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SUMMARY

An attempt is made in this thesis to study the optimization and estimation of
stochastic models of manpower systems incorporating one or more of the following
aspects:

(1) recruitment, (i1)  promotion, (iii) training and (iv) wastage

The thesis contains eight chapters and brief summaries of which are given below:

Chapter 1 is introductory in nature and gives review of the literature. The techniques

used in the analysis of manpower systems are also provided.

Two models are studied in chapter 2. Model 1 is the extension of Ragavendra (1991)

where maintainability of grade is considered. In model 2 we give importance to
efficiency and skills of the employees by allowing multiple promotions. That is, an
employee has been promoted to the next higher grade due to seniority and efficiency,
whereas he is promoted to other higher grades due to efficiency only.  The
promotional probabilities and recruitment vectors and cut-off levels of seniority and

efficiency for promotions are found.

The study of intermittently busy manpower system is studied in chapter 3. By
identifying the important random variables, busy and lean periods, the amount of
crisis has been obtained in the stationary case. The asymptotic confidence limits are
also obtained for the crisis. A non-Markovain model is also studied by assuming that
some of the distributions are arbitrary. Various system measures have been obtained

using the correlated alternating renewal process.

In chapter 4, an attempt is made to analyze impact of category and grade dependent
promotion probabilities on the grade structure of hierarchical manpower systems. To
be specific, we consider a multi-grade manpower system in which each grade is
subdivided into several categories according to length of service in that grade. The

last category of each lower grade consists of persons who have completed a specified

viii



University of Pretoria etd — Setlhare, K (2007)

period of service in that grade and do not get promotion. An employee in a lower
grade is eligible for promotion to the most junior category of the next higher grade
and the probability of promotion is dependent on the grade and category of the
employee. Un-promoted employee of a category of a lower grade will move to the
next higher category of the grade in the next unit of time until he reaches the last
category of the grade from where he is either promoted or leaves the system. The unit
of time may be taken as a year. The movement of an employee from one category to
another category is called transition. New entrants to the system are allowed in the
lowest category of the lowest grade. Wastages are allowed from any category of any
grade and no demotions take place. The probability distribution of the state of the
system is derived. The recurrence relation for the moments of the grade sizes is
derived and the expected time to reach the top-most grade by a new entrant in the
lowest grade is found. A numerical example is provided to highlight the impact of

category and grade dependency on the grade structure of a particular organization.

Analysis of optimal promotion policy using queuing approach is studied in chapter 5.
Queuing approach is used for the first time in Manpower systems. Various system
measures have been studied and cost analysis is also studied. Numerical example

illustrates the results obtained.

The wastage and attrition rates in various manpower categories of higher educational
institutions are analyzed using life tables technique in chapter 6. It is justified that
persons with higher qualifications can get better jobs. Numerical example is shown to

illustrate the results obtained.

In some situations the optimal period of training for the newly recruited persons
should be found out. In such cases the cost of training should be considered and
incorporated into the model in order to obtain the optimal period of training. This

aspect has been introduced in chapter 7.

X
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In chapter 8, voluntary retirement schemes have been introduced so as to reduce the
grade size to avoid surplus staff strength. The optimal time intervals for introducing

such schemes have been worked out taking cost into considerations.

In brief, the present work is an attempt to provide the optimal policy for recruitment,
training, promotion and wastage in manpower planning models, with special
provisions such as intermittently busy, efficiency and seniority, introduction of

queuing approach, attrition in manpower systems etc.
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CHAPTER 1

OVERVIEW
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1.1 OVERVIEW

The analyses of manpower systems have become very important component of
planned economic development of any organization or nation. However, manpower
planning depends on the highly unpredictable human behavior and the uncertain
social environment in which the system functions. Hence the study of probabilistic or
stochastic models of manpower systems is very much essential. Several stochastic
models of manpower systems have been proposed and studied extensively in the past
(see Bartholomew (1967) and Vajda (1978)). Various stochastic models of manpower

systems can be classified broadly into two types:

1. Markov Chain models
2. Renewal Models

In all these models, the manpower system is hierarchically graded into mutually
exclusive and exhaustive grades so that each member of the system may be in one and
only one grade at any given time. These grades are defined in terms of any relevant
state variables. Individuals move between these grades due to promotions or
demotions and to the outside world due to dissatisfaction, retirement or medical
reasons. If the size of the grades is not fixed, then the state of the system at any time is

represented by a vector X(t)=(X,(t), X,(1),......... X,()) where the component
X, (t) represents the number in the ith grade at any time t. Further the very nature of

several manpower systems require to be observed at, say, annual intervals.
Accordingly, the system behaviour is adequately described by a Markov chain, such

models are called Markov chain models.

Markov chain models have been applied in examining the structure of manpower
systems in terms of the proportion of staff in each grade or age profile of staff under a
variety of conditions and evaluating policies for controlling manpower systems (see
for example, Young and Almond (1961), Young (1971), Forbes (1971a,b),
Bartholomew (1973) and Gani (1973)). In these works and in all of what followed the
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important question was the control of the expected numbers in the various states by
recruitment control. The numbers of people in such categories change over time
through wastage, promotion flows and recruitment. Some of these flows are subject to
management control while others vary in a random manner. Factors such as the need
to offer adequate career prospects or the requirement of the job will often dictate a
desirable age or grade structure and it is the manpower planner’s task to determine

whether this can be achieved and , if so, how.

The limiting behavior of an expanding non-homogeneous Markov system has
practical importance as shown by the literature on manpower systems (Vassiliou
1981a&b, 1982a). The limiting structure of the expected class sizes was derived under
certain conditions and the relative limiting structure is shown to exist with a different
set of conditions. Mehlmann (1977) and Vassiliou (1982b) studied the limiting
behavior of the system with Poisson recruitment and observed that the number in the
various grades are asymptotically mutually independent Poisson. Vassiliou (1984c¢)
studied the asymptotic behavior of non-homogeneous Markov systems under the
cyclical behavior assumption and provided a general theorem for the limiting
structure of such systems. Vassiliou (1986) later extended the results and provided a
basic theorem for the existence and determination of the limiting structure for the
vector of means, variances and covariances under more general possible assumptions.
He argued that the results are useful from the practical point of view since they

provide valuable information about the inherent tendencies in the system.

The control of asymptotic variability of expectations, variances and covariances in a
Markov chain model is a major research area in manpower systems. The earliest work
on this subject was that of Pollard (1966). The results were later extended by several
authors (Vassiliou and Gerontidis (1985), Vassiliou (1986), Vassiliou et al. (1990)).
Attainable and maintainable structures in Markov manpower systems under
recruitment control have been studied by Bartholomew (1977), Davies (1975, 1982),
Vassiliou and Tsantas (1984 a&b) and later Kalamatianou (1987) analysed the same
with pressure in grades. The concept of a non-homogeneous Markov system in a

stochastic environment (S-NHMS) was introduced for the first time by Tsantas and
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Vassiliou (1993). The problem of attaining the desired structure in an optimal way as
well as maintaining relative grade sizes applying recruitment control in a stochastic
environment as introduced in Bartholomew (1975, 1977) is considered. More
references in this and related topics an be found in various papers by (Georgiou
(1992), Tsantas (1995), Tsantas and Georgiou (1994, 1998)). A Markov model
responding to promotion blockages has been proposed by Kalamatianou (1988).
Raghavendra (1991) has employed a Markov chain model in obtaining the transition
probabilities for promotion in a bivariate framework consisting of seniority and
performance rating. Georgiou and Vassiliou (1997) have introduced phases in a
Markov chain model and investigated the input policies subject to cost objective
functions. Yadavalli and Natarajan (2001) studied a semi-Markov model in which a
single grade system allows for wastage and recruitment. The time dependent
behaviour of stochastic models of manpower system with the impact of pressure on

promotion was subsequently studied by Yadavalli et al. (2002).

Although a Markov model is simple and easy to implement, it does not take into
account existing knowledge of the distribution of length of service until leaving. In
such cases the mathematically intractable Semi-Markov models approach is suggested
(McClean 1991). The Semi-Markov processes are a generalization of Markov
processes in which the probability of leaving a state at a given point in time may
depend on the length of time the state has been occupied (duration of stay) and on the
next state entered. However, there are several theoretical literatures on Semi—Markov
Models ( Pyke (1961 a & b), Ginsberg (1971), Mehlmann (1979), McClean (1978,
1980, 1986)). A stochastic model of migration, occupational and vertical mobility,
based on the theory of Semi-Markov process was derived by Ginsberg (1971).
McClean (1978) extended the assumption of simple Markov transitions between
grades and the leaving process to semi-Markov formulation which allows for
inclusion of well-authenticated leaving distributions such as the mixed exponential.
Moreover, the previous assumption of Poisson recruitment is generalized to allow for
a recruitment process which may vary with time, either as a mixed exponential time
dependent Poisson process or by assuming that the number of recruits depends on the

amount of capital owned by the firm. The previous formulation is therefore extended
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to take into account the fact that recruitment to a firm is a highly variable process and
the assumption of Poisson recruitment to each grade is therefore restrictive. The
concept of non-homogeneous semi—Markov systems found important applications in
manpower system particularly in the subjects of variability, limiting distributions and

maintainability of grade sizes (Vasiliou ad Papadopoulou (1992)).

On the other hand, there are several manpower systems where the grade sizes are
fixed by the budget or amount of work to be done. Recruitment and promotion can
occur only when vacancies arise through leaving or expansion. There may be
randomness in the method by which vacancies are filled. The movements of
individuals are characterised by replacements (renewals) according to some
probabilistic law, and such models of manpower systems are called renewal models.
The main advantage of these models over the Markov chain models is that they are
closer to reality since the losses (wastages) occur continuously in time and there is
always the possibility that a new recruit may also leave during the study period. White
(1970) has used models of this kind to study the flows of clergy of several large
American denomination. Stewmann (1975) has applied White’s methods to the study
of recruitment and losses in a state police force. Bartholomew (1982) has provided a
detailed analysis of renewal models of manpower systems. Sirvanci (1984) has
applied renewal processes to forecast the manpower losses of an organisation in order
to determine whether the organisation will be able to meet its demand for manpower
under present conditions. The distributions of completed length of service (CLS) in
these models have been fitted to actual data from industry by several researchers (see
Bartholomew, 1982). McClean (1976, 1978) has used a mixed exponential
distribution for CLS and estimated the parameters using data for two companies.
Agrafiotis (1983, 1984, and 1991) studied the problem of labour turnover by using

renewal process type models.

A satisfactory model of manpower system should provide answers to the following
questions:
1.  How to provide estimates of manpower indicators of the system?

2. How to predict the future behaviour of the system under various assumptions?
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3. How to find optimum solutions to various policy problems subject to various
constraints given by the management?

4. How to avoid various problems by giving a warning before the situation
develops?

5. How to design manpower, which is related to various problems of prediction in

consultation with management?

In order to provide answers to questions raised above, the model considered should
incorporate the following main factors, which predominantly determine the behaviour

of a manpower system:

1. Recruitment
2. Promotion of employees
3. Wastages.

1.1.1 Recruitment

The sizes of various grades, which respond to the expansion, promotions and
wastages, are maintained at the desired level at any time by a process called
RECRUITMENT. The flow of recruitment can be controlled by the management
authorities. The recruitment can be made in several ways. Vacancies can be filled as
and when they arise or they may be allowed to accumulate and then filled up at
specified periods or whenever the total number of vacancies attains a certain specific
level, so as to minimize the cost. The recruitment can be made by the organization
itself or by some external agencies to avoid delay and huge overhead costs. Several
organizations in South Africa do not recruit employees by themselves (e.g. the
preliminary process of senior level positions in Statistics South Africa) but approach
recognized recruiting agencies. Usually, vacancies that arise are allowed to
accumulate for a specified period of time, or to attain a specified level and then these
agencies are requested to fill them up and to complete the process of recruitment in a
specified period of time. However, they may not be able to fill up all the notified
vacancies due to the non-availability of suitable candidates with prescribed

qualifications and experience. Further additional vacancies may also arise during the
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period of recruitment process. Therefore there may exist some vacancies even after
the process of recruitment is completed. In reality, many such manpower systems
exist. However, these types of models have not been considered in the literature.
Davies (1975) considered a fixed size Markov chain model that suffered losses and
admits recruits to various grades in such a manner that the total grades in the system
remain constant. In that paper, the recruitments take place at integral points in time
and at the time of recruitment, no vacancy is left unfilled. Vassiliou et al. (1990) deal
with a non-homogeneous Markov manpower system, which allows recruitment in
each grade of the hierarchically graded manpower system. They have obtained the
limiting expected structure of the system by control over the limit of the recruitment
probabilities. Rao (1990) has considered a manpower planning model with the
objective of minimizing the manpower cost with optimal recruitment policies. The
recruitment size is known and fixed in this model. Hence the study of a model where

vacancies are accumulated and then filled up deserves attention.

1.1.2 Promotion

Normally vacancies that arise in the lower grade are filled up by recruitments whereas

those in the higher grades are filled up by promotions. Further, promotions besides

giving due recognition to proficiency and credibility of the employees reduce the

chance of an efficient employee leaving the organization. Some of the promotion

rules are given below:

(i)  The senior most in the grade is promoted.

(i1))  Promotion is given at random.

(ii1)) Those who fill certain efficiency criterion along with some minimum completed
length of service are promoted.

As per the rule (1), the length of service is the sole criterion for promotion and hence

the management can control it. The rule (i1) gives full freedom for the management to

promote any employee of their choice, which also is not desirable. Normally rule (iii)

is preferred. Some of the reasons, which influence the promotion policies, are (a)

pressure (b) efficiency and (c) length of service.
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(a) Pressure

In a multi-graded hierarchical manpower system, a promotion policy that is associated
with constant promotion probabilities leaves a proportion of employees qualified by
completed length of service in a lower grade un-promoted. This proportion increases
and pressure starts building up as time progresses. When pressure exceeds a certain
level of control, a high proportion of un-promoted employees could have serious
effect on the efficiency of the organization for several reasons such as productive loss
and wastage. The pressure can be quantified as a function of the proportion of the
people in a job grade according to Kalamatianou (1987, 1988). She has quantified
pressure in three stages and suggested models to reduce the pressure by suitably

changing the promotion policies well in advance.

(b) Efficiency (training)

Training of manpower has long been recognized as an important factor for improving
the efficiency of the employees and for the productive improvement. Further, when it
is considered as a criterion for promotion, it becomes very much effective.
Mathematical models incorporating training aspects have been studied by
Guardabassi et al. (1969), Grinold and Marshall (1977), Mehlmann(1980) and Vajda
(1978). Goh et al. (1987) have analysed the training problem within an organisation
using dynamic programming principles. These results were recently generalised using

Dynamic Programming by Yadavalli et al. (2002).

(c) Length of service

Length of service in a grade should necessarily be a natural criterion for promotion in
order to create a healthy atmosphere among the employees. However, for controlling
the promotion, the management can include other efficiency criterion along with it for
promotion. This aspect has been discussed by Bartholomew (1973, 1982), Glen
(1977) and in the thesis of Kamatianou (1983).
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1.1.3 Wastages

When employees move from one grade to another, they are exposed to different
factors influencing them to leave the organization. Various data indicate that the
reasons for leaving can be classified into the following cases:

(1) Discharge

(i1) Resignation

(ii1))  Redundancy

(iv)  Retirement

(v) Medical retirement

Agrafotis (1984) has grouped the above cases into two main reasons, normally, (a)
unnatural and (b) natural. Unnatural reasons for leaving depend on the internal
structure of the company or organisation, viz, lack of promotion prospects, job
satisfaction, problem of adjustment, etc., including the cases (i), (i1), and (iii)
mentioned above. Natural reasons for leaving the organisation do not depend on the
internal structure of the organisation, including the cases under (iv) and (v). In
analysing data on a number of companies, Agrafiotis (1984) has shown that there is a
significant difference in the wastage rates corresponding to reasons (a) and (b) for
leaving. However, the cases (iv) and (v) relating to the natural leaving are entirely
different and are to be discussed separately, for an employee leaving by way of
natural retirement after having served the organisation completely cannot be grouped
with an employee who leaves the organisation by way of medical reasons. As such,
there are three different wastage rates:

(a) Due to internal structure

(b) Due to retirement

(©) Due to medical reasons

Unlike natural wastage the unnatural wastage can be controlled by the management
by resorting to better promotional prospects, improved working conditions and
training.

Some other manpower studies which investigated wastage intensities are (Vassiliou

(1976, 1982), Leeson (1981, 1982), McClean et al. (1992)).
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1.2 TECHNIQUES USED IN MANPOWER MODELS

In this section, we present the various techniques used in the analysis of models of

manpower systems.

1.2.1 Renewal theory

Renewal theory forms an important constituent in the study of stochastic processes
and is extremely used in the analysis of manpower models with recruitment. Feller
(1941, 1968) made significant contributions to renewal theory giving the proper lead.
Smith (1958) gave an extensive review and highlighted the applications of renewal
theory to a variety of problems. A lucid account of renewal theory is given by Cox

(1962).

Definition 1

Let {X;:i=12,...} be a collection of random variables, which are non-negative,
independent and identically distributed. Then the sequence {X} is called a renewal
process. We assume that each of the random variable X, has a finite mean p. A
renewal process is completely determined by means of f(-), the p.d.f ofX,.
Associated with the renewal process is a random variable N (t) , which represents the
number of renewals in the time interval (0,t]. N(t) is also known as the renewal

counting process (Parzen, 1962).

Definition 2

The expected value of N(t) is called the renewal function and is denoted by H(t).
The derivative of H(t)if it exists, is denoted by h(t) and is called the renewal density.
The quantity h(t)dt has the interpretation that it represents the probability that a

renewal occurs in(t, t +dt) . We will have to identify this as what is known as the first

10
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order product density for a more general process. The renewal density satisfies the

following integral equation:
ht)= f(O)+ ], fu)ht-u)du

One of the important and useful theorems in application is the key-renewal theorem

(Smith, 1958).

Theorem

Let Q(t) satisfy the following conditions:
(1) Qt)=0 forallt>0

(i1) Q(t) is non-increasing

(iii) j: Q(t) dt < oo.

