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CHAPTER 5 

 

JUST HOW DO AFFYMETRIX NORMALIZATION METHODS COMPARE? 

STATISTICS CONTEMPLATE BIOLOGY 
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Introduction 

In the last decade researchers in biology has embraced high-throughput systems to measure 

gene expression at a transcriptome level. In these information intensive techniques, like cDNA 

microarrays and Affymetrix arrays, thousands of data points are screened and analyzed, with even 

larger amounts of data points being produced during an analysis. As in all technologies there are 

ambiguities that need to be corrected for, i.e. the intensities of hybridized spots do not necessarily 

reflects the correct level of an expressed transcript mRNA but also contains errors as a result of the 

technology – like PCR biases, hybridization effects, etc. (Kriel & Russell 2005; Harr & Schlötterer 

2006; Steinhoff & Vingron 2006). Slide comparisons, biological replications, experimental designs 

and the identification of differentially expressed transcripts, further complicate these analyses.  

High-throughput array analyses attempt to counter these possible ambiguities in three different 

rectifying steps (Kriel & Russell 2005). An initial image analysis deals with image inaccuracies like 

background corrections, hybridization artefacts, etc. (Kriel & Russell 2005; Steinhoff & Vingron 

2006). Data pre-processing and normalization are usually done together and attempts to get rid of 

technical uncertainties while standardizing (i.e. normalizing) different hybridization events (i.e. 

slides) to the same scale that will allow direct comparisons between slides (Steinhoff & Vingron 

2006). All these normalization methods utilize the Affymetrix GeneChip (Affymetrix, USA) arrays 

perfect match (PM) and/or mismatch (MM) probe pairs in some way (Affymetrix 2002, 

http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf). In Affymetrix 

GeneChip arrays, the mRNA target molecules are represented on the array by probe sets consisting 

of 11-20 probe pairs. Each probe pair contains a PM probe to the target and a MM probe that has an 

altered nucleotide at the middle position, i.e. nucleotide 13 of the 25 bp length probe (Irizarray et al. 

2003). The mismatch probes are used to measure non-specific hybridization. Expression levels of 

the transcript is calculated using the intensities of the hybridized target molecules to the various 

probe sets (Irizarray et al. 2003). After all these corrections, higher-level analyses are used to obtain 

statistical significant answers to biological questions (Kriel & Russell 2005).  The analyses needed 

at each of these steps have prompted the development of numerous statistical applications (Smyth & 

Speed 2003; Smyth 2004; see Table 1 of Irizarray et al. 2006 for an extensive list; Elo et al. 2009).  

However, with such a wide variety of statistical techniques suitable for application to a 

dataset, each with its own biases, assumptions and ambiguities, choosing the best approach that will 

produce statistical significant, biologically relevant results, can quickly become a nightmare. 
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Various comparisons of different normalization and pre-processing methods attempt to identify the 

best approach, but only add to the confusion with conflicting solutions to this problem (Bolstad et 

al. 2003; Irizarray et al. 2003; Shedden et al. 2005; Harr & Schlötterer 2006; Irizarray et al. 2006; 

Lim et al. 2007). Highly controlled dilution and/or spike-in calibration datasets, used in these 

comparisons, are blamed by some for the conflicting answers (Shedden et al. 2005).  

As an alternative to approaches followed in all previous literature/studies, we propose to test 

the feasibility of using more than one normalization method when identifying the statistically 

significant genes expressed using an Affymetrix gene array set. Our hypothesis is that a subset of the 

Affymetrix gene identities (geneIDs)/probe sets, ascertained as differentially regulated, will be the 

same regardless of the normalization method utilized if all the other analyses are kept identical. This 

subset is therefore normalization-method-bias-independent and reflects more accurately significant 

differentially regulated transcripts. We‘ve selected five different background correction and 

normalization methods to investigate their influences on the identification of specific, differentially 

expressed gene transcripts. The rest of the statistical methods were kept the same to investigate the 

relevance of these normalization and background correction methods. This allowed us to compare 

the unique Affymetrix geneIDs/probe sets ascertained as differentially regulated, at three statistical 

significant cut-offs: p ≤ 0.5, 0.1, 0.001, and thus allowing us to assess how many times a specific 

geneID/probe set was identified by the different methods. We‘ve also explored the effectiveness of 

false discovery rate (FDR) and family-wise type I error rate (FWER) approaches in nullifying any 

normalization-biases in order to produce more reliable differentially expressed gene identifications. 

During the final analyses to determine whether a specific gene was differentially expressed, we 

applied the criterion that a gene must be present at a significant level (p ≤ 0.5, 0.1, 0.001) in at least 

four of the five normalization methods to fulfil the significant selection criteria. 

 

Materials and methods 

Experimental design 

Two experiments were independently conducted by different researchers, with three different 

institutions used for the labelling, probing and scanning of the slides (i.e. the Centre for Proteomic & 

Genomic Research (CPGR), Cape Town, South Africa; the Microarray Core Lab (Aurora, CA) and 

the Virginia Bioinformatics Institute Core facility). A fractional design for the comparison analysis 
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of both the datasets was used (Figure 5.1). The two experiments used in this comparative analysis 

employed 12 and 18 GeneChip Wheat Genome Arrays (http://www.affymetrix.com/support/ 

technical/datasheets/wheat_datasheet.pdf) and are referred to as the 12 and 18 slide experiments.   

 

Figure 5.1 A 2 × 2 fractional design used in the analysis of the two experiments, with (A) 

representing the 18 slide experimental comparison and (B) the 12 slide comparison. Abbreviations 

(A): RWA1GR, Dn7 resistant cultivar 94M370 infested with US RWA biotype 1; RWA1GS, the 

susceptible cultivar Gamtoos infested with US RWA biotype 1; RWA2GR, the Dn7 resistant 

cultivar 94M370 infested with the US RWA biotype 2; RWA2GS, susceptible Gamtoos line infested 

by US RWA biotype 2; GR, the resistant cultivar 94M370 control that was un-infested and GS, the 

susceptible Gamtoos control, un-infested. Abbreviations (B): Tug, the susceptible cultivar Tugela; 

TuD, the resistant NIL TugelaDN; Tu2, the resistant NIL Tugela Dn2 and Tu5, the resistant NIL 

Tugela Dn5 - all these lines were infested with the South African RWA biotype. 

