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Introduction/Justification 
 

Much of the published literature on the glenohumeral joint (GHJ) in the dog centres around 

treatment of luxation, a condition that is rarely encountered.  With the increased availability of 

advanced diagnostic techniques such as arthroscopy, magnetic resonance imaging, and 

computed tomography, interest in the GHJ has been renewed and a number of previously 

unrecognised conditions have been described.  The pathogenesis of many of these conditions 

remains speculative and there have been few reports describing or evaluating treatment options.  

One reason for this may be that very little work has been published describing the normal 

structure and biomechanical function of the GHJ.  Such gaps in our knowledge also make it 

difficult to develop or evaluate new repair techniques.  For example, a number of techniques 

have been described for the repair of traumatic luxation.  Most of these are variations on 

surgical procedures performed on humans more than 50 years ago, but they still dominate 

current veterinary texts.  In human medicine numerous biomechanical, physiological and 

clinical trials have been carried out subsequently, leading to new approaches and techniques.  

Although the results of human trials can give us some insight and a direction to follow with our 

research, to attempt to extrapolate the results from these studies to dogs may be inappropriate.  

The human and dog glenohumeral joints differ in many fundamental ways, including function, 

range of motion, orientation of the bony components, and even the bones that contribute to the 

joint’s function and stability.   

 

The purpose of the present study is to describe in some detail, the anatomical/structural 

components contributing to static stability of the canine GHJ and quantify the degree of 

translation/rotation they allow by means of a biomechanical trial.  This information will add to 

the current body of knowledge and assist us in making more accurate hypotheses regarding the 

pathogenesis of GHJ pathological conditions. It will also provide us with an ideal for re-

establishing normal physiologic and biomechanical function when developing surgical repair 

techniques.  In addition, the results of the abovementioned biomechanical trial were compared 

to a clinical assessment of GHJ statility, to establish the reliability of the latter.                   
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Abstract 
 

To investigate the structural/anatomical components of the static stabilisers of the canine 

glenohumeral joint (GHJ).  

 

The GHJ of 22 complete cadaver specimens (44 limbs) were manipulated to estimate laxity at 

joint angles of 150º, 135º and 90º (palpation study).  Following the removal of the peri-articular 

muscles, laxity was measured in 32 of these limbs after applying a 15N force to the scapula in a 

variety of directions whilst the humerus was fixed to a jig.  This was repeated for the 

abovementioned angles in intact joints and after venting and flushing to eliminate the limited 

joint volume and adhesion/cohesion (LJV/AC) mechanisms (biomechanical study).  Results of 

the palpation and biomechanical studies were compared.  Anatomical dissections were also 

performed to better describe the structures constituting the static GHJ stabilisers. 

 

The palpation study revealed a marked variation between joints although there was a tendency 

for progressive laxity as the joint was flexed.  This finding was supported by the biomechanical 

study which also demonstrated no significant difference between intact and vented joints 

except in a cranio-caudal direction at 135º and 90º, and in a medial/lateral direction at 135º.   

Static stabilisers contributed to the stability of the GHJ in extension but permitted an ever-

increasing range of motion as the joint was flexed.  The results of the palpation study did not 

correlate well with the objective measurements of the biomechanical study.   

Manipulation is unlikely to be a reliable method for determining subtle joint laxity in the GHJ.  

The static stabilisers do not appear to play a significant role in providing joint constraint during 

normal range of motion (except in extension).  Diagnoses of pathological laxity attributable to 

dysfunction of the static stabilisers should be made with caution and surgical treatments should 

take cognisance of the abovementioned biomechanical features.  Anatomical structures 

providing constraint to joint mobility are described. 
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Terms and definitions 
 

There is some inconsistency in the veterinary literature with regard to the use of terms that 

describe glenohumeral joint (GHJ) pathology.  For example, GHJ instability has been used to 

imply complete luxation in some studies, and subluxation in others.  For the purposes of this 

study, the following definitions will apply: 

Translation:  The movement of one joint surface relative to the other in a horizontal or vertical 

plane, when the one joint surface is fixed and a force is applied to the other.   

Luxation:  Complete separation of the humeral head from the glenoid cavity such that the 

articulating surfaces are no longer in contact.   

Subluxation: Reduction in contact between articulating surfaces that is greater than the normal 

physiologic range of motion, but not to the point of complete separation.   

Instability:  Instability incorporates both GHJ luxation and GHJ subluxation but implies that 

the luxation or subluxation is pathological and results in clinical symptoms and further joint 

damage.   

Laxity:  Laxity refers to “slackness or looseness” of the joint.  It may be physiologic or 

pathologic.  In this study, the term is used to describe the magnitude of translation or rotation of 

the joint surfaces relative to one another when a force is applied.   

Primary stabiliser: A joint structure or mechanism that places a constraint on motion before 

any other.  Such a stabiliser may be functional in one or many directions. 

Secondary stabiliser:  A joint structure or mechanism that only places a constraint on motion 

once the primary stabilisers have been overcome. 

  

Note:  In the human literature, the term “glenohumeral instability” has been used to 

differentiate patients that are symptomatic as a result of inappropriate joint laxity from those 

who are not (Matsen 1998).  A supple athlete, for example, may have lax joints, but no 

symptoms.  His or her joints would not be considered unstable.  For a diagnosis of shoulder 

instability in people, the presence of pain, apprehension related to normal manoeuvres, 

crepitation, and lack of resistance to translation will all be evaluated and taken into 

consideration.  In addition, diagnostic imaging techniques may be required. 
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Chapter 1   
 

Literature Review 
 
The glenohumeral joint (GHJ) is classified as spheroidal and consists of a ball (humeral head) 

and socket (glenoid cavity of the scapula), similar to the hip joint. The shallow glenoid cavity 

and large difference in surface area between it and the humeral head, combined with a 

voluminous joint capsule, allow for a wide range of movement:  In the dog, extension to 

flexion - 120 degrees; abduction to adduction - 90°; internal to external rotation - 90° (Evans 

1993, Newton 1985).  The primary motion, however, is extension and flexion (Evans 1993). 

The glenoid labrum may deepen the glenoid cavity somewhat and slightly improve congruity, 

but the joint has been shown to be slightly incongruent (Bardet 1998, Evans 1993, Maierl 

2002).  

 

Despite its conformation, mobility, and freedom from bony constraints, the GHJ forms a very 

stable articulation that rarely luxates (Puglisi 1986, Vasseur 1982).  The structures responsible 

for this joint stability have been divided into two categories: 

1. Static stabilisers:  These do not actively respond to changes in joint position.  They 

comprise the glenohumeral ligaments (GHL) (medial and lateral) and the joint capsule 

(JC).  These structures blend into each other to form an integral unit, the GHL/JC 

complex.  

2.  Dynamic stabilisers:  These comprise the peri-articular muscles that bridge the joint 

and are thought to act by contracting or relaxing in response to changes in joint 

position and by causing the concavity-compression effect (Karduna 1996, Matsen 

1998, Puglisi 1986, Talcott 2003).  The latter term implies that a spheroid body 

compressed against a curved surface will require significantly more force to induce 

translational movement than the same body compressed against a flat surface (Bardet 

2002, Karduna 1996, Matsen 1991, Matsen 1998).   
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The muscles include:  M. infraspinatus, M. supraspinatus, M. subscapularis, M. teres 

minor and, to a lesser extent, the M. biceps brachii, M. triceps brachii caput longum, 

M. deltoideus, M. Teres major and M. coracobrachialis) (Craig 1980, Matsen 1998, 

Puglisi 1986, Talcott 2003).  In humans, it has been shown that there is no activity in 

the dynamic stabilisers at rest (Itoi 1993, Matsen 1991).  

 

There is probably a degree of interaction between these two stabilising mechanisms. The 

tendinous insertions of the M. subscapularis, M. infraspinatus, and M. supraspinatus blend 

with the joint capsule and may play a role in static stabilisation (Bardet 1998, Bardet 2002b, 

Evans 1993, Matsen 1991, Matsen 1998, Puglisi 1986).  On the other hand, tensioning of the 

static stabilisers by these muscles may incorporate them into the dynamic stabilisation of the 

joint.  The GHL/JC complex also has sensory nerve endings that link to the reflex arc which 

results in muscular proprioceptive responses (Matsen 1998).  

 

The difference in size between the two articular surfaces probably also reduces the likelihood 

of luxation (i.e. the small glenoid surface must be displaced a great distance before it loses 

contact with the large humeral articular surface). 

 

Two additional intra-articular forces have been identified as playing a significant role in GHJ 

stability in humans and can also be classified as static stabilisers (Bardet 1998, Matsen 1991, 

Matsen 1998).  They have been termed the “limited joint volume” (LJV) and “adhesion-

cohesion” (AC) mechanisms and relate to the joint space and unique physiology of synovial 

fluid.  Synovial fluid is essentially a dialysate of plasma, excluding larger protein molecules.  

These are prevented from entering the joint by the filtering effect of the hyaluronic acid 

molecular structures adjacent to and within the synovial interstitium.  Smaller protein 

molecules can enter the joint, but at a slow rate.  Hyaluronic acid is produced by the synovial 

lining cells and added to the dialysate.  Synovial fluid plays a role in joint nutrition and 

lubrication (Sledge 1993, Vernon-Roberts 1986).  The joint space is essentially a potential 

space containing a small amount of synovial fluid (0.7-1ml in a medium sized dog) that forms a 

thin lining between the articular surfaces (Simkin 1984).  In humans, and probably in dogs, a 

small negative pressure within the joint maintains this limited volume of fluid.   
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A negative intra-articular pressure is maintained because the joint fluid has a lower colloidal 

osmotic pressure than plasma.  This is brought about by the selective protein filtration 

mentioned above, coupled with an effective and non-selective drainage of the joint by 

lymphatics located within the synovium (Levick 1983, Matsen 1991).  Although this negative 

pressure will contribute little directly to joint stability, it contributes to the formation of the 

LJV and AC mechanisms (Matsen 1998):  

1. In humans, when tractional forces are applied across the intact joint, the glenoid labrum 

will be pulled inwards to seal the margins of the articulating surfaces (Habermeyer 

1992).  Displacement forces will create a vacuum that will resist efforts to separate the 

cartilage surfaces further (Matsen 1998).  The resistive force of a vacuum is very 

strong, as was demonstrated by Von Guericke in 1645 with the use of Magdeburg 

spheres:  Two 4 inch spheres were placed together and the air within sucked out to 

create a vacuum.  They required a distraction force of 1500N to separate them from 

each other, due to the atmospheric pressure exerted from the outside.  In joints, this 

effect is termed the “LJV” mechanism (Gibb 1991, Matsen 1998).   This phenomenon 

may be compromised where the joint capsule is excessively compliant and itself gets 

drawn into the joint to displace joint fluid (sulcus effect), where capsular tears break the 

seal, and where joint effusions increase the total joint volume beyond physiologic 

norms (Matsen 1991, Matsen 1998).   

 

2. Attempts to separate joint surfaces that are lined by a film of synovial fluid will also be 

resisted by molecular forces of attraction (Matsen 1998).  Joint cartilage is “wettable” – 

fluids adhere to it and resists separation from it (Matsen 1998).   This is termed 

“adhesion” and is the same phenomenon that results in a concave meniscus when water 

is poured into a glass container – the water molecules on the periphery of the water 

column adhere to the glass.  In addition, fluid molecules display attractive forces 

between themselves.  Whereas molecules within a fluid are attracted to each other from 

all sides, neutralising the net force, those on the surface are only attracted from below, 

creating a surface tension.  Any attempt to increase the surface area (such as distraction 

of the joint) will be resisted by this inherent force.  This is termed “cohesion” (Matsen 

1998).  The combined forces are termed the “adhesion/cohesion (AC)” mechanism.  

The AC mechanism would be diminished by pathologic factors that separate or cause 
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changes in the “wettability” of the joint surfaces, the nature of the joint fluid, and the 

conformity of the joint contact surfaces (Bardet 1998, Matsen 1998). 

 

 

The LJV and AC mechanisms have rarely been mentioned in the veterinary literature and the 

freedom of movement allowed by the GHL/JC complex has not been separated from that which 

is allowed by these mechanisms.  The magnitude or relevance of the forces resulting from the 

LJV/AC mechanisms have not been quantified in dogs, but they have been shown to be 

substantial in humans (Gibb 1991, Habermeyer 1992).   