Then,

1imj°°Q(t—u) dH(u):lij(u) du.
t—>0J0 /1 0

Further details regarding renewal theory can be found in Smith (1958), Feller (1968),
Prabhu (1965) and Srinivasan (1974). We now briefly indicate how renewal theory
has been used in the study of manpower models. The stochastic element in manpower
systems occur principally due to the loss mechanism arising out of staff moving out of
the system. The randomness may also be due to the method by which the vacancies
are filled. In the context of manpower planning, the renewal process {N(t),t >0}
represents the number of recruitments required for the given position for which the
first person was employed at t=0. The random time X between successive
replacements is called the completed length of service (CLS) and its distribution
F(X)is termed as the CLS distribution. Thus, during the operation period from t =0
up to time t, while N(t)employees leave, an equal number need to be recruited in

order to keep a given position continuously staffed. To predict the value of N(t) for

any given time, its expected value, which is referred to as the renewal function, may

11
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be used. The relationship between the CLS distribution and the renewal density h(t),

the derivative of H(t), is given by the renewal equation
ht)= fO+[ fWht-wdu:  t20.

Where f(t)is the density of the CLS distribution F(t) . The renewal density h(t) can
be interpreted as the rate at which the losses occur. On the other hand, F(t) is the

distribution of the time an employee spends in the organisation before leaving. The
renewal process of personnel losses has been extensively studied by Bartholomew

(1962, 1982) and Bartholomew and Forbes (1979).

1.2.2 Markov renewal theory

Let E be a finite set, N the set of non-negative integers andR, =0, ). Suppose we
have, on a probability space (2, B, P) random variables X, :Q —>E, T :Q—>NR,

defined foreach ne N sothat 0=T,<T <T,<.....

Definition 1

The stochastic process (X,T)= {(XnﬂTn); ne N} is said to be a Markov renewal

process with the state space E provided that

PIX,o = 05T =T, <t X, X oo X,

n+1 > "n+l

L PO U, T.]=P[X T, -T, <t |X,]

nel = J) n+l1

forall neN, jeEandte®R, .

We assume that (X,T) is time-homogeneous, that is, forany i, j € E and t e R

QG,j,t)=P[X,., = j.T,,, -T, <t| X, =i]

> ' n+l n n

independent of n. The family of probabilities
Q=1{Q@,jt); ijeE teR,}
1S called a semi-Markov kernel over E. We assume that

Q(,J,00=0 for all 1i,jeE.

12
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For each pair (i, j) the function t — Q(i, j,t) has all the properties of a distribution

function except that;
P(i, ) =lim Q1)

is not necessarily 1. It is easy to see that

that is, P(i, J) are the transition probabilities for some Markov chain with state space

E. It follows from the definition 1 and above that

P[X it = 51 Xos Xpseeen X3 Tgs T Ty = POX, = )

for all neN, jeE.

This implies that X ={X ; ne N} is a Markov chain with state space E and the

transition matrix P.

1.2.2.1 Markov Renewal Functions

We write P,(A) for the conditional probability P[A| X, =i]and similarly E; for the

conditional expectations given{X, =1} . We also assume that

Let us define Q"(i, j,t) as

Q"(, j,t)=P[X,=],T,<t]; i,jeE, teR, forall neN.
Then,
1 if i=]
0 if i#]

forall t>0 and n>0

QO(L J:t) = 5ij :{

where &; is the Kronecker delta function.

13
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We have the recursive relation

Q™' (k,0 = [ Qe ],d5) Q"(j. k.t -5)

jeE
where the integration is over [0,t). The expression R(i, j,t)that gives the expected

number of renewals of the position j in the interval [0,t) is given by
R@, j,t)=>.Q"(, j.b).
n=0
This is finite for any i, je E and t<ow. The R(i, j,t) are called Markov renewal
functions and the collection R={R(i, j,t); i,j€E, teR, } of these functions is

called the Markov renewal kernel corresponding to Q. We note that for fixed i, j € E,

the function t — R(i, j,t) is a renewal function. We can now easily see from the

various expressions above that R, = (I —Qa) ', where I is the unit matrix.

1.2.2.2 Markov Renewal Equations

The class of functions B which we will be working with is the set of all functions
fTEXR LR

such that for every i€ E the function t— f(i, t) is Borel measurable and E XR

bounded over finite intervals and for every fixed jeE the functions

(, ) —>Q"(, j,t)and (i, j) » R(i, j,t) both belong to B. For any function

f € B, the function QO f defined by

Q@f (.= Y[ Q. j.ds)f (j,t-s)

jeE

is well defined and Q©feB again. Hence the operation can be repeated, and the n"

iterate is given by

Q© f(i,t)zzjo‘Q“(i, j,ds)f(j,t—s).

jeE

14
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We can replace Q by R, which is again a well-defined function, which we will denote

by RO/, that is for feB,

RO f =Z.|'(:R(i,j,ds)f(j,t—s).

jeE

A function feB is said to satisfy a Markov renewal equation if for all

ieEandteR,,

fi.0 =900+ [ Q. j.ds)f (j.t-s)

jeE
for some function geB.
Limiting ourselves to functions f, g € B which are non-negative and denoting this by

B, the Markov renewal equation now becomes

f=9+Q0f, f,geB:
This Markov renewal equation has a solution RO©g. Every solution f is of the form

R©g+h, where h satisfies h=Q©h, heB;. For a more detailed on Mark renewal

equations see Cinclar (1975).
1.2.3 Semi-Markov processes

Let (X,T) be a Markov renewal process with state space E and semi-Markov kernel

Q. DefineL =supT,. Then L is the lifetime of (X,T). If E is finite or if X is

irreducible and recurrent, then L =400 almost surely. By weeding out those

weQand teR, for which supT, (@) < cowe assume that supT, ()= for all .

Then for any weQ and teR, there is some integer Nne Nsuch that
T,(0)<t<T,, (w). We can therefore define a continuous time parameter
Y =(Y,),.n, With state space E by puttingY, = X onT, <t<T . The process
Y =(Y)ies, so defined is called a semi-Markov process with state space E and a

semi-Markov transition kernel Q = {Q(i, j,t)}.

15
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1.2.4 Stochastic point processes

Stochastic point processes form a class of random process more general than those
considered in the previous sections. Since point processes have been studied by many
researchers with varying backgrounds, there have been several definitions of them
each appearing quite natural from the view point of the particular problem under
study (see, for example, Bartlett (1966), Bhaba (1950), Harris (1963) and Khinchine
(1955)). A stochastic process is the mathematical abstraction, which arises from
considering such phenomena as a randomly located population or a sequence of

events in time. Typically, there is envisaged a state space X and a set of points X,

from X representing the locations of the different members of the population or the
times at which the events occur. Because a realization (or a sample path) of any of
these phenomena is just a set of points in time or space, a family of such realizations

has come to be called point processes (see Daley and Vere-Jones, (1971)).

A comprehensive definition of a point process is due to Moyal (1962) who deals with
such process in a general space, which is not necessarily Euclidean. Consider a set of
objects each of whom is described by a point X of a fixed set of points X . Such a
collection of objects, which we may call a population, may be stochastic if there exists
a well-defined probability distribution P on some o — field B of subsets of the space
® of all states. We shall assume that the members of the population are
indistinguishable from one another. The state of the population is defined as an

unordered set X" = (X;, X, yeevee , X, ) representing the situation where the population

has n members with one of the states X,, X, ,.......,X,. Thus the population state space

® is the collection of all such X" with n=0,1,2,......where X° denotes the empty
population. A point process is defined to be the triplet (QQ, B, P). For a detailed
treatment of stochastic point processes with special reference to its applications the
reader is referred to Srinivasan (1974). A point process is called a regular point

process if the probability of occurrence of more than one event in (0,A) is0 (A)

16
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1.2.5 Product densities

One of the ways of characterizing a general point process is through product densities
(Ramakrishnan (1950), Srinivasan (1974)). These densities are analogous to the

renewal density in the case of non-renewal processes. Let N(t, X)denote the random
variable representing the number of events in the interval (t,t+x), d, N(t,x) the
events in the interval (t + X, t + X+ dx) and P(n,t,x) = P[N(t, x) =n].

The product density of order n is defined as

where X, # X, # ... # X, , or equivalently for a regular process

{ﬁN(XnAi)Zl; i=1L2,... ,n:|

i=1

where X, # X, # .cococe.e. #X,.

These densities represent the probability of an event in each of the
intervals (X, X, + AX,), (X, X, +AX,),...,(X,, X, + AX,). Even though the functions
h, (X, X,......, X, ) are called densities it is important to note that their integration will

not give probabilities but will yield the factorial moments. The ordinary moments can

be obtained by relaxing the condition that all the Xx;'s are different.

1.3 HETEROGENEITY

The validity of the models described under section 1.2 depends highly on the
assumption that the manpower study be based on homogeneous groups of individuals.
This is a huge task, which can never be attained in practice because human behaviour
is highly unpredictable and the environment on which the system operates is

uncertain. However, it is paramount that the researcher ensures that there is no major

17
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source of heterogeneity. Individuals’ differences depend on many factors such as their
motivation, performance and commitment to the employer.

The subject of homogeneity of individuals is fundamental in virtually all fields of
study. However, in the biomedical literature, it is a well known fact that individuals
differ substantially in their endowment for longevity (see Manton (1981); Keyfitz
(1978); Shepard and Zeckhauser (1977). Hence it is important to try and understand
the impact of heterogeneity on the study results. In demography and public policy
analysis studies, it has been found that ignoring heterogeneity in frailty results in

biased results (Vaupel et al. (1979, 1985)).

According to Bartholomew et al. (1991) the analysis of individual differences is of
fundamental importance in the study of manpower system, in particular, wastages
(losses from the system). Any attempt to describe wastage pattern must reckon with
the fact that an individual’s propensity to leave a job depends on a great many factors,
both personal and environmental. Failure to recognise the effects of heterogeneity
may not only result in erroneous results when applying manpower models but also
complicate both the theoretical and empirical research due to the composition of the
population and the differential impact of economic, environmental and social forces.
The flow of people in manpower systems, moving employees in various states can be
subdivided into recruitment stream, the transition between the state and the outflow
from the system. Considering a discreet time t =0, 1,.. we assume that the individuals’
transitions between the states take place either according to a homogeneous Markov
chain. Most of the work was based on homogeneous Markov chain model introduced
by Young and Almond (1961), Gani (1963), Young (1971), and Sales (1971).

Later on Young and Vassiliou (1974), Vassiliou (1976, 1978) introduced the non-
homogeneous Markov chain model, which was reported by many researchers to
provide a good prediction in practice. Vassiliou (1982a) introduced the more general
framework of non-homogeneous Markov model, which incorporates a great variety of
applied probability models. As the literature shows, the theory of non-homogeneous
Markov systems (NHMS) has flourished since then (Vassiliou, et al. (1990); Tsantas
and Vassiliou (1993); Georgiou (1992); Tsantas (1995)).
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A number of authors suggested tackling the problem of heterogeneity by dividing the
personnel system into more homogeneous subsystems. The pioneering work on
mover-stayer models of labor mobility by Blumen et al. (1955), Goodman (1961) and
later Bartholomew (1982) was one form of subdividing the population into categories-
the ‘stayers’ who hardly change their jobs and the ‘movers’ who tend to change jobs
frequently. Ugwuowo and McClean (2000) proposed some techniques to deal with
heterogeneity for modeling wastage, though the problem exits in other flows within
the personnel system. To incorporate population heterogeneity into manpower
modeling, two strategies have been suggested: the use of observable sources of
heterogeneity as it affects wastage and the latent source of heterogeneity that are
impossible to observe but are known to affects the key parameters of the model.
Although the division of individuals in homogeneous subcategories is a fundamental
and important step in application of the manpower planning techniques, there is still
lack of attention towards the way homogeneous groups can be attained in practice. De
Feyer (2006) presented a general framework to get more homogeneous subgroups for
using Markov Chain theory in manpower planning. A general splitting-up approach is
suggested as well as the use of some statistical multivariate techniques is proposed to
support the splitting-up process. The main sources of heterogeneity within an
organization are summarized in Figure 1.1. An example of a splitting up process is

depicted in Figure 1.2.
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Sources of heterogeneity

N\ -
Observable sources Latent sources
J &
N e -
Age, Sex Environmental factors
Qualification Individual traits
Length of service
Marital status ) _

Figure 1.1: Summary of Heterogeneity
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[ All Profiles }

e N e ™
- Married - Technical

N Y, N Y,

s N e N
- Not married L Non technical

\ Y, N v

Figure 1.2: Illustration of splitting up process

1.4 SCOPE OF THE WORK

An attempt is made in this thesis to study stochastic models of manpower systems
with reference to the following aspects: (i) recruitment (ii) promotion (iii) training and
(iv) wastage.

For the various models considered, expressions for the relevant measures of system
performance of the system are derived. Appropriate cost models are developed to
obtain the optimal policies. Numerical illustrations are also shown to highlight the

results obtained.
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CHAPTER 2

APPLICATION OF MARKOV CHAINS IN A
MANPOWER SYSTEM WITH EFFICIENCY AND
SENIORITY
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2.1 INTRODUCTION

Vacancies in any grade of an organization are filled either with promotions from next
lower grades or by new recruitments. In general, promotions can be classified under
the dichotomous policy namely, promotion based on efficiency and promotion based
on seniority. Here, seniority means the length of service an employee acquired in each
grade and efficiency means the measure of specialized skills or performance in the
jobs which could be rated on a scale amenable to quantitative analysis and ranked in
ascending order depending on their performance. If the efficiency is not rewarded by
means of promotion the so called brilliant people termed as High fliers who would
discharge the duties more effectively may leave the organization (this is presently
happening in South Africa). So to retain them every organization should follow

promotions based on efficiency.

Raghavendra (1991) obtained promotional probabilities and recruitment vectors
embedding Markovian theory with certain assumptions on the promotional policies of
the organization such as promotions allowed to the next grade and no demotion,
without maintaining the grade structure over a period of time. Model 1 is the
extension of Raghavendra (1991), where maintainability of grades is considered. In
model 2 we give importance to efficiency and skills of the employees by allowing
multiple promotions. That is, an employee is promoted to the next higher grade due to
seniority and efficiency, whereas he is prompted to other higher grades due to
efficiency only. Here two cases are discussed as (i) maintainability (ii) non-
maintainability of grade structures. The promotional probabilities and recruitment
vectors and cut-off levels of seniority and efficiency for promotions are found. The

models developed require the following assumptions and notation.

2.2 ASSUMPTIONS AND NOTATION
2.2.1 Notation

Lett=1,2,....,T ; t being the horizon, usually t represents a year.
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i, j=1,2,...,k states of the system representing the various grades, with total

number of grades being k.

N;(t):  Number of staff in grade j at the beginning of period t.
Pi(0): P [a member of staff in grade i at the beginning of period t is in grade j at

the beginning of the next time period (t +1) ].

R;(1): Number of new recruits to grade j during period t.
w;(t): Wastage factor expressed as a proportion of members of staff of grade j.
e Proportion of staff promoted from gradeitoj; (i< j).

el:

i Proportion of newly recruited staff to grade j.

i-1
e = Zei}’ = proportion of staff promoted to grade j.
i=1

e

F :{l—eig’ if there is promotion only tothe nextgrade
J

1-e} if there are multiple promotions

2.2.2 Assumptions

1. The system sates are mutually exclusive.

2. N() = (Nl(l), N, (D), ....,N, (1)), the vector of existing staff structure is known
and N(t) = (Nl(t), N, (t),...., Nk(t)), the vector of staff requirements for the

future periods are assumed to be known over a finite period of time
T,t=12,3,..,T).

3. The expected strength of staff at any grade j at time point t=1,2,3,....,T is
known.

4, w (t), the wastage vectors are known, t =1,2,3,.....,T .

5. Promotion to a grade from the next lower grade is allowed under both aspects of
seniority and efficiency.

6.  Promotions from other lower grades to an upper grade are allowed based only
on their performance ratings (efficiency levels).

7. The bivariate distribution of employees under seniority and performance rating

(efficiency) is known for all grades at various times.
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The following section explains how Markovian theory is applied in Manpower

models.

2.3 APPLICATION OF MARKOV CHAINS IN MANPOWER
MODELS

Consider an organization, which satisfies all the above assumptions under Markovian
assumptions (Bartholomew, 1982).

We have
K
Nj(t +1)= z P (HON, (1) + Rj(t); vVi=12,...,k. 2.1
i=l1

Which implies that the staff in the grade j at time t+1 is the sum of employees
staying in the same grade j during the time interval (t,t+1) and the employees
coming from various grades to grade j either by promotion or by demotion during
(t,t+1) and the new recruits into grades j during (t,t +1).

Since at any point of time a member of the staff would either stay in the same grade,
move to another grade either by promotion or by demotion or leave the system as

wastage, we have

k pyO+w M) =1;  Vi=12..k (2.2)

Under Model-1 we determine the promotion probabilities and recruitment vector of

various grades of an organization under maintainability of grade structure.

2.4 ANALYSIS OF MODEL-1: ONE STEP TRANSITION
UNDER MAINTAINABLE GRADE STRUCTURE

Here we assume that the strength of staff at any grade is the same at various time
points over a finite interval (0, T).
That is

N;(D=N;2)=..... =N;(T); vi=12,...,k
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As there are no double promotions and demotions, and promotion only to the next
higher grade is allowed, equations (2.1) and (2.2.) take the form
N;t+D=N;t)=P; ON;®)+ P, ,,; ON; (1) +R;(t) (2.3)

P,O+P, ,,O+wW,M)=1; Vj=12 ..k (2.4)

With the above assumptions, the number of staff to be promoted and the number to be

recruited for various grades can be estimated as follows. For t=1 and j=k (the

highest grade), equations (2.3) and (2.4) become

Ny (2) = N, (1) = Pe N, (D) + By N, (D + R (D (2.5)

P () =1-w, (1) (2.6)

(As there is no promotion from the highest grade, P, , ., (1) =0).

Therefore the total number of promotions and recruitment is obtained from equations

(2.5) and (2.6) as

Pk DN (D) + R (1) =N (1) = N, (1)[1 - W, (1)]
=N, (Dw, (1)
=Ny (2), (say)

(2.7)
Since the number of promotions and recruitments are in the ratioe, : (1-¢,),
we have
P(k—l)k (DN k-1 1= €y N 1: (2) (2.8)
Ry =(1-e)N;(2) (2.9)
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Equations (2.8) and (2.9) give the number of promotions from grade (k-1) to grade k
and the number of new recruits to grade k respectively. From equation (2.8),
we have
e. N/ (2)
P, (t)z—k k (2.10)
NGO

In equation (2.3), t=1 and j=k-1 yields
P(k—l)(k—l) (1) =1- Wi (1) - P(k—l)k (t) (2-1 1)

Proceeding in a similar manner for variations in j, the number of promotions and
recruitment and the transition probabilities can be estimated for all other states of the
system at various time points.