 

Aphids and plant material 

In the 12 slide experiment, the effects of RWA feeding on near isogenic wheat lines (NILs) 

between different cultivars infested with one RWA biotype (South African RWA biotype), was 

investigated, while the 18 slide experiment examined the effects of two RWA biotypes (USA 

biotypes 1 and 2) on resistant and susceptible wheat lines (Botha et al. 2010). In the 12 slide 

experiment, the South African (SA) RWA biotype (Du Toit 1989), obtained from the ARC-Small 

Grains Institute (Bethlehem, South Africa) and maintained on the susceptible wheat cultivar 

Scheepers, was used to infest three resistant (TugelaDN, Tugela Dn2 and Tugela Dn5) lines and one 

susceptible wheat cultivar (Tugela). In the 18 slide experiment, two USA biotypes, RWA1 - the 
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original USA 1986 RWA introduction (Lapitan et al. 2007) and RWA2 - a biotype virulent to Dn4 

resistant winter wheat cultivars (Haley et al. 2004), were used to infest Gamtoos (susceptible) and 

the resistant line, 94M370 (Dn7). In short, in both experiments, plants were grown under greenhouse 

conditions (20 – 25 °C) until the 4 leaf stage, when plant infestations commenced in accordance to 

Botha et al. (1998). Total RNA was extracted with the Qiagen RNeasy Plant Mini Kit (Qiagen, 

USA), including on column DNA digestion with RNase Free/DNaseI (Qiagen), all in accordance 

with the manufacturer‘s instructions. RNA quality and integrity were tested using agarose gels and 

the Bio-Rad Experion RNA StdSen Chips (Bio-Rad, USA). The South African RNA samples were 

sent to CPGR (Cape Town, RSA) and the USA samples to the Microarray Core Lab (Aurora, CA) or 

to the Virginia Bioinformatics Institute Core facility, where additional quality control was 

performed. RNA labelling, hybridisation, processing and data gathering were all done in accordance 

to the Affymetrix protocols at these facilities (Botha et al. 2010). A full description of the 

experimental layout can be found in Botha et al. (2010). 

 

Data analysis 

Statistical analysis was carried out using R 2.6.0 (http://CRAN.R-project.org/, Ihaka & 

Gentleman  1996) and Bioconductor 2.1 (http://www.bioconductor.org, Gentleman et al. 2004). 

Additional packages, like the affy (Gautier et al. 2004) and affyPLM (Bolstad 2007) packages, were 

obtained from the Bioconductor website (http://www.bioconductor.org/packages/) as needed. Scripts 

were executed on a Sun Fire V880 (4 × 1.05 GHz SuperSPARC CPU's with 8 GB RAM) running 

the Solaris 9 operating system, with all R script outputs written to file. The raw data obtained from 

the various institutions were analyzed as described in Figure 5.2 using the scripts, codes and files 

summarized in Table Appx 5.1 and script source code (Appendix Chapter 5). In short, information in 

the raw data files (.CEL files), obtained from the various institutions were used for the different pre-

processing and summarization methods. Phenotypic data, including biological repeats, technical 

repeats, sample names to be used in analysis, slide numbers and CEL filenames, were stated in a tab 

delimited text file (Target.txt, Appendix Chapter 5) for each of the experiments and included in the 

raw dataset used for each analysis. The raw data was subjected to different quality control checks 

which included the inspection of the hybridized images, histograms and box plots of log2(PM) 

values and the examination of hybridizations. Background correction and normalization were 

performed using Affymetrix Microarray Suite5 (MAS5.0) (Harr and Schlötterer, 2006), GeneChip 
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Robust Multichip Average (GCRMA) (Zakharkin et al., 2005), Probe Level Models (PLM) (Bolstad 

et al., 2003), Robust Multichip Average (RMA) (Irizarry et al., 2003) and Variance Stabilisation 

(VSN) (Huber et al., 2002). The outputs of these different methods were saved in corresponding 

RData files (Figure 5.2).  

 

 

 

Figure 5.2 A layout of the analysis conducted on each experiment, including some of the output 

folders and filenames (with examples), as produced by the different R scripts. Files and folders 

produced during the running of script 1 are represented by a green block, with script 2 and 3 

represented by a blue and red block respectively. Variable portions of filenames are given in italics. 

Details on the input files and the output files/folders are given within the header of each script 

(Table Appx 5.1).  
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Differentially expressed genes, for datasets of each different background correction and 

normalization method, were determined for three different p-values: 0.05, 0.01 and 0.001. These 

differentially expressed genes were identified from the different normalized datasets by applying the 

same moderated t-test of the limma (linear models for microarrays, LMM) package and Bayesian 

analysis (BA) (Smyth & Speed 2003; Smyth 2004). Transcripts were deemed differentially 

expressed if it had a log2 fold change larger than 1 ([log2(FC)] >1) and a p-value (or an adjusted p-

value) of less-than-or-equal-to 0.05, 0.01 or 0.001 respectively. The comparison-wise false 

discovery rate (FDR) was controlled with the Benjamini-Hochberg multiple testing adjustment 

(Benjamini and Hochberg 1995) and the family-wise type I error rate (FWER) by the Bonferroni 

method (Dudoit & Ge 2004). This produced three datasets before FDR/FWER were determined (95, 

99 and 99.9 % confidences) and three for each of the two correction methods.  

