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Introduction 

Diuraphis noxia Kurdjumov (Russian wheat aphid, RWA), originally from Central Asia 

through to the Middle East (Stary 2000; Stary & Lukasova 2002), has increased its distribution 

to all cereal producing countries except for the region of Australasia (Blackman & Eastop 2000; 

Baker et al. 2003). Introduction to these new areas were shown to have low biotypic diversity 

(Puterka et al. 1993), probably due to a small founder effect. Recently new RWA  biotypes 

appeared in the USA and South Africa (Haley et al. 2004; Burd et al. 2006; Tolmay et al. 2007; 

Weiland et al. 2008) implying either new introductions or adaptation and diversification of 

existing populations. Molecular analysis of the new biotypes supports a diversification theory 

(Lapitan et al. 2007). However, these new aphid biotypes still have little nuclear and 

mitochondrial sequence variation (Lapitan et al. 2007; Shufran et al. 2007). RWA biotypes are 

distinguished on their ability to overcome resistance, their fecundity and the damage that they 

cause to a plant differential, but not on aphid morphology (Puterka et al. 1992; Jyoti & Michaud 

2005; Burd et al. 2006; Jyoti et al. 2006; Weiland et al. 2008). However, little information on 

these biotypes‘ bacterial endosymbionts exists.  

Symbiosis enabled aphids to exploit a nutritionally imbalanced food source such as phloem 

(Srivastava 1987; Douglas 1998). The usual partner in this relationship, the bacterium Buchnera 

aphidicola, is maintained transovarially and maternally between generations inside aphid 

produced cells called mycetocytes (bacteriocytes) (Munson et al. 1991; Baumann et al. 1995; 

Dixon 1998; Douglas 1998). The Buchnera-host relationship is not only complex but also 

obligatory to both parties, with this gram-negative bacterium found in almost all aphid species. 

Removal of the endosymbiont from its host usually leads to sterile aphid offspring (Munson et 

al. 1991; Baumann et al. 1995; Douglas 1998). The dependency of the endosymbiont on its host 

was clearly illustrated by genome sequencing that showed many genes from key pathways were 

absent in the bacterium (Shigenobu et al. 2000; Tamas et al. 2002; Van Ham et al. 2003; Zientz 

et al. 2004).  

Pathways retained by B. aphidicola, like the essential amino acid biosynthetic pathway, 

suggest that this endosymbiont still plays a crucial role in aphid nutrition (Shigenobu et al. 2000; 

Tamas et al. 2002; Van Ham et al. 2003; Nakabachi et al. 2005). The type of pathway genes 

retained appear to be diet dependent (Tamas et al. 2002; Zientz et al. 2004), i.e. B. aphidicola is 

responsible for the production and recycling of certain essential amino acids found in low 

quantities in the aphid‘s diet (Mittler 1971; Douglas & Prosser 1992; Douglas 1998). The 

production of these essential amino acids in sufficient quantities is accomplished by duplicating  

genes and by moving rate limiting enzymes (anthranilate synthase, ptrpEG), or even whole 
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pathways (leucine biosynthetic pathway, pleuABCD), to single or multiple copy plasmids (Lai et 

al. 1994; Van Ham et al. 1997; Baumann et al. 1999). These plasmid copy numbers are known 

to differ between biotypes of the same species (Moran et al. 2003).  

However, lower plasmid copy numbers and the presence of pseudogenes have led to the 

belief that the symbiotic relationship between D. noxia and B. aphidicola is concurrently 

diverging from essential amino acid production (Lai et al. 1996; Thao et al. 1998). This 

hypothesis is further supported by observations that the RWA alters protein profiles and up-

regulates leucine and tryptophan levels in the phloem of susceptible wheat cultivars, but not in 

resistant lines (Van der Westhuizen & Pretorius 1996; Telang et al. 1999; Porter & Webster 

2000; Sandstrom et al. 2000; Ni et al. 2001).  

In addition to the primary endosymbiont, B. aphidicola, aphids may contain an 

independently acquired secondary (facultative) symbiont(s) (Unterman et al. 1989; Chen et al. 

1996; Darby et al. 2001; Fukatsu 2001). Evidence suggests that these can be horizontally 

transferred when aphids feed on contaminated host plants (Sandstrom et al. 2001; Russell et al. 

