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1.1 OVERVIEW 
 

The analyses of manpower systems have become very important component of 

planned economic development of any organization or nation. However, manpower 

planning depends on the highly unpredictable human behavior and the uncertain 

social environment in which the system functions. Hence the study of probabilistic or 

stochastic models of manpower systems is very much essential. Several stochastic 

models of manpower systems have been proposed and studied extensively in the past 

(see Bartholomew (1967) and Vajda (1978)). Various stochastic models of manpower 

systems can be classified broadly into two types: 

 

1. Markov Chain models 

2. Renewal Models 

 

In all these models, the manpower system is hierarchically graded into mutually 

exclusive and exhaustive grades so that each member of the system may be in one and 

only one grade at any given time. These grades are defined in terms of any relevant 

state variables. Individuals move between these grades due to promotions or 

demotions and to the outside world due to dissatisfaction, retirement or medical 

reasons. If the size of the grades is not fixed, then the state of the system at any time is 

represented by a vector ))(.),........(),(()( 21 tXtXtXtX n=  where the component 

)(tX i represents the number in the ith grade at any time t. Further the very nature of 

several manpower systems require to be observed at, say, annual intervals. 

Accordingly, the system behaviour is adequately described by a Markov chain, such 

models are called Markov chain models. 

 

Markov chain models have been applied in examining the structure of manpower 

systems in terms of the proportion of staff in each grade or age profile of staff under a 

variety of conditions and evaluating policies for controlling manpower systems (see 

for example, Young and Almond (1961), Young (1971), Forbes (1971a,b), 

Bartholomew (1973) and Gani (1973)). In these works and in all of what followed the 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  SSeettllhhaarree,,  KK    ((22000077))  



 

 3 
 

important question was the control of the expected numbers in the various states by 

recruitment control.  The numbers of people in such categories change over time 

through wastage, promotion flows and recruitment. Some of these flows are subject to 

management control while others vary in a random manner. Factors such as the need 

to offer adequate career prospects or the requirement of the job will often dictate a 

desirable age or grade structure and  it is the manpower planner’s task to determine 

whether this can be achieved and , if so, how.  

 

The limiting behavior of an expanding non-homogeneous Markov system has 

practical importance as shown by the literature on manpower systems (Vassiliou 

1981a&b, 1982a). The limiting structure of the expected class sizes was derived under 

certain conditions and the relative limiting structure is shown to exist with a different 

set of conditions. Mehlmann (1977) and Vassiliou (1982b) studied the limiting 

behavior of the system with Poisson recruitment and observed that the number in the 

various grades are asymptotically mutually independent Poisson. Vassiliou (1984c) 

studied the asymptotic behavior of non-homogeneous Markov systems under the 

cyclical behavior assumption and provided a general theorem for the limiting 

structure of such systems. Vassiliou (1986) later extended the results and provided a 

basic theorem for the existence and determination of the limiting structure for the 

vector of means, variances and covariances under more general possible assumptions. 

He argued that the results are useful from the practical point of view since they 

provide valuable information about the inherent tendencies in the system.  

 

The control of asymptotic variability of expectations, variances and covariances in a 

Markov chain model is a major research area in manpower systems. The earliest work 

on this subject was that of Pollard (1966). The results were later extended by several 

authors    (Vassiliou and Gerontidis (1985), Vassiliou (1986), Vassiliou et al. (1990)).  

Attainable and maintainable structures in Markov manpower systems under 

recruitment control have been studied by Bartholomew (1977), Davies (1975, 1982), 

Vassiliou and Tsantas (1984 a&b) and later Kalamatianou (1987) analysed the same 

with pressure in grades. The concept of a non-homogeneous Markov system in a 

stochastic environment (S-NHMS) was introduced for the first time by Tsantas and 
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Vassiliou (1993). The problem of attaining the desired structure in an optimal way as 

well as maintaining relative grade sizes applying recruitment control in a stochastic 

environment as introduced in Bartholomew (1975, 1977) is considered. More 

references in this and related topics an be found in various papers by (Georgiou 

(1992), Tsantas (1995), Tsantas and Georgiou (1994, 1998)). A Markov model 

responding to promotion blockages has been proposed by Kalamatianou (1988). 

Raghavendra (1991) has employed a Markov chain model in obtaining the transition 

probabilities for promotion in a bivariate framework consisting of seniority and 

performance rating. Georgiou and Vassiliou (1997) have introduced phases in a 

Markov chain model and investigated the input policies subject to cost objective 

functions. Yadavalli and Natarajan (2001) studied a semi-Markov model in which a 

single grade system allows for wastage and recruitment. The time dependent 

behaviour of stochastic models of manpower system with the impact of pressure on 

promotion was subsequently studied by Yadavalli et al. (2002).  

 

Although a Markov model is simple and easy to implement, it does not take into 

account existing knowledge of the distribution of length of service until leaving. In 

such cases the mathematically intractable Semi-Markov models approach is suggested 

(McClean 1991). The Semi-Markov processes are a generalization of Markov 

processes in which the probability of leaving a state at a given point in time may 

depend on the length of time the state has been occupied (duration of stay) and on the 

next state entered. However, there are several theoretical literatures on Semi–Markov 

Models ( Pyke (1961 a & b), Ginsberg (1971), Mehlmann (1979), McClean (1978, 

1980, 1986)). A stochastic model of migration, occupational and vertical mobility, 

based on the theory of Semi-Markov process was derived by Ginsberg (1971). 

McClean (1978) extended the assumption of simple Markov transitions between 

grades and the leaving process to semi-Markov formulation which allows for 

inclusion of well-authenticated leaving distributions such as the mixed exponential. 

Moreover, the previous assumption of Poisson recruitment is generalized to allow for 

a recruitment process which may vary with time, either as a mixed exponential time 

dependent Poisson process or by assuming that the number of recruits depends on the 

amount of capital owned by the firm. The previous formulation is therefore extended 
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to take into account the fact that recruitment to a firm is a highly variable process and 

the assumption of Poisson recruitment to each grade is therefore restrictive. The 

concept of non-homogeneous semi–Markov systems found important applications in 

manpower system particularly in the subjects of variability, limiting distributions and 

maintainability of grade sizes (Vasiliou ad Papadopoulou (1992)). 

 

On the other hand, there are several manpower systems where the grade sizes are 

fixed by the budget or amount of work to be done. Recruitment and promotion can 

occur only when vacancies arise through leaving or expansion. There may be 

randomness in the method by which vacancies are filled. The movements of 

individuals are characterised by replacements (renewals) according to some 

probabilistic law, and such models of manpower systems are called renewal models. 

The main advantage of these models over the Markov chain models is that they are 

closer to reality since the losses (wastages) occur continuously in time and there is 

always the possibility that a new recruit may also leave during the study period. White 

(1970) has used models of this kind to study the flows of clergy of several large 

American denomination. Stewmann (1975) has applied White’s methods to the study 

of recruitment and losses in a state police force. Bartholomew (1982) has provided a 

detailed analysis of renewal models of manpower systems. Sirvanci (1984) has 

applied renewal processes to forecast the manpower losses of an organisation in order 

to determine whether the organisation will be able to meet its demand for manpower 

under present conditions. The distributions of completed length of service (CLS) in 

these models have been fitted to actual data from industry by several researchers (see 

Bartholomew, 1982). McClean (1976, 1978) has used a mixed exponential 

distribution for CLS and estimated the parameters using data for two companies. 

Agrafiotis (1983, 1984, and 1991) studied the problem of labour turnover by using 

renewal process type models. 

 

A satisfactory model of manpower system should provide answers to the following 

questions: 

1. How to provide estimates of manpower indicators of the system? 

2. How to predict the future behaviour of the system under various assumptions? 
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3. How to find optimum solutions to various policy problems subject to various 

constraints given by the management? 

4. How to avoid various problems by giving a warning before the situation 

develops? 

5. How to design manpower, which is related to various problems of prediction in 

consultation with management? 

 

In order to provide answers to questions raised above, the model considered should 

incorporate the following main factors, which predominantly determine the behaviour 

of a manpower system: 

 

1. Recruitment 

2. Promotion of employees 

3. Wastages. 

 

1.1.1 Recruitment 
 

The sizes of various grades, which respond to the expansion, promotions and 

wastages, are maintained at the desired level at any time by a process called 

RECRUITMENT. The flow of recruitment can be controlled by the management 

authorities. The recruitment can be made in several ways. Vacancies can be filled as 

and when they arise or they may be allowed to accumulate and then filled up at 

specified periods or whenever the total number of vacancies attains a certain specific 

level, so as to minimize the cost. The recruitment can be made by the organization 

itself or by some external agencies to avoid delay and huge overhead costs. Several 

organizations in South Africa do not recruit employees by themselves (e.g. the 

preliminary process of senior level positions in Statistics South Africa) but approach 

recognized recruiting agencies. Usually, vacancies that arise are allowed to 

accumulate for a specified period of time, or to attain a specified level and then these 

agencies are requested to fill them up and to complete the process of recruitment in a 

specified period of time. However, they may not be able to fill up all the notified 

vacancies due to the non-availability of suitable candidates with prescribed 

qualifications and experience. Further additional vacancies may also arise during the 
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period of recruitment process. Therefore there may exist some vacancies even after 

the process of recruitment is completed. In reality, many such manpower systems 

exist. However, these types of models have not been considered in the literature. 

Davies (1975) considered a fixed size Markov chain model that suffered losses and 

admits recruits to various grades in such a manner that the total grades in the system 

remain constant. In that paper, the recruitments take place at integral points in time 

and at the time of recruitment, no vacancy is left unfilled. Vassiliou et al. (1990) deal 

with a non-homogeneous Markov manpower system, which allows recruitment in 

each grade of the hierarchically graded manpower system. They have obtained the 

limiting expected structure of the system by control over the limit of the recruitment 

probabilities. Rao (1990) has considered a manpower planning model with the 

objective of minimizing the manpower cost with optimal recruitment policies. The 

recruitment size is known and fixed in this model. Hence the study of a model where 

vacancies are accumulated and then filled up deserves attention. 

 

1.1.2 Promotion 
 
Normally vacancies that arise in the lower grade are filled up by recruitments whereas 

those in the higher grades are filled up by promotions. Further, promotions besides 

giving due recognition to proficiency and credibility of the employees reduce the 

chance of an efficient employee leaving the organization. Some of the promotion 

rules are given below: 

(i)      The senior most in the grade is promoted. 

(ii)      Promotion is given at random. 

(iii)    Those who fill certain efficiency criterion along with some minimum completed   

length of service are promoted. 

As per the rule (i), the length of service is the sole criterion for promotion and hence 

the management can control it. The rule (ii) gives full freedom for the management to 

promote any employee of their choice, which also is not desirable. Normally rule (iii) 

is preferred. Some of the reasons, which influence the promotion policies, are (a) 

pressure (b) efficiency and (c) length of service. 
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(a)    Pressure 
 

In a multi-graded hierarchical manpower system, a promotion policy that is associated 

with constant promotion probabilities leaves a proportion of employees qualified by 

completed length of service in a lower grade un-promoted. This proportion increases 

and pressure starts building up as time progresses. When pressure exceeds a certain 

level of control, a high proportion of un-promoted employees could have serious 

effect on the efficiency of the organization for several reasons such as productive loss 

and wastage. The pressure can be quantified as a function of the proportion of the 

people in a job grade according to Kalamatianou (1987, 1988). She has quantified 

pressure in three stages and suggested models to reduce the pressure by suitably 

changing the promotion policies well in advance. 

 

(b)    Efficiency (training) 
 

Training of manpower has long been recognized as an important factor for improving 

the efficiency of the employees and for the productive improvement. Further, when it 

is considered as a criterion for promotion, it becomes very much effective. 

Mathematical models incorporating training aspects have been studied by 

Guardabassi et al. (1969), Grinold and Marshall (1977), Mehlmann(1980) and Vajda 

(1978). Goh et al. (1987) have analysed the training problem within an organisation 

using dynamic programming principles. These results were recently generalised using 

Dynamic Programming by Yadavalli et al. (2002). 