  

 
There are also few reports in the literature evaluating the relative function of the ligaments, 

tendons, and other mechanisms in glenohumeral joint stabilisation in the dog, and most form 

part of wider studies evaluating the treatment of shoulder luxation (Craig 1980, Puglisi 1986, 

Stobie 1995, Vasseur 1983a, Vasseur 1983b).  In the past, it has been hyposthesised that the 

peri-articular muscles provided primary stabilisation to the GHJ.  Vasseur, however, showed 

that in dogs, transection of any individual peri-articular muscle attachment resulted in very 

little static laxity (Stobie 1995).  In that study it was not stated whether joints were vented to 

exclude the effects of LJV and AC.  Only the changes in pre- and post-sectioning angles of 

maximum internal rotation, external rotation, abduction and adduction with the limb in full 

extension were measured, and these were reported in subjective terms 

(slight/moderate/marked).  Changes in translational mobility were not evaluated.  There was no 

evaluation of joints with all peri-articular muscle attachments severed, so the specific 

constraints imposed on joint mobility solely by the GHL/JC complex was not evaluated.   It did 

appear, however, that the medial and lateral canine GHL/JC complexes provide an important 

restraint to excessive joint mobility in extension.  Transection of these structures (in addition to 

the peri-articular muscles) was required for luxation to occur.   

 

In the absence of more detailed biomechanical trials, it has been tempting to conclude from the 

abovementioned study that the GHL/JC complex provides the primary restraint to joint motion, 

and at extremes of articulation this is possibly true.   
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However, it should be borne in mind that where ligaments are considered to be the primary 

stabilizers of a joint (e.g. the stifle), one or more must always be under tension and they must 

provide constraint before any other structure or mechanism.  They are not performing any 

function when all are relaxed (Matsen 1991, Matsen 1998).  In humans, the entire GHL/JC 

complex is lax and ineffectual throughout most of the joint’s range of motion, only coming 

under tension at the limits of its range (Matsen 1991, Matsen 1998).  It is possible that the same 

applies to the canine GHJ.  If this is true then other restraining mechanisms may also play an 

important role in GHJ stability before the GHJ/JC complex becomes functional.  The issue of 

which factors provide primary stabilisation through the normal range of motion in the canine 

GHJ and their relationship to each other remains undefined.   

 

In a further study by Vasseur, evaluating a method of repair for glenohumeral luxation, the 

medial joint capsule, medial glenohumeral ligament and M. subscapularis tendon, or the lateral 

joint capsule, lateral glenohumeral ligament and M. infraspinatus tendon, were transected in a 

group of 5 live dogs.  It is interesting to note that the animals on which no surgical repair was 

performed were clinically sound within 14 days (Vasseur 1983b).  It would appear, therefore, 

that various combinations of the stabilising tendons and ligaments can be transected 

(theoretically making luxation possible) without significant loss of joint stability or function.  

This suggests that there may be other, as yet undefined, mechanisms still functioning that keep 

the joint relatively stable during the 2 week healing process, although it is possible that the 

study period was not long enough to identify longer term effects. 

 

It is clear that, due to the paucity of basic research, the normal function and biomechanics of 

the canine GHJ are still relatively poorly understood.  On the other hand, the increasing 

availability to veterinarians of advanced diagnostic imaging methods (e.g. computed 

tomography and magnetic resonance imaging) and other diagnostic modalities (e.g. 

arthroscopy), has made more accurate diagnosis of GHJ pathology and the description of 

previously unidentified conditions possible.   
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For example, conditions such as mineralisation of the supraspinatus tendon (Bardet 1998, 

Kriegleder 1995), tears in the medial and lateral glenohumeral ligaments (Bardet 1998, 

Mitchell 2000), infraspinatus bursal ossification (McKee 2002) and incomplete ossification of 

the caudal glenoid (Oliveri 2000) have only been described recently.  With the continued 

development and routine utilization of advanced diagnostic techniques, it is quite possible that 

more conditions will be identified. 

 

Until we better understand the normal function and limitations of the structures involved with 

the GHJ, the clinical relevance and effect on joint biomechanics of many of these newly 

described conditions will remain uncertain.  For example, it has been suggested that instability 

is the most common cause of GHJ pain in the dog (Bardet 1998). Yet what exactly constitutes 

GHJ instability has never been defined clinically or experimentally. There are references in the 

literature to the use of joint manipulation as a clinical tool to assist in identifying glenohumeral 

joint instability.  One study referred to the diagnosis of shoulder luxation specifically and 

described general manipulations (flexion, extension, abduction, adduction, rotation) while 

paying special attention to the spatial relationship between the acromion process of the scapula 

and the major tubercle of the humerus (Puglisi 1986). Another study referred to joint laxity in a 

more general sense (Bardet 1998):  A technique for clinical evaluation of laxity was described 

(grasping the distal scapula and proximal humerus laterally and medially), and comparison with 

the contralateral normal joint was suggested.  No specific findings were reported.  

 

Directly extrapolating knowledge from human anatomy and biomechanical studies to describe 

the relative functions of the stabilising structures of the canine GHJ may be inappropriate, as 

the two species’ shoulders differ markedly in anatomy and function (Bechtol 1980).   

 

Thus, the purpose of the present study was to elucidate the relative contribution of the LJV/AC 

mechanisms and GHL/JC complex in providing a constraint to joint mobility by means of a 

biomechanical study and to compare these results to clinical palpation (palpation study) 

findings. This information will serve as a reference for pathologic comparison and will have 

relevance for further experimental studies and the approach to clinical cases.   
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Chapter 2  
 

Materials and Methods 
 

2.1.   Model system and justification of the model 
 
This study was approved by the University of Pretoria’s Animal Use and Care Committee and 

the Research Committee.  The trial made use of cadaver specimens.  Performing a similar trial 

on live animals would have been difficult to perform, costly, and ethically questionable since 

good information could be gained from a cadaver study.  There are many examples in the 

literature in which cadaver specimens have been used to evaluate joint function (Bigliani, 1996, 

Cain 1987, Ferrari 1990, Halder 2001, Itoi 1993, Karduna 1997, Lazarus 1996, Maierl 2002, 

Matsen 1991, Ovesen 1986, Pagnani 1996, Vasseur 1982).  All animals were strays and were 

euthanased because it was not possible to find the original owners or new homes for adoption 

within the period prescribed by the SPCA (i.e. euthanased for reasons unrelated to this study). 

 

2.2.  Experimental Design 

 
2.2.1.  Type 

   

An in vitro work-bench study.  Scapula and humerus, including the glenohumeral joint with 

joint capsule, glenohumeral ligaments and the proximal 1/3 of the biceps muscle were harvested 

from dogs that had been recently euthanased.  Each specimen served as it’s own control.   

 

2.2.2.  Selection   

 

Both thoracic limbs were used from 22 dogs (44 limbs) for the palpation part of the trial 

(see1.2.1).  Of these, 16 dogs (32 limbs) were used for the biomechanical part of the trial (see 

1.2.2-1.2.15).  Where results between the two parts were compared, only those specimens used 

in both were included.   
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The following selection/elimination criteria applied: 

•   Skeletal maturity 

•   Weight: 25-35kg 

•   No obvious emaciation or excessive obesity (subjective evaluation)  

•   No obvious chronic disease   

•   No obvious neoplasia  

•   No radiographic evidence of  GHJ pathology.   

•   No physical evidence of lesions/defects of the glenoid or humeral head  

•   No obvious trauma involving the thoracic limbs 

•   No amputees   

•   No evidence of appendicular chondrodysplasia (eg bulldog, bassett) 

•   No dogs that were obviously elderly 

 

2.2.3.  Observations   

 

The following was recorded for every animal used in the study: 

1. Breed 

2. Sex  

3. Body weight 

4. Source (e.g. SPCA) 

5. Approximation of age (there were no accurate records available) 

 

The following was recorded for every limb used in the study: 

1. Donor identification (numbered tags) 

2. Date of collection 

3. Storage time 

4. Limb identification (left/right) 

5. The measured cranio-caudal length of the distal scapula from a  

          radiograph: 5mm proximal to the distal edge of the supra- and infraglenoid tubercles. 
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2.3.  Experimental procedures 
 

The study was divided into three parts:  A “clinical” palpation study, a biomechanical study 

performed on a custom-made jig, and an anatomical dissection study. 

 

2.3.1.  Palpation study 
 

 
Dogs were euthanased by intravenous barbiturate overdose.   

The primary author performed an evaluation of the following parameters immediately 

following death: 

� Using a goniometer:  Angles of maximum flexion and maximum extension.  Angles were 

measured using the lateral epicondyle and major tubercle of the humerus as reference 

points to determine the orientation of the humerus, and the scapula spine to determine the 

orientation of the scapula. 

� Subjective evaluation: Cranial translation (drawer movement), caudal translation (drawer 

movement), medial translation, lateral translation. 

 

Cranial and caudal translation was evaluated by grasping the supraglenoid tubercle and caudal 

aspect of the scapula neck (behind the m. deltoideus pars acromialis) between the thumb and 

forefinger of one hand with the rest of the fingers resting on the cranial margin of the scapula.  

In well-muscled dogs this was not possible but it was possible to fix the scapula by grasping the 

cranial and caudal aspect of the acromion process of the scapula instead.   With the other hand, 

the major tubercle of the humerus was grasped cranially and caudally (or the neck of the 

humerus caudally) between the forefinger and thumb with the rest of the fingers resting on the 

major tubercular crest.  Force was then applied to the proximal humerus in a cranial or caudal 

direction to evaluate the translation.  The magnitude of the force was very much the same as 

would be applied in evaluating the integrity of cruciate ligaments in the stifle joint. 

 

Medial and lateral translation was evaluated by grasping the scapula with the forefinger 

positioned on the medial aspect of the supraglenoid tubercle and the thumb on the acromion 

process.   
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The acromion process was grasped (as above) where it was otherwise not possible to fix the 

scapula as described above.  The proximal humerus was grasped over the major and minor 

tubercles below the insertion of the m. pectoralis profundus between the forefinger and thumb. 

 

Translation was evaluated at a joint angles of 150º (or full extension if this was less than 150º), 

135º, and 90º and was classified and recorded as either: 

� No or minimal translation (subjectively ±0-2mm) 

� Moderate, easily palpable translation (subjectively >2mm) 

 

2.3.2.  Biomechanical study 

 

2.3.2.1.   Limbs were amputated by transecting the surrounding skin and the muscles of the 

pectoral girdle: m. trapezius, m. omotransversarius, m. brachiocephalicus, m. 

rhomboideus, m. pectorales superficiales et profundus, m. latissimus dorsi.  Bodies 

were disposed of by the SPCA according to their current policy.   

 

2.3.2.2.   Harvested limbs were placed in sealed, labelled bags and transported in a cool-box 

with ice packs to the Onderstepoort Veterinary Academic Hospital (OVAH) for 

further processing. 

 

2.3.2.3.  Limbs were radiographed as follows:  One extended mediolateral view and 1  

extended craudocranial view of the glenohumeral joint.  Any specimens showing 

radiographic evidence of bone or joint pathology were discarded.  Caudal humeral 

head or glenoid osteophytes of up to 2mm were accepted for inclusion in this study 

(1 case).   

 

2.3.2.4.  Specimens were tagged, wrapped in Ringer’s lactatea moistened tissue paper, and 

placed in sealed bags before being frozen (-20ºC), until the biomechanical part of the 

trial was performed. Specimen storage time ranged from 2 to 75 (mean 60) days.   

 
a Intramed Ringer’s lactate, Frazemius Kabi, South Africa 
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On the day of the trial, limbs were thawed within the sealed bags in a water bath at 

room temperature (approximately 22°C).  Specimens were kept moist by spraying 

them with Ringer’s lactate at regular intervals for the duration of the trial. 

