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“...the key is to find technological ways of disposing 

debris without ecological upset.” 

Robert Pirsig (Pirsig, 1999:128) 

 

 

 “...from a larger point of view it is only tailings 

deposition not the disposal that ceases and tailings 

management must continue until such time as the deposited 

tailings is assured to be permanently stable and 

environmentally innocuous...” 

Steven Vick (Vick, 1983:324) 

 

 

“Development and technological progress places increasing 

pressure on the earth’s resources.  In this aspect South 

Africa is no exception and many unfortunate decisions 

have been taken in the past, often with disastrous 

consequences, due to ignorance or lack of essential 

environmental information.” 

(van Riet, Claassen, van Rensburg, van Viegen and du 

Plessis, 1997:63) 
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Summary 

 
Mining of South Africa’s gold, platinum and base metal resources has given rise to hundreds of mine 
residue deposits (MRDs) the footprints of which cover large areas of land.  Metalliferous mines 
produce a substantial volume of fine-grained waste and it is estimated that approximately 12 000 ha of 
land is sterilised by 150 MRDs within the Gauteng province alone (Figure Ex 1). 
 

 

Figure Ex 1: Footprints of mine residue deposits in and around the Gauteng province (Rademeyer and 
van den Berg, 2005.) 

 
The disposal of mine residue, mainly tailings, can impact on large areas of land through the change in 
visual landscape, the decrease in air quality, and the degradation of the water resource.  MRDs are 
particularly susceptible to erosion giving rise to long term wind and water borne pollution.  Mine 
residue can contain sulphide minerals which upon weathering give rise to a range of pollutants 
especially where there is insufficient neutralizing potential.  Radionuclides are also found in drainage 
associated with some MRDs. 
 
The quantitative prediction and integration of these impacts is difficult and the impacts are costly to 
manage and remedy. 
 
The legacy of the impacts associated with MRDs, particularly in the long term after closure, has given 
rise to an increasingly complex regulatory regime.  Obtaining approvals for upgrading old facilities, 
for the development of new facilities, and for closure plans are difficult owing to the lack of a suitable 
framework within which to make decisions.  Since efficient development of the South African mining 
sector is essential, whilst maintaining a balance with an acceptable level of environmental risk, it is 
necessary to develop systems to facilitate transparent and effective decision making.  The current state 
of the art of prediction and mitigation is not yet developed sufficiently to place South African 
regulators, in particular, in a position to evaluate and validate tailings impoundment schemes. 
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The research presented in this study is multidisciplinary.  It integrates information from a range of 
disciplines, many of which have analytical structures and barriers separating them.  The results of 
specialist studies are normally communicated to those within the discipline, and infrequently to 
specialists in other disciplines and even less so to stakeholders outside the planning and design team.  
This study describes a system to integrate different environmental impacts and engineering design 
aspects with the aim to present the results in a rational and understandable manner. 
 
The research applies integrated environmental planning and design principles to the design of 
upstream deposited ring-dyke tailings impoundments which are widely applicable in South Africa, the 
result of which is an integrated environmental impact and engineering cost system for the 
configuration of such impoundments.  A theoretical ecological and sustainable philosophical approach 
was adopted and used to critically evaluate, assess, and analyse environmental impacts and formulate 
solutions for the post-closure land use of tailings impoundments. 
 
The research is innovative both because it envisages tailings impoundment design from the view of 
landscape architecture and also because it introduces the concept of visual impacts in a novel way.  In 
essence, there must be a shift in emphasis from designing and operating an impoundment to contain 
tailings for a 20 year period, to the design of a man-made landform within the landscape with the end 
of life configuration and land use envisaged prior to construction.  Generic models for the 
environmental impacts and engineering costs throughout the life cycle of a tailings impoundment are 
described such that the design can be optimised ab initio with respect to the environmental impacts 
and costs. 
 
The research depends on the use of models and experimental work.  The challenge was to develop a 
system that reflects the real world situation.  Uncertainty exists regarding the detailed processes 
controlling and contributing to the environmental and engineering aspects.  Uncertainties are 
incorporated into the predictions by means of following a systematic and rational approach.  A 
systems approach ensures that the environmental problems associated with tailings impoundments are 
not considered in isolation but holistically. 
 
The system for the evaluation of the life cycle of tailings impoundments with particular emphasis on 
post-closure land use can be used to: 
• inform the stakeholders in the planning stage to consider alternative configurations; 
• assist with decision making; 
• provide a platform for constructive discussion with relevant authorities; and 
• facilitate transparent liaison with stakeholders. 
 
Regulators, proponents, environmental practitioners, and engineering consultants can use the system to 
understand better what the implications are of alternative configurations such as flattening tailings 
impoundment embankment side slopes and changing cover types. 
 
Through a process of elimination the following key environmental issues that influence tailings 
impoundment design are: 
• visual aspects; 
• air quality aspects; and 
• water aspects. 
 
