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Abstract

AN INITIAL IMPLEMENTATION OF A MULTI-AGENT TRANSPORT

SIMULATOR FOR SOUTH AFRICA

PIETER JACOBUS FOURIE

Supervisor: Dr. Johan W. Joubert

Department: Industrial and Systems Engineering

University: University of Pretoria

Degree: Master of Engineering (Industrial Engineering)

Transport demand planning in South Africa is a neglected field of study, using obsolete methods

to model an extremely complex, dynamic system composed of an eclectic mix of First and Third

World transport technologies, infrastructure and economic participants.

We identify Agent-Based Simulation (ABS) as the only modelling paradigm capable of cap-

turing the effects emerging from the complex interactions within the South African transport

system, and proceed to implement the Multi-Agent Transport Simulation Toolkit (MATSim) for

South Africa’s economically important Gauteng province. This report describes the procedure

followed to transform household travel survey, census and Geographic Information System (GIS)

data into an activity-based transport demand description, executed on network graphs derived

from GIS shape files.

We investigate the influence of network resolution on solution quality and simulation time, by

preparing a full network representation and a small version, containing no street-level links. Then

we compare the accuracy of our data-derived transport demand with a lower bound solution.

Finally the simulation is tested for repeatability and convergence.

Comparisons of simulated versus actual traffic counts on important road network links during

the morning and afternoon rush hour peaks show a minimum mean relative error of less than

40%. Using the same metric, the small network differs from the full representation by a maximum

of 2% during the morning peak hour, but the full network requires three times as much memory

to execute, and takes 5.2 times longer to perform a single iteration.

Our census- and travel survey-derived demand performs significantly better than uniformly
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distributed random pairings of home- and work locations, which we took to be analogous to a

lower bound solution. The smallest difference in corresponding mean relative error between the

two cases comes to more than 50%.

We introduce a new counts ratio error metric that removes the bias present in traditional

counts comparison error metrics. The new metric shows that the spread (standard deviation)

of counts comparison values for the random demand is twice to three times as large as that of our

reference case.

The simulation proves highly repeatable for different seed values of the pseudo-random num-

ber generator. An extended simulation run reveals that full systematic relaxation requires 400

iterations. Departure time histograms show how agents ’learn’ to gradually load the network

while still complying with activity constraints.

The initial implementation has already sparked further research. Current priorities are im-

proving activity assignment, incorporating commercial traffic and public transport, and the de-

velopment and implementation of the minibus taxi para-transit mode.

Keywords

MATSim; transport demand planning; agent-based transport simulation; transport microsimu-

lation; traffic simulation; transportation demand modeling; transportation planning; dynamic

traffic assignment; travel demand modeling; activity-based analysis
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Chapter 1

Introduction

1.1 The need for transport demand planning

Humans live their lives by pursuing goals in the face of obstacles. Each goal can be broken down

into sub-goals; these in turn can be broken down into even smaller sub-goals, and so forth. Ulti-

mately, each goal translates into a series of activities that need to be performed, i.e. being some-

where at some time doing something.

It is not always possible to perform all activities in the same place. Whenever two activities

occur in sequence in different places, the need for transport arises. It follows then that the demand

for transport is derived from the needs of people to perform activities at certain times in particular

places.

In the real world, there exist several obstacles to efficient movement between activity locations.

These include:

Spatial obstacles The distance between points of interest and the topography of the landscape.

Time availability Not just one’s own time, but also those of others, as their presence might be

required to perform an activity.

Physical resource availability We require access to vehicles and proper surfaces to travel be-

tween points of interest. We are therefore constrained by our material wealth.

The needs of others We are surrounded by other people pursuing their goals. Having similar

goals as others can work to our advantage; we increase efficiency by pooling our resources

and synchronising our activities. But the needs of others can also work to our detriment;

other people take up physical capacity of the transport network, which causes traffic con-

gestion, thus affecting the speed and efficiency of movement.

Past decisions Consider the narrow and labyrinthine medieval roads of old European city cen-

tres, and their impact on modern vehicle traffic. The transport network infrastructure of
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one era is inherited by the next; these permanent features from the past might become an

impediment for future generations.

Overcoming these obstacles requires rigorous planning on the part of the commuters who cre-

ate the demand for transport, as well as the governing institutions who supply access to transport

resources. On the commuter side, for instance, an individual can decide on a different schedule of

activities, or she might decide to take a different route to work and avoid congestion. Commuters’

plans are relatively short-term and translate into changes in their behaviour. On the institution’s

side, planning is done for the medium to long term, and plans translate into policy changes and

network changes or expansions. For example, a policy change might be the introduction of a

congestion charge, which could deter people from using private vehicle transport in a city centre.

A network change, on the other hand, can have a similar effect. For example, improving pub-

lic transport service levels in the city centre might encourage people to leave their cars behind.

In both cases then, institutional planning requires anticipating the effect of interventions on the

behaviour of the commuter population.

These examples suggest the difference in complexity and precision involved in the planning

of the commuter versus that of the institution. The planning performed by the individual can

take a trial-and-error form, as she should be able to absorb the financial impact of her actions.

By contrast, the transport system provider’s decisions can have a massive capital expenditure

impact, as well as a long-term financial impact on, literally, generations of commuters.

The discipline of transport demand planning evolved to deal with this massive societal impact

and to inform complex transport policy and infrastructure decisions in a precise, systematic and

scientific manner. Transport demand planning recognises that the demand for transport is de-

rived from people’s need to perform activities at certain times in particular places. The discipline

aims to achieve efficient, prompt and affordable movement of goods and individuals in a sustain-

able manner. It does so by anticipating the effect of interventions before implementation, i.e. by

testing hypotheses on a representation, or model, of the transport system.

1.2 Transport demand planning technologies

Several transport demand models exist. Their predictive power has increased over the years due

to cheaper, faster computing power and improved modelling of the individual decision-making

and behaviour from which larger scale effects emerge. There is much resistance in industry to

adopt newer technologies, however, as implementation is time-consuming and requires many

hours of expert labour. Therefore, traditional modelling methods are still pervasive.
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1.2.1 Traditional transport demand planning

The so-called Four Step Model (FSM), illustrated in Figure 1.1, forms the basis of most operational

transport demand planning methods around the world. The model evolved during the 1960s

in response to the United States’ 1962 Federal-Aid Highway Act, which incentivised massive

transport capacity expansions in urban areas during that time (the interested reader is referred to

Weiner (1997) for an historical overview of the development of the FSM and its role in U.S. urban

transportation planning).

Central to the modelling paradigm is the trip rather than the activity: residential areas are seen

as trip producers, whereas centres of economic activity act as trip attractors. The FSM’s basic

operation is simple (Meyer and Miller, 2001). The study area is broken up into Traffic Analysis

Zones (TAZs). These TAZs demarcate areas of similar population density, socio-economic status

and land-use.

1. A variety of algorithms interpret land-use and demographic data to estimate the number of

trips that each area will produce or attract.

2. The model assigns trips from producers to attractors, to predict the flow of trips from each

TAZ to every other TAZ, such that all trip-producing origins and all trip-attracting destina-

tions are accounted for.

3. Each trip flow is subdivided amongst the different transport modes available between two

TAZs.

4. An iterative process then assigns each flow to a route through its modal network, re-routing

flows after each iteration until the load on the network is balanced in such a way that no

further re-routing will improve the expected travel time of any trip.

The FSM produces time-independent, average traffic flows on network links. Consider, how-

ever, the following scenario: commuter X gets caught in the traffic flow between some trip pro-

ducer and trip attractor. She decides that she will drive to work half an hour later tomorrow

because she got stuck in traffic too long on her way there today. If a number of commuters made

a similar decision, a large-scale result would emerge that the FSM would be unable to predict

— the average flow on that particular set of network links might remain the same, but the de-

tailed time-dependent behaviour has changed dramatically. And this change is not due to some

overarching mechanism, but rather emerges from the decision-making and behaviour of the system’s

constituent entities. Therefore, because of its lack of behavioural grounding, the FSM is becom-

ing increasingly less useful in a context where we are interested in making the most of available

network capacity by changing and predicting individuals’ travel behaviour.
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TAZ
i

TAZ
j

Trip production Trip attraction

i j

Tij

i j

TijCAR

TijTRAIN

1.Trip generation
Calculate the number of trips 
produced by and attracted to each 
TAZ from census data.
The total number of trips produced 
in the entire study area must match 
the total number of trips attracted.

2.Flow distribution
A fraction of trips are assigned to 
the traffic flow Tij from origin TAZ 
i to destination TAZ j.
The trip volume is usually 
determined by a so-called gravity 
model: the closer the origin-
destination (O-D) pair, the greater 
the traffic flow between them.

3.Modal split
The traffic flow is split into  
separate flows for each mode in 
operation between the O-D pair. 
The fraction assigned to each mode 
depends on census information such 
as income and car ownership.  In 
this case, traffic flow Tij is split into 
flow TijCAR for private vehicle traffic 
and TijTRAIN for rail traffic.