2003; Russell & Moran 2005) and that even horizontal plasmid transfer to B. aphidicola could be 

possible (Van Ham et al. 2000). In Bemisia tabaci (sweet potato whitefly) certain secondary 

symbionts are biotype specific (Chiel et al. 2007). Facultative symbionts can contribute to the 

well being of their aphid hosts through inferring resistance against predators such as parasitic 

wasps (Oliver et al. 2003; Ferrari et al. 2004) or pathogenic fungi (Scarborough et al. 2005), an 

ability to withstand higher temperatures (Chen et al. 2000; Montllor et al. 2002), higher 

fecundity (Chen et al. 2000) and in some instances could even compensate for the loss of B. 

aphidicola (Koga et al. 2003). Similarly, some may have a negative impact on aphids, 

manifested as slower growth rate, a decrease in reproduction and a shorter life span (Chen et al. 

2000; Leonardo 2004; Ferrari et al. 2007).  

The importance of this symbiont-host relationship was recently illustrated in the B. 

aphidicola found in Acyrthosiphon pisum, where a single point mutation proved to be crucial for 

the survival of the host at different temperatures (Dunbar et al. 2007). Changes in symbiont 

diversity or small changes within the symbiont(s) can therefore have major effects on the aphid‘s 

viability and adaptation potential. The possible role of symbiont(s) on RWA biotype 

development and the reverse, i.e. the effect of biotype formation on the symbiont(s), have to date 

not been investigated. Here these interactions are investigated in ten D. noxia biotypes by 

determining the complete endosymbiont assemblages, as well as sequence variation and copy 

numbers of the leucine and tryptophan plasmids from their primary endosymbiont, B. aphidicola. 
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Materials and Methods 

Diuraphis species and biotypes 

The originally introduced South African biotype (SA) (Du Toit 1989) was obtained from a 

colony established on field collected parthenogenetic females at the ARC-Small Grains Institute, 

Bethlehem, South Africa and sustained on a RWA susceptible wheat cultivar, Scheepers. A 

mutated form of the South African biotype (SAM), laboratory induced by Dn resistant selective 

pressure, was maintained on the resistant cultivar, TugelaDN (Van Zyl & Botha 2008). Females 

of both biotypes were kept in insect cages at 20 ± 2 ºC with continuous artificial fluorescent 

lighting. Samples of the eight USA biotypes were obtained from Prof. N.L.V. Lapitan (Colorado 

State University, Fort Collins, USA). Biotype USA1 is the original USA 1986 RWA 

introduction and USA2 is characterized by its virulence to Dn4 resistant winter wheat cultivars 

(Haley et al. 2004). The first five USA biotypes were from cultivated wheat; USA6 from both 

volunteer wheat and downy brome; USA7 collected from volunteer wheat, crested wheatgrass, 

Canada wildrye, green foxtail and intermediate wheatgrass, while USA8 was collected from 

crested wheatgrass and smooth brome (Lapitan et al. 2007; Weiland et al. 2008). USA biotypic 

identifiers are described in detail by Weiland et al. (2008). All USA biotypes were isofemale 

lines maintained on a mixed diet of susceptible wheat and barley cultivars under greenhouse 

conditions (Lapitan et al. 2007). Individuals of D. mexicana and D. tritici were collected on 

mountain brome in Colorado, USA, and kindly provided by Dr. G.J. Puterka (USDA-ARS, 

Stillwater, Oklahoma, USA). Apterae (wingless) morphs were collected with a brush, washed 

with 70 % (v/v) ethanol and rinsed twice with sterilized distilled water before DNA extraction. 

Total DNA was extracted using the DNAzol extraction protocol (Molecular Research Centre). 

DNA of the USA biotypes was extracted as described in Lapitan et al. (2007) and shipped at -20 

°C to South Africa. All DNA samples were treated with RNase, cleaned (DNeasy cleanup kit, 

Qiagen, USA) and quantified (Nanodrop ND-1000 Spectrophotometer, Thermo Scientific, RSA). 

  

Biotypic endosymbiont investigation 

A portion of the 16S rDNA gene was amplified for use in denaturing gradient gel 

electrophoresis (DGGE) analysis using two universal primers, one containing a GC-clamp 

(Table Appx 3.1, Appendix Chapter 3). All PCR reagents and conditions used in this research are 

described in Table Appx 3.1. The GC-clamp increases fragment separation, enabling the 

detection of up to single point mutation (Myers et al. 1985; Sheffield et al. 1989; Muyzer & 

Smalla 1998). Amplicons, after verification on agarose gels, were run in duplicate on 8 % 
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polyacrylamide gels with a denaturing gradient of 25-55 % urea-formamide. DGGE was 

performed as described in Surridge (2007) and stained with SYBR Gold (Molecular Probes, 

USA). Bands were viewed under a blue light trans-illuminator (model CCR DR-88M DR, 

Inqaba-Biotec), excised, re-amplified and sequenced.  