This study combines and integrates these environmental aspects with engineering costs. 
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It was recognized early on in the research that a complete model could contain a number of aspects 
currently not included such as heritage, tourism and the living environment.  The exclusion of 
environmental aspects does not mean that they are in any way less important.  Also, the time period 
for the life cycle considered in the quantification of environmental impacts and engineering costs is for 
a period from the start of tailings impoundment design up to 20 years after closure.  Had a full set of 
aspects with more indicators been considered over a longer post-closure period some of the 
conclusions may have been different.  However, the view was taken that initially only key aspects will 
be included and modelled for a 20 year post-closure period with the aim of creating a robust system 
demonstrating its efficacy. 
 
Some of the input parameters in the system are not definitive and require conservative value 
judgements to be applied.  Future research can refine the predictive models by initiating longer term 
monitoring programs.  Even though there are uncertainties pertaining to some of the parameters used 
in the study it can be stated that the approach developed and described in this thesis presents a 
complex problem in such a manner as to make it more useful for rational decision making. 
 
This study demonstrates that real costs can be ascribed to environmental impacts and that these can be 
added to the direct engineering cost to produce a total cost model.  It is from this that rational 
decisions can be made.  For example alternative tailings impoundment configurations and post-closure 
land uses are compared through the valuation of environmental change which assists to identify 
critical aspects determining the sustainability of the proposed land use. 
 
Although there are many challenges to the process of estimating values, this study identifies and 
discusses the requirements to valuate visual, air, and water impacts associated with tailings 
impoundments.  It is recommended that the environmental impact and engineering costing system 
should be used to inform decision making involving the rehabilitation of existing as well as new 
tailings impoundments. 
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costs, environmental impact and engineering cost system, integration, land use, post-closure land use, 
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valuation, visual perception distances, water quality. 
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Samevatting 

 
Die ontginning van Suid-Afrika se goud-, platinum- en onedele metaalhulpbronne het tot honderde 
mynoorskotafsetsels (MOA’s) aanleiding gegee, waarvan die oppervlaktes groot landsgebiede bedek.  
Metaalhoudende myne produseer groot hoeveelhede fynkorrelrige afval en daar word geraam dat slegs 
in Gauteng ongeveer 12 000 ha grond deur 150 MOA’s gesteriliseer word (Figuur Ex 1, p. b). 
 
Die wegdoening van mynreste - hoofsaaklik uitskot - kan deur middel van veranderings in die visuele 
landskap, die afname in luggehalte, en die degradasie van die waterbronne ‘n impak op groot 
landsgebiede hê.  MOA’s is veral vatbaar vir erosie, wat langtermyn wind- en waterbesoedeling 
veroorsaak.  Mynoorskot kan sulfiedminerale bevat wat tydens verwering tot ‘n reeks besoedelende 
stowwe aanleiding gee, veral waar daar onvoldoende potensiaal vir neutralisering bestaan.  
Radionukliedes word ook in dreinering wat met sommige MOA’s gepaard gaan, aangetref. 
 
Die kwantitatiewe voorspelling en integrasie van hierdie impakte is moeilik, en duur om te bestuur en 
te remedieer. 
 
Die nalatenskap van impakte wat met MOA’s verbind word veroorsaak ná sluiting veral in die lang 
termyn ‘n al hoe meer ingewikkelde regulerende stelsel.  Goedkeuring vir die opgradering van ou 
fasiliteite, vir die ontwikkeling van nuwe fasiliteite, en vir sluitingsplanne is moeilik om te verkry 
weens die gebrek aan ‘n geskikte raamwerk waarbinne besluite geneem kan word.  Aangesien die 
doeltreffende ontwikkeling van die Suid-Afrikaanse mynsektor noodsaaklik is, solank ‘n balans met ‘n 
aanvaarbare vlak van omgewingsrisiko gehandhaaf word, is dit noodsaaklik om stelsels te ontwikkel 
wat deursigtige en doeltreffende besluitneming vergemaklik.  Die huidige stand van sake wat 
voorspelling en versagting van skade betref is nog nie voldoende ontwikkel om veral reguleerders in 
staat te stel om slikdamskemas te evalueer en te bekragtig nie. 
 
Die navorsing wat deur hierdie studie voorgelê word is multidissiplinêr.  Dit integreer inligting uit ‘n 
reeks vakgebiede, waarvan verskeie deur analitiese strukture en versperrings geskei word.  Die 
resultate van spesialisstudies word normaalweg aan dié binne die dissipline oorgedra, en selde aan 
spesialiste in ander dissiplines, en nog meer selde aan insethouers buite die beplanning- en 
ontwerpspan.  Hierdie studie beskryf ‘n stelsel om verskillende omgewingsimpakte en 
ingenieursontwerpaspekte te integreer, met die doel om die resultate op ‘n rasionele en verstaanbare 
manier voor te lê. 
 