4.Network assignment
Each modal traffic flow is assigned 
to a route through the network. This 
frame illustrates the route for flow 
TijCAR through the network for 
private vehicle traffic. In an iterative 
process, the flows are re-routed to 
satisfy capacity constraints and to 
'balance' the network, until further 
re-routing can no longer improve 
the expected travel time of any trip.   

i j

TijCAR

Figure 1.1: Schematic diagram illustrating the four steps involved in traditional transport demand

planning. Adapted from Meyer and Miller (2001).
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1.2.2 Modern transport demand planning: disaggregation

and microsimulation

Modern technologies aim to more closely simulate the individual decision processes employed

by commuters, and to shift the focus of transport demand planning back towards the actual ac-

tivities that generate transport demand (McNally, 2000; Bowman, 1998; Ettema, 1996). These

technologies examine the trade-offs individuals make when trying to gain utility from perform-

ing activities in certain places versus losing utility in trying to get to an activity location, or getting

there too late or too early, or having had to pay a toll to get there, to name but a few examples.

In order to arrive at individuals and their activities, modern models disaggregate the available

census data to arrive at a synthetic population. Based on their attributes, these individuals are

then assigned a sequence of activities to perform in certain places at certain times. Finally, the

routes and transport modes for each connecting trip are calculated to arrive at a full day plan for

each individual.

Besides considering their decision processes, the actual behaviour and interaction of individ-

uals in the network are also important. The individual’s experience on the road in the presence

of others acting out their day plans will affect her assessment of the quality of her own plan,

and her future decision-making processes. Modern models therefore perform Dynamic Traffic

Assignment (DTA) to produce time-dependent traffic volumes.

Of these modern transport demand planning models, the most ideal candidates are those that

can retain individuals’ attributes from start to end, as well as capture the transient effects that arise

from commuter behaviour and interaction in the network. These models are known as Agent-

Based Simulations (ABSs). In ABS, the modeller describes the constituent entities, or agents,

that compose a system, and then simulates the behaviour of agents in each other’s presence. The

assertion is that, through ABS, system-wide behaviour can be “grown” from the decision-making,

interaction, behaviour and learning of the constituent agents. Stated differently, ABS can capture

emergent effects: complex system-wide phenomena that arise from the underlying agent dynamics

(Bonabeau, 2002). ABS therefore should not only be able to predict the influence of capacity

expansion decisions, but also that of changes to transport policy.

1.3 The South African transport environment:

a case for agent-based transport simulation

The transport environment of the South African province of Gauteng presents an excellent case

for the application of ABS to transport demand. From Figure 1.2 can be seen that Gauteng is South

Africa’s smallest province, occupying only 1.4% of the country’s land area. But, according to the

2001 census, it is home to 8.8 million people and contributes 33.9% to the country’s GDP. Accord-
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Metsweding
District Municipality

City of Tshwane
Metropolitan
Municipality

City of Johannesburg
Metropolitan
Municipality

Ekhurhuleni
Metropolitan
Municipality

Sedibeng
District Municipality

West Rand
District Municipality

Figure 1.2: Gauteng Province — its relative location in South Africa, and its major district munic-

ipalities.

7

 
 
 



ing to the Gauteng Economic Development Agency (http://www.geda.co.za), the province

generates 10% of the GDP of the entire African continent. As the most urbanised and populous

province, Gauteng generates a massive demand for private, public and commercial transport. The

following sections give a short overview of some of the most pertinent arguments for developing

a microsimulation approach to Gauteng’s transport demand planning.

1.3.1 Changing needs, obsolete methods

Transport demand planning in South Africa has suffered from serious neglect during the past 30

years. Obsolete procedures are used in strategic planning of future transportation networks, net-

work loading constraints and road flow volumes (Diedericks and Joubert, 2006). Meanwhile, the

demands from decision-makers have become more stringent; see for instance the South African

Transport Master Plan requirements (DOT, 1996). The focus is shifting towards management of

existing infrastructure, through interventions such as an Intelligent Transport System and the

establishment of a Traffic Management Centre. Furthermore, the transport system is becoming

increasingly complex as additions are planned to an already eclectic mix of First and Third World

technologies. For instance, in Gauteng, the addition of bus rapid transit and the high-speed Gau-

train modes will have a massive and, as of yet, unpredictable impact on commuter behaviour.

1.3.2 Apartheid-era design

The transport network layout is at odds with the needs of a commuter population for which it

wasn’t designed. The major transport infrastructure decisions were made during the apartheid

era, when the changing needs of an increasingly integrated society were never considered. As

a consequence, certain areas of the network infrastructure operate at or near capacity, where the

predictive capability of traditional methods break down. This is due to dynamic, non-steady-

state effects such as traffic spill-back from overloaded links onto the rest of the network, and

individuals changing their travel behaviour in order to avoid traffic congestion.

1.3.3 Para-transit: the minibus taxi system of public transport

The relocation of black people during the apartheid years to the periphery of metropolitan areas

gave rise to the birth of the minibus taxi industry. This dynamic transport mode is largely un-

regulated, de-centralised, driven by the free market principle, and rapidly adjusts to changing

demand, making it responsible for the majority of public transport trips.

Minibus taxis are 15–25 seater vehicles, operating on semi-fixed routes, with no fixed time

schedule. They stop anywhere and everywhere to pick up or drop off passengers but, in contrast

with ordinary taxi services, charge fixed fares based on the length of their assigned route. Users

flag down taxis on demand, a complex interaction that is impossible to translate into analytical
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terms and fed into a traditional demand planning model.

The larger scale dynamics of this para-transit mode clearly emerges from the interactions of

its constituents. ABS is therefore the only paradigm capable of modelling the paratransit mode’s

current state, as well as predicting the effect any proposed governing policies might have on its

behaviour.

1.3.4 Non-integrated transport modes

The transport system is multi-modal, with very little or no integration of schedules and routes be-

tween different modes. In the Gauteng area, for example, public transport is provided by several

different bus operators, minibus taxi operators and a commuter rail system. These modes operate

according to their own schedule, on their own routes, with no coordinated inter-modal planning.

Intra-modal planning involves the assignment of routes to service operators, such as the nego-

tiations that take place within taxi associations. However, the focus of such negotiations are not

focused toward improving efficiency and integration for the sake of the commuter; rather, the aim

is to avoid violent conflict between different operators imposing upon each other’s territories.

The complexities arising from such a lack of coordination are nearly impossible to translate

into analytical terms to be fed into a traditional transport demand model. Only ABS is capable of

modelling the necessary interactions between commuters and various modes of transport, as well

as the decision-making involved on the individual level in selecting a series of interconnecting

modes to get from one point to the next.

1.3.5 Freight traffic

South Africa has a large proportion of its road freight distributed during the day, when commuter

transport demand is highest. As public transport is usually unavailable at night, and the working

class lives on the outskirts of town, deliveries cannot be handled after hours. Freight, therefore,

has a marked influence on day-time traffic patterns.

In Gauteng, an area with uneven topography and steep road gradients, the dynamic effects of

sluggish freight vehicles cannot be ignored, and they significantly affect the effective flow capacity

of a road. An ABS modeling approach is probably well-suited towards capturing the dynamic

effects emerging from the presence of freight vehicles on the road.

1.4 Selecting an appropriate simulation platform

The arguments presented in the previous section serve as an outline of the requirements for a

suitable South African transport demand planning technology. In summary, an ideal modelling

technology should be able to:
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• predict the traffic arising from commuters trying to realise their activity schedules;

• capture the dynamics of commuter behaviour and interaction such as mode-change, con-

gestion spill-over and congestion avoidance, traffic signals, information feedback from in-

telligent traffic systems;

• simulate commuter learning;

• predict commuter reaction to policy changes, such as public transport modal integration or

the introduction of a congestion toll;

• be adaptable to accommodate South African peculiarities, such as the para-transit minibus

taxi system and freight transport;

• be able to work with a variety of input data;

• provide tools for detailed analysis of results; and

• be able to simulate a large-scale network and commuter population in a reasonable time on

affordable hardware.

Lawson (2006) provides a review of a number of traffic microsimulation technologies. These

platforms were investigated to find the best fit with the requirements listed above.

1.5 MATSim

Of the available ABS technologies, the Multi-Agent Transport Simulation Toolkit (MATSim) (MAT-

Sim Development Team, 2008) was found to be the most viable candidate. MATSim is in constant

development, with expert teams in Berlin and Zürich working together to expand and refine

the simulation platform. MATSim is an open-source project, and its source-code is freely dis-

tributable under the GNU Public License. Most importantly, MATSim has a modular structure,

and the simulation package can be modified to suit South African requirements by modifying

existing module code, or adding new modules to the package.

MATSim is currently used to simulate the private vehicle traffic for the Kanton Zürich in

Switzerland, as well as for the German state of Berlin-Brandenburg (Balmer, 2007). In his study

Balmer compared the performance of MATSim versus that of VISUM (http://www.ptv.de), a

leading commercial transport demand planning technology based on the FSM. Both models were

fed the same input data: a 24 hour origin-destination traffic flow matrix of the Kanton Zürich.

When simulated traffic counts were compared to actual traffic count data, MATSim delivered a

better prediction of the change in traffic volume over the course of the day.

The Berlin-Brandenburg and Kanton Zürich scenarios were remarkably different from each

other in terms of their input data. MATSim proved flexible enough to produce accurate results,
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regardless of the difference between the two applications. These results suggest that MATSim

might be successfully adapted to Gauteng’s transport scenario.

1.6 Research question

From the reasoning outlined above, our research team arrived at the objective of this study: to

develop and test an initial implementation of MATSim for Gauteng. The main research question

can then be stated as follows:

Given the network, land-use, census and individual travel-pattern data available for

Gauteng, will MATSim be able to predict the private vehicle traffic observed on some

reference date for a selection of key network links?