 

Buchnera aphidicola sequence variation amongst biotypes 

The leucine plasmid, pleuABCD and parts of the ptrpEG plasmid, 16S rDNA and trpB, 

were amplified and sequenced (ABI BigDye v3.1. System, Applied Biosystems, USA) (Table 

Appx 3.1). Fragments were aligned using ContigExpress (Vector NTI Advance 9, Invitrogen, 

USA) (Lu & Moriyama 2004), with cloned fragments first vector clipped using VecScreen 

(http://www.ncbi.nlm.nih.gov/VecScreen/). Inconsistencies in assemblies were manually 

investigated on the corresponding chromatograms and resolved with further sequencing. All 

BLAST analyses (Altschul et al. 1990; Altschul et al. 1997) were against the non-redundant 

Genbank database (NCBI, http://www.ncbi.nlm.nih.gov/).  

 

Structural analysis 

Bacterial promoters on the leucine plasmid were predicted with BPROM 

(http://softberry.com). Quickfold (Markham & Zuker 2005) and the Kinefold server 

(Xayaphoummine et al. 2005), using simulations of stochastic folding pathways from different 

random seed events, were used to predict the free energy values of the inverted repeat region 

upstream of leuA. The plasmids were screened for Rho-independent terminators using FindTerm 

(http://softberry.com).  

 

Plasmid copy numbers 

Plasmid copy numbers were determined according to Plague et al. (2003). External 

standards were amplified (Table Appx 3.1), cleaned (QIAquick PCR purification kit, Qiagen) and 

cloned into pGEM-T Easy vector (Promega, USA). Plasmid isolations were done with the 

Concert Rapid Plasmid Miniprep System (GibcoBRL, Life Technologies, USA) and single copy 

amplicon inserts confirmed with sequencing. Plasmid copy number for cloned external standards 

were determined spectrophotometrically in triplicate and converted to copy number per µg DNA 

(Plague et al. 2003). Real-time qPCRs were performed using forward and nested reverse primers 

of the different target genes (Table Appx 3.1). Primer optimization and qPCR reactions were 

done in accordance with the manufacturer‘s protocols (Bio-Rad, USA). The iQ SYBR Green 

Supermix (Bio-Rad) was used for quantitative PCRs and reactions performed on an iCycler with 
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an iQ Real-Time PCR Detection System (Bio-Rad). Single amplicons were confirmed for each 

qPCR with melting curve analysis and on 2 % TAE (40 mM Tris, 20 mM acetic acid, 1 mM 

EDTA (pH 8.3)) agarose gels. The iCycler Optical System Interface v2.3 was used to calculate 

the copy number for each sample using calibrated external standard curves of each gene. Plasmid 

number per chromosome gene was calculated for the leucine plasmid using leuB:trpB ratio 

(Plague et al. 2003).  

 

Results 

Biotypic endosymbiont investigation 

Most aphids contain one or more endosymbionts. In order to establish the relationship 

between the aphid D. noxia and its particular endosymbiont, we have investigated the occurrence 

of mono-or-multisymbiosis in RWA biotypes. DGGE of the bacterial-16S rDNA (Table 3.1) 

amplicons showed that the ten D. noxia biotypes, D. tritici and D. mexicana, were all 

monosymbiotic.  

The obtained 16S rDNA DGGE gene fragments, from both the biotypes and other 

Diuraphis species, were sequenced to confirm the identity of the endosymbiont. Genbank 

database searches (Altschul et al. 1990; Altschul et al. 1997) had highly significant homologies 

with B. aphidicola (E-values: 0 to 7e
-140

), Sodalis glossinidius (1e
-67

), Erwinia chrysanthemi (2e
-

66
) and an Arsenophonus endosymbiont (3e

-66
). A Ribosomal Database (release 9.51) (Cole et al. 

2006) search and phylogenetic analysis (Figure Appx 3.1) confirmed the endosymbiont as B. 

aphidicola, although the biotypes had homologous sequences that differed by four indels from 

the Genbank accession for B. aphidicola of D. noxia (Table 3.1).  

 

Buchnera aphidicola sequence variation amongst biotypes 

The importance of Buchnera in aphid nutrition is well known. However, the current 

hypothesis states that the relationship between the RWA and its endosymbiont is degrading. We 

have therefore targeted genes or plasmids involved in nutrition to investigate the aphid-

endosymbiont relationship. To this end more than 10 kb was sequenced for B. aphidicola from 

each D. noxia biotype (Table 3.1). Although numerous differences to sequences on Genebank 

were found (Table 3.1), only a single CCC insertion on the leucine plasmid differs between the 

Buchnera sequences of RWA biotypes.  