While in model-1 promotion only to the next higher grade is considered, multiple
promotions are allowed in model 2 and are discussed under two cases of maintainable

and non-maintainable grade structures.

2.5 ANALYSIS OF MODEL-2: MULTIPLE PROMOTIONS

Here we assume that the strength of the staff in any grade is the same at various time
points. That is
N;(D=N;2)=...... =N;(T); Vi=12,...,k

Along with the maintainability of grade structure over a period of time T, equation

(2.1) and (2.2) take the form

N, (t+1)=N;(t) =Zj: P, (ON, )+ R, (1); Vji=1,2,...k (2.12)

k
dpi®+w,=1;  Vj=12..k (2.13)
i=]

With the above assumptions, the number of employees to be promoted and the
number of employees to be recruited for various grades at time t are obtained as
follows:

For t=1 and j=k (the highest grade) equations (2.12) and (2.13) reduced to
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Ny (2) =N, (D)= Zk: Pi (ON; (1) + R, (D) (2.14)

P (D) =1-w,(1). (2.15)
Therefore the total number of promotions and recruitment to the k™ grade, at time t=2

are obtained from equations (2.14) and (2.15) as

> Py (N, (1) + R, (1) = N, (1) = P, (DN, (1)

=N, (Dw, (D)
=N, (2), (say). (2.16)

Since the number of promotions and recruitment to the k™ grade are in the
k-1

ratioe : (1—-¢)), wheree = Zei’; , we have the number of promotions as
i=1

k-1

> P (N (1) =e2N;(2)

:feiﬁN;(z). 2.17)

And the number of recruitments to the grade k as

R (D) =(1-¢)N(2)

=e; N (2). (2.18)

From equation (2.17), we have

PN/
p (1)=3MN@ iy ko 2.19)
N; (D)

Puttingt=1 and j=k-1 in(2.13) we have

P(k—l)(k—l) (1) =1- Wi (1) - P(k—l)k (1) (2-20)
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By proceeding in a similar manner, the numbers of promotions and recruitments and
the transitional probabilities can be obtained for all other states of the system at

various time points.

2.5.1 Case-2: Non-maintainable grade structures

Here we assume that the strength of staff and any grade is not necessarily the same at

various time points. That is, N;(t,) # N, (t,) for at least one pair of t,t, (t, #t,)
forall j=1,2,...k.

With the above assumptions, proceeding in a similar manner as in the case-1,

equations (2.12) takes the form

N, (t+1) = ZJ: Py (ON, () +R,(1); Vi=12,...k. (2.21)

Whereas as the equation (2.13) remains the same, equation (2.21) reduces to

Ny (2) = Zk: P ON; () + R, (D) (2.22)

along with equation (2.15). Therefore the total number of promotions and

recruitments at grade k at time t=2 are obtained from equation (2.22) and is given by
k-1
2PN (D) + R (1) = N (2) = By (ON, (1)
i=1

=N/(2), (say). (2.23)

Since the number of promotions and recruitment at grade k are in the ratio
k-1
el :(1-¢/) wheree = eP , we have the number of promotions given by
i=1
K

" P, (DN, (1) = 7 N/ (2)

_SeIN!(2). (2.24)
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And the number of recruitments to the grade k is given by

R.(D)=(-el)N/(2). (2.25)

From equation (2.26) we have

&N (2) .

P.(1) = N Vi=12,..k-1. (2.26)

Using equation (2.20) and proceeding in a similar manner as in case-1, the numbers of
promotions and recruitments and the transitional probabilities can be obtained for all

other states of the system at various time points.

2.6 BIVARIATE FRAMEWORK TO DETERMINE THE CUT-
OFF LEVELS FOR PROMOTION UNDER SENIORITY AND
EFFICIENCY

Let X and Y be discrete random variables representing seniority and efficiency

respectively. Let P;(X,y) be the joint probability mass function of these two variables
for members of staff in grade j in the organization and F,;(X,y) be the cumulative

joint  probability that X<x and Y<y. Let g j(x)=ZP(X, y) and
y
hj(y):ZPj(X, y)be the respective marginal probabilities. Let the corresponding

cumulative distribution functions be G;(x) and H(y).

Suppose an organization’s policy requires the proportion of promotions based on

seniority and on efficiency as s ; ,,; and  (1-s§;;) respectively from grade (j-1) to

(i-Dj
for all j=2,3,...,k, and multiple promotions (promotions with jumps) are to be
based only on efficiency, then the minimum levels of X and Y required for promotion
can be evaluated.

The minimum cut-off level x for seniority required for promotion from grade (j-1) to

grade j, can be obtained from the following equation
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S €N+ D =N () 1-G L (0)]. 2.27)

(J-D]J
Similarly the minimum cut-off level y for efficiency required for promotion from

grade (j-1) to j is obtained from the equation
(A=s)ef N+ =N, (1) [1 -Hy, (Y)] (2.28)

For i< j—1, promotions from grade i to grade j are based only on efficiency. Hence

in these cases the minimum levels of efficiency for promotions are given by
erNj(t+1)=N,®[1-H (y)]. (2.29)

The order in which promotions are made is based on the two factors; i.e. seniority and
efficiency may also influence the chance of a specific member of staff getting
promoted. It does not affect the person with high values X and Y, it is likely to affect
those around the cut-off values of X and Y (see (2.27) and (2.28)). These cut-off

values are influenced by the degree of correlation between X and Y.

2.7 CONCLUSION

In this chapter the Markovian model is embedded in a bivariate framework to
generate promotion probabilities and recruitments. The bivariate aspect of seniority
and efficiency associated with promotion is also studied. It clearly establishes the
bounds for promotion under seniority and efficiency so that unambiguity is created.
Our approach well suits the present day requirements of most of the organization as

they follow the dual criteria of seniority and efficiency.
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CHAPTER 3

MODELING OF AN INTERMITTENTLY BUSY
MANPOWER SYSTEM'

! A modified version of this chapter was presented at the IASTED conference Sept 11-13, 2006 in
Gaborone Botswana. (The paper has been refereed and published in the proceedings).
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3.1 INTRODUCTION

While many authors directly discuss the economics of minimizing a manpower
system, this chapter deals with the aspect of the image of Goodwill that an
organization aspires to achieve economy directly. In any organization employees look
forward for better opportunities and hop to other organizations in search for them.
This behavior affects the normal routine work of the organization. The adverse effects
are felt more where a person leaves the organization during a busy period of the

organization.

However, it is not necessary that the staff strength be always full for satisfactory
performance of the functions. Thus, there are ‘lean’ periods when full staff strength is
not needed. The ‘busy and lean’ periods, whose duration is random, occur alternately
in an organization. Such a manpower system may be called an intermittently busy

manpower system.

In the context of reliability of an intermittently used system, Gaver (1964) who has
studied the system performance defines the point event called ‘disappointment’. Still
in Gaver (1964) it is pointed out that it is pessimistic to evaluate the performance on
an intermittently used system solely on the basis of the distribution of the time to
system failure. The point event, called a disappointment, is characterized as follows:

e The system fails during a need period or

e A need for the system arises, but it is in the failed state.

It is well known that the steady state availability is a satisfactory measure for systems,
which are operated continuously, such as for manpower planning system. Confidence
limits for the steady state availability of a two-unit standby system was investigated
by Chandrasekhar and Natarajan (1997) while Yadavalli, et al. (2002) examined the
same for a two unit system with the introduction of preparation time for the service
facility. Recently the confidence limits for the stationary rate of disappointment of an
intermittently used system have been studied by Yadavalli and Botha (2002). In this

chapter, an attempt is made to obtain the expression for the stationary rate of crisis in
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an intermittently busy manpower system and derive the 100(1- o) % confidence limits

for the same, when both the busy and lean times have an exponential distribution.

Definition 1

The organization is said to face a crisis if a vacancy is caused by the departure of a
person during the ‘busy’ period or alternately if a busy period arises when there exists
at least one vacancy. In both the situations the recruitment process is immediately

initiated.

Definition 2

Stationary rate of crisis of an organization is the annual frequency (i.e. the number of
times the crisis occurs in a unit of time, usually taken as a year) in the long run (as

t—o0) with which crisis occur in the organization.

3.2 ASSUMPTIONS

1. The ‘busy’ and ‘lean’ periods occur alternately.

2. The time T for which the staff strength remains ‘full’ is exponentially
distributed with parameter A and the time R required to complete recruitment
for filling up vacancies is exponentially distributed with parameter L.

3. T and R are independently distributed random variables.

4. The ‘busy’ period is exponentially distributed with parameter o and the ‘lean’
period is also exponentially distributed with parameter 3.

5. There is a recruitment board of the organization, which starts its functions as
soon as a vacancy arises.

6. The wastages (resignations, retirement, dismissals, and deaths) of employees
are immediately taken as ‘alert signal’ by the recruitment board.

7. If an employee leaves the organization during lean/busy period, the
recruitment process is immediately initiated and the recruitment is done

regardless of whether the busy/lean period arises or not.
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3.3 SYSTEM ANALYSIS

Let {Z(t),t >0} be the stochastic process depicting the state of the manpower
system with state space {0, 1, 2, 3} corresponding to various situations that arise in the

organization described in Table 3.1.

Table 3.1 System states

State | Staff strength Busy/lean period
0 Full Busy
1 Full Lean
2 Understaffed Busy
3 Understaffed Lean

In this problem, state 2 represents the crisis state in the organization. Let

p=PZ)=i] i=0,1,2,3

Figure 3.1:Trangition diagram
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Since the interest is in the stationary behavior of the process, we need

lim_, p;(t)=p;

Using the transition diagram, Beichelt and Fatti (2002), the following differential-

difference equations can be obtained.

P,(t+A)=P[Z(t+A)=0/Z(t)=1]P (1)
+P[Z(t+A)=0/Z(t)=2]P, (1)
+P[Z(t+A)=0/Z(t)=0]P,(t) + 0(A)

= BAP (1) + puAP, (1)

+ 1= +a)A]P, (1) +0(A).

Hence
tim,,, 2RO 2 )44y 0 (24 Py 0
so that
P.(t) =—(A+a)P, (t)+ /P, (1) + 1P, (1). (3.3.1)
Similarly
P (t) =—(A+B)R,(t)+aP, (t)+ 1P (1) (3.3.2)
P, (t) =—(a + )P, (t) + AP, (t) + AP, (1) (3.3.3)
and P, =+ AP0+, O+ R ). (3.3.4)

The following steady state equations can be easily obtained using (3.3.1)-(3.3.4)

(a+A)P, = BP, + 1P, (3.3.5)
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(l+ﬂ)P1 :aPO+,uP3 (3.3.6)
(a+ )P, =P, + AP, (3.3.7)
(u+ PPy =aP, + AR, (3.3.8)

These equations are linearly dependent and can be solved by using the fact that

>Rt
i=0
Therefore
S (3.3.9)
(a+ YA+ p)
p=— % (3.3.10)
(a+p)A+w)
p - pA (3.3.11)
(a+ P)A+ )
P (3.3.12)
(a+B)(A+w)

The main interest is to find the ‘rate of crisis in a steady state’ (C )

Plerisis  in (t,t+A)]=P[erisis in (t,t+A)/Z(t)=0]P[Z(t)=0]

+ Plerisis in (t,t+A)/Z(t)=3]P[Z(t) =3]+0(A)

—P[zt,t+A)=2/Z(t)=0]P[Z(t) = 0]

+P[z(t,t+A)=2/Z2(1)=3]P[Z(t) =3]+0(A)
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(AA+0A)P, (1) + (BA+0A)P,(t) +0(A)

AP, (t)+ P, (t)+ 0(A) .

The rate of crisis in the organization at time t, is C;

Ci= AP, (1) + fP;(1).

Hence, the stationary rate of crisis is

C, =lim,, C,=AP, + AP,

0

namely

__PrAla+ u)
To(a+ BUA+ )

3.4 SPECIAL CASE

It should be noted that for an organization with some busy time and full-staff strength,

that is, @ = A whatever be the recruitment time, the stationary rate of crisis is

L= (/1'8 /Iﬁ) is dependent only on B, the full staff strength. When J is a fixed
+

constant, C_ becomes a constant.

3.5 ASYMPTOTIC CONFIDENCE LIMITS FOR THE
STATIONARY RATE OF CRISIS

In this section we obtain 100(1- o) % confidence limits for the stationary rate of crisis
in the organization.

Let X,, X,,....X, be a sample of leaving times with p.d.f. given by
f(x)=2e", 0<x<ow, A>0.

Let Y,,Y,,...Y, be a sample of recruitment times with p.d.f. given by

f,(y)=p™, 0<y<ow, u>0.
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Let Z,,Z,,....Z, be a sample of busy periods with p.d.f. given by

0,(2)=ae™™, 0<z<ow, a>0.

Let V,,V,,....V, be a sample of lean periods with p.d.f. given by

g,(W=p", 0O<v<o, f>0.

Let X, Y, Z, and vV be the sample means of the time to leaving the system, the
time to recruitment of staff into the system, the time to busy service periods and lean
service periods of the system, respectively. Then

E(x_>=%, Ew‘>=%, E(Z)% andE(\7)=%.

It can be shown that Y, Y_, Z, and V are the MLE’s of

1 1 1
) 0, =— d 0, =— tively.
P = and 6, 5 respectively

The stationary rate of crisis is

_(6,+6,)(6,+6,)

: €4€1 (93 + 92 )

and hence, the estimator of C,, is given by

é - (Z +V)(X +Y)

VX(Z+Y)

Using the application of the Multivariate Central Theorem (see Rao, 1973), it follows

that
WX, ¥, Z, V)-(0.0,.6,0,)——> NO,Y) as now
where
1111
(01:92903:0) (z ; ZZ Ej
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and the dispersion matrix z: [0 1ix4 is given by

> = diag(67,67,62,67 ).

d
From Rao (1973), we have \/ﬁ(éw -C, ) —> N(0,6°(6))

with

crzw):i@j ]o

=1
= -~ [ 9C, 29.2
=00, )"

Let o2(0) be the estimator of ¢>(6) which is obtained by replacing 6 by a

consistent estimator @ = (X, Y_, Z_, \7) . Since 02(9) is a continuous function of 4,

we know that 6 (6) is a consistent estimator of &~ (9)

Thus

a*(0) >’ as n—o.

Using the Slutsky’s theorem, we have

Jnlé, -c, ) ¢

—~ 3 N(0,I) as n—>oo.
(o}

Jnle, -c,)

This implies that Pr| -2z, < -
c

<Z,,|=l-a

Where Z,,, is obtained from the normal tables. Hence, the asymptotic 100(1 — )%

confidence limits for C_are givenby C_+7,,,

o
NS
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3.6 NUMERICAL ILLUSTRATION

Table 3.2 gives the 95% confidence limits for the stationary rate of crisis for different
values of @, and @, for the values of 9, and ¢, fixed at 9, =100 andg, = 50 . Figure
3.2 gives a graphical display of the stationary rate of crisis against leaving rate for the

model in figure 3.1. The parametric values used in the equations for C_

1 1 1
were y=—,a=——-,f8=—_ For these values the Ileaving rate ranged
450" 100 T 50 © s
from_L_ o L. The graph shows that an increase in leaving rate increased the rate
100 10
of crisis.

Table 3.2: 95% confidence limits

n=100 9, Confidence Limits 0, Confidence Limits
20 (0.05924, 0.09076) |20 (0.0089, 0.0577)
40 (0.03839, 0.05540) 140 (0.0262, 0.0452)
60 (0.03129, 0.04370) |60 (0.0313, 0.0437)
80 (0.02768, 0.03791) |80 (0.0339, 0.0437)
100 (0.02549, 0.03450) (100 (0.0359, 0.0441)

n=500 [20 (0.06794, 0.08206) |20 (0.0224, 0.0442)
40 (0.04318, 0.05062) 140 (0.0314, 0.0399)
60 (0.03476, 0.04024) |60 (0.0313, 0.0437)
80 (0.03045, 0.03515) (80 (0.0366, 0.0409)
100 (0.02798, 0.03202) (100 (0.0382, 0.0418)

n=1000 [20 (0.07002, 0.07998) |20 (0.0256, 0.0410)
40 (0.04421, 0.04958) 140 (0.0327, 0.0387)
60 (0.03554, 0.03946) |60 (0.0355, 0.0395)
80 (0.03119, 0.03441) (80 (0.0373, 0.0403)
100 (0.02859, 0.03141) (100 (0.0387, 0.0413)

An increase in leaving rate A will increase the rate of crisis. Conversely, reduction in
leaving rate increases the average time to leave and consequently reduces the rate of

crisis. While an increase in recruitment rate p, reduces the rate of crisis, decreasing
the recruitment rate will increase the average time to leave and the rate of crisis (see

Figure 3.2).
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Figure 3.2 Stationary rate of crisis for the model

3.7 NON-MARKOVIAN MODEL OF INTERMITTENTLY
BUSY MANPOWER SYSTEM

For reliability systems Baxter (1981) obtained some general measures for the
reliability of a repairable one-unit system, by identifying the sequence of periods of
operation and repair as an alternating renewal process (Cox, 1962). This type of
modeling was possible because the uptime and down time in a reliability system are
independent random variables. Two-unit standby systems in which the lifetime and
repair time of a unit are generally distributed random variables are also considered by
Subramanian et al. (1983). Yadavalli and Hines (1991) subsequently studied the joint
distribution of the up time and disappointment time of an intermittently used two unit
system. At the epoch of failure of a unit) operating online), if the other unit is in a
state of failure undergoing repair, the system enters the down state and the duration of
the down state depends on the elapsed repair time of the unit under repair. Thus in this

example the uptime and the down time are correlated random variables. The entire
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process can be thought of as a sequence of cycles where a cycle consists of an uptime
plus the subsequent down time. The evolution of the system can be modeled by an
alternating renewal; process in which the random variables representing the uptime
and the random variable representing the subsequent down time are correlated. We
call such a process ‘correlated alternating renewal process’ if it satisfies some more
additional conditions. Earlier, the joint distribution of the up time and down time has
been obtained by Nakagawa and Osaki (1976). In this sub-section of the chapter we
apply the correlated alternating renewal process to a manpower system. This is
achieved with the help of the joint forward recurrence time to a system busy period
and system lean period. The alternating renewal process discussed by Baxter (1981) is
shown to be a particular case of the correlated alternating renewal process studied

here and the results are deduced as a special case.