 

2.3.2.5.   Holes were drilled in the humerus to fix it firmly, by means of nuts and bolts, to a 

plate on a custom-made steel jig that allowed rotational adjustment in a vertical plane 

only (Fig. 2-1).  A hole was drilled through the scapula in the middle of the dorsal 

margin, 5mm from the edge. The scapula was suspended by means of a dacron line 

running through a hole in a horizontal suspension beam, across the top of the jig, and 

onto a hanging tensioning lead sinker.  Lining up its dorsal margin with the 

suspension plate ensured correct orientation of the scapula.  Orientation was 

confirmed by lining up a plumb line with 2 widely spaced marks made on the 

scapular spine and cranial margin.  The humerus was rotated to create a joint angle of 

150º, 135º or 90º.  A hole was drilled horizontally across the supraglenoid tubercle 

from medial to lateral, 5mm from the cranial edge of the bone just proximal to the 

attachment of the glenohumeral joint capsule.  Another hole was drilled caudally 

through the infraglenoid tubercle in a similar manner. Five mm diameter steel rings 

were fastened to the cranial aspect of the supraglenoid tubercle and caudal aspect of 

the infraglenoid tubercle by passing a dacron line through the holes and tying.  These 

provided attachment points for the tensioning lines. Mid-sagittal marks were made 

on the supraglenoid and infraglenoid tubercles and the middle of the medial and 

lateral aspects of the scapula neck, to serve as reference points for subsequent 

displacement measurements.  The calliper was rested on the sliding frame and 

aligned with perpendicular reference lines inscribed on the frame to ensure 

geometrically accurate readings were made relative to the bone. The scapula was 

maintained in vertical orientation (if displaced by application of the weights) by 

moving the suspending cord as required, and applying further weights to the dorsal 

tensioning line if needed to maintain its vertical orientation.  Cranial and caudal 

translation of the scapula was calculated by subtracting the initial, pre-tensioning 

bone/sliding frame distance from that measured after application of the force.  A 

similar procedure was carried out for medial and lateral translational determinations 

(Fig. 2-3).   
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Medial and lateral scapular attachments were created by connecting the cranial and 

caudal steel rings by means of a fishing swivel and running a single line to the 

medial and lateral pulley systems.  In this case, the tensioning lines were passed 

through pulleys situated under the sliding frame, on the lateral or medial sides of the 

bone. 

 

2.3.2.6.  For cranial and caudal translational measurements (Fig. 2-2), a dacron line was 

attached to the cranial and caudal steel rings, and threaded around pulleys attached 

cranially and caudally to the underside of a lockable, horizontal frame that was able 

to slide up and down along the vertical limbs of the jig. The horizontal orientation of 

the line was ensured using an “in-line” spirit level and lead sinker for cord 

tensioning. A 15N force was applied after detaching the sinker, by attaching a 1.5kg 

weight to the tensioning lines. Translational distances were measured between the 

cranial or caudal scapular marks and the inner edge of the sliding frame using a 

vernier callipera.  

 

2.3.2.7.   For rotational measurements (Fig. 2-4), lines were passed from both the cranial and 

caudal steel rings through either the lateral and medial pulleys, respectively.  

Horizontal forces of 7.5N were simultaneously applied to each line, resulting in an 

average pure moment of 0.23Nm (standard deviation due to differences in glenoid 

length and angle of rotation: 0.04Nm).  The rotational angle of the scapula (dorsal 

margin) relative to the longitudinal axis of the jig (suspension beam) was measured 

with a goniometera.  By reversing the scapular attachment of the 2 cords, a rotational 

force was applied in the opposite direction.  In this way, the maximum internal and 

external rotational angles were measured.  

 

2.3.2.8.   For the angles of adduction and abduction (Fig. 2-5), lines were passed from cranial 

and caudal holes drilled 5mm from the cranial and caudal angles of the scapula, 

respectively to join and run through medial or lateral pulleys.  A horizontal force of 

15N (approximately 2.2 Nm) was applied.  The rotational angle of the cranial edge of 

the scapula relative to a plumb line was measured with a goniometera.   
 

a Vernier calliper, Omni-tech, calibrated to 0.02mm 
a Baseline diagnostic and measuring instruments 
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After the scapula was detached from the suspension beam, a 1.5kg weight was then 

suspended from the line attached to the dorsal margin of the scapula to create a 

ventrally directed tensioning force.  The angle of maximum flexion was measured.  

This created a moment of approximately 2 Nm.  The same force (creating a moment 

of approximately 2.2Nm) was then applied by means of a pulley on the jig in a 

cranial direction and the angle of maximum extension measured.  In similar manner, 

abduction and adduction angles were measured by application of a laterally or 

medially directed force.  The order at which angle the testing was conducted (90º, 

135º, 150º) was alternated in successive specimens to reduce the possible effect of 

tissue fatigue on measured results. All translational measurements were repeated 3 

times and the average of the measurements was recorded and used for statistical 

calculations. The weight(s) were removed and the scapula returned to a neutral 

position with respect to the humeral head between measurements.  

 

2.3.2.9.   Joint fluid was aspirated from the joint and the viscosity was evaluated subjectively 

by placing a drop between 2 fingers and separating them.  The distance between the 

fingers was measured at the point where the strand broke.  The joint was then vented 

by inserting two 18-gauge needles that remained in situ.  The joint was rinsed with 

20-40ml Ringer’s lactate, and the remaining fluid was aspirated.  Tests were repeated 

as described in 2.3.2.5-2.3.2.8.   

 

2.3.2.10. The resting position of the glenoid cavity in relation to the humeral head was quite 

variable, especially at joint angles of 135º and 90º and after venting.  To eliminate 

the resultant variation in measurements, cranial and caudal translations were 

combined and are presented as a total cranial-caudal translation.  The same was done 

for medial and lateral translation, and for internal and external rotation. The 

difference in the translation or rotation between vented and intact joints was 

calculated by subtracting the latter from the former. 
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2.3.3. Anatomical dissection study 

 

All joints were dissected while attached to the jig with one of the abovementioned forces 

applied (dynamic study) to determine which structures were responsible for limiting translation 

and rotation.  Specimens were then removed from the jig and further dissected to examine the 

joint structures more fully (static study).  Notes and digital photographs were made of these 

subjective investigations. 

 

2.3.4. Microscopic study 

 

The lateral and medial components of the capsule of the shoulder joint of four limbs from two 

further dogsa were carefully freed from the scapula and humerus and immersion fixed in 10% 

neutral buffered formalin for 48 hours. The limbs of these dogs had previously been dissected 

to expose the joint capsule after which they were stored in 10% neutral buffered formalin until 

sampling for histology. The tissue samples were trimmed of excess material and routinely 

processed for light microscopy. During embedding, the samples were oriented to provide 

transverse sections of the wall of the joint capsule. Paraffin sections were stained with 

haematoxylin and eosin and examined by light microscopy.  

 

 

2.4 Analytical procedures  

 
All data was entered onto a spreadsheeta.  Statistical analysis was performed using commercial 

softwareb.  Statistical significance was set at p<0.05.  Left and right leg data were combined for 

statistical analysis as there was no statistical difference between left and right limbs.  A pair 

wise t-test was used to compare intact to vented joints at the same angles of extension.   

 
a These specimens were sourced from a further two dogs that fitted the criteria for inclusion in the study, but were 
not used for other aspects of the study. 
a Excel, Microsoft Corporation, GET CITY, USA 
b SigmaStat version 2.03, SPSS, Chicago 
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The results of the palpation and biomechanical studies and differences in translation or rotation 

of intact and vented joints at different joint angles were all compared using the One Way 

Analysis of Variance (ANOVA) test.   

Pearson product-moment correlation was used to determine a correlation between palpated 

variables and measured variables. Measured variables were analysed as raw data or, for 

comparison with the palpation study, indexed using the same system as indicated in the 

palpation part of the study, i.e.1 = < 2mm movement or a 2 = > 2mm movement.  

 

Means and standard deviations were calculated for the three measurements from each 

translational parameter to evaluate for repeatability. 
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B 

 

 

Figure 2-1: Steel Jig: A: Scapula suspension beam; B: Scapu

vertical orientation; C:  Horizontal sliding frame with calibrat

levels; D:  Adjustable plate for fixing specimen at desired join

E:  Weight at the end of the tensioning line; Arrow head: Posi

(not visualised) mounted just below sliding frame. 
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                            Figure 2-2. Direction of                                                           Figure 2-3. Direction of  

                                  Cranio-caudal force                                                                  Medial/lateral force 

                               
 
 
 

                                                                                       
                           Figure 2-4. Direction of                                                           Figure 2-5. Direction of 
                                 internal (left arrow) and                                                           abduction (right arrow) and 
                                 external (right arrow) rotation                                                  adduction (left arrow)  
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Chapter Three   
 

Results 
 

 
3.1.  Specimens 

 

A total of 44 limbs were collected from 22 dogs.  One pair (specimen 16) was excluded from 

the study due to radiographic evidence of osteoarthritis (a large enthesophyte within the m. 

biceps brachii tendon of origin).  All other limbs were used for the palpation and anatomical 

dissection parts of the study. A table listing donor signalment and specimen storage time can 

be found in the Appendix (Table A1).   Breeds that were represented included: 14 crossbreeds, 

4 German shepherds, 2 boerboels (mastiff-type breed) and 1 dalmation.  There were 8 males 

and 13 females.  The mean (estimated) age was 4.8 yrs (range 2-8).  Mean body weight was 

29.9kg (range 2-8).  Mean storage time was 60 days (range 2-75).  Three further sets 

(specimens 3, 4, 8) were excluded from the biomechanical part of the study, due to inadvertent 

venting of the joint capsule during dissection or preparation. An additional two sets were also 

excluded due to errors in methodology (specimens 18, 19).   Thus the data from a total of 16 

dogs (32 limbs) were included in the biomechanical part of the study. Breeds represented in the 

biomechanical study included: 11 crossbreeds, 2 German shepherds, 2 boerboels, and 1 

dalmation.  There were 7 males and 9 females.  Age was estimated in all cases and ranged from 

2 years to 8 years, with a mean of 4.8 years.  Body weights ranged from 25kg to 34.6kg, with a 

mean of 29.9kg (yes, same mean as above!).  Specimen storage time ranged from 2 to 75 days, 

with a mean of 60 days. 

 

3.2.  Palpation study 

 
Since it was not possible to determine the exact extent of translation, estimates reported here as 

<2mm should be regarded, in practical terms, as “no translation or minimal translation” and 

estimates of >2mm should be regarded as “easily palpable translation.”   
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In medium and well-muscled dogs it was more difficult than in lean dogs to isolate the scapula 

neck, minor tubercle, or acromion process, and maintain a grip that enabled manipulation.  

This may have made estimates of translation even less accurate.  At a joint angle of 90º, it was 

difficult to grip the proximal humerus (due to horizontal orientation) to evaluate cranio-caudal 

translation. Results of the goniometric measurement of maximum flexion and extension angles 

are presented in Table 3-1.  A definite “stop” or limit to extension was noted.  Measurement of 

the angle of maximum flexion was somewhat more subjective as the end-point for maximum 

flexion was dependent on the force applied.  There was, however, a point at which the 

resistance to flexion increased sharply.  This was the angle that was recorded.  
 

 Mean Range SDa

Maximum flexion 53 43-63 5.2 

Maximum extension 155 140-165 5.3 

            Table 3-1.  Maximum flexion and extension in degrees. 

 

Results of the subjective evaluation of cranial, caudal, lateral, and medial translation are listed 

in the Appendix (Table A2).  It was not possible to elicit palpable translation in any direction 

in any specimen with the limb extended (150º).  As the limb was flexed, it was possible to 

elicit translational movement in all joints.  There was, however, some variation in the way in 

which this occurred.  Translation became readily palpable (>2mm) at a joint angle of 135º in 

55% (23/42) of the dogs for cranial translation, 29% (12/42) for caudal translation, 5% (2/42) 

for lateral translation, and 21% (9/42) for medial translation.  Translation was readily palpable 

(>2mm) at a joint angle of 90º in 95% (40/42) of the dogs for cranial translation, 38% (16/42) 

for caudal translation, 14% (6/42) for lateral translation, and 36% (15/42) for medial 

translation. 

 

Where translational movement was evident, there was not a definite stop as is described in the 

stifle joint with intact cruciate ligaments.  A definite stop was found when performing the same 

manipulations on the specimens after removal of all muscles (except the proximal 1/3 of the m. 

biceps brachii). 

 

                                                      
a SD: Standard Deviation 
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3.3.  Biomechanical study  
 
 

3.3.1.  Subjective joint fluid viscosity evaluation 
 

 
All samples formed vertical synovial fluid strand of greater than 10cm. 