This CCC-insert was upstream of the leuA gene (pleuABCD) in an inverted repeat region 

of biotypes SA, SAM, USA3 and USA7. The biotypes‘ pleuABCD sequences also increased in 
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length, from 7768 (Genbank) to 7771 (without insert) and 7774 bp (with insert). Other 

differences were also observed between the leucine plasmid sequences of the biotypes and 

previously submitted Genbank accessions (AF041837, NC001911 and Figure Appx 3.2). These 

include various insertions, deletions or point mutations, for example a single nucleotide insertion 

in a non-coding region between the leuA and leuB genes transposed them into the same open 

reading frame (Figure Appx 3.2). The differences in the sequenced leucine plasmids also altered 

the AT-contents causing an increase from 74.11 % to 74.39 % and 74.36 %, when compared 

with the previously deposited Genbank accessions (AF041837, NC001911).   

 

Table 3.1 Sequences analyzed and the differences observed against homologues on Genbank and 

between the different biotypes.   

Fragment  Size in base pairs 
Genbank 

differences 

Biotype 

differences 

Bacterial chromosome    

16S rDNA
# 

460 4 0 

trpB
# 

342 0 0 

Bacterial plasmids    

pleuABCD
#
 7768-7774 60 1 (CCC-insert) 

ptrpEG
#
 ~2100 3 0 

Aphid mitochondrion sequences    

COI across the distribution range Variable 1 - 

#
Fragments

 
sequenced

 
in this project and used in the comparisons (Genbank accession numbers FJ705277-

FJ705296; FJ705299-FJ705318). Genebank accessed November 2008. 

Primary and secondary structural analysis 

The primary and secondary structures of DNA are known to play a crucial role in gene 

expression. Thus, changes in it may alter secondary structures and therefore functionality of the 

gene region. To date, no differences within a species were shown for this region (Figure 3.1). 

We therefore simulated the secondary folding patterns to predict free energy values for the 

inverted repeat region upstream of leuA.  

Analyses revealed that the most stable stemloop structure produced by this inverted repeat 

region is formed in biotypes without the insert, with a predicted free energy of -63.4 kcal mol
-1 

(Kinefold server, Xayaphoummine et al. 2005), while biotypes containing the CCC-insert gave a 

free energy value of -57.9 kcal mol
-1

. Similarly, Quickfold (Markham & Zuker 2005) also 

predicted lower free energy values for DNA from the biotypes without the CCC-insert (Figure 

3.2), though both values were lower than those predicted by Kinefold server. 
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                           10        20        30        40        50        60        70        80        90       100                   