1.7 Research design and methodology

The main research deliverable is a working initial implementation of MATSim for Gauteng, which

will be referred to as MATSim-SA. This initial implementation only simulates private vehicle

transport demand. As with the initial studies by Balmer (2007) for Berlin and Zürich, we assumed

a very simple sequence of activities: all commuters leave home in the morning to travel to work,

spend some time there and return home. The final results compare simulated travel patterns to

those observed in reality, for a number of strategic links in the Gauteng road transport network.

MATSim-SA will form the basis of further research, with the aim of continuous expansion

and improvement. A disciplined development approach was required to facilitate a process of

continuous improvement while simultaneously resulting in worthwhile research deliverables. To

arrive at an initial implementation, we followed the design research methodology outlined by

Manson (2006), which is shown schematically in Figure 1.3. He summarises the design research

process as follows:

Awareness of the problem The researcher becomes aware of a problem and constructs a formal

proposal to begin a new research effort.

Suggestion The researcher comes up with one or more tentative designs, which are intimately

connected to the proposal.

Development The researcher builds one or more artefacts. For MATSim-SA, the artefacts would

be the initial MATSim data set for private vehicle traffic, as well as the simulation results

produced by MATSim from the data set.

Evaluation Once constructed, the artefact is evaluated against the criteria that are either implic-

itly or explicitly contained in the proposal. In the case of MATSim-SA, the main criterium
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is the research question posed above. Deviations from expectations must be tentatively ex-

plained. Before and during construction, researchers will posit hypotheses about how the

artefact will behave. New suggestions are abducted and the design is modified, and the

process repeats.

Conclusion At some point when the effort is considered “good enough”, or some previously

specified performance measurement is attained, results are consolidated and written up.

Knowledge is classified as firm (repeatable facts learnt) or loose ends (anomalies, the subject

of future research).
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Figure 1.3: The general methodology of design research. Adapted from Manson (2006) and Vaish-

navi and Kuechler (2005).

The design research methodology meets the requirements of producing a transferable artefact

that can form the basis of further improvement, while generating worthwhile knowledge in the

process. The method fits well with the research and development approach followed by the core

MATSim teams in Zürich and Berlin.
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1.8 Outline of dissertation

This chapter outlined the need in South Africa for an advanced transport demand planning tech-

nology and put forward the main arguments why the MATSim platform is the strongest available

candidate to fulfil our current and future demand planning needs. The main research objectives

and deliverables were identified, along with the development methodology.

The following chapter provides greater detail from the literature on the relevant developments

in modern transport demand planning. Chapter 3 describes the processes of network generation,

initial demand generation and the simulation process itself. Chapter 4 presents an analysis of

the results, and compares them against real-world data from traffic count stations in Gauteng.

Chapter 5 summarises our findings and concludes with an outlook on current and future devel-

opments.

13

 
 
 



Chapter 2

Literature review

A review of the literature on transport demand planning reveals two themes to be central to the

current state of the art:

1. Recognising the activity, not the trip, as the primary unit of analysis. Transport is a derived

demand, and the so-called Activity-Based Approach (ABA) to transport demand modelling

improves on the crude concepts of trip production and attraction to arrive at a far more

precise description of transport demand, both in space and time.

2. Dynamic traffic assignment. The Four Step Model (FSM) cannot calculate when a vehicle

is on a particular link. In a sense, it assumes that the vehicle is simultaneously on every

link in its chosen path (Meyer and Miller, 2001). Modern techniques discard this unrealistic

assumption and predict link volumes over the course of a day.

This chapter gives an account of recent advances in these two fields of study, which form the basis

of MATSim’s principles of operation.

2.1 The ABA to transport demand planning

In the 1970s, traditional demand planning models based on the FSM were increasingly criticised,

due to general unreliability and a failure to assess the effects of policy measures correctly. Ever

since, transport demand modelling research has become increasingly oriented towards develop-

ing models that predict complex responses in individual activity and travel patterns to new policy

measures.

The core perspective of the ABA is that, by predicting which activities are performed at par-

ticular destinations and times, one has implicitly forecasted the trips and timings necessary to

bring about those activity patterns. Activity-based models therefore aim to disentangle, identify

and subsequently mimic the decision-making processes that lead to individual activity schedules

(Ettema, 1996).
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2.1.1 Aims of the ABA

The ABA attempts to predict the answers to four questions on each individual in a transport study

area (Bowman, 1998; Ettema, 1996; Meyer and Miller, 2001):

Who? Individuals tend to make activity decisions that are influenced by their defining attributes.

The activity schedule of a married, middle-aged, middle-class working mother differs from

that of a low income, single male student. Demographics affect all aspects of an activity

schedule: home location, primary activity type and location, travel modes, how easily ac-

tivities may be re-scheduled, whether the person travels with others to activity locations

and so forth.

The ABA therefore requires a synthetic population of individuals with defining attributes as

its point of departure. It is for this reason that ABA transport demand models are frequently

referred to as being “disaggregate”.

What? Based on her attributes, an individual is expected to perform a selection of activities from

a likely set of choices. The elements of this choice set are determined by travel surveys, and

a variety of algorithms are used to assign a set of activities to each individual.

When? The sequencing, timing and duration of activities are important attributes that are influ-

enced and constrained by factors such as facility operating hours, expected travel times,

availability of transport, the presence of other individuals and precedence (i.e. if you are at

work from 09h00, you must have left home before then).

Where? If you have many opportunities for gainful employment close to home, you are unlikely

to travel very far to work. You might decide to take the bus or walk if you live and work

close to the city centre. If employment opportunities are only available further away or there

is an incentive to make more money in the neighboring town, you may be forced to com-

mute. These activity location decisions are influenced by several factors and, in turn, can

affect such decisions as mode choice, activity sequence and, in the longer term perspective

of overall urban dynamics, even the home location.

Once the individual is synthesised (the answer to the “who?” question), the ABA attempts to

answer the remainder of the questions “simultaneously”; i.e. it recognises that all activity-related

decisions are interdependent and that, in reality, individuals integrate across a large set of choice

decisions and constraints to come up with their final activity schedule. In general, this integrative

approach relies on feedback between different model components when constructing the activity

schedules, as well as repeatedly executing and evaluating schedules in a network assignment

step.
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2.1.2 Methods and techniques

The ABA to travel demand modelling does not refer to a single technique. Rather, the term groups

together a variety of models with different conceptual frameworks, but all of which are means to

the same end: to arrive at a realistic schedule of activities for each individual in the study area.

It remains the responsibility of the transport planner to decide on the combination of techniques

appropriate to their planning requirements and available data.

Ettema (1996) provides a much-cited review of the historical development of the ABA and

discusses the underlying conceptual frameworks of the most prominent models to have emerged.

In general, he classifies ABA models as follows :

Space-time geography. These models systematically identify the set of feasible activity patterns,

given land-use patterns, time constraints and available transport options. They provide a

good evaluation of the possibilities open to the commuting population, but provide little

information on the behavioural response, i.e. the set of patterns that will be chosen for a

specific set of policies.

Discrete-choice theory. These models derive a set of activity patterns from those observed in

reality, thus incorporating the interdependencies between different decisions that real indi-

viduals integrate into their overall activity pattern. As this choice set of activity patterns

is limited to those observed in reality, not all relevant alternatives may be included in the

model. Stated differently, the model might be able to provide a good representation of

the status quo, but prove to be too inflexible to predict the behavioural response to radical

changes in policy.

Microeconomic theory. The so-called utility-maximising models are useful in describing individ-

uals’ activity time expenditures, but not the sequencing of those activities, nor the resultant

travel behaviour in terms of the destination and mode choice required to describe the trips

that link activities.

Artificial intelligence and cognitive science techniques. These techniques describe activity se-

lection and scheduling in terms of human reasoning processes. However, they tend to be

qualitative, making them difficult to calibrate, as well as specific to individual data gathered

in a study area, making them difficult to transfer to other individuals or contexts.

The interested reader is referred to Ettema (1996) for his account of the underlying theory of

activity scheduling behaviour and resulting activity patterns. In an earlier review, Axhausen and

Gärling (1992) critically examine the behavioural assumptions of conceptualisations and models

of activity scheduling, and highlight areas in need of future research. More recently, Pas (1996)

provides an overview of advances in ABA to travel demand modelling, both in terms of the

methodologies being used and the phenomena being modelled.
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2.2 Dynamic traffic assignment

The activity schedules of the study population represent an initial demand for transport that

the transportation infrastructure has to accommodate. The trips that connect activities need to

be routed through the network in order to assure the timely arrival at activity locations, while

respecting the capacity constraints of the network. In the same way activity schedules go beyond

the traditional practice of trip generation and attraction to produce a time-dependent demand for

transport, the process of Dynamic Traffic Assignment (DTA) goes beyond the static assignment

approach of the FSM to produce time-dependent link volumes.

DTA has evolved significantly in the past 30 years, originally to fill the shortcomings of tra-

ditional demand planning methods, but more recently to aid in the evaluation and operational

deployment of Intelligent Transport Systems (ITS) technologies (Peeta and Ziliaskopoulos, 2001).

DTA refers to a broad spectrum of problems in the field of mathematical programming, and has

been tested for tractability in various solution approaches.

In general, mathematical tractability is traded off against realism in terms of the traffic phe-

nomena and driver behaviour being modelled. Based on the demands of the application, a num-

ber of solution approaches can be employed, ranging from analytical to simulation-based proce-

dures.