 

(c)   Length of service 
 

Length of service in a grade should necessarily be a natural criterion for promotion in 

order to create a healthy atmosphere among the employees. However, for controlling 

the promotion, the management can include other efficiency criterion along with it for 

promotion. This aspect has been discussed by Bartholomew (1973, 1982), Glen 

(1977) and in the thesis of Kamatianou (1983). 
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1.1.3 Wastages 
 

When employees move from one grade to another, they are exposed to different 

factors influencing them to leave the organization. Various data indicate that the 

reasons for leaving can be classified into the following cases: 

(i) Discharge 

(ii) Resignation 

(iii) Redundancy 

(iv) Retirement 

(v) Medical retirement 

 

Agrafotis (1984) has grouped the above cases into two main reasons, normally, (a) 

unnatural and (b) natural. Unnatural reasons for leaving depend on the internal 

structure of the company or organisation, viz, lack of promotion prospects, job 

satisfaction, problem of adjustment, etc., including the cases (i), (ii), and (iii) 

mentioned above. Natural reasons for leaving the organisation do not depend on the 

internal structure of the organisation, including the cases under (iv) and (v). In 

analysing data on a number of companies, Agrafiotis (1984) has shown that there is a 

significant difference in the wastage rates corresponding to reasons (a) and (b) for 

leaving. However, the cases (iv) and (v) relating to the natural leaving are entirely 

different and are to be discussed separately, for an employee leaving by way of 

natural retirement after having served the organisation completely cannot be grouped 

with an employee who leaves the organisation by way of medical reasons. As such, 

there are three different wastage rates: 

(a) Due to internal structure 

(b) Due to retirement 

(c) Due to medical reasons 

 

Unlike natural wastage the unnatural wastage can be controlled by the management 

by resorting to better promotional prospects, improved working conditions and 

training. 

Some other manpower studies which investigated wastage intensities are (Vassiliou 

(1976, 1982), Leeson (1981, 1982), McClean et al. (1992)). 
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1.2 TECHNIQUES USED IN MANPOWER MODELS 

 
In this section, we present the various techniques used in the analysis of models of 

manpower systems. 

 

1.2.1 Renewal theory 
 

Renewal theory forms an important constituent in the study of stochastic processes 

and is extremely used in the analysis of manpower models with recruitment. Feller 

(1941, 1968) made significant contributions to renewal theory giving the proper lead. 

Smith (1958) gave an extensive review and highlighted the applications of renewal 

theory to a variety of problems. A lucid account of renewal theory is given by Cox 

(1962). 

 

Definition 1 
 

Let ....},2,1:{ =iX i be a collection of random variables, which are non-negative, 

independent and identically distributed. Then the sequence }{ nX  is called a renewal 

process. We assume that each of the random variable iX  has a finite mean μ. A 

renewal process is completely determined by means of )(⋅f , the p.d.f of iX . 

Associated with the renewal process is a random variable )(tN , which represents the 

number of renewals in the time interval ],0( t . )(tN  is also known as the renewal 

counting process (Parzen, 1962). 

 

Definition 2 
 

The expected value of )(tN  is called the renewal function and is denoted by )(tH . 

The derivative of )(tH if it exists, is denoted by )(th and is called the renewal density. 

The quantity dtth )(  has the interpretation that it represents the probability that a 

renewal occurs in ),( dttt + . We will have to identify this as what is known as the first 
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order product density for a more general process. The renewal density satisfies the 

following integral equation: 

duuthuftfth
t

)()()()(
0

−+= ∫  

One of the important and useful theorems in application is the key-renewal theorem 

(Smith, 1958). 

 

Theorem 
 
Let  )(tQ satisfy the following conditions:  

(i)  00)( ≥≥ tallfortQ  

(ii) )(tQ is non-increasing 

(iii) ∞<∫
∞

dttQ )(
0

. 

Then,  

( ) .)(1)(lim
00

duuQudHutQ
t ∫∫

∞∞

∞→
=−
μ

 

 

Further details regarding renewal theory can be found in Smith (1958), Feller (1968), 

Prabhu (1965) and Srinivasan (1974). We now briefly indicate how renewal theory 

has been used in the study of manpower models. The stochastic element in manpower 

systems occur principally due to the loss mechanism arising out of staff moving out of 

the system. The randomness may also be due to the method by which the vacancies 

are filled. In the context of manpower planning, the renewal process }0),({ ≥ttN  

represents the number of recruitments required for the given position for which the 

first person was employed at 0=t . The random time X  between successive 

replacements is called the completed length of service (CLS) and its distribution 

)(xF is termed as the CLS distribution. Thus, during the operation period from 0=t  

up to time t , while )(tN employees leave, an equal number need to be recruited in 

order to keep a given position continuously staffed. To predict the value of )(tN for 

any given time, its expected value, which is referred to as the renewal function, may 
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be used. The relationship between the CLS distribution and the renewal density )(th , 

the derivative of ),(tH  is given by the renewal equation 

.0;)()()()(
0

≥−+= ∫ tduuthuftfth
t

 

Where )(tf is the density of the CLS distribution )(tF  . The renewal density )(th can 

be interpreted as the rate at which the losses occur. On the other hand, )(tF  is the 

distribution of the time an employee spends in the organisation before leaving. The 

renewal process of personnel losses has been extensively studied by Bartholomew 

(1962, 1982) and Bartholomew and Forbes (1979). 

 
1.2.2 Markov renewal theory 
 
Let E be a finite set, N the set of non-negative integers and ),0[ ∞=ℜ+ . Suppose we 

have, on a probability space (Ω, Β, Ρ) random variables +ℜ→ΩΕ→Ω :,: nn TX  

defined for each  n N∈  so that .......0 210 ≤≤≤= TTT  

 

Definition 1 

The stochastic process { }NnTXTX nn ∈= );(),( ,  is said to be a Markov renewal 

process with the state space E provided that 

 

[ ] [ ]

.,

|,..,.........,;,......,|, 11101011

+

++++

ℜ∈∈∈

≤−==≤−=

tandEjNnallfor

XtTTjXPTTTXXXtTTjXP nnnnnnnnnn

 

We assume that ),( TX  is time-homogeneous, that is, for any Ε∈ji, and t∈ℜ  

 

[ ]iXtTTjXPtjiQ nnnn =≤−== ++ |,),,( 11   

 

independent of n. The family of probabilities 

 },,);,,({ +ℜ∈Ε∈= tjitjiQQ   

is called a semi-Markov kernel over E. We assume that 

.,0)0,,( EjiallforjiQ ∈=  
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For each pair ),( ji  the function ),,( tjiQt → has all the properties of a distribution 

function except that; 

 ),,(lim),( tjiQjiP
t ∞→

=  

 is not necessarily 1. It is easy to see that  

 

;1),(,0),( =≥ ∑
Ε∈j

jiPjiP   

that is, ),( jiP  are the transition probabilities for some Markov chain with state space 

E. It follows from the definition 1 and above that  

 

[ ]

.,

)(..,.........,;,......,| 10101

Ε∈∈

===+

jNnallfor

jXPTTTXXXjXP nnnn

 

 

This implies that };{ NnXX n ∈=  is a Markov chain with state space E and the 

transition matrix P. 

 
1.2.2.1   Markov Renewal Functions 
 

We write )(APi  for the conditional probability ]|[ 0 iXAP = and similarly iΕ  for the 

conditional expectations given }{ 0 iX = . We also assume that 

0]0......[ 210 ===== TTTPi . 

 

Let us define ),,( tjiQn  as 

.,,];,[),,( NnallfortjitTjXPtjiQ nni
n ∈ℜ∈Ε∈≤== +   

Then, 

00
0
1

),,(0 ≥≥
⎩
⎨
⎧

≠
=

== nandtallfor
jiif
jiif

tjiQ ijδ  

 

where ijδ  is the Kronecker delta function. 
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We have the recursive relation  

   ),,(),,(),,(
0

1 stkjQdsjiQtkiQ n

j

tn −= ∑∫
Ε∈

+   

where the integration is over ),0[ t . The expression ),,( tjiR that gives the expected 

number of renewals of the position j in the interval ),0[ t  is given by 

),,(),,(
0

tjiQtjiR
n

n∑
∞

=

= . 

This is finite for any Ε∈ji, and t < ∞ . The ),,( tjiR  are called Markov renewal 

functions and the collection },,);,,({ +ℜ∈Ε∈= tjitjiRR  of these functions is 

called the Markov renewal kernel corresponding to Q. We note that for fixed ,, Ε∈ji  

the function ),,( tjiRt →  is a renewal function. We can now easily see from the 

various expressions above that ,)( 1−−= αα QIR where I is the unit matrix. 

 
 
1.2.2.2   Markov Renewal Equations 
 

The class of functions B which we will be working with is the set of all functions  

  ƒ: E X ℜ+  → ℜ 

such that for every Ei∈  the function t→ ƒ(i, t) is Borel measurable and RE Χ  

bounded over finite intervals and for every fixed Ε∈j  the functions 

),,(),(),,(),( tjiRjiandtjiQji n →→  both belong to B. For any function 

,Β∈f the function Q©ƒ defined by  

 

Q©ƒ ),(),,(),(
0

stjfdsjiQti
j

t
−= ∑∫

Ε∈

  

 

is well defined and Q©ƒ∈Β again. Hence the operation can be repeated, and the nth 

iterate is given by  

 

Q© ),(),,(),(
0

stjfdsjiQtif
j

t n −= ∑∫
Ε∈

. 
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We can replace Q by R, which is again a well-defined function, which we will denote 

by R©ƒ, that is for ƒ∈Β,    

R© ),(),,(
0

stjfdsjiRf
j

t
−= ∑∫

Ε∈

. 

 

A function ƒ∈Β is said to satisfy a Markov renewal equation if for all 

,+ℜ∈Ε∈ tandi  

),(),,(),(),(
0

stjfdsjiQtigtif
j

t
−+= ∑∫

Ε∈

 

for some function g∈Β.  

Limiting ourselves to functions ƒ, g ∈Β+ which are non-negative and denoting this by 

Β+ , the Markov renewal equation now becomes  

 

Qgf += ©ƒ,    ƒ, g ∈Β+ 

This Markov renewal equation has a solution R©g.  Every solution ƒ is of the form 

R©g+h, where h satisfies h=Q©h,    h∈Β+. For a more detailed on Mark renewal 

equations see Cinclar (1975). 

 

1.2.3 Semi-Markov processes 
 
 
Let ),( TX  be a Markov renewal process with state space E and semi-Markov kernel 

Q. Define n
n

TL sup= . Then L  is the lifetime of ),( TX . If E is finite or if X  is 

irreducible and recurrent, then +∞=L  almost surely. By weeding out those 

Ω∈ω and +ℜ∈t  for which ∞<)(sup ωn
n

T we assume that ∞=)(sup ωn
n

T  for all ω. 

Then for any Ω∈ω  and +ℜ∈t there is some integer Nn∈ such that 

)()( 1 ωω +≤≤ nn TtT . We can therefore define a continuous time parameter 

+ℜ∈= ttYY )(  with state space E by putting 1+<≤= nnnt TtTonXY . The process 

+ℜ∈= ttYY )(  so defined is called a semi-Markov process with state space E and a 

semi-Markov transition kernel )},,({ tjiQQ = . 
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1.2.4 Stochastic point processes 
 
 
Stochastic point processes form a class of random process more general than those 

considered in the previous sections. Since point processes have been studied by many 

researchers with varying backgrounds, there have been several definitions of them 

each appearing quite natural from the view point of the particular problem under 

study (see, for example, Bartlett (1966), Bhaba (1950), Harris (1963) and Khinchine 

(1955)). A stochastic process is the mathematical abstraction, which arises from 

considering such phenomena as a randomly located population or a sequence of 

events in time. Typically, there is envisaged a state space X and a set of points nX  

from X  representing the locations of the different members of the population or the 

times at which the events occur. Because a realization (or a sample path) of any of 

these phenomena is just a set of points in time or space, a family of such realizations 

has come to be called point processes (see Daley and Vere-Jones, (1971)). 