Die navorsing pas beginsels van geintegreerde omgewingsbeplanning en -ontwerp op die ontwerp van 
slikdamme toe.  Die resultaat is ‘n geïntegreerde omgewingsimpak- en ingenieursonkostestelsel wat 
gebruik kan word om tipiese stroomop gedeponeerde ringdyk slikdamme te konfigureer.  ‘n Teoretiese 
ekologiese en volhoubare filosofiese benadering is aangeneem en gebruik om omgewingsimpakte 
krities te evalueer, te takseer en te ontleed, en om oplossings te formuleer vir die 
nasluitingsgrondgebruik van slikdamme. 
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Die navorsing is vernuwend omdat dit slikdamme vanuit die oogpunt van landskapargitektuur beskou 
en ook omdat dit die beginsel van visuele impakte op ‘n nuwe manier bekendstel.  In wese moet daar 
‘n klemverskuiwing plaasvind vanaf die ontwerp en bedryf van ‘n opdamming om uitskot vir ‘n 
periode van 20 jaar te bevat, na die ontwerp van ‘n mensgemaakte landvorm in die landskap waar die 
konfigurasie en grondgebruik aan die einde van die leeftyd daarvan reeds vóór konstruksie oorweeg 
word.  Generiese modelle vir die omgewingsimpakte en ingenieursonkoste dwarsdeur die lewensiklus 
van ‘n slikdam word beskryf, sodat die ontwerp van die begin af ten opsigte van die 
omgewingsimpakte en onkoste geoptimaliseer kan word. 
 
Die navorsing steun op die gebruik van modelle en eksperimentele werk.  Dit was ‘n uitdaging om ‘n 
stelsel te ontwikkel wat ‘n werklike situasie sou weerspieël.  Daar bestaan onsekerheid ten opsigte van 
die gedetailleerde prosesse wat die omgewings- en ingenieursaspekte beheer en tot hulle bydra.  
Onsekerhede word by die voorspellings ingelyf deur ‘n sistematiese en rasionele benadering te volg.  
‘n Stelselbenadering verseker dat die omgewingsprobleme wat met slikdamme gepaard gaan nie in 
afsondering nie, maar eerder holisties oorweeg word. 
 
Die stelsel vir die beoordeling van die lewensiklus van slikdamme met besondere klem op 
nasluitingsgrondgebruik, kan aangewend word om: 
• insethouers reeds in die beplanningstadium aan te moedig om alternatiewe konfigurasies te 

oorweeg; 
• besluitneming te vergemaklik; 
• ‘n podium te bied vir opbouende besprekings met die betrokke owerhede; en 
• deursigtige skakeling met insethouers te vergemaklik. 
 
Reguleerders, voorstanders en konsultante kan die stelsel gebruik om die implikasies van alternatiewe 
konfigurasies, soos die afplatting van die kantwalle van slikdamme en die verandering van 
bedekkingstipes, beter te verstaan. 
 
Deur middel van uitskakeling is die volgende belangrike omgewingskwessies wat die ontwerp van 
slikdamme beïnvloed, vasgestel:  
• visuele aspekte; 
• luggehalte-aspekte; en 
• wateraspekte. 
 
Hierdie studie kombineer en integreer hierdie omgewingsaspekte met ingenieursonkoste. 
 
Reeds vroeg in die navorsing het dit duidelik geword dat ‘n volledige model verskeie aspekte wat tans 
nie ingesluit is nie, soos erfenis, toerisme en die lewende omgewing, sou kon bevat.  Die uitsluiting 
van omgewingsaspekte beteken nie dat hulle enigsins minder belangrik is nie.  Die uitgangspunt was 
egter dat slegs sleutelaspekte ingesluit sou word, met die doel om ‘n kragtige, doeltreffende stelsel te 
skep. 
 
Sommige invoerparameters in die stelsel is nie finaal nie en vereis dat konserwatiewe waardebepalings 
toegepas word.  Toekomstige navorsing kan die voorspellingsmodelle verfyn deur langtermyn 
moniteringsprogramme in te stel.  Hoewel daar onsekerhede bestaan wat sommige van die parameters 
in die studie betref, kan dit gekonstateer word dat die benadering wat in hierdie tesis ontwikkel en 
beskryf word ‘n ingewikkelde probleem op só ‘n wyse aanbied dat dit rasionele besluitneming 
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vergemaklik.  Hoewel die gebruik van die stelsel nie ‘n aanvaarbare uitslag kan waarborg nie, sal dit 
waarskynlik die konflikte ten opsigte van slikdamkonfigurasie verminder. 
 
Hierdie studie demonstreer dus dat werklike onkoste aan omgewingsimpakte toegeskryf kan word en 
dat hierdie koste by die direkte ingenieursonkoste gevoeg kan word om ‘n totale kostemodel te 
produseer. En dit is hieruit waar rasionele besluite geneem kan word.  Byvoorbeeld, alternatiewe 
slikdamkonfigurasies en nasluitingsgrondgebruike word vergelyk deur omgewingsveranderings te 
evalueer, en dít help om kritieke aspekte ten opsigte van die volhoubaarheid van die voorgestelde 
grondgebuik te bepaal. 
 
Hoewel daar baie uitdagings bestaan wat waardebepaling betref, identifiseer en bespreek hierdie studie 
die vereistes wanneer visuele, lug- en waterimpakte wat met slikdamme gepaard gaan, geëvalueer 
moet word. 
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