Assumptions

All the assumptions in section 3.2 are the same in this model except 2 and 4.

2'. The busy period is an exponentially distributed random variable with parameter & .

4' Lean period is a random variable having p.d.f g(-).

8. Periods of full strength of staff and the period of under staffed are distributed

random variables with parameters A and u respectively.
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3.7.1 Notation

An event E is characterized by system recovery that is the system enters the state 0
from state 2. Event E, is characterized by the event that ‘the staff strength is full and
the staff is busy’. Event C is characterized by the event ‘crisis of the system’ when the

system enters state 2 from state 3. The two-valued stochastic process Z(t) describes

the state of full staff strength and state of understaffed for the system at time t, that is

Z(t) = 0 if the system s in state of full staffed
| 1 if the systemis in state of undestaffed

Associated with the process {Z(t);tZO}, we define the following auxiliary

functions 7;; (1) , useful to our analysis:
M) =prizt)=j/z(0)=if, i,j=0,1, t=0.,

These can be obtained by renewal theoretic arguments

{+aexp-(a+p)t]}

oo () = @+ p)

ﬂOI(t) — a{l—exp[— (a +ﬂ) t]}
(a+p)

2, (1) = (a +,6’)exp{— (a+p) t}
(a+p)

r < Bl @ pt]]

(a+ /)
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3.7.2 Joint distribution of the uptime and disappointment time
If X is the time interval between an E event and the next C event and Y is the time

interval between the C event and the following E event, then the joint density of X

and Y is given by
s (6 Y) = 74 () A exp(~AOG (X + Y)
+ [ 7o (WAexp(-Au)Bexpl- Bx—w]g(x+y) du
9| [ 7w Aexp(-aug(u +v)
X (1= exp{-A[X - (& +V)]}) Bexp[A(x - )] dv du
+29(N[ [ 9u)exp(~Au)zy, (u-+V)Lexp(-Av)
X {exp[-A(X — )]} Bexpi~lX - (u+V)]} dv du
+ [0, (W), (X U)Aexp[-A(X ~1)]g (X +y ~u) du
#[7[7 e g, (VA exp(-Av) Bexpi-Blx - (v +U)]}
X g(x+y—u)dvdu+g(y)
ol T e i (WA exp(-Au)g (v + )
X (1= exp{~A[x = (u+V+ W)} X expi=plx—(u+w)]} dv du dw

Where hg (t) the renewal density of E; events is given by
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_2.[(: g(u) exp (—Au)zy, (t) Aexp[-A(t —u)]exp [-A(t —u)] du m

+ I;I:_u g(u)exp(—Au)7z,, (U +V) A

hEl ()= i
" X exp (—=AV) exp[—A(t —u)] Bexp{—A[t — (u+V)]} dv du

+ J.;J.;_u 7o (WA exp(=AU)g(U +V) X exp{—A[t — (U +V)]} Bexp[-A(t —u)] dv du

3.7.3 Marginal densities

If the marginal densities of the random variables X and Y are f,(x) and f, (y),

respectively, then

o0 =[] fuy (6 y) dy

= [, 7 _(02exp(-20G(0)+ [ 7, (W)L exp(~Au) B exp[~(x ~W)IG(X) du
[, mnWiexp(-aung(u-+v)

X (1=exp{=A[x—(u+V)]})f expl-A(x~u)] dv du

+2[ [ g exp(-Au)z, (U+v)2exp(-Av)

X {exp(~A) ~ exp[~A(X~ )]} fexp =B~ (U+V)]} dv du

+| OX e, (U)77g (X—U) A exp[~A(x )] G(x —u) du

+ J.OXJ.OX_U he, (W7, (V)L exp(-Av) Bexp{—B[x—(V+Uu)]} G(x—u)dvdu
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+ j ()XJ. OX_WJ OX_(U+W) hE1 (W) A, (W) A exp(—=Au)g(u +V)
X (I—exp{=A[X—=(U+V+wW)]})Bexp{~L[Xx—(u+w)]}dvdudw
+2 jOXIOX—WJ-Oxf(ww) hE| (W)g(u)exp(—Au)z,, (U +V)Aexp(—=Av)

X(exp(=AV)exp{—A[X— (U +W)]} B X exp{~fF[x—(U+Vv+w)]}dvdu dw

=] fo oy dx

= 0°°7z ()4 exp(-A)G(x+ y) + [ : x| OX 70, (WA exp(—Au) Bexp[—A(X —u)]G(X+ y) du

+9] [ 7 7y, (U)Aexp(-Au)g(u +v)

X (1= exp =[x~ (U+V)]})Bexpl-A(x - )] dv du

+29() [ o [T g(u)exp(~Au)m, (U +V)Aexp(—Av)
X {exp(~Av) — exp[-A(x — )]} Bexp =X~ (u-+V)]} dv du

+f T [ OX he, (U)7, (X —U) A exp[~A(X—U)]g(x + y —u) du
+ I: dxj OXI :u he, (W7, (V)Aexp(=AV) Bexp{-p[X - (V+U)]} g(x+ Yy —u)dv du

s [ ax [T b Wy ) dexp-Ang(u +v)
X (I—exp{-A[X—(U+V+wW)]})Fexp{—L[x—(u+w)]}dvdu dw
29 [T [ OX‘(“””) he, (W)Q(U) exp(—AU)z,, (U +V)A exp(~Av)

X (exp(=Av) exp{—A[X — (U +W)]})S X exp{—B[X—(U+V+w)]} dv du dw
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The density of the random variable X +Y representing the cycle length is

t
fX+Y (t): Io fX+Y (ua t _u) du.

3.7.4 Joint forward recurrence time

Let t be a time instant when the system is up. We say that the joint forward recurrence

time y , is the bivariate random variable (U,,W,) where U, corresponds to the time
interval from t to the next C event and W, the time interval from t to the subsequent E

event.

t
L% Y- e vt y
ventoxyy=] B Y[ RO v yds for y>x

0, otherwise

where
he(®=> 1,7 (1)
n=1

is the renewal density of E events.

3.7.5 Marginal forward recurrence times

The marginal forward recurrence times are given by

et =" wee®xy)dy="f,t+x+[" hef, (t-u+x) du

and

et y)= [ Weetxy) dx

0 © t
:J'O fX,Y(t+u,y—u)du+J.0 du'[0 he (U) fy y (t—wW+u, y—u)dw.
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3.7.6 Stationary values of the forward recurrence times

As defined earlier,

. 1 o
Vee(Y) =limyc et y)= [ fvty-xd
e Hy+

we(X) =lim y (t,x) = [* fwat

to Hy T Hy
. 1 o
we(y) =limp, (t,y) = [ fen @t
o Mty 7Y
where
M, = E(X)=j0w X fy (x) dx
and

w=Em =]y f,(ydy

3.7.7 Operating characteristics of the system
3.7.7.1 Time to first C event

Let C be the random variable denoting the time to the first C event, then, T, has p.d.f.
given by

fr =we (O = f,(0).
Thus

priT. >t} :L f (u)du.
The mean value of T, is given by

Mean time to crisis ZIOOO X f,(x)dx.

3.7.7.2 Number of C events in the interval (0, t)

The first order product density for C events is given by

h,(X) = mi E[N(x,A)]
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.1
=£1£1’(}Z pr{N(x,A)=1}.

Where N(X,A)denotes the number of C events in the time interval (X,X+ A). Hence

h )=y (0,3 = he(u)ye(u,x-u)du

Therefore the expected number of C events in an arbitrary time interval (0,t] is given

by

E[N(o,t)]zjot h, (x) dx
:J'Ot v (0,X) dx+'[0t dx '[OX he (U (U, x—u) du
= [ (0 dx

:J'Ot dx IOX he (u) fy (x—u) du.

The expected duration of crisis is given by the expected value of the random variable

Y, and

EC) =] v f(y)dy.
3.8 SPECIAL CASE

When o = o, i.e when the busy period is large,

then
7o (1) =1
7 (1) =0 for all t>0
and
fyy (X, y) = Aexp(=AX)g(X+Yy) + j:hEl (WAexp[-A(X—u)]g(x+y—u)du.
where

o . (n)
he, (1) = 2[2 jo g(u)exp(—Au)Aexp[-A(t —u)]exp[-A(t —u)] du}
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Furthermore, the p.d.f of the random variable X +Y is given by

f. .y ()= g()[1—exp(—At)]+ j; du | 0 he (W)A exp[—A(u - w)]g(t —w) dw
The marginal densities of X and Y are given by

f, (%) = Aexp(-2%) G(x) + [ OX he, (U)A exp[-A(X—W)IG(x + y) du
and

f,(y) :j: Aexp(=AX) g(X + Y) dx+j0°°j: he, (U)Aexp[~A(x —u)lg(x +y —u) du..

3.9 CONCLUSION

In this chapter, we derive the stationary rate of crisis for a manpower planning system.
Confidence limits for a system steady state crisis are developed for the system. We
also provide the numerical example to examine the effects of varying the system
parameters that govern rates of attrition (4 ), recruitment (& ), busy period (), and
lean periods ( ), which gain some insight on the system performance measures. A
non-Markovian model is studied for the above model in the last section. Important
measures such as the amount of crisis, time taken to observe the first crisis and the
expected number of crisis events observed within a specified period of time are
calculated. These are all important tools for management to use to manage their

organizations effectively and timely.
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CHAPTER 4

STOCHASTIC STRUCRURES OF GRADED SIZE
IN MANPOWER PLANNING SYSTEMS?

2 A modified version of this chapter was presented at the IASTED conference Sept 11-13, 2006 in

Gaborone Botswana. (The paper has been refereed and published in the proceedings)
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4.1 INTRODUCTION

Graded manpower systems have been studied from different points of view by several
researchers (see Bartholomew, 1973, 1982), Young and Vassiliou (1974), Vassiliou
(1978), Bartholomew and Forbes (1979), Vassiliou and Gerontidis (1985), McClean
(1991) and Vassiliou et al. (1990).

A particular aspect which has received much attention is the examination of moment
structure of the state of these systems in terms of the proportion of staff in each grade;
and the evaluation of recruitment and promotion policies for controlling them. In
these works, the graded structure is analyzed with grade dependent promotion
probabilities and the length of service is considered as an important criterion in
determining the staff flows (see Morgan (1979), Vassiliou (1981), Leeson (1979,
1980, and 1982)). In a large number of manpower organizations such as a civil
service, each grade is further subdivided into several categories for administration

reasons.

These categories may be several departments or sections within grades or divisions
consisting of persons who have completed zero years of service, one year of service,
two years of service, etc. and promotions are considered at the end of each year for all
the employees of a lower grade to higher grades. The proportion of promotion will be
different for each category and hence dependent not only on the grade size but also on
the category size. By varying the family of promotion probabilities, the structure of
the system can be steered to a desired level. Further, for a given set of promotion
probabilities, it is worthwhile to find the probability distribution of the state of the

system.

In this chapter, an attempt is made to analyse the impact of category and grade
dependent promotion probabilities on the grade structure of hierarchical manpower
systems. To be specific, we consider multi-grade manpower systems in which each
grade is subdivided into several categories according to length of service in that grade.

The last category of each lower grade consists of persons who have completed a
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specified period of service in that grade and do not get promotion. An employee in a
lower grade is eligible for promotion to the most junior category of the next higher
grade and the probability of promotion is dependent on the grade and category of the
employee. Un-promoted employee of the category of a lower grade will move to the
next higher category of the grade in the next unit of time until he reaches the last
category of the grade from where he is either promoted or leaves the system. The unit
of time may be taken as a year. The movement to the system are allowed in the lowest
category of the lowest grade. Wastages are allowed from any category of any grade

and no demotions take place.

The organisation of this chapter is as follows: in section 4.2, the basic model is
described and the assumptions and notation are provided. The probability distribution
of the state of the system is defined in section 4.3. The expected time to reach the top
most grade by a new entrant in the lowest grade are found in section 4.4. The
recurrence relation for the moments of the grade sizes is derived in section 4.5. A
numerical example is provided in section 4.6 to highlight the impact of category and

grade dependency on the grade structure of a particular organisation.

4.2 ASSUMPTIONS AND NOTATION

1. There are L grades arranged in descending order of seniority, grade 1

representing the senior most and grade L, the junior most.
2. Each grade i is further subdivided into k;+1 categories C} I=L..X.
3. The category consists of those employees who have completed j years of service
in grade 1.

4.  The category C|i<i consists of employees with k; and more years of completed

service in grade 1.
5. Any employees of the ith grade can be promoted to the (i-1)st grade and they are
put in the lowest category of the (i-1)st grade.

6. Each employee of the category C} J=L..K; has equal probability p; of

promotion to the category C, .

7. Promotions take place at the end of each year.
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8. Recruitment is made only at the beginning of each year and is of fixed size R.

9.  Wastages can occur from any category of any grade.

10.  Qj: the probability that an employee of the category C} leaves the system.
11.  N(i, j,t): random variable denoting the number of employees in C} at time t.
12. N(i, J,t) : mean number of employees in C} .

13. r}j : the mean number of employees promoted from C} .

14. Iij : the mean number of employees who have left the system from C ; .

15. T: number of years required for an employee to reach the top most grade from
his last time of entry into the system.
16. Ti: number of years required for an employee to reach the grade (i-1)st since the

time of his entry into grade i.

4.3 THE PROBABILITY DISTRIBUTION OF THE STATE OF
THE SYSTEM

Given the promotion and wastage probabilities, we proceed to determine the
probability distribution of the state of the Markov system at any timet. For the sake
of simplicity we assume that there are 4 grades arranged in descending order of
seniority of which grade 1 is the senior-most and grade 4 is the junior most. The grade
1 consists of 2 categories, the grade 2 consists of 3 categories, the grade 3 consists of
4 categories and the grade 4 consists of 3 categories. We also assume that no
promotions occur from the first category of each lower grade and no wastages occur

from all the categories except the last category of each grade, that is,

q, =00, q,=00.
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The system configuration and the promotion probabilities are given in Table 4.1.

Table 4.1 System description

Grade1 | 0.0 0.0
Grade2 | 0.0 P,, P

Grade 3 | 0.0 Ps, Py, | Py

Grade4 | 0.0 P, P

First, we note that, since a fixed size R of recruitment is made at the beginning of
each year and that it is made only into category C,', the probability distribution of

N(4,1,t) is known for all time t. In fact, we have
P[N@ Lt)=n|=5(n-R), n=0 1, 2,...; t=0,12,....

where J;; is the Kronecker delta function.

As initial condition, we have
P[NG, j,00=n]=0, i=4, j=1; N(4,10)=R.

Now, observing all the possible flows of staff starting from time t=0, we can obtain
the state probabilities at any time t. For the purpose of illustrations, we do this for
times t=1, t=2, t=3.

At time t=1, only the categories C',C; are occupied so that the others are empty.

Hence, we have:
PIN@. LD =n, N@2.)=n,| N@410)=i]=P[N@ 1, =n]5(n,-i.

Next, at time t=2, only the categories C,',C,,C/,C; are occupied and the others

unoccupied. Hence, we have,
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P[N@ 12)=n, N4 2.2)=n, N@ 3 2=, NG 1 2=n,|N@ L =i, N4 2 D=}

=P[N@ L2)=n5G, 1)y 50—, -,)5 (m—n»(r':j Pl (—py)~ ™.
Lt 2

In the same way, observing that at time t =3, the categories C',C;,C},C/},C; are

occupied and the other categories are unoccupied, we have,

NG L3)=n, N423)=n, N433)=n, NGL3I=n, NG23)=n,|
P
N@LD=i,, N@&22)=i,, N423)=i,, N3 1L2)=i,

=P[N@ 1 3=n]{5(—i) 5 [n—~G,—n)—-(—n,-1,)] 8 [,—~n,—n,)] G, 1) |

* Shshs i2 i3 n43+|43 N, A >, i~
z Z Z n4 n4 -+ | 422 433 433(1_ p42) 2 (1_ p43_q43)3 s\
Ny,=0 ny;=0 1,,=0 H e s

Proceeding in this way, we can find all the conditional probabilities for all time t.

Since P[N(4,1,0) =i,] is known, all the state probabilities can be computed forward in

time and till the probabilistic structure of the state of the manpower systems is

completely determined.

4.4 EXPECTED TIME TO REACH THE TOP-MOST GRADE
Since we want to find the mean time to reach the top-most grade, we assume that the
probability that an employee leaves a grade is zero, that is q; =0, v i, j. Also

assume p; =0. Since C} consists of those employees who have completed j years of
service in grade i and the probability that he is promoted to C," is pjj, the probability

that an employee is promoted to grade (i-1) after he has put in a service of j years in
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grade 1 is p;j. Accordingly, the probability distribution of, the time spent in grade 1 is
given by

P[T, =1]=0

P[T; =2]= p;,

PT =m]=(-p)0=ps)-.. 0Py B 2 <M <k;

K
P[T=k+m]=[ Ta-p)(-p)™p, m=12...

Hence, we have
e

E(T)= z H(l_ Pin) Py +{1_i[(1‘_ pim)}(l_ Pi,) [k +LJ :

j=2 m=2 ik;

The mean time to reach the top-most grade is given by
L
E(T)=2 ET).
i=2
We find the mean number of years an employee has to remain in a grade before being
promoted to the next grade for two different sets of promotion probabilities and

present the results in Tables 4.4 and 4.6 .

4.5 MOMENTS OF THE GRADED SIZES

The stochastic process describing the behavior of the system is a Markov chain on the

state space

E={G, ), i=12...L j=12..k,..L+1}

where L+1 represents the state to which employees are leaving the system. Let the

transition probability matrix P be defined by

PICI,m) /i, j)] where P[(l,m) /i, j)]

58



University of Pretoria etd — Setlhare, K (2007)

represents the probability that an individual found in state (i, j) at time t moves on to

the state (1, m) in time t+1, for all t. Then we have;

PI(i-1,0) (i, D= py
P, j+1) G, DI =1- p,
PL(Ik )11k ) ] =1 Py =0,
PIL+1) [ (i, k)] = gy,

and

P, m)|(i, })]=0, for all other values.

