my brother, Albert

Liang, and my grandmother, Yu-Fang Fan, for their unconditional love and support.

A special thanks to Ernest Ketcha Ngassam for many technical discussions and in-

spiration during this research. He devoted a great deal of his time to helping me kick

start this work. Sergei Obiedkov was helpful in pointing me to related research on formal

concept analysis. TshwaneDJe HLT and its CEO, David Joffe, were helpful in providing

the Northern Sotho corpora as well as providing assistance for the language.

v

Table of Contents

Abstract iii

Acknowledgements v

Table of Contents vii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Structure of this Dissertation . 2

1.3 Intended Audience . 3

2 Mathematical Preliminaries 5

2.1 Introduction . 5

2.2 Notation . 5

2.3 Denotational Semantics . 7

2.3.1 Spell checking and correcting problems 7

2.3.2 n-gram analysis . 9

2.4 Conclusion . 10

3 Spell Checking and Correcting Techniques 11

3.1 Introduction . 11

3.2 Morphological Analysis . 12

3.3 Spell Checking Techniques . 13

3.3.1 Dictionary lookup techniques . 14

3.3.2 n-gram analysis . 17

3.4 Spell Correcting Techniques . 21

3.4.1 Minimum edit distance . 22

3.4.2 Similarity key techniques . 26

3.4.3 Rule-based techniques . 27

3.4.4 n-gram-based techniques . 28

3.4.5 Probabilistic techniques . 31

3.4.6 Neural networks . 34

3.5 Other Related Issues . 35

3.6 Conclusion . 36

vii

viii

4 Spell Checking and Correcting Algorithms 39

4.1 Introduction . 39

4.2 SPELL . 40

4.3 CORRECT . 44

4.4 ASPELL . 48

4.5 SPEEDCOP . 50

4.6 FSA . 54

4.7 AGREP . 56

4.8 AURA . 61

4.8.1 Spell checking in AURA . 63

4.8.2 Spell correcting in AURA . 64

4.8.3 Phonetic checking and correcting 67

4.9 Spell Checkers/Correctors for the South African Languages 69

4.10 CInsunSpell — Chinese Spell Checking Algorithms 70

4.11 Conclusion . 76

5 Empirical Investigation and Classification 79

5.1 Introduction . 79

5.2 Spell Checking and Correcting for English 80

5.2.1 Data Sets . 80

5.2.2 Performance . 81

5.3 Spell Checking and Correcting for Northern Sotho 89

5.3.1 Data Set . 89

5.3.2 Performance . 90

5.4 Spell Checking and Correcting for Chinese 90

5.4.1 Data Set . 91

5.4.2 Performance . 91

5.5 Classification . 93

5.5.1 Concept lattice . 94

5.6 Conclusions . 97

6 Conclusions and Future Work 99

6.1 Conclusions . 99

6.2 Future Work . 101

Bibliography 104

List of Tables

3.1 An example of a simple non-positional binary bigram array for English. . . 19

3.2 An example of a simple non-positional frequency bigram array for English. 20

3.3 An extract of the probabilities of bigrams generated from Table 3.2. 21

4.1 An example of the deletion table for the word after. 47

4.2 Example of a bit mask table. 57

4.3 Recalling from the CMM using binary hamming distance. 65

4.4 Recalling from the CMM using shifting n-gram. 67

5.1 Spell checking results for English using the first data set (DS1). 82

5.2 Single-letter errors detected using (DS1). 83

5.3 Spell checking results for English using the second data set (DS2). 83

5.4 Spell correction results for English using DS1. 85

5.5 Spell correction results for English using DS2. 86

5.6 Spell checking results for CInsunSpell. 92

5.7 Classification of spell checking/correcting packages Part I. 93

5.8 Classification of spell checking/correcting packages Part II. 94

ix

List of Figures

5.1 Spell checking recall rates for spell checking/correcting packages for English. 84

5.2 Suggestion accuracy for various spell checking/correcting packages for En-

glish. 87

5.3 Mean of time performance of the spell checking/correcting packages for

English. 88

5.4 Concept lattice for various spell checking and correcting packages. 96

xi

Chapter 1

Introduction

In this chapter, we identify the problem statement of the domain of spell checking and
correcting. We also identify the intended audience of this research. An introduction to the
contents and the structure of this dissertation is presented here. This study is restricted
to context-independent spelling error detection and correction.

1.1 Problem Statement

Spell checkers and correctors are either stand-alone applications capable of processing a
string of words or a text, or as an embedded tool which is part of a larger application
such as a word processor. Various search and replace algorithms are adopted to fit in
the domain of spell checking and correcting. Spelling error detection and correction are
closely related to exact and approximate pattern matching respectively.

Work on spelling error detection and correction in text started in the 1960s. A num-
ber of commercial and non-commercial spell checkers and correctors, such as the ones
embedded in Microsoft Word, Unixr spell, GNU’s ispell, aspell and other variants,
and agrep have been extensively studied. However, the techniques of spell correcting in
particular are still limited in their scope, speed, and accuracy.

Spell checking identifies words that are valid in some language, as well as the misspelled
words in the language. Spell correcting suggests one or more alternative words as the
correct spelling when a misspelled word is identified. Spell checking involves non-word
error detection and spelling correction involves isolated-word error correction. Isolated-
word error correction refers to spell correcting without taking into account any textual
or linguistic information in which the misspelling occurs whereas context-dependent word
correction would correct errors involving textual or linguistic context.

Between the early 1970s and early 1980s, research focused on the techniques for non-
word error detection. A non-word can be defined as a continuous string of letters of an
alphabet that does not appear in a given word list or dictionary or that is an invalid
word form. Non-word spelling error detection can generally be divided into two main
techniques, namely dictionary lookup techniques and n-gram analysis. In the past, it was
often the case that text recognition systems, such as OCR technology, inclined to rely

1

2

on n-gram analysis for error detection, whereas spell checkers mostly rely on dictionary
lookup techniques. Each technique can be used individually as a basis, in combination or
together with other methods, such as probabilistic techniques. Isolated-word error correc-
tion techniques are often designed based on a study of spelling error patterns. Distinctions
are generally made between typographic, cognitive, and phonetic errors. Techniques such
as minimum edit distance, n-gram-based techniques, neural networks, probabilistic, rule-
based techniques, and similarity key techniques are discussed.

In [Kuk92], Kukich gave a survey that provided an overview of the spell checking and
correcting techniques and a discussion on some existing algorithms. Chapters 5 and 6 in
the book of Jurafsky and Martin [JM00] were based on Kukich’s work. Hodge and Austin
[HA03] compared standard spell checking algorithms to a spell checking system based
on the aura modular neural network. Their research is heavily focused on this hybrid
spell checking methodology. Although descriptions on some investigated spell checking
and correcting algorithms can be found in the mentioned references, little has been done
to compare and represent the existing algorithms in a unified manner. Neither has any
formal classification been done previously. This dissertation aims to fill these gaps and
provide a unified treatment of various spell checking and correcting algorithms.

Furthermore, we explore the spell checking and correcting techniques in different lan-
guage systems other than Euro-based languages, such as Northern Sotho and Chinese.

The variability of the spell checking and correcting techniques and algorithms sug-
gests the need for a unified treatment to represent them. We do not necessarily con-
sider all of the known spell checking and correcting algorithms. We restrict ourselves to
context-independent spelling error detection and correction as context-dependent spelling
detection and correction often involves syntactic analysis, such as part-of-speech tagging
[RS95]. This is a vast research area in its own right, and is beyond the scope of the present
research. For the purpose of this dissertation, it is assumed that all characters are of fixed
width.

In this dissertation, we described the spell checking and correcting tasks mathemat-
ically. These semantic specifications are intended to provide a concise understanding
of spelling error detection and correction. We will investigate the most important spell
checking and correcting techniques that have been used to date. We then study various
spell checking and correcting algorithms in details. Finally, we propose a classification
of the algorithms and techniques found in various existing spell checkers and correctors.
Experiments were conducted to establish the performance of various spell checking and
correcting packages. We then propose a concept lattice to establish the correlation be-
tween these packages and their attributes.

In the subsequent section, we present an overview of the structure of this dissertation.
A discussion of the intended audience is then given in Section 1.3.

1.2 Structure of this Dissertation

This dissertation consists of six chapters. Chapter 1 contains the introduction (this chap-
ter). Chapter 2 contains the mathematical preliminaries which consists of notation and

3

definitions used in building a mathematical model for spell checking and correcting. We
provide an approach that is similar to the way in which denotational semantic is used
to describe programming languages for the spelling error detection and correction tasks.
In Chapter 3, we discuss the most important techniques that have been used for spell
checking and correcting purposes. In Chapter 4, we extensively study the techniques and
algorithms used in selected spell checking/correcting packages. The packages studied are
spell, correct, aspell, speedcop, the fsa package, agrep and aura for English, as
well as DNS spell checker for Northern Sotho, and CInsunSpell for Chinese. Each algo-
rithm is described in detail in text and some are assisted by the description in Dijkstra’s
Guarded Command Language. In Chapter 5, we conducted an empirical investigation
on various spell checking/correcting packages studied in Chapter 4. This investigation
suggests a classification in terms of characteristics, functionalities, implementation strate-
gies, and performance. The last chapter, Chapter 6, provides conclusions of the work and
indicates some directions for future research.

1.3 Intended Audience

The intended audience of this dissertation can be divided into two major groups. Each
of these two groups is mentioned in the following paragraphs, along with the associated
chapters of particular interest to each group.

1. Computational linguists. Spell checking and correcting is a part of the field of
natural language processing. This classification will provide computational linguists
a unified presentation of the most significant algorithms and techniques which forms
a useful basis for their further research in this specific area. The discussion on the
selected algorithms and the classification of the various spell checking and correcting
packages given in Chapters 4 and 5, respectively, a better understanding of these
spell checking and correcting techniques and algorithms.

2. Programmers. Programmers working on spell checkers and correctors for word edit-
ing applications, Web browsers, webmail sites, blogs, social networking sites, instant
messaging clients, and search engines will benefit from the classification. A pro-
grammer can make use of the techniques, algorithms, and classification provided in
Chapters 3, 4, and 5, respectively, when making a decision on the core technique(s)
to be used in their applications. Chapters 3 and 4 provide a detailed background
knowledge of the techniques used in various spell checking and correcting algo-
rithms which serves as the foundation for developing better techniques or a hybrid
application where more than one techniques are involved for the spell checking and
correcting task. A unified representation of the strengths and the weaknesses of
these algorithms are provided in Chapter 5, which could assist in improving the
performance of an existing application. In addition, programmers who adopt the
aspect-oriented programming concept will find the classification in particularly use-
ful. The classification will assist the programmers in efficient decision-making on
the suitable techniques to be used in the spell checking/correcting algorithms. They

4

can then focus on other programming and design concerns, such as aspect-aware in-
terfaces.

Chapter 2

Mathematical Preliminaries

2.1 Introduction

In this chapter, we describe mathematically the spell checking and correcting tasks using
an approach that is similar to the way in which denotational semantics is used to describe
programming languages. Denotational semantics refers to semantics expressed in terms of
a function—i.e. in formal mathematical terms [Mey90]. Notice that although the phrase
‘denotational semantics’ is conventionally used to describe the meaning of programming
constructs using mathematical functions, we shall use the phrase to describe the tasks
of spell checking and correcting throughout this dissertation. By formally describing the
spell checking and correcting problems, we will be able to understand them better.

The overall task in this chapter is to provide a mathematical model for the following
scenario:

Given some text, encoded by some encoding (such as ASCII, UNICODE, etc.), identify
the words that are valid in some language, as well as the words that are invalid in the
language (i.e. misspelled words) and, in that case, suggest one or more alternative words
as the correct spelling.

2.2 Notation

In this section, we define the notation used in the mathematical model. We also present
a number of notation and definitions of functions.

Notation 2.2.1. Assume the following notation:

• U denotes a finite alphabet of symbols, i.e. the set of characters in some encoding,

typically Unicode. U includes elements such as numbers, special characters (e.g.

′, !,#,%, . . .), and various other characters not found in English words (e.g. à,

5

6

ç, œ, etc.). Chinese would incorporate an entirely different set of encodings, and

German would incorporate a few extra symbols in addition to those used in English.

• U+ denotes the set of all strings over U . The language U+ is the set of all strings

over alphabet U of length greater than 0.

• L denotes a language over U , where L ⊆ U+ and ¬L = U+\L.

• L+ denotes a set of languages (a set of valid words), each over U , where L+ = (∪i :

1 ≤ i : Li). Elements of L+ are, e.g. English, French, German, etc.

• D denotes a dictionary where it contains a set of valid words in the language. D ⊆

L ⊆ U+.

• T denotes a text which can be viewed as a (possibly long) sequence of symbols, i.e.

as some strings out of the set U+. T ∈ U+. It contains the alphabet of the language,

numbers, special characters, and word separators (e.g. blank spaces in an English

text).

• W denotes a set of words (valid or invalid) over the alphabet U , where W ⊆ U+.

A word w ∈ W consists of letters of the alphabet of the language concerned, i.e.

numbers1, special characters and word separators are excluded.

• P denotes a power set, i.e. P denotes a subset of a set.

The set containment relationships between various of the above-defined entities is thus
given by:

∀L ∈ L+ • (D ⊆ L ⊆ U+) ∧ (L ∪W ⊆ U+)

This gives the relationship between the set of characters used in a language, the set of
words in the language, and the set of encodings.

1Numbers are not considered as a word in the language here as it is simply not sensible to deal with
an uncountable infinity of real numbers, such as 0.999.

7

2.3 Denotational Semantics

2.3.1 Spell checking and correcting problems

In this section, we present spell checking and spell correcting problems mathematically
using an approach that is similar to the way in which denotational semantics is used
to describe programming languages. In order to formally describe the process of spell
checking and correcting in a string of text, we view the task generically, as a sequence
of activities, each of which will be functionally described in this section. The first step
is to break the input text down into a set of words and possible words in the text—i.e.
the removal of blank spaces, duplicates, etc. The second step is to isolate the misspelled
words in the text, and the third step is to offer a list of suggested correct spellings for the
words deemed to be misspelled.

Spell checking can be divided into two main techniques, namely dictionary lookup
and n-gram analysis. We define the two techniques separately. In this section, we present
a pair of functions, namely TextStrippingL and MissesL, used in describing the spell
checking problem.

We start with a formal statement of the spell checking problem that we consider. The
problem is: given some text T , encoded by some encoding (such as ASCII, Unicode, etc.)
identify the words that are valid in some language, as well as the words that are invalid
in the language, i.e. misspelled words. For a given language, L, we need some operation
on this string, that will return all the valid and invalid words in language L in the string.
Call this operation TextStrippingL. However, it should strip out subsequences that are
obviously not words or misspelled words. Thus, it should not return a sequence of blank
spaces, a sequence of special characters, numbers, etc. Duplication of words must also be
reduced. In other words, this operation should return a set of strings. Each string in the
set is either a word in language L, or can reasonably be construed to be a misspelling of
a word in language L. Note that it is dependent on the language under consideration.

We assume that W ⊆ U+
i for the purposes of most applications. The precise contents

of W will no doubt vary from one implementation to the next. The precise way in
which W is constituted, is part of what defines the semantics that is specific to a given
implementation2.

We now formally describe the generic process of spell checking in a string of text as
a sequence of activities, each of which will now be functionally described. The first step
is to break the text down into a set of words and possible words in the text—i.e. the
removal of blank spaces, numbers, special characters, duplicates, etc. The second step is
to isolate the misspelled words in the text.

To this end, the first step can be formally described by a function that we choose to
call TextStrippingL when it operates on a text in the language L. The function maps
some text T , where T ∈ U+, to a subset of W , i.e.

2Indeed, some implementations may even consider strings that include special characters as mis-
spellings, in which case, W * U+

i . To express the denotational semantics of such implementations it
would be necessary to appropriately adapt the scheme suggested here.

8

Function 2.3.1. (TextStrippingL):

TextStrippingL : U+ →P(W)

Note that TextStrippingL is a total function—i.e. it is defined for all elements of the
domain. It is assumed that if a spell checker is presented with a text, T , that is entirely
outside of its scope, then TextStrippingL will return φ ∈P(W).

Let us take at look at the following two examples:

TextStrippingEnglish(the cat sa om the mat) = {the, cat, sa, om, mat}

whereas

TextStrippingEnglish(α = 12.34 is an eqation) = {is, an, eqation}

We now need an operation that further processes the result of TextStrippingL, removing
all valid words in language L so that what remains is the set of misspelled words. A
dictionary3 D defines the set of strings that are to be regarded as valid words in the
language L. Each of the misspelled words will therefore be in the set (W − D). Call
MissesL the operation that identifies misspelled words in terms of D. For some subset
of W , MissesL will deliver the set of misspelled words relative to the set D.

Thus MissesL has the following signature:

Function 2.3.2. (MissesL):

MissesL : P(W)→P(W −D)

Let us take a look at an example. Suppose TextStrippingEnglish returns the set {the, cat,
sa, om, mat}. Then,

MissesEnglish({the, cat, sa, om, mat}) = {sa, om}

Note that since MissesL further processes the output of TextStrippingL, we can typically
compose the two functions, so that MissesL(TextStrippingL(T)) represents the set of
misspelled words in language L that is found in text T .

Here, we consider all hyphenated words to be spelled checked as separate words. It is
also assumed that case sensitivity is not taken into consideration.

The process of spell correcting often follows the process of spell checking. We thus finally
propose the following as a general approach to defining the denotational semantics for the
spell correcting problem. An operation is required that—for each misspelled word in the
set delivered by MissesL—suggests a set of possible alternative spellings in language L.
Call the operation SuggestL.

The domain of SuggestL is therefore the range of MissesL, namely P(W −D). Each
element in the range of SuggestL is a set of pairs: the first element in the pair is a

3Dictionary is used in this chapter as a representative of what a spell checking algorithm uses to check
against, which could also be a corpus, lexicon, or word list.

9

misspelled word (i.e. an element of the set (W −D)), and the second element is the set
of suggested alternative spellings for this misspelled word (i.e. a subset of D and thus an
element of P(D)). Thus, the range of SuggestL corresponds to a set of pairs, and this
set being a subset of the Cartesian product: P((W −D)×P(D)).

Because such a set of pairs is synonymous with a function, this function therefore maps
elements from the set W (and more specifically, from the set (W −D)) to a subset of D.
This is to say that an element in the range of SuggestL can be regarded as a function
with the signature (W −D) 9 P(D).

As a result of the foregoing, SuggestL may be regarded as a function with signature:

Function 2.3.3. (SuggestL):

SuggestL : P(W −D)×D →P((W −D) 9 P(D))

As an example, a particular implementation of the SuggestEnglish function, for some par-
ticular dictionary, D could behave as follows:

SuggestEnglish({sa, om}, D) =
{(sa, {sad, sag, sap, sat, saw, sax, say}), (om, {on, of, am})}.

Once again, SuggestL can be composed with previously defined functions. Given a text
T encoded in U for language L, suggestions based on dictionary D for words misspelled in
respect of dictionary D will be delivered by SuggestL(MissesL(TextStrippingL(T)), D).

For instance, using an English dictionary, DEnglish, the denotational semantics of a
particular spell correcting algorithm might result in the following behaviour for the given
input text:

SuggestEnglish(MissesEnglish(TextStrippingEnglish(the cat sa om the mat)), D) =
{(sa, {sad, sag, sap, sat, saw, sax, say}), (om, {on, of, am})}

Note, in reality, we may not only want the SuggestL function to simply map each mis-
spelled word to a set of elements, but a sequence of suggested words. The order of the
sequence then reflects the function’s estimates of the most likely to the least likely correct
spellings.

Also note that, above we have assumed that words are in their inflected forms. In prac-
tice, before executing the MissesL function, implementations generally strip off prefixes
and/or suffixes from words based on some morphological analysis or affix analysis.

2.3.2 n-gram analysis

n-grams are n-letter subsequences of sequences, either of letters or words, where n ∈
{1, 2, 3, . . .}. If n = 1, 2, 3 they are referred to as unigrams, bigrams, trigrams, respectively.
In other words, n-grams are substrings of length n. We will discuss n-gram analysis in
more details in Sections 3.3.2 and 3.4.4.

The action of determining n-grams may be formally described as follows:

10

As before, let U be a set of finite alphabet of symbols. The ngram operation can be
seen as a function that maps some text, which is an element of U+, to a set of n-tuples.
Let Un denote the set of n-tuples, i.e. Un = U ×U · · · ×U . The domain of ngram is then
P(Un). Thus,

Function 2.3.4. (ngram):

ngram : U+ →P(Un)

In addition, the ngram function can be defined as follows:

Function 2.3.5. (ngram):

ngram(u : U+) = {y|u = xyz ∧ |y| = n}

where xyz represents a string of words, where x, y, and z each represents a substring of
this particular string of words.

Let us take at look at the following example:
For n = 3,

3gram(the sky is blue) = {the, he-, e-s, -sk, sky, ky-, y-i, -is, s-b, -bl, blu, lue}

where each ‘-’ represents a blank space.
An n-gram encountered in a text may or may not be flagged as an error. Generally,

this would depend on an analysis of the surrounding text in reference to pre-compiled
statistical tables (which will be discussed in further details in the following chapter). In
flagging a particular n-gram as an error, there may be a risk—albeit a small one—of
doing so incorrectly. Furthermore, n-gram analysis can be employed irrespective of the
language involved.

2.4 Conclusion

This chapter is intended to provide the basis for spell checking and correcting problems.
We provided the ‘denotational semantics’ of the spelling error detection and correction
tasks in order to describe them formally in mathematics. The mathematical models assist
us to understand the problems better by looking at their simplest forms. In the subsequent
chapter, we will be discussing the most significant techniques that have been used for spell
checking and correcting purposes.

Chapter 3

Spell Checking and Correcting
Techniques

3.1 Introduction

This chapter describes the most significant spell checking and correcting techniques that
have been used to solve in code, problems that were described mathematically in the
previous chapter. This chapter forms a basis for Chapter 4 that provides algorithmic
descriptions of these techniques used to detect spelling errors and suggest corrections.

Most spell checking and correcting techniques and algorithms that have been devel-
oped during the past few decades, have been based on dictionary lookup techniques (will
be discussed in Section 3.3.1). In the nineties, probabilistic techniques for spell correcting
were also developed and employed for this specific purposes for the first time. Most of
the spell checkers and correctors follow the two-layer approach: error detection and error
correction. Few combine the two layers into one. The tasks of spelling error detection and
correction are well defined in the previous chapter. The denotational semantics of the in-
put text preparation (TextStrippingL) was provided in Function 2.3.1. In Function 2.3.2,
the denotational semantics of the spell error detection task (MissesL) was given. In Func-
tion 2.3.3, the denotational semantics of the spell correcting task (SuggestL) was given.
These functions provide a concise and accurate statement of the what that needs to be
done. Here an indication is given as to how this is done. The how is addressed from two
perspectives: on the one hand, detailed descriptions of general techniques are discussed;
on the other hand, detailed descriptions of specific example algorithms are provided.

In this dissertation, we distinguish the techniques used for spell checking and correcting
purposes from the actual spell checking and correcting algorithms investigated. The
techniques surveyed are a general approach to the spell checking and correcting tasks as
opposed to detailed algorithmic description, which comes later in Chapter 4. There are
a variety of techniques which in essence compare what is given (such as an input text)
against what is known (such as a dictionary, a lexicon1, or a corpus). Data structures

1A lexicon is referring to a word list without accompanying definitions which is essentially a dictionary
without definitions. In this dissertation, we use the words ‘dictionary’ and ‘lexicon’ to represent a text

11

12

may differ across techniques in respect of how to efficiently store what is known—various
dictionary structures and/or statistical information.

Techniques may also differ in respect of how to represent input—in raw input form
versus some morphological characterisation which is briefly described in the subsequent
section.

3.2 Morphological Analysis

Morphological analysis and processing techniques are used to identify a word-stem from
a full word-form in natural language processing. Words are broken down into morphemes
which are the smallest linguistic units that carries a meaningful interpretation. These are
typically word-stems (i.e. the root or the basic form of a word) or affixes (i.e. a morpheme
that is attached to a stem). Let us consider an example. The word unreachable has three
morphemes: ‘un-’, ‘-reach-’, and ‘-able’. The word stem in this case is ‘-reach-’. ‘un-’ is
the prefix and ‘-able’ is the suffix. Both prefixes and suffixes are affixes. Thus, ‘un-’ and
‘-able’ are the affixes in this word. A morphological analyser reverses the spelling rules
for adding affixes. For example, the word apples can be interpreted as ‘apple’ and ‘s’ by
the analyser.

Morphological processing involves parsing a sequence of input morphemes on the sur-
face level or the lexical level (i.e. with respect to the word grammar). Listing all or-
thographic forms (i.e. spelling) is not practical for some languages, such as Finnish and
Turkish, where each word-stem may easily have hundreds, thousands, or even millions of
inflected forms. Words in these languages are formed by adding zero or more affixes to
the base of a word, i.e. a word-stem.

For instance, the word kirjailija in Finnish means an ‘author’. The word-stem is kirja,
which means a book. kirjallisuus means literature. Thus, words are formed by contin-
uously adding to the word-stem. According to Hankamer [Han89], Turkish is estimated
to have 200 billion orthographic words (i.e. word spellings) in total. Due to the nature
of these agglutinated languages, researchers designed finite-state morphological analysers
and generators.

A morphological analyser determines the common word-stem of various words by
stripping off the affixes of these words. A morphological generator adds affixes to a word-
stem to determine the various words that can be generated from the same word-stem.

A few significant examples of morphological analysers are KIMMO [Kar83], which
employed the two-level morphological model developed by Koskenniemi [Kos83], the Alvey
Natural Language Toolkit [RPRB86], and the morphological analyser used in the fsa
package by Daciuk [Dac98], which will be discussed in Chapter 4.

There exist two morphological levels: the strings from the surface level and the ones
from the lexical level [Dac98]. The string from the surface level refers to an inflected form
of a word. For instance, the word unreachable is an inflected form of the word reach as
explained earlier. The string from the lexical level refers to the corresponding lexeme2

containing only correctly spelled words. We use these words interchangeably throughout this dissertation.
2A lexeme stands for the abstract entity that correlates with different dictionary entries, i.e. it is a

13

together with morphological annotations. Morphological annotations are used to describe
the properties of a word form, such as the tense of a word. For example, the word has is
the inflected form of have and has the annotations {single, present tense}.

Dictionary lookup techniques alone are thus not feasible for any morphologically com-
plex languages, i.e. a morphological analyser is also required. Furthermore, a morpho-
logical analyser is also more handy in more complex languages. This is because a spell
checker or corrector that is not equipped with a morphological analyser requires a much
larger dictionary. However, this process may or may not be present in all spell checking
and correcting algorithms (this claim will be obvious in Chapter 4). This is the reason
why morphological analysis or affix stripping was not defined in the previous chapter.

3.3 Spell Checking Techniques

The spell checking problem was described in denotational semantics in formal mathemat-
ical terms in Function 2.3.2. It was seen that the spell checking task can be described by
a function that maps a set of words as an input to a set of correct spellings. This task
amounts to obtaining the intersection of a set of words and a dictionary. In addition,
spell checking involves determining whether an input word has an equivalence relation
with a word in the dictionary. Such an equivalence relation means that the two words can
be interchanged in all context without alternating the meaning [HD80]. The equivalence
relation is established by means of an exact string matching technique (i.e. there is either
a match or there is not.). This present section gives an outline of how spell checking is
achieved in practice by means of exact string matching techniques. The survey of spell
checking techniques in Kukich’s [Kuk92] remains the definitive reference to date. The
work by Jurafsky and Martin [JM00], although writing almost a decade later, still draws
on Kukich’s work. More recent studies found in [HA03, dSP04] and the literature survey
of Bodine [Bod06] also correspond to Kukich’s work. This suggests that the string search-
ing techniques included in Kukich’s survey represent the most appropriate methods for
the spell checking task.

Kukich [Kuk92] pointed out that techniques to detect non-word spelling errors in a
text can be divided in two categories: dictionary lookup, discussed in Section 3.3.1; and
n-gram analysis, discussed in Section 3.3.2. A non-word refers to a continuous string
of characters and/or numbers that cannot be found in a given dictionary or that is not
a valid orthographic word form. Dictionary lookup employs efficient dictionary lookup
algorithms and/or pattern matching algorithms. It may also employ one of the various
dictionary partitioning schemes and may rely on the various morphological processing
techniques (briefly described in Section 3.2) for breaking up and/or analyzing both the
input word and the stored dictionary. On the other hand, n-gram analysis makes use of
frequency counts or probabilities of occurrence of n-grams in a text and in a dictionary,
a lexicon, or—in most cases—a corpus.

word which is used as the main entry in the dictionary for all its inflected forms.

14

3.3.1 Dictionary lookup techniques

Dictionary lookup techniques are employed to compare and locate input strings in a
dictionary, a lexicon, a corpus or a combination of lexicons and corpora. These are
standard string searching techniques with a specific aim: to reduce dictionary search
time. In order to serve the purpose of spelling error detection, exact string matching
techniques are used. If a string is not present in the chosen lexicon or corpus, it is
considered to be a misspelled or invalid word. At this stage, we assume that all words in
the lexicon or corpus are morphologically complete, i.e. all inflected forms are included.
We will be discussing more on morphological analysis, as well as dictionary partitioning
and dictionary construction related issues in Section 3.5.

The dictionary lookup techniques described in Kukich’s survey focus on reducing dic-
tionary search time via efficient dictionary lookup and/or pattern-matching algorithms,
via dictionary partitioning schemes and via morphological-processing routines (described
in Section 3.2). The most significant dictionary lookup techniques are hashing, binary
search trees, and finite-state automata. We will now describe these techniques concisely
in the following sections.

Hashing

Hashing is a well-known and efficient lookup strategy, discussed in works such as [Blo70],
[CLRS03], and [Knu98]. The basic idea of hashing relies on some efficient computation
carried out an input string to detect where a matching entry can be found. More specif-
ically, hashing is a technique used for searching an input string in a pre-compiled hash
table via a key or a hash address associated with the word, and retrieving the word stored
at that particular address. If collisions occurred during the construction of the table, a
link or two must be traversed or some form of linear search must be performed. Hence, if
a hash function tends to produce identical or similar hash addresses, the lookup process
will be slower as a result.

In the spelling checking context, if the word stored at the hash address is the same as
the input string, there is a match. However, if the input word and the retrieved word are
not the same or the word stored at the hash address is null, the input word is indicated
as a misspelling. The random-access nature of hash tables eliminates the large number
of comparisons required for lookups. Thus, it is a faster searching technique compared
to sequential search or even tree-based search, especially for searching in a large data
representation. The drawback of a hash table is that without a good hash function, it
would require a big hash table in order to avoid collisions. Hash tables provides O(1)
constant lookup time on average. In the worst-case scenario, hashing requires the time
complexity of O(m), where m is the number of words in a dictionary or corpus.

The spell package by Unixr is an example of where hashing was employed for fast
dictionary lookup and reduced memory usage. We will take in-depth look at how spell
made use of hashing to perform the task of spell checking in Section 4.2.

