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Abstract

In the present work we initiate the investigation of a stochastic system of evolution

partial differential equations modelling the turbulent flows of a bidimensional second grade

fluid.

Global existence and uniqueness of strong probabilistic solution (but weak in the sense

of partial differential equations) are expounded. We also give two results on the long time

behavior of the strong probabilistic solution of this stochastic model. Mainly we prove

that the strong probabilistic solution of our stochastic model converges exponentially

in mean square to the stationary solution of the time-independent second grade fluids

equations if the deterministic part of the external force does not depend on time. In

the time-dependent case the strong probabilistic solution decays exponentially in mean

square. These results are obtained under Lipschitz conditions on the forces entering in

the model considered.

We also establish the global existence of weak probabilistic solution when the Lipschitz

condition on the forces no longer holds.

Finally, we show that under suitable conditions on the data we can construct a se-

quence of strong probabilistic solutions of the stochastic second grade fluid that converges

to the strong probabilistic solution of the stochastic Navier-Stokes equations when the

stress modulus α tends to zero.

All these results are new for the stochastic second-grade fluid and generalize the cor-

responding results obtained for the deterministic second-grade fluids.
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