 
 
3.3.2.  Biomechanical study  
 

 
The full data results of the biomechanical study are listed in the Appendix (Tables A3-A10).  
Results are summerised in Tables 3-2 to 3-4.  Negative values indicate that the 
translation/rotation was greater in the intact than the vented joints. 

 
150º Extension 

 
 Mean SD∞ Highest Lowest 
Cranio-caudal translation – intact* 3.5 2.1 9.2 -0.5 
Cranio-caudal translation – vented* 4.2 2.0 5.3 -1 
Difference: intact vs vented* 0.7 1.7 3.5 -2.1 
Medial/lateral translation – intact* 6.0 1.3 8.2 0.4 
Medial/lateral translation – vented* 7.3 3.3 14 0.4 
Difference: intact vs vented* 1.3 2.4 6.7 -2.4 
External/internal rotation – intact# 34 2.6 11 2 
External/internal rotation – vented# 34 6.1 51 22 
Difference: internal rotation# 1 5.5 13 -11 
Abduction – intact# 23.9 6.5 37 12 
Abduction – vented# 25.7 6.1 38 15 
Difference: intact vs vented# 2.3 6.5 17 -12 
Adduction – intact# 25.4 6.4 38 14 
Adduction – vented# 26.8 6.3 38 12 
Difference: intact vs vented# 2.2 5.7 16 -10 

Table 3-2. Measured laxity in intact and vented joints.  Differences between intact and vented joints are also 
listed.  *Distance in mm, #Rotation in degrees, ∞Standard deviation  
 

There was no significant difference between intact and vented joints for any of the variables 

tested at a joint angle of 150º.   
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135º Extension 
 Mean SD Highest Lowest 
Cranio-caudal translation - intact 8.8 2.3 12.9 2.3 
Cranio-caudal translation - vented 13.1 1.9 16.2 9.8 
Difference: intact vs vented 4.9 3.0 12.3 0.3 
Medial/lateral translation – intact 12.5 3.0 18.2 6.5 
Medial/lateral translation - vented 14.6 2.3 18.7 10.5 
Difference: intact vs vented 2.1 2.6 8.2 -2 
Internal/external rotation - intact 58.1 10 73 41 
Internal/external rotation - vented 60.4 8.8 78 40 
Difference: intact vs vented 2.3 6.5 17 -8 
Abduction - intact 34.9 8.6 54 20 
Abduction - vented 37.3 6.2 58 27 
Difference: intact vs vented  2 5.2 15 -11 
Adduction - intact 37.3 7.8 54 20 
Adduction - vented 37.8 7.6 52 18 
Difference: intact vs vented 1 6.2 9 -12 

Table 3-3. Measured laxity in intact and vented joints.  Differences between intact and vented joints are also 
listed. 
*Distance in mm, #Rotation in degrees, SD – Standard deviation  
 
 

There was a significant difference (p=0.002) between intact and vented joints at 135º extension 

for medial/lateral translation (Fig. 3-1).  This difference was, on average quite small (2.1mm).  

There was also a significant difference (p<0.001) between intact and vented joints for cranio-

caudal translation at this angle (Fig. 3-1).  None of the other variables showed a significant 

difference between intact and vented joints.       

 
90º Extension 

 
 Mean SD Highest Lowest 
Cranio-caudal translation – intact  12.6 3.2 17.8 7.0 
Cranio-caudal ranslation - vented 18.4 3.6 26.8 12.0 
Difference: intact vs vented  5.8 4.0 16.4 -1.0 
Medial/lateral translation – intact 16.8 2.6 21.1 10.7 
Medial/lateral translation - vented 17.7 2.8 22.5 12.3 
Difference: intact vs vented 0.8 2.1 5.1 -2.7 
Internal/external rotation - intact 78.7 7.6 90 58 
Internal/external rotation - vented 79.8 7.8 94 55 
Difference: intact vs vented  0.6 7.0 16 -15 
Abduction - intact 42.4 6.0 52 27 
Abduction - vented 44.7 7.7 62 29 
Difference: intact vs vented  2 5.3 14 -7 
Adduction - intact 51.9 7.8 63 35 
Adduction - vented 53.7 7.5 68 34 
Difference: intact vs vented 2 4.0 10 -6 

Table 3-4. Measured laxity in intact and vented joints.  Differences between intact and vented joints are also  
                  listed.  *Distance in mm, #Rotation in degrees, SD – Standard deviation  
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There was a significant difference (p<0.001) between intact and vented joints at 90º extension 

for cranio-caudal translation (Fig. 3-1). None of the other variables showed a significant 

difference between intact and vented joints at this angle. 

 

 

 
 

       Figure 3-1.  Comparison between intact and vented joints where differences were statistically significant.  

                            (* Indicates a statistical difference; = outliers; bars = 95th percentile;  

                            boxes = standard deviation). 

  

Maximum flexion/extension 
 
 

 Mean SD Highest Lowest 
Maximum flexion – intact  33.7 5.7 45 24 
Maximum flexion – vented  34.2 5.5 47 25 
Difference: intact vs vented  0.3 3.6 10 -6 

Table 3-5.  Maximum flexion in degrees 
  

 Mean SD Highest Lowest 
Maximum extension – intact  155.4 5.5 165 145 
Maximum extension – vented  155.3 4.4 164 147 
Difference: intact vs vented  0 3.2 7 -5 

Table 3-6.  Maximum extension in degrees 
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There was no significant difference between intact and vented joints for maximum flexion and 

maximum extension. 

 
Comparative values 
 
Both intact and vented joints showed a significant and progressive increase in 

translation/rotation as the joint was flexed.  This was true for all variables (Table 3-7 and  

Fig. 3-2). 

A wide variation in translation/rotation was exhibited between joints (Table 3-7). 

 
 Mean Range SD 

150º    
Cranio-caudal*  3.5 0-9.2 2.1 
Medial/lateral*  6.0 1.6-11.4 2.6 
Internal/external#  34 2-11 2.6 
Abduction#  23.9 12-37 6.5 
Adduction# 25.4 14-38 6.4 

135º    
Cranio-caudal* 8.8 2.3-12.9 2.3 
Medial/lateral* 12.5 6.5-18.2 3.0 
Internal/external# 58.1 41-73 10 
Abduction# 34.9 20-54 8.6 
Adduction# 37.3 20-54 7.8 

90º    
Cranio-caudal* 12.6 7-17.8 3.2 
Medial/lateral* 16.8 10.7-21.1 2.6 
Internal/external# 78.7 58-90 7.6 
Abduction# 42.4 27-52 6 
Adduction# 51.9 35-63 7.8 

    Table 3-7.  Summary of results for intact joints. 

                     *Translation in mm, #Rotation in degrees 
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Figure 3-2.  Translation/rotation of intact and vented joints.  Note the progressive increase in laxity 

                                 with decreasing joint angle (* Indicates a statistical difference; = outliers; bars = 95th percentile;  

                           boxes = standard deviation).     
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In a comparison of translation elicited during palpation with that measured in the 

biomechanical study, none of the parameters displayed a reliable correlation (Fig. 3-3).  For 

example, at 150º, only 43% (55/128) measurements correlated.  It should be noted, however, 

that the average for all translations at this angle was 2.4mm, which is very close to the cut off 

point between categories in the translation study.  At joint angles of 135º and 90º, palpation  

under-estimated the translation in all of the 32% (41/128) of cases that did not correlate.    
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Figure 3-3.  Correlation between palpation study and biomechanical study.  Light shaded  

                     areas represent the number of cases where the palpation and biomechanical studies  

                     agreed (i.e. > or < 2mm translation).  X-axis – total number of cases. 
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3.4.  Anatomical dissection study 

 

3.4.1.  Static study 
 
 

Previously described anatomical features of the GHJ were observed (Evans 1993), including 

the voluminous nature of the joint capsule (especially the caudal pouch), the subscapular and 

bicipital synovial pouches, and medial and lateral GHLs.  The following additional features 

were noted: 
 

Lateral glenohumeral ligament 

The lateral GHL consisted of 2 bands (Fig. 3-4).  This was consistent in all specimens 

examined in this study.  Together they formed an inverted U shape.  The combined origin 

formed a broad band just caudal to the origin of the m. biceps brachii muscle on the 

supraglenoid tubercle of the scapula and extended laterally to include the craniolateral glenoid 

rim.  One band ran in a caudo-ventral direction (caudal band) and the other ran in a cranio-

ventral direction (cranial band).  The caudal band was 8.5mm wide and the cranial band 5mm 

wide in the one specimen on which it was measured. The caudal band inserted on the humeral 

neck in the region of the caudo-medial aspect of the major tubercle.  It had fibres that extended 

over the caudal aspect of the major tubercle to insert on the proximal tricipital line.  The cranial 

band ran parallel and craniolateral to the tendon of origin of the m. biceps brachii and 

implanted along the medial aspect of the cranial extremity of the major tubercle within the 

intertubercular groove.   

 

Medial glenohumeral ligament and medial joint capsule 

The medial glenohumeral ligament consisted of a cranial and caudal band (as has been 

described in the literature (Bardet 1998, Craig 1980, Evans 1993, Puglisi 1986) originating on 

the medial glenoid rim and converging to implant on the minor tubercle and thus form a Y-

shaped ligament (Fig. 3-5a, b). The caudal band originated on the caudo-medial aspect of the 

glenoid rim just cranial to the infraglenoid tubercle and appeared as a thickening of the joint 

capsule.   
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The cranial band originated medial to the origin of the m. biceps brachii along the craniomedial 

aspect of the glenoid rim.  Proximally it ran medial to the joint capsule, forming a structure that 

was quite distinct from, and only loosely attached to, the overlying joint capsule (Fig.3-5d).  

Distally it merged with the joint capsule and caudal band to form a common insertion on the 

caudal aspect of the minor tubercle.   The medial joint capsule originated on the scapula neck 

about 5-6mm proximal to the glenoid rim (and cranial band of the medial GHL).  Medial to the 

tendon of origin of the m. biceps brachii, the joint capsule formed a narrow fold that appeared 

to be ligamentous and was situated craniomedial to the tendon of origin of the m. subscapularis 

(Fig. 3-5b, c).  This ligamentous structure took origin from the craniomedial glenoid rim on the 

ventral aspect of the coracoid process (blending with the origin of the cranial band of the 

medial GHL) or from the medial GHL itself.  It inserted on the medial aspect of the minor 

tubercle of the humerus within the inter-tubercular groove. On dissection, it did not appear to 

be a thickened fibrous band like the glenohumeral ligaments, but simply a fold of joint capsule, 

giving the impression of a ligamentous band.  A clear fibrous band was, however, identified in 

this region on three of the four further specimens (from two dogs) that were evaluated 

histologically (see microscopic study below).  
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              a                                                                     b  

     
                       c 

Cranial È 

Å Cranial

Lateral Æ

Cranial Æ

 
        Figure 3-4.  Lateral GHL: Medial (a) and lateral (b) views showing cranial and caudal bands. 

                             Dorsal view, m. biceps brachii removed (c) showing broad insertion on medial  

                             aspect of major tubercle.  Caudal band, short arrow; cranial band, long arrow;  

                             tendon of origin m. biceps brachii, arrowhead; major tubercle of humerus, curved arrow. 
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a                                                                      b 

           
c                                                                       d 

Å CaudalCranial Æ

Cranial ÆÅ Caudal 

     Figure 3-5 (a-c).  Medial GHL: Medial view (a, b) and lateral view (c).  Cranial band, long white arrow;    

                                caudal band, short white arrow; coracohumeral ligament, curved arrow;  

                                black arrows, glenoid labrum. 

   Figure 3-5 (d).   Medial glenoid rim.  Black arrows indicate line of medial joint capsule origin.  The joint  

                               capsule is retracted ventrally (short white arrow)  Note that the cranial band of the medial 

                               GHL (long white arrow) is an independent structure with an insertion distal to the joint 

                               capsule. 
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Glenoid cavity and labrum 

A glenoid labrum was noted as a distinct thickened fibrous band in three specimens.  It was 

situated on the caudal and lateral glenoid rim joining the bone and joint capsule (Fig. 3-6).  It 

was up to 3mm in height. 

 
 

         

 

Cranial Æ

Figure 3-6.  Glenoid labrum on lateral rim of glenoid cavity 

                     (looking through the joint). Labrum, arrows. 
 