15

Binary search trees

Binary search trees [Knu98, CLRS03], particularly median split trees, have been used for
dictionary lookup [She78] and subsequently, for spell checking. Binary search trees are
especially useful for checking if a particular string, i.e. an input word, exists within a
large set of strings, i.e. the chosen dictionary. A median split tree is a modification of
a frequency-ordered binary search tree. The main goal of a median split tree is to make
access to high-frequency words faster than to low-frequency words without sacrificing the
efficiency of operations, such as word lookup, insert, and delete.

Median split trees (MSTs) [Com80] are essentially binary search trees where each
node of a split tree contains a node value and a split value. A node value is a maximally
frequent key value in that subtree. A split value partitions the remaining keys between
the left and right subtrees in a lexical order, which is to say that it is the lexical median of
a node’s descendants. Hence, the tree is perfectly balanced. Median split trees are data
structures for storing dictionaries, lexicons or corpora with highly skewed distributions.
This is to say, they are particularly useful for efficiently finding words when the underlying
frequency distribution of the occurrence of these words is highly skewed, such as often
is the case in an English text. A median split tree is constructed from a set of keys,
which comprise both frequency and lexical orderings. The frequency ordering is a weak
linear order of the keys according to their frequencies of occurrence in the input while
as the lexical ordering is a strict linear order on the keys’ representation. Thus, the cost
of lookup is determined by both the frequency distribution and the lexical ordering the
keys. The build time is O(n log n).

As pointed out by Sheil [She78], “unlike frequency ordered binary search trees, the
cost of a successful search of an MST is log n bounded and very stable around minimal
values.” In other words, they require a maximum of log n searches to locate the looked
up word within a set of n strings. It is also significantly more efficient compared to the
lookup time of a linear search technique on a large data representation although it is
generally slower compared to the lookup time of hashing. Median split trees also require
less storage space than frequency-ordered binary search trees.

An instance of a spell checker using binary search trees can be found in [LS99]. Another
very recent project [You06] also made use of binary search trees to perform fast spell
checking. The worst case lookup time for a binary search tree is O(log n).

Finite-state automata

Finite-state automata as presented in Aho and Corasick and Watson in [AC75, Wat95],
respectively, have been used as a basis for string-matching or dictionary-lookup algorithms
that locate elements of a dictionary within an input text. Using finite-state automata
for string matching started in the late 60s. A finite-state automaton (FSA) is used to
represent a language, which is defined to be a set of strings, each string being a sequence
of symbols from some alphabet.

Consider an FSA that is required to represent any string in the language U∗(w), where
U is a finite alphabet of symbols, and w is some word consisting of i symbols in U (i.e.
|w| = i). The language is thus any string of symbols from U that has w as a suffix. Such

16

an FSA, FSA(w) = (Q, q0, A, T) can be defined as follows:

• Q is the set of all states corresponding to the prefixes of w. Thus, Q can be
represented as {ε, w[0], w[0..1], · · · , w[0..c− 2], w}.

• q0 = ε is the start state.

• In general, A is the set of accepting states where A ⊆ Q. In this particular case,
A = {w}.

• T is the transition function which maps a state and an input symbol to another
state. Let q ∈ Q, where q is a prefix of w and let c ∈ U , where c is a character in
the alphabet. Then (q, c, qc) ∈ T if and only if qc is also a prefix of w. Otherwise,
(q, c, s) ∈ T , where s is the longest suffix of qc that is also a prefix of w.

Such an FSA would only terminate in the final state if the last i symbols of the input of
n symbols (n ≥ i) constituted the word w. The state transition function can be visually
represented by the well-known state transition diagrams. If the transition function is
stored as a table, then the search time is O(n). Please consult [Wat95] for a derivation
of this algorithm.

Finite-state transducers are automata that are used to translate or transduce one
string into another. Finite-state transducers are also called Mealy’s automata [HMU06].
Each transition of a finite-state transducer is labelled with two symbols from U1 and U2,
where U1 and U2 are alphabets of input and output, respectively. The two alphabets are
often the same. For example, a/a, where a is the input and b is the output. All the
definitions that hold for finite-state automata also hold for finite-state transducers.

One specific form of finite-state automata that has been widely used for spell checking
and correcting purposes is a trie data structure. Tries are also known as prefix trees and
can be seen as representing the transition function of a deterministic FSA even though
the symbol on each edge is often implicit in the order of the branches. Details of tries are
provided in [Knu98].

An example of incorporating a trie in the spell checking and correcting algorithm can
be found in the Research of Chinese Text Proofreading Algorithms by Li et al [LWS00].
Tries are often used in approximate string matching algorithms. Spell checking and cor-
recting using finite-state automata was pioneered by Oflazer [Ofl96] and Oflazer and Gzey
[OG94]. The fsa package which will be discussed in Section 4.6 based its spell checking
and correcting approach on the work of Oflazer and Gzey along with its own modifications.

Finite-state approaches are often used for spelling correction for agglutinating (highly
inflectional) languages or languages with compound nouns (e.g. German). They are
also used when a multilingual dictionary is involved in the spell correcting process or as a
system for post-correction of results of OCR, where the scanned texts contain vocabularies
of several languages.

Note that other standard string searching techniques such as linear (or sequential) search
is not in favour for large dictionary lookup and spell checking and correcting tasks because
they generally have slower lookup time compared to the aforementioned techniques.

17

Linear search has an expensive lookup time O(n) in general, where n is the number
of words in a dictionary, as it must examine each element of the list in order. They thus
require, on average, a large number of comparisons during searching and as a result the
lookup process is slowed down.

Binary search can considerably speed up dictionary lookup time on average. For
instance, if a spell checker made use of a binary search tree of English words, the tree
could be balanced based on word occurrence frequency in the corpus. Words such as “a”
or “the” would be placed near the root whereas words such as “asymptotically” would be
near the leaves.

3.3.2 n-gram analysis

As described in Section 2.3.2, an n-gram is an n-letter subsequences of a sequence, either
of letters or words, where n ∈ {1, 2, 3, . . .}. If n = 1, 2, 3, reference is made to a unigram,
bigram, or trigram, respectively. In other words, n-grams are substrings of length n.
Function 2.3.4 provided the denotational semantics of the spell checking task in formal
mathematical terms. The spell checking task can be seen described by a function that
maps some text to a set of n-tuples where the tuples are checked for correctness, taking
their context into account.

n-gram analysis is used to estimate whether each n-gram encountered in an input
string representing some text, is likely to be valid in the language. A table of n-gram
statistics is pre-compiled from large corpora for comparative purposes. These statistics
are either in the form of frequency counts or binary values, as will be explained below.

Note that for spell checking, a probabilistic approach that relies on frequency counts is
generally preferred, rather than making use of binary values. Nevertheless, in each case,
a given lexicon or corpus is divided into n-grams and stored in a data structure, such as
an array or a vector space in order for the sequence to be compared to other sequences in
an efficient manner.

Due to the nature of non-uniform distribution of possible n-grams in a dictionary or
lexicon, n-gram analysis is a reasonable technique. For example, the letters in the English
alphabet can be paired in 262 different ways. However, not all of these pairings occur in
the actual language, so that only a subset of these different pairings would be bigrams
in some English text. To illustrate this, the Pride and Prejudice text which was taken
from Project Gutenberg3 [Aus98] contains 122,813 words. Table 3.1 indicates that only
432 different possible bigrams actually occurred. This is to say that only 64% of the
262 different bigrams actually occurred. This figure is similar to the results found in the

3Project Gutenberg is the oldest digital library which contains the full texts of many public domain
books. The text in Project Gutenberg was chosen to be analysed in the tables below for its search result
from Google. At the time of writing, Project Gutenberg has a Google search result of approximately
3,860,000; Brown Corpus is approximately 219,000; British National Corpus 330,000; and Canterbury
Tales achieved a search result of approximately 1,090,000. The number of search results provides an
indication of the degree of recognition of each of these sources to the general public. Project Gutenberg
was the most widely referenced source in this case. The n-gram tables derived from the Pride and
Prejudice text found in Project Gutenberg was set up by the author in order to demonstrate the concepts
of n-gram analysis.

18

research of Peterson [Pet80] and Zamora et al [ZPZ81] who have done extensive work on
spelling checking using n-grams.

There exist two approaches for n-gram analysis:

• Binary-value approach. A two-dimension bigram array containing binary values of
each combination of letters or words is pre-compiled into a table in which 0 and
1 are used to present possible and impossible n-grams, respectively, as determined
by the n-grams present in the chosen lexicon. Every n-gram in each of the words
must have an occurrence of 1, otherwise the subsequence of text encapsulating the
n-gram will be flagged as incorrect.

• Probabilities approach. Probabilistic values are derived from frequency counts of n-
grams encountered in large corpora. The n-grams in an input string are compared
to the n-gram statistics table. An index of peculiarity for each word on the basis of
the n-grams it contains is then calculated. The n-gram analysis technique provides a
quick and rough means for non-word error detection. However, because the analysis
is probabilistically conditioned, it is possible that a word which is marked valid by
n-gram analysis can in fact be a misspelled word and vice versa.

Binary n-gram analysis techniques have been widely used in OCR, which translates an
image of text, such as a scanned document, into actual text characters, and in its variant,
Intelligent Character Recognition (ICR) devices. ICR is the preferred option for address-
ing more complex recognition problems, such as recognition of hand-written or cursive
scripts. Grammatical or contextual information is necessary in the recognition process.
n-gram analysis is also used in conjunction with other techniques, such as dictionary
lookup and morphological analysis, to achieve higher accuracy in spelling error detection.

An example of non-positional binary bigram array for English is shown in Table 3.1.
As previously mentioned, the table is generated from Price and Prejudice which was found
in Project Gutenberg [Aus98]. The text contains 122,813 words and 536,407 characters.
Table 3.1 is to be read as a row entry, X, being the first symbol and then a column entry,
Y, being the next. For example, aa has a binary value 0 whereas ba has a binary value 1.
When spell-checking a given text, every n-gram in each of the words in the text must
have an occurrence of at least 1. Where this is not the case, the relevant words will be
flagged as incorrect.

For the probabilities approach, once the input word has been decomposed into its
constituent n-grams, each n-gram is assigned a weight. This weight reflects its frequency
of occurrence in some lexicon or corpus. The weights of these n-grams are used in the
construction of an index of peculiarity. The peculiarity of an n-gram is determined by
some pre-defined threshold value. If some n-grams’ weights fall below this threshold, they
seem as most peculiar. They are then flagged as potential errors and identified as likely
candidates for misspellings. These erroneous flags could therefore be wrong with a certain
probability. Likewise, if the word is flagged as correct, then could also be wrong with a
certain probability. Thus, the probabilities approach is typified by constituent analysis.

A constituent analysis does not attempt to match any input string with a dictionary
entry as would have been done by dictionary lookup techniques described earlier in this

19

[X,Y] = Reads Y after X

Y
a b c d e f g h i j k l m n o p q r s t u v w x y z

a 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
b 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0
c 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0
d 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0
e 1 0
f 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0
g 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0
h 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0
i 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
j 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
k 1 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 0
l 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0

X m 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0
n 1
o 1
p 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0
q 0 1 0 0 0 0 0
r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0
s 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
t 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1
u 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1
v 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0
w 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0
x 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0
y 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0
z 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

Table 3.1: An example of a simple non-positional binary bigram array for English.

chapter. Instead, a peculiarity is associated with each input by some algorithm. This type
of approach can be faster than search routines. However, they can also be less exact as the
accuracy of n-gram analysis is proportional to how precisely the character composition of
the input text mirrors that of the dictionary in use. Morris and Cherry [MC75] used this
approach in the typo system. typo made use of peculiarity indexes based on trigrams
to check whether a word was a misspelling. A peculiarity index (PI) is calculated using
the following equation:

PI =
[log(f(xy)− 1) + log(f(yz)− 1)]

2
− log(f(xyz)− 1) (3.1)

where xy and yz both represent bigrams, xyz represents a trigram, and f is the frequency
function.

For instance, to calculate the peculiarity index of a word onh, xy would be ‘on’, yz
would be ‘nh’, and xyz would be ‘onh’, the entire word itself. It is likely that the frequency
of ‘on’ would be relatively high and that the frequencies of ‘nh’ and ‘onh’ would be low.
The peculiarity index would thus be relatively high, and consequently, the word onh is
likely to be flagged as a misspelled word.

Zamora et al [ZPZ81] attempted to minimize the problem of incorrectly flagging ac-
curate spellings by calculating the ratio of the frequency of occurrence of an n-gram in
a misspelling to its overall frequency. In other words, an n-gram error probability is cal-
culated rather than using straightforward frequency measures. The attempt successfully
avoided many correctly, however, unusually spelled words.

n-gram analysis is often used in conjunction with other techniques, such as dictionary
lookup, phonetic representation, and morphological analysis (described in Section 3.2) to
achieve more desirable accuracy in spelling error detection. An example of non-positional4

frequency bigram array for English is shown in Table 3.2. The table is again generated

4Non-positional means that the bigram may be located anywhere in a word.

20

from Price and Prejudice which was found in Project Gutenberg. This table is only an
extract. It reads X first and then Y. For example, ‘aa’ is not a valid bigram as it never
occurred in the text, i.e. its frequency count is 0. However, the bigram ‘ba’ has a frequency
count of 289 and it is indicated as a valid bigram.

[X,Y] = Reads Y after X
Y

a b c d e f g h i j k l m n o p q r s t
a 0 153611162417 6 463 843 6 1564 0 58427981326 7944 16 771 0 4137 48185633
b 289 7 0 1 4164 0 0 7 426 184 0 1005 4 0 639 0 0 322 154 106
c 1399 0 324 3 2481 0 0 2252 523 0 428 328 0 0 3084 0 100 317 7 1279
d 1059 3 0 206 2541 20 122 3 1913 1 1 149 85 61 915 0 1 238 403 0
e 3099 39 16295404 1884 677 322 150 1063 45 85 32621372 6144 93 6251871131535322591
f 776 0 0 0 1116 572 0 0 819 0 0 135 0 2 2227 0 0 837 3 423
g 726 88 0 4 1291 0 34 1506 540 0 0 491 9 121 547 0 0 628 222 40
h 6301 52 0 9 14824 11 0 4 4487 0 0 43 84 5 2629 0 0 159 27 920
i 708 298 14591319 1483 724 874 5 0 0 23617491707100492124173 5 1463 48444818
j 300 0 0 0 234 0 0 0 1 0 0 0 0 0 152 0 0 0 0 0
k 17 0 0 0 1045 37 2 195 488 0 0 18 0 474 2 0 0 0 98 0
l 1427 0 29 1667 3569 628 18 0 3128 0 2383101 74 21 1323 45 0 28 220 251

X m 1879 198 0 0 3168 58 0 1 1482 0 0 14 237 21 1299706 0 1129 294 8
n 550 3 16515585 4011 224 4789 29 851 69 359 383 12 780 3350 21 73 14 14603412
o 103 340 218 538 94 3947 108 99 335 2 37510252193 6021 1304581 4 3839 11142683
p 981 2 0 0 1704 1 0 102 415 0 0 886 2 0 1031695 0 1339 161 325
q 0
r 1340 54 681 857 7354 210 204 112 2023 1 112 460 406 606 1872127 0 578 18771287
s 1346 55 325 35 3809 129 35 2937 2161 0 98 139 130 19 1813681 4 7 18293472
t 1527 1 100 1 4395 87 0 137463108 0 0 697 69 74 5188 1 0 790 497 1172
u 451 231 1025 255 390 52 862 0 357 0 1 1758 238 1421 7 454 0 2608 16681833
v 358 0 0 0 4269 0 0 0 853 0 0 0 0 0 235 0 0 1 0 0
w 2723 0 5 6 1789 3 0 2320 2505 0 13 63 0 460 995 0 0 125 85 1
x 69 0 156 0 63 1 0 7 71 0 0 0 0 0 0 292 1 0 0 148
y 5 63 1 171 352 7 0 1 163 0 0 17 43 16 2146 3 0 3 342 181
z 659 0 0 0 33 0 0 0 5 0 0 4 0 0 0 0 0 0 0 0

Table 3.2: An example of a simple non-positional frequency bigram array for English.

An n-gram probability is derived from the ratio of the frequency of occurrence of an n-
gram to the overall frequency of occurrences of all n-grams. For example, the bigram
‘he’ has a frequency count of 14,824 according to Table 3.2 and the total frequency count
of all the bigrams generated is 413,594. Thus, the probability of occurrence for ‘he’
is approximately 0.035842. Table 3.3 illustrates how a probability distribution can be
derived from the frequency table (Table 3.2), where the probabilities of all possible n-
grams sums to 1 (i.e. the total frequency count of all possible n-grams, 413,594, has the
probability of 1).

The use of n-gram analysis is illustrated in detail in the algorithms described in Sec-
tions 4.5, 4.8, 4.9, and 4.10. The probabilistic approaches were adopted by these algo-
rithms.

21

bigram frequency probability
he 14824 0.035842
th 13746 0.033235
er 11315 0.027358
in 10049 0.024297
an 7944 0.019207

Table 3.3: An extract of the probabilities of bigrams generated from Table 3.2.

3.4 Spell Correcting Techniques

Spell correcting refers to the attempt to endow spell checkers with the ability to correct
detected errors, i.e. to find the subset of dictionary or lexical entries that are similar
to the misspelling in some way. Function SuggestL (2.3.3) provided the denotational
semantics of the simple spell correcting task in formal mathematical terms. It was seen
that the spell correcting task can be described by a function that maps a misspelled
word to a set of possible correct spellings. Spelling correction must involve a dictionary
or corpus, since the set of possible correct spellings are defined in terms of membership
in the chosen dictionary or corpus. There are two types of spell correctors: interactive
and automatic. The simplest spell corrector is interactive, which is to say it provides
the user with a list of candidate corrections and leaves the final decision of word choice
to the user. The automatic approach of spelling correction requires a significant level of
machine intelligence as it is expected to correct spelling errors automatically without any
user involvement. The automatic approach can be seen in some text-to-speech synthesis
[Kuk90]. It is also available as an option in the Microsoft Word spell checker. However,
this option only applies to a limited subset of words.

Spell correcting can be categorised by isolated-word error correction and context-
dependent error correction, that is to say, attention is paid to isolated words versus textual
or even linguistic context. Isolated-word error correction thus refers to spell correcting
without taking into account any textual or linguistic information in which the misspelling
occurs. Similarly a context-dependent corrector would correct both real-word errors5

and non-word errors involving textual or linguistic context. In this research, we focus
exclusively on isolated-word error correction which will serve as a basis to future research
on context-dependent error correction.

Research on isolated-word error correction started in the late 50s and early 60s [Bla60].
The design of a particular correction technique is often influenced by the type of spelling
error patterns. Distinctions of spelling error patterns are made between typographic (e.g.
taht vs that), cognitive (e.g. seprate vs separate) and phonetic (e.g. recieve vs receive)
errors [Kuk92]. Typographic errors occur when a wrong key is pressed, when two keys
are pressed instead of one, or when keys are pressed in the wrong order. Cognitive errors
occur when there is a misconception or a lack of knowledge of the correct spelling of a
word. Phonetic errors are merely a special case of cognitive errors. A phonetic error refers
to a misspelled word that is pronounced the same as the correct word, but whose spelling
is nevertheless incorrect.

5A real-word error is an error that results in another valid word which occurs when a valid word is
substituted for another.

22

Kukich [Kuk92] pointed out that roughly 80% of spelling errors tend to be single-letter
errors, such as insertions, deletions, substitutions, and transpositions6. Furthermore, these
misspellings tend to be within one letter difference in length of the intended word. Also,
few errors occur in the first character of a word. To reduce lookup time, these findings
were incorporated in algorithms for correcting single errors and/or dictionary partitioning
according to the first characters and/or the length of a word.

Spelling error detection was described mathematically in Function 2.3.2 and various
efficient techniques for this task were discussed in Section 3.3. Spelling error correction
relies on some approximate string matching technique [HD80] to find a set of correctly
spelled words with similar spellings to a misspelled word. This is to say, spelling error
correction involves the association of a misspelled word with one word or a set of correctly
spelled words in the dictionary that satisfy a similarity relation. By similarity relation,
it is meant that two words are associated on the basis of some criterion of similarity. For
example, the words ond and and have a similarity relation. If the first character of ond is
substituted by an ‘a’, a non-word is then changed to become a valid word and the criteria
of similarity is determined by substitution.

The spell correcting problem consists of three subproblems: spelling error detection;
generation of possible correct spellings; and the ranking of the suggested corrections.
These subproblems are generally treated in sequence. The first procedure of detecting
spelling errors was discussed in detail in the previous section (Section 3.3). The third
procedure, ranking candidate corrections, involves either some lexical-similarity measure
between the misspelled words and the candidate suggestions or a probabilistic estimate
of likelihood of each of the correct word in order to rank the suggestions. This procedure
is sometimes omitted, especially in interactive spell correctors. The decision of selecting
a word is then left to the user.

We will be looking at techniques of possible correct spelling generation and ranking
the candidate corrections in this section. To achieve isolated-word error correction task,
six main techniques have been explored, and they are: minimum edit distance, similarity
key, rule-based techniques, n-gram-based techniques, probabilistic techniques, and neural
networks. We will now give a flavour of each of these six techniques in the following
subsections. These descriptions will necessarily be somewhat brief. For more complete
descriptions, the various works cited in the relevant subsections should be consulted.
The relative importance of the various techniques will also be discussed in the following
subsections.

3.4.1 Minimum edit distance

Minimum edit distance (also called edit distance) technique is the most studied and used
technique for spelling correction to date. Minimum edit distance as its name suggests is a
technique where the minimum number of editing operations (insertions, deletions, substi-
tutions, and transpositions) required to transform one string into another. The notion of
using edit distance for spelling correction was first introduced by Wagner [Wag74]. Leven-
shtein [Lev66] introduced edit distance algorithm for carrying out correction operations on

6A transposition is equivalent to a double substitution. It is also called a reversal.

23

so-called insertions, deletions, and substitutions. Damerau edit distance [Dam64] allows
the three types of editing operations mentioned and a transposition between two adjacent
characters. Damerau stated in [Dam64] that these four editing operations correspond to
more than 80% of all human-made misspellings.

Edit distance [WF74, OL97] entails distance measures between two strings. An in-
sertion occurs when a letter needs to be inserted to a misspelled word, resulting in a
correctly spelled word. A deletion occurs when a letter needs to be deleted from the
misspelled word in order to result in a correctly spelled word. A substitution refers to
the replacement (or substitution) of a letter in the misspelled word by a correct letter,
thus resulting in a correctly spelled word. A transposition takes place when the positions
of two adjacent letters are reversed and they need to be swopped in order to result in a
correctly spelled word.

The term, minimum edit distance between two spellings, say w1 and w2, refers to the
smallest number of editing operations that need to take place in order to transform w1 to
w2. The editing operations referred to here are insertions, deletions, substitutions, and
transpositions. Normally, one is concerned about the minimum edit distance between a
misspelled word in a text to a word in the dictionary [Wag74]. Wagner introduced the use
of an application of dynamic-programming techniques (such as the minimum edit distance
technique) to spelling correction in order to reduce the runtime.

Dynamic programming was invented by Bellman [Bel57]. The essence of dynamic
programming is to solve multistage decision problems. Dynamic-programming techniques
make use of overlapping subproblems, optimal structure, and memoization7 in order to
reduce the runtime of algorithms [Wag95, CLRS03].

• Overlapping subproblems refers to the decomposition of a problem into a series
of subproblems whose solutions may be reused one or more times in solving the
original problem. The computation of the Fibonacci sequence is an example of
where overlapping subproblems have to be solved in order to solve a problem.

• The second notion, optimal substructure, refers to finding an optimal solution to
subproblems in order to efficiently construct an optimal solution of the overall prob-
lem. An example of this property can be exhibited by determining the shortest
path between two adjacent vertices in an acyclic graph and then using this finding
to determine the shortest overall path.

• The third notion, memoization, is a programming technique used to improve the
program’s efficiency by storing the results of computations for future reuse, rather
than computing them again.

As pointed out by Damerau [Dam64], an early analysis by Gates [Gat37] showed that a
large majority of spelling errors could be corrected by the insertion, deletion or substi-
tution operation of a single letter, or the transposition of two letters. If a misspelling
can be transformed into a dictionary word by reversing one of the error operations (i.e.
insertion, deletion, substitution, and transposition), the dictionary word is said to be a

7Note that memoization is not the same as memorization.

24

plausible correction. This technique is limited to single-word errors. Thus, the number of
possible comparisons is greatly reduced.

Damerau’s edit distance algorithm [Dam64] detects spelling error by matching words
of four to six characters in length to a list of words with high frequency of occurrence (i.e.
frequently used words). If the search word is not found in the list, the word is looked up
in a dictionary in which words have been sorted according to alphabetical order, word
length, and occurrence of characters. If the search word cannot be found in the dictionary,
the correctly spelled word is searched by the algorithm. This search is performed on both
word level and character level. This is to say, under the ‘one error’ assumption, all words
that differ in length by one character or differ in the occurrence of characters by less than
or equal to two bit positions are checked against the detected words using the spelling
rules. All the remaining words are thus bypassed.

If a word in the dictionary is one character longer than the detected word, then the
first character in the dictionary word that is different is discarded and the rest of the
characters are shifted one bit position left. If the two words match, then the word in the
dictionary is reported to be the correctly spelled word by a single insertion. For example,
the word aple is detected as a misspelled word and apple is a word in the dictionary and
they differ by one character. The character ‘p’ is discarded from apple and the rest of the
character are shifted left. aple is then compared with the detected word and a match is
found. Therefore, apple is reported as the correct spelling for aple.

On the other hand, if the word in the dictionary is one character shorter, then the
first character in the detected word that is different from the matching character in the
dictionary word is considered to be incorrect. Thus, that particular character in the
detected word is discarded and the rest of the characters in the misspelled word are
shifted one bit position left. If there is a match for the new misspelled word and the
dictionary entry, the word in the dictionary is reported to be the correctly spelled word
by a single deletion. For example, the word applle is detected as a misspelled word and
apple is a word in the dictionary and they differ by one character. The character ‘l’ is
discarded from applle and the rest of the character are shifted left. apple is then compared
with the word in the dictionary and a match is found. Therefore, apple is reported as the
correct spelling for applle.

If the lengths of the word in the dictionary and the misspelled word are the same, but
they differ by one character position, then the dictionary entry is reported as a candidate
correction as they differ by a single substitution. For example, the word aplle is detected
as a misspelled word and apple is a word in the dictionary and they differ by one character.
The first ‘l’ is replaced by ‘p’. The resultant word is then compared with the dictionary
word and a match is found. Therefore, apple is reported as the correctly spelled word for
aplle.

If the lengths of the word in the dictionary and the misspelled word are the same, but
they differ in two adjacent positions, the characters are proposed to be swopped. If the
two words are the same, there is a match by a single transposition. For example, the word
aplpe is detected as a misspelled word and apple is a word in the dictionary and they differ
by one character. The positions of the characters ‘l’ and ‘p’ are swopped. The resultant
word is then compared with the dictionary word and a match is found. Therefore, apple
is reported as the correctly spelled word for aplpe.

25

Moreover, if there are several words within one edit distance of the misspelled word,
the first word appears in the dictionary according to alphabetical order will always be
selected.

Minimum edit distance algorithms generally require d comparisons between the misspelled
word and the chosen dictionary, where d is the number of dictionary entries. To minimize
the search time, some shortcuts are devised. For instance, the so-called reverse minimum
edit distance technique was used in correct by Kernighan et al [KCG90]. In reverse
minimum edit distance, every possible single-error permutation of the misspelled word
is generated and then it is checked against a dictionary to see if any permutation can
make up valid words. This forms a candidate correction set. A total of 53n + 25 strings
are checked against the dictionary if a misspelled string has length n and the size of an
alphabet is 26. This number is derived from 26(n + 1) possible insertions, n possible
deletions, 25n possible substitutions, and n− 1 possible transpositions. correct will be
discussed in more detail in Section 4.3.

The use of tries is another means of improving search time [JT77]. A trie is used
to store each dictionary entry, character-by-character. The lookup checks for insertion,
deletion, substitution, and transposition operations in a selected branch of the trie, which
is a subset of the database. The sproof algorithm is an example of a spelling correction
algorithm that made use of minimum edit distance and stored a dictionary in a trie.
Further details of the sproof algorithm can be found in [DM81]. The underlying spell
correcting function in grope works in a similar manner [Tay81] as in sproof.

Some algorithms involving minimum edit distance assign non-integer values to specific
spelling transformations based on estimates of phonetic similarities or keyboard positions.
An instance can be found in [Ver88]. Other more recent researches involving minimum
edit distance can be found in [BM00], [GFG03], aspell [Atk04], jazzy [Whi04], and the
aura system [HA02, HA03].

Garfinkel et al described an interactive spell corrector in [GFG03]. The edit distance
between the misspelled word and the candidate correction was used as a model of closeness.
The commonness of the candidate correction was also considered so that words that are
more common are more likely to be returned as results. Lastly, a binary variable was used
to indicate whether the misspelled word and the candidate correction share the same first
character under the assumption that first characters are less likely to be incorrect. Each
of these sub-arguments was weighted using (edit distance −1) and they were added up to
obtain a score, indicated by g(w,m), where w is the candidate correction and m is the
misspelled word. The smaller the value of g is, the more likely it is that w is the correct
candidate.

The algorithm behind jazzy [Whi04] is similar to the aspell algorithm which will
be discussed in Section 4.4. The fsa package by Daciuk [Dac98] also made use of the
so-called cut-off edit distance, which is the minimum edit distance between an initial
substring of the misspelled word and any initial substring of the correct word. This will
be discussed in details in Section 4.6.

Minimum edit distance is by far the most widely used spell correcting technique and
this claim will become evident as we investigate the various spell correcting algorithms in
the subsequent chapter.

26

3.4.2 Similarity key techniques

The essence of similarity key techniques is the mapping of every word into a key. The
mapping is chosen so that similarly spelled words will either have similar or identical keys.
When a key is computed for a misspelled word, it will provide a pointer to all similarly
spelled words in a dictionary, and these dictionary entries will be returned as candidate
corrections. This is to say, all words in a dictionary having similar key values compared
to the key of the current misspelled word, will be returned as possible correct words. Due
to the fact that it is not necessary to compare the misspelled word with every dictionary
entry, similarity key techniques are fast.

Similarity key techniques are based on transforming words into similarity keys that
reflect the relations between the characters of the words, such as positional similarity,
material similarity, and ordinal similarity [Fau64].

• Positional similarity. As indicated by its name, it refers to the extent to which the
matching characters in two strings are in the same position. It generally appears in
an OCR text and literary comparison and is said to be too restricted to be used on
its own for spelling correction [Pet80, AFW83].

• Material similarity. This refers to the extent to which two strings consist of exactly
the same characters but in different order. Correlation coefficients between the
two strings (i.e. the misspelled word and a word that consists of the exact same
characters but in different order) have been used as a measure of material similarity
[Sid79]. Material similarity is seen as not precise enough for the spelling correction
task as all anagrams8 are materially similar. For example, the word angle is an
anagram of the word glean and they are materially similar.