In their review, Peeta and Ziliaskopoulos (2001) evaluate a number of solution approaches

and classify them into four broad methodological groups: mathematical programming, optimal

control, variational inequality and simulation. The first three groups are labelled as analytical

approaches. They found the greatest limitation with the analytical models to be the trade-off be-

tween mathematical tractability and traffic realism. On the other end of the spectrum, a simulator

achieves a higher degree of realism and solution accuracy at the expense of computational effi-

ciency and the ability to analytically derive useful theoretical insights. Simulation models are,

however, much easier to implement for general networks and are easily modifiable and exten-

sible. These attributes make simulation modelling an attractive method for transport demand

planning, where the planning horizon is far greater than that of ITS, and the costly objectives of

capacity planning and governing policy require a greater degree of model detail and accuracy.

Analytical techniques seek to establish a user equilibrium for the network such that no user

can perform better by travelling a different route through the network for any given trip. Simu-

lation techniques pursue an analogous solution state through the iterative process of systematic

relaxation (Nagel, 1995). Balmer (2007) summarises this process as follows:

1. Start with an initial guess for the routes.

2. Perform network loading by executing all routes simultaneously in a traffic flow simulation.

3. Adjust some or all of the routes based on the results of the network loading step. As the

link travel times for the current iteration are known, this feedback step simulates commuter
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learning: re-routing aims to optimise travel time, so the adjusted set of routes avoid con-

gested links where possible.

4. Repeat from the second step until the average travel time shows no significant improvement

from one iteration to the next.

2.3 Agent-based transport demand simulation

The ABA delivers individual activity schedules for a synthesised population. If the process of

DTA can maintain individual integrity, a far richer set of results can be obtained: instead of just

link travel times, it becomes possible to evaluate individual plan performance following each

traffic assignment step. This information can then be fed back into the activity generator, allowing

for the adjustment of individual activity schedules that goes beyond the re-routing of trips. As the

analytical approach to DTA already proves intractable dealing with anonymous time-dependent

trip flows through the network, this individualised, multi-agent approach is limited exclusively to

the domain of simulation.
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Figure 2.1: An agent-based transport demand modelling framework. Adapted from Balmer et al.

(2006).
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Balmer et al. (2006) propose a framework for Agent-Based Simulation (ABS) of transport de-

mand. Shown in Figure 2.1, this framework integrates the state of the art of activity-based demand

modelling and DTA through ABS, with the microsimulation step providing feedback both to ac-

tivity generation and route calculation. It forms the basis of operation for the Multi-Agent Trans-

port Simulation Toolkit (MATSim) package, the open-source transport demand ABS which is cur-

rently being developed and implemented in Zürich and Berlin (MATSim Development Team,

2008). The following section examines the actual operation of MATSim in more detail.

2.4 Simulation procedure

Initial
demand ScoringSimulation

Re-planning

Analysis

MATSim-EA

Figure 2.2: Schematic illustration of MATSim’s transport demand modelling process. The shaded

area indicates the evolutionary “engine” of MATSim, which simulates system learning and adap-

tation. Adapted from Rieser (2007).

Figure 2.2 shows a simplified view of MATSim’s operation. Initial plans are fed into the mobil-

ity simulation, executed simultaneously and then evaluated to arrive at a score for each executed

plan. The replanning step provides the feedback that allows for the evolution of commuter plans.

“Evolution” is an apt term in this context: MATSim’s iterative process of mobilty simulation,

scoring and replanning is based on the concept of a so-called Evolutionary Algorithm (EA). EAs

solve optimisation problems by generating and improving “populations” of candidate solutions

using mechanisms inspired by biological evolution such as mutation, recombination and selection

(Engelbrecht, 2002).

In MATSim’s context, “population” refers not to the commuter population; the simulation

process ends with exactly the same “people” it started out with. Instead, it refers to the collective

“memory” of the commuters; a collection of plans associated with each commuter that changes

with increasing iterations. From an EA perspective, it is this “population” of plans that evolves

over time.

2.4.1 Simulation

Each individual starts out with only one plan, specified in the process of initial demand genera-

tion. This plan is a simple schedule of activities, their locations in the study area and a preferred
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mode of transport to link those activities. During the first iteration, each plan is routed through

the network using a Dijkstra algorithm that attempts to minimise travel time (Balmer, 2007). All

commuter plans are then executed simultaneously in the mobility simulator. During the simula-

tion, events are registered for each individual, such as travel time, activity departure and arrival

times.

2.4.2 Scoring

In the next step, a score value is calculated for each executed plan. From an EA perspective,

the score is a measure of fitness for each plan. MATSim uses a simple utility-based approach to

calculate a plan score (Balmer, 2007) :

Utotal =
n

∑
i=1

Uper f ,i +
n

∑
i=1

Ulate,i +
n

∑
i=1

Utravel,i (2.1)

where Utotal is the total utility for the executed plan, n is the number of activities, Uper f ,i is the pos-

itive utility for performing activity i, Ulate,i is the negative utility for arriving late at activity i and

Utravel,i is the negative utility for travelling to activity i. Each one of these utility values are time-

dependent functions of arbitrary complexity (the interested reader is referred to Charypar and

Nagel (2005) for a detailed description of these utility functions). Regardless of the constituent

function complexity, it is evident from Equation 2.1 that greatest utility and, consequently, plan

fitness, derives from more time spent performing activities, while avoiding travel and arriving

late at activity locations.

2.4.3 Replanning

Once executed plans have been scored, the next step in MATSim’s iterative demand simulation

process executes. The so-called replanning step refers to a sequence of configurable algorithms,

and is analogous to the mutation and selection processes found in EAs. In his thesis, Balmer

(2007) lists a number of algorithms used to select from and expand the “population” of plans.

These algorithms ensure that the “population” of plans gradually adapts to the transport en-

vironment. From an EA perspective, the replanning step is analogous to the mechanisms of mu-

tation and selection — activity times get adjusted, routes are optimised based on recent system

performance and poorly performing plans get discarded. This process of adaptation is reflected

in the improvement of average plan scores and travel times with increasing iterations, until a

form of the Nash-equilibrium is reached, whereby changes in commuter plans do not produce

any further improvement in total utility.

A core requirement in the MATSim development process is modularity. The algorithms listed

above, as with all components of the MATSim framework, are selectable and configurable to

suit the requirements of the transport modeller’s application. But while the components that

make up any particular demand simulation process are changeable, the MATSim framework, as
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shown in Figure 2.1 and principle of operation in Figure 2.2, remain unchanged. Adherence to

the framework, operational principles and well-defined interfaces of the MATSim project make it

possible for a distributed team of user-developers to collaborate and thus continuously improve

the application, while ensuring the capability to customise it to their requirements.

This chapter provided an overview of recent advances in transport demand modelling, which

form the background and motivation for our own implementation of MATSim for Gauteng. In

the following chapters, details of the development and performance of the South African imple-

mentation unfold.
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Chapter 3

Data preparation

The aim of the initial implementation of Multi-Agent Transport Simulation Toolkit (MATSim) for

Gauteng was to model the home–work–home activity chain for the census year of 2001. We as-

sume that this primary activity chain is responsible for the majority of traffic during the morning

and afternoon rush hour peaks.

The minimum requirement for a MATSim simulation is a set of initial plans, a road net-

work and a simulation configuration (config.xml) file. Initial plans refer to a set of activity

schedules for each individual, while the road network is a directed graph of nodes and links.

The config.xml file specifies the relevant modules to invoke during mobility simulation, re-

planning and post-simulation analysis, and also contains simulation parameters such as the pro-

jection coordinate system, network attribute scaling factors and utility values to use for activities

and travel when calculating plan performance.

Figure 3.1 provides an overview of the process followed to transform our input data to MAT-

Sim specifications. The sections to follow describe each step in detail.

3.1 Network development

The bottom section of Figure 3.1 shows the steps involved in transforming our Geographic In-

formation System (GIS) shapefile data into a MATSim network.xml file. In MATSim, a valid

network description is a weighted digraph of nodes and links that should satisfy the following

two conditions:

1. Each link must specify its flow capacity, usually in terms of vehicles per hour, along with its

length in meters, free speed in meters per second, and number of lanes.

2. Each node in the network should be reachable from any other node, to prevent vehicles

from becoming trapped.
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Figure 3.1: Overview of the process followed in preparing Gauteng input data for use with MAT-

Sim.

3.1.1 Source data

Our research group obtained a GIS shapefile depicting the Gauteng road transport network from

Business Connexion GIS, a Gauteng-based business solutions provider. The GIS dataset forms

part of their business intelligence product range, and is known to be valid for 2007. Each line

shape in the file is tagged with attributes, including the type of road, speed limit and measured

length.

3.1.2 Projection

As with the other GIS data used in this project, the network shapefile uses a geographic coordinate

system, whereby coordinates are recorded as latitude and longitude decimal degree values on an

ellipsoid, relative to some datum point. In this case, the ellipsoid is the World Geodetic System

1984 (WGS84) ellipsoid, commonly known as WGS84, and the datum point is the ITRF91 (epoch

1994.0) coordinates of the Hartbeeshoek Radio Astronomy Telescope.

MATSim, however, requires Cartesian coordinates for all spatial input data, which means that
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geographic coordinates need to be transformed. We transformed our network and other relevant

geospatial data to the Universal Transverse Mercator (UTM) coordinate system (USGS, 2001). The

transformation proved valid as the measured Euclidean distance of the converted network line

shapes match their real-world values to within 0.1%.