 

A comprehensive definition of a point process is due to Moyal (1962) who deals with 

such process in a general space, which is not necessarily Euclidean. Consider a set of 

objects each of whom is described by a point x  of a fixed set of points X . Such a 

collection of objects, which we may call a population, may be stochastic if there exists 

a well-defined probability distribution P on some field−σ Β of subsets of the space 

Φ of all states. We shall assume that the members of the population are 

indistinguishable from one another. The state of the population is defined as an 

unordered set ),.......,,( 21 n
n xxxX = representing the situation where the population 

has n members with one of the states nxxx ,.......,, 21 .  Thus the population state space 

Φ is the collection of all such nX  with ,......2,1,0=n where 0X  denotes the empty 

population. A point process is defined to be the triplet (Ω, Β, Ρ). For a detailed 

treatment of stochastic point processes with special reference to its applications the 

reader is referred to Srinivasan (1974). A point process is called a regular point 

process if the probability of occurrence of more than one event in ),0( Δ  is ( )Δo . 
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1.2.5 Product densities 
 
One of the ways of characterizing a general point process is through product densities 

(Ramakrishnan (1950), Srinivasan (1974)). These densities are analogous to the 

renewal density in the case of non-renewal processes. Let ),( xtN denote the random 

variable representing the number of events in the interval ),(),,( xtNdxtt x+  the 

events in the interval ),( dxxtxt +++  and ].),([),,( nxtNPxtnP ==   

The product density of order n is defined as  

n

ii
nn

nixNPxxxh
n ΔΔΔ

=≥Δ
=

→ΔΔΔ ......
],...,2,1;1),([lim)......,,(

21
0,..,,21

21

 

 

where nxxx ≠≠≠ ..........21 , or equivalently for a regular process  

 

n

i

n

i
i

nn

nixN
xxxh

n ΔΔΔ

⎥
⎦

⎤
⎢
⎣

⎡
=≥Δ

=
∏
=

→ΔΔΔ ......

.....,,2,1;1),(
lim)......,,(

21

1

0,..,,21
21

  

 

where nxxx ≠≠≠ ..........21 . 

 

These densities represent the probability of an event in each of the 

intervals ),( 111 xxx Δ+ , ),( 222 xxx Δ+ ,…, ),( nnn xxx Δ+ . Even though the functions 

)......,,( 21 nn xxxh are called densities it is important to note that their integration will 

not give probabilities but will yield the factorial moments. The ordinary moments can 

be obtained by relaxing the condition that all the sxi '  are different. 

1.3 HETEROGENEITY 
 

The validity of the models described under section 1.2 depends highly on the 

assumption that the manpower study be based on homogeneous groups of individuals. 

This is a huge task, which can never be attained in practice because human behaviour 

is highly unpredictable and the environment on which the system operates is 

uncertain. However, it is paramount that the researcher ensures that there is no major 
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source of heterogeneity. Individuals’ differences depend on many factors such as their 

motivation, performance and commitment to the employer. 

The subject of homogeneity of individuals is fundamental in virtually all fields of 

study. However, in the biomedical literature, it is a well known fact that individuals 

differ substantially in their endowment for longevity (see Manton (1981); Keyfitz 

(1978); Shepard and Zeckhauser (1977). Hence it is important to try and understand 

the impact of heterogeneity on the study results. In demography and public policy 

analysis studies, it has been found that ignoring heterogeneity in frailty results in 

biased results (Vaupel et al. (1979, 1985)). 

 

According to Bartholomew et al. (1991) the analysis of individual differences is of 

fundamental importance in the study of manpower system, in particular, wastages 

(losses from the system). Any attempt to describe wastage pattern must reckon with 

the fact that an individual’s propensity to leave a job depends on a great many factors, 

both personal and environmental. Failure to recognise the effects of heterogeneity 

may not only result in erroneous results when applying manpower models but also 

complicate both the theoretical and empirical research due to the composition of the 

population and the differential impact of economic, environmental and social forces. 

The flow of people in manpower systems, moving employees in various states can be 

subdivided into recruitment stream, the transition between the state and the outflow 

from the system. Considering a discreet time t =0, 1,.. we assume that the individuals’ 

transitions between the states take place either according to a homogeneous Markov 

chain. Most of the work was based on homogeneous Markov chain model introduced 

by Young and Almond (1961), Gani (1963), Young (1971), and Sales (1971). 

Later on Young and Vassiliou (1974), Vassiliou (1976, 1978) introduced the non-

homogeneous Markov chain model, which was reported by many researchers to 

provide a good prediction in practice. Vassiliou (1982a) introduced the more general 

framework of non-homogeneous Markov model, which incorporates a great variety of 

applied probability models. As the literature shows, the theory of non-homogeneous 

Markov systems (NHMS) has flourished since then (Vassiliou, et al. (1990); Tsantas 

and Vassiliou (1993); Georgiou (1992); Tsantas (1995)).  
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A number of authors suggested tackling the problem of heterogeneity by dividing the 

personnel system into more homogeneous subsystems. The pioneering work on 

mover-stayer models of labor mobility by Blumen et al. (1955), Goodman (1961) and 

later Bartholomew (1982) was one form of subdividing the population into categories- 

the ‘stayers’ who hardly change their jobs and the ‘movers’ who tend to change jobs 

frequently.  Ugwuowo and McClean (2000) proposed some techniques to deal with 

heterogeneity for modeling wastage, though the problem exits in other flows within 

the personnel system. To incorporate population heterogeneity into manpower 

modeling, two strategies have been suggested: the use of observable sources of 

heterogeneity as it affects wastage and the latent source of heterogeneity that are 

impossible to observe but are known to affects the key parameters of the model. 

Although the division of individuals in homogeneous subcategories is a fundamental 

and important step in application of the manpower planning techniques, there is still 

lack of attention towards the way homogeneous groups can be attained in practice. De 

Feyer (2006) presented a general framework to get more homogeneous subgroups for 

using Markov Chain theory in manpower planning. A general splitting-up approach is 

suggested as well as the use of some statistical multivariate techniques is proposed to 

support the splitting-up process. The main sources of heterogeneity within an 

organization are summarized in Figure 1.1. An example of a splitting up process is 

depicted in Figure 1.2. 
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Figure 1.1: Summary of Heterogeneity

 
Sources of heterogeneity 
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Figure 1.2: Illustration of splitting up process 

 

1.4 SCOPE OF THE WORK 
 
An attempt is made in this thesis to study stochastic models of manpower systems 

with reference to the following aspects: (i) recruitment (ii) promotion (iii) training and 

(iv) wastage. 

For the various models considered, expressions for the relevant measures of system 

performance of the system are derived. Appropriate cost models are developed to 

obtain the optimal policies. Numerical illustrations are also shown to highlight the 

results obtained. 

 
All Profiles 
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Non technical 

 
Not married 
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CHAPTER 2 
 
 
 

APPLICATION OF MARKOV CHAINS IN A 
MANPOWER SYSTEM WITH EFFICIENCY AND 

SENIORITY 
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2.1 INTRODUCTION 
 

Vacancies in any grade of an organization are filled either with promotions from next 

lower grades or by new recruitments. In general, promotions can be classified under 

the dichotomous policy namely, promotion based on efficiency and promotion based 

on seniority. Here, seniority means the length of service an employee acquired in each 

grade and efficiency means the measure of specialized skills or performance in the 

jobs which could be rated on a scale amenable to quantitative analysis and ranked in 

ascending order depending on their performance. If the efficiency is not rewarded by 

means of promotion the so called brilliant people termed as High fliers who would 

discharge the duties more effectively may leave the organization (this is presently 

happening in South Africa). So to retain them every organization should follow 

promotions based on efficiency. 

 

Raghavendra (1991) obtained promotional probabilities and recruitment vectors 

embedding Markovian theory with certain assumptions on the promotional policies of 

the organization such as promotions allowed to the next grade and no demotion, 

without maintaining the grade structure over a period of time. Model 1 is the 

extension of Raghavendra (1991), where maintainability of grades is considered. In 

model 2 we give importance to efficiency and skills of the employees by allowing 

multiple promotions. That is, an employee is promoted to the next higher grade due to 

seniority and efficiency, whereas he is prompted to other higher grades due to 

efficiency only. Here two cases are discussed as (i) maintainability (ii) non-

maintainability of grade structures. The promotional probabilities and recruitment 

vectors and cut-off levels of seniority and efficiency for promotions are found. The 

models developed require the following assumptions and notation. 

2.2 ASSUMPTIONS AND NOTATION 
2.2.1 Notation 
 

Let Tt ....,,2,1= ; t being the horizon, usually t represents a year. 
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kji ....,,2,1, =  states of the system representing the various grades, with total 

number of grades being k. 

)(tN j : Number of staff in grade j at the beginning of period t. 

)(tPij : P [a member of staff in grade i at the beginning of period t is in grade j at 

the beginning of the next time period )1( +t ]. 

)(tR j : Number of new recruits to grade j during period t. 

)(tw j :   Wastage factor expressed as a proportion of members of staff of grade j. 

p
ije :   Proportion of staff promoted from grade i to j; )( ji < . 

 r
je :  Proportion of newly recruited staff to grade j. 

∑
−

=

=
1

1

j

i

p
ij

p
j ee = proportion of staff promoted to grade j. 

⎪⎩

⎪
⎨
⎧

−
−

=
promotionsmultiplearethereife

gradenextthetoonlypromotionisthereife
e p

j

p
ijr

j 1
1

 

 
2.2.2 Assumptions 
 
1.      The system sates are mutually exclusive. 

2.     ( ))1(....,),1(),1()1( 21 kNNNN = , the vector of existing staff structure is known 

and ( ))(....,),(),()( 21 tNtNtNtN k= , the vector of staff requirements for the 

future periods are assumed to be known over a finite period of time 

T, )....,,3,2,1( Tt = . 

3.  The expected strength of staff at any grade j at time point Tt .....,,3,2,1=  is 

known. 

4.  w (t), the wastage vectors are known, Tt .....,,3,2,1= . 

5.  Promotion to a grade from the next lower grade is allowed under both aspects of 

seniority and efficiency. 

6.  Promotions from other lower grades to an upper grade are allowed based only 

on their performance ratings (efficiency levels). 

7.    The bivariate distribution of employees under seniority and performance rating 

(efficiency) is known for all grades at various times. 
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The following section explains how Markovian theory is applied in Manpower 

models.  

2.3 APPLICATION OF MARKOV CHAINS IN MANPOWER 
MODELS 
 

Consider an organization, which satisfies all the above assumptions under Markovian 

assumptions (Bartholomew, 1982).  

We have  

.....,,2,1);()()()1(
1

kjtRtNtptN ji

k

i
ijj =∀+=+ ∑

=

                      (2.1) 

Which implies that the staff in the grade j at time 1+t  is the sum of employees 

staying in the same grade j during the time interval  )1,( +tt  and the employees 

coming from various grades to grade j either by promotion or by demotion during 

)1,( +tt  and the new recruits into grades j during )1,( +tt . 

Since at any point of time a member of the staff would either stay in the same grade, 

move to another grade either by promotion or by demotion or leave the system as 

wastage, we have 

 

kitwtp i

k

j
ij ...,,2,1;1)()(

1
=∀=+∑

=

                            (2.2) 

Under Model-1 we determine the promotion probabilities and recruitment vector of 

various grades of an organization under maintainability of grade structure. 

 

2.4 ANALYSIS OF MODEL-1: ONE STEP TRANSITION 
UNDER MAINTAINABLE GRADE STRUCTURE 
 

Here we assume that the strength of staff at any grade is the same at various time 

points over a finite interval ),0( T .  

That is  

kjTNNN jjj .....,,2,1;)(......)2()1( =∀===  
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As there are no double promotions and demotions, and promotion only to the next 

higher grade is allowed, equations (2.1) and (2.2.) take the form 

)()()()()()()1( 1)1( tRtNtPtNtPtNtN jjjjjjjjj ++==+ −−             (2.3) 

 

kjtwtPtP jjjjj ....,,2,1;1)()()( )1( =∀=++ −            (2.4) 

 

With the above assumptions, the number of staff to be promoted and the number to be 

recruited for various grades can be estimated as follows. For kjandt == 1  (the 

highest grade), equations (2.3) and (2.4) become 

 

)1()1()1()1()1()1()2( 1)1( kkkkkkkkk RNPNPNN ++== −−                 (2.5) 

 

)1(1)1( kkk wP −=                                                     (2.6) 

 

(As there is no promotion from the highest grade, ( ) 01)1( =+kkP ). 

