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Summary 
Most studies on innate immunity in ticks have focused on the antimicrobial 

peptides from hemolymph, such as defensins and lysozyme, while less is known 

about bacterial recognition molecules, or antimicrobial mechanisms in other 

tissues. The current study attempted to identify novel antimicrobial mechanisms, 

with a focus on bacterial recognition by hemolymph proteins and antimicrobial 

activity in salivary gland extracts. 

 

Using bacteria as affinity beads, two high molecular mass molecules (Protein X 

and Protein Y) have been identified in tick hemolymph. These proteins are 

thought to interact with the bacterial surface via ionic interactions. Tandem mass 

spectrometry analysis followed by de novo sequencing indicated that these 

proteins are novel as no homologs could be identified from sequence databases. 

 

In an attempt to clone Protein X, using a degenerate primer obtained from a de 

novo sequence, an unrelated hemocyte protein was identified. This protein, 

named savicalin, was shown to belong to the lipocalin family based on 

bioinformatical analysis. Transcriptional profiling indicated that savicalin is found 

in hemocytes, midgut and ovaries, but not in the salivary glands. To date, this is 

the first tick lipocalin not derived from salivary glands. Interestingly, up-regulation 

of its mRNA transcript in response to bacterial challenge suggests that this 

protein could be involved in antimicrobial activity. Up-regulation after feeding also 

suggests a role in the post-feeding development of the tick. 

 

Two different approaches were used to purify the Gram-positive antibacterial 

activity from salivary gland extracts. The first attempt entailed a two-step 

separation approach. Tricine SDS-PAGE of the active fraction showed 3 

components (~20, ~10 and ~7 kDa). BLAST searches using the N-terminal 

sequences of the latter proteins identified the ~20 kDa protein as savignin, while 

the other two proteins could not be matched. The second strategy included an 
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ultrafiltration step (10 kDa cut-off) and MS-analysis of the active fraction in this 

case indicated the presence of various components with molecular masses 

ranging from 0.99 – 7.182 kDa, with 12 predominant components ranging from 

0.99 - 4.448 kDa. Further tandem mass spectrometry analysis of the active 

fraction revealed the presence of three tick actin-derived fragments. This is of 

interest as actin fragments have been implicated in innate immunity of other 

invertebrates. In this study, synthetic peptides corresponding to one of the 

detected tick actin fragments as well as actin5C (detected in Drosophila 

hemolymph) were found not to inhibit the growth of Bacillus subtilis when tested 

up to a concentration of 100 µg/ml. 

 

It is envisaged that future studies of immunoprotective molecules of the tick, O. 

savignyi, may contribute to the development of novel anti-infective agents and 

potential targets for anti-tick vaccine design. 
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