• Ordinal similarity. Similar to position similarity, ordinal similarity indicates the
extend to which the matching characters in two strings are in the same order. The
soundex system which will be discussed shortly is an example of ordinal similarity.
Other examples of making use of ordinal similarity measures include the character-
node trie approach in [JT77] and the similarity key technique used in the speedcop
system [PZ84].

Similarity key techniques can be found in the soundex system [Dav62, OR18]. The
soundex system was devised to solve the problem of phonetic errors. It took a word in
English and produced a presentation consisting of digits to preserve the salient features
of the phonetic pronunciation of a word. A misspelled word was also mapped into a key
consisting of its first character followed by a sequence of digits. Digits were assigned
according to the following pre-defined rules:

A,E,I,O,U,H,W,Y→ 0;
B,F,P,V→ 1;
C,G,J,K,Q,S,X,Z→ 2;

8An anagram is a word, phrase, or sentence that formed from another by reshuffling or repositioning
its characters.

27

D,T→ 3;
L → 4;
M,N→ 5; and
R → 6.

Zeros are eliminated and repetition of characters are collapsed. For instance, the word book
will be transformed to B002 which will become B2 and the word bush will be transformed
to B020 which will also become B2. Although book and bush are neither equivalent nor
similar, they are mapped to the same key, B2. This soundex system merely serves
as an illustration here. It exemplifies the notion behind a similarity key in a simplified
manner, albeit far from perfect. For more details on the soundex system, please consult
[JM00, Par03].

Another algorithm, Metaphone, by Philips [Phi90], which works in a similar manner
to soundex, was designed to respond to the lack of accuracy of the soundex system.
The Metaphone algorithm transformed words into phonetic codes based on properties in
[Phi90, Phi00]. It however worked on a character-by-character scheme. Double Metaphone
[Phi00] is the second generation of the Metaphone algorithm. It started by analysing single
consonants according to a set of rules for grouping consonants and then groups of letters
by mapping them to Metaphone codes. aspell is an algorithm that combines Double
Metaphone together with edit distance. We will be looking more closely at aspell in
Section 4.4.

As mentioned earlier, another example of involving similarity key techniques for spelling
correction is the speedcop system by Pollock and Zamora [PZ84]. The similarity key
technique in speedcop was specifically used for correcting single-error misspellings. It
will be discussed in details in Section 4.5.

A variant of the similarity key approach is an algorithm that computes a fuzzy simi-
larity measure. It is called token reconstruction [Boc91]. Token reconstruction returned a
similarity measure between a misspelled word and a word in the dictionary. It was com-
puted by taking the average of four empirically weighted indices that measure the longest
matching substring from both ends of the two words. The dictionary was partitioned into
buckets containing strings that have the same first character as well as the same length.
The search began by checking for words with small differences in length and then checking
for words that start with other characters (i.e. different first characters) in the misspelled
words.

3.4.3 Rule-based techniques

Rule-based techniques involve algorithms that attempt to represent knowledge of common
spelling error patterns, for transforming misspelled words into correct ones. The knowl-
edge is presented as rules. These rules can contain general morphological information
(such as rules to transform a verb into an adjective by adding ‘-ing’ at the end of the
verb), lengths of the misspelled words and more. The candidate suggestions are generated
by applying all applicable rules to a misspelled word and retaining every valid word in the
dictionary that results. Ranking on the suggested words is based on a predefined estimate
of the probability of the occurrence of the error that the particular rule corrected. It is

28

completely independent of any grammar or parsing formulation. It can be a mere lexical
lookup routine.

The general spell correcting application designed by Yannakoudakis and Fawthrop
[YF83a, YF83b] is an example of using rule-based techniques. This application made use
of a dictionary, which was partitioned into many subsets according to the first characters
and word lengths. This decision was based on the fact that their rules contained knowledge
of the probable length of the correct word, which was determined based on the misspelled
word. To generate candidate suggestions, specific dictionary partitions containing words
that differ from the misspelled word by one or two errors were searched under the condition
that they comply with any of the rules. When multiple candidates were found, these
candidate corrections were ranked according to predefined estimates of the probabilities
of occurrence of the rules.

Another specialised knowledged-based spelling correction system was designed by
Means [Mea88]. The rules in this case are a set of morphological information, such as
doubling a final consonant before adding the suffix ‘-ing’. They are checked for common
inflection violation. The system then consults a set of abbreviation expansion rules to
determine if the misspelling could be expanded to a word in the lexicon. If this step
fails, it tries all single-error transformations (i.e. insertions, deletions, substitutions, and
transpositions) of the misspelled word.

More recently, an evidence of rule-based techniques being incorporated in a (context-
independent) spelling correction system can be found in the phonetic module of aura
[HA03]. This algorithm was designed to represent phonetic spelling error patterns. aura
will be described in details in Section 4.8. Rule-based techniques are also seen to be
incorporated into spelling correctors that perform morphological analysis for context-
dependent spelling correction [BK03].

3.4.4 n-gram-based techniques

n-gram analysis was described mathematically in Section 2.3.2 and the concept of in-
volving n-gram analysis in spell checking was discussed in Section 3.3.2. The nature of
n-gram analysis will thus not be repeated in this section. We will be looking at the use
of n-grams specifically for the spell correcting task [KST92, KST94]. n-grams have been
used as a basis or in combination with other aforementioned techniques discussed in this
chapter in order to achieve the task of spelling correction. Spell correctors employing
n-gram-based techniques follow three processes: error detection; candidate suggestion;
and rank similarity.

Rank Detection

Firstly, n-grams have been widely used in correcting misspellings in an OCR text as
mentioned in Section 3.3.2 in order to capture the lexical syntax of a dictionary and suggest
valid corrections. An example can be illustrated by the technique proposed by Riseman
and Hanson [RH74], which incorporated n-grams in their OCR correction. A dictionary
was partitioned into subsets according to word lengths. Each subset had positional binary

29

n-gram9 matrices and these matrices captured the structure of strings in the dictionary.
Each output word from the OCR device could be checked for errors by verifying if all its
n-grams have value 1.

• If at least one binary n-gram of a word has value 0, it is indicated to have a single
error.

• If more than one binary n-gram of a word have value 0, the positions of the errors
are then indicated by a matrix index that is shared by the n-grams with 0 value.
The rows or columns in the matrices specified by the common index of the erroneous
n-grams are then logically intersected in order to find possible suggestions.

• If the result of the intersection indicates that only one n-gram has value 1, a candi-
date correction is found.

• If more than one n-gram suggestion are found, the checked word is rejected.

The advantage of this technique is that it prevents an exhaustive dictionary search. How-
ever, it runs a risk of resulting in a non-word as a correction. This technique only handles
substitution errors. Ullmann [Ull77] proposed a technique in which binary n-grams are
processed in parallel.

Candidate Suggestion

The second spell correcting procedure is to suggest candidate corrections. n-grams have
often been used as access keys into a dictionary for locating possible suggestions and as
lexical features for computing similarity measures. This will be explained by using the
technique developed by Angell et al [AFW83] as an example. The number of the non-
positional binary trigrams that occurred in both a misspelled word and a dictionary word
were computed. Non-positional n-grams were referred to as n-gram arrays that did not
indicate the positions of the n-grams within a word.

The lexical features in this case were trigrams. The similarity measure was then
computed by a function called Dice coefficient10 which was

D(nm, nd) = 2(c/(nm + nd)),

where

• c is the number of shared/common trigrams for both the misspelled word and the
word in the dictionary,

• nm is the length of the misspelled word, and

9In a binary n-gram, each n-gram in a word is assigned the binary value 1 or 0, based on its occurrence
in a dictionary. For example, the word and has bigrams ‘an’ and ‘nd’. Matching these two bigrams with
bigrams of words in a dictionary, it is very likely that both bigrams exist. Thus, each bigram has a binary
value 1.

10Dice coefficient is a correlation coefficient for discrete events.

30

• nd is the length of the dictionary word.

Note that nm and nd can be interchanged. Furthermore, the trigrams of the misspelled
word were used as access keys. These trigrams were used to retrieve words in the dictionary
that have at least one trigram that is in common with the misspelled word. The similarity
measure thus only needs to be computed for this subset. The drawback of this particular
technique is that any words shorter than three characters cannot be accurately detected
because one single error can leave no valid trigrams intact. For misspellings containing
more than one error, the function for similarity measure was changed to

D(nm, nd) = 2(c/max(nm, nd)),

where max(nm, nd) is the highest probability of the common trigrams.

Rank Similarity

The third spell correcting procedure, similarity ranking, is not executed in any of the
example schemes discussed to date. However, n-gram based techniques can also be used
to find and rank candidate suggestions. Both misspelled and correct words are represented
as vectors of lexical features (with unigrams, bigrams, and trigrams as possible candidates
for the features of the lexical space) to which conventional vector distance measures can
be applied. The measures then form the basis for ranking candidate suggestions.

These techniques first position each dictionary word at some point in an n-dimensional
lexical-feature space in where words are represented as n-gram vectors. The dimension of
a lexical-feature space n can be very large. For example, if the lexicon consists of 10,000
words, one may use trigrams (sequences of three consecutive letters) as the feature, then
n = 1012 (104×3). A misspelling is then projected into that specific space. The proximity
of the misspelling and its nearest possible candidates in this lexical space is measured by
hamming distance, dot products or cosine distances.

• The Hamming distance is a metric11 on the vector space of the words of the same
length. The hamming distance for the misspelling and a dictionary word is the
number of occurrence in which the two words differ, i.e. have different characters.
The smaller the hamming distance, the more similar the two vectors are.

• The dot product metric is an operation which maps two vectors into scalars and
returns a real number. Each of these lexical feature vectors is associated with a
corresponding coefficient value that represents the frequency of its occurrence in
a particular dictionary. Two vectors are said to be similar if their dot product is
small.

• The cosine distance metric between two vectors are equal to the dot product of the
two vectors divided by the individual norms of the vectors. However, if the vectors
are already normalised, the cosine distance simply becomes the dot product of the
vectors. Two vectors are said to be similar if their cosine distance is small.

11A metric is a function that is symmetric, satisfies the triangle inequality and the reflexive distance is
0.

31

Correlation Matrix Memory techniques is an example of making use of vector distance
measures based on n-gram vectors (i.e. representation of words). A dictionary of r words
is represented as n × r matrix of n-dimensional lexical-feature vectors, where unigrams,
bigrams, and trigrams are features of the lexical space and in where words and misspelled
words are represented by sparse vectors. For correction, the n-dimensional lexical-feature
vector of the misspelled words is multiplied by the n× r-dimensional matrix. This yields
an r-dimensional vector in which the ith element represents a measure of correspondence
between the ith dictionary entry and the misspelled word. The element with the highest
value is deemed as the most strongly correlated entry. Thus, it is indicated as the candi-
date correction. Correlation Matrix Memory techniques are relevant, and details can be
found in [CVBW92].

The Generalized Inverse matrix is a technique used for transforming lexical-feature
spaces. The goal is to minimize the interference that occurs among similar dictionary
words. The technique is based on finding a so-called minimum least squares error in-
verse of the dictionary matrix. Details can be found in [CRW91]. The drawback of a
Generalized Inverse matrix is that when the number of dictionary entries approaches the
dimensionality of the feature space, the matrix saturates and the correction accuracy
takes a significant decline [CFV91]. Thus, it has been concluded that simple Correla-
tion Matrix Memory techniques are more effective and efficient in achieving the spelling
correction task.

Another technique used for transforming lexical-feature spaces is Singular Value De-
composition. It is used to break down a dictionary matrix into a product of three matrices
in order to identify and rank the most important factors. These factors measure the rel-
evant similarity distance in the lexical space. In regard to spelling correction: words are
represented by unigram and bigram vectors in a spelling correction matrix. This matrix
is broken down into three factor matrices. A misspelled word is corrected by first sum-
ming the vectors for each of the individual-letter n-grams in the misspelled word. The
sum vector is then multiplied by the singular-value matrix of weights. The location of
the misspelling in the n-dimensional feature space is determined by the resultant vector.
As mentioned earlier, hamming distance, dot product, or cosine distance can be used to
measure the distances between the vectors for each of the suggested words and the vector
for the misspelling and locate and rank the nearest correct words. Details of Singular
Value Decomposition can be found in [Kuk90].

Most of the techniques that use vector distance measures based on representations of
words as n-gram vectors collapse the three spelling correction procedures. They combine
error detection, suggestion, and similarity ranking into one process.

n-gram-based techniques appear to be the approach of choice to construct language
models for non-Latin languages, such as Bangla and Chinese [LW02].

3.4.5 Probabilistic techniques

n-gram-based techniques often act as a prelude to probabilistic techniques. Probabilistic
techniques were originally used for text recognition.12 Two types of probabilities are

12Text recognition is also known as optical character recognition.

32

relevant: transition or Markov probabilities, and confusion or error probabilities. As will
be seen, transition probabilities are language dependent, whereas confusion probabilities
are source dependent.

Transition or Markov probabilities determine the likelihood13 that a certain given
letter will be followed by another given letter in a given language. These probabilities can
be determined by collecting n-gram frequency information from a large corpus. They are
based on simplifying the assumption that the language is a Markov source—i.e. that the
probability of a transition is independent of prior transitions.

Confusion or error probabilities determine the probabilities that a certain letter sub-
stitutes another given letter, given that an error has been made. n-grams are explored
in all these techniques. Confusion probabilities can be determined by feeding a sample
text into the OCR device and tabulating error statistics. An alternative way to esti-
mate the probabilities is that an OCR device can generate a 26-element vector containing
probability for each letter of the alphabet at the time a character is recognized [BB59].

The difference between the two probabilities is that transition probabilities are lan-
guage dependent whereas confusion probabilities are source dependent. Transition or
Markov probabilities are based on the assumption that the language is a Markov source
and that the corpus analysed is often domain-specific. On the other hand, confusion prob-
abilities are source dependent because different OCR devices have different techniques and
features, such as font types, and each device will generate a unique confusion probability
distribution. Confusion probabilities can also be based on human errors. In this case,
they are estimated by extracting error statistics from samples of a typed text. For the
probabilistic approach for the spelling correction task, candidate corrections are generally
ranked using a Bayesian or noisy channel algorithm [KCG90, JM00].

Bledsoe and Browning [BB59] were the first to make use of the probabilities in text
recognition techniques. In the first phase, they tackled individual-character recognition.
This entails that a 26-element vector of probabilities is generated, for each character in an
input word. This is to say if a word was made up of 5 characters, then a matrix of 5× 26
was generated. A whole-word recognition phase then followed. It entails the individual
letters whose overall probabilities maximize the probability of producing a valid word
from the dictionary were chosen with the help of a dictionary. Bayes’ rule was used to
compute P (w|m), the so-called posterior probability that a valid word w should be used
for the OCR-determined word (i.e. the misspelled word) m. Details may be found in
[BB59].

There have been several attempts to perform spelling correction based on transition and
confusion probabilities [HS82]. A dynamic programming technique (mentioned in Sec-
tion 3.4.1), the Viterbi algorithm [For73], is efficient and widely used to combine transi-
tion and confusion probabilities for spell correcting. In the Viterbi algorithm, a directed
graph was used to capture both the structure of a dictionary and the channel character-
istics of a device, such as an OCR device. Transition probabilities were deduced from the
structure of a dictionary whereas confusion probabilities were deduced from the channel
characteristics of a device.

13In this dissertation, likelihood is considered interchangeable with the word of probability.

33

The structure of the graph is as follows: Word boundary markers, such as blank
spaces, are represented by a starting and an ending nodes; the likelihood estimate for
each individual letter is represented by an intermediate node; and the transition probabil-
ity between two letters is represented by labels on the edges of the graph. This graph is
efficiently traversed to find the sequence of characters with the highest probability given
the likelihood estimates for an OCR output and the transition probabilities of the lan-
guage. There exist other modifications of the original Viterbi algorithm [ST79b]. The
drawback of these techniques that make use of the Viterbi algorithm is that the string
with the highest probability is not always valid.

Combining the use of probabilistic techniques with dictionary lookup techniques can
achieve better error correction results. As we mentioned earlier, the string with the
highest probability is not always a valid word. By looking up this particular string in the
dictionary, it ensures the validity of the string suggested.

Shinghal and Toussaint [ST79a] devised a technique called predictor-corrector method
which made use of a modified Viterbi algorithm to recognise the input string and then
performed a binary search in the dictionary for the word with a matching value. Sinha and
Prasada [SP88] devised a technique that integrated probabilities, dictionary lookup, and
a variety of heuristics (i.e. rules that spelling errors tend to follow). The technique started
by constructing a partial dictionary, which consisted of a list of 10,000 most frequently
appeared words from the Brown Corpus and valid words obtained from performing single-
character substitutions on these 10,000 words. The invalid words were corrected by using
the confusion probabilities (i.e. how often a given character is substituted for another
character). Then a modified Viterbi algorithm was used to estimate the correction with
the highest probabilities for words that were not present in the dictionary. The dictionary
was stored as a trie. A variety of rules that spelling errors tend to follow were used to
rank confusion candidates.

The layered Hidden Markov Model (HMM) technique has been used in the Token
Passing framework [YRT89] to guide the spelling error correction process [Ing96]. The
HMMs were arranged in multiple layers, where the HMMs in each layer were responsible
for different aspects of the processing of the input text. The tokenizer made use of the
linguistic information extracted from the training corpus.

Kernighan et al [KCG90] and Church and Gale [CG91] devised correct, which aims
at correcting single-error misspellings. correct made use of a reverse minimum edit
distance technique (discussed in Section 3.4.1) to generate a set of single-error candidate
correct spellings. A specific error within each correct word was identified. A Bayesian
formula was used to rank the candidate suggestions. correct will be discussed in detail
in Section 4.3.

Brill and Moore proposed the use of noisy channel model or Bayes’ rule for spell cor-
recting [BM00]. This approach allows for more than one spelling error in each misspelled
word. Each misspelled word and each suggested word were segmented into all possible
partitions. The probability of the dictionary word being a possible correction was then
computed. Dynamic programming was employed to calculate the generic edit distance
between two strings. The dictionary was stored in a trie with edges indicating a vector
which contained the weights of computing the distance from string to their corresponding

34

prefixes. Details can be found in [BM00].

Probabilistic techniques often make use of language models constructed from n-grams
for spell correcting. Bayes’ rule on the noisy channel model is still a preferred option
according to Brill and Moore [BM00]. Garfinkel et al [GFG03] made use of a probabilis-
tic function for their interactive spell corrector. Although probabilistic techniques only
started being incorporated in spell correcting in the nineties, have become widely used.

3.4.6 Neural networks

Neural networks are potential candidates for spelling correction due to their ability to
do associative recall based on incomplete or noisy input. Neural nets have the ability to
adapt to the specific error patterns of a certain user’s domain because they can be trained
on actual spelling errors. Hence, the correction accuracy for that domain is potentially
improved.

The back-propagation algorithm is widely used for training neural networks [CV89].
A back-propagation network generally consists of three layers of nodes: an input layer,
a hidden layer, and an output layer. The nodes within a given layer are not directly
connected. However, each node in the input layer is connected to every node in the hidden
layer by a weighted link and each node in the hidden layer follows the same fashion and
is connected to every node in the output layer by a weighted link. The activities on input
and output nodes of the network indicate input and output information respectively (i.e.
when a node is turned on, a 1 is indicated; when a node is turned off, a 0 is indicated).

A back-propagation network starts by placing a pattern of activity on the input nodes,
the activity is sent through the weighted links to the hidden nodes, and a hidden pattern
is then computed. This latter activity is sent to the output nodes where an output pattern
of activity for the system is then computed. The total activity reaching a node is the
weighted sum of the activities of each of the nodes leading up to it. The algorithm provides
a means of finding a set of weights, which represent relation strengths between nodes for
the network that allows the network to produce either valid or similar output pattern for
each input pattern. During the so-called training phase, the difference between the actual
output pattern and the desired output pattern is computed for each node in the output
layer. This difference is used to fine-tune each weight by an amount inversely proportional
to the error. This procedure is repeated through all the examples in the training set until
the weights converge. The result is a set of weights that produces a nearly correct output
pattern for each input pattern in the training set and also for similar input patterns that
were not in the training set.

Using a back-propagation network in a spelling correction application, a misspelled
word which is represented as a binary n-gram vector (Section 3.4.4) serves as an input
pattern to the network. The output pattern is the activation of some subset of r output
nodes, where r is the number of words in the dictionary. For input representing some
misspelled word, the aim is to ensure that the output nodes corresponding to alternative
corrected word spellings are turned on. Neural networks, like probabilistic techniques, are
extensively employed in OCR correctors [MBLD92].

35

Deffner et al [DEG90] implemented a neural network spelling corrector, which is part of
a natural language interface to a database system.

Feature vectors used to represent dictionary entries and misspellings contain phonetic
features (i.e. how a word is pronounced), syntactic features (e.g. noun, verbs), semantic
features (i.e. features used to express the existence or non-existence of semantic properties,
such as shape, colour), and letter n-grams. A similarity measure between a possible
misspelling or an incomplete input string and each element of a restricted subset of the
dictionary is computed by a hamming distance metric.

aura was implemented by Hodge and Austin [HA02, HA03] in their recent research.
It is a modular binary neural network architecture that made use of Correlation Matrix
Memories (CMM) [Koh88] and a supervised learning rule which is somewhat similar to
a hash function in order to map inputs to outputs. Two approaches were employed to
resolve different types of spelling errors. aura will be explained in more details in Section
4.8.

Although neural networks are the main technique behind aura’s spell correcting func-
tion, they have not been adopted widely by other spell correcting systems.

3.5 Other Related Issues

There are several other issues that are closely related to spell checking and correcting
processes: dictionary partitioning schemes, dictionary or lexicon construction, and word
boundary issues.

• Dictionary partitioning schemes were motivated by memory constraints in many
early spelling checkers. Peterson [Pet80] suggested partitioning a dictionary into
three levels to avoid this problem. The first level which consists of 50% of dictionary
entries was stored in the cache memory. The second level which consists of another
45% of dictionary entries was stored in the main (or primary) memory. Lastly, the
third level which consists of the remaining 5% of dictionary entries was stored in
the secondary memory. The first level consists of the most frequently used words;
the second level consists of some domain-specific terminologies; and the third level
consists of less frequently used words. The memory constraints are not as much of
an issue these days. However, dictionary partitioning can make a slight difference
in terms of performance. Dictionary partitioning can also be done by dividing
a dictionary into many sub-dictionaries according to word lengths or first letters.
Spell correcting algorithms will search specific dictionary partitions for words for
candidate corrections. Generally, several dictionaries and/or a few lexicons are used
in a spell checker and corrector. When several lexical lists are used, they are treated
in the same fashion as the dictionaries.

• Data structures for storing dictionary entries can appear in various forms. The
simplest case is to store the entries in a sequential list, where words are stored in al-
phabetical order. This list can be indexed either by lengths or by collating sequence
in order to reduce search time. The other data structures for storing dictionary

36

entries are partial or complete hashing and tree structures, such as binary search
tree or a trie, either at the word or character level. These structures are suitable
for storage in the primary memory. However, either a B-tree or disk hash table is
more suitable if the dictionary is to be stored in the secondary memory. Finite-state
automata have also been a favourable candidate for dictionary implementation. Us-
ing finite-state automata, it allows random access to the data stored and the lexical
functions, such as lexical classification (i.e. parts of speech), inflections, and conju-
gations, and even gender information and number marking in some languages, such
as Portuguese, at a negligible cost. [KLS98] is an instance of employing minimized
acyclic finite-state automata.

• Word boundaries in most spelling error detection and correction techniques are often
defined by inter-word separation, such as spaces and punctuation marks. However,
it is largely dependant on the language under consideration. For example, word
boundaries are defined by word dividers for Amharic. In most Asian languages,
such as Chinese [SGSC96], Thai, Japanese, and ancient languages, such as Sanskrit,
word boundaries are not obvious. For example, in Chinese, there is no space between
words to act as word boundary delimiter. Thus, dictionaries and word frequencies
are heavily relied on to solve this problem. We will be looking into the techniques
used in Chinese text proofreading in more details in Section 4.10.

Furthermore, even in writing systems that make use of inter-word separation, it is
not always easy to determine word boundaries when it comes to compound words,
run-on words, and split words. The speedcop [ZPZ81] spell corrector discussed in
Section 4.5 checked for run-on errors involving function words as a final subroutine of
spell checking. The complexity of handling errors due to word boundary infractions
remains one of the unsolved problems in research of spell checking and correction.

3.6 Conclusion

In recent research, it is established that most of the spell checking techniques discussed
in Section 3.3 are mainly employed to perform exact string matching. Spell correcting
techniques are employed to suggest an alternative or a valid word to a misspelled or an
invalid word. From our brief description of the actual algorithms that employed the afore-
mentioned spell correcting algorithms, it seems that the current trend of implementation
is towards hybrid approaches, i.e. combining several of the aforementioned techniques. It
would therefore seem that each technique on its own is not sufficient enough to achieve
high accuracy. Furthermore, an algorithmic solution to the spell checking and correct-
ing tasks often consists of a combination of techniques described in this chapter. More
evidence of this claim will be provided in Chapter 4.

The current trend for the use of spell correcting techniques also indicates that mini-
mum edit distance is by far the most widely studied and used spell correcting technique.
Similarity key techniques have been seen in several spell checkers and correctors, such
as speedcop, aspell, and jazzy. A more recent evidence of involvement of rule-based

37

techniques is found in the phonetic module inside aura. Rule-based techniques are also
incorporated into spelling correctors that perform morphological analysis for context-
dependent spelling correction. n-gram-based techniques appear to be the choice to con-
struct language models for languages, such as Bangla, Chinese [LW02], and Finnish, that
possess more complicated language structures. Probabilistic techniques often make use of
n-gram language models in spell correcting. They have become widely used to date. Neu-
ral networks as the main technique behind aura’s [HA02, HA03] spell correcting function
have not been adopted widely by other spell correcting systems. The above claims will
be supported by our investigation on the various spell checking and correcting algorithms
in the following chapter.

In the subsequent chapter, the techniques described in this chapter can be seen used
in the actual spell checking and correcting packages.

Chapter 4

Spell Checking and Correcting
Algorithms

4.1 Introduction

This chapter provides a number of representative algorithms that incorporate the tech-
niques described in Chapter 3 for finding spelling errors and suggesting corrections. This
chapter is to show in a structured fashion the connection between the mathematical model
provided in Chapter 2, the techniques described in Chapter 3, and the various algorithms
discussed in this chapter.

An algorithmic solution for the spell checking and correcting tasks often requires a
combination of techniques described in Chapter 3, as one single technique on its own
might be too inefficient to produce the optimal results in terms of accuracy, running time
and storage space. This claim will become more obvious as we progress further into this
present chapter. Spell checkers and correctors these days rely heavily on approximate
string matching algorithms in order to find correctly spelled words with similar spellings
to an erroneous word. We are now going to describe the algorithms used by the chosen
spell checkers and correctors in detail.

Throughout this dissertation, some of the algorithms are described in details and
several algorithms are expressed in a variant of Dijkstra’s Guarded Command Language
(GCL) [Dij76]. GCL is used to standardise the presentation of various algorithms. The
text description and the GCL presentation for various algorithms make it possible to
compare these algorithms in a homogenous context in Chapter 5.

Taking into consideration the spell checking and correcting techniques described in
Chapter 3, the algorithms discussed are:

1. Unixr spell, where hashing was employed;

2. correct, which employed a probabilistic technique (reverse minimum edit dis-
tance);

3. aspell, where the Metaphone algorithm and edit distance (discussed in Section 3.4.1)
were employed;

39

40

4. speedcop, where similarity keys and error reversal technique were employed;

5. The fsa package, where finite-state automata are involved in lexicon construction
and/or morphological analysis and cut-off edit distances were employed;

6. agrep, in which the bitap algorithm employed pattern matching;

7. aura which made use of neural nets with data training performed using hamming
distance, shifting n-gram approach and phonetic codes;

8. DAC Northern Sotho (DNS) spell checker, which is embedded in Microsoft Word;

9. Chinese text proofreading tool—CInsunSpell, which employed a combination of
techniques such as n-gram and probabilistic approaches and edit distance.

Before we begin discussing the mentioned algorithms in detail, it is necessary to bear in
mind that the spell checking and correcting procedures in these algorithms are extensions
and implementations of the MissesL and SuggestL functions (Functions 2.3.2 and 2.3.3,
respectively) described in Chapter 2. These functions are generic in the sense that they
are given abstract implementation only, thereby specifying the semantics but not the
precise implementation. Some implementations will be given in the following sections.

4.2 SPELL

The Unixr spelling checker spell [Rit06] was originally written by S. C. Johnson in
1979 and was subsequently re-written several times. One of McIlroy’s [Ben00, McI82]
versions of spell focused on data compression and introduced a one-byte affixability
indicator with each word, which provided much better heuristics for deriving words. The
advantages of McIlroy’s versions over Johnson’s are better word list and reduced run time.
The spell programme requires very little memory usage as it was designed for a machine
with only a 64KB address space in its main memory.

Below, the broad outline of Johnson’s algorithm is first explained. This is then followed
by a brief description of McIlroy’s data-compression-based algorithm. Lastly, GCL code
is given to explain the hashing that was used in this case.

The original spell programme written by Johnson works in the following manner:
It takes an input file and breaks the file content into words. These words are sorted

into alphabetical order and duplicates are discarded. The sorted words are then compared
to a dictionary. Words that are not found in the dictionary are flagged and reported. A
Bloom filter [Blo70, Mit02] was used in spell. The shortfalls of this approach are its
slowness and limited coverage of vocabularies.

As Bentley [Ben00] pointed out, in McIlroy’s version of spell, a superior word list was
used instead of a simple desk dictionary. This word list was built and compiled from
various sources, such as the Brown Corpus and Webster’s New International Dictionary of
the English Language. An affix analysis was employed to reduce the size of the dictionary.

41

This word list contains 75,000 words. The spell programme performs affix analysis to the
word list in order to reduce its size. The goal of affix analysis is to reduce an inflected word
down to its word stem. For instance, the word misspelled will be stripped of its affixes
(i.e. its prefix and suffix—see Section 3.3.1) according to built-in tables that contain forty
prefix rules and thirty suffix rules [McI82]. Thus, the prefix of the word misspelled would
be identified as ‘mis-’ and its suffix as ‘-ed’. After stripping off both ‘mis-’ and ‘-ed’, the
word stem ‘spell’ is inserted into a new word list called the stop list. The affix analysis
reduces the original 75,000-word list to a 30,000-word list.

The lookup process starts by affix stripping the word being searched for, and the word
itself and the stem are looked up in the stop list. If a match is found, a stop flag is
attached to it. The word is also looked up in the original word list. If the word has a
stop flag, it is assumed to be correct if it also appears in the original word list. Words
that neither occur among, nor are derivable from (by applying affix analysis) words in the
word list are output as misspellings.

A word in the word list is a sequence of alphabetical characters. Hashing schemes are
then used in spell to represent 30,000 words in 27 bits each.

The general spell checking strategy in McIlroy’s version did not change—Johnson’s
version already used hashing (albeit in the form of a Bloom filter, rather than per-word
hash as in McIlroy’s version). The scheme in spell uses multiple hash functions, each of
which hashes the word w to a 27-bit integer, which is then used to index a bit vector B
of length 227 (=134,217,728). With only roughly 30,000 words to be represented in such
a table, the chances of a hash collision is low—as will be discussed below.