3.4.2.  Dynamic study 
 

Maximum extension 

A narrow area of the caudal joint capsule (approximately10-15mm wide) provided the main 

restraint against hyperextension  

(Fig. 3-7a, c).  If this area was severed, the caudal joint space widened as the scapula tilted 

forwards (Fig. 3-7b, d).  Neither band of the lateral or medial GHL was fully taut at maximum 

joint extension.  The caudal band of the medial GHL acted as a secondary restraint, only 

becoming fully taut once the caudal joint capsule had been transected. 
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At maximum extension, the supraglenoid tubercle and m. biceps brachii tendon of origin were 

compressed into the intertubercular groove (under the transverse humeral ligament).  This may 

contribute to the stability of the joint in this position.  However, transecting the transverse 

humeral ligament did not appear to significantly diminish joint stability. 

 

Maximum flexion 

The cranial joint capsule, which included the cranial band of the lateral GHL and the capsular 

fold running between the coracoid process and minor tubercle, provided restraint against 

excessive flexion.    

 

Cranial translationa

The cranial band of the medial GHL, caudal band of the lateral GHL, and the caudal joint 

capsule provide primary capsular restraint to excessive cranial translation of the scapula 

relative to the humeral head (Fig. 3-8a, b).  
 

Caudal translationa 

Caudal translation of the scapula relative to the humeral head was restrained by both the caudal 

band of the medial GHL and the caudal part of the caudal band of the lateral GHL (Fig. 3-8c).  

The caudal aspect of the joint capsule was also under tension at maximum caudal translation, 

but isolated sectioning (with the medial and lateral GHLs intact) of this area allowed only 1-

2mm of additional translation.  

The cranial band of the medial GHL, the cranial 2/3 of the caudal band of the lateral GHL, and 

the cranial part of the lateral GHL were in a relaxed state.   

 

 
a Translational evaluations were carried out at a joint angle of 135º 
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a                                                                    b 

        
                   c  Calliper reading: ±4.5mm                                 d  Calliper readi

                 

 

Caudo- 
Medial 
view 

Caudal ÆCranial Æ

                  Figure 3-7(a, c).  Maximum extension: constraint provided by caudal join

                                                supraglenoid tubercle of scapula in the intertubercular 

                                                capsule, short arrow; Caudal band of medial GHL, lon

                  Figure 3-7 (b, d).  Intact medial and lateral GHL with caudal joint capsul

                                                 divergence compared with a and c.  
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                    a                                                                     b 
 

 
c      
 

Cranial

Cranio-lateral 
view 

Cranio-medial 
view 

                 Figure 3-8a, b.  Constraint of cranial translation viewed from a cranio-medial (a) and cranio-lateral  
                                            (b) direction. 
                                            Note the tension on the cranial band of the medial GHL and the caudal band of the lateral  
                                            GHL (arrows).  The cranial band of the lateral GHL has been removed in b.       
                 Figure 3-8c.      Constraint of caudal translation of the scapula (medial view).  Note how the supraglenoid  
                                            tubercle of the scapula rides up on the humeral head.  The cranial band of the medial GHL is  
                                            not under tension (arrow). 
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Medial translationa

The entire lateral joint capsule extending to its most caudal aspect, including the caudal band of 

the lateral GHL, restrained medial translation of the scapula relative to the humeral head  

(Fig. 3-9a, b).  There was no tension on the medial joint capsule, medial GHL, or biceps 

tendon.  

 

Lateral translationa 

The cranial and caudal bands of the medial GHL provided restraint to lateral translation of the 

scapula relative to the humeral head (Fig. 3-9c).  The caudal part of the joint capsule was also 

under tension.  The medial joint capsule was not under any tension (see the separate origins of 

the cranial band of the medial GHL and medial joint capsule above).  The lateral joint capsule, 

lateral GHL and biceps tendon also appeared to play no role in the primary restraint of lateral 

translation.   

 

Note:  Transection of either the medial or lateral GHL (at 135º joint angle) resulted in 

subluxation with approximately 50% displacement of the articular surfaces. If the medial or 

lateral GHL were transected along with the ipsilateral joint capsule, extending past the caudal 

aspect of the joint, then dislocation was possible by rotation of the scapula around the 

remaining intact GHL and surrounding joint capsule. 
 

Internal rotationa 

 
The caudal band of the lateral GHL restricted internal rotation of the scapula relative to the 

humeral head.  The caudal joint capsule was also under some tension and was twisted. 
 

External rotationa 

The cranial band of the medial GHL restricted external rotation of the scapula relative to the 

humerus.  The major tubercle of the humerus and broad fibrous insertion of the supraspinatus 

muscle also provide some restraint to external rotation.  The caudal aspect of the joint capsule 

was twisted in a medial direction. 

 

 
a Translational and rotational evaluations were carried out at a joint angle of 135º 
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Adductiona  

During adduction of the scapula, the caudal band of the lateral GHL and joint capsule directly 

caudal to it provided restraint (Fig. 3-10a).  The caudal joint capsule was not tensed. 

 

Abductiona

Both bands of the medial GHL, as well as the medial joint capsule provided restraint to 

excessive abduction (Fig. 3-10b). No other structures were under tension. 

 
a Translational and rotational evaluations were carried out at a joint angle of 135º 
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                    a                                                                     b 
 

                      

Lateral ÆMedial Æ

 
               Figure 3-9a, b.  Constraint of medial translation.  Cranial (a) and caudal (b) views.  Insertion of caudal joint 

                                          capsule, arrow.   

               Figure 3-9c.       Constraint of lateral translation.  Cranial band of medial GHL, arrow. 
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                     a                                                                   b 

Å Medial

Lateral Æ

             
            Figure 3-10.  Maximum adduction (a) and abduction (b).  Caudal views. 
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3.5.  Microsocopic studya

 

Lateral joint capsule and glenohumeral ligament 

 

The segment of joint capsule lying between the two bands of the lateral GHL identified 

macroscopically revealed the typical components common to joint capsules. Immediately 

bordering the joint cavity was a zone of connective tissue elements of variable width forming 

the synovial membrane (synovium).  The free surface of this membrane was characterised by a 

discontinuous layer of cells ranging from one to four cells deep.  The nuclei of the cells were 

round to ovoid in shape although elongated forms were also observed.  The elongated nuclei 

exhibited a denser karyoplasm than the rounder forms.  Lying between the cells were bundles 

of collagen fibres and an extensive capillary network intimately associated with the surface of 

the joint cavity.  The deeper part of the synovium was composed of scattered collagen fibres 

and fat cells in varying proportions, between which lay numerous blood vessels.  Arterioles and 

venules were positioned close to the layer of surface cells at regular intervals. Beneath the 

synovium was a relatively thin layer of fibrous connective tissue which constituted the outer 

fibrous membrane. This membrane was composed of numerous loosely arranged sheets of 

collagen fibres.  Typically elongated, condensed fibroblast nuclei were associated with the 

periphery of the collagen bundles. Larger blood vessels were located within the fibrous 

membrane or lay adjacent to it.  The fibrous membrane was backed by loose connective 

tissue/adipose tissue containing small muscular arteries and veins.  Synovial folds and villi 

were conspicuous in this part of the joint capsule.  The folds were large, blunt projections of the 

synovium which exhibited the typical features outlined above.  The villi were relatively long, 

slender structures composed essentially of the cellular surface layer of the synovium, although 

they sometimes also contained fat cells. These structures were seen to branch and were 

extremely rich in capillaries.  

 

The cranial and caudal bands forming the lateral GHL were readily discernable by light 

microscopy and were characterised by morphological changes to both the inner synovial 

membrane and outer fibrous membrane.  

 
a This histologic description of the medial and lateral joint structures was written by Prof. John Soley,  
Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria. 
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In the region of the ligamentous bands the fibrous membrane was observed to have thickened 

up to five-fold.  In addition, the layers of fibrous tissue appeared more compact with less 

intervening spaces.  A large part of the membrane exhibited typical cross-sectional features of 

regular dense connective tissue.  A notable feature was the presence of large numbers of 

fibroblast nuclei.  In the broader and thicker caudal band, the connective tissue closest to the 

joint cavity was arranged in the form of fibro-cartilage blocks or sheets along part of its 

surface.  In such regions scattered chondrocytes with round vesicular nuclei were located 

within lacunae.  Blood vessels were absent in the fibro-cartilage units, the closest vasculature 

being observed between elements of the adjacent regular dense connective tissue.  The 

narrower cranial band, in contrast, was composed almost entirely of regular dense connective 

tissue, with only occasional, small pockets of fibro-cartilage being observed.  In comparison, 

the cranial band was far better vascularised than the caudal band. 

 

In the caudal band the typical synovium described above was observed to have thinned 

considerably, leaving only the superficial cellular layer with its capillary network intact.  At the 

transitional zone between the normal joint capsule and the caudal band, the cellular layer 

formed a distinct vascular membrane which soon petered out in the vicinity of the fibro-

cartilage component.  Here, the surface of the joint capsule displayed a thin layer of dense 

material continuous with the fibro-cartilage, embedded in which were dense, elongated nuclei.  

In regions of the band free of fibro-cartilage, the vascular membrane was again apparent.  In 

the cranial band the synovium was more substantial although not as well developed as in the 

non-ligamentous parts of the joint capsule.  The cellular layer of the synovium (vascular 

membrane) was almost continuous except in restricted areas occupied by fibro-cartilage.  In 

places, arterioles and venules were also encountered adjacent to the cellular surface layer.  

 

Medial glenohumeral ligament  

A substantial part of the medial wall of the joint capsule was characterised macroscopically by 

a distinct thickening which protruded appreciably into the joint cavity forming the medial 

glenohumeral ligament.  Obvious cranial and caudal bands could be distinguished and in the 

cranial band a deep split traversed the band dorso-ventrally. 
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Transverse sections of the wall of the joint capsule revealed a combination of histological 

features similar to those seen in the lateral wall of the capsule. Those parts of the capsule 

adjacent to the ligament displayed a typical synovial membrane supported by an outer fibrous 

membrane. The histological features of these components was similar to that described for the 

lateral glenohumeral ligament except that the fibrous membrane appeared thicker in parts, 

particularly towards the more cranial aspect of the medial wall of the joint capsule. Slender 

villi and blunt projections (synovial folds) were also common in this area.  

 

In the vicinity of the medial ligament the synovial membrane displayed variable features. 

Along much of its length only the superficial cellular layer was visible which was restricted to 

a thin band of cells devoid of vascular elements. This cellular layer was interrupted by 

occasional, circumscribed, units of fibrocartilage with typical chondrocytes in lacunae. Short 

segments of vascular synovial membrane were randomly interposed between the two regions 

described above. Only in these areas was the cellular component of the synovial membrane 

supported by loosely arranged fibrous connective tissue bundles and numerous intervening fat 

cells. In areas displaying an avascular cellular synovium and units of fibrocartilage, the fibrous 

membrane of the joint capsule lay close beneath the surface of the joint capsule. The fibrous 

membrane was characterised by closely packed cords of regular dense fibrous connective 

tissue which displayed a paucity of blood vessels. When present, blood vessels lay in localised, 

more loosely arranged, deposits of fibrous connective tissue. 
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Chapter Four 
 

Discussion 

 

In the past, diagnosis of shoulder pathology was essentially limited to those conditions that 

could be identified clinically or where bony changes could be demonstrated on survey 

radiographs eg. tumours, osteochondritis dissecans, fracture, traumatic luxation, contracture of 

the tendon of insertion of the m. infraspinatus (Bennett 1979, Campbell 1968).  Recently, there 

has been a dramatic increase in the number of new diagnostic techniques that have become 

available to veterinarians, including magnetic resonance imaging, computed tomography, 

ultrasonography, scintigraphy and arthroscopy.  We are now able to identify subtle bone and 

soft tissue lesions with a great deal of precision and reliability.  As a result of this and a 

renewed interest in the GHJa of the dog, a number of pathologic conditions have only been 

described relatively recently.  These include tears to the medial and lateral GHLsb (Bardet 

1998, Mitchell 2000); mineralisation of the tendon of origin of the m. supraspinatus (Flo 1990, 

Kriegleder 1995, Laitinen 2000); inflammation, tears, and enthesophytes in the tendon of origin 

of the m. biceps brachii (Rivers 1992); incomplete ossification of the caudal aspect of the 

glenoid (Oliveri 2000); and “joint instability” as a clinical syndrome (Bardet 1998).  