A MS Excel 2007 macro (Convert, Appendix 5) was used to combine all the output 

spreadsheet files into summary spreadsheets (Figure 5.3). The number of times a geneID/probe set 

was obtained using the different background correction and normalization functions, were calculated 

in MS Excel 2007. The presence/absence of a regulated GeneID in a slide comparison was 

represented with a 1/0. Adding these numbers results in the number of times a GeneID/probe set was 

flagged (for a specific p-value) when data was pre-processed differently. The summarized data was 

used to compile the different graphs using Sigma Plot (Jandel Scientific Inc., USA).  
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Figure 5.3 The work flow of the data analysis done on the differentially regulated genes, before and 

after Bonferroni (Bon) and Benjamini-Hochberg (Ben or BenHoch) corrections for 95, 99 and 99.9 

% confidences. The same procedures followed for Benjamini-Hochberg analysis were done for 

Bonferroni. These analyses were repeated for each of the different confidence levels. Files added 

after the analyses are indicated in red. The summary files are given in bold red. 

 

Results 

Quality control of slides, background correction and normalization 

Quality control started with an inspection of the original scanned slide images (Figure Appx 

5.1) to check for any ambiguities on the slides themselves. This was followed by an overall 

summary figure that contained a histogram, dendogram and box plot of the slides used in the 

experimental layout (Figure Appx 5.2). Other quality control figures produced for the raw data sets, 

before normalization and background correction, included the log2 expression comparisons between 

the pre-normalized slides (Figure Appx 5.3) and MA-plots of these slides (Figure Appx 5.4).  In all 
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cases where Bioconductor and R modules allowed, additional information like legend names, were 

incorporated into the figures using the data from the ―Target.txt” file (Appendix 5). The quality 

control steps, after normalization and background corrections with GCRMA, MAS5.0, PLM, RMA 

and VSN, consisted out of summaries of  the treatment comparisons using histograms (Figure Appx 

5.5.), box plots of the log2(PM) values (Figure 5.4 and Figure Appx 5.6), log2 expression slide 

comparisons (Figure Appx 5.7) and MA-plot comparisons (Figure Appx 5.8). The pre-normalization 

dataset was also included in these analyses to allow comparisons with the normalized datasets. An 

example of the results, before and after background correction and normalization with the different 

methods, are presented in Figure 5.4 as different box plots of log2(PM) values of the 12 slide 

experiment. These box plots, when compared to the raw dataset plot, show the influence of the 

normalization process by the different methods employed.  

 

Figure 5.4 Box plots of the log2 (PM) values, before and after background correction and 

normalization were done on the 12 slide dataset with the different statistical approaches. All the 

sample slides occur in the same order in the various graphs in their corresponding triplicate slides 

(Tugela, TugelaDN, Tugela Dn2 and Tugela Dn5) but that the Y-axis differs in accordance to the 

method used. 
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Normalization and background correction methods 

The number of times a specific normalization method identified the most or the least number 

of probe sets, before and after FDR/FWER correction, were compared (Figure 5.5). Methods that 

tend to be less strict in their criteria should more often produce more probe sets than those with 

stricter criteria. In both the 12 and 18 slide experiments, before FDR/FWER corrections, the PLM 

method produced the most probe sets across slide comparisons identified as up regulated for all 

three confidence levels (95, 99 and 99.9 %). The PLM method also produced the most down 

regulated probe sets more often for the 12 slide experiment slide comparisons, before FDR/FWER 

correction and across all confidences. The VSN method delivered the most down regulated probe 

sets for the 18 slide experiment (Figure 5.5 (A) and (D)). The MAS5 correction method produced 

the least number of probe sets more often for both the up and down regulated 12 slide experiment 

across all the confidence levels and slide comparisons. The VSN method produced more regularly 

the least number of probe sets for the 18 slide up regulated slide comparisons across the different 

confidence levels, but different methods contributed for the least number of probe sets for the 18 

slide down regulated slide comparisons (Figure 5.5 (A) and (D)).  

The mean number of probe sets across the difference confidence levels, supported these 

method percentages (Figure 5.5) as producing the largest and smallest number of probe sets for a 

slide comparison before FDR/FWER correction (Figure 5.6). The average probe set number also 

decreased as the confidence levels increased. However, large differences existed in the number of 

probe sets identified as differentially regulated for the various slide comparisons within the different 

experiments. These differences resulted in large errors of their means (Figure 5.6). Therefore, 

significant differences in mean probe set numbers of the different normalization methods are usually 

only observed between methods producing the mean most and the mean least number of probe sets 

(Figure 5.5). Furthermore, as the number of slides analyzed increased, the average number of probe 

sets identified as differentially regulated, also increased, from <5 000 in the 12 slide experiment to 

>10 000 in the 18 slide experiment (Figure 5.6), thereby further hampering direct comparisons 

between the various methods. 

In both experiments, the Bonferroni FWER correction and Benjamini-Hochberg FDR 

correction usually lowered the total mean number of genes identified as differentially regulated 

(Figure 5.6). At the same time these correction methods usually brought the average number of 

probe sets across different confidence levels, closer together (Figure 5.6). In the 12 slide experiment 

after FWER correction, the RMA method usually produced the most probe sets in the different slide 
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comparisons (Figure 5.5 (B)). However, for the same experiment, Benjamini-Hochberg FDR 

correction resulted in the PLM method usually produced the most probe sets under the various 

normalization conditions (Figure 5.5 (C)). The least number of probe sets after FDR and FWER 

corrections, for both up and down regulated genes and across all the different confidences, were 

obtained in 10 of the 12 cases after normalization with the MAS5 method (Figure 5.5 (B) and (C)). 