Therefore the total number of promotions and recruitment is obtained from equations 

(2.5) and (2.6) as 

 

[ ])1(1)1()1()1()1()1( 1)1(( kkkkkkk wNNRNP −−=+−−  

   )1()1( kk wN=  

)2(kN ′= , (say) 

    (2.7)
                

Since the number of promotions and recruitments are in the ratio )1(: kk ee − ,  

we have 

)2()1()1( 1)1( kkkkk NeNP ′=−−                                                 (2.8) 

 

)2()1()1( kkk NeR ′−=                                                           (2.9) 
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Equations (2.8) and (2.9) give the number of promotions from grade (k-1) to grade k 

and the number of new recruits to grade k respectively. From equation (2.8),  

we have  

( )
)1(
)2(

1
)1(

−
−

′
=

k

kk
kk N

Ne
tP                                                         (2.10) 

In equation (2.3),  11 −== kjandt  yields 

 

)()1(1)1( )1(1)1)(1( tPwP kkkkk −−−− −−=                                     (2.11)                              

 

Proceeding in a similar manner for variations in j, the number of promotions and 

recruitment and the transition probabilities can be estimated for all other states of the 

system at various time points. 

While in model-1 promotion only to the next higher grade is considered, multiple 

promotions are allowed in model 2 and are discussed under two cases of maintainable 

and non-maintainable grade structures. 

2.5 ANALYSIS OF MODEL-2: MULTIPLE PROMOTIONS 
 

Here we assume that the strength of the staff in any grade is the same at various time 

points. That is 

kjTNNN jjj .....,,2,1;)(......)2()1( =∀===  

Along with the maintainability of grade structure over a period of time T, equation 

(2.1) and (2.2) take the form  

kjtRtNtptNtN ji

j

i
ijjj ....,,2,1);()()()()1(

1

=∀+==+ ∑
=

               (2.12) 

kjtwtp j

k

ji
ji ...,,2,1;1)()( =∀=+∑

=

                                  (2.13) 

With the above assumptions, the number of employees to be promoted and the 

number of employees to be recruited for various grades at time t are obtained as 

follows: 

For    kjandt == 1  (the highest grade) equations (2.12) and (2.13) reduced to  
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)1()1()1()1()2(
1

ki

k

i
ikkk RNPNN +== ∑

=

                                         (2.14) 

.)1(1)1( kkk wP −=                                                                           (2.15) 

Therefore the total number of promotions and recruitment to the kth grade, at time t=2 

are obtained from equations (2.14) and (2.15) as 

 

)1()1()1()1()1()1(
1

1
kkkkki

k

i
ik NPNRNP −=+∑

−

=

 

     )1()1( kk wN=  

.)(,)2( sayNk′=                              (2.16) 

 

Since the number of promotions and recruitment to the kth grade are in the 

ratio )1(: p
k

p
k ee − , where ∑

−

=

=
1

1

k

i

p
ik

p
k ee , we have the number of promotions as 

)2()1()1(
1

1
k

p
ki

k

i
ik NeNP ′=∑

−

=

 

.)2(
1

1
k

k

i

p
ik Ne ′= ∑

−

=

                                            (2.17) 

And the number of recruitments to the grade k as  

 

)2()1()1( k
p
kk NeR ′−=  

          .)2(k
r
k Ne ′=                                                                (2.18) 

 

From equation (2.17), we have 

( ) .1...,,2,1;
)1(

)2(
1 −=∀

′
= ki

N
Ne

P
i

k
p
ik

ik                           (2.19) 

 

Putting 11 −== kjandt   in (2.13) we have 

 

)1()1(1)1( )1(1)1)(1( kkkkk PwP −−−− −−=                                     (2.20) 
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By proceeding in a similar manner, the numbers of promotions and recruitments and 

the transitional probabilities can be obtained for all other states of the system at 

various time points. 

 

2.5.1 Case-2: Non-maintainable grade structures 
 
Here we assume that the strength of staff and any grade is not necessarily the same at 

various time points. That is, )()( 21 tNtN jj ≠  for at least one pair of  )(, 2121 tttt ≠  

for all kj ...,,2,1= . 

With the above assumptions, proceeding in a similar manner as in the case-1, 

equations (2.12) takes the form 

 

.....,,2,1);()()()1(
1

kjtRtNtptN ji

j

i
ijj =∀+=+ ∑

=

                      (2.21) 

Whereas as the equation (2.13) remains the same, equation (2.21) reduces to 

 

)1()1()1()2(
1

ki

k

i
ikk RNPN += ∑

=

   (2.22)                               

along with equation (2.15). Therefore the total number of promotions and 

recruitments at grade k at time t=2 are obtained from equation (2.22) and is given by 

)1()1()2()1()1()1(
1

1
kkkkki

k

i
ik NPNRNP −=+∑

−

=

   

( ) .)(,2 sayNk′′=                        (2.23)                               

 

Since the number of promotions and recruitment at grade k are in the ratio 

)1(: p
k

p
k ee −  where ∑

−

=

=
1

1

k

i

p
ik

p
k ee , we have the number of promotions given by 

)2()1()1(
1

1
k

p
ki

k

i
ik NeNP ′′=∑

−

=

 

.)2(
1

1
k

k

i

p
ik Ne ′′= ∑

−

=

                                            (2.24) 
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And the number of recruitments to the grade k is given by 

.)2()1()1( k
p
kk NeR ′′−=                                                        (2.25) 

 

From equation (2.26) we have  

.1....,2,1;
)1(

)2(
)1( −=∀

′′
= ki

N
Ne

P
i

k
p
ik

ik                           (2.26) 

 

Using equation (2.20) and proceeding in a similar manner as in case-1, the numbers of 

promotions and recruitments and the transitional probabilities can be obtained for all 

other states of the system at various time points. 

 

2.6  BIVARIATE FRAMEWORK TO DETERMINE THE CUT-
OFF LEVELS FOR PROMOTION UNDER SENIORITY AND 
EFFICIENCY 
 
Let X and Y be discrete random variables representing seniority and efficiency 

respectively. Let ),( yxPj  be the joint probability mass function of these two variables 

for members of staff in grade j in the organization and ),( yxFj  be the cumulative 

joint probability that xX ≤  and .yY ≤  Let ∑=
y

j yxPxg ),()( and 

( ) ),( yxPyh
x

jj ∑= be the respective marginal probabilities. Let the corresponding 

cumulative distribution functions be  )()( yHandxG jj . 

 

Suppose an organization’s policy requires the proportion of promotions based on 

seniority and on efficiency as  jjs )1( −  and )1( )1( jjs −−  respectively from grade (j-1) to j 

for all  kj ....,,3,2= ,  and multiple promotions (promotions with jumps) are to be 

based only on efficiency, then the minimum levels of X and Y required for promotion 

can be evaluated. 

The minimum cut-off level x for seniority required for promotion from grade (j-1) to 

grade j, can be obtained from the following equation 
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[ ].)(1)()1( 11)1()1( xGtNtNes jjj
p

jjjj −−−− −=+′                       (2.27) 

 

Similarly the minimum cut-off level y for efficiency required for promotion from 

grade (j-1) to j is obtained from the equation 

 

[ ].)(1)()1()1( 111)1()1( yHtNtNes jjj
p

jjjj −−−−− −=+′−                        (2.28) 

 

For  1−< ji , promotions from grade i to grade j are based only on efficiency. Hence 

in these cases the minimum levels of efficiency for promotions are given by 

 

[ ] .)(1)()1( yHtNtNe iij
p
ij −=+′                                          (2.29) 

 

The order in which promotions are made is based on the two factors; i.e. seniority and 

efficiency may also influence the chance of a specific member of staff getting 

promoted. It does not affect the person with high values X and Y, it is likely to affect 

those around the cut-off values of X and Y (see (2.27) and (2.28)). These cut-off 

values are influenced by the degree of correlation between X and Y. 

2.7 CONCLUSION 
 

In this chapter the Markovian model is embedded in a bivariate framework to 

generate promotion probabilities and recruitments. The bivariate aspect of seniority 

and efficiency associated with promotion is also studied. It clearly establishes the 

bounds for promotion under seniority and efficiency so that unambiguity is created. 

Our approach well suits the present day requirements of most of the organization as 

they follow the dual criteria of seniority and efficiency. 
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CHAPTER 3 
 
 
 

MODELING OF AN INTERMITTENTLY BUSY 
MANPOWER SYSTEM1 

 
 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 A modified version of this chapter was presented at the IASTED conference Sept 11-13, 2006 in 
Gaborone Botswana. (The paper has been refereed and published in the proceedings). 
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3.1 INTRODUCTION 
 

While many authors directly discuss the economics of minimizing a manpower 

system, this chapter deals with the aspect of the image of Goodwill that an 

organization aspires to achieve economy directly. In any organization employees look 

forward for better opportunities and hop to other organizations in search for them. 

This behavior affects the normal routine work of the organization. The adverse effects 

are felt more where a person leaves the organization during a busy period of the 

organization. 

 

However, it is not necessary that the staff strength be always full for satisfactory 

performance of the functions. Thus, there are ‘lean’ periods when full staff strength is 

not needed. The ‘busy and lean’ periods, whose duration is random, occur alternately 

in an organization. Such a manpower system may be called an intermittently busy 

manpower system. 

 

In the context of reliability of an intermittently used system, Gaver (1964) who has 

studied the system performance defines the point event called ‘disappointment’. Still 

in Gaver (1964) it is pointed out that it is pessimistic to evaluate the performance on 

an intermittently used system solely on the basis of the distribution of the time to 

system failure. The point event, called a disappointment, is characterized as follows: 

• The system fails during a need period or 

• A need for the system arises, but it is in the failed state.  

 

It is well known that the steady state availability is a satisfactory measure for systems, 

which are operated continuously, such as for manpower planning system. Confidence 

limits for the steady state availability of a two-unit standby system was investigated 

by Chandrasekhar and Natarajan (1997) while Yadavalli, et al. (2002) examined the 

same for a two unit system with the introduction of preparation time for the service 

facility. Recently the confidence limits for the stationary rate of disappointment of an 

intermittently used system have been studied by Yadavalli and Botha (2002).  In this 

chapter, an attempt is made to obtain the expression for the stationary rate of crisis in 
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an intermittently busy manpower system and derive the 100(1- α) % confidence limits 

for the same, when both the busy and lean times have an exponential distribution. 

 

Definition 1 
 

The organization is said to face a crisis if a vacancy is caused by the departure of a 

person during the ‘busy’ period or alternately if a busy period arises when there exists 

at least one vacancy. In both the situations the recruitment process is immediately 

initiated. 

 

Definition 2 
 

 Stationary rate of crisis of an organization is the annual frequency (i.e. the number of 

times the crisis occurs in a unit of time, usually taken as a year) in the long run (as 

t→∞) with which crisis occur in the organization. 

3.2 ASSUMPTIONS 
 

1. The ‘busy’ and ‘lean’ periods occur alternately. 

2. The time T for which the staff strength remains ‘full’ is exponentially 

distributed with parameter λ and the time R required to complete recruitment 

for filling up vacancies is exponentially distributed with parameter μ. 

3. T and R are independently distributed random variables.  

4. The ‘busy’ period is exponentially distributed with parameter α and the ‘lean’    

period is also exponentially distributed with parameter β. 

5. There is a recruitment board of the organization, which starts its functions as 

soon as a vacancy arises. 

6. The wastages (resignations, retirement, dismissals, and deaths) of employees 

are immediately taken as ‘alert signal’ by the recruitment board. 

7. If an employee leaves the organization during lean/busy period, the 

recruitment process is immediately initiated and the recruitment is done 

regardless of whether the busy/lean period arises or not. 
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3.3 SYSTEM ANALYSIS 
 

Let { }0),( >ttZ  be the stochastic process depicting the state of the manpower 

system with state space { }3,2,1,0  corresponding to various situations that arise in the 

organization described in Table 3.1. 

 

                Table 3.1 System states  
 

State Staff strength Busy/lean period 

0 

1 

2 

3 

Full 

Full 

Understaffed 

Understaffed 

Busy 

Lean 

Busy 

Lean 

 

In this problem, state 2 represents the crisis state in the organization. Let 

[ ] 3,2,1,0)()( === iitZPtpi  
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Since the interest is in the stationary behavior of the process, we need 

iit ptp =→∝ )(lim  
                                                                                                                                                                                                                                                            

 Using the transition diagram, Beichelt and Fatti (2002), the following differential-

difference equations can be obtained. 
 