Initially, each word w in the word list W is hashed using k independent hash functions
h1, · · · , hk—each of which is assumed to distribute over the space 227 uniformly1. (The
choice of k will be explained in the coming paragraphs.) The hash values h1(w), · · · , hk(w)
are used to index into our bit vector B, setting the corresponding bits to 1, i.e. B[h1(w)] =
B[h2(w)] = · · · = B[hk(w)] = 1. Note that we use the notation X[i] and Xi interchange-
ably throughout this algorithm to indicate the element in the ith position in some array
X.

Here, we assume that there is a function that converts a string into an integer value.
Consider an example: suppose B is 10 bit hash table (i.e. n = 10), the number of hash
functions is 3, i.e. k = 3 and h1(w) = 2, h2(w) = 4, and h3(w) = 0 for our words w to be
inserted into B. In that case, we set bits B0, B2, B4, as showing in the following table:

h1(w) h2(w) h3(w) B
Bit number: 0 1 2 3 4 5 6 7 8 9

Initially: 0 0 0 0 0 0 0 0 0 0
w inserted: 2 4 0 1 0 1 0 1 0 0 0 0 0

To look up a word, the table B is probed to see whether all hash-designated bits are set
to 1. Thus, to look up the word w, h1(w), h2(w), · · · , hk(w) are computed; if B[h1(w)] =
B[h2(w)] = · · · = B[hk(w)] = 1, then the word w is indeed a correctly-spelled word.
However, if any of the bits are set to 0, the word w is reported as a misspelled word.

1For this reason, the hash functions are also reduced modulo some prime(s) less than 227.

42

Although this approach reduces space dramatically, it results in a behaviour in which a
misspelled string can go undetected because it happened to map into a hash address for a
valid word. It can be shown that the probability that one of the k hash functions does not
map a misspelled word into a valid word is given by the Poisson formula: P = (1−1/n)km

where m is the number of entries in the table. Thus, (1− P) is the probability that one
of the k hash functions does indeed map a misspelled word to a valid word. Furthermore,
(1 − P)k is the probability that all the k hash functions map the misspelled word to a
valid word. In the case of spell, the probability of an error is 215/227, roughly the ratio
of 1:4000 on average, if each entry of roughly 30,000 words is hashed into 27 bits. As
explained by McIlroy [McI82], the most optimal value of k is thus determined by

k =
n

m
log 2 (4.1)

where n is the number of words in the word list W .

The hashing algorithm employed in spell is expressed in GCL below. Consider a hash
table B[0, n) (i.e. a bit array of n elements ranging from 0 to n− 1) for spelling checker
that has n bits which are initially set 0, and a word list W [0, r) that contains a set of r
word. Let wj ∈ W , j = 0 . . . (r− 1) be the jth word in the word list. Assume that n > r.
Each word wj is hashed by k different hash functions, hi, where i = 1 · · · k. For each word
wj and each hash function hp (where p = 1 · · · k), the bit B[hp(wj)] is set to 1. The same
bit can be set to 1 more than once.

Algorithm 4.2.1 describes how the bit vector is initialised, and Algorithm 4.2.2 shows
how the bit vector is checked to see if a candidate word is correctly spelled. The symbols
in the algorithms have the following meanings:

• B is the bit vector in which the words are stored.

• W is the list of words to be stored,

• n is the length of the bit vector. In theory, and for the purposes of the discussion
below, n = 227 = 134, 217, 728. It practice, it is the first prime number less than
this value.

• r is the number of words in the word list, i.e. r = |W |.

• B[i] represents the ith bit in the bit vector, for i ∈ [0, n).

• wj represents the jth word in the word list, for j ∈ [0,m).

• k is the number of hash functions used by the algorithms.

• hp is the pth hash function to be used. Each hash function maps a word (interpreted
as an integer, rather than as a string) to an integer in the range [0, n). The mapping
takes place as follows: For p ∈ [1, k], let zp be the pth prime number less than n.
Then hp(wj) = wjmodzp.

43

• x is a word to be looked up in B.

Note that throughout this dissertation we use the notation [0, x) to indicate the range of
an array (i.e. 0, 1, · · · , x− 1, where x is an integer variable).

The first loop of Algorithm 4.2.1 initializes the hash table, B to zeros. The next loop
enters hashed information about each word list into the table. Essentially, it uses the k
hash functions to compute k integers to serve as k indices into table B. At each such
index of table B, the table’s value is set to 1. A table V contains boolean values.

Algorithm 4.2.1(Hashing in spell)

proc SpellHash(B,W, n)

B : = 0n;

for w ∈W →

for i ∈ [1, k]→

B[hi(w)] = 1

rof

rof

corp

To check if an affix-stripped word x is in W , we need to check whether all B[hp(x)] are
set to 1 for p = 1 · · · k. If all hp(x) bits are set to 1, we assume that x is in W and the
algorithm returns true. If not, x is reported as a misspelling and false is returned.

Algorithm 4.2.2(Look up in spell)

func SpellLookup(B,w) : boolean

for i ∈ [1, k]→

if B[hi(w)] = 0→ return false

[] B[hi(w)] = 1→ skip

fi

rof ;

return true

cnuf

44

McIlroy went on to compress the conventional hash as the storage space in earlier systems
was constrained (215 × 27 bits into 215 × 16-bit addressable memory in this case). A
Huffman code was employed for storage compression [Huf52, Knu85].

GNU’s spell is the open source reimplementation of Unixr spell. GNU’s spell
accepts as its arguments a list of files to read from. It prints each misspelled word on a
line of its own.

The spell detecting algorithm found in the Unix spell programme [Rit06] remains un-
changed from McIlroy’s version. Note that spell only addresses the spell error detection
problem.

4.3 CORRECT

correct was briefly mentioned in Section 3.4.5. The correct programme makes use of
a combination of edit distance and the probabilistic approach. correct was devised by
Kernighan, Church and Gale [KCG90] and further research was carried out by Church and
Gale [CG91]. There are two versions of correct: with context and without context. In
this dissertation, we focus on the version without taking context into consideration. The
correct programme combined a lookup in the word list and probabilistic techniques for
correcting single-error misspellings.

correct is designed to take a list of lower-case words rejected by the Unixr spell
programme, generate candidate corrections for these misspelled words, and sort these
candidates by probabilities. In correct, it is assumed that a misspelled word is the
result of a single error, or, more specifically, that the correct word is derivable from the
misspelled word by a single spelling error transformation2. By a single spelling error
transformation is meant a transformation that involves one of the following operations
applied to the misspelled word to derive a correctly spelled word: insertion, deletion,
substitution, and reversal. Kernighan et al [KCG90] defined the four operations as follows:

• Insertion: a misspelled word is the result of inserting an extra character in a cor-
rectly spelled word.

• Deletion: a misspelled word is the result of deleting a character from a correctly
spelled word.

The deletion table is a table where the entries are the misspelled words which are
in turn the result of deletions from a correctly spelled word. The drawback of this
table is that there is a cost in space as it has approximately a million entries which
is about 10 times the number of entries in the dictionary.

• Substitution: one of the word’s characters is replaced with another.

• Reversal : two adjoining characters in a word are swapped.

2This may look familiar: it is the reverse edit distance—see page 25.

45

Moreover, correct assumes that such single spelling errors occur with particular prob-
abilities. For instance, it may be more likely that ‘ed’ is derived from a transposition of
‘de’ rather than from a substitution of ‘ad’. Note the definitions of insertion and dele-
tion operations provided by Kernighan et al [KCG90] are inverse to the ones discussed in
Section 3.4.1.

Note that deletions and insertions are inverse to one another: if a misspelled word
is corrected by a deletion, then the misspelled word can be regarded as the result of an
insertion into the correctly spelled word. Similarly, if a misspelled word is corrected by
an insertion, then the misspelled word can be regarded as the result of a deletion in the
correctly spelled word.

The four spelling error transformations can thus be expressed in the following functions
which we choose to call Ins, Del, Sub, and Rev. Let m be a misspelled word and d
be a correctly spelled word found in a dictionary. As stated in the previous section,
m[0,p) = m0,m1, · · · ,mp−1.

The insertion operation can be seen as a predicate function whose value is determined
by the following expression:

Ins(m, d) , (|m| = |d|+ 1) ∧ ∃p ∈ [0, |m|) ·
((m[0,p) = d[0,p)) ∧ (mp 6= dp) ∧ (m[p+1,|m|) = d[p,|d|)))

The Ins function can thus be implemented as follows:

Algorithm 4.3.1(Insertion)

func Ins(m, d) : boolean

if (|m| = |d|+ 1)→

i, c : = 0, 0;

do ((i < |d|) ∧ (mi = di))→ i : = i+ 1 od;

{(i = |d|) ∨ (mi 6= di)}

if (mi 6= di)→ c : = 1

[] (mi = di)→ c : = 0

f i;

do ((i < |d|) ∧ (mi+1 = di))→ i : = i+ 1 od;

{(i = |d|) ∨ (mi+1 6= di)}

if ((mi+1 6= di) ∧ (c = 1))→ return false

[] ((mi+1 = di) ∨ (c 6= 1)→ return true

46

f i;

[] (|m| 6= |d|+ 1)→ return false

f i

cnuf

The deletion, substitution, and reversal operations can be expressed as follows:

Del(m, d) , (|d| = |m|+ 1) ∧ ∃p ∈ [0, |m|) ·
(m[0,p) = d[0,p)) ∧ (mp 6= dp) ∧ (m[p,|m|) = d[p+1,|d|))

Sub(m, d) , (|m| = |d|) ∧ ∃p ∈ [0, |m|) ·
(m[0,p) = d[0,p)) ∧ (mp 6= dp) ∧ (m[p+1,|m|) = d[p+1,|d|))

Rev(m, d) , (|m| = |d|) ∧ ∃p ∈ [0, |m| − 1) ·
(m[0,p) = d[0,p)) ∧ (mp = dp+1) ∧ (mp+1 = dp) ∧ (m[p+2,|m|) = d[p+2,|d|))

The Del, Sub, and Rev functions can thus be similarly implemented as the Ins function.
The notation m[0,p) refers to an array of characters in a misspelled word, where m0 refers
to the first character of the word m and mp−1 refers to the last character of m. Similarly,
d[0,p) refers to an array of characters in a dictionary word, where d0 refers to the first
character of the word d and dp−1 refers to the last character of d.

In seeking candidate corrections that differ from the input (i.e. misspelled word) by a
single spelling error transformation, correct searches a particular word list. This list
was composed from various sources, such as the word list in spell, the corpus collected
from Associated Press (AP) newswire, two dictionaries, and one thesaurus for proposed
correction.

A specific correction is identified by systematically applying all possible single-error
transformations of the misspelled word and checking to see if the result can be found in
the word list.

Assume a misspelled word is of length n and an English alphabet is of size 26. The
number of strings that must be checked against the dictionary is 53n+25, where 26(n+1)
result from insertions, n from deletions, 25n from substitutions, and n− 1 from transpo-
sitions.

The insertion operation requires n dictionary accesses to check if the nth letter in the
typographical error or the misspelled word has been inserted. The deletion operation
requires many more dictionary accesses because for each deletion, 26 letters may have
been deleted in n + 1 positions. A pre-computed deletion table and hashing are used
during candidate generation to minimize the number of dictionary accesses by means of
only one-table lookup. This pre-computed table is also used for checking substitution
and reversal. Heuristic hashing methods similar to the ones used in spell [McI82] are
employed to store deletion tables such as those in Table 4.1. The deletion table is a table
where the entries are the misspelled words which are in turn the result of deletions from
a correctly-spelled word.

47

Key Correction Position
afte r 4
aftr e 3
afer t 2
ater f 1
fter a 0

Table 4.1: An example of the deletion table for the word after.

The list of suggested words are ranked by probability scores using a noisy channel model
and Bayes’ rule [Win03]. The noisy channel model assumes that misspelled words are the
result of noise being added during typing, i.e. typographic errors. The Bayesian combina-
tion states that the probability that w is a correct spelling, given that the typographical
error m has occurred, is given by P (m|w)P (w), where P (w) is the estimated probability
of the word w occurring in some text, based on the observation of some large corpus, and
where P (m|w) is the conditional probability that the misspelling m was produced when
the word w was intended, w being either an insertion, deletion, substitution, or reversal
of m.

Thus, in order to score the candidate corrections, the probability of occurrence of the
suggested word is multiplied by the probability of occurrence of the specific error by which
the suggested word differs from the misspelled word [KCG90, CG91].

The data collected from AP newswire was also used to estimate both sets of probabili-
ties on a noisy channel model as the corpus contains a large number of typos. The sum of
the scores for all the candidate corrections is then normalised. The probability of w is es-
timated by P (w) = (freq(w)+0.5)/(n+v/2), where freq(w) is the number of times that
w appears in the AP newswire corpus, n is the number of words in the corpus, and v is
the vocabulary size—i.e. the number of words in dictionary. In this case, n = 44, 000, 000
and v = 112, 964. P (m|w) is computed from four so-called confusion matrices, where
each represents spelling permutations, i.e. insertion, deletion, substitution, and reversal.
Each confusion matrix represents a different type of spelling error. The elements of the
matrix represent the number of times that each spelling error transformation appears in
the training set. Details of the computation can be found in [KCG90, CG91].

Now let us consider the spell correcting algorithm used in the correct programme. The
algorithm takes the following input:

• W , the word list; and

• m, a misspelled word rejected by spell from Algorithm 4.2.2.

The algorithm is outlined below in GCL. It returns C, a set of pairs, < x, y >, where x is
a correction word and y is its corresponding score—i.e. y is the probability that x is the
correct spelling of m. In formal terms, C ∈ U+ × R, where U+ is the set of all possible
non-empty strings in the alphabet, U ; and R is the set of real numbers. In practice, the
list of suggested words will be sorted in an order that begins with the words with the
maximum scores.

48

Algorithm 4.3.2(Correct)

func CorrectProb(m,W) : U+ × R

C : = ∅;

do (i : [0, |W |))→

if (Ins(m,Wi) ∨ Del(m,Wi) ∨ Sub(m,Wi) ∨ Rev(m,Wi))→

C : = C ∪ {< Wi, Scores(m,Wi) >}

[] ¬(Ins(m,Wi) ∧ Del(m,Wi) ∧ Sub(m,Wi) ∧ Rev(m,Wi))→ skip

fi;

i : = i+ 1

od;

return C

cnuf

Another example of spelling correction using an error model for noisy channel spelling
was developed by Brill and Moore where a new channel model based on generic string to
string edits is employed to improve performance of the spelling correction task [BM00].

Note that correct only addresses the spell correcting problem and it does not apply
morphological analysis. The spell checking problem was taken care of by the spell
programme.

4.4 ASPELL

aspell is open-source software which can either be used as a library or as a stand-alone
spell checker. An example of using aspell for the spell checking support can be found in
the pidgin multi-platform instant messaging client [Sof08]. aspell tackles spell checking
using hashing (Section 3.3.1) for dictionary lookup. For spelling error correction, aspell
[Atk04] combines Lawrence Philips’ Metaphone algorithm and ispell’s [Kue05] near miss
strategy, in which a single-error transformation such as an insertion, or substitution derives
a correct spelling from a misspelled word. There are two main differences between ispell
and aspell:

1. aspell can handle Unicode Transformation Format-8 (UTF-8) [Uni03] automat-
ically, meaning that it can spell check a language such as Japanese that uses a
character set other than the Latin alphabet.

49

2. Secondly, ispell can only suggest corrections that are based on a edit distance of 1.
It will not suggest more distant corrections based on English pronunciation rules.

Edit distance which was discussed in Section 3.4.1 is used in ispell and subsequently
aspell to find the minimum number of ‘edits’ to transform the source (misspelled) word
into the target (suggested) word—thereby reflecting the similarity of the misspelled word
and the suggested word. In this section, insertion refers to the operation that an extra
character is required to be inserted into a misspelled word to resolve the misspelling and
deletion refers to the operation that a character is required to be deleted from a misspelled
word in order to resolve the misspelling. The definitions of these two operations are inverse
to the ones explained in Section 4.3.

As mentioned in the previous section, insertions and deletions are inverse to one an-
other. If a misspelled word is corrected by an insertion, then the misspelled word can be
regarded as the result of a deletion in the correctly spelled word and vice-versa.

aspell incorporates Philips’ Metaphone algorithm [Phi90] to deal with common rules
of the English pronunciation in order to achieve better spelling suggestions. Lait and
Randell [LR93] noted that the algorithm uses 16 consonant classes and has a set of rules
mapping letter combinations into the consonant classes. Vowels are only retained when
they occur as the initial letter of the word.

Metaphone can be viewed as a simple partial function we choose to call Metaphone
(4.4). Let R be the set of phonetic rules, M be a set of misspelled words, and S be their
‘soundslike’ equivalent3.

Function 4.4.1. (Metaphone):

Metaphone : M ×R 9 S

Further information on the Metaphone algorithm can be found in [Phi90] while the pho-
netic rules are discussed in [LR93]. The Double Metaphone algorithm [Phi99] is the second
generation of the original Metaphone algorithm which works on the same principles but
with some improvement in the original’s consonant classes.

In aspell, the edit distance takes into account transformation operations such as inserting
a space or hyphen, interchanging two adjacent characters, changing a character, deleting
a character, or simply adding a character to a string. Each such operation is assigned a
certain cost. The total distance is the smallest total cost for transforming the misspelled
word to the suggested word. The suggested word with the lowest score is deemed to be
the best candidate. For example, the edit distance between two strings “test” and “tert”
is 1—a single substitution is required to transform ‘r’ into ‘s’.

Thus, for a misspelled word m with edit distance d to any word w in our lexicon D,
the set of candidate corrections is

corrections = {w ∈ D|EditDistance(m,w) ≤ d}
3The ‘soundslike’ equivalent by definition is an approximation of how the words should sound.

50

aspell proceeds as follows:

1. Identify the misspellings by comparing a list of words against one of its built-in
dictionaries. This step is described in Function 2.3.2.

2. Find all dictionary words that are edit distance two or less from a misspelled word.

3. To find a set of suggested corrections, each misspelled word is converted to its
‘soundslike’ equivalent using the Metaphone algorithm.

4. Find all dictionary words that have ‘soundslikes’ that are edit distance two or less
from the ‘soundslike’ of a misspelled word.

The suggested corrections are ordered according to the weight average of the edit distance
(i.e. each edit distance is weighted by a specific weight) of the word to the misspelled
word and the soundslike equivalent of the two words. The words with the lowest scores
are returned.

The strength of aspell lies in the fact that it uses edit distance at both the phonetic
code level and the word level and this quality greatly improves the accuracy of suggestions.
Unlike spell and correct (described in Sections 4.2 and 4.3, respectively), aspell
performs both spell error detection and spell correcting tasks.

As mentioned earlier, aspell can perform spell checking for many languages other
than English, such as French, Spanish, German, etc. This is evident in spell checking
in Skype—a free Voice over Internet Protocol (VoIP) software [Tec03]. The underlying
algorithm stays the same despite the fact that the morphology for each language differs.
Other major differences lie in the dictionaries and the phonetic data files involved. The
dictionaries supplied by aspell comprises all inflected forms of words of the respective
languages. Thus, no morphological analysis was applied.

aspell is the underlying framework used in jazzy [Whi04], an open-source Java API
used for spell checking. The only significant difference is that jazzy incorporates the edit
distance slightly differently compared to aspell. We will be looking into the performance
of aspell in comparison with the other spell checkers and correctors in Chapter 5.

4.5 SPEEDCOP

speedcop (SPElling Error Detection/COrrection Project) was devised by Pollock and
Zamora [PZ84, ZPZ81]. It relies on technology that uses a knowledge-based similarity
key (as discussed in Section 3.4.2). It originally was aimed at automatically correcting
spelling errors which are predominantly typing errors in a very large database. speedcop
is designed to automatically correct spelling mistakes by finding words that are similar to
the misspelled word, reducing the candidate suggestions to words that could be created
by a single spelling error, and the suggestions are then sorted by the probability of the
type of error and the probability of the suggested word. speedcop performs both spell
checking and correcting tasks. However, it concentrates more on spell correction.

51

speedcop starts by generates a similarity key for each word in the dictionary and
then sorts these keys in key order. It also generates a key for the misspelled word. Three
dictionaries are created (the original dictionary; one for the skeleton keys; and one for the
omission keys) and sorted in key order. Misspelling is corrected by locating words whose
key collates most closely to the key of the misspelled words and the plausible correction is
selected from these candidates by attempting to reverse the error operations encountered.
This error reversal technique was first proposed by Damerau [Dam64]. Any number of
strings may possess the same key. The collating proximity between two keys is a measure
of similarity of the original words.

The speedcop algorithm computes two similarity keys, namely a skeleton key and
an omission key. A skeleton key consists of the first character of the word followed by
the remaining unique consonants in order of occurrence and then the unique vowels in
order of occurrence. For instance, the skeleton key for the word “chemistry” would be
CHMSTRYEI.

The correction results show that the most frequent cause of failure to correction with
words in the dictionary is caused by the early positions of consonants in the key. This
is due to the great collating distance between the skeleton key of the word and the key
of the misspelling when an incorrect consonant is positioned close to the beginning of a
word. It prevents the valid form of words from being retrieved from the dictionary. This
is to say that one of the first few consonants in the word is incorrect and the similarity
measure for the key for the word and the key for the misspelled word might be relatively
great.

An omission key is built to correct this shortfall of the skeleton key. The omission
key sorts the unique consonants in a reverse order of the frequency of omission and then
by the unique vowels in order of occurrence. In other words, an omission key consists of
unique consonants in reverse order of the frequency of omission (in English, experimentally
found to be RSTNLCHDPGMFBYWVZXQKJ) of omitted letters followed by vowels in
order of occurrence in the word. For example, the word “chemistry” has an omission
key YMHCTSREI. The construction of an omission key is less intuitive compared to the
construction of a skeleton key.

Both skeleton key and omission key contain the fundamental features of a word. In
the process of generating the keys, any duplicate of a letter in the word—not only any
adjacent duplicate—is eliminated, i.e. both keys are based on single occurrences of all the
letters that appear in a word.

For example, the skeleton key of the misspelled word “chemistrie” would be CHM-
STREI which would be placed between CHMSTEI (“chemist”) and CHMSTRYEI (“chem-
istry”). A form of linear backwards and forwards search is used to identify the nearest
keys for valid words. This continues until enough “plausible” corrections are accumulated
(in a set called the retrieval set) where a plausible correction is one which requires only
a single letter insertion, deletion or substitution, or the reversal of two letters (a process
called error reversal).

The error reversal algorithm is applied to the retrieval set containing the dictionary
words whose keys collate closest to that of the misspelled word. In speedcop, Dam-
erau’s method was adapted and improved by checking the plausibility only on the similar
keys instead of the entire dictionary. If the correction is not found by the skeleton key

52

comparison, the omission key comparison follows. For more detail on the error reversal
algorithm, see [PZ84].

speedcop also incorporated a dictionary with common misspellings (apart from its
main dictionary) and a function word routine in order to improve its spelling correction
accuracy. If a word is misspelled, speedcop first consults a dictionary with common
misspellings. If the word is not found in this dictionary, speedcop thereafter applies a
‘function word’4 routine which checks if a misspelled word is made up of a function word
and a correctly spelled word. The function is designated below as FuncWord. It checks
whether the misspelled word contains a function word and a correctly word, and, if so,
returns a pair <function word, correctly spelled word>. For instance, “theman” is the
misspelled word. After applying FuncWord, <the, man> is returned. If the misspelled
word does not contain a function word and a valid word, then we assume below that
FuncWord returns a pair < ∅,∅ >.

The spell checking procedure of speedcop starts by comparing words of four to six
characters in length to a list of high frequency words to detect misspelling. If the word is
not found in the list, the chosen dictionary is used for further searching. The algorithm
takes the following input:

• m, the misspelled word;

• F , the list of high frequency words regarded as a set;

• D, a dictionary also regarded as a set;

• S, the list of skeleton keys of words in the dictionary, where Sj is used to denote
the skeleton key for the jth word in D;

• O, the list of omission keys of words in the dictionary, where Oj is used to denote
the omission key for the jth word in D; and

• d1 and d2, are correctly spelled words which can be either a function word or a
dictionary word.

The algorithm computes a list of words that have been checked for plausibility and returns
them as a set of corrections in P . It does this by computing the following:

• X, the skeleton key for m;

• Y , the omission key for m; and

• C, the set of possible corrections.

4A function word also called a grammatical word is one with little lexical meaning or has ambiguous
meaning. It expresses grammatical relationships with other words within a sentence or mood of the
speaker. Articles (e.g. a and the), pronouns, conjunctions, auxiliary verbs, interjections, particles,
expletives, etc. are all function words.

53

The SimilarityKeys function is used to find the skeleton and omission keys of m, returning
these as a pair <skeleton key, omission key>. The ErrorReversal function is used to check
the plausibility of the list of corrections.

Note that in this description, the for construct is used as an iterator that traverses all
elements of a range, say [`, h). It is also assumed that the elements of a set, say S, are
referenced by subscripts S0, S1, · · · , S|S|−1. The speedcop algorithm can be described as
follows:

Algorithm 4.5.1(Speedcop)

func Speedcop(m,F,D, S,O) : P

P : = ∅;

if ((m ∈ F) ∨ (m ∈ D))→ P : = P ∪ {m}

[] ((m /∈ F) ∧ (m /∈ D))→ < X,Y > : = SimilarityKeys(m)

for (i : [0, |D|))→

if (X = Si)→ C : = C ∪ {Si}

[] ((X 6= Si) ∧ (Y = Oi))→ C : = C ∪ {Oi}

[] ((X 6= Si) ∧ (Y 6= Oi)→

if (FuncWord(m) =< d1, d2 >)→ C : = C ∪ {< d1, d2 >}

[] (FuncWord(m) =< ∅,∅ >)→ skip

fi;

f i

rof ;

for (i : [0, |C|))→

if ((ErrorReversal(X,Ci)) ∨ (ErrorReversal(Y,Ci)))→ P : = P ∪ {Ci}

[] ¬((ErrorReversal(X,Ci)) ∨ (ErrorReversal(Y,Ci)))→ skip

fi

rof

f i;

return P

cnuf

54

The similarity-key correction algorithm is effective in locating words most similar to the
misspelled words in a large dictionary. It requires less complicated computation compared
to most string distance measure techniques. The accuracy of this algorithm is largely
dependent on the number of words and the type of words covered in the dictionary and
the assumptions behind the key structure. No morphological analysis was applied. The
drawback of speedcop is that it is restricted to single-error misspelled words whose
corrections can only be found in the dictionary.

4.6 FSA

One usage of the fsa package implemented by Daciuk [Dac98] is to perform spell checking
and correcting tasks with finite-state automata. The notion of a finite-state automaton
(FSA) was discussed in Section 3.3.1.

The fsa package implements deterministic acyclic finite-state automata with final
transitions. A deterministic acyclic FSA is an automaton that has one start state, has
no ε-labelled transitions5, each state has no more than one transition labelled with the
same symbol, and contains no cycles. A deterministic acyclic FSA is ideal for representing
dictionaries or lexicons [JM00, Wat03]. A deterministic acyclic FSA accepts a words if a
transition was found for each input symbol and the last transition it traversed was final.

The FSA is constructed so that the language it accepts is exactly the words in the
lexicon. If the word cannot be found in the lexicon, it is considered as a misspelled word,
and a list of word suggestions is provided. To find all possible candidate corrections of the
misspelled word, certain paths starting from the start state to one of the final transitions
of the finite automaton must be found. More precisely, we are interested in paths spelling
out correct words which are within a given edit distance of the misspelled word. This
path exploration is done such that a path is abandoned if it becomes clear it will lead to
an edit distance above the desired distance. Oflazer [Ofl96] used a ‘cut-off’ edit distance
to determine if or at which point the current path should be skipped.

The cut-off distance measures the minimum edit distance (which was discussed in
detail in Sections 3.4.1 and 4.4) between an initial substring of the misspelled word and
the partial candidate correction. Let m denote the misspelled word and suppose its length
is n. Let c denote the partial candidate string and suppose its length is r. Suppose that
t is the threshold edit distance between the two strings that will be tolerated.

Then Oflazer defines the cut-off edit distance of m and c as follows:

cuted(m : [1, n], c : [1, r]) = min
l≤i≤u

d(m : [1, i], c[1, r])

where l = max(1, r − t), u = min(n, r + t), and i denotes the ith letter in w. The initial
substring of M are of length in the range from r− t to r+ t. r− t must be greater than 1.

5With final transitions (instead of the more traditional final states), the lack of ε-transitions implies
that Daciuk’s automata cannot accept the empty string.

55

r + t cannot be greater than m as it is not possible to append any additional characters
to the end of m. For more discussion of these details, see [Ofl96].

For example, let m be reprt and c be repo. The cut-off edit distance will be:

cuted(reprt,repo)
= min

2≤i≤5
d(reprt: [1, i], repo)

= min {d(re,repo), d(rep,repo), d(repr,repo), d(reprt,repo)}
= min {d(2, 1, 1, 2}
= 1

Since cuted(reprt,repo) ≤ t, the FSA algorithm permits a transition from the node rep-
resenting the partial candidate string ‘repo’ to a next possible node in the finite state
diagram. This transition is permitted because there is a possibility that by the time a
final state is reached, the edit distance between the misspelled word and the candidate
correction will be less or equal to t. Had it been the case that cuted(reprt,repo) > t, no
further exploration along the path of the candidate string would be worth while.

In general, the algorithm checks if the cut-off edit distance of m and c is within the
threshold t before extending c. If the cut-off edit distance is greater than t, the last
transition is abandoned, we return to the previous state and we move on to the next
possible path. This action of backtracking is recursively applied when the search cannot
be carried on from a specific state. On the other hand, if a final state is reached while
the cut-off edit distance stays within the threshold t, c is considered a valid candidate
correction for the misspelled word m.

Daciuk’s algorithm uses depth-first search in the FSA with the cut-off edit distance.
Daciuk details several efficiency modifications to this algorithm—such as tabulating the
cut-off edit distance computation to reuse computed values.

In the fsa package, morphological analysis is applied if the lexicon used does not
already have all inflected forms. The morphology of a language is then fully captured in
a single finite-state transducer or a finite-state acceptor. Initially, the FSA is used to test
the word for acceptance. If the word is rejected (a misspelling is identified), the following
two steps are applied:

1. Morphological analysis of the misspelled word is used to recognise the lexeme (see
Section 3.2) as well as its morphological annotations.

2. The lexeme and the morphological annotations are used for morphological generation—
the inverse of morphological analysis—generating possible candidate correction of
the misspelled word. However, if the lexeme is not present in the lexicon or in-
flected forms of the given annotations cannot be found, no candidate correction is
generated.

The fsa package is a significant example of using the finite-state approach to tackle
spell checking and spell correcting tasks. Languages that are agglutinating or highly
inflectional, such as Finnish, Turkish and Zulu, and languages with compound nouns, such
as German, are well suited to the finite-state approaches (more specifically deterministic
finite-state automata) along with edit distance technique. In [MS02, MS04], Mihov and
Schulz extensively discussed the details of such approach.