Let R (t) denotes the vector corresponding to the recruitment. Since recruitment are

allowed only in the category C . and is a constant R for all t, we have all the

elements of R(t) as zero except the term corresponding to C OL . Then the expected

number in the system at time t is given by the recursive equation (Bartholomew,

1967).
N(t+1)= N(t)P + R(t+ )r
where
N(t +1)is the expected number of employees in the system in the i state at
time t+1,
P is the transition matrix whose element p;; is the probability of a move from

state 1 to j in any time interval, R(T +1) is the number of recruits at time

T+1and r =(r,r,,..I,) is the recruitment vector.
4.6 NUMERICAL EXAMPLE

Some numerical examples have been carried out of this model. Tables 4.2 to 4.5 give
different scenarios for promotion probabilities to each category within grades, for
instance an employee would move from grade 4 categories 6 to grade 3 categories 0
with probability 0.3. Tables 4.4 and 4.6 give the average time it takes for an

individual to move from one grade to another. Tables 4.7 to 4.10 indicate the number
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of employees leaving the system within each category of the grades given that 40
people were recruited each year while Tables 4.11 to 4.14 give the corresponding
scenario while organization started with 80 recruits. It is observed that if promotions
are time dependent it will take an employee about 36 years to reach the topmost
grade, whereas if promotion is based on efficiency it will take only 14.7 years to reach

the top most grade.

Table 4.2a Transition probabilities within and between grades

Grade2 | 0.0 0.2 0.4 0.5 0.6 0.8 0.9 0.8
Grade3 | 0.0 0.2 0.4 0.6 0.7 0.8 0.9 0.8
Grade4 | 0.0 0.2 0.3 0.4 0.8 0.3
Grade 5 | 0.0 0.2 0.4 0.5

The non-zero leaving probabilities are given below:

Table 4.2b: probability of leaving wastage

Grade 1 Grade2 Grade3 Grade4 GradeS5

1.00  0.80 0.70 0.60 0.50

With the above probabilities and R=40, we have obtained the expected numbers of
employees who will leave the system in the various categories of the grades at
different times t=6, t=11, t=16, t=21 and present them respectively in
Tables 4.7 to 4.10 without changing the promotion and wastage probabilities, if we
change only the recruitment size as R=80, we observe that for the same time points all

the mean numbers are almost doubled and this fact is exhibited in Tables 4.11 to 4.14.
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Table 4.3a: Promotion probabilities

Grade 2 0.0 0.2 0.4 0.5 0.6 0.8 0.9 0.8
Grade 3 0.0 0.2 0.4 0.6 0.7 0.8 0.9 0.8
Grade 4 0.0 0.2 0.3 04 0.8 0.3

Grade 5 0.0 0.2 04 05

Non-zero leaving probabilities

Table 4.3 b Probability of leaving through wastage

Grade 1 Grade2 Grade3 Grade4 Grade5s

1.00  0.80 0.70 0.60 0.50

Table 4.4: Mean time to reach grades

From grade To Grade Mean time
5 4 3.7
4 3 3.9
3 2 3.5
2 1 3.6

The mean time to reach the top-grade is 14.7 years.

Table 4.5a: Promotion probabilities

Grade 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Grade 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
Grade 4 0.0 0.0 0.0 0.0 0.0 0.3

Grade 5 0.0 0.0 0.0 0.0 0.3

In Table 4.5a promotions are allowed only when an employee reaches the top

category of each grade and Table 4.5b gives the non-zero leaving probabilities.
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Table 4.5b: Probability of leaving through wastage

Grade 1 Grade2 Grade3 Grade4 Grade5

1.00  0.80 0.70 0.60 0.50

Table 4.6: Mean Time to reach grades

From grade To Grade Mean time
5 4 6.3
4 3 8.3
3 2 9.5
2 1 12.0

The mean-time to reach the top-grade is 36.1 years.

Table 4.7: Time =6years

Grade 1 | 00 00 00 00

Grade 2 | 00 00 00 00 00 00 00 00

Grade 3 | 02 00 00 00 00 00 00 00

Grade 4 | 30 21 06 00 00 00 00

Grade 5 | 40 40 32 19

The expected number of employees leaving the system is 10.

Table 4.8: Time = 11years

Grade 1 | 18 13 08 00

Grade 2 | 29 28 21 11 00 04 01 00

Grade 3 |29 29 23 14 06 02 00 00

Grade 4 | 30 30 24 17 10 02

Grade 5 | 40 40 32 19

The expected number of employees leaving the system=11
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Table 4.9: Time = 16years

Grade 1

29 29 29 00

Grade 2

29 29 23 14 07 03 01 00

Grade 3

29 29 23 14 06 02 00 00

Grade 4

30 30 24 17 10 02

Grade 5

40 40 32 19

The expected number of employees leaving the system =11

Table 4.10: Time = 21years

Grade 1

29 29 29 00

Grade 2

29 29 23 14 07 03 01 00

Grade 3

29 29 23 14 06 02 00 00

Grade 4

30 30 24 17 10 02

Grade 5

40 40 32 19

The expected number of employees leaving the system=11.

Table 4.11: Time = 6years

Grade 1

00 00 00 00

Grade 2

00 00 00 00 00 00 00 00

Grade 3

03 00 00 00 00 00 00 00

Grade 4

61 42 13 00 00 00

Grade 5

80 80 64 38

The expected number of employees leaving the system=19
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Table 4.12: Time = 11years

Grade 1 |36 26 16 00

Grade2 | 57 56 41 21 08 02 00 00

Grade 3 | 58 58 46 28 11 03 00 00

Grade 4 | 61 61 49 34 20 04

Grade 5 | 80 80 34 38

The expected number of employees leaving the system=22

Table 4.13: Time = 16years

Grade 1 | 58 58 58 00

Grade 2 | 58 58 46 28 14 06 01 00

Grade 3 | 58 58 46 28 11 03 01 00

Grade 4 | 61 61 49 34 20 05

Grade 5 | 80 80 64 38

The expected number of employees leaving the system=22

Table 4.14: Time = 21years

Grade 1 | 58 58 58 00

Grade 2 | 58 58 46 28 14 06 01 00

Grade 3 | 58 58 46 28 11 03 01 00

Grade 4 | 61 61 49 34 20 05

Grade 5 | 80 80 64 38

The expected number of employees leaving the system=22
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4.7 CONCLUSION

This chapter has presented a method for analyzing the impact of category and grade
dependent probabilities on grade structure of a hierarchical manpower system, under
certain assumptions. The probability distribution of the expected time spent in a grade
is derived. Numerical examples indicate that doubling the recruitment size from 40 to
80 employees leads to the mean numbers leaving to be almost double in each category
and grade. Restricting promotions within categories also lead to long waiting times to

reach the top.
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CHAPTER 5

ANALYSIS OF OPTIMAL PROMOTION POLICY
FOR A MANPOWER SYSTEM BY A QUEUEING
APPROACH:?

3 A modified version of this chapter is published in Management Dynamics, Vol . 15, No. 2 (2006).
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5.1 INTRODUCTION

In the competitive world of today which is characterized by a large number of
qualified persons, manpower planning draws the serious attention of researchers
engaged in this field, since each organization requires employees with specialized
skills in various fields to accomplish its business objectives, both now and in the
future. Through manpower planning the management of any organization not only
optimizes the expertise and skills of its human resources, but may also select the
optimal number and correct type of employees available at the right place at the right

time.

Determining manpower planning policies is one of the most critical and difficult
aspects of an organization. In particular, after the recruitment, determining promotion
policies from one grade to another becomes more difficult as the organization requires

more expertise since it is linked to the productivity enhancement of the organization.

Various models applicable to manpower planning have been developed and studied in
the past by many well-known researchers such as Marshall and Olkin (1967), Smith
(1970), Bartholomew (1971), and Forbes (1971). Moreover, there are special features
associated with the methods and models relevant to manpower systems, which arise in

various fields.

Considering recruitment and promotion as some of the main activities of the
organization, Vajda (1975) discussed the mathematical aspect of manpower planning.
The concepts of linear programming are used to develop a graded population structure
where both the recruitment rates and transfer rates between the various grades are
controlled by management. Davies (1975) discussed the maintainability structures in
Markov chain models under recruitment control. Leeson (1984) considered the
recruitment policies and their effects on internal structures. Recruitment control refers
to an effective control of recruitment policies to obtain an optimal supply of recruits
for a system at any time. Generally recruitment levels are connected with wastage and

promotions in a system as well as the desired growth of the system, hence controlling
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recruitment policies may help attain the desired structure, which could be maintained

over time.

Kalamatianou (1987) obtained an attainable and maintainable grade structure in
Markov manpower system with pressure in grades. Furthermore, the work of
Vassiliou (1976) and Leeson (1982) determines the wastage and promotion rates
required to bring about any desired future personnel structure. Grinold (1976) placed
emphasis on uncertain requirements. The main purpose was to provide a framework
to regulate the supply of adequately qualified employees for naval aviation.
Sathiyamoorty (1980) discussed a cumulative damage model of manpower planning
with correlated inter-arrival times of shocks. Rao (1990) proposed a dynamic
programming approach to determine optimal recruitment policies. A bivariate model
under efficiency and seniority embedded with stochastic theory was studied by

Raghvendra (1991).

Young and Vassiliou (1974) have considered a non-linear model for the promotion of
staff. In particular, a stochastic model of promotion based on an ecological principle,
which states that promotions should be proportional to the number of skilled
employees available for promotion and the number of vacancies for promotion was
proposed. Subramanian (1996a, 1996b) developed an optimal policy for time bound
promotion in a hierarchical manpower system and a model on optimum promotion
rate.  Sathiyamoorty and Elangovan (1997, 1998, 1999) studied an optimal
recruitment policy for training prior to placement. A semi-Markov model of a
manpower system was studied by Yadavalli and Natarajan (2001) with the interest
focused on the total number of vacancies available in the entire organization. Recently
a study on training dependent promotions and wastage was also carried out by

Yadavalli et al. (2002b).

Gross and Harris (1974) and Takacs (1960) have presented basic concepts of various
queuing models. Further, queuing and inventory concepts are grouped as
interdisciplinary subjects by Morse (1958) and applied to manpower planning
problems by Yadavalli et al. (2005). Mishra and Pal (2003) have discussed the
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computational approach to the M/M/1/N interdependent queuing model. Further
Mishra and Mishra (2004) evaluated the total optimal cost of the machine interference
model as an important performance measure of the system. Very recently,
Rajalakshmi and Jeeva (2003), Jeeva, Rajalakshmi, Charles and Yadavalli (2004)

discussed stochastic programming in cluster based optimum allocation of recruitment.

Thus a close review of the aforesaid publications on manpower planning reveals that
so far many aspects and approaches have been discussed in various literature sources
pertaining to manpower planning. However, these models are of no use, as long as

they cannot be converted into effective tools usable within organizations.

In this chapter a fresh attempt has been made to analyze the promotion policy
component of manpower planning by mapping the system to a queuing model, where
we describe employees eligibility for promotion by a Poisson arrival and lengths of
waiting for promotion are modeled using an Erlang distribution. The optimal
promotion policy and total optimal cost of the system for promotion have been
computed. To highlight the importance of the model, a hypothetical example is used

for illustration.

5.2 THE DESCRIPTION OF THE MODEL

We consider an M/E, /1:0/FIFO queuing model with Markovian input and
Erlangian service having k phases. In this model, it is assumed that the employees in
grade 1 become eligible at a rate, which is randomly distributed according to a Poisson
distribution and employees proceed to be serviced on a first come, first out basis
(FIFO). Let the mean value of the rate be A,. It is further assumed that the interval
between two consecutive instances of a vacancy arising in grade (i+1) is

exponentially distributed such that the expected number of vacancies arising during

unit time is w; with the traffic intensity — < 1. This is a very restrictive assumption
H;i

since A; < g; it is meant to control the queue size otherwise the queue built up could

69



University of Pretoria etd — Setlhare, K (2007)

be infinite. The promotion time (service time) distribution is assumed to be an

Erlangian distribution with mean P where p is the parameter of the exponential
7]

distribution. A single service channel is operated and there is no limit placed on the

number of employees applying for promotion.

The employees applying for promotion are kept on the waiting list and considered for
promotion as and when vacancies arise. Thus the manpower system is mapped onto a

queuing system and studied.

Let ¢y be the fixed cost of promotion, which is incurred as the establishment cost per
unit of time for any organization, c; be the promotion cost (service cost) per unit per
unit time and c; be the holding/waiting cost per unit per unit time for the model. Since
eligibility (arrivals) follows a random distribution, fluctuations will occur in the
expected queue length for the promotion in the manpower planning system. On the
part of the management (policy makers of the organization), since the exact number of
persons applying for the promotion are not known, this state of indecision hampers
and further delays the promotion policy of the organization. Consequently, the
productivity of the organization is affected. Let c; be per unit cost per phase
associated with a hamper- situation and be known as the hamper cost per unit of the

fluctuations in the expected queue length of the system.

The total expected queue length of the system, average number of phases and per

phase fluctuations in the system are obtained as follows.

(k +1)1

Expected queue length in the system (Ls) =
2kp(u—A2)

kk+Dp 0=A/Ku

Average number of phases = ,
2(1-kp)
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Per phase fluctuations in the queue length of the system by

i(n— L)’P,

n=0

=(1-p)y n*p" L’
n=0

where L is the expected number of employees in the system, P, is the probability of

finding n employees in the systemand n = 0,1, ... © .

For the model developed here, three phases (k = 3)are considered. The first phase is

used for basic screening such as minimum time (minimum number of years of service
put in), minimum qualification and required training for promotion, the second phase
for evaluation of the performance towards target and quality achievement and the
third and the final phase is considered for interviewing the staff. Therefore, for
purposes of evaluating the model k =3 will be assumed in the next section of this

chapter.

5.3 THE ANALYSIS OF THE MODEL

The total cost incurred by the organization for implementing the promotion policy
consists of the sum of the fixed cost of promotion, the promotion cost, the cost of
waiting for a vacancy to be created multiplied by the average number of phases and
the hamper cost per unit multiplied by per phase variability in the queue length of the
system.

The cost function as total optimal cost (TOC) is constructed as follows:

(k+DA k(k+1p = 5
TOC =c, +C,u+C +C 1- n —L
0o THHTL, Kuu(pi— ) 3 2(1—kp) ( P); P

After simplification, (see Gross and Harris, 1974) the above expression reduces to
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2
(k+DA ie uk(kK+1)p

TOC =c,+Cc,u+cC
T (-2 21— p)

Let
TOC=c,+A + A, +A, (5.1
where,
Ar=Cu,
(k+DA
2=C ——,
2kp(p—A)

2

and k(K +1)A

P 2(u—A)(ku - 2)

For the optimum promotion policy (p), equation (5.1) yields a non-linear equation in
u after taking the first derivative of the same, which is solved by making use of the

fast converging Newton-Raphson method and developing a program in C language.

5.4 NUMERICAL ILLUSTRATION AND DISCUSION OF THE
RESULTS

In the numerical illustration, since the model under consideration is studied for the
steady state, the costs of the model are considered to vary in such a way that at least
one cost must be contradictory to other costs. This is a basic requirement for the
formation of the queue. Moreover, the selection of the arrival rate is also considered

as per the steady state condition, that is A <3u. If the aforesaid conditions are

violated, then the model shows erroneous output by giving a negative total optimal
cost of the system, which is never possible. In Table 5.1, it is assumed that ¢, is fixed
and is taken as a constant value. The table illustrates the optimal promotion policy
(u*) and the total optimal cost of the manpower system for the promotion. Starred
values of parameters in the row 9 of Table 5.1 show the optimal promotion and total

optimal cost of the system corresponding to various parameters.
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Table 5.1: Relationship between TOC and optimal promotion policy, p when ¢ is
fixed

A Co i c2 3 k T TOC

(Dollars)|(Dollars)|(Dollars)|(Dollars) (Dollars)

1 700 50 25 15 3 8.95 1147.89
2 700 53 24 14 3 891 1173.46
3 700 67 23 13 3 8.89 1298.40
4 700 69 22 12 3 8.89 1318.83
5 700 74 21 11 3 8.85 1365.12
6 700 77 20 10 3 8.8 1397.16
7 700 81 19 9 3 8.75 1444.76
8 700 88 18 8 3 8.78 1589.46
9* 700%* 90* 17* 7* 3* 8.81* 912.73*
10 700 92 16 6 3 8.81 1401.61
11 700 100 15 5 3 8.83 1515.70
12 700 103 14 4 3 8.87 1563.69
13 700 107 13 3 3 8.9 1614.03
14 700 112 12 2 3 8.9 1668.88
15 700 121 11 1 3 8.92 1762.97

Further, assuming that the promotion cost ¢; to be constant, which sometimes happens
to the organization when it has budgetary constraints, then the resultant trend between

the different costs and total optimal cost are shown in Table 5.2 below.
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Table 5.2: Relationship between TOC and optimal promotion policy p, when

both ¢y and c; are fixed

A Co c1 2 C3 k p* TOC
(Dollars)|(Dollars)|(Dollars)|(Dollars) (Dollars)
1 700 177 19 5 3 8.95 2285.04
2 700 177 42 8 3 8.91 2290.29
3 700 177 76 10 3 8.89 1018.46
4 700 177 80 15 3 8.89 2106.30
5 700 177 91 23 3 8.85 1940.41
6 700 177 111 28 3 8.8 1537.73

In Table 5.3, it is assumed that waiting and hamper costs are constant while assessing

the change in the total optimal cost with the change in the promotion cost.