[ ]
[ ]
[ ] )()(0)(/0)(

)(2)(/0)(
)(1)(/0)()(

0

2

10

Δ+==Δ++
==Δ++
==Δ+=Δ+

otPtZtZP
tPtZtZP

tPtZtZPtP
 

 

[ ] .)()()(1

)()(

0

21

Δ+Δ+−+

Δ+Δ=

otP

tPtP

αλ

μβ
 

 

Hence 

)()()()(
)()(

lim 021
00 tPtPtP

tPtP
αλμβ +−+=

Δ
−Δ+

∞→Δ  

so that 

 

.)()()()()( 21
' tPtPtPtP oo μβαλ +++−=    (3.3.1) 

Similarly 

 

)()()()()( 301
'

1 tPtPtPtP μαβλ +++−=     (3.3.2) 
 

)()()()()( 302
'

2 tPtPtPtP βλμα +++−=   (3.3.3) 

                                                                                                                                              

and                              .)()()()()( 123
'

3 tPtPtPtP λαβμ +++−=    (3.3.4) 

 

The following steady state equations can be easily obtained using (3.3.1)-(3.3.4)  

 

210)( PPP μβλα +=+        (3.3.5) 
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301)( PPP μαβλ +=+        (3.3.6) 
          

302)( PPP βλμα +=+                  (3.3.7) 

 
  

123)( PPP λαβμ +=+             (3.3.8) 

 

These equations are linearly dependent and can be solved by using the fact that 

1
3

0

=∑
=i

iP .                       

Therefore     

))((0 μλβα
βμ

++
=P              (3.3.9) 

                                                                                                                                                                                 

))((1 μλβα
αμ

++
=P                  (3.3.10) 

 

 
))((2 μλβα

βλ
++

=P              (3.3.11) 

 

.
))((3 μλβα

αλ
++

=P                       (3.3.12) 

 

The main interest is to find the ‘rate of crisis in a steady state’ ( ∞C ) 

 

[ ] [ ] [ ]

[ ] [ ] )(3)(3)(/),(

0)(0)(/),(),(

Δ+==Δ++

==Δ+=Δ+

otZPtZttincrisisP

tZPtZttincrisisPttincrisisP
 

 

[ ] [ ]

[ ] [ ] )(3)(3)(/2),(

0)(0)(/2),(

Δ+===Δ++

===Δ+=

otZPtZttZP

tZPtZttZP
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 )()()0()()0( 30 Δ+Δ+Δ+Δ+Δ= otPtP βλ  

 

)()()( 3 Δ++= otPtP O βλ . 

 

The rate of crisis in the organization at time t, is   Ct 

)()( 3 tPtPC ot βλ += . 
                         

Hence, the stationary   rate of crisis is     

30lim PPCC tt βλ +== →∝∞    

 

namely 

))((
)(
μλβα

μαβλ
++

+
=∞C . 

3.4 SPECIAL CASE 
                     

It should be noted that for an organization with some busy time and full-staff strength, 

that is, λα =  whatever be the recruitment time, the stationary rate of crisis is 

)( βλ
βλ
+

=∝C  is dependent only on β, the full staff strength. When  β is a fixed 

constant, ∝C becomes a constant. 

3.5 ASYMPTOTIC CONFIDENCE LIMITS FOR THE 
STATIONARY RATE OF CRISIS 
 

In this section we obtain 100(1- α) % confidence limits for the stationary rate of crisis 

in the organization. 

Let nXXX ,...., 21  be a sample of leaving times with p.d.f. given by 

.0,0,)(1 >∞<<= − λλ λ xexf x   

Let nYYY ,...., 21  be a sample of recruitment times with p.d.f. given by 

.0,0,)(2 >∞<<= − μμ μ yeyf y  
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Let nZZZ ,...., 21  be a sample of busy periods with p.d.f. given by 

.0,0,)(1 >∞<<= − αα α zezg z  

 

Let nVVV ,......, 21  be a sample of lean periods with p.d.f. given by 

.0,0,)(2 >∞<<= − ββ β vevg v  

 

Let VandZYX ,,,  be the sample means of the time to leaving the system, the 

time to recruitment of staff into the system, the time to busy service periods and lean 

service periods of the system, respectively. Then  

 
αμλ
1)(,1)(,1)( === ZEYEXE  and 

β
1)( =VE .  

 

It can be shown that VandZYX ,,,  are the MLE’s of  

α
θ

μ
θ

λ
θ 1,1,1

321 ===   and 
β

θ 1
4 =  respectively. 

 

The stationary   rate of crisis is  

( )2314

2143 ))((
θθθθ
θθθθ

+
++

=∞C  

and hence, the estimator of C∞ is given by  

 

)(
))((ˆ

YZXV
YXVZC

+
++

=∞ . 

 

Using the application of the Multivariate Central Theorem (see Rao, 1973), it follows 

that  

( ) ( )[ ] ∞→⎯→⎯− ∑ nasNVZYXn d ),0(,,,,,, 4321 θθθθ            

 where  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

βαμλ
θθθθ 1,1,1,1),,,( 4321   
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and the dispersion matrix 44
2
, ][ Xjiσ∑=  is given by   

  

( )∑= 2
4

2
3

2
2

2
1 ,,, θθθθdiag . 

From Rao (1973), we have ( ) ))(,0(ˆ 2 θσNCCn
d

→∞∞ −  

with    

( ) ii
i i

C
σ

θ
θσ ∑

=

∞
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
4

1

2
2  

                2
4

1

2

i
i i

C θ
θ∑

=

∞
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=  

 

Let  )ˆ(2 θσ  be the estimator of )(2 θσ  which is obtained by replacing θ  by a 

consistent estimator ( )VZYX ,,,ˆ =θ . Since ( )θσ 2  is a continuous function of θ , 

we know that )ˆ(2 θσ  is a consistent estimator of ( )θσ 2 .  

 

Thus    

∞→→ nas)()ˆ( 22 θσθσ . 

 

Using the Slutsky’s theorem, we have  

 

( )
∞→

−
→∞∞ nasNCCn d

)1,0(
ˆ

ˆ

σ
. 

 

This implies that 
( )

α
σ αα −=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≤

−
≤− ∞∞ 1

ˆ

ˆ
Pr 2/2/ z

CCn
z  

Where 2/αz  is obtained from the normal tables. Hence, the asymptotic )%1(100 α−  

confidence limits for ∞C are given by 
n

zC σ
α

ˆ
2/±∞ . 
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3.6 NUMERICAL ILLUSTRATION 
 

Table 3.2 gives the 95% confidence limits for the stationary rate of crisis for different 

values of 1θ  and 2θ  for the values of 3θ  and 4θ  fixed at 1003 =θ and 504 =θ . Figure 

3.2 gives a graphical display of the stationary rate of crisis against leaving rate for the 

model in figure 3.1. The parametric values used in the equations for ∞C  

were
50
1,

100
1,

60
1

=== βαμ . For these values the leaving rate ranged 

from
10
1

100
1 to . The graph shows that an increase in leaving rate increased the rate 

of crisis. 

 
Table 3.2: 95% confidence limits  
 
n=100 θ1 Confidence Limits θ2 Confidence Limits

 20 (0.05924, 0.09076) 20 (0.0089, 0.0577) 

 40 (0.03839, 0.05540) 40 (0.0262, 0.0452) 

 60 (0.03129, 0.04370) 60 (0.0313, 0.0437) 

 80 (0.02768, 0.03791) 80 (0.0339, 0.0437) 

 100 (0.02549, 0.03450) 100 (0.0359, 0.0441) 

n=500 20 (0.06794, 0.08206) 20 (0.0224, 0.0442) 

 40 (0.04318, 0.05062) 40 (0.0314, 0.0399) 

 60 (0.03476, 0.04024) 60 (0.0313, 0.0437) 

 80 (0.03045, 0.03515) 80 (0.0366, 0.0409) 

 100 (0.02798, 0.03202) 100 (0.0382, 0.0418) 

n=1000 20 (0.07002, 0.07998) 20 (0.0256, 0.0410) 

 40 (0.04421, 0.04958) 40 (0.0327, 0.0387) 

 60 (0.03554, 0.03946) 60 (0.0355, 0.0395) 

 80 (0.03119, 0.03441) 80 (0.0373, 0.0403) 

 100 (0.02859, 0.03141) 100 (0.0387, 0.0413) 

 

An increase in leaving rate λ will increase the rate of crisis. Conversely, reduction in 

leaving rate increases the average time to leave and consequently reduces the rate of  

crisis. While an increase in recruitment rate μ, reduces the rate of crisis, decreasing 

the recruitment rate will increase the average time to leave and the rate of crisis (see 

Figure 3.2). 
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Figure 3.2 Stationary rate of crisis for the model 
 

3.7 NON-MARKOVIAN MODEL OF INTERMITTENTLY 
BUSY MANPOWER SYSTEM 
 

For reliability systems Baxter (1981) obtained some general measures for the 

reliability of a repairable one-unit system, by identifying the sequence of periods of 

operation and repair as an alternating renewal process (Cox, 1962). This type of 

modeling was possible because the uptime and down time in a reliability system are 

independent random variables. Two-unit standby systems in which the lifetime and 

repair time of a unit are generally distributed random variables are also considered by 

Subramanian et al. (1983). Yadavalli and Hines (1991) subsequently studied the joint 

distribution of the up time and disappointment time of an intermittently used two unit 

system. At the epoch of failure of a unit) operating online), if the other unit is in a 

state of failure undergoing repair, the system enters the down state and the duration of 

the down state depends on the elapsed repair time of the unit under repair. Thus in this 

example the uptime and the down time are correlated random variables. The entire 
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process can be thought of as a sequence of cycles where a cycle consists of an uptime 

plus the subsequent down time. The evolution of the system can be modeled by an 

alternating renewal; process in which the random variables representing the uptime 

and the random variable representing the subsequent down time are correlated. We 

call such a process ‘correlated alternating renewal process’ if it satisfies some more 

additional conditions. Earlier, the joint distribution of the up time and down time has 

been obtained by Nakagawa and Osaki (1976). In this sub-section of the chapter we 

apply the correlated alternating renewal process to a manpower system. This is 

achieved with the help of the joint forward recurrence time to a system busy period 

and system lean period. The alternating renewal process discussed by Baxter (1981) is 

shown to be a particular case of the correlated alternating renewal process studied 

here and the results are deduced as a special case. 

 

Assumptions 
 

All the assumptions in section 3.2 are the same in this model except 2 and 4. 

 

2'.   The busy period is an exponentially distributed random variable with parameterα . 

4'.    Lean period is a random variable having p.d.f  )(⋅g . 

8.  Periods of full strength of staff and the period of under staffed are distributed 

random variables with parameters  λ  and  μ  respectively. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  SSeettllhhaarree,,  KK    ((22000077))  



 

 44 
 

3.7.1 Notation 
 
 
An event E is characterized by system recovery that is the system enters the state 0 

from state 2. Event E1 is characterized by the event that ‘the staff strength is full and 

the staff is busy’. Event C is characterized by the event ‘crisis of the system’ when the 

system enters state 2 from state 3. The two-valued stochastic process Ζ(t) describes 

the state of full staff strength and state of understaffed for the system at time t, that is  

 

⎩
⎨
⎧

=
dundestaffeofstateinissystemtheif

staffedfullofstateinissystemtheif
tZ

1
0

)( . 

 

Associated with the process{ }0;)( ≥ttZ , we define the following auxiliary 

functions )(tijπ , useful to our analysis: 

 

{ } 0,1,0,,)0(/)()( ≥==== tjiiZjtZprtijπ . 

 

These can be obtained by renewal theoretic arguments 

 

[ ]{ }
)(

)(exp)(00 βα
βααβπ

+
+−+

=
tt  

 

[ ]{ }
)(

)(exp1)(01 βα
βααπ

+
+−−

=
tt  

 

( ) { }
)(

)(exp)(11 βα
βαβαπ

+
+−+

=
tt  

 

[ ]{ }
)(

)(exp1)(10 βα
βαβπ

+
+−−

=
tt  
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3.7.2 Joint distribution of the uptime and disappointment time 
 
 
If X is the time interval between an E event and the next C event and Y is the time 

interval between the C event and the following E event, then the joint density of  X 

and Y is given by   

 

 

[ ]
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Where )(
1

thE  the renewal density of E1 events is given by 
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3.7.3 Marginal densities 

 

If the marginal densities of the random variables X and Y are  )(xf X  and )(yfY , 

respectively, then  
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The density of the random variable YX + representing the cycle length is   

( ) ( ) duutuftf
t

YXYX −= ∫ ++ ,
0

. 