56

4.7 AGREP

agrep (approximate grep) is a bit-mapping technique for pattern matching which was
reinvented [Dom64, NR02, WM92a] in 1992. The software package developed by Udi
Manber and Sun Wu is described in [WM92b]. agrep allows for approximate string
matching [Smy03] where the number of mismatched characters can be specified by the
users. It is record oriented and these records are defined by specifying a pattern that
marks the beginning of a new record, which can be overlapped and nested inside other
records. Multiple pattern searching is achieved by making use of the bitwise and and or
operators. The text and pattern can be DNA sequences, lines of source code, etc. In the
case of spelling checking/correcting, the text and the pattern are specifically referred to
as sequences of characters.

The main underlying algorithm, bitap (bit-parallel approximate pattern matching), in
agrep supports many extensions other than exact and approximate string matching, such
as approximate regular expression pattern matching, simultaneous matching of multiple
patterns, etc. agrep uses several different algorithms to optimize its performance. It uses
a variant of Horspool algorithm [Hor80] for simple exact queries when the length of the
strings do not exceed 400 characters. For longer strings that exceed this particular length
restriction, an extension of the Horspool algorithm is used, however, pairs of characters as
opposed to single characters are used to build the shift table in this case. For other types
of patterns, agrep is based upon Baeza-Yates and Gonnet’s [BYG92] numeric scheme for
exact string matching (also known as the Shift-And/Shift-Or algorithms). Approximate
string matching are handled by PEX [NR02], a partition scheme for simple patterns with
errors and row-wise bit-parallelism6 (BPR) [WM92a].

In this section, we will focus on the Shift-And algorithm (which agrep is based on) that
is used for spell checking as spell correcting is also based upon this algorithm. The Shift-
And algorithm can be described as follows:

Assume that there exists a text T of size n (i.e. T = t1t2 · · · tn) and a pattern P of
size m (i.e. p = p1p2 · · · pm). Assume also that m < w, where w denotes the size of a
computer word, so P can fit in a computer register. Let U = {u1, u2, · · · , u|U |} which
denotes a set of finite alphabet of symbols (as defined in Section 2.2) that appear in T
and P .

The algorithm builds a pre-computed table B, which stores a bit mask of size m
for each character. The mask in B[ui] has the jth bit set if Pj = ui. To optimize this
table, only the arrays for the characters that appear in P are constructed. The bitwise
operations work in such a way that if a character does not belong to the alphabet, its
mask will be 0 for all bits and if a character belongs to the alphabet, its mask will be 1 for
all the bits for the position in the pattern. The bitwise operations make this algorithm
extremely fast as only characters where the bit is set are compared.

A bit mask D is used to represent the set of all the prefixes of P that match a suffix
of T and D = dm · · · d1, i.e. d1 = 1 represents a match for p1, d2 = 1 represents a match

6Bit-parallelism packs many values in a single computer word and update them all in a single bit
operation.

57

j/i c a t
c 1 0 0
a 0 1 0
t 0 0 1
s 0 0 0

Table 4.2: Example of a bit mask table.

for p1p2, and dm = 1 represents a match for p1p2 · · · pm, etc.
Initially, we set Di = 0m (note that 0m denotes m zeros). If the characters from T are
examined from left to right after reading the ith character of T , Di denotes the value of
D after the ith character of T has been processed (i.e. Di contains information about all
matches of prefixes of P that end at i). The algorithm ensures that Di[j] = 1 if and only
if p1p2 · · · pj = ti−j+1ti−j+2 · · · ti. This is to say the jth position in Di is said to be active
if and only if the first j characters of P match exactly the j characters in T starting at
i− j + 1 and ending in i. A match is reported whenever dm = 1. When we read ti+1, we
need to compute the new set Di+1. The algorithm also ensures that Di+1[j + 1] = 1 if
and only if Di[j] = 1 and ti+1 = pj+1.

For each ti+1, the transition from Di to Di+1 can be described as follows:

Di+1 : ((D1 << 1)|0m−11)&B[ti+1] (4.2)

where << 1 indicates moving the bits to the left and enters a 1 from the right (i.e. a
right shift). | denotes the bitwise or and & denotes the bitwise and.

It can be shown that (4.2) results in Di&(100−1) 6= 0m if and only if there is a match
in position j −m+ 1 (Algorithm 4.7.1).

An example of a table B is given in Table 4.2. If T = cats and p = cat, B = {c, a, t} in
this case. The bit masks for the characters that appear in p are B[c] = 100, B[a] = 010,
and B[t] = 001.

When reading the c of T , D1 = 100 and B[c] = 100. Thus, the new D1 = 100. When
reading the a, D2 = 110 (after a right shift of the values in D1 and fills the first position
with a 1). D2 and B[a] produces the new D2 = 010. When reading the t, D3 = 101 (after
a right shift of the values in D2 and fills the first position with a 1). D3 and B[t] produces
the new D3 = 001. The last bit of D3 is a 1. Hence, in step 3, the first occurrence of P
is found, i.e. i = 3. Thus, the starting position where the complete match is found is at
position 1 (i−m+ 1 = 3− 3 + 1). Notice that s is not present in P . Thus, B[s] = 000.

Now let us consider spell checking in agrep. The algorithm takes the following input:

• U , the alphabet;

• P , a pattern of size m, where P = p1p2 · · · pm; and

• T , a text of size n, where Tj = t1t2 · · · tn.

The algorithm computes the following:

58

• B, a table which stores a bit mask of size m for each character; and

• D, a bit mask of size m that is used to contain information of a set of all the prefixes
of P that match a suffix of T .

The algorithm then outputs the position in T where an occurrence of P occurred. The
algorithm can thus be expressed as follows:

Algorithm 4.7.1(Exact matching in agrep)

func BitapExactMatching(P, T) : int

D,match : = 0m,−1;

for (c ∈ U)→ B[c] : = 0m rof ;

for (i : [1,m])→ B[pi] : = B[pi]|0m−i10i−1 rof ;

for (j : [1, n])→

D : = ((D << 1)|0m−11)&B[tj];

if (D&10m−1 6= 0m)→ match : = j −m+ 1

[] (D&10m−1 = 0m)→ skip

fi

rof ;

return match

cnuf

Assume that Algorithm 4.7.1 can be done in constant time, the time complexity of spell
checking based on the Shift-And algorithm is (n), where n is the size of a text word in T .

Bitap then extended the spell checking task described in 4.7.1 to perform the spell cor-
recting task. The way that bitap naturally maps onto bitwise operations distinguishes
it from other string searching algorithms. If the input file contains an exact match of a
particular pattern and if errors are allowed, then there will be several matches and the
number of exact and approximate matches depends on the number of errors allowed in a
word. For example, if the pattern is the word book and if the file contains this pattern,
a match for book will be reported, but also for book, boo, ook, and book if one error
is allowed in each word. There is one exact matching, two deletions, and two insertion
operations which together constitute a total of five matches.

The spelling correction by agrep can be described as determining whether an input
text T contains a substring which is approximately equal to a given string, under some
measure of closeness. Thus, the algorithm is to find all substrings in T that are of distance

59

k (i.e. at most k errors (insertion, deletion, or substitution errors)), which is measured
by edit distance, to P . In other words, the aim is to find all substrings in T that contain
a proximity of the pattern P with edit distance at most k.

The spell correcting task can thus be described as follows:

Assume a text T of size n and a pattern P of size m. Let the alphabet be U where
U = {u1u2 · · ·u|U |}. A bit mask D is used to represent the matches between T and P .
The algorithm builds a pre-computed table B, which stores a bit mask of size m for each
character. For each type of error (i.e. insertion, deletion, or substitution), there exist at
most k number of errors allowed in a word. For example, if we allow matching with one
insertion error (i.e. k = 1), there exist at least two matches: an exact match (i.e., a match
with 0 error) and a match with one insertion error allowed.

Initially, we set Di = 0m. Di once again denotes the value of D after the ith character of
T has process. Di is computed for exact matches. For approximate matches, k additional
arrays which are denoted as D1

i · · ·Dk
i are introduced here. The array Dd

i , where d ≤
k, stores all possible matches with at most d mismatches (either insertions, deletions,
or substitutions). Thus, D1

i is a bit array that contains information about all possible
matches up to Ti with at most one insertion, deletion, or substitution. This algorithm
ensures that D1

i [j] = 1 (i.e. the jth position in D1
i is set to be active) if an only if the first

j characters of P match exactly the j + 1 characters in T starting at i− j + 2 and ending
in i. A match is reported whenever dm = 1. For an exact match, it has to be the case that
Di[m] = 1. For a match with at most one insertion, one deletion, or one substitution,
D1

i [m] = 1. The algorithm ensures that Dd
i+1[j + 1] = 1 if and only if Dd

i [j] = 1 and
ti+1 = pj+1 or any one of the following conditions: Dd−1

i , Dd−1
i = 1, and Dd−1

i+1 = 1.
The transition from Di to Di+1 for the exact matches is as discussed earlier. In order

to obtain a match of the first j characters up to ti+1 with ≤ d errors (i.e. the transition
from Dd

i to Dd
i+1), the following cases need to be considered:

• Exact matching: there is a match of p1p2 · · · pj = ti−j+1ti−j+2 · · · ti with ≤ d and
pj = ti+1. This is handled in the same manner as in 4.7.1.

• Inserting ti+1: there is a match of p1p2 · · · pj = ti−j+1ti−j+2 · · · ti with ≤ d−1 errors.
This requires a right shift of Dd

i , one & with B[ti], and one — with a right shift of
Dd−1

i .

• Deleting pi: there is a match of p1p2 · · · pj−1 = ti−j+1ti−j+2 · · · ti+1 with ≤ d − 1
errors. This requires a right shift of Dd

i , one & with B[ti], and one — with a right
shift of Dd−1

i+1 .

• Substituting ti+1: there is a match of p1p2 · · · pj−1 = ti−j+1ti−j+2 · · · ti with ≤ d− 1
errors. This requires a right shift of Dd

i , one & with B[ti], and one — with Dd−1
i .

For each ti+1, the transition from Dd
i to Dd

i+1 can be described as follows:

Di+1 : ((Di << 1)|0m−11)&B[tj] (4.3)

Dd
i+1 : ((Dd

i << 1)&B[tj])|Dd−1
i |(Dd−1

i |Dd−1
i+1) << 1) (4.4)

60

Now let us consider spell correcting in agrep. The algorithm takes the following input:

• Σ, the alphabet;

• k, the number of errors allowed;

• P , a pattern of size m, where P = p1p2 · · · pm; and

• T , a text of size n, where Tj = t1t2 · · · tn.

The algorithm computes the following:

• B, a table which stores a bit mask of size m for each character;

• D, a bit mask of size m that is used to contain information of a set of all the prefixes
of P that match a suffix of T ; and

• Dd, a bit mask of size m + k that is used to contain information of a set of all
matches in T that contain approximations of P with edit distance at most k.

The algorithm then outputs the position in T where an occurrence of P with at most k
distances. The algorithm can thus be expressed as follow:

Algorithm 4.7.2(Approximate matching in agrep)

func BitapApproxMatching(P, T, k) : int

D,Dd, oldD, newD,match : = 0m, 0m, 0m, 0m,−1;

for (c ∈ U)→ B[c] : = 0m rof ;

for (i : [1,m])→ B[pi] : = B[pi]|0m−i10i−1 rof ;

for (j : [0, k])→ Dd : = 0m−11i rof ;

for (r : [1, n])→

oldD : = D;

newD : = ((oldD << 1)|0m−1)&B[tj];

D : = newD;

for (j : [1, k])→

newD : = ((Dd << 1)&B[tj])|oldD|((oldD|newD) << 1);

oldD : = Dd;

Dd : = newD;

61

rof ;

if (newD&10m−1 6= 0m)→ match : = j

[] (newD&10m−1 = 0m)→ skip

fi

rof ;

return match

cnuf

There exist k+ 1 bit masks. Thus, the time complexity of spell correcting is O((k+ 1)n).
If the number of errors is small compared to the size of the P , then the running time

can be improved by the partition approach. Information on the partition approach is
available in [WM92a].

The complexity of the search pattern affects agrep’s efficiency. Another shortcom-
ing of agrep is that there exist many restrictions to the length of the pattern strings.
No morphological analysis was applied in agrep. Refer to [Smy03] for details on the
algorithms used in agrep.

agrep is highly flexible as it supports not only simple string matching but many
other extensions, such as sets of characters, wild cards, unknown number of errors, a
combination of patterns with and without errors, non-uniform costs, a set of patterns,
long pattern, regular expressions, and very large alphabet. The agrep programme will
form part of the classification in Chapter 5.

4.8 AURA

The aura (Advanced Uncertain Reasoning Architecture) modular neural system [HA02,
HA03] was developed to act as a pre-processor for an information retrieval system. It is
a spell checker and corrector. The basis of the aura system is the aura modular neural
network [Aus96].

aura is a hybrid spell checking and correcting (refer to Section 3.4.6) architecture as
will be explained in more detail below. It makes use of phonetic matching and Correlation
Matrix Memories (CMMs) [Koh88, Aus96] to correct single-letter spelling errors (i.e.
insertions, deletions, substitutions, and reversals) and phonetic spelling errors. CMM was
briefly described in Section 3.4.4. CMM is a single-layer binary associative neural network
or memory which can be thought of as a matrix of binary weights and is used for storing
and matching a large amount of patterns efficiently. Numerical inputs are converted into
binary ones with the most achievable uniformity. The fundamental function of CMM is the
learning of binary vectors that represent items of information and retrieval of these items
when the appropriate inputs are provided. CMM is a binary matrix memory structure

62

that stores a mapping µ between a binary input vector of length m and a binary output
vector of length n. Thus,

µ : {0, 1}m → {0, 1}n

[HA03]. aura makes use of CMMs to map inputs to outputs through a supervised learning
rule that is somewhat similar to a hash function.

CMM allows very fast retrieval. The retrieval is independent of the total amount
of information learned and stored in the memory for given CMM size. CMMs in aura
output all expected matches (no false positive or false negative matches) during single
iteration partial matching [TA97]. The orthogonal vectors used for uniquely identifying
each output word also contributes to the fast retrieval as there are incorrect matches
caused by bit interference [TA97]. New inputs are incorporated into the matrix and do
not require additional memory which makes the storage in CMM efficient.

aura focuses on isolated-word error correction (Section 3.4). It constitutes a set of
methods aimed at high performance pattern matching and low computational cost. aura
is typically used in very large data sets (more than one million elements). A scoring
scheme is used for word retrieval from each spelling approach and an overall score for
each matched word is calculated.

The phonetic spelling errors are overcome by a coding approach similar to that of
Soundex and Phonix together with transformation rules derived from Phonix and Double
Metaphone used in aspell [Phi99]. Phonix was specifically designed for name matching
and includes Dutch phonetic rules. Soundex makes use of seven codes and Phonix makes
use of nine codes to preserve the letter pronunciation similarities. More details on Soundex
and Phonix can be found in [Kuk92] and [Gad90] respectively.

Two different approaches are employed to correct typing errors. Insertion and deletion
errors are handled by an n-gram approach which matches small character subsets of the
misspelled word (refer to Section 3.4.4). Statistical correlations between two adjacent
characters are incorporated in this approach. Substitution and reversal errors are handled
by a Hamming distance approach (refer to Sections 3.4.4 and 3.4.6).

aura makes use of a lexical token converter [HA03] to map characters onto binary vectors.
It is assumed that both the input word and words in the lexicon comprise sequences of
characters from twenty-six characters (a · · · z) and four punctuation characters (−,′ ,&, /)
which constitutes a total of thirty characters in a finite alphabet. (Only four punctuation
characters are used to conserve memory.) Words are translated to binary bit vectors
by mapping characters onto specific bit positions. The lexicon is thus represented by a
binary matrix (the CMM) that stores all bit vectors, i.e. (30× 30-bit chunks) × (number
of words).

The lexical token converter entails the following:

1. A binary bit vector of size 960 is divided into a series of 30-bit chunks where each
chunk represents a character in the finite alphabet for the inputs. Words comprised
of up to thirty characters may be represented. Two additional chunks are reserved
for the shifting n-gram which will be described later.

2. Each word is divided into characters and each character is represented by the ap-
propriate bit set in the chunk in order of occurrence. For instance, all occurrences

63

of the letter ‘a’ in a word are represented by bits set in the first chunk. The position
of each set bit in this chunk corresponds to where each ‘a’ occurred in the word.

3. Similarly, each ‘b’ in a word is represented by a bit set in the second chunk, etc.
Chunk ordering thus corresponds to the normal lexicographic ordering for the En-
glish alphabet, followed by the ordering (−,′ ,&, /). Thus, every occurrence of ‘/’ in
a word results in the corresponding bits being set in the 30th chunk.

4. The result is that the spelling of a word is represented by a binary bit vector which
is produced by concatenating all the chunks. This binary bit vector forms the input
to the CMM which represents the lexicon. All the bits in any unused chunks are set
to zero.

4.8.1 Spell checking in AURA

The spell checking task in aura is tackled in the following manner: A set of words are
submitted for spell checking. The list of words in the lexicon is held in an array. If
the input word is present in the lexicon, an option is presented allowing one to accept
the match result or to carrying on searching for similar words. Similar words have the
same word stem but different suffixes, such as {look, looks, looked}. If the input word
cannot be found in the lexicon, it is assumed to be a misspelling and aura returns a
set of suggestions from the lexicon with no ordering. Spell checking is performed using
Hamming distance and a length match (i.e. making use of the length of the input word
as the threshold).

The length of the input word is set as the threshold. Hamming distance is used to
find all lexicon words beginning with the input words. A binary input vector with all
bits set to 1 is used to count the number of matching characters in each lexicon word.
All the characters of the input word and lexicon words are left aligned. Each character
of the input word is then compared with the character of the lexicon words in the same
position. Only words that contain the exact matching of the input word are output to a
bit vector. A length match entails searching the word length array for lexicon words that
have the same word length as the input word. The matching lexicon words are output to
a bit vector. The final step is to combine the two output results using a logical and. The
resultant bit vector is passed to the lexical token converter to retrieve the exact matching
word.

If the spell checking procedure does not return any exact matching words, it is assumed
that the input word is a misspelling. We then produce a list of alternative suggestions by
combining the best match found with binary Hamming distance and the best match found
with shifting n-gram. Two output vectors are combined by a bitwise or and indexes to
the lexical token converter to retrieve word suggestions.

64

4.8.2 Spell correcting in AURA

The aura system uses two CMMs independently for spelling suggestions for misspellings
caused by typing errors: one for the words with binary Hamming distance matching and
shifting n-gram and one for the phonetic codes [HA02]. A scoring system is used in order
to rank the word suggestions. Only the best ten possible suggestions are presented to the
user in order to achieve high recall and accuracy. The scores for the binary Hamming
distance and shifting n-gram approaches are separated. The score from the phonetic
module is added to both the n-gram and Hamming distance scores in order to produce
two word scores. The highest score amongst the two is considered the overall word score.

For single-letter spelling errors, CMM for binary Hamming distance and shifting n-
gram is used. The inputs are formed from the word spellings and the outputs are the
matching words from the lexicon. Both the inputs and the outputs are translated to
their respective binary bit vectors by the data-to-binary lexical token converter explained
earlier.

Each word in the lexicon is represented by a unique orthogonal binary vector which
forms the output from the CMM. One bit is set according to the position of the word in
the alphabetical list of all words. The output from the CMM is used to identify when
the word has been retrieved as a match by looking up the bit set and use the position to
index the words in the alphabetical list of all words.

To train the network, the binary patterns representing the word spellings or phonetic
codes form the inputs to the CMM and the CMM outputs the binary patterns for the
words that match the inputs. An binary input vector is associated to an orthogonal
output vector which serves as an identifier to uniquely identify each spelling in the lexical
token converter. When both an input row and an output column are both set to one,
the CMM is then set to one. After storing all associations between the input and output
vectors, the CMM weight wkj is as given by the following equation [HA03]:

wkj =
∀i∑

(I i
j&O

i
k) (4.5)

where I and O denote the binary input and output vectors respectively, & represents the
bitwise and, i indicates the position in the vector, j indicates the row number, and k
indicates the column number. wkj is an integer value, i.e. the sum of a number of 0 and
1 computations with 0 being the result of a bitwise and operation that yields false and 1
being the result when the bitwise and yields true.

As mentioned earlier, two approaches are used for recalling from the network and they
are shifting n-grams and binary Hamming distance.

Hamming distance approach

For the binary Hamming distance approach, the CMM is used to retrieve the lexicon
words that have matches with the input word by having the same character in the same
position in the word. Thus, the CMM is used to count the aligned letters between the
lexicon words and input word. The spelling pattern is applied to the network for recall

65

CMM output activation binary output vector
we 0 0
the 2 0
tea 1 0

none 0 0
tree 4 1
three 2 0

treasure 3 0

Table 4.3: Recalling from the CMM using binary hamming distance.

only. An output activation vector is produced by adding the columns:

Oj =
∀i∑

(Ii&wji) (4.6)

where I, O and & are as indicated in the previous equation. i and j indicate the row and
column in the vector respectively, and wji is an integer value.

The number of bits set in the input vector (i.e. the length of the input word) is used
as the threshold in order to retrieve all lexicon words that contain the input word at the
beginning. This is to say the input word forms a word stem to the retrieved lexicon words.
A bit vector with all bits set to 1 and with the threshold sets to the length of the input
word in order to count the number of matching characters in each lexicon word.

The output vector of the CMM is used to produce a binary output vector by setting
the threshold. The output vector from the CMM represents the matching words between
the lexicon words trained into the CMM and the input word presented to the CMM for
recall. More precisely, it represents an identifier for the input word to uniquely identify
the word in the lexical token converter. The threshold is then set to the highest activation
value in the output vector to retrieve the best matches. This is to say the threshold is
set according to the number of bits set in the input word vector. For instance, if the
input word consists of two characters with one bit sets in each chunk, then the threshold
is set to 2 in order to identify any exact matches from the lexicon words that match both
characters in the corresponding positions (i.e. all columns that sum to 2). All the values
(i.e. positions) in the binary output vector where the corresponding values of the output
activation vector is greater than or equal to a predefined threshold are set to 1. The
rest bits are set to 0. In case where only a partial match of the input word is requested,
the input word is sent to the CMM and the threshold is set to M , where M < the
length of the input word. Thus, the threshold of the output vector is set at the highest
activation value in order to retrieve all best matching lexicon words. The binary output
vector is then passed to the lexical token converter which separates the bit vector into
separate orthogonal vectors that represent the matches that have the maximum number
of characters matching the input word. the word associated with each separate orthogonal
binary vector is then retrieved.

If the input word is tree which has a word length of 4, an example of the output vector
is illustrated in Table 4.3.

As an example of spell checking, the input word tree is compared to the lexicon words
trained into the CMM. The input word consists of four letters. Hence, the threshold is

66

set to 4. During the Hamming distance match, only those lexicon words with the first
four letters matching the four letters of the input word with each matching characters
at the same position are retrieved. In this case, only the word {tree} is retrieved to the
bit vector. During a length match, any lexicon words containing exactly four letters are
retrieved. Thus, the words {none, tree} are retrieved to the bit vector. The exact match
is then identified by combining the two outputs with a logical and. Thus, the bit set in
the output bit vector indexes into the lexical token converter to retrieve the word tree as
the exact match.

For spelling correction, if M = 3, the word treasure is retrieved as its first 3 letters
match the first 3 letters of tree. The bit vector is passed on to the lexical token converter
to retrieve the actual word.

Note that the “?” convention from Unix is adopted to represent unknown characters
in a word. All bits in the chunks are set to represent a universal or. This is useful when
the user is unsure of the correct spelling of a word.

Shifting n-gram approach

For the shifting n-gram approach, the lexicon words are trained into the CMM to start
with. The CMM is then used to count the number of the n-grams in the input word
present in each lexicon word. Three n-gram approaches [Ull77] were used: unigrams (for
input words with less than four characters), bigrams (for input words having between four
and six characters), and trigrams (for input words with more than six characters).

Firstly, the length of the input word is identified. Then the type of n-gram approach
is selected. The first n characters of the input word is input and left-aligned to the CMM.
The threshold is set at n to indicate the number of character in the n-grams of the lexicon
words that match the n-gram of the input word. We are now set to find lexicon words
matching all the characters of the n-gram, i.e. all words in the output vector with an
output activation of the n specified for their first n characters.

A bit vector is then produced according to the output activation. The first n-gram
of the input word is now shifted one place to the right and input to the CMM. This
procedure is repeated until the first character of the n-gram of the input word is shifted
to the position of the last character of the longest word in the lexicon. All the output
bit vectors are then combined by a logical or operation. The resultant output vector
thus indicates any word that has matched any of the n-gram positions. All the rest of
the n-grams are input into the CMM following the same procedure as described. All
the resultant output bit vectors are then summed to produce an integer vector which
represents a count of the number of n-grams matched for each word.

The maximum value of the output activation vector is used as the threshold and
the bits in a output bit vector are set according to the corresponding output activation
values. The output vector that correspond to the output activation vector is passed on
to the lexical token converter to retrieve the matching words. The lexical token converter
separates the bit vector into separate orthogonal bit vectors before retrieving the word
associated with each individual orthogonal vector. In other words, there is one matching
word in the lexical token converter for each bit set for orthogonal output vectors. All three

67

CMM output activation bigram matches (bit vector)
we 0 0
the 1 0
tea 1 0

none 0 0
tree 2 1
three 1 0

tr 0 0

Table 4.4: Recalling from the CMM using shifting n-gram.

approaches follow the same procedure. The difference between the three approaches is
the size of the comparison window.

Let us take a look at an example: if the input word is tree which has a word length
of 4. Thus, the bigram approach is selected. A simple example of the output vector is as
follows:

The first bigram of tree is “tr”. “tr” is thus left-aligned to the CMM. It is compared
with the first bigram of each word in the CMM. Thus, an output vector of [011021] is
produced with the threshold set at 2. The fifth word in the CMM, tree has an output
activation of 2 which indicates that it is a complete match to the first bigram of the input
word. In this round of matching, an output bit vector of [000010] is produced. Now “tr” of
the input word is shifted right one character and input to the CMM. An output vector of
[000000] is produced. The resultant output vector for the first bigram is [000010]. When
we matched all bigrams {tr, re, ee} from the input word, there are three resultant output
bit vectors ([000010], [000011], and [000011]) representing the words that have matched
each bigram respectively. The output of all three vectors are then summed and a vector
[000032] is produced. The threshold is set at 3 which is the maximum value of the integer
vector in order to find the best matching word. The output vector [000010] corresponding
to the highest activation value is then passed on to the lexical token converter to retrieve
the matching word which is ”tree” in this case. Notice that here 4-bit chunks are used
for simplicity.

For more details on the Hamming distance and n-gram approaches used for spell
checking and correcting in aura, please consult [HA02, HA03].

4.8.3 Phonetic checking and correcting

Apart from these two approaches, a phonetic coding approach is adopted to check and
correct phonetic spelling errors. As mentioned earlier in this section, each word is trans-
formed to a 4-character code by combining codes similar to that of Soundex [Kuk92] and
that of Phonix [Gad90] with phonetic transformation rules derived from Phonix as well
as Double Metaphone [Phi99] which is used in aspell. Fourteen phonetic codes indexed
from 0 to D were used to preserve the letter pronunciation similarities. Each code is
represented by a single character and each word is translated into a 4-character phonetic
code. Only similar sounding words map to the same code. The code generated for each
letter is given as follows:

68

letter a b c d e f g h i j k l m n o p q r s t u v w x y z - ’ ˜

code 0 1 - 2 0 3 4 0 0 4 5 6 7 8 0 9 - A B C 0 D 0 - 0 B 0 0 0 0

Note that the letters c, q and x do not have phonetic codes because according to the
transformation rules, they are always mapped to other letters. For example, c can be
mapped to s or k. For details on the phonetic transformation rules applied to this method
and the algorithm used for phonetic code generation, please refer to [HA03].

For phonetic spell checking, the phonetic codes form the inputs of the CMM and
the outputs are the matches from the lexicon words. Each word is translated to a four-
character code. A binary bit vector of length 62 is divided into 23 characters (entire
English alphabet excluding the letters c, q and x) and three 13-bit chunks. Each of these
three chunks represents a phonetic code according to the table illustrated above. The
position of the bit set in each chunk is the hexadecimal value of the code. A binary
bit vector is then produced by concatenating these three chunks. This binary bit vector
represents the phonetic code of the input word for the CMM. The output of the CMM
is formed from the unique orthogonal binary bit vector representation of each word in
the lexicon which is the same as with the shifting n-gram and binary Hamming Distance
approaches.

The recall from the phonetic method is similar to the binary Hamming distance recall.
The input word is converted into a four-character code which is input into the CMM. A
output vector representing the superimposed outputs of the matching words is recalled
from the CMM. For exact matches, a threshold is set to the maximum output activation
value in order to retrieve all lexicon words that best match the input word phonetically.
For partial matching, the vectors of several word matches are superimposed in a single
output vector according to a predefined threshold. Since all lexicon words are held in an
array, the position of any bits set in the output vector corresponds to the position of that
specific word in the array. The matched words are retrieved from the word array using
the bits set in the output vector with a predefined threshold as its positional indices into
the array.

The aura system performs spell checking by starting with the Hamming distance
and a length match approach as described earlier. If no exact matches are returned from
this process, it is assumed the input word is spelled incorrectly. The input word is then
checked against the lexicon and a list of suggested spellings is produced. The input vector
for the binary Hamming distance approach is input into the first CMM. Then, the input
vector for the shifting n-gram approach is input into the same CMM. Lastly, the input
vector for the phonetic spelling approach is input into the second CMM. An individual
output vector is generated for each approach with an activation vector for each lexicon
word. The locations of the best matching words are identified from the positions of the
bits set in the output vectors with their predefined thresholds. Three different scores
are produced—one for the best match of each of the approaches. The three scores are
calculated as follows:

69

n− gramScore = 2× (t− (|w| − (Li))

hammingDistScore = 2× (t− (|w| − (Li))− ((2× |n|)− 1)

phoneticScore = 2× (t− (|w| − (Li))/(2× |p|)× (|w| − (|n| − 1))

where t denotes the threshold set for each approach, w denotes the input word, Li denotes
a lexicon word, n denotes the n in n-gram used, and p denotes the phonetic code of a
word.

Note that the aura modular network is not language-specific due to its bit vector
approach. Thus, it can process any languages with a Latin alphabet. Only the phonetic
codes and transformation rules will need to be adjusted according to the language. No
morphological analysis was applied in aura.

4.9 Spell Checkers/Correctors for the South African

Languages

It is estimated that there are around 2,000 to 3,000 languages spoken in Africa with eleven
of them being official languages in South Africa. In addition to English and Afrikaans, 9
other official languages come from the family groups of Sotho (Northern Sotho/Sesotho
sa Leboa, Southern Sotho/Sesotho and Setswana), Nguni (Zulu/isiZulu, Xhosa/isiXhosa,
Swati/SiSwati and Ndebele/isiNdebele), Venda/Tshivenda, and Tsonga/Xitsonga.