                   ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

pBDnSAM            GAATATAATAATTTATGTAAATTGTTTAAAAAAAT--TAAAAAATAAATTTATACAATAAAAATTTCATAAGACATGGGGG-TACAAAACA---TTGTAC  

pBDnUSA1           GAATATAATAATTTATGTAAATTGTTTAAAAAAAT--TAAAAAATAAATTTATACAATAAAAATTTCATAAGACATGGGGG-TACAAAACA---TTGTAC  

pBDn_AJ006880      GAATATAATAATTTATGTAAATTGTTTAAAAAAAT--TAAAAAATAAATTTATACAATAAAAATTTCATAAGACATGGGGG-TACAAAACA---TTGTAC  

pBAp_AJ006878      GAATATAGTAATTTATGTAATTTATATAAAAAAAAATCATAAAATAAATTTATACAATAAAAATTTCATGAGACATCATA--TACAAAAT----TATTTT  

pBMd_AJ006872      GAATATAGTAATTTATGTAAGTTATATAAAAAAAAATCATAAAATAAATTTATACAATAAAAATTTCATAAGACATTATA--TACAAAAAA---TTTTTT  

pBMr_AJ006881      GAATATAGTAATTTATGTAATTTACATAAAAAAAAATCATAAAATAAATTTATACAACAAAA-TTTCATAAGACATCATA--TACAAAAAT-A-TTTTTT  

pBAs_AJ006879      GAATATAGTAATTTATGTAAATTATATAAAAAAAAATAATAAAATAAATTTACACAATAAAAATTTCATAAGACGTCGTA--TACAAAAAT-A-TTTTT-  

pBUs_AJ006873      GAATATAATAATTTATGTAAGTTAAACAAACATAAATAACATCATA---TTATACAATAAAAATTTCATAAGACATCGTTG-TACAAAAATCA-TTTTTT  

pBRc_AJ006874      GAATATAGTAACTTATGTAAGTTATATAAAAAAAA--TAATAAATAAATTTACACAACAAAAATTTCATAAGACAGAA-AGATGTATTTTTCTTAAATAC  

pBSg_AJ006876      GAATATAGTAACTTATGTAAGTTATATAAAAAAAA--TAATAAATAAATTTGCACAACAAAAATTTCATAAGACAGAA-AGATGTATTTTTTT--AATAC  

pBRi_AJ006875      GAATATAGTAACTTACGTAAGTTATATAAAAAAAAA-TAACAAATAAATTTACACAACAAAAATTTCATAAGACAGTGGAGATGTATTTTTAA-AAATAC  

pBRp_X71612        GAATATAGCAACTTATGTAAGTTATATAAAAAAAAA-TAACAAATAAATTTACACAACAAAAATTTCATAAGACAGTGGAGATGTATTTTTAA-AA-TAC  

pBPp_AJ006877      GAATATAATAATTTATGTCAATTATATAAAAAAAA--CAATAAATAAATTTATACAATAAAAATTTCATAAGACAGGTGAA-TTTATTTTAAA-AAATAG  

Consensus          XXXXXXX—-XX-XXX-XX-X-XX----XXX-X-X—---X----XXX---XX--XXXX-XXXX-XXXXXX-XXXX--------X—-X-----------X--    

 

                           110       120       130       140       150       160       170       180       190               

                   ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|... 

pBDnSAM            CCCCC-CCATGTCTTATGAAATTTTT-ATTGTATAAAT-TTATTTTTTAAT---AAAA----CAT-CTATAATTTATAGTGAGAAAATTTTT-ATGAG  

pBDnUSA1           CCCC----ATGTCTTATGAAATTTTT-ATTGTATAAAT-TTATTTTTTAAT---AAAA----CAT-CTATAATTTATAGTGAGAAAATTTTT-ATGAG  

pBDn_AJ006880      CCCC----ATGTCTTATGAAATTTTT-ATTGTATAAAT-TTATTTTTTAAT---AAAA----CAT-CTATAATTTATAGTGAGAAAATTTTT-ATGAG  

pBAp_AJ006878      GTATA-TGATGTCTTATGAAATTTTT-ATTGTATAAAT-TTATTTTTATC-CAATAAA---ACATTCCATTACCTTAATTTGGAAAAATTTTTGTGAA  

pBMd_AJ006872      GTATA-TAATGTCTTATGAAATTTTT-ATTGTATAAAT-TTATTTTA------------------------------AATTGAGAAAATTTTTATGAA  

pBMr_AJ006881      GTATA-TGATGTCTTATGAAATTTTG--TTGTATAAAT-TTATTTTATTG-G-TAAAA--AATATTCAATTT-CCTAAATGAGAAAAATTTT-ATGAA  

pBAs_AJ006879      GTATA-CGACGTCTTATGAAATTTTT-ATTGTGTAAAT-TTATTTTATTA-AATAAAA--CATTTTTTATTCGCCTAGTTGAGAAAATTTTT-ATGAA  

pBUs_AJ006873      GTACAACGATGTCTTATGAAATTTTT-ATTGTATAATA-TGATGTTATTTA----ACA--AACATTCA-----TTT-TATCGGAATAATTTT-ATGAA  

pBRc_AJ006874      ATCTT-T-CTGTCTTATGAAATTTTT-GTTGTGTAAAT-TTATTTATTAT-GATCTAA----CATTTTTTT--AATTATCGAGAAGAAATTTTATGAA  

pBSg_AJ006876      ATCTT-T-CTGTCTTATGAAATTTTT-GTTGTGCAAAT-TTATTTATTAT-CATCAAAGAATCATTTTTTT--AATTATCGAGAAAAAATTTTATGAA  

pBRi_AJ006875      ATCTC-CACTGTCTTATGAAATTTTT-GTTGTGTAAAT-TTATTTGTTAT-GATCAAAAGATCATTTTTTTT-AATTATCGAGAAAAAATTTTATGAA  

pBRp_X71612        ATCTC-CACTGTCTTATGAAATTTTT-GTTGTGTAAAT-TTATTTGTTAT-GATCAAAAGATCATTTTTTT--AATTATCGAGAAAAAATTTTATGAA  

pBPp_AJ006877      ATTCA--CCTGTCTTATGAAATTTTT-ATTGTATAAAT-TTATTTATT-------AAA--AATATTCA-----CATTGCTGAGAAAAATTT--ATGAA  

Consensus          ----------XXXXXXXXXXXXXXX---XXXX--XXXX-X-XX-X---------------------------------------X-X--XX---XXX-                                            

 