The VSN method contributed the most genes for the up regulated and the PLM method for the down 

regulated comparisons, after both FDR and FWER correction and under the various confidence 

levels for the 18 slide experiment (Figure 5.5 (E) and (F)). The Bonferroni FWER corrections for 

this experiment usually had the MAS5 method producing the least number of probe sets for the 

different slide comparisons (Figure 5.5 (E)). The least number of probe sets identified as 

differentially regulated after Benjamini-Hochberg FDR correction was obtained from the MAS5, 

VSN and the GCRMA methods (Figure 5.5 (E)). 
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Figure 5.5 (previous page) Normalization method contributions, according to the number of genes 

differentially up or down regulated, were grouped into the largest, second largest, etc. group for each 

specific slide comparison. The number of times a specific method, expressed as total percentage 

contribution across all slides, were then calculated and presented here, i.e. how many times does a 

method produce the most, second most, etc. number of genes for a specific confidence level, across 

all the slide comparisons. These values were calculated before FDR/FWER correction ((A), 12 

slides and (D), 18 slides) and after FWER/FDR corrections (Bonferroni: (B), 12 slides and (E), 18 

slides; Benjamini-Hochberg: (C), 12 slides and (F), 18 slides). The total percentage contribution (y-

axis) for that method is less than a 100 % if there are zero genes identified as differentially regulated 

for one or more slide comparisons. Slide comparisons sometimes delivered the same number of 

differentially regulated genes for two normalization methods. In these cases, both methods were 

placed in the same group. Following normalization method identification, ―U‖ indicates up and ―D‖ 

down regulated comparisons, followed by the confidence level (95, 99 and 99.9 %). 
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Figure 5.6 The mean number of genes/probe sets found to be differentially regulated as found by 

the LMM and BA after normalization with the five methods and at 95, 99 and 99.9 % confidence, 

before/after FDR/FWER corrections. The standard error over all the slide comparisons is indicated 

by the error bars. (A) and (B) represents the down and up regulated 12 slide experiment 

respectively, while (C) and (D) represent the down and up regulated genes of the 18 slide 

experiment, respectively.  
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Identifying false positives 

Differentially expressed genes were identified using linear mixed models (LMM) and 

Bayesian analysis (BA) for each of the background and normalization methods at 95, 99 and 99.9 % 

confidence levels and included only those genes that had a log2 fold change larger than 1. The top 

differentially regulated probe sets after each normalization method and those unique to a specific 

slide comparison, for the 12 slide experiment, are given as examples in Table 5.1 and Table Appx 

5.2. The FDR/ FWER for these datasets were determined and saved at the set confidence for each 

slide comparison for a specific background and normalization method. All these datasets were used 

to calculate the number of times a specific geneID/probe set was differentially regulated after 

different normalization methods, at different confidences, with/without FWER/FDR correction. 

Examples of these analyses, i.e. with the FDR/FWER corrections for the selected probe sets at each 

confidence level, are given in Tables 5.2, 5.3 and Table Appx 5.3.  

Differentially up- or down regulated genes were determined independently, as well as in 

combined sets, for both the 12 and 18 slide experiments. These were summarized and used to 

compute totals of all the percentages of differentially regulated (up, down or combined) 

GeneIDs/probe sets for the different slide comparisons calculated to be present after 1, 2, 3, 4, or 5 

normalization methods, under various confidences (95, 99 and 99.9 %), with/without FDR/FWER 

corrections. The averages of these total percentages summarize differentially regulated probe sets 

for all the slide comparisons, thereby allowing for direct comparisons between the methods and 

experiments (Figure 5.7). In all cases, the largest percentages of geneIDs/probe sets were found 

after normalization by only a single normalization method, regardless of FDR/FWER corrections 

(Figure 5.7). Indeed, an increase in confidence levels and/or with FDR/FWER correction usually 

increase the percentage probe sets identified as differentially regulated after correction by only a 

single normalization method, for example a 15 % increase was observed with an increase in 

confidence (95 vs. 99.9 % confidence, before correction, Figure 5.7 (C)). Similarly, an average of 

ca. 30 % at 95 % confidence before FDR/FWER correction can increase to more than 45 % at a 99.9 

% confidence with FDR correction (Figure 5.7 (C)). The number of probe sets deemed differentially 

regulated after normalization by all 5 methods, as total differentially regulated genes, are < 35 % for 

the 18 slide experiment, and even smaller for the 12 slide experiment (< 25 %) (Figure 5.7). 
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Table 5.1 Selected geneIDs/probe sets shown to be up regulated (12 slide experiment), either generally or for specific slide comparisons 

(TuD-Tug, Tu2-Tug, etc.). Values under the different normalization methods (VSN, RMA, etc.) indicate the number of times the specific 

probe set was obtained across the six slide comparisons within that specific normalization method, i.e. 6 indicates that the probe set was 

obtained in all six slide comparisons. The slide comparisons indicate the number of times the probe set was obtained after normalization with 

the five methods, for that specific comparison, i.e. a 5 indicates that all five normalization methods detected that probe set for the specific 

slide comparison. Values summed for the normalization methods equals the values summed for the slide comparisons and are given by the 

―occurrence‖ (Occ.) value at specific confidences. Table Appx 5.2 shows examples of down regulated probe sets. 

Probe set ID VSN RMA PLM MAS5 GCRMA 
Occ. 

95 % 

TuD 

- 

Tug 

Tu2 

- 

Tug 

Tu5 

- 

Tug 

Tu2 

- 

TuD 

Tu5 

- 

TuD 

Tu5 

- 

Tu2 

Occ. 

99 % 

Occ. 