 
3.7.4 Joint forward recurrence time 
 
Let t be a time instant when the system is up. We say that the joint forward recurrence 

time ψ , is the bivariate random variable  ),( tt WU  where tU  corresponds to the time 

interval from t to the next C event and  tW  the time interval from t to the subsequent E 

event. 

 

, ,0
,

( , ) ( ) ( , ) , 0
( , , )

0,

t

X Y E X Y
C E

f t x y x h u f t u x y x du for y x
t x y

otherwise
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∫

 

where   
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tfth
n

n
YXE ∑

∞

=
+=  

is the renewal density of E events. 

 

3.7.5 Marginal forward recurrence times 
  
The marginal forward recurrence times are given by 
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3.7.6 Stationary values of the forward recurrence times 
 
As defined earlier,  

dtxytfyxtyx
x YXECtEC ),(1),,(lim),( ,
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∞
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where 

dxxfxXE X )()(
01 ∫
∞

==μ  

and 

dyyfyyE y )()(
02 ∫
∞

==μ  

 
3.7.7 Operating characteristics of the system 
 
3.7.7.1   Time to first C event 
 
Let C be the random variable denoting the time to the first C event, then, CT  has p.d.f. 

given by  

)(),0( tftf xCTC
==ψ . 

Thus  

duuftTpr
t xC )(}{ ∫
∞

=> . 

The mean value of CT  is given by 

Mean time to crisis = dxxfx x )(
0∫
∞

. 

 

3.7.7.2   Number of C events in the interval (0, t) 
 
The first order product density for C events is given by 

)],([1lim)(
01 Δ
Δ

=
→Δ

xNExh                                                                                                       
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         }1),({1lim
0

=Δ
Δ

=
→Δ

xNpr . 

 

Where ),( ΔxN denotes the number of C events in the time interval ),( Δ+xx . Hence  

duuxuuhxxh C

x

EC ),()(),0()(
01 −== ∫ ψψ  

Therefore the expected number of C events in an arbitrary time interval ],0( t  is given 

by 

 [ ] dxxhtNE
t

)(),0( 10∫=  

    duuxuuhdxdxx C

t x

E

t

C ),()(),0(
0 00

−+= ∫ ∫∫ ψψ  

     dxxf X

t
)(

0∫=  

     duuxfuhdx X

x

E

t
)()(

00
−= ∫∫ . 

 
The expected duration of crisis is given by the expected value of the random variable 

Y, and 

 dyyfyYE Y )()(
0∫
∞

= . 

3.8 SPECIAL CASE 
 

When ∞=α , i.e when the busy period is large,  

then  

1)(00 =tπ  

00)(01 ≥= tallfortπ  

and 

 duuyxguxuhyxgxyxf
x

EYX )()](exp[)()()exp(),(
0, 1

−+−−++−= ∫ λλλλ . 

where 

 
( )n

n

t

E duututuugth ∑ ∫
∞

=
⎥⎦
⎤

⎢⎣
⎡ −−−−−=

1
0

)](exp[)](exp[)exp()(2)(
1

λλλλ . 
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Furthermore, the p.d.f of the random variable YX +  is given by 

 

dwwtgwuwhduttgtf
t u

EYX ∫ ∫ −−−+−−=+ 0 0
)()](exp[)()]exp(1)[()(

1
λλλ  

 

The marginal densities of X and Y are given by 

 

duyxGuxuhxGxxf E

x

x )()](exp[)()()exp()(
10

+−−+−= ∫ λλλλ  

 

and 

 

.)()](exp[)()()exp()(
0 00 1

duuyxguxuhdxyxgxyf
x

Ey −+−−++−= ∫ ∫∫
∞∞

λλλλ . 

  

3.9 CONCLUSION 
 

In this chapter, we derive the stationary rate of crisis for a manpower planning system. 

Confidence limits for a system steady state crisis are developed for the system. We 

also provide the numerical example to examine the effects of varying the system 

parameters that govern rates of attrition (λ ), recruitment (μ ), busy period (α ), and 

lean periods ( β ), which gain some insight on the system performance measures. A 

non-Markovian model is studied for the above model in the last section. Important 

measures such as the amount of crisis, time taken to observe the first crisis and the 

expected number of crisis events observed within a specified period of time are 

calculated. These are all important tools for management to use to manage their 

organizations effectively and timely. 
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CHAPTER 4 
 
 
 

STOCHASTIC STRUCRURES OF GRADED SIZE 
IN MANPOWER PLANNING SYSTEMS2 

 
 

 

 

 

 

 

 

 

                                                 
2 A modified version of this chapter was presented at the IASTED conference Sept 11-13, 2006 in 

Gaborone Botswana. (The paper has been refereed and published in the proceedings) 
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4.1 INTRODUCTION 
 

Graded manpower systems have been studied from different points of view by several 

researchers (see Bartholomew, 1973, 1982), Young and Vassiliou (1974), Vassiliou 

(1978), Bartholomew and Forbes (1979), Vassiliou and Gerontidis (1985), McClean 

(1991) and Vassiliou et al. (1990). 

 

A particular aspect which has received much attention is the examination of moment 

structure of the state of these systems in terms of the proportion of staff in each grade; 

and the evaluation of recruitment and promotion policies for controlling them. In 

these works, the graded structure is analyzed with grade dependent promotion 

probabilities and the length of service is considered as an important criterion in 

determining the staff flows (see Morgan (1979), Vassiliou (1981), Leeson (1979, 

1980, and 1982)). In a large number of manpower organizations such as a civil 

service, each grade is further subdivided into several categories for administration 

reasons.  

 

These categories may be several departments or sections within grades or divisions 

consisting of persons who have completed zero years of service, one year of service, 

two years of service, etc. and promotions are considered at the end of each year for all 

the employees of a lower grade to higher grades. The proportion of promotion will be 

different for each category and hence dependent not only on the grade size but also on 

the category size. By varying the family of promotion probabilities, the structure of 

the system can be steered to a desired level. Further, for a given set of promotion 

probabilities, it is worthwhile to find the probability distribution of the state of the 

system. 

 

In this chapter, an attempt is made to analyse the impact of category and grade 

dependent promotion probabilities on the grade structure of hierarchical manpower 

systems. To be specific, we consider multi-grade manpower systems in which each 

grade is subdivided into several categories according to length of service in that grade. 

The last category of each lower grade consists of persons who have completed a 
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specified period of service in that grade and do not get promotion. An employee in a 

lower grade is eligible for promotion to the most junior category of the next higher 

grade and the probability of promotion is dependent on the grade and category of the 

employee. Un-promoted employee of the category of a lower grade will move to the 

next higher category of the grade in the next unit of time until he reaches the last 

category of the grade from where he is either promoted or leaves the system. The unit 

of time may be taken as a year. The movement to the system are allowed in the lowest 

category of the lowest grade. Wastages are allowed from any category of any grade 

and no demotions take place. 

 

The organisation of this chapter is as follows: in section 4.2, the basic model is 

described and the assumptions and notation are provided. The probability distribution 

of the state of the system is defined in section 4.3. The expected time to reach the top 

most grade by a new entrant in the lowest grade are found in section 4.4. The 

recurrence relation for the moments of the grade sizes is derived in section 4.5. A 

numerical example is provided in section 4.6 to highlight the impact of category and 

grade dependency on the grade structure of a particular organisation. 

4.2 ASSUMPTIONS AND NOTATION 
 
1. There are L grades arranged in descending order of seniority, grade 1 

representing the senior most and grade L, the junior most. 

2. Each grade i is further subdivided into ki+1 categories  i
i
j kjC ....,1= . 

3. The category consists of those employees who have completed j years of service 

in grade i . 

4. The category i
ki

C consists of employees with ki and more years of completed 

service in grade i. 

5. Any employees of the ith grade can be promoted to the (i-1)st grade and they are 

put in the lowest category of the (i-1)st grade. 

6. Each employee of the category i
i
j kjC ....,1=  has equal probability pij of 

promotion to the category 1
0
−iC . 

7. Promotions take place at the end of each year. 
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8. Recruitment is made only at the beginning of each year and is of fixed size R. 

9. Wastages can occur from any category of any grade. 

10.   ijq : the probability that an employee of the category 
i
jC  leaves the system. 

11.   ),,( tjiN : random variable denoting the number of employees in 
i
jC  at time t. 

12.   ),,( tjiN : mean number of employees in i
jC . 

13.    ijn : the mean number of employees promoted from i
jC . 

14.   ijl : the mean number of employees who have left the system from i
jC . 

15.   T: number of years required for an employee to reach the top most grade from 

his last time of entry into the system. 

16.   Ti: number of years required for an employee to reach the grade (i-1)st  since the 

time of his entry into grade i. 

 

4.3 THE PROBABILITY DISTRIBUTION OF THE STATE OF 
THE SYSTEM 
 

Given the promotion and wastage probabilities, we proceed to determine the 

probability distribution of the state of the Markov system at any time t . For the sake 

of simplicity we assume that there are 4 grades arranged in descending order of 

seniority of which grade 1 is the senior-most and grade 4 is the junior most. The grade 

1 consists of 2 categories, the grade 2 consists of 3 categories, the grade 3 consists of 

4 categories and the grade 4 consists of 3 categories. We also assume that no 

promotions occur from the first category of each lower grade and no wastages occur 

from all the categories except the last category of each grade, that is, 

 

0.0,0.0,0.0 413121 === ppp  

0.0,0.0,0.0 222111 === qqq  

0.0,0.0,0.0 333231 === qqq  

.0.0,0.0 4241 == qq  
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The system configuration and the promotion probabilities are given in Table 4.1. 

 

Table 4.1 System description  
 
 

Grade 1 0.0 0.0   

Grade 2 0.0 22p  23p   

Grade 3 0.0 32p  33p  34p  

Grade 4 0.0 42p  43p   

 

First, we note that, since a fixed size R of recruitment is made at the beginning of 

each year and that it is made only into category 4
1C , the probability distribution of 

N(4,1,t) is known for all time t. In fact, we have  

 

[ ] ,....2,1,0,....;2,1,0),(),1,4( ==−== tnRnntNP δ  

 

where ijδ  is the Kronecker  delta function. 

As initial condition, we have 

 

[ ] RNjinjiNP =≠≠== )0,1,4(;1,4,0)0,,( . 

 

Now, observing all the possible flows of staff starting from time t=0, we can obtain 

the state probabilities at any time t . For the purpose of illustrations, we do this for 

times t=1, t=2,  t=3.   

At time t=1, only the categories 4
2

4
1 , CC  are occupied so that the others are empty. 

Hence, we have: 

 

[ ] [ ] )()1,1,4()0,1,4(|)1,2,4(,)1,1,4( 121121 innNPiNnNnNP −===== δ . 

 

Next, at time t=2, only the categories 3
1

4
3

4
2

4
1 ,,, CCCC  are occupied and the others 

unoccupied. Hence, we have, 
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[ ]214321 )1,2,4(,)1,1,4(|)2,1,3(,)2,3,4(,)2,2,4(,)2,1,4( iNiNnNnNnNnNP ======  

 

[ ] 12212
2

12

)1()()()()2,1,4( 4242
12

2
1241223221

nin
i

n
pp

n
i

nnninninNP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−== ∑ δδδ . 

 

In the same way, observing that at time 3=t , the categories 3
2

3
1

4
3

4
2

4
1 ,,,, CCCCC  are 

occupied and the other categories are unoccupied, we have, 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

====

=====

4321

54321

)2,1,3(,)3,2,4(,)2,2,4(,)2,1,4(

|)3,2,3(,)3,1,3(,)3,3,4(,)3,2,4(,)3,1,4(

iNiNiNiN

nNnNnNnNnN
P  

 

[ ] [ ] [ ]{ }

.)1()1(*

)()()()()()3,1,4(

2

42

3

43

433

43

43433242434324

0 0 0
434342434342

43

4343

4343

3

24

2

5443424434334223121

⎭
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⎫
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⎨
⎧

−−−⎟⎟
⎠

⎞
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⎝

⎛ +
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−−−−−−−−−==

∑∑∑
= =

−

=

−−−
i

n

i

n

ni

l

lninilnn qppqpp
l

ln
ln

i
n
i

ninnnlnnnininnNP δδδδ

 

 

Proceeding in this way, we can find all the conditional probabilities for all time t. 

Since P[N(4,1,0) = 1i ] is known, all the state probabilities can be computed forward in 

time and till the probabilistic structure of the state of the manpower systems is 

completely determined. 