3.1.3 Network graph preparation

The full Gauteng road network, as recorded in the GIS shapefile mentioned above, comprises

approximately 250,000 road segments (referred to as links), meeting in approximately 185,000

junctions, intersections or other discontinuities (referred to as nodes). Describing each link com-

pletely, according to the specification given in the introduction to this section, would have been

a near impossible task to perform manually in the allocated time for this study. Instead we used

the information contained in the GIS shapefile to specify and infer link attributes.

We are fortunate enough to have a GIS dataset is hierarchically organised by road type, mak-

ing it possible to define the network at more than one resolution. It was therefore possible to

discard low-capacity, low speed suburban street-level links from our final network description,

and only describe a network consisting of roads classified to be main roads, dual carriage ways,

national roads and highways. Eliminating the street-level links from the network description

greatly increases the computational efficiency of the simulation, possibly at the expense of simu-

lation accuracy.

We therefore compiled two network descriptions: one using the full GIS dataset, and another

containing only the main road classification and higher. If the smaller network gives similar

counts on major arterials as the full network description, it becomes a valuable proxy for the full

network, allowing one to rapidly simulate various scenarios.

The two networks derived in this process are shown in Figure 3.2 and Figure 3.3 respectively.

3.1.4 Network cleaning

The network graphs derived from the GIS shapefile contain a number of features that do not

comply with the second requirement of a valid network, namely that all nodes be reachable from

any other node. These features were removed with the NetworkCleaner class, a Java utility that

forms part of the MATSim toolbox. NetworkCleaner identifies the largest contiguous cluster of

links in the network, and then proceeds to remove all links that cannot be reached from this main

cluster. It also rids the main cluster of nodes from which there is no escape (sinks) and nodes that

are unreachable (sources).

Class NetworkCleaner produced a valid network, but close inspection of the network graph

shows a lot of very short links, as can be seen in the first two images of the sequence shown in

Figure 3.4. These short links are due to the structure of the original poly-line in the GIS shapefile

from which the network was derived. Each line segment from the GIS shapefile is converted into
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Figure 3.2: Full-sized representation of Gauteng’s road network, derived from GIS shapefile.
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Figure 3.3: Reduced or small network representation derived from GIS shapefile, depicting only

main road and higher level network links.
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(a)

(b)

Figure 3.4: A comparison of a section of the Gauteng road network (the Johannesburg city centre),

as it is represented in the original GIS shapefile, versus its initial conversion to a network graph

(a), and after redundant links have been consolidated (b).
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Figure 3.5: The method followed to derive our initial transport demand from census and travel

survey data.

a link on the network graph, resulting in many more links than are necessary to mathematically

describe the network. Such a redundant network description results in calculational inefficiencies

during simulation, but produces a network graph that more closely resembles the actual road

network in a visualisation. For the purposes of this study, it was decided to rid the network of

redundant links by fusing them, the result of which is illustrated in Figure 3.4b.

3.2 Initial demand preparation

Figure 3.5 summarises the process followed to derive our initial demand. In the following sec-

tions, we describe each step in more detail.

MATSim requires the initial day activity plan for each individual to contain at least the fol-

lowing information:

1. The person’s activity locations, each given as a set of coordinates. These coordinates are

used to associate each location with a link in the network.

2. Preferred departure and arrival times for each activity, or a departure time for the first ac-

tivity and preferred durations for subsequent activities.

3. A travel leg connecting each activity, specifying the mode of travel to be used.

Our initial implementation only models the private vehicle transport mode. For the purposes

of this initial implementation, we therefore needed to identify the population segment that drives
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to work, determine where they live and where they are likely to work. To generate home locations,

we used processed 2001 census data, provided by Statistics South Africa (Stats SA). We derived

likely work locations from the 2003 National Household Travel Survey (NHTS). The following

sections discuss the initial demand generation process in detail.

3.2.1 Home location assignment

Figure 3.6: The EAPSUs used during the 2001 census. The darker lines illustrate the grouping of

EAPSUs into TAZs, used during the 2003 NHTS. Source: Stats SA.

In preparation for the 2001 census, Stats SA produced a mapping of South Africa whereby the

entire country was demarcated into a total of 80,787 non-overlapping EAPSUs. Each EAPSU is

a small land unit of manageable population and area allocated to a single person to enumerate
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during the census count (Stats SA, 2001). Figure 3.6 shows the EAPSUs for Gauteng.

The optimal strategy for generating our baseline synthetic population would be to create a

synthetic individual with the exact attributes recorded in the person records of the census, and

then to locate each individual at a likely location within their particular EAPSU. A likely location

here refers to some domestic structure, such as a house or an apartment block. The larger the

structure, the more likely it is that an individual will be located there. This method of assigning

surface location is called dasymetric mapping (Mennis, 2003).

Unfortunately, in order to protect the identity and information of the population, Stats SA only

released anonymous records of a 10% sample of the 2001 census. The smallest identifiable geo-

graphic unit in these person records is the municipality, and therefore is far too coarsely grained

to serve as input to a highly detailed transport demand analysis.

Stats SA provides another anonymous source of information, a collection of so-called Sub-

Place (SP) tables, which ensures individual anonymity through aggregation, with a far higher

degree of spatial resolution than the municipality level. A SP refers to a grouping of EAPSUs,

and is the first level in a hierarchy of such groupings that was defined by Stats SA to allow for

the systematic aggregation of census data. SP tables provide aggregate figures on parameters

of interest from the census questionnaire, such as the number of males/females in each SP, or

the SP’s income distribution. For this study, we used the number of people who reported to

drive to work in each SP to arrive at a study population size of 924,680 individuals. We assumed

these individuals to be responsible for the bulk of private vehicle traffic in our study area, and

proceeded to generate a 10% synthetic population for each SP.

In order to locate individuals inside an SP, we employed the following strategy. Each SP is

composed of a number of EAPSUs; these are assumed to have approximately the same population

density. Therefore, if a SP has a total of x people who drive to work, and is composed of y EAPSUs,

our synthetic individuals were randomly distributed within the boundaries of the SP in such a

way that each composing EAPSU contains, on average, x
y individuals. The result of this process

is shown in Figure 3.7.

3.2.2 Work location assignment

A person’s primary activity location is the result of a very complex function, depending on such

variables as who the person is, where she lives, car ownership, her level of education and ex-

perience, and the number of opportunities that exist for a person with her attributes, to list but

a few. These variables also show interrelation amongst themselves. A person’s work location

might be dependent on where she lives if there are many equal opportunities available, making

it possible to opt for the job closest to home, in which case home location largely determines job

location. On the other hand, less plentiful job opportunities or earning a high salary in a remote

area could make it worthwhile to move closer to where there is work, in which case job location
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Figure 3.7: Home locations for the 10% synthetic population of private vehicle drivers used in this

study.
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largely determines home location.

Models of activity location assignment attempt to capture this complex interaction between

decision variables and system constraints to varying degrees, using census information and travel

surveys for calibration and validation. An ideal model would be able to predict changes in pri-

mary activity location as a function of some system change, by having the location assignment

arise from the agent’s simulated decision-making.

For lack of a model of such sophistication, we based our work location assignment on an

extrapolation of travel survey data. As the 2001 census did not record the locations of each in-

dividual’s primary activity, we used data from the 2003 NHTS to assign a work location to each

synthetic individual, such that a survey of our synthetic population would return the results of

the original NHTS.

The NHTS is a survey of the detailed travel behaviour of a sample of 45,000 households

throughout South Africa. The survey was developed and conducted by Stats SA for the De-

partment of Transport in 2003. In Gauteng, 7,839 individuals participated in the survey, of which

3,038 reported to drive to work. Assuming no significant change from the census date, this sam-

ple represents only 0.33% of the segment of the population who reported in 2001 that they drive

to work. For lack of further information, it was decided to proceed with NHTS data to derive a

first approximation of work location.

In the NHTS, the smallest discernible geographic unit for work location is called a Traffic

Analysis Zone (TAZ). Gauteng contains a total of 58 TAZs, each composed of a number of adjacent

EAPSUs from the 2001 census, as is illustrated by the darker lines in Figure 3.6.

Each person record in our NHTS data set collection records home and work location as a

reference to one of these 58 TAZs. From these records, a so-called origin-destination matrix was

compiled, which shows how many people coming from a particular TAZ work in every TAZ

in the study area. Normalising this matrix by dividing each element by its row total gives an

estimated probability of a person’s work location TAZ based on their home location TAZ.

This normalised O-D matrix was then used to probabilistically assign a work location TAZ

to each individual. It was assumed that an individual assigned to work in a particular TAZ will

be equally likely to work in any EAPSU that the TAZ is composed of. Therefore, if a TAZ has

a total of x work activities assigned to it, and is composed of y EAPSUs, work activity locations

were randomly distributed within the boundaries of the TAZ in such a way that each composing

EAPSU contains, on average, x
y work activity locations. The result of this process is shown in

Figure 3.8.

Once home and work locations have been established, all that remained was to construct the

activity schedules that make up a plans.xml file. Each individual requires an initial estimate of

the time they depart for work. In this application, initial departure time from home is a uniformly

distributed random variable ranging in value between 05h00 and 07h00. It was then assumed that
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Figure 3.8: Work locations for the 10% synthetic population of private vehicle drivers used in this

study.
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Figure 3.9: Total traffic counts for the 41 selected SANRAL counting stations used in this study,

showing peaks for hours 7 and 16, thus suggesting a nine hour workday.

agents will remain at work for nine hours before returning home, as South African labour law

prescribes a workday of eight hours plus one hour for lunch. This assumption is confirmed by

the South African National Roads Agency Ltd. (SANRAL) traffic counts data used for validation,

as can be seen in Figure 3.9. Finally, the activity schedules were written to a plans.xml file to

complete the initial demand generation process.