Figure 3.1 The inverted repeat region between repA2 and leuA on leucine plasmids of the Aphididae. The end of repA2 and the start of leuA are 

indicated in grey, with possible start codons indicated in red. Abbreviations: ‗pB‘ indicates the leucine plasmid of B. aphidicola which is then 

followed by the aphid species, ‗Dn‘ and biotype ‗SAM‘: pBDnSAM, D. noxia biotype SAM; pBDnUSA1, D. noxia biotype USA1; pBDn, D. noxia 

(Genbank); pBAp, Acyrthosiphon pisum; pBMd, Metapolophium dirhodum; pBMr, Macrosiphum rosae; pBAs, Aulacorthum solani; pBUs, 

Uroleucon sonchi; pBRc, Rhopalosiphum cerasifoliae; pBSg, Schizaphis graminum; pBRi, R. insertum; pBRp, R. padi; pBPp, Ptercomma 

populeum. 
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Figure 3.2 Minimum free energy diagrams for the inverted repeat region up to the start codon of 

leuA of D. noxia biotypes as predicted with Quickfold (DNA and temperature 25 °C, DINAMelt 

Server) (Markham & Zuker 2005), with (Figure 3.2A) and without (Figure 3.2B) CCC-insert. 

Similar structures and energy values were also obtained for predicted RNA structures of the 

same region. In both cases the CCC-insert resulted in an increase of ~5 kcal mol
-1

 free energy 

between the predicted structures. All free energy values (dG) are given as kcal mol
-1

.  

 

B 

A 
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Interestingly, B. aphidicola has only two predicted sigma factors, σ
32

 (rpoH) and σ
70

 

(rpoD) (Shigenobu et al. 2000). A BPROM promoter search of the regions adjacent to the CCC-

insert predicted that it could form a new transcription factor (TF) binding site with homology to 

rpoH3 TF binding site. The first predicted BPROM promoter has homology with two σ
70

 TF 

binding sites and a better linear discriminant function (LDF) score than the new σ
32

 binding site 

that is formed by the CCC-insert.  

The leucine plasmid has two predicted Rho-independent terminators, one following leuD 

and the other, following the repA2 gene. FindTerm (http://softberry.com) predictions high-

lighted the second inverted repeat region, the one in which the CCC-insert is located, as the best 

Rho-independent terminator on the plasmid. The CCC-insert is located upstream of the leuA 

gene (Figure 3.3) and downstream of a predicted Sigma70 promoter (BPROM, 

http://softberry.com), TATAAT box and start codon, and could therefore be transcribed.  

 

 
 

Figure 3.3 The region between repA2 and leuA indicating predicted promoter and Rho 

independent terminator regions of RWA biotypes without (Figure 3.3A) and with (Figure 3.3B) 

the CCC-insert. The CCC-insert shifts the predicted Rho independent terminator from the coding 

to the non-coding strand (B). This increases the predicted free energy value of the terminator 

structure, suggesting a less stable terminator.  
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Plasmid copy numbers 

In order to investigate the possible role of the endosymbiont in the aphid-endosymbiont 

relationship, we have studied the plasmid copy numbers in Buchnera. It is suggested that 

individuals with higher copy numbers may have advantages in terms of fitness, as higher copy 

numbers supply the aphid with more essential amino acids, while lower copy numbers and 

pseudogenes indicate a degenerating relationship with reduced access to essential amino acid 

availability (Lai et al. 1996; Thao et al. 1998).  

We have found that an average of 0.9 copies/bacterial chromosome for pleuABCD. The 

South African RWA biotypes had lower pleuABCD copies than the USA biotypes (Figure 3.4), 

while USA8, had more than double the previously published number of copies (2 copies per 

bacterial genome, Figure 3.4).  

 

 
 

Figure 3.4 The ratio leuB:trpB was used to calculate the copy number of the different biotypes. 

The mean copy numbers for leuB (insert A, n=4) and of trpB (insert B, n=4) were determined for 

the different biotypes and then used to calculate the leuB:trpB ratio. South African biotypes had 

lower copy numbers than their USA counterparts which is supported by literature. The average 

across all the biotypes was 0.91 copies per chromosomal gene.  
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Discussion 

Biotypic endosymbiont investigation 

DGGE has been used to investigate associated microbial endosymbionts in a variety of 

insects, including wasps (Reeson et al. 2003), whiteflies (Gottlieb et al. 2006), ants (Stoll et al. 