Unfortunately, we are still largely in the dark with regard to the pathogenesis of these 

conditions, their clinical significance, and how best to treat them.  There are many probable 

reasons for this lack of knowledge.  The fact that most of these conditions have an insidious 

onset and are not related to an identifiable traumatic event makes early investigation and 

identification of the primary lesion impossible.  These conditions have also not been 

reproduced in an experimental setting.  There is also a surprising paucity of information 

regarding the normal biomechanical function of the GHJ of the dog to serve as a basis for 

pathologic comparison.  The result has been that authors have extrapolated information from 

human studies.  This may be inappropriate.  It takes no more than a casual glance to identify 

large differences in the function, shape and biomechanics of the GHJ between these two 

species. 
 

a Glenohumeral joint 
b Glenohumeral ligament 
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The objectives of the present study were: 

� To investigate and describe the mechanisms that contribute to static stability in the 

normal GHJ of the dog by means of a biomechanical study and anatomical dissections. 

� To determine the degree of laxity present in the normal GHJ. 

� To determine whether the extent of laxity could be reliably determined in normal dogs 

by means of clinical palpation/manipulation.   

 

4.1.  Palpation study 
 

Except in cases demonstrating gross displacement, clinical examination of the GHJ usually 

offers few diagnostic clues other than isolating the source of the pain to the shoulder region.  

For example, despite the advances in diagnostic imaging techniques cited above, reliable 

methods to accurately determine and evaluate GHJ laxity or instability continue to elude us.  

Use of stress radiographic techniques have not gained widespread acceptance (Puglisi 1988). 

Clinical manipulations have been described to evaluate laxity in the GHJ, but neither the 

accuracy nor interpretation of these tests have been critically appraised and reported (Bardet 

1998). 

 

The palpation part of the present study, performed on fresh cadavers, described the normal 

findings that can be expected on palpation of the GHJ in medium to large breed anaesthetised 

dogs.  The accuracy of palpation of the healthy joint was determined by comparing these 

findings with the objective findings of the biomechanical study.  A simple allocation into 2 

categories (<2mm or >2mm) was chosen, as subjective evaluation of the magnitude of 

translation became impossible with increased distances due to a lack of visual landmarks. 

 

The finding that a definite “stop” was not evident at the extremes of translation in the palpation 

study, but was present in the specimens after muscles had been removed suggests that 

surrounding muscle mass may play a role in contributing to joint stability in a passive manner 

at the limits of translational movement.  Vasseur reported that the major cuff muscles 

surrounding the joint (m. infraspinatus, m. supraspinatus, m. biceps brachii, m. teres minor) 

played little role in this respect (Vasseur 1982).   
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That study was, however, carried out with the limb in full extension which may have 

influenced results (see “locking mechanism” in biomechanical study). The results of the 

present study show that an abrupt “stop” to translation cannot be used as a criterion for 

evaluating the integrity of the static GHJ restraints as has been described in evaluation of the 

stifle joint.   

 

A recent study confirmed the reliability of goniometric measurements in determining 

maximum and minimum GHJ angles in labrador retrievers (max=165º, min=53º) (Jaegger 

2002).  The average maximum angle of extension (155°) and maximum angle of flexion (53°) 

measured in the present study correlate fairly well with that report.   

 

At 150º, very little or no translation was elicited in any direction. As the joint angle decreased, 

despite marked variation, there was an overall tendency toward increasing palpable laxity.  

This was also found in the biomechanical study (reported below).  The proposed functional 

significance of this characteristic is that, at an extended or near extended joint angle (140-

150+º), the static stabilisers provide a greater degree of joint constraint as the limb makes 

ground contact, bears weight, and exerts propulsive forces.  The increased laxity in flexion 

may allow greater joint mobility when performing specific tasks, such as fighting, copulating, 

catching prey or eating.  

 

Measurements of maximum abduction and adduction were initially planned for this part of the 

study, but were abandoned due to difficulty in accurately establishing the plane of the scapula 

at all angles. 

 

4.2.  Biomechanical study 
 

The biomechanical study was designed to investigate the normal constraints provided by the 

static stabilising mechanisms (GHL/JCa complex and LJV/ACb mechanisms), and evaluate 

their relative importance by comparing measurements between intact and vented joints when a 

fixed force or moment was applied at various angles of extension.   

 
a Glenohumeral ligament / joint capsule 
b Limited joint volume / adhesion/cohesion  
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In human studies, venting and irrigation has been employed to eliminate the LJV/AC 

mechanisms (Gibb 1991, Kumar 1985, Matsen 1998). 

 

The average maximum joint angle was identical (155º) to that measured in the palpation study.  

This shows that maximum extension is limited by the static stabilisers of the joint.  The 

average minimum joint angle was markedly less than that measured in the palpation study 

(33.7º versus 53º).  This was seen to be due to bunching of the muscle mass caudal to the GHJ 

that restricted further flexion of the palpation study limb.   

 

Locking mechanism 

Translation and rotation variables were significantly less at a joint angle of 150º than at other 

angles.  This was due to the “locking mechanism” created by tension on the caudal joint 

capsule and compression of the supraglenoid tubercle and tendon of origin of the m. biceps 

brachii within the intertubercular groove of the humerus (resulting in a concavity compression 

effect).  This locking mechanism provided primary restraint and limited all other movement.  

At 135º and 90º degrees extension, as the glenoid cavity translated caudally relative to the 

humeral head, the caudal joint capsule became lax and the constraining effect of the 

intertubercular groove disappeared.  This released the locking mechanism and allowed 

progressively greater translational and rotational movements in both intact and vented joints.  

The increase in laxity occurred in an almost linear fashion.   

 

Relationship of the GHL/JC complex to the LJV/AC mechanisms 

To evaluate the relative constraints provided by the GHL/JC complex and the LJV/AC 

mechanisms, intact and vented joints were compared for differences in translation and rotation 

when a force or moment was applied to them.  For the AC mechanism to be neutralised in the 

intact joint, the bonds between individual synovial fluid molecules and between the synovial 

fluid molecules and the joint cartilage must be broken.  In human studies, venting the joint 

neutralised the LJV/AC mechanisms.  Irrigation of the joint flushed out the viscous synovial 

fluid.  In human texts, the AC mechanism is not considered to provide a strong adhesive force 

and so probably makes up a minor component of the combined LJV/AC mechanisms {Matsen 

shouler 1998}.   
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For the LJV effect to be overcome, the joint volume would have to be increased.  Increasing 

the volume of a sealed joint would require considerably greater force as evidenced by the force 

required to separate Magdeberg spheres (see literature review). 

 

There was no statistically significant difference between intact and vented joints for most 

variables measured in the present study.  The exceptions were cranio-caudal translation at 90º 

and 135º and medial/lateral translation at 135º.  It would appear, therefore, that the LJV/AC 

mechanisms did not contribute significantly to the constraint of joint motion for all other 

variables measured.  It may, however, perform a shock absorbing function by limiting the rate 

of translation or rotation (somewhat like a hydraulic door stay).   

 

The abovementioned exceptions suggest that the LJV/AC mechanisms were not neutralised in 

this trial.  It is also possible that at lower forces the difference in translation between intact and 

vented joints may have been significant in other directions.  In fact this is quite likely as, 

subjectively, the intact joint is less lax than the vented joint on application of small forces, 

especially with regard to traction, which was not measured in the present study.  This would 

have to be substantiated in subsequent studies.  It should be noted that where differences in 

translation/rotation between intact and vented joints were not statistically different, they were 

also not statistically similar (p>0.95).  It is possible, therefore, that a type two error resulted 

where differences were too small to achieve statistical significance.  This mechanism may, 

therefore, still have a minor role to play when minimal forces are acting on the joint, such as 

when the dog is at rest. 

 

To explain the lack of difference between intact and vented joints for most variables in this 

study, the author proposes the following:  The combination of the lax GHL/JC complex and 

volume of synovial fluid present in the canine GHJ will allow a wide range of motion without 

altering total joint volume (and thus engaging the LJV effect), leaving only the weak AC part 

of the mechanism to be overcome. During translation or rotation, the joint capsule adheres to 

any exposed articular surface of the humeral head that is not covered by the glenoid cavity and 

moves into gaps that may develop between the joint surfaces (sulcus effect) (Matsen 1991).  

Synovial fluid is redistributed from compressed areas to those that are distracted.  These 

features enable considerable range of motion without changing the overall joint volume.   
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The result is that the GHL/JC complex provides restraint before the LJV mechanism is 

activated, for movement in most directions. The magnitude of the AC mechanism may be 

limited by the fact that the joint surfaces are actually incongruent with more contact at the 

cranial and caudal edges of the glenoid cavity than centrally, at a standing angle (Maierl 2002). 

The AC mechanism is dependant on congruity to create a thin film and exert its adhesive 

effect.   

 

The above explanation would not apply to cranio-caudal translation at 90º and 135º extension 

where a significant difference was noted between intact and vented joints.  As we have seen, 

laxity of the GHL/JC complex allows considerable translation at these angles (Average: 8.8mm 

and 12.6mm respectively).  The relatively deep cup formed by the glenoid cavity in a cranio-

caudal direction means that the joint surfaces have to separate some distance (with only one 

contact point – the supraglenoid tubercle or caudal glenoid rim on the humeral head) to allow 

translation.  The joint space would have to widen quite dramatically and thereby increase the 

joint volume, engaging the LJV/AC mechanism.  

 

The significant difference between intact and vented joints for medial/lateral translation at 135º 

is more difficult to explain.  The glenoid cavity is remarkably shallow in this direction (1-2mm 

depth) and translation should not require much joint distraction.  In addition, with further 

flexion (a joint angle of 90º), no significant difference in translation was evident for this 

parameter.  A possible explanation, supported by subjective observations during the anatomical 

part of this study, is that the cranio-lateral aspect of the glenoid is forced to ride up onto the 

caudal aspect of major tubercle (and in the live dog - the tendon of insertion of the m. 

supraspinatus) when lateral force is applied, leading to divergence of the joint surfaces.  This 

separation of the joint surfaces would activate the LJV/AC mechanism.  

 

A clinical consequence of the above findings (and the subjective impression that the LJV/AC 

mechanism provides significant constraint when small forces are applied to the joint) is that 

joint effusion or tearing of the joint capsule could increase passive cranio-caudal joint laxity.  

This may further complicate interpretation of subjective clinical palpation findings. 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  GGrraayy,,  MM  JJ    ((22000055))  
  
  
  
 
 



 58
 
 

Comparison to human studies 

Biomechanical studies performed on human cadavers have found a significant difference in 

translation and rotation between vented and unvented shoulders (Gibb 1991, Kumar 1985).  In 

the study by Gibb, anterior (cranial), posterior (caudal), and inferior (ventral) translation were 

evaluated. A significant difference was found between vented and unvented joints for these 3 

parameters.  Anterior/posterior translation in the human would very roughly translate into 

medial/lateral translation in a dog at a joint angle of 90º.  The differences between these limited 

human studies and the present one could relate to a relatively greater amount of synovial fluid 

in the canine GHJ.  Both humans and dogs have, on average just less than 1ml of synovial fluid 

in this joint, despite the marked discrepancies in size (Matsen 1991, Simkin 1984). Added to 

this, humans may have relatively more abundant joint capsule (required for the greater range of 

motion) that is collapsed on itself most of the time due to the small amount of synovial fluid.  

Another possible factor is the presence in humans of a significant glenoid labrum.  This could 

help to seal the joint surfaces when they are compressed and provide an added “suction cup” 

effect.  This effect will enhance the LJV/AC mechanisms by reducing the effective joint 

volume to that space between the two cartilage contact surfaces.  The canine labrum is very 

poorly developed and not even macroscopically present in many specimens.   

 

The vented human joint can translate up to 45 mm in an anterior-posterior plane and some 

people have so much redundant joint capsule that they can luxate the joint voluntarily without 

any pathology (Matsen 1998).  Dogs have a relatively tighter GHL/JC complex that decreases 

the chance of the LJV/AC mechanisms making a significant contribution to stability.   It was 

noted that the joint capsule of the dog is not collapsed in a neutral position but pouches out 

with fluid that has been forced out of the joint space.  Another possible reason for the different 

findings between human studies and the present one is that the dog may have a more pliable 

joint capsule that is easily deformed and moves in between distracted joint surfaces (sulcus 

effect).  The author’s observations during the course of the present study would support this. 