3.3 Simulator configuration

Once the network and initial demand were prepared, MATSim was configured to perform the

simulation. A config.xml file was prepared, which is a list of simulation parameters formatted

to the appropriate MATSim XML specification. These simulation parameters include references

to input data, scaling factors for network capacity (in order to perform simulations on population

samples of varying size), parameters for the utility scoring functions, and a list of replanning

modules to invoke after each iteration.

For the initial implementation, the simulation was given the same configuration parameters

used by Balmer (2007) in his study. The only parameter that was set to a different value, was the

typical duration for work, which is used in the utility function calculation. In Balmer’s case, this

value is set to eight hours, compared to the nine hour workday for South Africa.

In the next chapter, we will reveal and discuss the results produced from these data.
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Chapter 4

Results and discussion

Our primary measure of quality of simulation results is how accurately they compare with reality.

In this case, we compare simulated traffic counts against the actual 2001 South African National

Roads Agency Ltd. (SANRAL) counting station data from a selection of 20 pairs of network links

in the Gauteng area. These stations are shown in Figure 4.1. They are mostly situated near impor-

tant intersections on the main arterial routes in Gauteng. We consider results from the morning

and afternoon traffic peaks, which were shown to occur between 05h00–08h00 and 14h00–17h00.

SANRAL traffic counts data vary with the day of the week. We assumed our demand to rep-

resent a “typical” workday, where the influence of weekend behaviour is minimal. We therefore

compared simulated counts against the average hourly counts for a Wednesday, as Wednesdays

lie exactly in the middle of the week, and the influence of weekend behaviour is arguably at a

minimum. Besides SANRAL counts, we also examine vehicle departure and arrival times, trip

durations and utility scores to compare the solution quality of various alternatives.

Results are organised as follows: we start by comparing the full network with the small net-

work, in order to see if the small network, with its reduced computational footprint, is a suitable

proxy for Gauteng’s full road network. We then examine the repeatability and convergence of

simulation results. The chapter concludes with an investigation into the quality of our initial

demand.

4.1 The influence of network resolution

Figure 4.2 compares morning traffic with actual traffic counts during the peak hour of 06h00–

07h00, as well as an hour before and after the peak period. The diagonal bands in each scatter

plot indicate simulated versus actual counts ratios of 2:1, 1:1 and 1:2, starting from the topmost

line. Counts ratios within these bounds are, for now, considered acceptable. Comparing the two

network resolutions in Figure 4.2 leads to the following observations.

In general, the relative counting error becomes greater with decreasing link capacity. This
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Figure 4.1: SANRAL counting stations selected for this study.
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Figure 4.2: Counts comparison for the morning peak, 05h00–08h00. The left-hand column shows

results from the full network, while the right-hand column is for the small network.
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Figure 4.3: Counts comparison for the afternoon peak, 14h00–17h00. The left-hand column shows

results from the full network, while the right-hand column is for the small network.
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is not surprising, as the major arterials become saturated during the peak hour and reach full

capacity in reality and simulation, thus yielding counts ratios close to 1:1. It should be noted that

no link in either the full or small network representation has a capacity in excess of 6,000 vehicles

per hour (2,000 vehicles per lane, up to a maximum of three lanes). In reality, however, a number

of links show vehicle counts in excess of 6,000. These links are usually close to large interchanges,

where the number of lanes increases due to off- and onramps merging with main roads.

Insofar as outliers are concerned, the over-counts for both the full network and the small net-

work were found to occur at count stations 4, 6 and 10 in Figure 4.1. A number of factors were

identified to be possible causes for these over-counts. All these counting stations are found on

network links classified in the original Geographic Information System (GIS) file to be national

highways, each with three lanes in either direction and a speed limit of 120 km/h. During net-

work construction, a capacity of 6,000 vehicles per hour was assigned to national highway links.

The majority of roads that feed into highways are classified to be major roads in the original GIS

file, and were assigned a capacity of 2,000 vehicles per hour, and two lanes in either direction.

In reality, these national highways were found to only have two lanes in either direction, and a

large proportion of their feeder routes are ordinary roads with one lane in either direction, with

an 80 km/h speed limit and an expected flow capacity of 1,000 vehicles per hour. These parts of

the virtual networks therefore advertise contiguous stretches of road with far more capacity than

what is available in reality.

The circled points in Figure 4.2c and Figure 4.2d represent the counting station traffic in an

easterly direction at location number 4 in Figure 4.1. The full network shows a large reduction in

error for this station, possibly due to a larger density of streets to absorb traffic in that area.

4.1.1 An alternative measure of counting station error

The usual measures of counting station error are defined as follows:

Mean relative bias (%) e =
1
n

n

∑
i=1

ei (4.1)

where ei = 100×
(

xsim,i − xreal,i

xreal,i

)
for counting stations i = 1, 2 . . . n (4.2)

Mean relative error (%) |e| = 1
n

n

∑
i=1
|ei| (4.3)

with xsim,i and xreal,i denoting simulated and real traffic counts for an hourly interval, recorded at

counting station i.

Table 4.1 shows that the magnitude and spread of the relative counting error are smaller for the

full network than for the small network through the entire morning peak. This trend is perhaps

due to the fact that the full network consistently yields much smaller simulated counts on our

observed links for the peak hours than the small network; a fact that logically follows from the

higher density of links available to agents in the full network. If a network consistently yields
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Table 4.1: Summary error statistics for traffic counts comparisons: morning peak, full network vs.

small network.

e (%)a |e| (%)b σ̂e (%)c

Time Full Small Full Small Full Small

05h00–06h00 -17 +17 34 37 26 44

06h00–07h00 +1 +15 37 39 37 41

07h00–08h00 -31 -8 49 49 31 39

a Mean relative bias. See (4.1).

b Mean relative error. See (4.3).

c Sample standard deviation for mean relative error. See (??).

under-counts across all links, then its mean relative error is, by definition, bound to a maximum

of 100%, as no link can yield a negative simulated count. But over-counts are only bounded by

the link’s capacity, and therefore it is possible to find relative counting errors in excess of 100% for

links that are under-utilised in reality.

Mean relative error, as expressed in (4.3) is therefore a skewed representation of error: it exag-

gerates the influence of a relative over-count compared to an under-count. The diagonal lines of

constant ratio in the scatter plots of Figure 4.2 suggest that a simulated versus actual counts ratio

of 1:2 is of equal importance than a ratio of 2:1. But, expressed as a relative counting error, the first

ratio gives an error of 50%, compared to 100% for the second. (Note that it can be argued that, for

our particular case, a relative over-count is a strong indication of a systematic error, compared to

a relative under-count, as one would expect under-counts when modelling only a single activity

chain and transport mode. It can be argued, therefore, that over-counts should make a greater

contribution towards our overall measures of simulation error.)

Consider Figure 4.2e in comparison with Figure 4.2f. Our intuition tells us that the smaller

network yielded results that are more consistent with actual vehicle counts because, on average,

its points lie closer to the middle diagonal than the full network. The large number of under-

counts recorded for the full network are reflected to some extent in its mean relative bias value

in Table 4.1. But it shows a mean relative error of equal magnitude to the small network, and a

smaller spread of error values, in stark contrast with the observed spread in the counts comparison

scatter plot. We therefore suggest an additional error measure that is ratio-based, and indicates

the degree of deviation from perfect agreement of simulated versus actual counts.
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We define the counts ratio error, rc, and its summary statistics as follows:

rc,i =


xsim,i
xreal,i
− 1 for xsim,i ≥ xreal,i

− xreal,i
xsim,i

+ 1 for xreal,i > xsim,i

(4.4)

rc =
1
n

n

∑
i=1

rc,i (4.5)

σ̂rc =

√
1
n ∑(rc,i − rc)2 (4.6)

where i ∈ {1 . . . n} denotes the set of counting stations for which xsim,i > 0 and xreal,i > 0.

Table 4.2: Summary counts ratio error statistics: morning peak, full network vs. small network.

rc
a σ̂rc

b

Time Full Small Full Small

05h00–06h00 -0.59 +0.04 1.09 0.82

06h00–07h00 -0.21 +0.05 0.92 0.72

07h00–08h00 -1.15 -0.46 1.64 1.08

a Mean counts ratio error. See (4.5).

b Sample standard deviation for counts ratio error. See (4.6).
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Figure 4.4: Comparison of the scale of relative bias with that of our new counts ratio error metric

(the scattered points are our previously stated results for the small network, 06h00–07h00).

Figure 4.4 compares the scales of relative bias with that of our new error metric. Clearly,

the counts ratio error metric removes the bias present in the traditional error measure. Table 4.2
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compares the statistics of the morning peak for the two network resolutions based on this new

metric. As with the counts comparison scatter plots, we only consider counting stations that

recorded simulated and actual count values larger than 10. Compare the values for 07h00-08h00:

the average magnitude of the counts ratio error for the full network is -1.15 versus -0.46 for the

small network. The sample standard deviation also shows a significantly larger spread for the

full network, of 1.64 versus 1.08. Recall that the corresponding sample standard deviation for

relative error in Table 4.1 actually showed a smaller spread of errors of 31% for the full network,

compared with 39% for the small network, contrary to what was observed in that hour’s counts

comparison scatter plots. The counts ratio error metric therefore extends our insight beyond that

of the mean relative error metric.