 4.4 EXPECTED TIME TO REACH THE TOP-MOST GRADE 
 

Since we want to find the mean time to reach the top-most grade, we assume that the 

probability that an employee leaves a grade is zero, that is 0=ijq , ji,∀ . Also 

assume 0=ijp . Since i
jC  consists of those employees who have completed j years of 

service in grade i and the probability that he is promoted to 1
0
−iC  is pij, the probability 

that an employee is promoted to grade (i-1) after he has put in a service of  j years in 
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grade i is pij. Accordingly, the probability distribution of, the time spent in grade i is 

given by  

[ ] 01 ==iTP  

2]2[ ii pTP ==  

[ ] ;2)1().....1)(1( )1(1312 iimmii kmppppmTP ≤≤−−−== −  

[ ] ,....2,1)1()1(
2

1 =−−=+= ∏
=

− mpppmkTP
i

i

i ik

k

l

m
ikilii     . 

 

Hence, we have  

.1)1()1̀()1()(
22

1

2
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

⎭
⎬
⎫

⎩
⎨
⎧

−+−= ∏∑∏
==

−

= i

i

ii

ik
ik

k

m
imij

k

j

j

m
imi p

kppppTE  

 

The mean time to reach the top-most grade is given by  

)()(
2

∑
=

=
L

i
iTETE . 

We find the mean number of years an employee has to remain in a grade before being 

promoted to the next grade for two different sets of promotion probabilities and 

present the results in Tables 4.4 and 4.6 . 

 

4.5 MOMENTS OF THE GRADED SIZES 
 

The stochastic process describing the behavior of the system is a Markov chain on the 

state space  

 

{ }1,.....,....2,1;,......2,1),,( +=== LkjLijiE i   

where L+1 represents the state to which employees are leaving the system. Let the 

transition probability matrix P be defined by 

 

)],/(),[( jimlP  where   )],/(),[( jimlP   
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represents the probability that an individual found in state ),( ji  at time t moves on to 

the state ),( ml  in time t+1, for all t. Then we have;  

 

[( 1, 0 ) | ( , )] ijP i i j p− =   

[ , 1) | ( , )] 1 ijP i j i j p+ = −   

( ) ( ), | , 1
i ii i ik ikP i k i k p q= − −⎡ ⎤⎣ ⎦    

[ 1) | ( , )]
ii ikP L i k q+ =  

and 

[( , ) | ( , )] 0P l m i j = ,  for all other values. 

 

Let R (t) denotes the vector corresponding to the recruitment. Since recruitment are 

allowed only in the category LC 0 and is a constant R for all t, we have all the 

elements of R(t) as zero except the term corresponding to  LC 0 . Then the expected 

number in the system at time t is given by the recursive equation (Bartholomew, 

1967). 

rtRPtNtN )1()()1( ++=+  

where   

)1( +tN is the expected number of employees in the system in the ith state at 

time t+1, 

P  is the transition matrix whose element pij is the probability of a move from 

state i to j in any time interval, )1( +TR  is the number of recruits  at time 

1+T  and ),...,( 21 krrrr =  is the recruitment vector. 

4.6 NUMERICAL EXAMPLE 
 

Some numerical examples have been carried out of this model. Tables 4.2 to 4.5 give 

different scenarios for promotion probabilities to each category within grades, for 

instance an employee would move from grade 4 categories 6 to grade 3 categories 0 

with probability 0.3. Tables 4.4 and 4.6 give the average time it takes for an 

individual to move from one grade to another. Tables 4.7 to 4.10 indicate the number 
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of employees leaving the system within each category of the grades given that 40 

people were recruited each year while Tables 4.11 to 4.14 give the  corresponding 

scenario while organization started with 80 recruits. It is observed that if promotions 

are time dependent it will take an employee about 36 years to reach the topmost 

grade, whereas if promotion is based on efficiency it will take only 14.7 years to reach 

the top most grade. 

 

 Table 4.2a Transition probabilities within and between grades 

 
Grade 2 0.0  0.2  0.4  0.5  0.6  0.8  0.9  0.8   

Grade 3 0.0  0.2  0.4  0.6  0.7  0.8  0.9  0.8 

Grade 4 0.0  0.2  0.3  0.4  0.8  0.3 

Grade 5 0.0  0.2  0.4  0.5 

 

The non-zero leaving probabilities are given below: 

 
Table 4.2b: probability of leaving wastage 
 
Grade 1  Grade 2   Grade 3   Grade 4   Grade 5 

    1.00      0.80           0.70          0.60          0.50 

 

With the above probabilities and R=40, we have obtained the expected numbers of 

employees who will leave the system in the various categories of the grades at 

different times 21,16,11,6 ==== tttt  and present them respectively in 

Tables 4.7 to 4.10 without changing the promotion and wastage probabilities, if we 

change only the recruitment size as R=80, we observe that for the same time points all 

the mean numbers are almost doubled and this fact is exhibited in Tables 4.11 to 4.14. 
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Table 4.3a: Promotion probabilities 
 
Grade 2 0.0  0.2  0.4  0.5  0.6  0.8  0.9  0.8   

Grade 3 0.0  0.2  0.4  0.6  0.7  0.8  0.9  0.8 

Grade 4 0.0  0.2  0.3  0.4  0.8  0.3 

Grade 5 0.0  0.2  0.4  0.5 

 

Non-zero leaving probabilities 

 

Table 4.3 b Probability of leaving through wastage 

 

Grade 1  Grade 2   Grade 3   Grade 4   Grade 5 

    1.00      0.80           0.70          0.60          0.50 

 

Table 4.4: Mean time to reach grades 
 
   From grade                To Grade                      Mean time 

          5                               4                                     3.7 

          4                               3                                     3.9 

          3                               2                                     3.5 

          2                               1                                     3.6 

 

The mean time to reach the top-grade is 14.7 years. 

 

Table 4.5a: Promotion probabilities 
 
Grade 2 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.2 

Grade 3 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.4 

Grade 4 0.0  0.0  0.0  0.0  0.0  0.3 

Grade 5 0.0  0.0  0.0  0.0  0.3 

 

 In Table 4.5a promotions are allowed only when an employee reaches the top 

category of each grade and Table 4.5b gives the non-zero leaving probabilities. 
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Table 4.5b: Probability of leaving through wastage 
 
Grade 1  Grade 2   Grade 3   Grade 4   Grade 5 

    1.00      0.80           0.70          0.60          0.50 

 

 

Table 4.6: Mean Time to reach grades 
 
   From grade                To Grade                        Mean time 

          5                               4                                      6.3 

          4                               3                                      8.3 

          3                               2                                      9.5 

          2                               1                                     12.0 

 

The mean-time to reach the top-grade is 36.1 years. 

 

Table 4.7: Time =6years 
 
Grade 1 00  00  00  00    

Grade 2 00  00  00  00  00  00  00  00 

Grade 3 02  00  00  00  00  00  00  00  

Grade 4 30  21  06  00  00  00  00   

Grade 5 40  40  32  19 

 

The expected number of employees leaving the system is 10. 

 
Table 4.8: Time = 11years 
 
Grade 1 18  13  08  00 

Grade 2 29  28  21  11  00  04  01  00 

Grade 3 29  29  23  14  06  02  00  0 0  

Grade 4 30  30  24  17  10  02 

Grade 5 40  40  32  19 

 

The expected number of employees leaving the system=11 
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Table 4.9: Time = 16years 

 
Grade 1 29  29  29  00  

Grade 2 29  29  23  14  07  03  01  00 

Grade 3 29  29  23  14  06  02  00  00  

Grade 4 30  30  24  17  10  02 

Grade 5 40  40  32  19 

 

The expected number of employees leaving the system =11 

 
Table 4.10: Time = 21years 
 
Grade 1 29  29  29  00 

Grade 2 29  29  23  14  07  03  01  00 

Grade 3 29  29  23  14  06  02  00  00   

Grade 4 30  30  24  17  10  02 

Grade 5 40  40  32  19 

 

The expected number of employees leaving the system=11. 

 
Table 4.11: Time = 6years 
 
Grade 1 00  00  00  00 

Grade 2 00  00  00  00  00  00   00  00 

Grade 3 03  00  00  00  00  00   00  00   

Grade 4 61  42  13  00  00  00  

Grade 5 80   80  64  38  

 

The expected number of employees leaving the system=19 
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Table 4.12: Time = 11years 
 
Grade 1 36   26  16  00 

Grade 2 57   56  41  21   08   02  00  00 

Grade 3 58   58  46  28   11   03  00  00   

Grade 4 61   61  49  34   20   04  

Grade 5 80   80  34  38  

 

The expected number of employees leaving the system=22 

 
Table 4.13: Time = 16years 
 
Grade 1 58  58  58  00 

Grade 2 58  58  46  28  14  06  01   00 

Grade 3 58  58  46  28  11  03  01   00   

Grade 4 61  61  49  34  20  05 

Grade 5 80  80  64  38  

 

The expected number of employees leaving the system=22 

 

Table 4.14: Time = 21years 
 
Grade 1 58  58  58  00 

Grade 2 58  58  46  28  14  06  01  00 

Grade 3 58  58  46  28  11  03  01  00   

Grade 4 61  61  49  34  20  05 

Grade 5 80   80   64   38  

 

The expected number of employees leaving the system=22 
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4.7 CONCLUSION 
 

This chapter has presented a method for analyzing the impact of category and grade 

dependent probabilities on grade structure of a hierarchical manpower system, under 

certain assumptions. The probability distribution of the expected time spent in a grade 

is derived. Numerical examples indicate that doubling the recruitment size from 40 to 

80 employees leads to the mean numbers leaving to be almost double in each category 

and grade. Restricting promotions within categories also lead to long waiting times to 

reach the top. 
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CHAPTER 5 
 
 
 

ANALYSIS OF OPTIMAL PROMOTION POLICY 
FOR A MANPOWER SYSTEM BY A QUEUEING 

APPROACH3 
 

 

 

 

 

 

 

 

 

 
 

 

                                                 
3 A modified version of this chapter is published in Management Dynamics, Vol . 15, No. 2 (2006). 
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5.1 INTRODUCTION 
 

In the competitive world of today which is characterized by a large number of 

qualified persons, manpower planning draws the serious attention of researchers 

engaged in this field, since each organization requires employees with specialized 

skills in various fields to accomplish its business objectives, both now and in the 

future. Through manpower planning the management of any organization not only 

optimizes the expertise and skills of its human resources, but may also select the 

optimal number and correct type of employees available at the right place at the right 

time. 

 

Determining manpower planning policies is one of the most critical and difficult 

aspects of an organization. In particular, after the recruitment, determining promotion 

policies from one grade to another becomes more difficult as the organization requires 

more expertise since it is linked to the productivity enhancement of the organization. 

 

Various models applicable to manpower planning have been developed and studied in 

the past by many well-known researchers such as Marshall and Olkin (1967), Smith 

(1970), Bartholomew (1971), and Forbes (1971). Moreover, there are special features 

associated with the methods and models relevant to manpower systems, which arise in 

various fields. 

 

Considering recruitment and promotion as some of the main activities of the 

organization, Vajda (1975) discussed the mathematical aspect of manpower planning. 

The concepts of linear programming are used to develop a graded population structure 

where both the recruitment rates and transfer rates between the various grades are 

controlled by management. Davies (1975) discussed the maintainability structures in 

Markov chain models under recruitment control. Leeson (1984) considered the 

recruitment policies and their effects on internal structures. Recruitment control refers 

to an effective control of recruitment policies to obtain an optimal supply of recruits 

for a system at any time. Generally recruitment levels are connected with wastage and 

promotions in a system as well as the desired growth of the system, hence controlling 
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recruitment policies may help attain the desired structure, which could be maintained 

over time. 

 

Kalamatianou (1987) obtained an attainable and maintainable grade structure in 

Markov manpower system with pressure in grades. Furthermore, the work of 

Vassiliou (1976) and Leeson (1982) determines the wastage and promotion rates 

required to bring about any desired future personnel structure. Grinold (1976) placed 

emphasis on uncertain requirements. The main purpose was to provide a framework 

to regulate the supply of adequately qualified employees for naval aviation. 