Such flexibility in the capsule would be considered abnormal in humans. The study by Gibb 

used specimens from people who were between 57 and 87 years of age which may have also 

been a reason that joint capsules were less pliable. 
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Laxity versus instability 

The wide inter-specimen disparity between measured variables for the present study is 

probably due to differences in size of specimen, significant individual variations in the quantity 

of joint fluid within the joint, and differences in the relative laxity of the GHL/JC complex. 

This makes quantification of “normal” parameters for joint laxity impossible.  Attempting to 

quantify subtle increases in joint laxity may not be worth persuing since even if a reliable 

method were found, one would still not know what the clinical significance was. 

 

In human medicine, a distinction is made between GHJ laxity and GHJ instability.  GHJ laxity 

could be pathologic or physiologic.  It is quite variable between individuals.  For example, the 

palpable laxity of a supple gymnast will be far greater than a middle–aged non-athletic 

bussinesman of the same size and weight (Matsen 1998).   GHJ instability is a sub-category of 

laxity that is pathologic and has been defined as “an inability to keep the humeral head 

centered in the glenoid cavity during normal range of motion” (Matsen 1998).  Diagnosing 

luxation is relatively simple.  Distinguishing a more subtle instability from laxity is less 

dependant on quantitative differences in translation/rotation than whether the laxity is 

uncomfortable for the patient, or compromises joint function (Matsen 1991, Lazarus 1996). 

Such symptoms would suggest that the stabilizers of the shoulder as a whole (dynamic and 

static) are not keeping the humeral head centered in the glenoid cavity. Interestingly, Matsen 

found that there was no difference in laxity between a study of normal joints and one of 

clinically unstable joints requiring surgery.  He, therefore, suggests that examination under 

anaesthesia and the observation of GHJ laxity during surgery cannot be used to confirm of a 

diagnosis. 

 

Instability in the GHJ of people is broadly divided into 2 major categories.  The first is the so-

called “TUBSa” syndrome that is the result of a traumatic injury with tearing of the glenoid 

labrum along with the attachment of the anterior inferior GHL complex.  This leads to 

unidirectional anterior instability and is traditionally surgically repaired.  In dogs, this is 

similar to tearing the medial GHL as described in dogs by Bardet (Bardet 1998).  These lesions 

have been reported to cause GHJ “instability” in dogs (Bardet 1998).   

 

 
a “TUBS” denotes: Traumatic, unilateral, Bankart lesion, requires surgery 
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Whether actual instability (inability to maintain the humeral head centred in the glenoid cavity) 

results from GHL/JC complex lesions has not been objectively documented in dogs.  Current 

methods of diagnosing instability (history, clinical examination, arthroscopy) as a cause of 

lameness require validation.  The findings of the current study, as well as findings in other 

studies would suggest that isolated torn medial (or lateral) GHLs should simply go on to heal 

without incident or intervention (Vasseur 1983b).  Yet, in some cases they clearly do not heal 

spontaneously, as evidenced by GHL tears visualised arthroscopically following chronic 

thoracic limb lameness (Bardet 1998, Mitchell 2000).   It has been theorised that the reason for 

this apparent paradox is that these injuries become chronic as a result of ongoing high load 

repetitive microtrauma that prevents healing.  The basis for this theory is the typical lack of a 

known traumatic incident, with a rather tenuous citation of human studies where it has been 

found that athletes involved in field sports (where they throw things a lot) tend to suffer this 

type of injury.   Since the GHJ of the dog essentially behaves in a ginglymous (hinge joint) 

fashion (Bardet 1998, Evans 1993, Kinzel 1976), it is unlikely that a dog would be attempting 

to abduct the limb in excess of 34º (average abduction permitted by the GHL/JC complex) or 

rotate it in excess of 60-80º (average range of internal/external rotation permitted by GHL/JC 

complex) on a regular basis during normal daily activity.  The GHL/JC complex should be well 

protected during joint loading by the dynamic stabilisers.  The theory that instability results 

from repetitive microtrauma is further brought into question by the fact that the vast majority 

of reported cases only suffer instability on one side.  Yet the dog is not known to have a 

dominant side.  In one study, only 1/46 dogs was diagnosed with instability in both limbs 

(Bardet 1998).   In the same study, 64% of the dogs diagnosed with joint instability had 

minimal or no radiographic osteoarthritis even though most had a history of chronic lameness 

ranging from 2 months to several years (50% had an erosion of the medial glenoid rim 

identified arthroscopically) (Bardet 1998, Bardet 2002a).  One would, perhaps, have expected 

more evidence of osteoarthrosis from a persistent instability. 

 

The author proposes two separate theories to attempt to explain this apparent paradox: 

1. A pathologic instability is responsible for ongoing trauma to the GHL.  In this case, the 

cuff muscles (dynamic stabilisers) are not functioning as they should (protecting the 

GHL/JC complex).  This could be due to lack of proprioceptive feedback from the 

damaged GHL/JC complex or primary muscle pathology.   
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Alternatively, excessive forces and moments acting about the joint due to conformational 

or gait characteristics could overwhelm the dynamic stabilisers (similar to Slocum’s theory 

regarding rupture of the cranial cruciate ligament in the stifle (Slocum 1983, Slocum 1984, 

Slocum 1993).  Whatever the cause, inefficient muscle support could place excessive stress 

on the joint and supporting structures (static stabilisers) during normal motion. 

2. Traumatic tearing of the GHL may not lead to ongoing functional instability of the joint, 

hence little or no evidence of osteoarthritis.  In this case, other unknown factors (e.g. an 

auto-immune reaction to exposed collagen) could result in continued joint pain, further 

ligamentous degeneration, and failure to heal.  Elevated levels of Type 1 and Type 2 

collagen antibodies are commonly found in cruciate deficient and other osteoarthritic joints 

(de Rooster 2000). 

 

In humans, the second major category of GHJ instability is the so-called “AMBRIIa” syndrome 

where the patient is born with or develops a more general laxity of the joint that results in 

excessive anterior and posterior translation.  These are usually treated conservatively with 

techniques designed to build up the stabilizing contribution of the cuff muscles.  This may be 

similar to congenital instability in dogs – an instability that could ultimately lead to luxation. 

Dogs, however, will often have malformed joints in addition to the instability. These cases are 

usually only presented after complete luxation, which may occur at any age. 

 

It should be borne in mind that pathologic conditions of the human GHJ may have completely 

different pathogeneses to those in the dog because of the substantial differences in structure 

and function. 

 

Comparison of palpation and biomechanical studies 

The comparison of translation elicited on palpation to that measured in the biomechanical 

study showed a poor correlation in most cases.  This may be due to a number of factors:  The 

confounding effect of intervening muscle mass (especially in medium and well muscled 

specimens); difficulty in categorising translations close to 2mm due to the intervening muscle 

mass and lack of visual landmarks; differences between the two studies in the direction of 

 
a “AMBRII” denotes:  Atraumatic, multidirectional with bilateral findings responsive to rehab or surgery – 
inferior capsular shift or rotator interval closed. 
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tension applied; variation in the joint angle during palpation; or the passive effect that muscles 

may have in providing stability.   

 

The findings of the present study apply only to healthy joints, but the author suggests that the 

results of the above comparison should be borne in mind if making use of “drawer” typea 

translational manipulations as a diagnostic tool to evaluate GHJ stability.  Bardet described the 

technique on which the present study was based (Bardet 1998).  He did not report specific 

findings, but suggested that it was possible to identify abnormal laxity by comparison with the 

contra-lateral limb.  One obvious limitation to this approach is that bilateral pathology may be 

present and missed.  The results of the present study suggest that it is very difficult to clinically 

quantify subtle differences in translational distance with the methods described.  This may 

limit the value of comparison with the contra-lateral limb.  This finding is similar to another 

report where palpable laxity could not be elicited in dogs that had torn the lateral GHL 

(Mitchell 2000).  When attempting a comparison of limbs, it is important to ensure that both 

limbs are evaluated at the same joint angle. 

 

Limitations of the biomechanical study 

Unfortunately, almost nothing is known about the magnitude of forces that act around the GHJ 

(or any other joint) in the dog, including the forces that make up the LJV or AC mechanisms.  

A limitation of this part of the study is that it was assumed that the LJV/AC mechanisms could 

withstand the arbitrarily designated force of 15N (or moment of approximately 0.23Nm) 

applied and, if  they couldn’t, then they didn’t make a significant contribution to joint stability 

during loading.  A comparison with forces used in similar human studies shows that the 

LJV/AC mechanisms should be able to withstand considerably more than 15N.  One human 

study showed that the AC/LJV mechanisms provided a mean stabilising force of 146N and two 

other studies have showed significant differences between intact and vented joints at 40N and 

50N respectively (Gibb 1991, Matsen 1998).  The force at which the LJV and AC mechanisms 

are overcome also remain undetermined.   

 
a A “drawer” test has been described, and is commonly used, to determine the integrity of the cruciate ligaments 
of the stifle joint.  The distal femur is grasped with one hand and the proximal tibia with the other.  Cranial and 
caudal movement of the tibia relative to the femur is assessed by applying a force to the proximal tibia (Vasseur 
2003). 
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Further studies in the dog, using progressively changing forces would provide more detailed 

information about the magnitude of the forces active in the AC/LJV mechanisms. 

 

A manual testing technique was used, which could be subject to user error.  All translational 

measurements were repeated three times and good repeatability was shown, however.  

Standard deviations varied but were very small: 0.04 to 0.18mm (Table A10). 

 

A pure moment was applied to the distal scapula for internal and external rotational 

measurements.  The unit of measurement of a moment is Newton-meters (Nm) and is defined 

by the formula: Moment (Nm) = F x dcosα, where F = force in Newtons, d = length of the 

lever arm in meters, and α = the angle of the force in degrees relative to the perpendicular of d. 

The moment varied slightly between specimens.  This was due to small differences in the 

length of the lever arm (distance between the cranial and caudal rings on the scapula) and 

variations in the angle of rotation.  Variations were very small (standard deviation: 0.04Nm) 

and are reported (Table A9).  They are unlikely to have had any material influence on results.  

A moment was also applied to the dorsal scapula for measurement of abduction, adduction, 

maximum flexion, and maximum extension.  The length of the lever arm for these parameters 

(length of the scapula) was not measured at the trial and radiographs were collimated to the 

GHJ, making subsequent measurement impossible. This distance could have varied 

significantly.  The moment applied to intact and vented joints of the same specimen would 

have been similar, making comparisons valid, but cognisance should be taken of this flaw in 

the study design when interpreting the results of inter-specimen comparisons (e.g. average 

abduction or adduction). 

 

A concern raised with regard to the design of this study was that freezing, storage, and thawing 

of specimens might change the viscosity of the synovial fluid and material properties of the 

soft tissue, thereby affecting results.  Due to a lack of sufficient quantity, objective 

measurements were not carried out to determine synovial fluid viscosity, but subjective 

evaluation indicated that the viscosity of the fluid was not significantly impaired during 

freezing, storage or thawing.  The author does not know of any studies evaluating the effect of 

freezing on the biomechanical characteristics of soft tissues. 
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4.3.  Anatomical dissection study 
 

The reader is referred to chapter three for a detailed description of the joint structures and their 

contribution to constraint of joint motion.  To the best of the author’s knowledge, a detailed 

description of the specific functions of each component of the static constraints to joint motion 

has not been previously published.  Most of the joint structures have been identified and 

reported in the literature.  The findings reported in the present study largely corroborate those 

descriptions.   

 

A number of issues warrant further discussion: 

 

Glenohumeral ligament/joint capsule complex 

The GHL/JC complex appears to be a more complex structure than previously described 

(Evans).  The lateral GHL has been described as a single band running from the rim of the 

glenoid cavity to the caudal part of the major tubercle of the humerus (Bardet 1998, Craig 

1980, Evans 1993).  Dissections in this study confirmed the presence of the lateral GHL within 

the lateral JC.  However, the lateral GHL consistently comprised a combination of separate 

cranial and caudal bands that blended into one broad structure proximally to give the ligament 

an inverted-U shape.  The cranial band ran lateral and slightly caudal to the tendon of origin of 

the m. biceps brachii and inserted on the medial aspect of the major tubercle.  It was 

significantly smaller than the caudal band.  This cranial band of the lateral GHL has not, to the 

author’s knowledge, been previously described.  Its function is uncertain, as it only came under 

tension in this study at maximum joint flexion after muscles had been removed.  Maximum 

flexion is probably seldom achieved in the live animal due to the restrictive effects of the 

muscle mass caudal to the GHJ.   