Table 4.3: Summary error statistics for traffic counts comparisons: afternoon peak, full network

vs. small network.

e (%)a |e| (%)b rc
c σ̂rc

d

Time Full Small Full Small Full Small Full Small

14h00–15h00 -65 -45 69 64 -3.68 -2.21 3.65 2.61

15h00–16h00 -22 -12 35 35 -0.71 -0.44 1.33 1.07

16h00–17h00 -13 -13 34 36 -0.49 -0.44 1.27 1.05

a Mean relative bias. See (4.1).

b Mean relative error. See (4.3).

c Mean counts ratio error. See (4.5).

d Sample standard deviation for counts ratio error. See (4.6).

Table 4.3 shows the summary statistics of the afternoon peak for the two network resolutions.

Both network resolutions produce under-counts, with larger under-counts in general occurring

on the full network. In the next section, we examine the travel behaviour for both network reso-

lutions in more detail, in order to understand how the differences in traffic counts arise.

4.1.2 Travel behaviour and utility

Figure 4.5 compares the departure and arrival times during the morning and afternoon peak for

the two network resolutions, as well as the time spent en route to home or work. From this

series of charts can be seen that agents in the full network depart approximately 20 minutes later

in the morning and afternoon. The full network also shows a spike of people arriving at work

around 07h00, which is the opening time of the work activity. They also appear to spend less time

travelling, as can be seen from the histogram showing the number of vehicles en route.

The larger difference between the two network resolutions in number of vehicles en route
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Figure 4.5: Comparison of departure and arrival times and time spent en route for the two net-

work resolutions. Results from the full network are shown in grey, and those from the small

network are in black.
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for the morning peak accounts for the larger difference in counts comparison error metrics, as

discussed in the previous section. During the afternoon, the two networks show similar numbers

of vehicles en route. Consequently, their measures of counting error in Table 4.3 are of the same

sign and magnitude.

One might speculate why the morning traffic peak is narrower and higher than the after-

noon’s. If we compare home locations with work locations in Figure 3.7 and Figure 3.8, we notice

that home locations are more spread out through the province, while work locations tend to be

concentrated in a number of areas. Therefore, as people converge on those areas of concentration,

they tend to encounter dwindling network capacity. On the other hand, when traffic diffuses out

from centres of economic activity in the afternoon, road users tend to encounter increasing link

capacity the further they travel.

Another possible cause for the difference between the two peaks is that there is a penalty

associated with arriving late at work in the morning, but none for arriving late at home in the

afternoon. The only penalty for arriving late at home is the foregone utility of not being there.

Consequently, agents need to make more constrained trade-offs between gaining utility from be-

ing at home and losing it for arriving late at work in the morning. Arguably, one might want to

investigate the influence of a late penalty for the evening home activity, to simulate the influence

of the various pressures, expectations and responsibilities of home life.
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(b) Work to home (PM peak).

Figure 4.6: Comparison of trip durations for the two network resolutions. Results from the full

network are shown in grey, while those yielded by the small network are shaded in black diagonal

lines.

Figure 4.6 compares trip durations for the morning and afternoon peaks on both network

resolutions. As expected, people generally take longer to travel in the morning. The full network

representation also gives rise to shorter trip times. This is not surprising, as the available capacity
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density of the full network representation is higher by definition.
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(a) Average best score vs. number of iterations.
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(b) Average executed score vs. number of iterations.

Figure 4.7: Comparison of the evolution of the average best score and average executed score for

the two network resolutions. Results from the full network are shown in grey and those from the

small network are in black.

Finally, we compare the average utility values generated by the two network resolutions for a

hundred iteration run in Figure 4.7. For both cases, the average best score and average executed

score show a slightly upward trend. The full network representation gives an average improve-

ment of approximately five units over the small network for executed plans and only about half

as much for the average best score in memory. In both cases, the difference between the two

networks amounts to less than five percent.

In all the results considered so far, the two network resolutions delivered similar results, such

that all corresponding metrics are within the same order of magnitude throughout the morning

and afternoon peaks. In fact, using the traditional metric of mean relative error, the small net-

work differs by a maximum of only 2% for the morning peak hour of 06h00–07h00, and less than

1% for the 15h00–16h00 peak. However, as far as computational performance is concerned, the

difference is immense. The full network requires at least 7.5 GB of memory to execute our 10%

private vehicle driver population on a four core system at an average of 15’09” per iteration. In

comparison, the small network representation only requires 2 GB memory on the same system

to execute the same sample at an average of 2’55” per iteration. We therefore consider the small

network to be a good enough description for cases where we need to perform exploratory work,

such as in the further sections of this chapter. Use of the full network is reserved for decision

support, when larger real monetary investments are considered.
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4.2 Quality of transport demand

The difference in results from the previous section suggest that network topology influences the

self-organisation of the simulated transport system. For instance, our commuter population de-

parts, on average, at 06h12 in the morning when travelling on the small network, compared with

06h20 for the full network. We also saw that our results are similar to what is observed in real-

ity; our mean relative error for the counting stations considered in this study comes to less than

40%. The question we try to answer in this section is: to what extent is the observed similarity of

the system due to self-organising characteristics of the network, versus the demand for transport

that gets imposed on it? Contemplation resolves this question to an even simpler one: just how

accurate are our pairings of activity locations?

We have already identified counting station data as an upper bound to solution quality — if

we simulate reality perfectly, then we should achieve exactly the same average vehicle counts as

in reality. But the idea of a lower bound on solution quality is not so clear-cut. We therefore apply

the following reasoning to test the quality of our transport demand.

Thus far, all our results evolved from a transport demand based on census and survey data.

If we substitute our assigned home and work locations with uniformly distributed random loca-

tions within the province for each agent but keep all other parameters and simulation settings the

same as for our reference case, we argue that the results represent a worst case scenario, or the

equivalent of a lower bound to our solution.

Table 4.4: Summary error statistics for traffic counts comparisons: morning and afternoon peaks,

NHTS- and census-derived demand (“Ref.”) vs. random demand (“Rnd.”).

e (%)a |e| (%)b rc
c σ̂rc

d

Time Ref. Rnd. Ref. Rnd. Ref. Rnd. Ref. Rnd.

06h00–07h00 15 112 39 126 0.05 1.07 0.72 2.72

15h00–16h00 -12 61 35 98 -0.44 0.41 1.07 1.97

a Mean relative bias. See (4.1).

b Mean relative error. See (4.3).

c Mean counts ratio error. See (4.5).

d Sample standard deviation for counts ratio error. See (4.6).

For this purpose, a synthetic population of the same sample size was constructed, and their

home and work locations uniformly distributed across the province. The results from this random

demand are compared with those of our census- and survey-based demand in Figures 4.8 to 4.10

and Table 4.4. Figure 4.11 compares the error for 06h00–07h00 using the traditional mean relative

bias measure, and our new counts ratio error metric, demonstrating the larger spread and shift
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(d) Random demand — 15h00–16h00

Figure 4.8: Counts comparison for the morning and afternoon peaks on the small network. The

left-hand column shows results for our census- and NHTS-derived demand and the right-hand

column those for a random demand.
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(c) Comparison of number of vehicles en route.

Figure 4.9: Comparison of departure and arrival times and time spent en route for the census-

and NHTS-derived demand versus a random demand.
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Figure 4.10: Comparison of evolution of utility scores for the census- and NHTS-derived demand

(black) versus a random demand (grey).
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(b) Counts ratio error comparison: Ref. vs Rnd.

Figure 4.11: The two histograms compare the relative bias and counts ratio error distributions

of our census- and survey-derived demand (Ref.) with the random demand (Rnd.). Note how

the counts ratio error distribution removes the bias towards under-counts that is present in the

relative bias comparison.

These results are obviously considerably worse than those from our census- and survey-based

demand. We can therefore conclude that our model presents a reasonable first approximation of

the primary activity-driven transport demand of the private vehicle driver population of 2001.
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Figure 4.12: Comparison of utility scores for five simulation runs, each with a unique random

seed used in population synthesis, and another unique seed used during simulation. All runs

executed on the small network.

4.3 Repeatability

Figure 4.12 shows the utility score evolution from five repeat runs of 100 iterations each, each with

unique seed values for the Java pseudo-random number generator used in population synthesis

and simulation execution. The simulation is clearly highly repeatable as all values lie within 1%

from one another. No appreciable distinction could be seen in counts comparisons, departure and

arrival histograms or trip duration comparisons.

4.4 Convergence

The continuing upward trend in utility score graphs, such as Figure 4.7 and Figure 4.12, suggests

that the process of systematic relaxation is still continuing. In this section, we ran our simulation

for a further 400 iterations and compared results with those from 100 iterations, to see if any

significant differences show up.

Figure 4.13 shows the utility score results for this extended run. The system appears to con-

verge after 400 iterations, an observation that is confirmed by all other result reports. Even though

utility scores only improve by approximately 10 units over 300 further iterations, the influence on

system behaviour is dramatic. Figure 4.15 compares peak traffic counts for 100 iterations with

those after 500, and Table 4.5 summarises the deviation from actual counts. The table shows that,

both for the morning and afternoon peaks, the long simulation run produces large under-counts.