99.9 % 

Ta.28669.2.S1_x_at 6 6 6 5 6 29 4 5 5 5 5 5 18 16 

Ta.9243.1.S1_at 6 6 6 4 6 28 4 5 5 4 5 5 21 15 

Ta.28669.1.S1_a_at 5 6 6 5 5 27 5 5 5 5 5 2 21 18 

Ta.10120.1.S1_at 1 1 1 1 1 5 5 0 0 0 0 0 3 1 

Ta.10120.1.S1_x_at 1 1 1 1 1 5 5 0 0 0 0 0 1 0 

Ta.10311.1.S1_at 1 1 1 1 1 5 5 0 0 0 0 0 4 3 

Ta.6995.1.S1_x_at 1 1 1 1 1 5 0 5 0 0 0 0 0 0 

Ta.1200.1.S1_x_at 1 1 2 2 1 7 0 5 0 2 0 0 0 0 

Ta.18713.1.S1_s_at 2 1 1 2 1 7 0 5 0 2 0 0 1 0 

TaAffx.110724.1.S1_at 2 1 1 1 1 6 0 0 5 0 0 1 0 0 

Ta.12770.1.S1_at 2 2 2 2 2 10 0 0 5 0 0 5 2 0 

Ta.14005.1.S1_s_at 2 2 2 2 2 10 0 0 5 0 0 5 1 0 

Ta.10381.1.S1_at 1 1 1 1 1 5 0 0 0 5 0 0 1 0 

Ta.1055.1.S1_at 1 1 1 1 1 5 0 0 0 5 0 0 1 1 

Ta.1055.1.S1_x_at 1 1 1 1 1 5 0 0 0 5 0 0 2 1 

Ta.11414.3.S1_a_at 1 1 1 1 1 5 0 0 0 0 5 0 0 0 

Ta.6169.1.S1_at 1 1 2 1 1 6 0 0 0 0 5 1 1 0 

Ta.6626.1.A1_at 1 1 1 2 1 6 0 0 0 0 5 1 2 0 

Ta.10269.3.S1_at 1 1 1 1 1 5 0 0 0 0 0 5 0 0 

Ta.10354.2.S1_x_at 1 1 1 1 1 5 0 0 0 0 0 5 3 2 

Ta.10354.3.S1_x_at 1 1 1 1 1 5 0 0 0 0 0 5 2 0 

Tug, Tugela; TuD, TugelaDN, Tu2, Tugela Dn2; Tu5, Tugela Dn5  
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Table 5.2 GeneIDs/probe sets, selected in Table 5.1, that were still shown to be differentially regulated after FDR (Benjamini-Hochberg 

method) or FWER (Bonferroni) correction. Values under the different normalization methods (VSN, RMA, etc.) indicate the number of 

times the specific probe set was obtained across the six slide comparisons (TuD-Tug, Tu2-Tug, etc.) within that specific normalization 

method, i.e. 6 indicates that the probe set was obtained in all six slide comparisons. The slide comparisons indicate the number of times the 

probe set was obtained after normalization with the five methods, for that specific comparison, i.e. a 5 indicates that all five normalization 

methods detected that probe set for the specific slide comparison. Values summed for the normalization methods equals the values summed 

for the slide comparisons and are given by the ―occurrence‖ (Occ.) value at specific confidences. Table Appx 5.3 shows examples of 

differentially up regulated probe sets after FDR/FWER correction. 
 

Probe set ID VSN RMA PLM MAS5 GCRMA 
Occ. 

95% 

TuD 

- 

Tug 

Tu2 

- 

Tug 

Tu5 

- 

Tug 

Tu2 

- 

TuD 

Tu5 

- 

TuD 

Tu5 

- 

Tu2 

Occ. 

99% 

Occ. 

99.9% 

After FDR               

Ta.28669.2.S1_x_at 3 3 5 2 3 16 0 4 5 1 5 1 9 6 

Ta.9243.1.S1_at 3 3 3 2 2 13 0 3 5 0 5 0 8 4 

Ta.28669.1.S1_a_at 3 3 4 3 3 16 0 5 5 1 5 0 8 4 

TaAffx.110724.1.S1_at 1 1 1 0 0 3 0 0 3 0 0 0 0 0 

Ta.12770.1.S1_at 0 0 1 0 0 1 0 0 1 0 0 0 0 0 

Ta.14005.1.S1_s_at 0 0 1 0 0 1 0 0 0 0 0 1 0 0 

Ta.1055.1.S1_at 1 0 0 0 0 1 0 0 0 1 0 0 0 0 

Ta.1055.1.S1_x_at 1 0 0 0 0 1 0 0 0 1 0 0 0 0 

Ta.11414.3.S1_a_at 0 0 1 0 0 1 0 0 0 0 1 0 0 0 

Ta.6169.1.S1_at 0 0 1 0 1 2 0 0 0 0 2 0 0 0 

Ta.6626.1.A1_at 0 1 1 0 0 2 0 0 0 0 2 0 0 0 

Ta.10354.2.S1_x_at 1 1 1 0 1 4 0 0 0 0 0 4 2 0 

Ta.10354.3.S1_x_at 1 1 1 0 0 3 0 0 0 0 0 3 1 0 

After FWER               

Ta.28669.2.S1_x_at 0 1 1 0 0 2 0 0 2 0 0 0 1 0 

Ta.9243.1.S1_at 0 1 1 0 0 2 0 0 2 0 0 0 1 0 

Ta.28669.1.S1_a_at 0 0 1 0 0 1 0 0 1 0 0 0 1 0 

*Only geneIDs/probe sets of Table 5.1 were included if still deemed differentially expressed after FDR or FWER correction. Tug, Tugela; TuD, TugelaDN, Tu2, Tugela 

Dn2; Tu5, Tugela Dn5 
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Table 5.3 The influences of an increased confidence on the same three geneIDs/probe sets, before and after FDR/FWER correction. Values 

under the different normalization methods (VSN, RMA, etc.) indicate the number of times the specific probe set was obtained across the six 

slide comparisons (TuD-Tug, Tu2-Tug, etc.) within that specific normalization method, i.e. 6 indicates that the geneID/probe set was 

obtained in all six slide comparisons. The slide comparisons indicate the number of times the probe set was obtained after normalization with 

the five methods, for that specific comparison, i.e. a 5 indicates that all five normalization methods detected that probe set for the specific 

slide comparison. Values summed for the normalization methods equals the values summed for the slide comparisons and are given by the 

―occurrence‖ (Occ.) value at specific confidences.  

 

Probe set ID 
Confi-

dence 
VSN RMA PLM MAS5 GCRMA Occ. 