As noted by de Schryver and Prinsloo [dSP04], many techniques have been used in the
past to spell check the South African languages. The first spell checkers for Xhosa, Zulu,
Northern Sotho, and Setswana were developed by Prinsloo as components in WordPerfect
9 of the WordPerfect Office suite 2000 [PdS01]. Spell checking and correcting tasks are
in fact much more complex when performing on the languages in the Nguni group than
on the languages in the Sotho group.

One challenge of spell checking the South African languages heavily relates to the
conjunctive nature of the languages of the Nguni group—phrases are made up of parts of
words joined together.

Another challenge is that it is often the case that a text is written in various African
languages, that is to say, a text contains more than one language. The pre-spell-checking
process is to categorize and recognize each language involved. Umqageli is a text catego-
rization tool developed by Maniacky [Man03] which recognizes and distinguishes various
African languages such as Northern Sotho, Southern Sotho, Setswana, Venda, Xhosa,
Swati, Zulu, Ndebele, in a document. It is based on calculating and comparing profiles of
n-gram frequencies [CT94]. For the Nguni languages, it is often found that spell checking
and correcting is achieved by dictionary lookup and n-gram analysis [dSP04].

Finite-state morphology is a technique used to detect and correct spelling errors, espe-
cially for the conjunctive languages. The Xerox finite-state tools [BK03] can be used for
decomposing morphologically complex languages with a high level of conjunctiveness (i.e.

70

agglutination which was explained in Section 3.5). An example of using finite-state mor-
phology to treat African languages can be found in [PB02]. A spell checker for Afrikaans
was developed by van Huyssteen and van Zaanen [vHvZ03] based on morphological anal-
ysis which was briefly described in Section 3.5. Another technique that has been widely
used to recognize more valid words is n-gram analysis. This technique has been described
in detail in Sections 2.3.2 and 3.3.2. n-gram analysis is often used in conjunction with
dictionary lookup techniques to achieve a more satisfying result.

In Chapter 5, we will be looking into the DAC Northern Sotho (DNS) spell checker
in a form of a MS Word installer for MS Windows. The DNS spell checker was retracted
from the website of the South African Department of Arts and Culture for development
of future versions. Unfortunately, no literature has been located that publishes the details
of the underlying techniques that were used for spell checking and correcting.

4.10 CInsunSpell — Chinese Spell Checking Algo-

rithms

So far we have mostly discussed spell checking and correcting in English or Latin lan-
guages. It is rather interesting to find out how languages other than Latin-based ones
perform the spell checking and correcting tasks, especially for a language such as Chinese,
in which the word formation is not derived from ‘spelling’ in the conventional sense of
western languages.

There exist two different Chinese writing systems, namely simplified and traditional.
Nevertheless, the spell checking and correcting (or rather text proofreading) techniques
do not differ [Cha94, LWS00, ZHZP00, LW02]. In this section, we will be discussing
CInsunSpell, a spell checking and correcting algorithm and implementation for Chinese.

There are significant differences between Chinese and English [LWS00]:

1. Chinese does not have evident word boundaries, such as a white space character, as
in English. Chinese characters are linked together to construct a sentence without
any boundary characters in between each character. According to Li et al [LWS00],
each Chinese word can consist up to four characters7. Thus, before any analysis can
be performed on a Chinese text, it must be segmented into words.

2. The Chinese character set contains more than 6,700 characters. This language
character set is hard on parameter calculation of some models such as Markov
Models. As a result, likelihood path search and many other efficient techniques for
Latin-alphabet based languages are not suitable for Chinese.

3. Chinese’s input methods are different compared to the English letter-by-letter input.
Chinese can only be keyed into a computer using a special code, such as encoding

7Some researchers claim that there exist words which consist up to seven characters because of different
ways of segmenting words.

71

the keystrokes, WuBi or Pinyin-input method. Each character is represented by
a unique code [Uni03]. This implies that spell checking within each character is
meaningless—rather, spell checking is on a word-level within a text. The smallest
language unit in Chinese is a character and each word consists at least one character.
One sentence consists of several words according to the grammar.

The Chinese input methods include input gased on encoding, pronunciation, or structure
of the characters. In general, the Pinyin method is based on the Pinyin method of
Romanisation (i.e. the Roman letters to represent sounds in Mandarin). The sound
representations of the Roman alphabet for Mandarin differ from that for other languages.
For example, ‘g’ corresponds closely to the sound of ‘k’ in English. Different countries
adopt different Pinyin systems: for instance, the People’s Republic of China adopted
Hanyu Pinyin as opposed to Tongyong Pinyin which is used in Taiwan. The Pinyin method
allows a user to input Chinese characters by entering the ‘sound’ or phonetic combination
of a Chinese character. A list of possible characters with the same sound (i.e. have the
same phonetic combination) is provided. The user then chooses the desired character
from the list of sound-equivalent characters. For example, the Chinese equivalent of the
word ‘woman’ would be entered as ‘nu’ as its phonetic combination in the Hanyu Pinyin
system. For any further information on the Pinyin systems, please refer to [Tsa04].

There also exist insertion, deletion, substitution, and reversal spelling error types in
Chinese. The error types are single-character insertion, single-character deletion, single-
character substitution, single-character reversal, and string-substitution (i.e. 2- or 3-
character substitution) errors. Note that, due to the dependency between characters in a
word, it is not only possible to perform spell correcting on isolated-word errors, though im-
proved results are obtained by spell correcting context-sensitively [ZHZP00]. Most errors
occur in a Chinese text when characters have similar pronunciation (or homophones8),
similar shape, similar meaning, or similar input keystroke sequence in the input method
used.

CInsunSpell which was developed in 2002 is a more recent Chinese-specific spell check-
ing and correcting system [LW02]. It achieves spell checking and spell correcting in two
different processes. For spell checking, character trigrams (discussed in detail in Sec-
tions 2.3.2 and 3.3.2) within a fixed-size window are used to locate the misspelled words
in a specific area. This process reduces memory consumption as the Chinese character
set is relatively large. The use of trigrams for spell checking in English was proposed by
Mays, Damerau and Mercer [MDM91].

Edit distance techniques [Lev66] (discussed in detail in Section 3.4.1) are adopted by
CInsunSpell for spell correcting in order to obtain the information of word construction
in a set (this set is called a confusion set).

A confusion set is constructed for situations in which a character in a word string is
transformed into another character which is either confusable (e.g. homophones which
have the same or similar pronunciation yet differ in spellings or meanings) or irrelevant,
thus causing a misspelling. For instance, when a deletion error occurs, the original char-
acter in the input string is changed into a null character which results in a misspelling.

8Homophones have different meanings but the same pronunciation. An example of homophones in
English, would be the words see and sea.

72

The confusion set is thus constructed to find a valid character to correct the misspelled
character. The confusion set in CInsunSpell is constructed by collecting the 3,755 most
frequently-used characters from the Chinese character set.

Weights are then automatically and dynamically distributed among these characters
in the confusion sets. Bayesian models are involved in the weight distribution process.
Different characters in a confusion set affect their adjacent characters differently in a
text. Thus, different weights are assigned automatically according to the effects to these
characters. A list of possible characters are then output as the suggestion results.

Due to the nature of the language, the accuracy of a Chinese word heavily depends on
its relation with its adjacent characters. Errors occur when this relationship is disturbed.
Thus, an approach is derived from tackling word-sense disambiguation9 [NZ97] in order
to find the position of this disruption in the relationship. In tackling word-sense disam-
biguation, statistical approaches, such as n-gram analysis, are used. The approaches start
by defining a window of n words around each word to be disambiguated in the content
and then statistically analyzing the n surrounding words. Bayesian models and decision
trees are used for training and correcting. Another approach that is used recently is
kernel-based methods (e.g. as support vector machines).

As mentioned previously, spell checking in CInsunSpell is performed based on character
n-grams (more specifically trigrams). It starts by setting one fixed-sized sliding window
W to locate an area where there may contain an error. There exist approximately k
characters on either side of the centre character m in a window. n-gram analysis is
applied to determine whether m is a misspelling. It is assumed that the fixed-size window
is of size 2k+1 where W can be represented as W = {c1, c2, · · · , ck,m, ck+1, ck+2, · · · , c2k}.
The probability of the first k characters is calculated by the following equation:

P (c1, c2, · · · , ck) =
N(c1, · · · , ck)

N(t1, · · · , tk)

where N(c1, · · · , ck) is the number of times the string {c1, · · · , ck} appears in the corpus
and N(t1, · · · , tk) is the total number of any k-character string appears in the training
corpus.

An example would be the following: a corpus of 100 characters would have 98 different
groups of 3 successive characters. Maybe c1, · · · , ck = ‘the’, and say this string appears 5
times in the corpus. Then N(c1,··· ,ck)

N(t1,··· ,tk)
= 5/98.

In practice, this probability is often estimated by using n-gram. Similarly, the proba-
bility of the last k characters is

P (ck+1, ck+2, · · · , c2k) =
N(ck+1, ck+2, · · · , c2k)

N(tk+1, tk+2, · · · , t2k)

An assumption is made that the first k characters of W are correct and m is the character
that requires checking.

CInsunSpell algorithm performs the spell checking task in the following steps:

9Word-sense disambiguation is to determine the correct/intended meaning or sense of a word in
context.

73

• Step 1. CInsunSpell uses a fixed-size sliding window, W =< c1, c2, c3, c4, c5 >,
from the beginning of the text T , k = 210, and the centre word in this case is c3.
Trigrams are generated from the list of characters within the window. For example,
the trigrams in this case would be < c1, c2, c3 >, < c2, c3, c4 >, and < c3, c4, c5 >.

• Step 2. If − log(P (c1, · · · , ck)) and − log(P (ck+1, · · · , c2k)) individually are greater
than the pre-defined thresholds for the front (i.e. < c1, · · · , ck >) and the back (i.e.
< ck+1, · · · , c2k >) strings respectively, then c3 is reported as a misspelled character.
From the experiments conducted by Li and Wang, the threshold for the front string
is best set at 19.8720 and the threshold for the back string is best set at 20.5650
[LW02].

• Step 3. If the negative log values are less than or equal to the pre-defined thresholds,
bigrams instead of trigrams will be generated from the list of characters in the
window. This is because the higher the rank of n-gram, the more sparse the data
and the less accurate the probability. Thus, in order to increase the performance of
the algorithm, a smoothing procedure may be invoked to handle sparse data. The
smoothing procedure takes the window W of trigrams and reduces it to a window
of bigrams, namely WB =< c2, c3, c4 > (c1 and c2 are not considered as they are
assumed to be correct). The relationship of characters in each bigram is examined.
In other words, the negative log values of < c2, c3 > and < c3, c4 > are compared
against the pre-defined thresholds in the same manner as described in the previous
paragraph. Furthermore, in order to reduce the sparse data in the bigram situation,
the window WB is extended by one more character, i.e. < c2, c3, c4, c5 >. Recall
the assumption made earlier that the first k characters of the window are correct.
Thus, if k = 2, the first two characters which form the first bigram, < c2, c3 >, are
assumed to be correct. < c3, c4 > is the suspected bigram (i.e. containing a possible
misspelling). The relation between c4 and c5 is evaluated in order to determine if
c4 is a misspelling. The relationship between two characters is once again evaluated
by their probability. Thus, three pre-defined thresholds (i.e. probabilities for the
front string, the back string, and the extension) are required for the evaluation.

• Step 4. After examining W =< c2, c3, c4, c5 >, the detection process moves on to
the next fixed-size window, i.e. < c3, c4, c5, c6 >. The process repeats itself from
Step 2. c2 and c3 are now assumed to be correct in this case.

One must take into account that the smoothing method (i.e. the use of bigrams instead
of trigrams) is also used to overcome the situation where one of the first two characters is
an unintended character, such as the Chinese equivalent of the symbol ”, and this usually
happens at the beginning of a text. However, there exists an exception that the earlier
assumption that the first k characters of the window are correct cannot be applied here.
Another way of dealing with smoothing the sparse data is to construct a small thesaurus
lexicon containing only one-character words (usually parts of speech). When sparse data

10According to [LW02], their experimental results have shown that when k = 2 and when the language
model is represented by trigrams, the result is optimal.

74

occurs, the algorithm can look up a character in the lexicon for a replacement character
before rechecking. Details on the smoothing method can be found in [LW02].

The next step is to correct the misspellings detected by the spell checking process described
earlier. Firstly, the Bayesian formula [MDM91, Win03] is employed to build the language
model for spelling correction in order to find the candidate suggestions to correct the
spelling errors reported in the previous spell checking process. To find the closest string
d for the misspelled word m, where w is a correctly-spelled word, Li and Wang [LW02]
made use of the following equations:

d =
argmax
w P (w|m)

P (w|m) is computed from the Bayes’ rule:

P (w|m) =
P (w)P (m|w)

P (m)

where

•
argmax
w refers to the value of w for which P (w|m) has the largest value;

• P (w) is the probability of the occurrence of w; and

• P (m|w) is the probability of a correctly-spelled word w transformed to the mis-
spelled word m as a result of one of the characters in w is wrongly spelled.

The value of P (w) is estimated using trigrams, i.e.:

P (w) =
n∏

i=1

P (wi|wi−1, wi−2)

where n is the length of w and wi is an individual character in w.
The value of P (m|w) is estimated from the prior probability of the individual charac-

ters:

P (m|w) =
n∏

i=1

P (mi|wi)

where mi is an individual character in m. Thus, P (mi|wi) is the probability of wi trans-
formed to mi. In other words, it reflects the likelihood that wi may be wrongly spelled to
mi.

All the characters in the confusion set are possible candidates for correcting the mis-
spelled characters detected. P (mi|wi) as mentioned above is the probability of a character
in the input string wi being transformed to a character in the misspelled word mi and it
reflects the relation between the characters. This probability is the weight of the trigram
model P (wi|wi−1, wi−2), which is used to determine the probability of occurrence of a
correctly-spelled word.

Minimum edit distance as discussed in Section 3.4.1 has been adopted to perform auto-
matic weight distribution in order to distinguish the relation between each character pair

75

(mi, wi). As explained earlier, there exist 1-character words and multi-character words
(i.e. 2-character words, 3-character words, and 4-character words) in Chinese. According
to Li and Wang [LW02], one of the characteristics of Chinese words is that the more
characters that a word is made up of, the more closely related these characters are. Thus,
for example, the characters in a 4-character word are much more closely related compared
to the characters in a 2-character word. The weight distribution of characters in the
confusion set thus relies on the length of the words (i.e. the number of characters each
word contains) that are constructed by the current character in the confusion set with its
surrounding ones in some text.

The procedure of automatic weight distribution is as follows:

• Step 1. Minimum edit distance is used in CInsunSpell to determine the possi-
bilities of some characters in the confusion set to become valid suggestion candi-
dates. For instance, there exists a text T =< w0, w1, . . . , wn > (here the word
order in the text is important and we view T as a sequence) and w3 is a mis-
spelled character. w3i is a character which is proposed to be a candidate sugges-
tion for w3. Substitute w3i into each possible four-character words (in order to
obtain the highest degree of association between characters) using minimum edit
distance and we get < w0, w1, w2, w3i >, < w1, w2, w3i, w4 >, < w2, w3i, w4, w5 >,
and < w3i, w4, w5, w6 >.

• Step 2. Each of these words is matched against words in the dictionary. If matches
are found, it indicates that the misspelled words that contain w3 are one edit dis-
tance away from the correctly-spelled words found in the dictionary. w3i is cat-
egorised into the four-character word class in the confusion set. If any of the
words cannot find matches, the words are shorten to contain one character less
and matching is processed. For example, if a match was not found for any of the
four-character sequences in Step 1, then these sequences are then shorten to three-
character words: < w0, w1, w2 >, < w1, w2, w3i >, < w2, w3i, w4 >, < w3i, w4, w5 >,
and < w4, w5, w6 >. Words, such as < w0, w1, w2 > and < w4, w5, w6 >, will not
be processed as they do not contained w3i the possible candidate suggestion for the
misspelled word w3.

• Step 3. Step 2 is repeated until all words that can be find matches in the dictionary
have been tested and until each word contains only one character.

• Step 4. The candidates of w3 in the confusion set are categorised into four different
classes, namely Class4, Class3, Class2, and Class1 and they represent 4-character
word class, 3-character word class, 2-character word class, and 1-character word
class respectively. Candidates in Class4 are assigned the maximum weights (due to
the highest degree of association between characters) and those in Class1 are assigned
the minimum (due to the lowest degree of association between characters). Weights
for candidates in the same class are equal. In case where the current character can
form more than one multi-character word with its neighbouring characters, it is
categorised into the class with the maximum word length.

76

The weight of each class, calculated in terms of a so-called BasicWeight, is determined
as follows:

WeightClass1 = BasicWeight

WeightClass2 = 5 ∗BasicWeight

WeightClass3 = 10 ∗BasicWeight

WeightClass4 = 20 ∗BasicWeight

where

BasicWeight =
1

(5 ∗ n+ 10 ∗m+ 20 ∗ r + (3755− n−m− r))

In this formula, n is the number of characters in the 2-character words, m is the number of
characters for 3-character words, and r is the number of characters for 4-character words.
Refer to [LW02] for an explanation of why these various constants have been selected for
the calculation of the weight of each class.

CInsunSpell thus achieves the spell correcting task by combining the language model
construction processes (applying Bayes’ rule, minimum edit distance technique, and the
weight distribution calculation). The best suggestion candidates are output from Class4

which is followed by suggestions from Class3, Class2, and Class1, respectively. The sug-
gestions are output in descending order according to the possibilities of these candidates.

For candidate characters within words with the same length (i.e. in the same class),
the sound and shape similarities of the characters are then taken into account to determine
the accuracy of the candidate suggestions. Further details of this process can be found in
[LW02].

It is observed that although the language structures of English and Chinese are rather
different, the spell checking and correcting techniques do not differ significantly. The
techniques mentioned in Chapter 3 such as n-grams (Section 3.3.2), minimum edit distance
(Section 3.4.1), and probabilistic techniques (Section 3.4.5) are also employed for Chinese
spell checking and correcting in CInsunSpell. Morphological analysis can be applied to
Oriental languages. However, CInsunSpell adopted the n-gram analysis approach instead
as it is less complicated and more time efficient compared to morphological analysis.

4.11 Conclusion

Spell checking in the mentioned spell checkers and correctors mostly rely on dictionary
lookup techniques such as the ones discussed in Section 3.3. The spell correcting tech-
niques discussed in Section 3.4 are widely used in both spell checkers and correctors. Each
of these techniques may be used on its own or in conjunction with the other techniques.
In more recent development, an algorithmic solution for the spell checking and correcting
tasks often comprises of a combination of techniques. This is because one single technique
can be inefficient on its own. Combining the techniques aims at achieving the optimal
results in terms of accuracy, running time and/or storage space.

77

As we can see from this chapter, in the earlier stage of spell checking and correcting
research, dictionary lookup techniques have been the main focus and minimum edit dis-
tance techniques have been widely used in the spell checking and correcting algorithms
for languages based on Latin alphabet. n-gram-based techniques are popular amongst
the more complex language structures such as Zulu where the language has a conjunctive
nature and Chinese where the definition of a word boundary is not obvious. Proba-
bilistic techniques only later join in as a solution to the spell checking and correcting
problems. n-gram-based techniques are inseparable from probabilistic approaches. Prob-
abilistic techniques are used in conjunction with dictionary-lookup techniques to achieve
higher accuracy. Finite-state automata were generally used in conjunction of edit dis-
tance technique for spelling correction in a highly inflectional or agglutinating language
or a language with compound nouns.

Some of the various algorithms described in this chapter will be used in the classifi-
cation in Chapter 5. We will be comparing these algorithms in terms of characteristics,
functionalities and empirically-determined performance in the following chapter.

Chapter 5

Empirical Investigation and
Classification

5.1 Introduction

This chapter provides the comparison and classification of various spell checking and
correcting algorithms described in Chapter 4. These algorithms were matched up with
each other in terms of their performance, functionalities, and implementation strategies.

For comparison in performance, Unixr spell (Section 4.2), aspell (Section 4.4),
agrep (Section 4.7), fsa package (Section 4.6), MS Word 2003, DAC Northern Sotho
(or Sesotho sa Leboa) spell checker (Section 4.9), and CInsunSpell (Section 4.10) were
use. Experiments on spell, aspell, fsa package, and agrep were conducted on a
Linux platform (Mandrakelinux 10.1) and the rest on Windows (XP Professional 2002).
The particular hardware platform used to perform the experiments described in this
chapter was an Intel Pentium D at 2.8GHz, with 512MB of RAM and 40GB of hard
drive. For more detail on the processor, refer to [Cor06, Gov01]. Of course, the algorithms’
performance may vary from one hardware platform to another and, to this extent, the
results below should be regarded as indicative rather than conclusive. This machine
was equipped with both the Windows and Linux operating systems. Performance was
evaluated with respect to spelling error detection, suggestion accuracy (for packages that
provide suggestions), and efficiency.

Four English-based spell checking and correcting packages tested were spell, as-
pell, fsa package, and agrep—all open source products. The seventh version of
spell can be found in the Unix repository [Rit06]. aspell is downloadable from GNU’s
website [Atk04]. The current version (version 0.44) of fsa package is available for down-
load from http://www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/fsa.html#

FSApack. agrep is accessible via the ftp portal of University of Arizona [WM91, WM92b].
The performance of these packages was evaluated with main focus on spelling error de-
tection and suggestion accuracy. The packages that run on the Linux platform were also
evaluated in terms of time efficiency.

MS Word 2003 within MS Office suite was also selected as part of the evaluation,

79

80

because of its wide usage and ready availability, even though information about the tech-
niques applied are not publicly available. However, the comparison of MS Word 2003
against the three aforementioned packages has its focus on accuracy only. This is due to
the fact that MS Word 2003 is running on a different platform compared to the other four
selected systems. The functionalities and implementation strategies of all the algorithms
described in the previous chapter will be closely compared in Section 5.5.

To provide a contrasting perspective, two non-English based spell checking and cor-
recting packages were also investigated. The first was DAC Northern Sotho (DNS) Spell
Checker that can be installed into MS Word1; and CInsunSpell for Chinese, an experi-
mental Chinese spell checker/corrector developed at the Harbin Institute of Technology
[LW02]. CInsunSpell was the only spell checker involved in the experiments that per-
forms spell checking/correcting tasks on a non-Latin-based language. Both of these spell
checkers run on Windows only.

correct (Section 4.3), unfortunately, was not part of the testing as it is out of trace
according Church [CG91]. It was part of some Bell Laboratories’ products at one stage.
speedcop (Section 4.5) and aura will also not be part of the testing as speedcop has
been patented and used as part of some commercial products, whereas aura has been
licensed to Cybula Ltd. as the underlying method for various commercial software and
hardware applications.

In designing our experiments, we chose to rely on controlled data instead of open data
for these experiments. The data set used for each experiment is described in detail in
each section.

5.2 Spell Checking and Correcting for English

5.2.1 Data Sets

Initially, only one set of test data was involved in the experiments for spell checking and
correcting packages for English. The data set was a list of 15,000 most frequently-used
words, extracted from the British National Corpus (BNC) [BNC05]. This list is comprised
of 111,333 characters. BNC consists of over 100 million words which is approximately
equivalent to the full text content of 1,000 books. The word list extraction was performed
using the Oxford WordSmith Tools 4.0 [Pre06]. This data set consists of 15,000 correctly
spelled words including atomic lexical morphemes (e.g. book), compound words (e.g.
newspaper), words with derivational morphemes (e.g. stabilise), and morphologically
complex words (e.g. unsatisfied).

Additionally, a total of 1,000 unique misspellings were extracted from the Birkbeck
Spelling Error Corpus [Mit85] (This corpus consists of 36 files and has a total size of
approximately 1.8GB.) Thus, the initial test set comprised 16,000 words in total.

1Note that Northern Sotho is one of the more prominent indigenous South African Languages. The
spell checker was commissioned in 2003 by the South African Department of Arts and Culture. The
original version used in this study has been withdrawn from the public domain, while an update is
currently in production.

81

Out of the 1,000 spelling errors, 742 of them were identified as single-letter errors,
201 were two-letter errors, 44 were three-letter errors, 9 were four-letter errors, and the
remaining 4 were in the category of five-letter errors. The single-letter errors were further
subdivided according to the spelling error types [Kuk92]. Thus, 230 of them were identi-
fied as insertion errors, 188 deletion, 290 substitution, and 34 transposition errors. The
data set that consists of the 15,000 correctly spelled words from the BNC and the 1,000
misspellings mentioned here will be referred to as DS1 throughout this chapter.

To further verify the test results of both spell checking and correcting, a sanity check
for consistency was required. Hence, a second list of 1,000 spelling errors was extracted
from Birkbeck Spelling Error Corpus. Each of these misspellings was different from the
ones in the previous data set. Amongst these 1,000 spelling errors, 734 misspellings were
single-letter errors, 198 were two-letter errors, 45 were three-letter errors, 16 were four-
letter errors, and 7 were five-letter errors. The 734 single-letter errors were comprised of
237 insertion, 183 deletion, 288 substitution, and 26 transposition errors. The data set
that consists of the 15,000 correctly spelled words from the BNC and the second list of
spelling errors mentioned in this paragraph will be referred to as DS2 throughout this
chapter.

The clear correspondence between the characteristics of the first and second sample
of spelling errors, suggests that they could both be used with a reasonable degree of
confidence that they each reflect the sorts of spelling errors that are likely to occur in
practice, under the assumption that the Birkbeck Spelling Error Corpus itself accurately
reflects the extent and range of such errors.

In order to measure the performance of the morphological intelligence in spell and fsa
package (as they are the only two packages that are equipped with morphological analy-
sers), two extra data sets were used. The first data set consists of 15,000 correctly spelled
words extracted from the BNC as well as 500 misspelled words, where misspellings oc-
curred only in the stems of the words (e.g. reach). The second data set consists of 15,000
correctly spelled words extracted from the BNC as well as 500 misspelled words with
misspellings occurring only in morphologically complex words (e.g. unreachable). These
two data sets will be referred to as DS3 and DS4 respectively throughout this chapter.

5.2.2 Performance

In this part of the dissertation, we discuss the experiments conducted on various spell
checking and correcting packages for English using the data sets discussed in Section 5.2.1.
The performance is measured in terms of spelling error detection, spelling error correction,
and time efficiency. We relied on controlled data instead of open data for these experi-
ments. spell, aspell, fsa package, and MS Word 2003 were all equipped with their
standard supplied dictionaries. These dictionaries are used for a comparison against the
other systems. However, agrep itself does not contain a built-in or supplied dictionary.
Thus, the standard dictionary in spell which consists of 29,197 words is adopted to be
used for the comparison purposes. Various experiments were conducted to compare the

82

spell aspell fsa package agrep MS Word
Total Errors in Data 1000 1000 1000 1000 1000
Total Actual Errors Detected 1000 992 1000 1000 999
Incorrectly Detected 0 0 0 0 0
Recall Rate (%) 100 99.2 100 100 99.9
Precision Rate (%) 100 100 100 100 100

Table 5.1: Spell checking results for English using the first data set (DS1).

performance of these packages with the primary focus on their accuracy. After experi-
menting with DS1, we evaluated the performance in the same manner using DS2. DS2

was used as a sanity check to verify the validity of the experimental results obtained from
the first series of experiments.

Spelling Error Detection

As mentioned in the earlier chapters of this dissertation, the essential task of spelling
error detection is to compare what is given against what is known, and there are a variety
of techniques for doing so. Data structures may differ across techniques in respect of
how to efficiently store what is known—various dictionary structures and/or statistical
information. They may also differ in respect of how to represent input—in raw input form
versus some morphological characterization.

In this subsection, we look at the performance with respect to the spell checking abil-
ities of the following packages: spell, aspell, fsa package, agrep, and MS Word
2003. spell and aspell rely on hashing (refer to Sections 4.2 and 4.4, respectively).
fsa package made use of finite-state automata and cut-off edit distance (refer to Sec-
tion 4.6). agrep opted for a string-matching algorithm, called the bitap algorithm (refer
to Section 4.7). While this algorithm can be used for approximate string matching, it
clearly has to be used in exact matching mode for spelling error detection. As mentioned
previously, it is not known which technique is used by MS Word.

Each of the these packages is executed with the initial set of test data to determine
the number of misspelled words with the misspellings ranging from one to five error
combinations. For spelling error detection, the number of times each type of error (i.e.
single-letter, two-letter, three-letter, four-letter, or five-letter spelling errors) occurs is
recorded. The performance of these packages was measured by the percentage recall rate,
i.e. the number of genuine misspellings detected (as opposed to correctly spelled words
incorrectly identified as misspellings) as a percentage of the number of misspellings in test
data.

The experimental results based on DS1 are summarised in Table 5.1.

Note that the recall rate is an indication of the rate of accurate error detection in

percentage terms, i.e. the total number of misspellings detected over the total actual

number of errors in test data as a percentage. Thus,

error detection recall rate =
number of misspellings detected

actual number of errors in test data
× 100

83

spell aspell fsa package agrep MS Word
Insertion Errors 230 227 230 230 230
Deletion Errors 188 188 188 188 187
Substitution Errors 290 288 290 290 290
Transposition Errors 34 34 34 34 34
Total 742 737 742 742 741

Table 5.2: Single-letter errors detected using (DS1).

spell aspell fsa package agrep MS Word
Total Errors in Data 1000 1000 1000 1000 1000
Total Actual Errors Detected 1000 996 1000 1000 998
Incorrectly Detected 0 0 0 0 0
Recall Rate (%) 100 99.6 100 100 99.8
Precision Rate (%) 100 100 100 100 100

Table 5.3: Spell checking results for English using the second data set (DS2).

The precision rate was determined by ratio (expressed as a percentage) of the number of

misspellings and the number of errors detected, whether these be actual errors detected

or incorrectly detected errors. Thus,

precision =
number of misspellings detected

number of actual errors detected + number of incorrectly reported errors
× 100

The single-letter errors reported in Table 5.1 have been further identified according to the
spelling error types in Table 5.2.

spell, fsa package , and agrep achieved the highest (100%) accuracy. MS Word
performed second best, missing out on a word that contained a single-letter error. aspell
performed the poorest. It failed to detect five of the single-word misspellings and three of
the two-letter misspellings. Note that in all cases, 100% precision was achieved, i.e. it was
never the case that a correctly spelled word was incorrectly identified as a misspelling.

As a sanity check for consistency, the above experiment was repeated with DS2. DS2

is of the same size as DS1. The details regarding the content of DS2 can be found in
Section 5.2.1. The results of the experiments are summarised in Table 5.3.

The findings here correspond to the previous experiment: spell, fsa package , and
agrep achieved 100% recall, MS Word failed to recall two misspelled words, which include
one single-letter error and one two-letter error, and aspell failed to recall four misspelled
words which include two single-letter error, one two-letter error, and one three-letter error
(thus performing slightly better than before). Of course, each package performed at 100%
precision again, because no new correct words were added to DS2.

Spell checking heavily depends on the dictionary supplied or used by the spell checkers
and correctors. The results of the above experiments might have been different if a
different dictionary had been installed for each of the selected packages. One of the main
differences between aspell and the other English spell checking packages is that aspell

84

Figure 5.1: Spell checking recall rates for spell checking/correcting packages for English.

partially depends on a large rule-based system, the Metaphone algorithm, in order to
handle phonetic misspellings (refer to Section 4.4).