Table 5.3: Relationship between TOC and optimal promotion policy p, when

only c; is allowed to vary

A Co c () C k Th TOC
(Dollars)|(Dollars)|(Dollars)|(Dollars) (Dollars)
1 700 207 47 104 3 8.95 2554.14
2 700 194 47 104 3 8.91 2434.82
3 700 189 47 104 3 8.89 2397.13
4 700 175 47 104 3 8.89 2293.95
5 700 142 47 104 3 8.85 2038.51
6 700 129 47 104 3 8.8 2012.48

In Table 5.4 we looked at the special case when A = u. In this the case employee’s

eligibility for the job and the expected number of vacancies that arise occur at the
same rate. An analytic expression for the case is given in the appendix A. We notice

that the optimal policy is achieved when A = u=1.
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Table 5.4: Relationship between TOC and optimal promotion policy when A=p

A Co C1 C2 3 k p* TOC
(Dollars) | (Dollars) | (Dollars) | (Dollars) (Dollars)

1 700 50 25 15 3 1 772.50
2 700 53 24 14 3 2 827.00
3 700 67 23 13 3 3 920.50
4 700 69 22 12 3 4 994.00
5 700 74 21 11 3 5 1086.50
6 700 77 20 10 3 6 1177.00
7 700 81 19 9 3 7 1280.50
8 700 88 18 8 3 8 1416.00
9 700 90 17 7 3 9 1520.50
10 700 92 16 6 3 10 1629.00
11 700 100 15 5 3 11 1807.50
12 700 103 14 4 3 12 1942.00
13 700 107 13 3 3 13 2095.50
14 700 112 12 2 3 14 2271.00
15 700 121 11 1 3 15 2516.50

5.5 CONCLUSION

While analyzing the variation over different parameters in Table 5.1, it is interesting
to note that when ¢ is fixed and the other two costs which are in contravention to each
other are varying, the values of the optimal promotion policy and total optimal cost of

the promotion are obtained and this trend of variation in various parameters is worth

noticing in an organization.

In Table 5.2 where ¢ and ¢, are fixed and other costs are varying, it is noticeable that

the variation in the total optimal cost is significant. Table 5.3 shows significant

variation in TOC when cg, ¢, and c3 are fixed.
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Manpower planning is about ensuring that the right types of employees are available
at the right place at the right time. The success of the manpower planning is
paramount to the survival of the organization and the complexities associated with the
planning process and environment. Quantitative techniques such as queuing theory
applied in this study can enhance problem-solving abilities and hence improve

decision-making effectiveness of an organization.

The most practical implication is that of controlling the internal structure through
hiring, promotions, internal transfers, redundancies and retirement planning. The
problem is to precisely plan and control these interrelated organizational activities in

order to achieve a stable organization capable of meeting its objectives.

Application of manpower planning techniques means organizational effectives, i.e. it
may maximize the overall effectiveness of promotion policies to retain the best skilled
employees. As a result of using this model and trying alternative manpower policies
one can discover and explore the cost performance that exists. The following studies
give application of manpower planning techniques in different organizational
problems (Meehan and Ahmed (1990); Gass et al. (1988); Andrew and Abodunde
(1977); Leeson (1982); Gorunescu, McClean and Millard (2002)).

Lastly, management may implement the human resource planning models in their
functional areas of business to develop policies on recruitment and selections, training
and development, hiring, promotion and retention benefits to foster the spirit of

organizational citizenship.
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CHAPTER 6

LIFE TABLE TECHNIQUES IN THE ANALYSIS
OF ATTRITION IN A MANPOWER SYSTEM
WITH REFERENCE TO HIGHER EDUCATIONAL
INSTITUTIONS!

* A modified version of this chapter was presented at the ‘SAIMS’ conference Sept 13-15, 2006 in
Stellenbosch, South Africa. (The paper has been refereed and published in the proceedings)
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6.1 INTRODUCTION

Various stochastic models of manpower systems have been studied in the past
(Yadavalli & Natarajan (2001); Yadavalli et al. (2002); Yadavalli et al. (2005)).
Several studies have shown that socially-valued and demographic factors such as
income, length of service, age, sex, marital status and the general conditions of
service have a significant contribution on an individuals attrition (see Lane and
Andrew (1955), Bartholomew (1959; 1971), Young (1971)). An earlier study by
Woltbein was not only to show the relevance of demographic factors but adopted the

technique of life table to a measurement of working life span.

In this chapter we focus on educational qualification as a primary contributor to
attrition and employ the life table technique to analyse the wastage and attrition rates
of staff of an Educational Institution. In particular we analyse the length of service
expectation and survival rates of staff using the terminology of demography as a

matter of convenience.

A life table gives mortality rate and expectation of life of the population with different
ages. It is mostly employed by life insurance companies to determine premiums to be
set for life insurance and for determining rate of disability and retirement benefits, etc.
It is also used in other fields such as demography and public health to study
population growth, patient survivorship after diagnosis, and length of widowhood as
well as married life. Life table is a convenient method for summarizing the mortality
experience of any population. It particularly it provides a comprehensive and concise
measure of longevity of that population. A life table is quite useful to a business
organization attempting to assess its health benefits liabilities for both current workers

and future retirees (Pol and Thomas, 1997).

In this particular problem we use a life table to calculate the survivorship of a cohort
of employees in an educational institution before they could leave the job. Institutions
of higher education are experiencing major problems of recruiting and retaining

expertise and knowledge base due to competitiveness. This coupled with high costs of
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recruitment and time taken to search for people with skill has great effects on the
institution budgets and development. It is, therefore, of considerable importance to
institution planners to determine the likelihood of leaving and the distribution of the
staff length of service in order to better understand the complex phenomena of
institution staff movement and wastage rates. Wastage or attrition are used in the

place of death and completed length of service [CLS] in the place of age.

This life table gives a summary of wastage or attrition of manpower of a cohort
during an interval of their service. It will provide extensive information about the

impact of wastage on service life expectancy and show any trend in wastage.

6.2 NOTATION AND TERMINOLOGY

This section defines the basic life table functions, shows how life tables can be

calculated and the relationships between them.

i : Exact number of years of service [i — integer]
n :length of interval

I : Number of persons with i completed years of service

~d,  : Number of wastages while passing from i and [i+ n ] years of service
n : Width of classes defined by length of service, n=1, 2......,k
q, :Probability of leaving the job between iand [i+n ] years of service following

the attainment of length i

- p, :Probability of continuing in the service between iand [i+n ] years of service
nL, :Persons years serviced by the cohort between i to [i+n]years

T. : Total persons-years serviced by the cohort from i years of service

e/ : Expected length of service in years left from the year of service

CLS : Completed length (in years) of service

m.  : The attrition rate for the cohort between 1 to [i+n] years

G(i) : is the probability of one not facing attrition until he reaches the ith year of

service.
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Relation between life table functions:

Where

6.3

1. We consider a cohort of persons who joined the service from the inception of the

0l
n i Ii
.d, =1 =1, forall n=1,2,3,....k;
=1, 2,3...k;. k, ki finite and k;>k
Pi :1_qi
Y .
amy = L — is the central rate of attrition
oL = I|i+t dt ~ [n/Z] [Ii +|i+n]
0
T =L +L, +e. +L, = [l dt
0
e’ _n
i Ii
H Ii n
G()= I+
SYSTEM DESCRIPTION

Educational institution and study only their wastage rates.

2. Minimum qualification required to work in the institution is post graduate.
3. Maximum length of service a person can put in the institution is 30 years.

4. In this approach the rates are calculated for classes defined by length of service

(see Tables 6.1, 6.2, 6.3 and 6.4).

5. We assume that there are no significant differences in attrition between males

and females.

6.4 STRUCTURE OF THE TABLES OF LENGTH OF SERVICE

Perhaps the most natural way of collecting data to investigate the pattern of wastage is

to observe homogeneous groups of entrants and note how long each remains in the
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organization before leaving. Such a group, joining at about the same time is known as
a cohort. We employ the cohort life table as it presents a historical record of what
actually happened to the recruits. By recording their service lengths, one would know
how many survived attrition to attain a certain length of service, the probability of not
leaving until thei th year of service, the wastage/attrition rates and expected length of
service. As leaving is a process which can occur virtually at any time in a person’s

career, it is reasonable to treat completed length of service as a continuous variable.

A conventional life table starts with an initial group of 100 000 at birth and follows it
through life, subject to a pattern of mortality (Shryock, Siegel and. Associates, 1954).
Since the focus here is on the span of service duration, the life table starts with the
completed length of service since the inception of the institution or since year zero
and follows it through life, subject to a pattern of attrition determined by a specified
set of mortality rate. In this note we give importance to an Educational Institutions
where people working have different qualifications including Postgraduate [P.G.],
Master of Philosophy [M.Phil.], Master of Science [M.Sc], Doctorate of Philosophy
[Ph.D.]. We consider persons who leave the institution as wastage or attrition at
various stages of completed length of service with different qualifications and present

the results in Tables 6.1-6.6.
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Exact | No. of | No. of | Probab | Average | Total Expecte | Probabilit | Hazard
numb | persons | persons | ility of | person person |d length |y of a|rate of
er of | with leaving | leaving | years years of person leaving
Years | exact the job | the job | service by | service |service | will not | the job
of no. of | betwee | betwee | the cohort |d by |in years | face any | after a
Servi | comple |n 1 to|n between 1 | the left from | attrition | given
ce ted i+n 1to i+n | to i+n | cohort | the year | till ith | CLS

years years years years from 1| of year  of

of of of years service | service

service | service | service of

service

i- I ndi ndi nLi T; e’ G(1) h(i)
(i+n)
0-1 33 9 0.2727 | 28.50 92.00 |[2.79 0.7273 ---
1-2 24 8 0.3333 | 20.00 63.50 | 2.65 0.4849 0.0088
2-3 16 8 0.5000 | 12.00 43.50 | 2.72 0.2424 0.0198
3-4 8 5 0.6250 | 4.50 31.50 | 3.94 0.0909 0.0496
4-8 1 0 0.0000 | 22.50 27.00 | 27.00 0.0909 0.0000
8-10 |1 1 1.0000 | 2.00 4.50 4.50 0.0000 0.0304
10-15 | 0 0 0.0000 | 0.00 0.00 0.00 0.0000 0.0000
15-20 | 0 0 0.0000 | 0.00 0.00 0.00 0.0000 0.0000
20-30 | 0 0 0.0000 | 0.00 0.00 0.00 0.0000 0.0000
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Table 6.2: Structure of a Life Table for staff with M. Phil./M.Sc qualification

Exact | No. of | No. of | Probab | Average | Total Expecte | Probabilit | Hazard
numb | persons | persons | ility of | person person |d length |y of a|rate of
er of | with leaving | leaving | years years of person leaving
Years | exact the job | the job | service by | service | service | will not | the job
of no. of | betwee | betwee | the cohort |d by |in years | face any | after a
Servi |comple |n 1 to|n between 1 | the left from | attrition given
ce ted 1+n 1to i+n | to i+n | cohort | the year | till ith | CLS

years years years years from 1| of year  of

of of of years service | service

service | service | service of

service

i- I ndi ndi nLi T; e G(1) h(i)
(i+n)
0-1 64 10 0.1563 | 59.00 916.50 | 14.00 0.8437 ---
1-2 54 9 0.1667 | 49.50 857.50 | 15.88 0.7030 0.0038
2-3 45 9 0.2000 | 40.50 808.00 | 17.96 0.5624 0.0055
3-4 36 3 0.0833 | 33.50 767.50 | 21.32 0.5156 0.0028
4-8 31 3 0.0968 | 167.50 734.00 | 23.68 0.4657 0.0036
8-10 |28 2 0.0714 | 59.00 566.50 | 20.23 0.4324 0.0029
10-15 | 26 1 0.0385 | 135.00 507.50 | 19.52 0.4158 0.0017
15-20 | 25 1 0.0400 | 127.50 372.50 | 14.90 0.3990 0.0018
20-30 |24 24 1.00 245.00 245.00 | 10.21 0.0000 0.0480
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Table 6.3: Structure of a Life Table for staff with P.G. (Honors) qualification

Exact | No. of | No. of | Probab | Average | Total Expecte | Probabilit | Hazard
numb | persons | persons | ility of | person person |d length |y of a|rate of
er. of | with leaving | leaving | years years of person leaving
Years | exact the job | the job | service by | service |service | will not | the job
of no. of | betwee | betwee | the cohort |d by |in years | face any | after a
Servi | comple |n 1 to|n between 1 | the left from | attrition | given
ce ted i+n 1to i+n | to i+n | cohort | the year | till ith | CLS

years years years years from 1| of year  of

of of of years service | service

service | service | service of

service

- I ndi ndi nLi T; &’ G() h(1)
(i+n)
0-1 143 8 0.0559 | 139.00 3685.5 | 25.78 0.9941 ---
1-2 135 7 0.0519 | 131.50 3546.5 | 26.27 0.8951 0.0011
2-3 128 5 0.0391 | 125.50 3415.0 |26.68 0.8547 0.0008
3-4 123 2 0.0163 | 121.00 3289.5 | 26.74 0.8407 0.0004
4-8 119 2 0.0168 | 605.00 3168.5 |26.63 0.8266 0.0004
8-10 | 117 0 0.0000 | 236.00 2563.5 | 2191 0.8266 0.0000
10-15 | 117 1 0.0085 | 585.00 2327.5 | 19.89 0.8195 0.0019
15-20 | 116 0 0.0000 | 582.50 1742.5 | 15.02 0.8195 0.0000
20-30 | 116 116 1.0000 | 1160.00 1160.0 | 10.00 0.0000 0.0235
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Table 6.4: Structure of a Life Table for all staff of the institution

Exact | No. of | No. of | Probab | Average | Total Expecte | Probabilit | Hazard
No. of | perso | persons | ility of | person person |d length |y of a|rate of
Years | ns leaving | leaving | years years of person leaving
of with | the job | the job | service by | service | service | will not | the job
Service | exact | betwee | betwee | the cohort |d by | in years | face any | after a

no. of [ n i to|n between 1 | the left from | attrition given

compl | i+n itoit+n | to i+n | cohort | the year | till ith | CLS

eted years years years from 1| of year  of

years | of of years service | service

of service | service of

servic service

e
i-(itn) | 1 ndi ndi nLi T; e G(1) h(i)
0-1 240 27 0.1125 |226.50 4694.0 | 19.56 0.8875 ---
1-2 213 24 0.1127 |201.00 4467.5 |20.97 0.7875 0.0024
2-3 189 22 0.1164 | 178.00 4266.5 | 22.57 0.6958 0.0028
3-4 167 10 0.0599 | 159.00 4088.5 |24.48 0.6541 0.0018
4-8 151 5 0.0331 | 795.00 3929.5 |26.02 0.6325 0.0010
8-10 146 3 0.0205 | 297.00 31345 | 2147 0.6195 0.0006
10-15 143 2 0.0140 | 722.50 2837.5 | 19.84 0.6108 0.0004
15-20 141 1 0.0071 | 710.00 2115.0 | 15.00 0.6065 0.0002
20-30 | 140 140 1.0000 | 1405.00 | 1405.0 | 10.04 0.0000 0.0317
6.5 SURVIVAL AND HAZARD RATES

We consider the survival rates of employees in the system as well as the hazard rates

of leaving employment after completing a certain length of service in the job.

Completed lengths of service are best described by duration models. Defining a

duration model precisely requires a time origin, a time scale and a precision definition
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of the event ending the duration. In a manpower system, different individuals will
often have different time origins for the duration of their employment. In practice one
would like individuals in the study to be as homogeneous as possible, after controlling

for observable differences.

Survival rates and hazard rates are useful for completed lengths of service analysis.

Survival Rate G(i) is defined as the probability that a person will not face any

attrition till “i” years of service. For instance, the probability that a person with a

Ph.D qualification will not leave the service till 5 years of service is

[l_n qo] [l_n q, ] [1 “n qz] [l_n q3] [1 n q4];

therefore from Table 6.1, G [4] = 0.0909. This measure shows that survival rate of
highly qualified person within the institution is least as compared to those with
Masters Degree and Honours.

Survival ratios use the life table to calculate the proportion of persons surviving
attrition between i and i+n years of service. These ratios can be used to determine
the percentage of persons in the systems at a particular point in time who can be
expected to still be in the system at some point in the future. The survival ratio from
Table 6.4, for the service length 4-8 years surviving attrition to the service length 8-10
years is

10 Ls :ﬁ
L, 795

Survival ratio= =0.374.

Thus approximately 37.4 percent of the persons who were in the system after serving
4 years will still be with the institution after 8 years. This institution clearly undergoes
significant attrition as only a few recruits will be in the system after rendering their 8
years of service.

3

Similarly the Hazard Rate h(i) of leaving the job after ‘i’ years of service is the

conditional probability of leaving the job in a unit time given that the person has not
left the job till then. The hazard rate h[10]in the case of staff of the institution overall

1S
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[1-19]

o] {10 e a0, 000,00, @100, 0 B 0.000s.

This result shows that the wastage rate of people having put some considerable years

of service [10 years] is [4 / 10000] per unit time (e.g. a week), which is almost, zero.

These results confirm the results found in Silcock (1954).

SURVIVAL CURVES OF THE STAFF OF AN EDUCATIONAL
INSTITUTION

——
1.2

OVERALL
PhD

MSc
HNRS

Survival Probability

T T .\ T T \""\
) 2 4 6 8§ 10 12 14 16 18 20 22 24 26 28

-0.2
CLS(years)

Figure 6.1: Survival rates of persons with Ph.D, MPhil/MSc, P.G.(Hons) and
overall staff

6.6 RESULTS

Tables 6.1-6.4 give the length of service distribution of staff with PhD, Masters

Degree, Honours and the overall staff of the Educational Institution respectively.

Table 6.4 starts with the number of employees who completed i years of service, |,

out of a given number employed. It is observed that 240 employees were recruited at

the beginning of year 0 or at the inception of the institution. Out of the 240 staff, 27
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left within the first year of service, leaving 213 who survived attrition. The d,

column shows the number of employees who left work between i and i+n years of

service. Since everyone must eventually leave the job, d,, ;, =1, 5, -

The ¢, column shows the probability of leaving between i and i+n. Since
everyone leaves, ,, 5, =1. The value of (, indicates that just over 11% of all

recruits left before completing their first year of service. Out of the original cohort of
240 recruits only 213 persons completed one year of service and hence

0.1127x213=24 persons will leave before completing two years of service. The T,

column shows the sum of | L, values at and above i years of service. Accordingly, the
value of ;T,, is the same as ,,L,,. T, is the sum of duration of service in years of all

recruits at retirement. Thus, according to Table 6.4 the 240 recruits would have served
4088.5 person-years after their fourth year of service. Over their length of service

time, the 240 cohort of recruits serviced a total of 4694 total person years.

It is common for the expected length of service remaining after attaining one year of
service, €/ to increase at the earliest period after assuming duty followed by a steady

decline. This gives a hump kind of survival curve showing that recruits are at high risk
of leaving the institution during their early years of service and later settle down when

they feel their job is secure enough. This is confirmed by Column (3) ,d,, the number

of people leaving the job in an institution between i and i+ n years declines rapidly,
but then starts to drop gradually for those who served between 4 and 20 years before

reaching a peak probably due to the effect of retirement.