TuD 

- 

Tug 

Tu2 

- 

Tug 

Tu5 

- 

Tug 

Tu2 

- 

TuD 

Tu5 

- 

TuD 

Tu5 

- 

Tu2 

Before FDR/FWER   
           

 

TaAffx.110208.1.S1_at 0.05 6 6 6 6 6 30 5 5 5 5 5 5 

TaAffx.26346.1.S1_at 0.05 5 6 5 5 6 27 5 5 5 5 5 2 

Ta.4593.1.A1_at 0.05 6 5 5 5 5 26 5 5 5 5 5 1 

TaAffx.110208.1.S1_at 0.01 5 6 6 6 6 29 5 5 5 4 5 5 

TaAffx.26346.1.S1_at 0.01 5 5 5 5 5 25 5 5 5 5 5 0 

Ta.4593.1.A1_at 0.01 4 4 5 5 4 22 5 5 5 2 5 0 

TaAffx.110208.1.S1_at 0.001 4 4 6 4 4 22 1 5 5 1 5 5 

TaAffx.26346.1.S1_at 0.001 3 4 4 4 3 18 0 5 5 3 5 0 

Ta.4593.1.A1_at 0.001 3 3 3 4 2 15 1 5 5 0 4 0 

After FDR  
           

 

TaAffx.110208.1.S1_at 0.05 3 4 5 3 4 19 0 3 5 1 5 5 

TaAffx.26346.1.S1_at 0.05 3 3 3 3 2 14 0 4 5 0 5 0 

Ta.4593.1.A1_at 0.05 3 3 3 3 1 13 0 4 5 0 4 0 

TaAffx.110208.1.S1_at 0.01 3 3 4 3 3 16 0 1 5 0 5 5 

TaAffx.26346.1.S1_at 0.01 1 3 2 1 1 8 0 1 5 0 2 0 

Ta.4593.1.A1_at 0.01 1 1 3 1 1 7 0 1 5 0 1 0 

TaAffx.110208.1.S1_at 0.001 3 2 3 1 2 11 0 0 5 0 4 2 

TaAffx.26346.1.S1_at 0.001 1 1 1 0 0 3 0 0 3 0 0 0 

Ta.4593.1.A1_at 0.001 1 1 1 1 0 4 0 0 4 0 0 0 
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After FWER               

TaAffx.110208.1.S1_at 0.05 1 1 3 1 1 7 0 0 5 0 1 1 

TaAffx.26346.1.S1_at 0.05 0 1 0 0 0 1 0 0 1 0 0 0 

Ta.4593.1.A1_at 0.05 0 0 0 0 0 0 0 0 0 0 0 0 

TaAffx.110208.1.S1_at 0.01 1 1 2 0 1 5 0 0 4 0 1 0 

TaAffx.26346.1.S1_at 0.01 0 0 0 0 0 0 0 0 0 0 0 0 

Ta.4593.1.A1_at 0.01 0 0 0 0 0 0 0 0 0 0 0 0 

TaAffx.110208.1.S1_at 0.001 0 0 2 0 0 2 0 0 1 0 1 0 

TaAffx.26346.1.S1_at 0.001 0 0 0 0 0 0 0 0 0 0 0 0 

Ta.4593.1.A1_at 0.001 0 0 0 0 0 0 0 0 0 0 0 0 

*For comparison reasons, geneIDs/probe sets no longer deemed differentially expressed after FDR/ FWER correction were included. Tug, Tugela; TuD, TugelaDN, 

Tu2, Tugela Dn2; Tu5, Tugela Dn5. 

Table 5.3 cont.  
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Figure 5.7 The averages of the total percentages of geneIDs/probe sets predicted to be differentially 

regulated, after normalization at different confidences (95, 99, 99.9 %) and before/after FDR/FWER 

corrections. The standard errors were calculated on the percentage contribution of each slide 

comparison to a 1, 2, 3, 4, or 5 method occurrence that was initially used to determine the mean sum 

(average total) percentage for each specific confidence (95, 99, 99.9 %) and before/after 

FDR/FWER correction. (A)-(C) represent the 12 slide experiment, with (A) the total differentially 

regulated genes, i.e. the combined down and up regulated percentages, while (B) and (C) represent 

the down and up regulated genes respectively. Similarly (D)-(F) represent the 18 slide experiment, 

with (D) the combined, (E) the down and (F) the up regulated differentially expressed gene. 
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Discussion 

Analyzing Affymetrix data can be a daunting prospect, especially with all the numerous 

normalization and background correction methods available (Smyth & Speed 2003; Smyth 2004; 

Irizarray et al. 2006; Elo et al. 2009). The necessity of using these methods is obvious when 

comparing pre-normalized and normalized datasets, but at the same time the variation in results 

between the different normalized datasets becomes noticeable (Figure 5.4 and Figures Appx 5.2-

5.8). Indeed, normalization procedures are performed to correct for systematic deviations inherent of 

the technology (Kriel & Russell 2005; Harr & Schlötterer 2006). Increasing the significant cut-offs, 

i.e. confidence levels, or using FDR/FWER corrections methods, can be conceived as suitable 

countermeasures to any biases introduced by these normalization and background correcting 

methods. Indeed, an increase in confidence values or in the presence of FDR/FWER correction, the 

number of times probe sets are categorized as differentially expressed usually does decrease the 

significant geneIDs/probe sets. However, the same can be observed on a method specific basis 

(probe sets: Ta.10120.1.S1_at, Ta.10120.1.S1_x_at, Ta.10311.1.S1_at in Tables 5.1 and 5.2, also all 

three accessions of Table 5.3). This suggests that an increase in confidence levels or the use of 

correction methods on a dataset will not neglect the normalization method biases.  

The normalization and background correction of Affymetrix slides using different statistical 

approaches should theoretically produce a large number of similar probe sets, especially if the 

methods only normalized for the experimental method errors that they were designed for. However, 

since each method contains inherit biases and statistical assumptions, this is not necessary the case 

(Kriel & Russell 2005; Shedden et al. 2005; Harr & Schlötterer 2006). Indeed, previous studies have 

shown that normalization methods initially used, have huge implications in detecting differentially 

regulated genes (Hoffmann et al. 2002; Shedden et al. 2005), and that these initial correction events 

have the largest influence on identifying differentially expressed genes (Hoffmann et al. 2002; 

Irizarray et al. 2006). This is clearly illustrated in Figure 5.7, with the exception for the 

differentially up regulated part of the 18 slide experiment (Figure 5.7 (F)), in that more than a third 

of the geneID/probe set percentages were only associated with a single normalization method. 