 

The Y-shaped medial GHL has been described and is easily identified during arthroscopic 

procedures (Bardet 1998, Craig 1980).  The fact that the cranial band runs medial to the joint 

capsule and is only loosely attached to it should, perhaps, be highlighted.  Also of interest is 

that the cranial band of the medial GHL and the cranial medial joint capsule arise from 

different origins.  This supports Bardet’s finding (Bardet 1998).   The medial joint capsule 

originates on the scapula neck about 5-6mm proximal to the glenoid rim whereas the cranial 

band of the medial GHL inserts on the glenoid rim itself.   
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To the authors’ knowledge, the narrow fold of joint capsule identified craniomedial to the 

tendon of origin of the m. subscapularis in some specimens has not been previously described.  

It takes origin from the craniomedial glenoid rim on the ventral aspect of the coracoid process 

(blending with the origin of the cranial band of the medial GHL) or from the medial GHL 

itself.  It inserts on the medial aspect of the minor tubercle of the humerus within the inter-

tubercular groove.   It appears ligamentous due to its folded orientation.  When straightened 

out, there appears to be no obvious difference in the thickness between this band and the 

surrounding joint capsule.  However, in three of the four specimens (two dogs) examined 

histologically, a clear fibrous band was visualised in this area running within the joint capsule.  

A similar fold in the joint capsule has been described in the human shoulder, and termed the 

coracohumeral ligament (Cooper 1993, Ferrari 1990).  For clarity and simplicity, and despite 

the fact that it is not a true ligament, the author proposes that the same term be adopted for this 

structure in the canine GHJ. In humans, the coracohumeral ligament plays a role in restraining 

external rotation of the humerus, preventing excessive distraction, and maintaining the biceps 

tendon in the intertubercular groove.  The same may be true in dogs.  Its function is, however, 

uncertain as it was only noted to come under tension on maximal flexion of the dissected joint 

in the present study.   

 

The caudal aspect of the glenohumeral joint capsule plays a greater role in providing restraint 

to joint mobility than has been ascribed to it.  Despite the fact that it appears quite thin, it 

provides the first restraint against hyper-extension.  It also plays a role in restricting rotational 

movements, cranial and caudal translation, and medial and lateral translation.  The caudal 

aspect of the joint capsule could come under tension on a regular basis in the live animal.  This 

may explain why osteophytes are most commonly identified at the caudal aspect of the 

humeral head (Barthez 1993, Kinzel 1976, Vasseur 1983b).  Regular tension in this area may 

also play a role in the development of incomplete ossification of the caudal aspect of the 

glenoid cavity (Oliveri 2000). 

 

This study confirmed the important role that the medial and lateral GHL play in providing a 

final restraint to excessive rotational and translational movements (Craig 1980, Puglisi 1986, 

Vasseur 1982).   
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It was also found that the tendon of origin of the m. biceps brachii does not come under tension 

with any of the manipulations carried out, supporting the theory that it plays little or no role in 

providing static stability (Vasseur 1982).  Other studies have claimed that this tendon plays an 

important role in providing cranial joint stability (Craig 1980) and that a tendon repair should 

be attempted in cases of shoulder luxation where it has been torn (Bennett 1979, Craig 1980).  

It may play a significant back-up role in providing joint stability by its cranial tethering effect 

as a dynamic stabiliser in otherwise compromised joints. 

 

Primary stability 

The issue of which structure/s provide primary stability to the joint has been discussed in the 

literature (Bardet 1998, Craig 1980, Puglisi 1986, Vasseur 1982). The normal extent of joint 

translation in the live dog during normal daily activity is not known.  However, it is difficult to 

imagine that translations of the magnitude recorded in the present study in intact joints is 

tolerated, or that they could occur on a regular basis without significant damage to the joint 

surface. An interesting human study showed that it is not possible to rotate the shoulder joint 

by muscle contraction to the extent that the GHL/JC would allow (Karduna 1996).  The author 

believes this to be true in dogs as well.  In other words, it is very unlikely that a dog would be 

able to voluntarily rotate its GHJ to the same degree measured for the static stabilisers in the 

present study.  The present study shows that the static stabilisers allow a considerable degree of 

translation and rotation.  An in vivo biomechanical trial evaluating joint motion in a single 

healthy dog showed that internal/external rotation and abduction/adduction varied by no more 

than 10-15 degrees at a walk and going up stairs (Kinzel 1976).  These findings would support 

the theory that the surrounding “cuff” muscles (dynamic stabilizers) provide restraint to the 

joint during normal activity (Craig 1980).  While the function of the cuff muscles have been 

mentioned in the literature in this regard, their relative importance has, perhaps, been 

understated in recent times. In human medicine, it is generally accepted that stability of the 

joint is provided by the cuff muscles through the normal range of motion with the GHL/JC 

complex only providing constraint at extremes of joint motion (lazarus 1996).  The results of 

the present study suggest that the same holds true in dogs.    This has important implications 

with regard to surgical repair.   
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Imbricating the joint capsule, as has been suggested in the veterinary literature for repair of 

joint luxations (Piermattei 1997) or tight prosthetic capsular repairs for the repair of torn 

GHL/JC complexes or subscapular ligaments should be performed with caution.   Tightening 

the joint capsule beyond physiologic norms could have an adverse effect on the normal range 

of joint motion and the proprioceptive feedback mechanism.  Prosthetic repair techniques 

should also take into account the normal increase in laxity with decreasing joint angles.   

 

It may be an over-simplification to attempt to classify stabilising mechanisms in the GHJ as 

primary or secondary.  They probably all play an integrated role, providing components of both 

categories that vary according to the position of the joint and stresses applied. For example, the 

GHL/JC complex may provide primary restraint at hyper-extension, but only play a secondary 

role by providing constraint at the extremes of motion in other directions. The cuff muscles 

probably play the most important role during regular activity, with the LJV/AC mechanisms 

perhaps having a role to play when at rest. The LJV/AC mechanisms could also provide a 

shock-absorbing effect.  In addition, it has been shown in humans that the GHL/JC complex 

has proprioceptive nerve endings that initiate reflex, compensatory contractions in the cuff 

muscles when stimulated by stretching.  These cross-over and secondary mechanisms would 

help explain the fact that any stabilizing structure surrounding the joint can be transected in 

isolation without having a marked adverse effect on joint function (Vasseur 1983).  

 

The present study has shown that in the normal joint, for the humerus to luxate in a medial or 

lateral direction (and maintain it’s alignment with the scapula), both the medial and lateral 

GHL/JC must be transected (complete spatial joint derangement).  A similar observation has 

been reported previously (Puglisi 1988).  If either the medial or lateral GHL/JC complex is torn 

independently, the joint will luxate by rotation around the remaining GHL/JC complex (hence, 

taking radiographs with the limb held in alignment will often result in relocation (Puglisi 1986, 

Puglisi 1988).  A conscious dog with all other peri-articular GHJ structures intact is unlikely to 

allow luxation by rotation to occur.  If isolated GHL tears do result in luxation by rotation, then 

it may be adequate to address only the rotational instability when considering surgical repair. 
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4.4 Microscopic study 

 

The joint capsule of the GHJ in the four limbs (two animals) examined histologically showed a 

typical and well-described appearance.  The presence of a discrete cranial and caudal band to 

the lateral GHL was confirmed.  The larger caudal band showed patches of fibro-cartilage, in 

addition to the dense connective tissue.  A fibrous band running in the region as the described 

synovial coracohumeral ligament was identified within the joint capsule in three out of four 

specimens. 

 

 

 

  

 

 

 

 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  GGrraayy,,  MM  JJ    ((22000055))  
  
  
  
 
 



 69
 
 

Chapter 5 
 

Conclusion 
 

This study has identified a number of features that improve our understanding of the 

biomechanical function of the canine glenohumeral joint (GHJ).  

 

The locking mechanism of the GHJ has been described where translation and rotation were 

severely limited at full extension.  This was due to tension on the caudal joint capsule and 

compression of the supraglenoid tubercle and tendon of origin of the m. biceps brachii within 

the intertubercular groove of the humerus.  As the glenoid cavity translated caudally relative to 

the humeral head, the caudal aspect of the joint capsule became lax and the constraining effect 

of the intertubercular groove disappeared.  This released the locking mechanism and allowed 

progressively greater translational and rotational movements in both intact and vented joints. 

 

An important finding is that the normal GHJ of the dog allows a considerable amount of 

translation and rotation when flexed.  This varies quite widely between individuals (sometimes 

even between limbs from the same individual) and increases as the joint angle decreases.  It is 

unlikely that this freedom of movement is permitted in the healthy live animal.  The static 

stabilisers are, therefore, unlikely to be tested during normal range of motion in the live dog 

except in extension. The cuff muscles probably play an important role in providing primary 

stability to the joint during normal activity.  It is, however, likely that the functions of the static 

and dynamic stabilisers are integrated and functions are shared depending on the position and 

loading of the joint. 

 

The natural laxity of the static stabilisers of the GHJ should be borne in mind when interpreting 

biomechanical studies and designing future studies.  This characteristic should also be 

considered when performing or designing examination techniques to determine pathologic 

joint laxity, or when evaluating or developing new surgical techniques to repair laxity, 

instability or luxation. 
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This study has shown that the correlation between clinical palpation and the actual degree of 

laxity present in normal GHJs is poor.  This is probably also true of joints suffering a mild to 

moderate increase in laxity due to pathology.  It has highlighted the need to develop new, more 

reliable methods to confirm the existence of joint instability so that we can tailor our 

therapeutic interventions to directly target the source of the animal’s discomfort. Two theories 

have been proposed to explain the phenomenon of chronic medial GHL injury, which may 

have application to other chronic shoulder conditions:   

1. A pathologic instability is responsible for ongoing trauma to the GHL as a result of 

abnormal function of the dynamic stabilisers.  This abnormal function could be due to 

primary muscle disease or the result of deficiencies in joint proprioceptive feedback, or 

conformational and gait characteristics. 

2. An increased laxity of the joint may or may not be present but other unknown factors result 

in ongoing joint pain and a progression of ligamentous degeneration. 

 

It would appear that the LJV/ACa mechanisms do not significantly add to the constraint 

provided by the GHL/JCb complex except where the joint capsule is relatively lax (i.e.flexion) 

and where translation would result in a large separation of joint surfaces – cranio-caudal 

translation (90º and 135º) and medial/lateral translation (135º).  The LJV/AC mechanisms may, 

however, play a role in providing stability at rest or act as a shock absorber. 

 

A comparison between the results of this study and similar human studies showed important 

differences.  These may relate to differences in the relative amount of joint fluid, extent of the 

glenoid labrum, and redundancy of the joint capsule.  Direct extrapolation from human studies 

to the animal model should be made with caution. 

 

This study has confirmed that the medial and lateral GHLsc provide static constraint to the 

GHJ, especially in rotation, abduction and adduction.  In addition, the caudal joint capsule has 

been identified as an important structure in providing constraint to excessive extension, 

rotation and translation.   

 
a Limited joint volume and adhesion/cohesion 
b Glenohumeral ligament/joint capsule  
c Glenohumeral ligament 
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This may explain the fact that GHJ osteophytes are often found in the region of caudal joint 

capsule insertion.  The coracohumeral ligament and the cranial band of the lateral GHL are two 

intracapsular structures that have been described. 

 

Suggestions for further study 

 

� Repeating the biomechanical tests performed in this study using a more sophisticated 

apparatus to quantify the effects of the LJV/AC mechanisms.  Application of a 

progressive increase in force and constant measuring of displacement would provide 

valuable additional information. 

� Similar studies, carried out on dogs thought to be suffering from pathologic joint laxity, 

would provide interesting comparisons.   

� If an in vivo method to determine the direction and magnitude of forces active across the 

joint during loading could be devised, these results would also contribute important 

information. 

� To devise a reliable technique to evaluate and determine pathologic joint instability. 
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