2007), ticks (Moreno et al. 2006) and aphids (Haynes et al. 2003). In the present study the 

DGGE fragments supplied sufficient phylogenetic resolution to determine B. aphidicola 

accession up to the host level (Figure Appx 3.1). Although aphids have been shown to contain 

secondary endosymbionts in addition to B. aphidicola, the contribution of a secondary symbiont 

in RWA biotype development was not supported by DGGE-based data since the Diuraphis 

species and biotypes analyzed were all monosymbiotic. 

 

Buchnera aphidicola sequence variation amongst biotypes 

A single CCC insertion on the leucine plasmid differs between the sequences of the RWA 

biotypes after more than 10 kb was sequenced for B. aphidicola from each D. noxia biotype. 

This insert is located upstream of the leuA gene (pleuABCD) in an inverted repeat region in the 

South African biotypes and two US biotypes, namely USA3 and USA7. Interestingly, the CCC-

insert is located within the variable region of the inverted repeat stem and is consistent with 

sequence variation found within the family Aphididae (Silva et al. 1998).  The insert also results 

in an increase in sequence length, this increase in size is in sharp contrast with other publications 

where it was shown that plasmids were shrinking in accordance with the genome reduction 

usually observed in B. aphidicola (Gil et al. 2006). Mutations, e.g. single nucleotide insertion in 

non-coding region between the leuA and leuB genes that transposed them into the same open 

reading frame, were also observed. The CCC-insertion could change the expression levels of 

leuA, and thus would also change the expression levels of the other portions of the operon, i.e. 

leuB. 

The rate of sequence change in endosymbiotic bacteria is higher than in free living bacteria 

(Baumann 2005), therefore more sequence divergence is expected. This is supported by the 

genome comparison of B. aphidicola from different aphid species that showed extremely stable 

genomes with no re-arrangements or gene acquisitions, but with substantial sequence evolution 

and few gene losses (Tamas et al. 2002; Van Ham et al. 2003). In contrast, very little sequence 

variation is usually found within B. aphidicola from the same population (Funk et al. 2001; 

Abbot & Moran 2002; Van Ham et al. 2003). These observations are supported by data in the 

present study where only a single insert has been found to vary among the different biotypes. 
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Similarly, limited sequence variation was previously found for these biotypes‘ mitochondrial 

cytochrome oxidase subunit I (COI) gene (Table 3.1) (Lapitan et al. 2007; Shufran et al. 2007). 

Phylogenetic analysis of these and sequences in Table 3.1 support the same relationships as 

determined by aphid and mitochondrial genes (Figure 3.5).  

 

 

 

Figure 3.5 Phylogenetic relationships between tribal representatives of the subfamily Aphidinae. 

The first two phylogenies are an abbreviated representation of a combined nuclear and 

mitochondrial dataset of tRNA, COII and TEF1α, from von Dohlen et al. (2006). Bold lines 

indicate members of the tribe Macrosiphini. Species names are given where data are available for 

the phylogenies and genus names when different species of the same genus were used. An 

asterisk indicates absent genera.  

 

Primary and secondary structural analysis 

The inverted repeat region, where the insert is located, has known secondary structural 

differences and is conserved within the family Aphididae (Silva et al. 1998). The most stable 

secondary structure is the one with the lowest free energy, which is usually the structure with the 

most bases paired. To this end, most secondary structure prediction algorithms identify the best 

secondary structure by trying to minimize free energy (Wuchty et al. 1999). Since both these 

prediction algorithms (Quickfold and Kinefold server) awarded higher free energy values for the 

CCC-insert containing regions, it is highly likely that this region forms a less stable structure. 

Conservation of this entire region between repA2 and leuA, including the inverted repeats, 

within B. aphidicola found associated with the family Aphididae (Figure 3.1) suggests a 

functional constraint (Silva et al. 1998). A start codon (methionine), preserved in all the 
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members of the family, is located in the conserved region of the stemloop just following the 

CCC-insert (Figure 3.1). Destablization of this region by the CCC-insert, as predicted by free 

energy values (Figure 3.2) could thus allow easier access to this start codon. 

BPROM predictions suggest that the first promoter has homology to two σ
70

 TF binding 

sites and a better linear discriminant function (LDF) score than the new σ
32

 binding site that is 

formed by the CCC-insert. However, predicting promoters accurately in AT-rich genomes, such 

as those of Buchnera, is extremely difficult (Baumann et al. 1995). If the new CCC-insert-

induced σ
32

 binding site is functional, then biotypes with this insert could produce more leucine. 

Since the CCC-insert also forms an imperfect stemloop (Figure 3.2) which destabilizes the 

secondary DNA structure, the TF binding site would be easier accessed during transcription.  