Arguably, this does not necessary indicate that a third of the regulated probe sets are method 

specific, but that a single normalization method, less strict than the others, could produce more 

probe sets, a higher probe set percentage and a lower likelihood that another method would have the 

same probe sets. Similarly, the opposite can also be true. Indeed, there seems to be large differences 

in the amount of predicted regulated geneIDs/probe sets after normalization with the different 
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methods, especially at lower confidence levels (95 % No FDR/FWER, Figure 5.6). This suggests 

that an increase in selection criteria stringency, i.e. higher confidence levels (99.9 %), fewer 

geneIDs/probe sets would be unique since highly regulated individuals are preferentially selected. 

The existence of normalization-method-dependent, differentially regulated, probe set identifications 

have previously been reported, however only at a single confidence level (Hoffmann et al. 2002). 

Here, the number of probe sets identified as differentially regulated, does decrease to become more 

comparable when confidence levels increase (99.9 % No FDR/FWER, Figure 5.6). However, the 

averages of the total percentages of geneIDs predicted to be differentially regulated, after 

normalization at different confidences (95, 99, 99.9 %) and before/after FDR/FWER corrections, 

occurring in only a single method also increase with this increase in confidence, while those 

geneIDs/probe sets occurring in all five methods, decrease (Figure 5.7). This suggests that a 

confidence increase does not counteract a normalization method‘s inherited biases, but does appear 

to shift geneIDs towards single method identification, i.e. increasing the bias.  

Normalization method tendencies to produce the most or the least amount of genes for slide 

comparisons, were investigated for both experiments (Figure 5.5). Differences in the number of 

differentially regulated probe sets have been previously reported for different normalization methods 

initially used (Hoffmann et al. 2002; Shedden et al. 2005), as was the case here. In the 12 slide 

experiment, before FDR/FWER correction, PLM produced the most genes in both up and down 

regulated slide comparisons at all three confidence levels, with MAS5 the least number of genes 

(Figure 5.5). However, in the 18 slide experiment, PLM only contributed the most genes in the up 

regulated comparisons, while VSN contributed the largest amount of genes for the down regulated 

comparisons (Figure 5.5). After FDR/FWER correction, however, this switched around, VSN 

contributes the most genes for the up regulated comparisons, and PLM for the down regulated 

comparisons. The least number of genes for the up regulated slide comparisons, before FDR/FWER 

correction, were at each confidence level VSN, while it differed for the down regulated slide 

comparisons (Figure 5.5). FWER correction with Bonferroni of the 18 slide comparisons usually 

resulted in MAS5 having the smallest number of genes for slide comparisons, while Benjamini-

Hochberg FDR corrections having the least number of genes produced by MAS5, VSN and 

GCRMA (Figure 5.5). In the 12 slide experiment, Bonferroni also seemed to lower the number of 

genes deemed regulated by PLM method, thereby resulting in the RMA method usually producing 

the most genes in slide comparisons (Figure 5.5), but the Benjamini-Hochberg correction did not 
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(Figure 5.5). Again, the MAS5 normalization method usually resulted in the smallest number of 

gene deemed regulated for 10 out of the 12 overall comparisons (Figure 5.5).  

False discovery rate (FDR) and FWER correction methods, like Benjamini-Hochberg‘s and 

Bonferroni‘s, tries to lower the number of false positives within predictions of differentially 

regulated geneIDs/probe sets. From the above results it is clear that normalization methods influence 

which probe sets will eventually be predicted as differentially expressed (Figures 5.5 and 5.7). 

Furthermore, the probe set eventually identified is dependent on the inherited statistical biases of the 

normalization method, which may increase as confidence levels increases. These underlying 

normalization method biases cannot be nullified by FDR/FWER correction methods: Except for 

Bonferroni at 95 and 99 % confidences, the percentage of probe sets contributed by a single method, 

increases – especially for Benjamini-Hochberg FDR corrections (Figure 5.7). Similarly, the number 

of probe sets found in all five methods, tend to decrease (Figure 5.7). However, Bonferroni FWER 

correction increased the number of probe sets identified as differentially regulated for the ―4 out of 5 

normalization methods‖ class (Figure 5.7), though Benjamini-Hochberg‘s approach didn‘t when 

compared with the non-FDR entries. Though the two correction methods tested here usually resulted 

in a decrease in the number of predicted probe sets (Figure 5.7), the same shifting tendency is 

observed when confidence levels are increased, i.e. towards a single geneID-single normalization 

method, is seen here. The exception, i.e. the increased number of probe sets associated with the 

Bonferroni ―4 out of 5 normalization method‖ class, suggests that this method either decrease false 

negatives or decrease false positives of a single or multiple methods, thereby increasing the number 

of probe sets occurring in 4 out of the 5 methods. However, this correction method is very strict and 

rejects many probe sets, i.e. lower geneID numbers (Figure 5.7). This suggests that only the highly 

significant probe sets are retained in each method, thereby increasing the chance of getting the same 

probe set. A bias in one or more methods probably prevents this FWER correction method from 

shifting probe sets to the ―all 5 methods‖ class.  

New introductions of normalization methods always seem to be better than the last (Irizarray et al. 

2006). Matters are further complicated by different comparison studies suggesting different 

normalization method based on different testing approaches; from spike-in data sets (Irizarray et al. 

2003) to sex linked internal control genes (Galfalvy et al. 2003) and co-expressed operon linked 

control genes (Harr & Schlötterer 2006). Control calibrations/statistics, however, do not consistently 

produce the same results when using algorithms on experimental datasets (Shedden et al. 2005). 

Indeed, normalization method influence has previous  been reported for different study aims, i.e. 
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different methods produced better results for a data set depending on the aim - the identification of 

differentially expressed genes or co-expressed genes (Harr & Schlötterer 2006; Lim et al. 2007). 