It is rather interesting to see that although MS Word is a commercial product, its
spelling error detection is not as effective as the other open-source packages, except as-
pell. The contents of the dictionaries used by the investigated packages are important
factors that may affect the accuracy of spelling error detection. The dictionaries used by
spell and fsa package contain more words and superior affix analysis schemes com-
pared to the dictionary used by aspell. They may also contain more words and superior
affix analysis schemes compared to the dictionary used by MS Word. Thus, we can con-
clude that the dictionaries used by the two investigated packages are deficient compared
to the ones supplied by spell and fsa package .

Furthermore, it is of interest to determine how morphological analysis influenced the
performance of those spell checking and correcting packages, which are equipped with
a morphological analyser or affix stripping scheme. The packages that incorporate some
form of morphological analysis are spell, fsa package , and MS Word (per assumption).
However, morphological analysis only occurs in fsa package when it performs the spell
correcting task. Two extra data sets DS3 and DS4 (described in Section 5.2.1) were
required for the measurement of the morphological intelligence of these packages.

The first experiment was conducted using DS3. Both spell and MS Word achieved
100% recall rate (i.e. all errors were detected) with this experiment. The second ex-
periment was conducted using DS4. Again, both spell and MS Word achieved 100%
recall rate with this experiment. The results of these two experiments indicate that the
morphological intelligence of these two packages is at a similar level.

Spelling Correction

In this subsection, the spell correcting accuracy measurements were carried out on all
previous packages — spell excepted since it does not have spell correcting abilities. For

85

aspell fsa package agrep MS Word
Found in the First 5 Suggestions 844 908 741 886
Found in the First 10 Suggestions 903 908 820 904
Total Correction Suggestions 950 908 835 904
Total Errors Detected 992 1000 1000 994
Suggestion Accuracy (%) 95.77 90.80 83.50 90.95

Table 5.4: Spell correction results for English using DS1.

spell correcting in English, aspell, fsa package , agrep, and MS Word 2003 were
tested. Again, two sets of test data, DS1 and DS2 (as described in Section 5.2.1), were
used to perform spelling suggestion. The experiment results based on DS1 described in
Section 5.2.1 are given in Table 5.4.

The first two rows show the number of times that each spell checking/correcting pack-
age had the correct spelling in the first 5 and first 10 suggestions, respectively. First 5
matches suggest that the correctly spelled word for a particular misspelling can be found
in the first five candidate suggestions provided by the package. Similarly, first 10 matches
suggest that the correctly spelled word for a particular misspelling can be found in the
first ten candidate suggestions (including the ones in the first 5 matches) provided by the
package. Due to the fact that fsa package is an automatic corrector (i.e. provided only
one suggestion per misspelling), the results for the first two rows remained unchanged.

The suggestion accuracy is an indication of the ratio of the total number of correct

suggestions to the total number of errors detected in percentage terms. Thus,

error correction recall rate =
number of correct suggestions
number of misspells detected

× 100

By this measure, aspell offered the best correction performance while, in contrast to
the spell checking results, agrep performed the worst amongst the English packages.
The performance of agrep is directly linked to the dictionary or source file that the
misspellings are matched against. If the words contained in the chosen dictionary or
source file are not words that are in the same category/level as the misspelled words, the
detection rate could be affected. Recall that aspell uses the Metaphone algorithm in
conjunction with the reverse edit distance technique for spell correcting. This appears
to commend the use of phonetic-based algorithms for spell correcting. Of course, the
correction rate as a measure should be treated with a degree of caution since it will reflect
well on a package that detects very few errors but offers correct suggestions for all of
them. To some extent, this plays a role in aspell although the raw number of total
correct suggestions provided by aspell (950) exceeds that of all rival packages.

Out of the total number of correct suggestions in each case, 88.84% of the correct
suggestions were found in the first 5 candidate suggestions using aspell, 100% were
found by fsa package , 88.74% were found using agrep, and MS Word was able to
provide 98.01% of the correct suggestions in the first 5 candidate suggestions. These
figures yield an average of 93.90% of the correct suggestions that can be found in the first
5 suggestions provided by the four packages.
An average of 98.31% of the correct suggestions can be found in the first 10 candidate

86

aspell fsa package agrep MS Word
Found in the First 5 Suggestions 755 892 609 755
Found in the First 10 Suggestions 769 892 98.86 770
Total Correct Suggestions 799 892 704 770
Total Errors Detected 992 1000 1000 994
Suggestion Accuracy (%) 95.12 89.20 83.81 91.67

Table 5.5: Spell correction results for English using DS2.

suggestions (including the ones found in the first 5 matches). This is an indication that
the English packages are efficient spelling correctors.

As a sanity check for consistency, the above experiment was repeated with DS2. DS2

is of the same size as DS1. The details regarding the content of DS2 can be found in
Section 5.2.1. The results of the experiments are summarised in Table 5.5.

By this measure, aspell again offered the best correction performance and agrep
again performed the worst amongst the spell checking/correcting packages for English.
This experiment showed a slight improvement (increased by 0.31%) in agrep’s perfor-
mance, MS Word 2003 also has a slight improvement in its performance (by 0.72%), and
aspell and fsa package performed slightly worse (decreased by 0.65% and 0.60% re-
spectively). However, due to the fact that these figures are very close to the ones obtained
from involving DS1, the sanity check was successful.

As mentioned previously, aspell partially depends on the Metaphone algorithm
[Phi00]. In theory, it should therefore cope well with phonetic errors. The experimental
results offer a hint of evidence in this direction. It turns out that there are approximately
10% fewer phonetic spelling errors in DS2 than in DS1, possibly accounting for aspell’s
slight performance dip in the second case.

Out of the total number of correct suggestions in each case, 94.49% of the correct
suggestions were found in the first 5 candidate suggestions using aspell, 100% were
found using fsa package , 86.49% were found using agrep, and MS Word was able
to provide 98.05% of the correct suggestions in the first 5 candidate suggestions. These
figures yield an average of 94.76% of the correct suggestions that can be found in the first
5 suggestions provided by the four packages.

An average of 98.78% of the correct suggestions can be found in the first 10 suggestions
(including the ones found in the first 5 matches). Once again, this is an indication that
the English packages are efficient spelling correctors.

Figure 5.2 shows how the error correction performance of the various spell check-
ing/correcting packages match up with each other. Note that the rates for these English-
based packages were obtained from the experiments conducted using both sets of test
data.

It is of interest to determine how morphological analysis influenced the performance of
the spell checking/correcting packages, which are equipped with a morphological analyser
or affix stripping scheme. The spell correcting packages that incorporate some form of
morphological analysis are fsa package and MS Word. Two extra data sets, DS3 and
DS4 (described in Section 5.2.1), were required for the measurement of the morphological
intelligence of these two packages.

87

Figure 5.2: Suggestion accuracy for various spell checking/correcting packages for English.

DS3 consists of 15,000 correctly spelled words and 500 misspelled words and misspellings
occurred only in the word-stems. fsa package achieved 86.60% correction accuracy. No
correct suggestions were returned for 67 of the 500 errors. MS Word achieved a much
higher correction accuracy (98.40%). Only 8 out of 500 errors were not provided with a
correct suggestion and these misspellings are mainly phonetic errors. 472 of the errors were
provided with the correct suggestions as the first option on each list of suggestions. The
experimental results suggest that MS Word has a more sophisticated spelling corrector
compared to fsa package .

DS4 consists of 15,000 correctly spelled words and 500 misspelled words, where mis-
spellings occurred only in morphologically complex words. fsa package achieved 85.20%
correction accuracy. No correct suggestions were returned for 74 of the 500 errors. MS
Word achieved a much higher correction accuracy (99%). Only 5 out of 500 errors were
not provided with a correct suggestion. 485 of the errors were provided with the correct
suggestions as the first option on each list of suggestions.

Comparing the results based on DS3 to the ones based on DS4, the performance
of MS Word has improved by 0.60%. This is in contrast to the performance of fsa
package (decreased by 1.40%). This suggests that the morphological intelligence of MS
Word is higher than that of fsa package since fsa package performed worse when a
morphologically more complicated data set was involved.

Efficiency

spell, aspell, fsa package , and agrep were evaluated in terms of time performance
for the error detection task. Notice that MS Word 2003 was excluded in these experiments
as it runs on Windows whereas the rest of the packages run on the Linux platform. In
order to achieve accuracy and fairness of the experimental results, MS Word 2003 was
not taken into consideration here.

DS1 described in Section 5.2.1 was used. In each case, the average and standard
deviation time, measured over 50 runs, has been determined. The results are presented

88

Figure 5.3: Mean of time performance of the spell checking/correcting packages for En-
glish.

in Figure 5.3.
The time performance measured for fsa package excluded the time needed to build

the dictionary into a finite automata (using fsa build).
It is obvious that spell achieved the best performance amongst all the packages.

On average, agrep was approximately 23 times slower than spell, fsa package was
almost 19 times slower than spell, and aspell was approximately 12 times slower than
spell. Clearly, hashing on its own, as used in spell and aspell, is far more effective
in terms of efficiency than the combined algorithm used in the other packages. However,
this added efficiency is traded off against the need by the other algorithms to provide for
some sort of approximate matching (i.e. spelling suggestions) so that correction can later
occur. Simple hashing does not support correction functionality. Hashing contributes to a
constant time of O(1) and this is independent of the size of data. It is the fastest algorithm
amongst all as we have already seen from our experimental results in this section.
aspell made use of hashing for dictionary lookup. As mentioned earlier, hashing con-
tributes to a constant time of O(1). Theoretically, aspell should have a very similar time
performance compared to spell. However, aspell was clearly slower than spell. It is
conjectured that the reason of aspell being slower than spell has to do with the way in
which Metaphone algorithm has been integrated into the overall aspell package, which
provides more overheads to the entire package. Recall that the edit distance algorithms
require a time complexity of O(mn), where m and n are the lengths of the source and
target words, respectively, and the Metaphone algorithm has a time complexity of O(t),
where t is the size of the table where all the phonetic rules are stored. Thus, the total
time complexity for spelling correction using aspell is O(mn) + O(t).

The time complexity of an automaton acceptor depends on the length of the string
(i.e. the length of the word) being tested for acceptance. The automata acceptor in
fsa package has a time complexity of O(m), where m is the length of the word being
searched.

The bitap algorithm in agrep has a predictable time complexity of O(mn), where
m is the length of the word being searched and n the size of the alphabet. The time

89

complexity is a result of the bit array data structures of bitap and it is not affected by
either the structure of the queried words or by the provided pattern.

agrep was unexpectedly slow, in that the bitwise operation in the bitap algorithm
which should theoretically enhance efficiency. It is conjectured that this relatively poor
performance has to do with the way in which bitap algorithm has been integrated into the
overall agrep package, namely to provide for both spell checking and correcting. It would
be interesting to investigate, as a matter of future research, whether a specialised spell
checking package based on the bitap algorithm could be developed that rivals spell in
efficiency. It would also be of interest to investigate the effect of the number of misspellings
on time performance by fixing the number of misspellings in the documents.

5.3 Spell Checking and Correcting for Northern Sotho

5.3.1 Data Set

For evaluation of DNS Spell Checker (as an MS Word installer) for Northern Sotho, the
TshwaneDJe Sesotho sa Leboa corpus [HLT06] was obtained from TshwaneDJe HLT, a
company specialised in human language technology. It was used to make comparison
against the supplied dictionary which is 628KB. The TshwaneDJe Sesotho sa Leboa cor-
pus contains approximately 5.3 million words and is about 30MB in size. It derives from
sources such as newspaper articles, magazine articles, short stories, and official documen-
tations.

A list of 908 misspelled words was provided by the owner of the corpus. These mis-
spelled words were identified from 65,000 words, which were manually scanned and ex-
tracted from the text collected. Amongst the 908 misspelled words, there were 804 single-
letter errors, 78 two-letter errors, and 26 three-letter errors. The 804 single-letter errors
were comprised of 570 insertion, 52 deletion, 156 substitution, and 26 transposition errors.

If this error rate (908 out of 65,000 words) is directly extrapolated, then one would have
to conclude that almost 1.40% of the words in the TshwaneDJe Sesotho sa Leboa corpus
contains spelling mistakes. This is considered to be a rather high error rate. One possible
reason that could contribute to this figure is that some existing editing tools do not
provide or support many characters required in these African languages. Hence, properly
typing an article in an African language, such as Tshivenda, becomes a rather difficult
job. It often requires a software driver, such as ‘South African Keyboard’ [Pro06] in order
to find or insert the special characters required for a specific language. However, a full
exploration of the reasons for the high error rate is beyond the scope of this dissertation.

90

5.3.2 Performance

Spelling Error Detection

DNS Spell Checker detected 882 (including 765 actual misspellings and 117 correctly
spelled words that were incorrectly detected) out of 908 errors identified in the data,
which represents a recall rate of 97.14%. DNS spell checker is clearly less mature than all
the English spell checking/correcting packages and requires further fine tuning in terms of
the content of the dictionary and morphological analysis scheme. Northern Sotho is much
more complicated than English in regard to the morphological structuring of words. Thus,
it is necessary to adopt a more sophisticated morphological analysis scheme. It failed to
detect 26 misspellings. In addition, it reported 117 correct spellings as misspelled words,
which translates to a rather low precision rate of 86.73%, compared to the previously
discussed systems which all yielded 100% precision. This suggests that the dictionary
simply does not have enough words in it. However, it was noticed that the majority of
those words that were incorrectly detected as misspellings, were proper nouns—names of
people or places.

Spelling Correction

For spelling correction, 81.18% correct suggestions were found in the first 5 matches
provided by DNS Spell Checker and 85.49% were found in the first 10 matches. It was
noticed that in more than 80% of the cases where spelling errors that were detected by DNS
Spell Checker, there were fewer than five alternative spelling suggestions. 67 misspellings
were not provided with any correct suggestions. Thus, the overall suggestion accuracy is
91.24%, which is fairly good, exceeding that of fsa package , agrep, and MS Word.
However, the prior caution about using the suggestion accuracy uncritically as a measure,
should be recalled. The low recall rate of DNS Spell Checker relative to that of the spell
checking/correcting packages for English, tends to discount somewhat the value of its
high suggestion accuracy. Unfortunately, details on the correction strategy used in DNS
are not available as it is merely an MS Word installer. Nevertheless, it will be interesting
to check the performance of the next version—currently under development—against the
above results.

5.4 Spell Checking and Correcting for Chinese

So far we have only considered spell checking and correcting packages for the Latin-
based alphabet (including African Reference alphabet, which is largely based on the Latin
alphabet). It is of interest to find out how a package designed for non-Latin alphabet
differs in performance.

According to Li et al [LWS00], each Chinese word can consist up to four characters.
Furthermore, the notion of a blank space between words does not exist: characters simply
appear, one after another. Thus, before any analysis can be performed on a Chinese text,

91

it must be segmented into words. The smallest language unit in Chinese is a character
and each word consists at least one character. One sentence consists of several words
according to the grammar. Detailed background knowledge was provided in Section 4.10.

5.4.1 Data Set

For evaluation of the Chinese spell checking/correcting package, CInsunSpell, the training
data was obtained from The Lancaster Corpus of Mandarin Chinese from the Oxford
Text Archive [MX05]. It was used as the training set because it contains 15 different text
categories, which makes diverse sources. The size of the training set was approximately
30MB. The data set was obtained from People’s Daily 1993, 1994 [Dai94], and 2000
[Xia05]. The test data contains approximately 59,000 Chinese characters. A total number
of 595 single-word2 errors were identified, amongst which 82 were character-insertion
errors, 119 were character-deletion errors, 316 were character-substitution errors, 18 were
character-transposition errors, and 60 were string-substitution errors.

This finding suggests that approximately 1% of the characters in the corpus contain
spelling mistakes. The character-insertion, deletion, and transposition errors often occur
due to carelessness while typing. String-substitution errors occur either when the typist is
not paying attention or if the typist lacks knowledge of some word spellings/formations.
Character-substitution errors, however, mostly occur when the typist lacks knowledge of
the correct spellings/formations of the relevant word. Approximately 80% of the 316
character-substitution errors were also phonetic errors. Thus, the cause of these errors is
very likely due to the Chinese character input methods used for the corpus (as discussed
in Section 4.10), especially the Pinyin input method.

5.4.2 Performance

Spelling Error Detection

CInsunSpell, was measured against a slightly different criteria than used for the Latin-
based spell checking and correcting packages (in this case, the packages for English and
Northern Sotho). Spelling error detection was performed at the character level within
each word and also at the string (i.e. sub-word) level (refer to Section 4.10). CInsun-
Spell was executed to determine the number of real misspelled words, their error types
(i.e. single-character insertion, single-character deletion, single-character substitution,
and string-substitution errors), and the number of warnings reported amongst which in-
correct warnings were identified. The experimental results are presented in Table 5.6.

In all but the last row, the final column in Table 5.6 indicates the percentage of
column one (“Initial Error Identified”) relative to column two (“Errors Detected”). Thus,
the recall rate per error type varies from 55.55% in the case of transpositions, to 86.55%
in the case of deletions. The overall recall rate of 80.84% is less than that of DNS Spell

2A single word can be anything from one to four character combinations.

92

Initial Error Identified Error Detected %
Character Insertion 82 69 84.14
Character Deletion 119 103 86.55
Character Substitution 316 257 81.33
Character Transposition 18 10 55.55
String Substitution 60 43 71.67
Total Error Identified/Detected 595 481 80.84
Warnings N.A. 666 72.22

Table 5.6: Spell checking results for CInsunSpell.

Checker (97.14%) and is far less than that of the spell checking and correcting packages
for English.

The final row of Table 5.6, marked as “Warnings”, refers to the 666 words that were
flagged as errors. As is evident from the previous row, 481 of these words were genuine
errors, while the remainder were “false positives”. This results in a precision rate of
72.22%, which is the figure in the final column of the final row. This precision rate is less
than that of DNS Spell Checker (86.73%) and is far less than that of the spell checking
and correcting packages for English.

It is interesting to compare these results with those found by the authors of CInsun-
Spell as reported in [LW02]. Two sets of test data were used. In the first, recall and
precision rates3 of 55% and 84%, respectively, were found. This data set appears to have
an intersection with the data set used above (drawn inter alia from the People’s Daily
of 1993). In this case, their recall is lower than in the experiment described above, while
their precision is somewhat higher.

In the second set of test data, their figure dropped to 33.33% and 37.44% for recall and
precision, respectively, both considerably worse than our results above. In fact, their recall
results are also somewhat worse than another system that they used for comparative pur-
poses (the so-called HeiMa checker) while their precision results are better. The authors
explained that high precision is of particular importance since constant false warnings of
possible errors can become tiresome. However, it is not immediately evident why there is
such a high variation between their results for the two different test sets.

The fact that CInsunSpell performs worse than the spell checking and correcting
packages for English and DNS spell checker in spell checking is partially attributable
to the complexity of the language structure concerned. It is also attributable to Chinese’s
input methods used for the corpus (as discussed in Section 4.10), especially the Pinyin
input method.

Spelling Correction

For spelling correction, CInsunSpell correctly suggested 334 words and thus obtained a
correction rate of 69.44%. This compares very closely with its reported correction rate
in [LW02], which provides a figure of 68.94%. Indeed, this figure is far higher than the
HeiMa corrector’s recall (48.62%) that the authors used for comparison.

3Precision is, somewhat unconventionally, termed “accuracy” in their paper.

93

spell correct aspell fsa package agrep
Implemented Year 1979 1990 1998 1998 1988-1991
Spell Checking hashing N.A. hashing finite automata bitap
Technique(s) hashing exact matching
Spell Correcting N.A. probability Metaphone finite automata bitap
Technique(s) reverse edit distanceedit distancecut-off edit distanceapproximate matching
Corrector Nature N.A. interactive interactive automatic interactive
Morphological exists in none none exists in none
Analysis checking correcting
Flexibility characters characters characters characters and characters and

regular expression regular expression
Language(s) English English English English English

only only and others and others and others
Encoding(s) ASCII ASCII ASCII/ ASCII/ ASCII/

only only Unicode Unicode Unicode
Dictionary yes yes yes yes optional
Involved
Time Complexity O(1) N.A. > O(1) O(m) O(mn)

Table 5.7: Classification of spell checking/correcting packages Part I.

In our context, 84.13% of correct suggestions were found in the first 5 matches, and 95.81%
were found in the first 10. Comparative figures are not available from [LW02].

The same as spell checking in Chinese, the fact that CInsunSpell performs worse than
the spell checking and correcting packages for English and DNS Spell Checker in spell
correcting is partially attributable to the complexity of the language structure concerned.
It is also attributable to Chinese’s input methods used for creating the corpus.

5.5 Classification

In the earlier part of this chapter, the empirical performance of several spell checking and
correcting packages have been examined. In this section, we present a classification of all
of the ten spell checking and correcting algorithms that nine of which (except MS Word)
have been discussed in Chapters 3, 4, and 5. Their functionalities, characteristics, and
implementation strategies are presented across two tables, as seen in Tables 5.7 and 5.8.
The ten rows of each table correspond to attributes of the packages, and each column in
each table corresponds to some package.

spell is the earliest developed spell checker and it only performs spelling error detec-
tion task whereas correct only performs spell error correction task and all the others
perform both spelling error detection and correction. 50% of the algorithms made use of
some forms of edit distance technique for spelling correction regardless of the language
being checked. This finding supports the statement that edit distance is the most widely
used technique for spelling correction, which was mentioned in Section 3.4.1. All the
packages (except spell) are interactive spelling correctors (i.e. require the user’s input in
choosing the correct spelling from a list of candidate suggestions), except fsa package

94

speedcop aura MS Word DNS CInsunSpell
Implemented Year 1984 2002 2003 2003 2002
Spell Checking similarity key neural nets N.A. N.A. trigram/
Technique(s) probability
Spell Correcting error reversalhamming distance N.A. N.A. edit distance
Technique(s) n-gram weight distribution

phonetic code
Corrector automatic interactive interactive/ interactive interactive
Nature automatic
Morphological none none assume N.A. none
Analysis existence
Flexibility characters characters characters characters characters
Language(s) English English English Northern Sotho Chinese

only and others and others only only
Encoding(s) ASCII ASCII ASCII/ ASCII Unicode

only only Unicode only only
Dictionary yes yes yes yes yes
Involved
Time Complexity N.A. N.A. N.A. N.A. N.A.

Table 5.8: Classification of spell checking/correcting packages Part II.

and speedcop, which can only be automatic and MS Word, which can also be auto-
matic when the configuration is set up accordingly. The techniques used for the various
packages were described in Chapter 4. fsa package and agrep are the only two spell
checking and correcting packages that support matching for both characters and regular
expressions whereas all the others can only process matching of characters. The packages
that can handle encoding other than ASCII (i.e. Unicode) are aspell, fsa package ,
agrep, MS Word, and CInsunSpell. All the packages supply their own dictionaries for
spell checking/correcting purposes, except agrep, which does not come with a built-in
dictionary. It performs matches against any text supplied or specified by the user.

5.5.1 Concept lattice

In this section, a concept lattice (or a Galois lattice) [GW99] was constructed to charac-
terise and analyse the spell checking and correcting algorithms investigated in Chapter 4
as well as in this chapter. Concept lattices offer a classification method that is used in for-
mal context analysis (FCA) to better understand and analyse data such as that provided
earlier in Section 5.5.

A concept lattice is a very practical representation of a hierarchical structured graph,
which represents an ordering of so-called “concepts” and their attributes (or properties).
In such a concept lattice, common attributes of a group of objects are identified and may
be depicted in a line diagram. The lattice depicted in the line diagram below was derived
from Tables 5.7 and 5.8.

Objects in the lattice correspond to the various spell checking and correcting algo-
rithms. They are shown in clear rectangles, and linked by dashed lines to certain nodes.
Attributes are depicted in greyed rectangles, also linked to certain nodes by dashed lines.

95

The attributes correspond to characteristics and functionalities depicted in the tables.
Here, we focus mainly on the characteristics, functionalities, and implementation strate-
gies of the various packages—i.e. this lattice does not reflect properties of packages related
to efficiency.

Each node in the line diagram is called a concept. Each concept corresponds to a class
of algorithms and also to a set of attributes that are held in common by the algorithms
in the class. The algorithms associated with a concept are those that can be reached by
a downward path from the concept.

The concept’s attributes are those that can be reached by an upward path. The line
diagram has a so-called bottom concept, also depicted at the bottom of the diagram. This
concept’s class of algorithms is empty (the empty set), and its class of attributes is the
entire set of possible attributes in this context. It is construed to mean that no package
possesses all the attributes under discussion.

Similarly, the line diagram has a top concept. Its class of objects includes all packages
under consideration, and its class of attributes corresponds to the singleton set that con-
tains only the attribute “characters”. In other words, all the packages perform matching
on characters.

Each concept between the top and bottom concepts is characterised by its distinctive
set of attributes and set of objects. Thus, the attribute set {hashing, morphological anal-
ysis, English, ASCII, supplied dictionary, spell checking, characters} is associated with
the concept that is identified with the object set {spell}. The properties associated with
the “agrep” object set include some, but not all of the aforementioned properties, and
include a number of others as well—for instance “spell correcting”, “regular expressions”,
and “Unicode”.

FCA technology allows for the formal derivation of so-called implications that exist
between attributes in a concept lattice. The tool Concept Explorer [Yev03] can be used to
derive these implications. In the present example, fifteen implications between attributes
were identified. Such implication rules form the basis of FCA knowledge mining strategies,
and sometimes provide interesting nuggets of information about the objects. This is
supported by the following examples:

• Rule 1 shows that all ten objects performs matching on characters. This is the top
concept as mentioned earlier.

• Rule 2 shows that if an object performs morphological analysis and performs match-
ing on characters, then it also performs spell checking in English, can handle the
ASCII encoding and has a supplied dictionary. This implication is supported by
three objects, namely “spell”, “fsa” and “MS Word”. In other words, these three
objects share the common properties: “morphological analysis”, “characters”, “spell
checking”, “English”, “ASCII”, and “supplied dictionary”. These properties form
a subset of each attribute set associated with each of these objects.

• Rule 5 shows that if an object performs matching on characters and in English,
then it can also handle the ASCII encoding. This implication is supported by eight
objects (all the packages except “fsa” and “agrep”).

96

Figure 5.4: Concept lattice for various spell checking and correcting packages.

97

• Rule 8 shows that if an objects performs both spell checking and correcting in
English, performs matching on both characters and on regular expressions, can
handle both the ASCII and Unicode encodings, and has a supplied dictionary, then
it employs edit distance and performs morphological analysis. This implication is
supported by one object, namely “fsa”.

Such a lattice-based classification of algorithms is therefore considerably richer than a
mere table layout. It provides complete information about which attributes are held in
common by which objects. While the above implications are clearly not meant to be
interpreted as universally true, they nevertheless provide an interesting starting point to
investigate whether they are indeed universally true, or whether algorithms can be found
that negate them. Indeed, if no existing algorithm can be found, this might signal a
challenge to explore the possibilities of actually developing one.

5.6 Conclusions

In this chapter, we classified the spell checking and correcting algorithms described in
Chapter 4 in the light of performance, characteristics, functionalities, and implementa-
tion strategies. The performance of various spell checking and correcting packages was
evaluated in detail in terms of spelling error detection and correction accuracy and effi-
ciency for the spell checking task. Classification was first presented in a tabular format
in Section 5.5. The data was further represented in a concept lattice in Section 5.5.1 for
a considerably more in-depth classification.

According to the experimental results in Section 5.2.2, spell has the best time per-
formance although it was the first implemented spell checker. It was designed under the
circumstances where hardware memory and space were extremely limited. The time per-
formance has not been improved by any of the more recent spell checking and correcting
packages. It was noticed that the number of misspellings contained in a document may
vary the time performance. It was also noticed that the size of the dictionary (despite
the way it is structured) may also influence the time performance. Thus, it would be
interesting to investigate, as a matter of future research, how and to what extent these
elements affect the efficiency.

The size of the dictionary used by each package may well influence its spell checking
and correcting performance. However, it was noticed that the content of the dictionary
may have an even more significant effect on the performance. This was seen in the
experimental results of DNS Spell Checker (Section 5.3).

Half of the algorithms involved in the classification employed some forms of edit dis-
tance technique for spelling correction despite the fact that the time performance is con-
siderably worse compared to hashing and despite the languages being spell checked. Edit
distance has proven to be effective in Latin-based languages (e.g. English) as well as
non-Latin-based languages (e.g. Chinese).

Four of the algorithms employed n-gram and probability techniques. Phonetic in-
formation has been incorporated to tackle the problems with phonetic errors such as in
aspell. aspell appears to achieve better spelling correction accuracy. However, the

98

time performance seems to suffer because of the phonetic sub-algorithm within aspell.
fsa package and agrep are the only packages that handle data types other than charac-
ters, as they handle regular expressions. Spell checking and correcting packages developed
from the early 90’s, such as aspell, fsa package , agrep, MS Word, and CInsunSpell,
all support the Unicode encoding.

From the description and classification of the aforementioned algorithms, it was seen
that the current trend for the implementation of spell correcting algorithms is towards
hybrid approaches, i.e. combining several techniques. It would therefore seem that each
spell correcting technique described in Chapter 4 on its own is not regarded as sufficient
to achieve the high accuracy requirements.

It was also seen that only 30% of the spell checking and correcting packages achieve
automatic spelling correction, namely speedcop, fsa package , and MS Word. The
rest still only possess an interactive spelling corrector which is to say that they require
user input for selection from a list of candidate suggestion to complete the spell correcting
task. It was also observed that some words do not have many similarly spelled words and
thus in the suggestion phase, it was always possible to suggest the correct spellings of the
words albeit many errors occur in each misspelling. On the other hand, if a word has
many similarly spelled words, it becomes rather difficult to find the correct spelling even
with just one error occurring in the word.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The spell checking and correcting problems have been dealt with as two separate procedures—
spelling error detection and correction—albeit that a small number of spell correctors
combine the two processes into one. In this dissertation, we have approached the spell
checking and correcting problems in the four major steps:

• Step 1. Provide the denotation semantics of the spell checking and correcting
problems—i.e. the spelling error detection and correction tasks were described in
terms of mathematical functions. The denotational semantics provides the basic
foundation for the tasks in their simplest forms for better understanding of the
problems. The spell checking and correcting tasks were viewed generically as a
sequence of activities. For spell checking, two steps were identified to achieve the
task:

– TextStrippingL: The text is broken down into a set of words and possible
words in the text.

– MissesL: The misspelled words in the text are identified and isolated.

The process of spell correcting then follows the process of spell checking. A general
approach is identified as SuggestL. For each misspelled word in the set delivered
by MissesL, a set of possible alternative spellings is suggested.

• Step 2. Identify the techniques used to achieve the spell checking and correcting
tasks. The spell checking techniques that have been used to this date are divided
into two main categories, namely dictionary lookup and n-gram analysis. Dictionary
lookup techniques are used to compare and locate an input string in a dictionary.
Dictionary lookup techniques are further divided into hashing, binary search trees,
and finite automata. These are standard string searching techniques aimed at re-
ducing search time. The use of n-gram analysis can be described by a function
that maps some text to a set of n-tuples. A probabilistic approach which relies on
n-gram frequency counts is used for spell checking.