Interestingly, the FindTerm program predicted that the terminating site of this Rho-

independent terminator following the repA2 gene would change from the coding strand, in the 

plasmids without the CCC-insert, to the non-coding strand in the presence of the CCC-insert 

(Figure 3.3). If the CCC-insert moves the termination site to the non-coding strand, transcription 

termination could be deactivated and upstream promoters could come into play in regulating 

leuA. Because of the location of the CCC-insert, and the possibility that this region may be 

transcribed, the stemloop/hairpin structure formed by the inverted repeats could act in stabilising 

the mRNA of either repA2 or leuA. Both 5‘- and 3‘-terminal hairpin structures are known to act 

as mRNA stabilizers in bacteria (Wong & Chang 1986; Emroy et al. 1992). In all cases this 

region could play a role in gene expression, mRNA stabilization or translational regulation. 

 

Plasmid copy numbers 

The observed average of 0.9 plasmid copies/bacterial chromosome for pleuABCD was higher 

than the previously published value of 0.8 (Thao et al. 1998). Interestingly, the South African 

biotypes had lower pleuABCD copies than the US biotypes. This, together with the CCC-insert 

that is absent in the original US biotype, suggests that the US RWA introduction did not 

originate from South Africa, thus supporting previous findings of multiple introductions (Lapitan 

et al. 2007; Smith 2009). In contrast, USA8 a RWA biotype only collected from species other 

than wheat, i.e. Agrophyron cristatum, had more than double the previously published number of 

copies (2 copies per bacterial genome, Figure 3.4). The data on the copy numbers of the leucine 

plasmid supports the hypothesis that the CCC-insert is a functional mutation. The South African 

biotypes, with the CCC-insert, have lower leucine copy numbers than their US counterparts. One 

may argue that the US biotypes with the inserts (USA3 and USA7) have only recently 

developed, and as such have not yet had sufficient time to lower their copy numbers. 
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Gene amplification allows for adaptation by enabling the over expression of specific gene 

products necessary for survival in a changing environment or biological interaction (Romero & 

Palacios 1997). This state would only remain while selective conditions were in effect (Lai et al. 

1994; Romero & Palacios 1997). Furthermore, having only a single transcriptional regulator for 

essential amino acid biosynthesis known to exist in a single B. aphidicola accession, plasmid 

copy number is the most likely regulatory mechanism (Moran et al. 2005). Plasmid copy 

numbers are highly variable between and within aphid species (Plague et al. 2003). The same 

tendency was observed for the pleuABCD plasmids in D. noxia.  

Wide-host range selective pressure may explain the high pleuABCD copy number of the 

USA8 biotype. SAM, though kept under selective pressure by feeding aphids resistant wheat 

cultivars, developed out of the original SA biotype. The low copy number observed here shows 

the close relationship between SA and SAM. The observed pleuABCD copy numbers for the 

South African biotypes are similar to the 0.3 copies per bacterial genome obtained by Moran et 

al. (2003) for the wild type SA biotype. Copy number suggests that the symbiosis could be 

involved when the RWA feeds on hosts other than wheat, but no differences in copy number or 

sequence structure exist between biotypes feeding on resistant and susceptible wheat cultivars.  

The observation that genetic diversity of B. aphidicola cannot explain the ecological 

diversity observed between aphids holds here for the different biotypes, and B. aphidicola‘s 

initial contribution in Diuraphis adaptation is still supported (Tamas et al. 2002; Van Ham et al. 

2003). The CCC-insert and lower copy numbers may support the idea of symbiotic degradation 

between D. noxia and B. aphidicola for the South African biotypes, as suggested by Wernegreen 

and Moran (2000), but the opposite can be argued for one of the US biotypes (USA8) where 

higher copy numbers for the leucine plasmid have been observed, and for those biotypes where 

the CCC-insert occurs.  

 

Conclusions 

Aphids feeding on different plant species or cultivars have different requirements of their 

endosymbionts since the essential amino acid content of plants varies (Sandstrom & Moran 

1999). This research shows that B. aphidicola of different RWA biotypes showed little variation 

in sequence, but differed in plasmid copy numbers. However, small variations in B. aphidicola 

have major implications for host viability (Dunbar et al. 2007). Varying B. aphidicola plasmid 

copy numbers may allow some measure of adaptation to the host where essential amino acids 

cannot be altered in the plant. Therefore, the role of the CCC-insert is unclear: it may confirm the 

suggested degeneration of the symbiotic relationship between the RWA and B. aphidicola if it 
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causes down-regulation of subsequent genes; or the opposite could occur and the genes may be 

up-regulated. It could also be non-functional indicating only normal variation for the region as 

observed within the family. Keeping symbiosis in mind may still prove to be the key in 

understanding biotype development within aphids.      
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