The results presented here suggest that though normalization and background correction methods 

may produce apparently adequate corrections, they do play a major role in the final geneIDs/probe 

sets and number of transcripts found to be differentially regulated, as was previously shown 

(Hoffmann et al. 2002; Shedden et al. 2005). However, here we further showed that by increasing 

the confidence levels for selecting differentially regulated probe sets or using FDR/FWER 

correction methods, the percentage bias of the normalization method initially used may actually 

increase, while the number of probe sets maybe lowered. How can results be trusted if 20-65 % 

(Figure 5.7) of the geneIDs identified only occurs as the result off one or two normalization 

methods initially selected? Although probe sets seem to be influenced more by the normalization 

method initially used, the results highlights the need for using a multiple normalization approach, 

i.e. an approach where the initial normalization and background corrections are done by various 

methods suitable to the specific experimental design. The various normalized datasets are then 

carried through the whole process of differentially gene identification, until the resulting probe sets 

can be compared. This can easily be done using the scripts developed here. If a probe set then occurs 

in 4 or 5 (or even 3) out of 5 normalized datasets (with/ without FDR/FWER correction), it is more 

likely to be differentially regulated rather than an introduced normalization method bias. This 

approach should identify probe sets unique to a specific biological interaction, which is 

normalization method independent and suitable for marker development. 
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CONCLUSION 
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The aphid-plant interaction, especially between Diuraphis noxia and wheat, has been the 

subject of numerous studies. In these, the focus was usually on plant defense: either how different 

wheat cultivars‘ respond to RWA feeding or how different aphid biotypes infestation profiles differ 

based on resistant plant differentials. The theory that resistant cultivars forced new RWA biotypes, 

a.k.a. the arms race, is widely accepted. However, aphids‘ successes as plant sap feeders are directly 

contributed to their endosymbiont. This would suggest that any selective pressure on the aphid 

would be on the endosymbiont as well. This in turn implies that any endosymbiont changes 

beneficial to its aphid host may result in more adaptive RWA biotypes.  

The main aim of this study was to look at the role, if any, of the RWA endosymbiont, 

Buchnera aphidicola, on the RWA-wheat interaction. It was established that no secondary 

symbionts were present in the ten RWA biotypes investigated and that all the aphid biotypes only 

had their primary endosymbiont, B. aphidicola. Previous studies showed that this endosymbiont 

played a crucial role in aphids‘ ability to survive on plantsap by increasing essential amino acids that 

occurs in limited amounts within it. However, other reports on the RWA-B. aphidicola interaction 

suggested the endosymbiont played a decreasing role in RWA fitness in that it produced less 

essential amino acids. This hypothesis was further supported by studies that showed that the RWA 

had the ability to alter amino acid composition of susceptible wheat cultivars by increasing those 

essential amino acids previously supplied by its endosymbiont. However, in these studies, the RWA 

could not alter the amino acid composition of resistant cultivars. The results presented here suggest 

that B. aphidicola may still play a role in aphid fitness. Firstly, copy numbers of an essential amino 

acid producing plasmid varied amongst the different B. aphidicola originating from the different 

RWA biotypes. Secondly, though little sequence variation was found amongst these endosymbionts, 

the single CCC-insert difference did have a role in increasing the expression levels of the subsequent 

genes when compared to their plasmid copy numbers. Furthermore, the CCC-insert also increased 

the leader sequence length, thus resulting in more stable 5‘ UTRs. These findings, together with 

similar variations identified in this study within other aphid species, suggest a regulatory function 

for this region. However, they also suggest that B. aphidicola may play a role in RWA fitness.  

Continuous pressure of low concentrations of essential amino acids in resistant wheat 

cultivars, selected for aphids that can survive under these limiting conditions. Normally, the RWA 

would increase these essential amino acids in its diet while feeding. Failing to do so would severely 

limit or even kill a RWA population. Another way of dealing with this problem is through natural 

selection of RWA individuals that can upgrade their diet, i.e. aphids that have B. aphidicola that 
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supply it with the required amino acids. This can be done by increasing the output of the essential 

amino acid biosynthesising pathways, either via increased copy numbers or through higher 

expression levels of these genes. Results in the present study showed that there were differences in 

an essential amino acid plasmid‘s copy numbers – to date it is believed to be the only way that the B. 

aphidicola can regulate its gene expression. However, a mutation preceding the leader sequence of a 

leucine plasmid gene led to differences in transcript levels. This suggests another method through 

which B. aphidicola could alter transcript levels and thus play a role in its host‘s fitness. Indeed, 

these changes in plasmid expression in the endosymbiont may potentially result in the development 

of new biotypes, especially since RWA biotypes are currently distinguished from each other based 

on the different resistant cultivars they can feed upon. Alternatively, B. aphidicola could at the very 

least allow the RWA populations to survive on resistant wheat cultivars until they‘ve adapted to 

feeding on them. 

The second part of the study looked at the influences of statistical normalization methods on 

the identification of differentially regulated probe sets, when RWA-plant interactions are 

investigated with Affymetrix GeneChip technology. The hypothesis of this section stated that there 

should be a consistent subset of regulated probe sets/geneIDs identified as differentially regulated, 

regardless of the initial normalization method employed, as long as the rest of the analyses were 

constant, and that this subset would be normalization-method-independent. Two Affymetrix RWA-

wheat interaction datasets, that included the interactions of two South African and two US RWA 

biotypes with a total of six wheat accessions, were investigated using five different normalization 

and background correction methods (RMA, GCRMA, MAS5.0, PLM, VSN) at three different 

confidence levels (95, 99, 99.9 %), in the presence and absence of FDR/FWER correction.  

The results illustrated that genes identified as differentially expressed were highly dependent 

on the specific normalization and background correction method employed. It was also shown that 

normalization and background correction method dependent biases could not be nullified by 

increases in confidence levels, but that this actually tends to increase these biases. Furthermore, 

FDR and FWER detection methods usually add to the normalization and background correction 

bias, except in normalization approaches that are very strict in their selection criteria. This supports 

a hypothesis that the genes identified as differentially regulated depend on the inherited statistical 

biases of the background correction and normalization methods employed, and that both 

FDR/FWER and increased confidence levels could actually further enhance this problem. A 

multiple normalization approach on the initial data is proposed to enable the identification of a probe 
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set subset that is normalization-method-biases-independent. These genes/probe sets should not be 

influenced by any of the different normalization method biases, and would therefore reflect the true 

biological differentially regulated genes.   
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