99

100

The design of the type of spell correcting techniques is heavily influenced by the
type of spelling error patterns. Spelling techniques that have been explored in this
dissertation focus on isolated-word error correction. Techniques that have been used
to date are minimum edit distance, similarity key techniques, rule-based techniques,
n-gram based techniques, probabilistic techniques, and neural networks. It was
seen that each of these spell correcting techniques can be used either on its own
or together with other techniques to achieve the spell correcting task. The current
trend of implementation off spell correcting algorithms tends to adopt the latter as
it seems that each technique on its own is not sufficient to achieve high accuracy.

Other than the techniques employed for spell checking and correcting, there ex-
ist other issues, such as dictionary construction, morphological analysis, and word
boundary issues. Dictionaries used or supplied may include all inflected forms of
words. However, in reality, this might not be the case as it is expensive to keep all
inflected forms in a data structure. It is more sensible to keep only the word stems in
the dictionary file. Each input word has to undergo morphological processing to be
stripped off any affixes. For some non-Latin languages, there are issues concerning
word boundaries.

• Step 3. Investigate various spell checking and correcting algorithms, namely spell,
correct, aspell, fsa package, agrep, speedcop, aura, DNS Spell Checker,
and CInsunSpell. It was seen that spelling error detection in the various selected
spell checking and correcting packages heavily depend on dictionaries (size and
details) used or supplied and that spell checking and correcting algorithms designed
for English tend to prefer the use of dictionary lookup techniques. It was also
seen that edit distance is indeed the most widely used and studied spell correcting
technique no matter the language. Probabilistic techniques have become popular
in past two decades. In addition, n-gram-based and probabilistic techniques have
become the natural choice for dealing with languages that possess more complex
language structures by nature, such as Chinese and Bangla. It was also seen that
according to the current trend, an algorithmic solution for the spell checking and
correcting tasks often involves a combination of techniques described in Chapter 3
in order to produce optimal results in terms of accuracy.

From our investigation of the various algorithms, it was seen that edit distance is
still by far the most widely studied and used spell correcting technique to date.
Similarity key techniques have not been seen used since speedcop. More recent
evidence of involvement of rule-based techniques is found in the phonetic module
inside aspell and aura. Rule-based techniques are also incorporated into spelling
correctors that perform morphological analysis for context-dependent spelling cor-
rection. n-gram-based techniques appear to be the choice to construct language
models for languages with more complex structures and for performing context-
dependent spelling correction. Probabilistic techniques often make use of n-gram
language models in spell correcting. They have become a well-accepted and used
method despite the fact that their adoption for solving spell correcting problems is
relatively recent. Neural networks have not been widely adopted by isolated-word

101

spell correcting systems such those which have been studied here. During the in-
vestigation, it was noticed that although spell checking and correcting are applied
on different languages, similar spelling error patterns were identified. Spell check-
ing and correcting in languages other than English employed the same techniques
identified in Chapters 3 and 4.

• Step 4. Empirically investigate the performance the various spell checking and cor-
recting algorithms and classify them. The investigation in Chapter 4 serves as a
prelude to the classification. Various spell checking and correcting algorithms were
classified later in the same chapter in terms of their performance, characteristics,
functionalities, and implementation strategies. The performance of various spell
checking and correcting packages was evaluated. Experiments were conducted to
investigate the recall accuracy for spelling error detection and the suggestion accu-
racy for spelling correction. The morphological intelligence of fsa package and
MS Word was also investigated. Further experiments were conducted to evaluate
the efficiency for four specific spell checking/correcting packages, namely spell,
fsa package, aspell, and agrep. Classification of the various spell checking and
correcting packages was then constructed in order to provide a unified presentation.
Furthermore, a concept lattice was constructed to illustrate how each package relates
to the others. It provided a more detailed understanding of the relation between
each package as well as the relations between these packages and their attributes.

According to the experimental results, it was seen that packages that employed
hashing for spell checking, such as spell, achieved the best time performance.
aspell was found to be significantly slower compared to spell and agrep. This
may be caused by the large set of phonetic transformation rules which is included.
From the classification, it was seen that the current trend for the implementation
of spell checking and correcting packages is towards hybrid approaches. It was
also seen that edit distance has indeed been the most widely used spell correcting
technique amongst all the selected packages and this finding corresponds with our
investigation in Chapter 4.

My personal perspective based on the research reported in this dissertation is that the
design of a good spell checker and corrector has to achieve a balance between a well
structured dictionary or word list, well designed and implemented matching algorithms,
and a good understanding of human behaviour.

6.2 Future Work

Spell checking and correcting have become a part of everyday life for today’s generation.
Whether it be working with text editing tools, such as MS Word, or typing text messages
on one’s cellular/mobile phone, spell checking and correcting are an inevitable part of the
process.

102

From the classification presented in Chapter 5, it was seen that the current trend
for the implementation of spell checking and correcting packages is towards hybrid ap-
proaches. It was also noticed that most of the investigated spelling correcting packages
are interactive rather than automatic. To date, automatic spelling correction with high
correction accuracy still remains a challenge. There is a considerable degree of difficulty
in suggesting the correctly spelled words without taking the context into consideration.
This indicates that there is a need to combine isolated-word error correction techniques
with context-dependent error correction techniques in order to achieve higher suggestion
accuracy.

The empirical investigation in Chapter 5 opens the door to further research regarding
spell checking and correcting languages other than Euro-based languages, such as Chinese
and Arabic. Languages with a large alphabet and a more complex structure incline
towards employing probabilistic techniques. Spell correcting such languages tends to be
context dependent, as the straight-forward isolated-word error correction methods do not
achieve high correction rate. Other issues such as word/text segmentation also provide a
great challenge.

Given the apparent success of aspell in spelling correction, spell checking and correct-
ing packages that are able to handle phonetic errors appear to achieve better suggestion
accuracy. However, the time performance seems to suffer considerably because of the
phonetic sub-algorithms within these packages. It would be worth experimenting and
investigating ways to improve the time performance.

As mentioned in Chapter 5, agrep was unexpectedly slow, in that the bitwise op-
eration in the bitap algorithm which is used should theoretically enhance efficiency. It
would be interesting to investigate whether a specialised spell checking package based on
the bitap algorithm could be developed to challenge spell in efficiency.

Google’s spell checking/correcting algorithm automatically checks to see if a query
word is used in the most common version of a word’s spelling. It does not check against a
supplied dictionary, but rather checking against the frequency of occurrences of all words
being searched on the Internet using this particular search engine. Spelling suggestions
were also found according to the frequency of occurrences of all words being searched. Un-
fortunately, the matching/searching algorithm behind Google’s spell checking/correcting
algorithm is not available in the public domain. It would be of interest to compare the
performance of Google’s spell checking/correcting algorithm against the packages involved
in the empirical investigation in this dissertation.

It was noticed that the number of misspellings contained in a document affects the
time performance. It was also noticed that the size of the dictionary (despite the way it
is structured) may also influence the time performance. Thus, it would be interesting to
investigate how and to what extent these elements affect the time performance by fixing
the number of misspellings in each document as well as providing the same dictionary to
each package involved. Furthermore, in order to improve the performance, we propose an
investigation on the use of parallelism (e.g. two automata perform simultaneous searching)
in finite-state spell checking and correcting packages.

Most spell checking and correcting packages (interactive spell correcting packages in
particular) are designed for their first-language speakers, i.e. it is assumed that the users

103

already know how to spell in the designated languages. Few spell checking and correct-
ing packages cater for people who have little knowledge of the languages for which they
need to spell check or correct. This group of users include people who are learning a
foreign language or children who are still in the process of learning a language. Spelling
corrections provided by most packages are given in words in the same language. It is
often difficult for a user who is categorised in this group to decipher the meaning of each
suggested correction and make the right choice. Thus, it is proposed to adopt the concept
of aspect-oriented programming (AOP). AOP allows each system to separately express
its aspects of concern, and then automatically combine these separate descriptions into a
final executable form [KLM+97]. This entails keeping the spell checking and correcting
techniques and functionalities as the core algorithms which remain unchanged throughout
the entire package, and introducing the concept of aspect-aware interfaces. This proposed
concept can be illustrated as follows:

The most efficient and/or effective spell checking and correcting techniques (e.g. hashing,
edit distance, and phonetic algorithm) indicated in the classification in Chapter 5 may
be used as the core algorithms of the package. For each target user group (e.g. first-
language speakers, language learners, and children), a different interface which caters for
each group of users is separately implemented. For first-language speakers, suggested
corrections are returned as a list of words; for language learners, suggested corrections
together with a brief explanation of the each suggestion are returned; and for children,
suggested corrections along with a picture representing the meaning of each suggested
correction are returned. Please consult [KLM+97, KM05] for more details on incorporating
the AOP concept.

Lastly, it is possible that more than one language appears in the same text, such as a
English translation of a French article. When both the original text and the translated
output appear in the same document, it is essential that the spell checking/correcting
package can identify the languages and spell check and correct accordingly. In the case
of African languages, a document is often written in various languages. It is necessary to
pre-process the text with language identification. This function would be beneficial to be
included as part of the design of a spell checking/correcting package. Spell checkers and
correctors developed for the African languages are still at the infant stage. There is great
potential for improving their scope and accuracy.

Bibliography

[AC75] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to biblio-
graphic search. Communications of the ACM, 18(6):333–340, 1975.

[AFW83] R. Angell, G. Freund, and P. Willett. Automatic spelling correction us-
ing a trigram similarity measure. Information Processing and Management,
19(4):255–262, 1983.

[Atk04] K. Atkinson. Aspell, 2004. http://www.gnu.org/software/aspell/ (Last ac-
cessed: March 2008).

[Aus96] J. Austin. Distributed associative memories for high speed symbolic reason-
ing. Fuzzy Sets and System, 82(2):223–233, 1996.

[Aus98] J. Austin. Pride and Prejudice, 1998. Project Gutenberg.
http://www.gutenberg.org/etext/1342 (Last accessed: March 2008).

[BB59] W. W. Bledsoe and I. Browning. Pattern recognition and reading by machine.
In Proceedings of the Eastern Joint Computer Conference, volume 16, pages
225–232, 1959.

[Bel57] R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[Ben00] J. Bentley. Programming Pearls, Second Edition. Addison-Wesley, Mas-
sachusetts, 2000. Private Communication. September 2006.

[BK03] K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Publications,
Stanford, 2003.

[Bla60] C. R. Blair. A program for correcting spelling errors. Information and Control,
3(1):60–67, 1960.

[Blo70] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[BM00] E. Brill and R. C. Moore. An improved error model for noisy channel spelling
correction. In ACL ’00: Proceedings of the 38th Annual Meeting on Associa-
tion for Computational Linguistics, pages 286–293, 2000.

105

106

[BNC05] BNC. British National Corpus, 2005. http://www.natcorp.ox.ac.uk/ (Last
accessed: March 2008).

[Boc91] A. K. Bocast. Method and apparatus for reconstructing a token from a token
fragment, U.S. patent number 5,008,818, 1991. Design Service Group, Inc.
McLean, V.A.

[Bod06] J. Bodine. Improving Bayesian spelling correction.
http://www.cs.cornell.edu/courses/cs474/2006fa/projects/jacqueline%20bod
ine.doc, 2006.

[BYG92] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
Communications of the ACM, 35(10):74–82, 1992.

[CFV91] V. Cherkassky, K. Fassett, and N. Vassilas. Linear algebra approach to neu-
ral associative memories and noise performance of neural classifiers. IEEE
Transactions on Computers, 40(12):1429–1435, 1991.

[CG91] K. W. Church and W. A. Gale. Probability scoring for spelling correction.
Statistics and Computing, 1(2):93–103, 1991. Private Communication with
K. W. Church. September 2006.

[Cha94] C.-H. Chang. A pilot study on automatic Chinese spelling error correction.
Journal of Chinese Language and Computing, 4(2):143–149, 1994.

[CLRS03] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. MIT Press, Massachusetts, 2003.

[Com80] D. Comer. A note on median split trees. ACM Transactions on Programming
Languages and Systems (TOPLAS), 2(1):129–133, 1980.

[Cor06] Intel Corporation. Intel 64 and IA-32 architectures optimization reference
manual, 2006. http://www.intel.com/design/processor/manuals/248966.pdf
(Last accessed: March 2008).

[CRW91] V. Cherkassky, M. Rao, and H. Wechsler. Fault-tolerant database using dis-
tributed associative memories. Information Sciences, 53(1):135–158, 1991.

[CT94] W. B. Cavnar and J. M. Trenkle. n-gram-based text categorization. In
Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and
Information Retrieval, pages 161–175, 1994.

[CV89] V. Cherkassky and N. Vassilas. Back-propagation networks for spelling cor-
rection. Neural Networks, 3(7):166–173, 1989.

[CVBW92] V. Cherkassky, N. Vassilas, G. L. Brodt, and H. Wechsler. Conventional and
associative memory approaches to automatic spelling correction. Engineering
Applications of Artificial Intelligence, 5(3):223–237, 1992.

107

[Dac98] J. Daciuk. Incremental Construction of Finite-State Automata and Transduc-
ers, and their Use in the Natural Language Processing. PhD thesis, Technical
University of Gdańsk, 1998.

[Dai94] People’s Daily. People’s Daily corpus, 1993–1994.
http://www.people.com.cn/ (Last accessed: March 2008).

[Dam64] F. J. Damerau. A technique for computer detection and correction of spelling
errors. Communications of the ACM, 7(3):171–176, 1964.

[Dav62] L. Davidson. Retrieval of misspelled names in an airline passenger record
system. Communications of the ACM, 5(3):169–171, 1962.

[DEG90] R. Deffner, K. Eder, and H. Geiger. Word recognition as a first step towards
natural language processing with artificial neural networks. In Konnektion-
ismus in Artificial Intelligence und Kognitionsforschung. Proceedings 6. ster-
reichische Artificial Intelligence-Tagung (KONNAI), pages 221–225, London,
1990. Springer-Verlag.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in Auto-
matic Computation, Englewood Cliffs: Prentice-Hall, New Jersey, 1976.

[DM81] M. R. Dunlavey and L. A. Miller. On spelling correction and beyond. Com-
munications of the ACM, 24(9):608–609, 1981.

[Dom64] B. Domolki. An algorithm for syntactical analysis. Computational Linguistics,
8:29–46, 1964.

[dSP04] G.-M. de Schryver and D. J. Prinsloo. Spellcheckers for the South African
languages, part 1: The status quo and options for improvement. South African
Journal of African Languages, 24(1):57–82, 2004.

[Fau64] R. D. Faulk. An inductive approach to language translation. Communications
of the ACM, 7(11):647–653, 1964.

[For73] G. D. Forney. The Viterbi algorithm. In Proceedings of the IEEE, volume
61(3), pages 268–278, 1973.

[Gad90] T. N. Gadd. PHOENIX: the algorithm. Program: Automated Library and
Information Systems, 24(4):363–369, 1990.

[Gat37] A. I. Gates. Spelling Difficulties in 3867 Words. Bureau of Publications,
Teachers College, Columbia University, New York, 1937.

[GFG03] R. Garfinkel, E. Fernandez, and R. Gopal. Design of an interactive spell
checker: Optimizing the list of offered words. Decision Support Systems,
35(3):385–397, 2003.

108

[Gov01] S. Govindarajan. Inside the Pentium 4, 2001.
http://www.pcquest.com/content/technology/101021101.asp (Last accessed:
March 2008).

[GW99] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Founda-
tions. Springer, Berlin-Heidelberg, 1999.

[HA02] V. J. Hodge and J. Austin. A comparison of a novel neural spell checker and
standard spell checking algorithms. Pattern Recognition, 35(11):2571–2580,
2002.

[HA03] V. J. Hodge and J. Austin. A comparison of standard spell checking algo-
rithms and a novel binary neural approach. IEEE Transactions on Knowledge
and Data Engineering, 15(5):1073–1081, 2003.

[Han89] J. Hankamer. Morphological Parsing and the Lexicon, pages 392–408. MIT
Press, Massachusetts, 1989.

[HD80] P. A. V. Hall and G. R. Dowling. Approximate string matching. ACM
Computing Survey (CSUR), 12(4):381–402, 1980.

[HLT06] TshwaneDJe HLT. Sesotho sa Leboa corpora, 2006. Private Communication.
September 2006.

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation, Third Edition. Addison-Wesley, 2006.

[Hor80] R. N. Horspool. Practical fast searching in strings. Software Practice and
Experience, 10(6):501–506, 1980.

[HS82] J. J. Hull and S. N. Srihari. Experiments in text recognition with binary
n-gram and Viterbi algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 4(5):520–530, 1982.

[Huf52] D. A. Huffman. A method for the construction of minimum-redundancy codes.
In Proceedings of the IRE, volume 40, pages 1098–1101, 1952.

[Ing96] P. Ingels. Connected text recognition using layered HMMs and token pars-
ing. In Proceedings of the Second Conference of New Methods in Language
Processing, pages 121–132, 1996.

[JM00] D. Jurafsky and J. H. Martin. Speech and Language Processing: An introduc-
tion to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Prentice-Hall, 2000.

[JT77] F. E. Muth Jr. and A. L Tharp. Correcting human error in alphanumeric ter-
minal input. Information Processing and Management, 13(6):329–377, 1977.

109

[Kar83] L. Karttunen. KIMMO — a general morphological processor. In Texas
Linguistic Forum. Department of Linguistics, The University of Texas, vol-
ume 22, pages 165–186, 1983.

[KCG90] M. D. Kernighan, K. W. Church, and W. A. Gale. A spelling correction pro-
gram based on a noisy channel model. In Proceedings of the 13th International
Conference on Computational Linguistics, volume 2, pages 205–210, 1990.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, J.-M. Loingtier
C. V. Lopes, and J. Irwin. Aspect-oriented programming. In Proceedings of
the European Conference on Object-Oriented Programming, pages 220–242,
1997.

[KLS98] T. Kowaltowski, C. L. Lucchesi, and J. Stolfi. Finite automata and efficient
lexicon implementation. Technical Report IC-98-02, Institute of Computing,
University of Campinas, 1998.

[KM05] G. Kiczales and M. Mezini. Aspect-oriented programming and modular rea-
soning. In Proceedings of the 27th International Conference on Software En-
gineering, pages 49–58, 2005.

[Knu85] D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163–180,
1985.

[Knu98] D. E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Search-
ing, Second Edition. Addison-Wesley Professional, 1998.

[Koh88] T. Kohonen. Correlation Matrix Memories, pages 171–180. MIT Press, Cam-
bridge, M.A., 1988.

[Kos83] K. Koskenniemi. Two-level model for morphological analysis. In Proceedings
of the 8th International Joint Conference on Artificial Intelligence, pages 683–
685, 1983.

[KST92] J. Y. Kim and J. Shawe-Taylor. An approximate string-matching algorithm.
Theoretical Computer Science, 92(1):107–117, 1992.

[KST94] J. Y. Kim and J. Shawe-Taylor. Fast string matching using an n-gram algo-
rithm. Software—Practice and Experience, 94(1):79–88, 1994.

[Kue05] G. Kuenning. ispell, 2005. http://www.cs.hmc.edu/ geoff/ispell.html (Last
accessed: March 2008).

[Kuk90] K. Kukich. A comparison of some novel and traditional lexical distance met-
rics for spelling correction. In Proceedings of INNC-90-Paris, pages 309–313,
1990.

[Kuk92] K. Kukich. Techniques for automatically correcting words in text. ACM
Computing Surveys (CSUR), 24(4):377–439, 1992.

110

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Technical report, Soviet Physics Doklady, 1966.

[LR93] A. J. Lait and B. Randell. An assessment of name matching algorithms.
Technical report, Department of Computer Science, University of Newcastle
upon Tyne, 1993.

[LS99] G. S. Lehal and K. Singh. A study of data structures for implementation of
Punjabi dictionary. In Cognitive Systems Reviews and Previews, ICCS ’99,
pages 489–497, 1999. J. R. Isaac and K. Batra (editors).

[LW02] J. Li and X. Wang. Combine trigram and automatic weight distribution in
Chinese spelling error correction. Journal of Computer Science and Technol-
ogy, 17(6):915–923, 2002.

[LWS00] J. Li, X. Wang, and Y. Sun. The research of Chinese text proofreading
algorithm. High Technology Letters, 6(1):1–7, 2000.

[Man03] J. Maniacky. Umqageli (automatic identification of Bantu lan-
guages). http://www.bantu-languages.com/en/tools/identification.php (Last
accessed: March 2008), 2003.

[MBLD92] O. Matan, C. J. C. Burges, Y. LeCun, and J. S. Denker. Multi-digit recog-
nition using a space displacement neural network. In J. M. Moody, S. J.
Hanson, and R. O. Lippman, editors, Neural Information Processing Sys-
tems, volume 4, pages 488–495. Morgan Kaufmann Publishers, San Mateo,
C.A., 1992.

[MC75] R. Morris and L. L. Cherry. Computer detection of typographical errors.
IEEE Transactions on Professional Communication, PC-18(1):54–64, 1975.

[McI82] M. D. McIlroy. Development of a spelling list. IEEE Transactions on Com-
munication, 30(1):91–99, 1982. Private Communication. July 2006.

[MDM91] E. Mays, F. J. Damerau, and R. L. Mercer. Context based spelling correction.
Information Processing and Management, 27(5):517–522, 1991.

[Mea88] L. G. Means. Cn yur cmputr raed ths. In Proceedings of the Second Confer-
ence on Applied Natural Language Processing, pages 93–100. Association of
Computational Linguistics, 1988.

[Mey90] B. Meyer. Introduction to The Theory of Programming Languages. Prentice-
Hall International Series in Computer Science, 1990.

[Mit85] R. Mitton. Birkbeck spelling error corpus, 1985. http://ota.ahds.ac.uk/ (Last
accessed: March 2008).

[Mit02] M. Mitzenmacher. Compressed Bloom filters. In IEEE/ACM Transactions
on Networking (TON), volume 10(5), pages 604–612, 2002.

111

[MS02] S. Mihov and K. U. Schulz. Fast string correction with Levenshtein-automata.
International Journal of Document Analysis and Recognition, 5(1):67–85,
2002.

[MS04] S. Mihov and K. U. Schulz. Fast approximate search in large dictionaries.
Computational Linguistics, 30(4):451–477, 2004.

[MX05] A. M. McEnery and R. Xiao. The Lancaster corpus of Mandarin Chinese,
2005. http://ota.ahds.ac.uk/ (Last accessed: March 2008).

[NR02] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. Cambridge
University Press, 2002.

[NZ97] H. T. Ng and J. M. Zelle. Corpus-based approaches to semantic interpretation
in natural language processing. AI Magazine, 18(4):45–64, 1997.

[Ofl96] K. Oflazer. Error-tolerant finite state recognition with applications to morpho-
logical analysis and spelling correction. Computational Linguistics, 22(1):73–
89, 1996.

[OG94] K. Oflazer and C. Gzey. Spelling correction in agglutinative languages. In
Proceedings of the Fourth Conference on Applied Natural Language Process-
ing, pages 194–195, 1994.

[OL97] B. J. Oommen and R. K. S. Loke. Pattern recognition of strings with substi-
tutions, insertions, deletions, and generalized transpositions. Pattern Recog-
nition, 30(5):789–800, 1997.

[OR18] M. K. Odell and R. C. Russell. U.S. patent numbers 1,261,167 (1918) and
1,435,663 (1922), 1918. U.S. Patent Office, Washington, D.C.

[Par03] R. Parsons. Soundex — the true story, 2003. http://west-
penwith.org.uk/misc/soundex.htm (Last accessed: March 2008).

[PB02] L. Pretorius and S. E. Bosch. Finite-state computational morphology —
treatment of the Zulu noun. South African Computer Journal, 28:30–38,
2002.

[PdS01] D. J. Prinsloo and G.-M. de Schryver. Corpus applications for the African
languages, with special reference to research, teaching, learning and software.
Southern African Linguistics and Applied Language Studies, 19(1–2):111–
131(21), 2001.

[Pet80] J. L. Peterson. Computer programs for detecting and correcting spelling
errors. Communications of the ACM, 23(12):676–687, 1980.

[Phi90] L. Philips. Hanging on the Metaphone. Computer Language Magazine,
7(12):38—44, 1990.

112

[Phi99] L. Philips. Double Metaphone, 1999.
http://aspell.net/metaphone/dmetaph.cpp (Last accessed: March 2008).

[Phi00] L. Philips. The Double-Metaphone search algorithm. C/C++ User’s Journal,
18(6):38–43, 2000.

[Pre06] Oxford University Press. Oxford WordSmith Tools 4.0, 2006.
http://www.lexically.net/wordsmith/version4/index.htm (Last accessed:
March 2008).

[Pro06] Opensource Software Translation Project. South African keyboard, 2006.
http://translate.org.za/content/view/24/41/lang,en/ (Last accessed: Octo-
ber 2007).

[PZ84] J. J. Pollock and A. Zamora. Automatic spelling correction in scientific and
scholarly text. Communications of the ACM, 27(4):358–368, 1984.

[RH74] E. M. Riseman and A. R. Hanson. A contextual postprocessing system for
error detection using binary n-grams. IEEE Transactions on Computers,
23(5):480–493, 1974.

[Rit06] D. Ritchie. Unix spell checker (spell), 2006. Private Communication.
September 2006.

[RPRB86] G. J. Russell, S. G. Pulman, G. D. Ritchie, and A. W. Black. A dictionary and
morphological analyser for English. In Proceedings of the Eleventh Conference
on Computational Linguistics, pages 277–279, 1986.

[RS95] E. Roche and Y. Schabes. Deterministic part-of-speech tagging with finite-
state transducers. Computational Linguistics, 21(2):227–253, 1995.

[SGSC96] R. Sproat, W. Gale, C. Shih, and N. Chang. A stochastic finite-state word-
segmentation algorithm for Chinese. Computational Linguistics, 22(3):377–
404, 1996.

[She78] B. A. Sheil. Median split trees. A fast look-up technique for frequently oc-
curring keys. Communications of the ACM, 21(11):947–958, 1978.

[Sid79] A. A. Sidorov. Analysis of word similarity on spelling correction systems.
Programming and Computer Software, 5(4):274–277, 1979.

[Smy03] W. Smyth. Computing Patterns in Strings. Addison-Wesley, Canada, 2003.

[Sof08] Edgewall Software. Pidgin, 2008. http://developer.pidgin.im/ (Last ac-
cessed: April 2008).

[SP88] R. M. K. Sinha and B. Prasada. Visual text recognition through contextual
processing. Pattern Recognition, 21(5):463–479, 1988.

113

[ST79a] R. Shinghal and G. T. Toussaint. A bottom-up and top-down approach to
using context in text recognition. International Journal of Man-Machine
Studies, 11:201–212, 1979.

[ST79b] R. Shinghal and G. T. Toussaint. Experiments in text recognition with the
modified Viterbi algorithm. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 1(2):184–192, 1979.

[TA97] M. Turner and J. Austin. Matching performance of binary correlation matrix
memories. Transactions of the Society for Computer Simulation International,
14(4):1637–1648, 1997.

[Tay81] W. D. Taylor. grope — a spelling error correction tool, 1981. AT&T Bell
Labs Tech. Mem.

[Tec03] Skype Technologies. Skype, 2003. http://skype.com/intl/en/useskype/ (Last
accessed: April 2008).

[Tsa04] C.-H. Tsai. Similarities between Tongyong Pinyin and Hanyu
Pinyin: Comparisons at the syllable and word levels, 2004.
http://research.chtsai.org/papers/pinyin-comparison.html (Last accessed:
March 2008).

[Ull77] J. R. Ullmann. A binary n-gram technique for automatic correction of sub-
stitution, deletion, insertion and reversal errors in words. The Computer
Journal, 20(2):141–147, 1977.

[Uni03] Unicode. The Unicoder standard: A technical introduction, 2003.
http://www.unicode.org/standard/principles.html (Last accessed: March
2008).

[Ver88] J. Veronis. Computerized correction of phonographic errors. Computers and
the Humanities, 22(1):43–56, 1988.

[vHvZ03] G. B. van Huyssteen and M. M. van Zaanen. A spellchecker for Afrikaans,
based on morphological analysis. In TAMA 2003 South Africa: Conference
Proceedings, pages 189–194, 2003. Pretoria: (SF)2 Press.

[Wag74] R. A. Wagner. Order-n correction for regular languages. Communication of
the ACM, 17(5):265–268, 1974.

[Wag95] D. B. Wagner. Dynamic programming. The Mathematica Journal, 5(4):42–51,
1995.

[Wat95] B. W. Watson. Taxonomies and Toolkits of Regular Language Algorithms.
PhD thesis, Eindhoven University of Technology, 1995.

[Wat03] B. W. Watson. A new algorithm for the construction of minimal acyclic DFAs.
Science of Computer Programming, 48(2-3):81–97, 2003.

114

[WF74] R. A. Wagner and M. J. Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1):168–173, 1974.

[Whi04] T. White. Can’t beat Jazzy, 2004. http://www-
128.ibm.com/developerworks/java/library/j-jazzy/ (Last accessed: March
2008).

[Win03] R. L. Winkler. Introduction to Bayesian Inference and Decision, Second Edi-
tion. Probabilistic Publishing, 2003.

[WM91] S. Wu and U. Manber. agrep, 1991. ftp://ftp.cs.arizona.edu/agrep/agrep-
2.04.tar.Z (Last accessed: March 2008).

[WM92a] S. Wu and U. Manber. Fast text searching: Allowing errors. Communications
of the ACM, 35(10):83–91, 1992.

[WM92b] S. Wu and U. Manber. agrep — a fast approximate pattern-matching tool.
In Proceedings (USENIX) Winter 1992 Technical Conference, pages 153–162,
1992.

[Xia05] R. Xiao. People’s Daily corpus 2000, 2005. http://bowland-
files.lancs.ac.uk/corplang/pdc2000/ (Last accessed: March 2007).

[Yev03] S. Yevtushenko. Concept Explorer, 2003.
http://sourceforge.net/projects/conexp (Last accessed: March 2008).

[YF83a] E. J. Yannakoudakis and D. Fawthrop. An intelligent spelling error corrector.
Information Processing and Management, 19(2):101–108, 1983.

[YF83b] E. J. Yannakoudakis and D. Fawthrop. The rules of spelling errors. Informa-
tion Processing and Management, 19(2):87–99, 1983.

[You06] N. Young. Super fast spell checking in C], 2006.
http://www.codeproject.com/useritems/SuperFastSpellCheck.asp (Last
access: March 2008).

[YRT89] S. J. Young, N. H. Russel, and J. H. S. Thornton. Token passing: A simple
conceptual model for connected speech recognition systems. Technical Report
CUED/F-INFENG/TR38, Cambridge University Engineering Department,
1989.

[ZHZP00] L. Zhang, C. Huang, M. Zhou, and H. Pan. Automatic detecting/correcting
errors in Chinese text by an approximate word-matching algorithm. In Pro-
ceedings of the 38th Annual Meeting on Association for Computational Lin-
guistics, pages 248–254, 2000.

[ZPZ81] E. M. Zamora, J. J. Pollock, and A. Zamora. The use of trigram analysis for
spelling error detection. Information Processing and Management, 17(6):305–
316, 1981.