Table 6.4 shows that at recruitment, employees are expected to work for 19.56 years.
After one year of service, a person is expected to work for 20.97 years, because that
person has already survived the risk of attrition during the first year of service. These
figures are seen to differ from qualification to qualification. For instance, for staff
with a PhD qualification they are 2.79 and 2.65 years respectively while for Masters
Degree holders the figures are 14.4 and 15.88 years respectively. This is a clear
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indication that persons with higher qualification tend to easily find jobs elsewhere and
are likely to be more mobile than other persons with lower qualifications. e which
can be interpreted as the mean length of service at work is an important measure of
the remaining years of service for an employee. Its usefulness lies in helping the

management to plan for future staffing situations.

From the tables we observe that (,, the probability of wastage is a decreasing

function indicating that the propensity to leave falls away with increasing service and

this is what is usually found (Silcock, 1954). On comparison we observe that €, the
expected length of service left and G,, the survival rate are high while h[i], the

conditional probability of leaving after a given CLS is low. This shows that persons
with high qualifications pursue for better jobs as shown in figure 6.1. This graph of a
survivorship function G(x) is continually decreasing. It is fairly rapid at the first few
years of service when recruits are indecisive, and the rate of fall slows down over the
middle of the lifespan where leaving is gradual. The curve then falls steeply at higher

years where wastage for employees is again comparatively lower.

d

: : d, .
We know that the annual rate of wastage is ¢, = I—' and m, = r‘ is the central rate of

i i
wastage can be expressed as functions of |, the number of employees surviving
attrition to age i out of a given number recruited. These equations show that ¢, can
be expressed in terms of m; as

_ o 2nm;
2+nm,

where n is the width of class interval.
For example, from Table 6.4, q; = 0.0599, we can calculate ms to be 0.0618 which
shows that the two rates are more or less the same in this case. Tables 6.5 and 6.6

show the cumulative wastage rate and cumulative hazard rate of persons with various

qualifications against their CLS respectively.
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Since the risk of leaving increases with duration of service, figures 6.1-6.4 show that
the wastage rate and hazard rate of persons with Ph.D. degrees are very rapid and
steep in their increase whereas the other two categories are almost similar. This is
partly due to the smaller numbers in PhD category in comparison. We note that as the
number of years of service increase, the curves become almost straight lines and the
overall graph always lies between the graphs of M.Phil/M.Sc. and P.G./Honours
showing that the wastage rate of cohort is the average of the above two categories.
The hazard and wastage rates increase steadily until after 7 or 8 years and then rises
rapidly to a high of 0.07 in probability and to almost 2 persons for hazard and wastage

rates respectively.

Table 6.5: Cumulative wastage rate of persons with different qualifications

CLS Ph. D. M.Phil. /MSc P.G./Hons. OVER ALL

0 0.2727 0.1563 0.0559 0.1150

1 0.6060 0.3230 0.0780 0.2252

2 1.1060 0.5230 0.1469 0.3416

3 1.7310 0.6063 0.1632 0.4015

6 1.7310 0.7031 0.1800 0.4346
2.7310 0.7745 0.1800 0.4551

12.5 -—-- 0.8130 0.1885 0.4691

17.5 ---- 0.8530 0.1885 0.4762

25 -—-- 1.8530 1.1885 1.4762
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Table 6.6: Cumulative hazard rate of persons with different qualifications

CLS Ph. D. M.Phil. /M.Sc P.G./Hons. = OVER ALL
0 |- — — —
1 0.0088 0.0038 0.0011 0.0024
2 0.0286 0.0093 0.0019 0.0052
3 0.0782 0.0121 0.0023 0.0070
6 0.0782 0.0157 0.0027 0.0080
0.1086 0.0186 0.0027 0.0086
12.5 ---- 0.0203 0.0046 0.0090
17.5 ---- 0.0221 0.0046 0.0092
25 ---- 0.0701 0.0281 0.0409

Note: In the case of CLS [i,1+n ] the mid values of the intervals are taken.
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Figure 6.2: Cumulative Wastage Rate of persons with PhD
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6.7 CONCLUSION

The outcome of the discussion shows that the wastage of people with higher
qualification is more than for the people with minimum qualifications, which is not
negligible. Wastage has a direct implication on the organisational/institutional
environment. According to Geerlings and Verbraeck (2000), the influence of the
environment, through the rise of technology, changing needs of persons, political and
economic situations, legislation and any others are factors that further complicate the
problem of wastage. Hence there is a need for management to transform their
manpower needs on a continuous basis. The work has provided a frame work for
management decisions. Perhaps the management could look into the contributory

factors to wastage such as :

policy and benefits planning;

e academic programme planning;

e deteriorating condition of service;

e strength and clarity of the institutions mission as well as

o the effectiveness of the recruitment and retention programs in order to shape

their organisational/institutional environment.

Management should not only be mindful of the outcome of the performance reward

systems but also the process of how to implement those systems.

A life table technique was used to analyse the length of service of an educational
institution. It has been observed that academic staff with higher qualification tends to
leave employment more easily than their counterparts. This is attributable to the fact
that staff with PhD competes more easily for jobs perhaps due to their marketability

or having the right skills required by the organizations /institutions.
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CHAPTER 7

STUDY OF THREE MODELS ON OPTIMAL
PROMOTION IN A MANPOWER PLANNING
SYSTEM
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7.1 INTRODUCTION

Any organizational structure is generally built on a graded manpower system in which
a member of the organization can belong to only one of the several mutually exclusive
grades. One of the main aspects of manpower planning is to decide on policies related
to the promotion of staff members as promotion is one of the critical factors that can

be controlled by the management.

Having done fairly extensive research on managerial aspects, Young (1965) has given
models of planning recruitment and providing promotion avenues for the members of
the staff. Forbes (1970) studied promotion and recruitment policies for the control of
quasi —stationary hierarchical system. Young and Vassiliou (1974) considered a non-
linear model on the promotion of staff while Vassiliou (1978) has discussed another
non-linear Markovian model for promotion in a manpower system. Later Leeson
(1982) came out with yet another model which introduces grade profiles and are in-
built mechanism pertaining to promotions that results in a significant reduction in

wastage of human resources.

In a subsequent investigation Leeson (1982) had shown that from computed wastage
and promotion proportions it is possible to return to original principles of stationary
probabilities and thereby compute the wastage and promotion intensities which
produce the proportions corresponding to some desired planning proposals. Agrafiotis
(1984) suggested a grade specific stochastic model which accounts for the effect on

wastage of the internal structure and the promotion experience of its employees.

Feuer and Schinnar (1984) carried out sensitivity analysis of promotion opportunities
in graded organization, highlighting the links between personnel flows and vacancy
flows. Leeson (1994) employed projection and promotion models for graded
manpower system to consider recruitment policies and their effects on internal
structures. Earlier Kalamatianou (1988) proposed a model in which promotion
probabilities are functions of the seniority structure within the grades. The model

suggests a method of overcoming the problem of promotion blockages. However,
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despite the fact that the various methods discussed above are highly comprehensive,

certain aspects of an optimum promotion policy have been left out.

Time bound promotions are very common in organizations with employees in
different grades. In order to avoid stagnation of personnel in a single grade such
promotions are given to those who could not get elevated under competitive
conditions. In this chapter, three models have been studied. In model 1, a continuous
time manpower model is proposed in which an optimum promotion policy is
discussed when the cost of promoting a person from grade i (i=1,2,....,n) at time
t is a function of the number of persons in that grade. The solution is obtained with the
help of Euler-Langrage equation. A deduction is also made considering the cost to be

a constant, independent of the grade size.

In the other two models, a manpower system with M-grades (i=1,2,....,M) is
considered over a time interval (0, T;) during which two types of promotions are

contemplated from i" grade to (i+1)™ grade. The first type of promotion is to
promote an individual as and when the vacancies arise. The second type is called an

automatic promotion which takes place at the end of (0, T,) and all those who remain
stagnant in grade 1 throughout the interval (0, T,) are automatically promoted to the

next (i+1)™ grade. Vacancies which arise in the (i+1)™ grade give rise to promotion
from the i" grade. In model 2 the vacancy in the next higher grade is only one at any
point in time, otherwise promotion is given only to a single person at every demand
epoch. In model 3 it is assumed that at every instant a random number of persons can
have promotions. The optimal value of T, is arrived at for the general case and the
results are derived assuming specific distributions for the number of vacancies that

arise. Numerical results justify the results obtained in the models.
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7.2 MODEL-1

The following notation is used in the analysis of this model.

7.2.1 Notation
Let

S;(t) :  Number of persons in grade i at time t
F(S;): Rate of promotion of employees from grade (i —1) to gradei .
P(t) : Rate of promotion of employees from grade ito grade (i+1) at

time t.

C(S,):  Cost of promoting a person from grade i to grade (i +1) when the

size of the grade i at time tis S;(t)

7.2.2 Mathematical model

From the relation between S;(t), F(S;)and P (t) we get the following equation

ds; B
LI CHRLIO (7.2.1)

S, ()P (H)At denotes the number of persons promoted from grade i to grade (i+1)
during the interval (t,t+ At). Since C(S,) is the cost of promoting a person from
grade 1 to grade (i+1), the cost of promoting S, (t)P,(t)At persons in the interval

(t,t+ At) is C(S;)S,(t)P.(t)At. Therefore, the total cost involved in this case is given

by
C=[ C(S)S, R dt
C=[" C(S)S(OIF(S)-S{(t)1dt (7.2.2)
where S (1) = dL(t)
dt
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b
We know that if I (X, y, ) dx, the problem of calculus of variations is to find

that function y(X) for which I is maximum or minimum. The answer is given by the

solution of the Euler-Lagrange equation

a_dad (7.2.3)
oy dx oy
Here
f(t, ;. 8)) = C(S)S,(O[F(S)) - S{(V)]
and
of _dfof )_
oS, dt|as, )
gives
[(C'(S)S; (1) + C(SHIIF(S;) =S+ C(S)S; (HF'(S))
d (7.2.4)
+d_[C(Si)Si(t)]:
t
That is,
[C'(S)S; (1) + C(SHILF(S;) - S{M]+[C(S;)S; (DHF'(S))]
+C'(S)S{(HS; (1) +C(S)SH)=0,
Si(OIC'(SHF(S;)+C(S)F'(S)1=-C(S)HF(S)) (7.2.5)
and so
S, (t) [C(S YF(ES)I=-C(S)HF(S)
siving dIC(SF(S)] __ds,

C(S)F(S,) S
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Hence we get

In[C(S;)F(S;)]=-In S, +Ink
or

S,(HC(S,)F(S,)=k (aconstant)
which can be determined from the initial conditions.

Thus

k

- S 0cE) (7.2.6)

F(@S)

Further if S is the value of S, when the cost is minimum then,

a k
0= S, (C(S))

Therefore (7.2.1) gives

k

P(t)=F(S)) :W

which gives the promotion rate from grade 1 at time t. Thus the promotions rate from

grade i at time t depends on the optimum grade size at time t. Since the cost function

C(S;) is always an increasing function of S,(t), we see that P (t) is a decreasing

function of S;(1).

If the initial grade size in any grade i is less than the optimum size S (t), then the

management may decide that it is better not to promote the employees from grade i

till the grade size increases to S; . On the other hand if promotion is essential the

recruitment to grade i can be made to make the grade size to be S;(t) and then

promotion can be effected at a constant rate of . Hence the promotion on

k.
S (HC(S))
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seniority basis is preferred. If the initial grade size is already greater than S, then

promotion can be given at a faster rate which is permissible under the promotion

policies of the organization or voluntary retirement scheme can be made attractive so

that more persons opt for it, till the grade size decreases to S.(t). After that the

constant promotion rate can be practiced.

k
S (OC(S))
7.2.3 Special case

When the cost of promotion at time t is taken to be independent of the time t and

grade size S (), we have
C(S)=c

Then the equation (7.2.5) becomes

¢S, (HF'(S,) = ~cF(S))

and so

SIOF'(S)+F(S)=0

98, ()F(s,)]=0

dSl 1 1 *
This means

S,(HF(S,) =k, (a constant).
Therefore

— kl _ Ckl _ k2
CS(D) cSi(t) cS(h)

F(S)

where k, =ck;.

Thus the optimum promotion rate is given by

ok,
FSD =5

101



University of Pretoria etd — Setlhare, K (2007)

7.3 MODEL-2

7.3.1 Assumptions and notation

(1) Each vacancy arising in the next higher grade, say (i+1) gives rise to a demand
for a regular promotion from the ith grade at any instant.

(11) The demand for each instant is only one.

(1)  All those who remain stagnant in grade 1 at the end of the interval (0, T,)are

automatically promoted to the grade (i+1).

N. : The size of the ith grade
K : Number of regular promotions during (0, Ti) which is a discrete random
variable (each regular promotion is for one unit only).

C,; : Cost of one regular promotion in the ith grade during (0, T;).

C,; : Cost of one automatic promotion in the ith grade at the end of (0, T;).

F(.): Distribution function of the inter-arrival times between two regular

promotions.

F.(t):[F(®)]™ ; n-fold convolution of F(t)

Now, the expected cost of regular promotions and automatic promotions for the ith

grade in the interval (0, T,) is given by

N
E(C;)=C, > kP[exactly k regular promotions during (0,T,)]
k=0

N;
+C, > (N, —k).P[exactly k regular promotions during (0,T;)]
k=0

Using renewal theory

N.

E(C;)=Cy S kIR (T) = Fyos M)+ Cy TN, =0 [ (T,) = Fy ()] (7.3.1)

k=0

102



University of Pretoria etd — Setlhare, K (2007)

To find the optimum T, , we have

d
d—Ti[E(CTI )]=0 (7.3.2)

= € Lk [T~ Ml Cu (N =0 [£,T) = (T =

where f (T,)=[f(T, )](k) is the k-fold convolution of the density f(T,)

N | f k+l i
Z[ M= fea ()] _c,-c,
S [T = f ()] <

k=

CNf (T, —C,
. () _ GGy (7.3.3)

Zlfk(Ti)_NifNiJrl(Ti) Cz

This is the general result for obtainingT, . For a set of given values of N,, C. and C,,
and also the distribution of inter-arrival times, the optimal value of T, can be

obtained by solving the equation (7.3.1).

7.3.2 Special case (model -2)

Inter-arrival times between regular promotions are assumed to be identically

exponentially distributed with parameter A.
Hence

ﬂ’(ﬂ'Tl ) N efﬂ.T

fNi (T|) = (Ni “1!

Then the equation (7.3.3) becomes
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—(ATH" N,
Ni _ Czi_Cli
LT N@TY C
Z‘(k—l)!_ N, !

C,;, we have from (7.3.3), f, ,(T;)=0

A8~ (ATHY

N =0 = 2&7TUT)Y =0

A#20, T#0 = AT)Y %0

e=0 = AT, =

In such a case we have the following:

Case (1):

Case (i1):

Case (iii):

We consider case (ii) namely A is finite and T, = o ; in this case nobody will be there

A is large and T, is small so that AT, =co. But it is impossible since

(0, T;) contains several intervals with parameter A.
A is small and T, is very large. This is possible.

A and T, are very large. This is also possible.

for automatic promotions.

If C,>C

whenC,, >C,;, assuming inter-arrival times between regular promotions as

li»>

exponential, and for specific values of N;.

Let us suppose that C;; =$300, C,, =$100.

Then

104
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For different values of N, , the equations are obtained and they are such that each has

only one positive root. The positive roots have been obtained by using Horner’s

method (See Table (7.3.1))

Table 7.3.1: Positive roots for different grade sizes

N, EQUATIONS [
2 34T, -2=0 2
32
3 3(ﬂ“Ti)2 _2(/1Ti)_420 ﬁ
32
4 3(AT,)’ —2(AT,)* = 6(AT,)-12=0 22
)
5 3(AT)* —2(AT,)* —8(AT;)* —24(AT,)-48=0 3.1
)

For specific value of A, 'fi corresponding to N; can be obtained as above. The

optimum T, will be decided depending upon the value of N, for any given A (see

Table 7.3.1).

74 MODEL-3

In this model it is assumed that a random number of persons can be given regular
promotions, at each instant. So, at any epoch in which regular promotions are made, a

random number of persons k can be promoted during (0, T,) . In this case the expected
cost of regular promotions in (0, T,) and automatic promotions at the end of (0, T;) is

given by
EC,)=C, S KX [F, T -F (M) p, ()
k=l j=l

N; k
+CZiZ(Ni _k)Z[Fj(Ti)_ Fj+1(Ti)] pj(k) for J <k

(7.4.1)
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where
P;(k)=P[exactly k regular promotions in j instants].

This is given by the coefficient of s* in the expansion of ¢’ (s), where

#(s) = i p,s",with p, =P[X =r].

r=1

X 1is in the random number of persons given regular promotions at each instant. Here

¢V (s) stands for the j-fold convolution of ¢(s) .

Therefore

#V(s)=[g(s)]'.

If the X's are independent and identically distributed random variables to obtain the

optimum value of T, we have

d
d_Ti[E(CT' )]=0

= Q.ZkZ[f(T) SR

£C YN X[, ) 1, py =0

=

M _

ki[f M) - 1 T)] Py (0)

1]

N[, - f,. ] by ()

i=1 j=1

= L (7.4.2)

Z| =
- Il

The solution for T, can be obtained from the above equation for general distributions.

Solutions for assumptions of specific ~ distributions may be obtained with tedious

computational work.
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7.4.1 Special case

When N; =3, C, =$100 and C, =3$300, the numerator of the LHS of equation
(7.4.2) becomes

f,(T) [P (D) +2P,(2) +3P,(3)]
- f2 (Ti ) [P1 )+ 2P1 2)- 2P2 2)+ 3Pl 3)- 3P2 (3)] (7.4.3)
— £,(T) [2P,(2) +3P,(3) - 3P,(3)] - 31, (T)P, (3).
The denominator of LHS of (7.4.2) becomes
T [PO+P@)+P3)]
- f,M) [P +P(2)-P,(2)+P(3)-P,(3)] (7.4.4)

-, [P+ P,3) - P,(3)]- f,(T) P,(3)}:

Let the inter-arrival times between two regular promotions be independently and

identically distributed exponential with parameter o.. Let o = 0.05.