The longer simulation run delivers shorter trip durations, especially during the morning peak,

as can be seen from Figure 4.14. This change in trip duration distribution is probably due to trip
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Figure 4.13: Utility score evolution: 500 iteration run.

timings, shown in Figure 4.16. Here we can see that individuals have adjusted their departure

times in such a way that they arrive at work en masse between 07h00 and 09h00. These are, re-

spectively, the opening time and latest starting time for the work activity. Before 07h00, agents

don’t gain utility from being at work, and after 09h00, they are severely penalised for being late.

In the afternoon, network loading proceeeds gradually up to 18h00, after which agents don’t gain

any more utility from being at work. As a consequence, the afternoon traffic peak moves two

hours later.

These results are a dramatic illustration of emergence and self-organisation as only an agent-

based simulation can replicate. Purely by observing a number of simple rules, the entire sys-

tem has organised itself into a highly efficient state, without any of the constituent entities “con-

sciously” aiming for system optimisation. The opening and closing times of the work activity are

set at 07h00 and 18h00 respectively, and the simulation clearly optimises itself until these times

become limiting constraints. In reality, these times are variable quantities, and a certain amount

of peak-spreading will be due to flexible operating hours.

Whether the ruthless optimisation we observe in these results is attainable in reality is de-

batable, as we are modelling only a segment of the population travelling on a network where

absolutely nothing changes over the course of 400 days, except for the activity timing of other

agents in the system. In reality, we find much more variablity in the transport system. Further-

more, the agent population shows no variability in their behaviour and goal-seeking imperative,

unlike human beings that have variable personalities, preferences, responsibilities and other dis-

similarities. Therefore we conclude that a simulation run of 100 iterations compares better with

actual system behaviour than a 400+ iteration run.
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Figure 4.14: Comparison of trip durations for the morning and afternoon peaks. Results from the

500 iteration run are shown in grey, while those yielded after 100 iterations are shaded in black

diagonal lines.

Table 4.5: Summary error statistics for traffic counts comparisons: morning and afternoon peak

hours, 100 vs. 500 iterations.

e (%)a |e| (%)b rc
c σ̂rc

d

Time 100 500 100 500 100 500 100 500

05h00–06h00 17 -51 37 51 +0.04 -2.84 0.82 4.46

06h00–07h00 15 0 39 36 +0.05 -0.3 0.72 1.37

07h00–08h00 -8 33 49 60 -0.46 +0.18 1.08 1.16

14h00–15h00 -45 -80 64 80 -2.21 -14.39 2.61 19.88

15h00–16h00 -12 -54 35 56 -0.44 -3.18 1.07 4.62

16h00–17h00 -13 -21 36 39 -0.44 -0.74 1.05 1.59

a Mean relative bias. See (4.1).

b Mean relative error. See (4.3).

c Mean counts ratio error. See (4.5).

d Sample standard deviation for counts ratio error. See (4.6).
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Figure 4.15: Counts comparison for the morning and afternoon peak on the small network. The

left-hand column shows results after 100 iterations and the right-hand column those after 500

iterations.
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Figure 4.16: Comparison of departure and arrival times and time spent en route after 100 itera-

tions (black) and 500 iterations (grey).
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Chapter 5

Conclusion

In this chapter we attempt to answer the main research question from Section 1.6, and summarise

our findings.

Our initial implementation of the Multi-Agent Transport Simulation Toolkit (MATSim), with

a transport demand generated from the private vehicle driver population of the 2001 census

and 2003 National Household Travel Survey (NHTS), and network representation derived from

Geographic Information System (GIS) data, manages to predict the peak traffic flow patterns on

a typical Wednesday in 2001 with a minimum average error of less than 40%. This error is signif-

icantly less than the minimum average error of 97% for a completely random home-work-home

demand of the same population size.

In general, our implementation is biased toward under-counts, with larger under-counts reg-

istered for a full network representation than one representing only major routes. The magnitude

of network under-utilisation was shown to increase with increasing number of iterations, with

no significant change observable after 400 iterations. The simulation also proved to be highly

repeatable and not sensitive to minor changes to initial conditions due to stochastic effects.

5.1 Sources of error and bias

As our initial implementation only models a particular segment of the total transport user com-

munity, and only a single activity chain, a significant degree of under-utilisation was expected

across the entire network. However, counts comparisons for both the full and small network

representations showed large over-counts for a number of counting stations.

These outlier results proved diagnostic in identifying errors in our network representation.

Some feeder routes to major freeways were found to have larger capacities than in reality, mak-

ing them attractive as alternative routes for the virtual commuter population. Consequently, the

affected freeways registered larger simulated counts than in reality. These network errors suggest

that capacity improvements to feeder routes might improve utilisation of freeways in reality, and
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divert some of the load from over-utilised network links.

Major under-count outliers were found in areas of high network density and, consequently,

available capacity, especially during the afternoon peak, when commuters move away from cen-

tres of economic activity.

5.2 Outlook

Our initial implementation of MATSim for Gauteng has already given rise to a number of fur-

ther studies in our research group. These studies aim to improve the initial implementation by

addressing some of the shortcomings identified in this study.

5.2.1 Improved initial demand

The allocation of home- and work location in this study is an extrapolation of census and travel

survey data. Such an assignment is unrealistic, because it depends on the poor resolution of

the Traffic Analysis Zones (TAZs) used during the travel survey as well as a very small, outdated

sample. The model also fails to produce variation due to personal demographic characteristics re-

lating to the primary activity location decision. A master’s degree study conducted by J. Niesing

will aim to overcome these shortcomings, as well as introduce secondary activities into our daily

activity schedules for the private vehicle commuter population. As the next census is only sched-

uled for 2011, Ms Niesing will also attempt to update the synthetic population’s characteristics

using annual household survey data.

5.2.2 Commercial traffic

Commercial traffic contributes significantly towards Gauteng’s road transport demand, especially

during off-peak hours. But modelling the behaviour of commercial traffic is no trivial task, as the

drivers for this transport demand are exactly the same as those that contribute to the fickleness

and unpredictability of world stock markets. A PhD study, conducted by M. Botha, will be a

novel effort towards an activity-based model of commercial transport demand for South Africa.

Ultimately, we aim to adapt MATSim to execute the commercial demand alongside that of the

commuting population, and capture all possible interactions that might arise.

5.2.3 Public transport and para-transit modes

Public transport and the para-transit minibus taxi mode contribute significantly towards network

utilisation. The author’s proposed PhD study will be an investigation into the behaviour of the

unscheduled minibus taxi mode, both from the perspective of user and provider. The MATSim

core will be adapted to simulate this mode. Our implementation for Gauteng will be extended
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to include minibus para-transit, as well as scheduled public transport modes, such as Bus Rapid

Transit (BRT), the various bus operators in Gauteng, and the Gautrain rapid rail transit system.

Such an implementation will require that agents select from, and optimise across multiple modes.

M. Moyo in Berlin is currently working on extending MATSim’s core functionality to accommo-

date public transport and travel legs using multiple modes. Ultimately, it is envisioned that agents

be able to change and improve their mode choice during the course of a day.

Besides these active projects, a number of further studies have been identified that are expected

to improve our initial implementation.

5.2.4 Improved network representation

Results from this study showed that errors in our network representation are a probable cause of

counting station error. It was suggested that a Computer Science Masters degree study be scoped

to derive a more detailed and accurate network representation from aerial photography and GIS

data. Our GIS shapefiles record the centre lines of all roads in the Gauteng road network. These

centre lines can serve as guides to an image recognition program, designed to interpret aerial

photography data and correctly assign network link capacities.

5.2.5 Improved mapping of land-use

In order to improve our activity-based travel demand, and extend our model to include secondary

activities, we require detailed land-use information. Modern techniques such as dasymetric map-

ping can be applied to establish activity locations and number of activity opportunities based on

physical attributes of the urban environment, such as building type and size. These attributes will

have to be identified by a suitably developed image recognition application, capable of interpret-

ing aerial and satellite photography.

5.2.6 Extending the scope beyond Gauteng

Recently acquired satellite tracking data from approximately 30,000 commercial and freight vehi-

cles suggest that a large proportion of Gauteng’s commercial traffic is destined for, and originates

from outside the province’s boundaries. This study also only considers private vehicle commuter

demand that is completely contained inside the province, an assumption that is refuted by census

and travel survey data. Our model should be extended to include demand for all modes, origi-

nating from and destined for the rest of South Africa and, possibly, the greater sub-continent.
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5.2.7 The influence of road pricing

Results from this study showed significant over-counts for both traffic peaks for the counting

stations at location 4 in Figure 4.1. Although excess capacity on feeder routes was identified as

a possible cause of an increased utilisation of this national highway, it should also be noted that

this network link, like several others in the province, is tolled. Therefore, toll avoidance could be

a contributing factor towards its under-utilisation in practice.

The Gauteng roads authorities have announced an aggressive distance-based road pricing

strategy on almost all major routes in the province, scheduled for roll-out in 2009-10. Modelling

the influence of toll is already part of MATSim’s core functionality, and it is expected that an

implementation of this module for Gauteng will contribute significantly towards improving our

current model, as well as aid in prediciting the effects of the proposed strategy.

We do not purport this list of improvements to be comprehensive. Continued investigation and

improvement of this first implementation and our involvement with MATSim’s active develop-

ment community is constantly giving rise to interesting and worthwhile research opportunities.

As an open-source initiative, anybody can participate, and user-developers are encouraged to

explore and modify the code. This ’bottom-up’ approach of constant tinkering sometimes leads

to unexpected applications and new directions of enquiry. Therefore MATSim not only models

emergent phenomena — it is an emergent phenomenon itself.
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