We have
k-1
f,(1)= e
(k=1)!
so that
f.(T,)=0.5""
f,(T,)=025T,e """
f,(T,) =0.0625T e "
and

f,(T,)=0.0104T,’e """ .
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Let us suppose that X follows a Poisson distribution with parameter A and it is

evidently truncated at X =0. T he probability density function of truncated Poisson

distribution is

o) e—ﬂ/lksk e—l(els _1)
S) = E = .
Ve oklid-e?)  1-e

Let A=1.5
P, (1) = P[X, =1]= Coefficient of s" in y(s)

et 157"

l_e—l l_e—145

=0.4307

P2 = P[X1 :2] = Coefficient of s> in y(s)
=0.3230

P.(3)=0.1615

P,(2) = P[X, + X, =2]= Coefficient of s> in y*(s)

et T

=0.1855

P,(3)=P[X, + X, =3]

=0.2782
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P,(3)=P[X, + X, + X, =3]
=0.0799.
Now, equation (7.4.3) gives
e "°1[0.7806 — 0.889T, —0.0604T,> —0.0025T,’]
and that of (7.4.4) is
e °11[1.3728 —0.3387T, —0.0702T,” —0.0024T’].
Hence we get

0.0074T;* +0.1910T,> +5.165T,> —2.934 =0,

This equation has only one positive root and it lies between 2 and 3 and it is '|:i =2.7.

So, the optimal period of the cycle for the ith grade is found to be fi = 2.7 years.

7.5 CONCLUSION

In this chapter it is shown that the optimum promotion rate for any grade depends on
the grade size though the cost of promotion may or may not be dependent on it.

A number of extensions of this model are possible. A simulation model can be
developed to study the effect of various optimum promotion policies on the system
for different cost structures. The optimal cycle for giving the time bound promotion
can be obtained for any specific grade, under given values of the parameter, costs and
distributions. It is also possible to obtain a common optimal policy for all the grades

put together.
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CHAPTER 8

OPTIMAL TIME FOR THE WITHDRAWAL OF
THE VOLUNTARY RETIREMENT SCHEME,
AND OPTIMAL TIME INTERVAL BETWEEN

SCREENING TESTS FOR PROMOTIONS
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8.1 INTRODUCTION

In any organisation the required staff strength is maintained through new
recruitments. The exit of personnel from an organisation is a common phenomenon,
which is known as wastage. Many stochastic models dealing with wastage are found
in Bartholomew and Forbes (1979). In production-oriented organisations wherever
there is surplus staff strength a reduction becomes a necessity. The staff strength in
the organisation depends on the market demand for the products. If the staff strength
is more than the requested level, attempts are made for the exit of personnel on a

voluntary basis tempting then with suitable financial packages.

During a period of T years the voluntary retirement scheme is operated on k epochs.
At each of these epochs a random number of employees opt to retire under the scheme
and this in turn reduces the staff strength. If the total number of persons who retire
crosses a level called the threshold level, the scheme is withdrawn. A salient feature
of the investigation is to determine the optimal length of time (0,T) and this cycle
length is obtained under some specific assumptions using the concept of cumulative
damages process of the reliability theory. For a detailed description and analysis of
shock models one can refer to Ramanarayan (1977) who analysed the system exposed
to a cumulative damage process of shock. Sathiyamurthy (1980) discussed cumulative
damage shock models correlating the inter-arrival times between shocks. Similarly,
recruitment of persons based on their satisfactory performance in screening tests is a
common procedure in vogue in many organisations. The use of compartmental
models in manpower planning is quite common. For a detailed study of the

compartmental models in manpower systems, one can refer to Agrafiotis (1991).

Consider a system which has two compartments ¢; and ¢, . The size of c; is fixed as n.
Transition of persons from c; to c; is allowed and in between there is a screening test
to evaluate the competence of individuals to get into c,. The compartment ¢, may be
thought of as one consisting of persons with greater skills, efficiency and
administrative capabilities. The qualities are evaluated by the screening test. The

persons in c; are first recruited and kept in the reserve list. Assuming that they are
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given some training to improve their capabilities, keeping these persons in c; and
training them involves a maintenance cost or reserve cost. Conducting the test but
with no persons getting entry to c, involves some cost namely screening test cost
which is a total loss. In case no persons get selected and enter into c,, the vacancies in
c; remain unfilled and each such unfilled vacancy gives rise to some shortage cost in
terms of loss productivity. To make good this loss, recruitment of persons from
outside to compartment c, is made on an emergency basis. The longer the time
interval between the screening tests the greater will be the cost of maintenance of
persons in c¢; which in turn increases the cost of shortages in c,. Frequent screening
tests results in higher test costs. With a view to minimize the above said costs, the
optimal time interval namely T between successive screening tests is attempted here.

The results have been applied on some special cases of distributions.

The organisation of this chapter is as follows: In section 8.2, model 1 is described.
System description and notation is discussed in section 8.2.1. In section 8.2.2, the cost
analysis of the model for which the optimal time for the withdrawal of the voluntary
retirement is studied. Model 2 is a study of optimal time interval between screening
tests for promotion in manpower planning. In section 8.3.1, the model assumptions
and notation have been described. The cost analysis for this model is studied in
section 8.3.2. Some special cases are studied in section 8.3.3. Numerical examples

1llustrated results in the last section.

8.2 MODEL-1

8.2.1 Notation

Kk : Number of epochs in (0,T) at which voluntary retirement is permitted.
X;: A discreet random variable representing the number of persons retiring at the
ith epoch.

V,(T): P [there are k epochs during (0,T)]

L: A discreet random variable denoting the number of persons in total who opt
for retirement in k epochs.

P.(k): P L persons opt for retirement in k such epochs]
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Y : Threshold level

C,: Cost of voluntary retirement per person at each of these epochs
Ce: Cost of failure of the scheme
fC): pdf of inter-arrival times between epochs

f ¥ £(-): k-fold convolution

F(): Distribution function corresponding to f(-).
C(T): Total cost
8.2.2 Cost analysis

The total cost arising due to the (i) the failure of the scheme with no persons retiring
(i1) a random number of persons retiring but below the threshold level which renders

the scheme a failure are put together as follows:

CM=0-FRM)]C +[iVL(k)][z PLIOTP(Y > L) (LC, +C¢)

L>k

+§;I°T £ty dt[S P (k)] P[Y > L) x LC,

L>k

=[1-FM)]C;, +§[F<k>m—FWT)]{ZPL(k)} P(Y > L)(LC, +C;)
k=1

L>k

+§:j f () (t) dt [Z PL(k)} PlY > L]x LC,.

k=1 L>k

The main purpose of this chapter is to find the optimal value of T, which minimises

the total cost C(T). For a continuous variable t, we have,

113



University of Pretoria etd — Setlhare, K (2007)

dCd_(rT) — fl(T) Ce +i[f (k)(T)_ f(k+1)(-|-)]{z PL(k)} P(Y > L)(LC, +C,)
+i f8(T)> P (k) P[y > L]x LC, =0.
This gives

PRAD) [Z LPL(k)}P(Y > L)

o0
k=1 L<k

f,(T)C, +C *if(k)m[ZLF’dk)}P(sz)

_i f 0D (T) [Z LPL(k)}P(L >2Y)

L>k

+Cpi[f(k)(‘l')— f(k+1)(-|-)][z PL(k)} PY>L)=0

k=1 L>k

> M [Z LPL(k)}P(Y >L)+P(Y <L)

o0
k=1 L>k

=-f(T)C. +C,

_i f (k+1)(-|-) [z LPL(k)}P(Y > L)

k=1 L>k

k=1 L>k

+CFi[f KTy - f(k+1)(T)]|:z PL(k)} PYY>L)=0
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Therefore

> M {Z LP, (k)} At {Z LP, (k)} P(Y > L)

k=1 L>k >k _F (8.1)

L= [T - f<k*”<T>][Z LPL(k)} (P>L)

L>k

Any value of T which satisfies the equation (8.1) for a given set of values of the cost
and other parameters like k and Y is the optimal value of T and T is unique since it
gives the local minimum. The only criterion to choose optimum is based in the total

cost.

8.2.3 Special case

When the threshold level of Y is taken to be random variable that follows geometric

distribution with parameter €, we have
PY =k)=(1-6)6"" k=1, 2,...

For given L we have P(L>Y)=1-60" or P(Y >L)=6".

Also
P.(k)=P(X, + X, +...X, =L)

and so
D P (KPY>L)=)>P (k)6 =y (say).
L>k L>k

Hence

SLRMPY>L=YLRK O =p @)  (say)

L>k L>k

=6 LP (k) o

L>k

ol )]
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Let us define
P(s)=) P
k=0
so that

p'(s)=> kRs .
k=1

In view of the fact that L is a random variable we have

0

UMY LP M= FUT)KEL).

0
k=1 L>k k=1

From (8.1)

> 1M KEL =X 10T oy @)

0
k=1

C,
(L= 00y @+ X T o)

. (8.2)
k=1

Let X follow a Poisson distribution with parameter A

et A
r!

P[X =r]=

The probability generating function of a Poisson distribution is

w(@)=> PO =e’0.

Now

Z f (k)(T)l//k @)= 29: f (k)(‘r) o kA(-0)

00
k=1

Let
ft)=ae™
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then,
k=1 5 —aT
F4(T) = a(al) e
(k=1)!
Therefore
© o (OZT)k -1
tUM @)= ae e
; Z (k=1)!
_ g0 Z[aTe A 9)]
i (k=D!
— e aTe 21—0 [1 e Z(I—H)]
and E(L)=).nP, =1

Using these results we get from (8.2)

2 —A(1-6) o—al[1-e 179
al+a AT[1-6e gt 1_C
ae—aT [1 _ e—/i(l—ﬁ) ][l _ e—ﬂ(l—@) ] C\/ : (83)
8.3 MODEL2
8.3.1 Assumptions
(1) There is a fixed size or strength of persons in compartment ¢,

(i1) Transition from c; to c; is permitted on the basis of screening test

(ii1))  Shortages are permitted in ¢,

(iv)  In every screening test a person has a constant probability p of getting selected
and permitted to join c;

(V) If k vacancies exist in ¢, r out of k are selected from c¢; with constant

probability p and (k-r) are selected outside ¢; with probability gand p+q=1
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Notation
Size of the compartment ¢;_

C.: Cost of retention of each person c; to c,. In other words the screening
test results in the selection of nobody from c;.

C,: Cost of each unfilled vacancy in ¢, per unit time.

f(): pdf of inter-arrival times of the screening test.

FO): k-fold convolution of F(t).

FQ): Cumulative Distribution function of inter-arrival times of screening

test.
8.3.2 Cost analysis

The total expected cost of retention in c;, cost of wastages in futile screening tests and

cost of shortages in ¢, is given by

E(C(T) =[1-FM)]C, +TC,

(8.4)
0 k
+Y[FOM-FEIm] Y ke pra k-n..
k=1 r=0
Differentiating (8.4) w.r.t. t and equating to zero, we get
—f(T)C, +C, + D [F¥T)— £ &M ke, = 0.
k=1
Since
zk [f(k)(T)— f(k+1)(T)]:M (8.5)
k=1 Csq
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Special case (model 2)

(i)  Let
f(T)=Ae™
0 k k
E(C(T))=e"C, +TC, +> e (’IL) D ke pg“ T (k-r)c,
k=1 . r=0
=e7'C, +TG, +qcAT (8.6)

Differentiating (8.) w.r.t. T and equating to zero, we get

C,+0qCs4 T
AC

n

T satisfying the above equation is optimal.

(i1) Let f(T) be atwo-stage Erlangian with parameter A, then we get

e " [2C, +C,q4]
yl

2ATC +C.qge™ =

T satisfying the above equation is optimal.

8.4 NUMERICAL ILLUSTRATION (MODEL 1)

Let
a=0.5, A=1, 6=0.5, C: =$5000, C, =$500.

Then
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1—e *0-9) — 0.3935
0 e “0°%) - 0.5%x0.3935 =0.3033

eﬂﬂ[L_eﬂMpm]:e4mﬂoww]

-0.1968T
=€ .

Therefore

0.5+0.25T[1-0.3033e 1% |

=10.
0.5%0.3935e 1
Taking first approximation to € 01968 T
0.5+0.25T[1-03033 (1-0.1968T)] _, o

0.1968 [1-0.1968T |

= 0.0149T % +0.5612T —1.468 = 0

Let
f(T)=0.0149T > +0.5612T —1.468.

Then
f(2)<0, f(3)>0

This implies that the optimum value of T lies between 2 and 3.

By Newton’s method of approximation T = 2.45 years. Such similar results can be
obtained for a given set of values 4, a, 6, C. and C,. It would be interesting to

investigate the variation in T when one of the above parameters is allowed to vary

keeping the other parameters and costs fixed. The variations in T as suggested above
are dealt with by representing them by graphs.
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8.5 CASE (1)

Let
A=1, 6=0.5, C. =$5000, C, =$500.

Fix all these parameters and allow « to vary; « is the exponential parameter and

hence ¢ > 0. For various values of & we have the following:

Table 8.1: Increasing Inter-arrival times (Model I)

o equation _Ii
0.5 0.0149T°+0.5612T-1.468=0 2.5
0.6 0.0258T*+0.8082T-1.761=0 2.0
0.7 0.0409T*+1.10004T-2.055=0 1.7
0.8 0.0955T*+1.4368T-2.348=0 1.5
0.9 0.11074T*+1.8193T-2.642=0 1.3
1.0 0.11937T*+2.2447T-2.935=0 1.2
1.1 0.2061T*+2.7163T-3.229=0 1.1
1.2 0.2062T%+3.2932T-3.522=0 1.0
1.3 0.2623T%+3.7944T-3.816=0 0.9
1.5 0.4028T*+5.0506 T-4402=0 0.8
2.0 0.9548T%+9.5808T-5.87=0 0.6
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N
o
4

\

N

OPTIMAL TIME INTERVAL, T
=
[ o

o
(6]
I

0.5 0.6 0.7 0.8 0.9 1 11 12 1.3 15 2

ALPHA

Figure 8.1: Model I

It may be observed that T values decrease when the value of & increases keeping
other parameters and costs fixed. It shows that if the inter-arrival times between
decision-making epochs are made shorter, it results in the optimal period becoming
shorter because many decisions are made at shorter intervals thereby creating more

vacancies.
Case (ii)

Let
a=0.5, 6=0.5, C: =$5000, C, =%$500.

Fix these values and allow A to vary since A is the Poisson parameter A >0, for

various values of A ,we have Table 8.2.
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Table 8.2: increasing rate of leaving (Model I)

A

equation

1
1.0 0.0149T°+0.5612T — 1.468=0 2.5
1.1 0.01687T*+0.643T -1.566=0 2.3
1.2 0.0185T>+0.0.7266T -1.656=0 2.1
1.5 0.0234T+0.9824T -1.889=0 1.8
2.0 0.0291T*+1.3998T-2.161=0 1.5
2.5 0.0319T*+1.8064T-2.318=0 1.3

3 0.0325T%*+2.1743T-2.384=0 1.1

N
3

N

OPTIMAL TIME INTERVAL, T
O

o
3

\\\

\\

—

15
LAMBDA

Figure 8.2: Model I
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From Table 8.2, we infer that if A increases, the number of persons leaving on

average at each decision epoch increases, which in turn compels the withdrawal of the

scheme or closure of the policy at an earlier date. Hence T decreases.
Case (iii)

Let
a=05 A1=1, C: =$5000, C, =$500.

Allow to @ vary. Sinceé is the parameter of the geometric distribution, (0 < & < 1) for

various values of @, we have:

Table 8.3: Model I

0 equation {_
0.1 0.005T*+1.1198t-2.467=0 2.2
0.2 0.0061T>+0.9845t-2.253=0 2.3
0.3 0.0093T%+0.8458t-2.017=0 2.3
0.4 0.0124T%+0.7021t-1.756=0 2.4
0.5 0.0149T%+0.5612t-1.468=0 2.5
0. 0.0166T>+0.4215t-1.149=0 2.5
0.7 0.0168T*+0.2833t-0.796=0 2.4
0.8 0.0148T%+0.168t-0.406=0 2.1
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Figure 8.3: Model I

From Table 8.3 the value of T increases initially with respect to 6 and then starts
decreasing. For =05 and 6=06 , the value of T is the maximum. Figure 8.3

depicts the same.

8.6 NUMERICAL ILLUSTRATION (MODEL2)

The value of T which satisfies equation (8.6) is the optimal T and it can be obtained

for specific valuesof 4, g, C,, C, and C,.
For example if we take
A=3, q=0.5 C, =3$5000, C, =%$20000, C, =$500

the optimal T=1.3483 units.
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8.7 CONCLUSION (MODEL 1)

It may be observed that the very essence of this result lies in the fact that the absence

of voluntary retirement introduced will be withdrawn and will not be re-introduced

again till the end of T.In practical applications the estimates of the parameters

A o and 6 may be obtained by using appropriate methods of estimation on the

basis of the past data available in the organisation.

8.8 CONCLUSION (MODEL 2)

It is inferred that the optimal value of T depends upon the parameters like Aand g
and the costs involved such as C, C, and C,. For every combination of these

quantities, the optimal T can be obtained by solving the corresponding non-linear
equation. It would be interesting to investigate the behaviour of T consequent to the
changes in A, keeping all other values fixed. It can also be seen by calculation that as
q increases the optimal value of T increases. While considering the inter-arrival times
between screening tests for different distributions it has been noted that the equation

that provides the optimal T changes with every change.
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APPENDIX A

(k+1)4 e wk(k +1)4°
2kp(p=2) 7 2= ANku+ A)

TOC =c, +c,u+c,

(k +1)A(ke — A1) e 1k (k + 1)Kk
2karp = ANkp = AF 7 2= Ak + A) ku

TOC =c, +c,u+c,

(c, +c,u)2ke(pr — ANk = A) + ¢, AK + 1)kt — ) + ¢, 27k 1 (k +1)
2kpi(pz = A)kpe = 2)°

_ (e +oyp2kant=2(u = A)kp = 2) = (ke = )"y + ¢ (k + (ke = 2)" =220kt = 2) + ¢ (k + 1)(22K 7}
2kpu{-2(u = ANkt = 2) = (ke = A)°

The final analytic expression for TOC is given by

4ke® (k =1 (cy + ¢ 1) — 26, (k + 1)k — 1)k = 3)z® +2¢c,k 4 (k +1)
4k (k —1)

TOC =
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