Sathiyamoorty (1980) discussed a cumulative damage model of manpower planning 

with correlated inter-arrival times of shocks. Rao (1990) proposed a dynamic 

programming approach to determine optimal recruitment policies. A bivariate model 

under efficiency and seniority embedded with stochastic theory was studied by 

Raghvendra (1991). 

 

Young and Vassiliou (1974) have considered a non-linear model for the promotion of  

staff. In particular, a stochastic model of promotion based on an ecological principle, 

which states that promotions should be proportional to the number of skilled 

employees available for promotion and the number of vacancies for promotion was 

proposed. Subramanian (1996a, 1996b) developed an optimal policy for time bound 

promotion in a hierarchical manpower system and a model on optimum promotion 

rate.  Sathiyamoorty and Elangovan (1997, 1998, 1999) studied an optimal 

recruitment policy for training prior to placement. A semi-Markov model of a 

manpower system was studied by Yadavalli and Natarajan (2001) with the interest 

focused on the total number of vacancies available in the entire organization. Recently 

a study on training dependent promotions and wastage was also carried out by 

Yadavalli et al. (2002b). 

 

Gross and Harris (1974) and Takacs (1960) have presented basic concepts of various 

queuing models. Further, queuing and inventory concepts are grouped as 

interdisciplinary subjects by Morse (1958) and applied to manpower planning 

problems by Yadavalli et al. (2005). Mishra and Pal (2003) have discussed the 
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computational approach to the M/M/1/N interdependent queuing model. Further 

Mishra and Mishra (2004) evaluated the total optimal cost of the machine interference 

model as an important performance measure of the system.  Very recently, 

Rajalakshmi and Jeeva (2003), Jeeva, Rajalakshmi, Charles and Yadavalli (2004) 

discussed stochastic programming in cluster based optimum allocation of recruitment. 

 

Thus a close review of the aforesaid publications on manpower planning reveals that 

so far many aspects and approaches have been discussed in various literature sources 

pertaining to manpower planning. However, these models are of no use, as long as 

they cannot be converted into effective tools usable within organizations. 

 

In this chapter a fresh attempt has been made to analyze the promotion policy 

component of manpower planning by mapping the system to a queuing model, where 

we describe employees eligibility for promotion by a Poisson arrival and lengths of 

waiting for promotion are modeled using an Erlang distribution. The optimal 

promotion policy and total optimal cost of the system for promotion have been 

computed. To highlight the importance of the model, a hypothetical example is used 

for illustration. 

 

5.2 THE DESCRIPTION OF THE MODEL 
 

We consider an FIFOEM K /:1// ∞ queuing model with Markovian input and 

Erlangian service having k phases. In this model, it is assumed that the employees in 

grade i become eligible at a rate, which is randomly distributed according to a Poisson 

distribution and employees proceed to be serviced on a first come, first out basis 

(FIFO). Let the mean value of the rate be iλ . It is further assumed that the interval 

between two consecutive instances of a vacancy arising in grade )1( +i  is 

exponentially distributed such that the expected number of vacancies arising during 

unit time is μi with the traffic intensity 1<
i

i

μ
λ

. This is a very restrictive assumption 

since ii μλ <  it is meant to control the queue size otherwise the queue built up could 
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be infinite.  The promotion time (service time) distribution is assumed to be an 

Erlangian distribution with mean 
μk
1  where μ is the parameter of the exponential 

distribution. A single service channel is operated and there is no limit placed on the 

number of employees applying for promotion. 

 

The employees applying for promotion are kept on the waiting list and considered for 

promotion as and when vacancies arise. Thus the manpower system is mapped onto a 

queuing system and studied. 

 

Let c0 be the fixed cost of promotion, which is incurred as the establishment cost per 

unit of time for any organization, c1 be the promotion cost (service cost) per unit per 

unit time and c2 be the holding/waiting cost per unit per unit time for the model. Since 

eligibility (arrivals) follows a random distribution, fluctuations will occur in the 

expected queue length for the promotion in the manpower planning system. On the 

part of the management (policy makers of the organization), since the exact number of 

persons applying for the promotion are not known, this state of indecision hampers 

and further delays the promotion policy of the organization. Consequently, the 

productivity of the organization is affected. Let c3 be per unit cost per phase 

associated with a hamper- situation and be known as the hamper cost per unit of the 

fluctuations in the expected queue length of the system. 

 

The total expected queue length of the system, average number of phases and per 

phase fluctuations in the system are obtained as follows. 

 

Expected queue length in the system (Ls)  = 
)(2

)1(
λμμ
λ
−

+
k

k  

 

Average number of phases  = μλρ
ρ
ρ k

k
kk /,

)1(2
)1(

=
−
+  
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Per phase fluctuations in the queue length of the system by 

 ( ) n
n

PLn∑
∞

=

−
0

2  

   = 2

0

2)1( Ln
n

n −− ∑
∞

=

ρρ  

 

where L is the expected number of employees in the system, Pn  is the probability of 

finding n employees in the system and ∞= ...,1,0n . 

 

For the model developed here, three phases )3( =k are considered. The first phase is 

used for basic screening such as minimum time (minimum number of years of service 

put in), minimum qualification and required training for promotion, the second phase 

for evaluation of the performance towards target and quality achievement and the 

third and the final phase is considered for interviewing the staff. Therefore, for 

purposes of evaluating the model 3=k  will be assumed in the next section of this 

chapter. 

5.3 THE ANALYSIS OF THE MODEL 
 

The total cost incurred by the organization for implementing the promotion policy 

consists of the sum of the fixed cost of promotion, the promotion cost, the cost of 

waiting for a vacancy to be created multiplied by the average number of phases and 

the hamper cost per unit multiplied by per phase variability in the queue length of the 

system. 

The cost function as total optimal cost (TOC) is constructed as follows: 

 

⎟
⎠

⎞
⎜
⎝

⎛
−−

−
+

+
−

+
++= ∑

∞

=

2

0

2
3210 )1(

)1(2
)1(

)(2
)1( Ln

k
kkc

k
kcccTOC n

n

ρρ
ρ
ρ

λμμ
λμ  

 

After simplification, (see Gross and Harris, 1974) the above expression reduces to 
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2

2

3210 )1)((2
)1(

)(2
)1(

ρλμ
ρμ

λμμ
λμ

−−
+

+
−

+
++=

kkc
k

kcccTOC  

Let 

3210 AAAcTOC +++=                                                                              (5.1) 

where, 

A1 = μ1c ,    

A2 = )(2
)1(

2 λμμ
λ
−

+
k

kc ,    

 

and  A3 = 2

2

3 ))((2
)1(

λμλμ
λμ
−−

+
k

kkc  

 

For the optimum promotion policy (μ), equation (5.1) yields a non-linear equation in 

μ after taking the first derivative of the same, which is solved by making use of the 

fast converging Newton-Raphson method and developing a program in C language. 

 

5.4 NUMERICAL ILLUSTRATION AND DISCUSION OF THE 
RESULTS 
 

In the numerical illustration, since the model under consideration is studied for the 

steady state, the costs of the model are considered to vary in such a way that at least 

one cost must be contradictory to other costs. This is a basic requirement for the 

formation of the queue. Moreover, the selection of the arrival rate is also considered 

as per the steady state condition, that is μλ 3< . If the aforesaid conditions are 

violated, then the model shows erroneous output by giving a negative total optimal 

cost of the system, which is never possible. In Table 5.1, it is assumed that c0 is fixed 

and is taken as a constant value. The table illustrates the optimal promotion policy 

(μ*) and the total optimal cost of the manpower system for the promotion. Starred 

values of parameters in the row 9 of Table 5.1 show the optimal promotion and total 

optimal cost of the system corresponding to various parameters. 
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Table 5.1: Relationship between TOC and optimal promotion policy, μ when c0 is     

fixed 

λ c0 

(Dollars) 

c1 

(Dollars) 

c2 

(Dollars)

c3 

(Dollars)

k μ* TOC 

(Dollars) 

1 700 50 25 15 3 8.95 1147.89 

2 700 53 24 14 3 8.91 1173.46 

3 700 67 23 13 3 8.89 1298.40 

4 700 69 22 12 3 8.89 1318.83 

5 700 74 21 11 3 8.85 1365.12 

6 700 77 20 10 3 8.8 1397.16 

7 700 81 19 9 3 8.75 1444.76 

8 700 88 18 8 3 8.78 1589.46 

9* 700* 90* 17* 7* 3* 8.81* 912.73* 

10 700 92 16 6 3 8.81 1401.61 

11 700 100 15 5 3 8.83 1515.70 

12 700 103 14 4 3 8.87 1563.69 

13 700 107 13 3 3 8.9 1614.03 

14 700 112 12 2 3 8.9 1668.88 

15 700 121 11 1 3 8.92 1762.97 

 

 

Further, assuming that the promotion cost c1 to be constant, which sometimes happens 

to the organization when it has budgetary constraints, then the resultant trend between 

the different costs and total optimal cost are shown in Table 5.2 below. 
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Table 5.2: Relationship between TOC and optimal promotion policy μ, when 

both c0 and c1 are fixed 

λ c0 

(Dollars)

c1 

(Dollars) 

c2 

(Dollars)

c3 

(Dollars)

k μ* TOC 

(Dollars) 

1 700 177 19 5 3 8.95 2285.04 

2 700 177 42 8 3 8.91 2290.29 

3 700 177 76 10 3 8.89 1018.46 

4 700 177 80 15 3 8.89 2106.30 

5 700 177 91 23 3 8.85 1940.41 

6 700 177 111 28 3 8.8 1537.73 

 

In Table 5.3, it is assumed that waiting and hamper costs are constant while assessing 

the change in the total optimal cost with the change in the promotion cost. 

 

Table 5.3: Relationship between TOC and optimal promotion policy μ, when 

only c1 is allowed to vary 

λ c0 

(Dollars)

c1 

(Dollars) 

c2 

(Dollars)

c3 

(Dollars)

k μ* TOC 

(Dollars) 

1 700 207 47 104 3 8.95 2554.14 

2 700 194 47 104 3 8.91 2434.82 

3 700 189 47 104 3 8.89 2397.13 

4 700 175 47 104 3 8.89 2293.95 

5 700 142 47 104 3 8.85 2038.51 

6 700 129 47 104 3 8.8 2012.48 

 

In Table 5.4 we looked at the special case when μλ = . In this the case employee’s 

eligibility for the job and the expected number of vacancies that arise occur at the 

same rate. An analytic expression for the case is given in the appendix A. We notice 

that the optimal policy is achieved when 1== μλ .  
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Table 5.4: Relationship between TOC and optimal promotion policy when λ=μ 
 
λ c0 

(Dollars)

c1 

(Dollars) 

c2 

(Dollars)

c3 

(Dollars)

k μ* TOC 

(Dollars)

1 700 50 25 15 3 1 772.50 

2 700 53 24 14 3 2 827.00 

3 700 67 23 13 3 3 920.50 

4 700 69 22 12 3 4 994.00 

5 700 74 21 11 3 5 1086.50 

6 700 77 20 10 3 6 1177.00 

7 700 81 19 9 3 7 1280.50 

8 700 88 18 8 3 8 1416.00 

9 700 90 17 7 3 9 1520.50 

10 700 92 16 6 3 10 1629.00 

11 700 100 15 5 3 11 1807.50 

12 700 103 14 4 3 12 1942.00 

13 700 107 13 3 3 13 2095.50 

14 700 112 12 2 3 14 2271.00 

15 700 121 11 1 3 15 2516.50 

 

5.5 CONCLUSION 
 

While analyzing the variation over different parameters in Table 5.1, it is interesting 

to note that when c0 is fixed and the other two costs which are in contravention to each 

other are varying, the values of the optimal promotion policy and total optimal cost of 

the promotion are obtained and this trend of variation in various parameters is worth 

noticing in an organization. 

 

In Table 5.2 where c0 and c1 are fixed and other costs are varying, it is noticeable that 

the variation in the total optimal cost is significant. Table 5.3 shows significant 

variation in TOC when c0, c2 and c3 are fixed. 
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Manpower planning is about ensuring that the right types of employees are available 

at the right place at the right time. The success of the manpower planning is 

paramount to the survival of the organization and the complexities associated with the 

planning process and environment. Quantitative techniques such as queuing theory 

applied in this study can enhance problem-solving abilities and hence improve 

decision-making effectiveness of an organization. 

 

The most practical implication is that of controlling the internal structure through 

hiring, promotions, internal transfers, redundancies and retirement planning. The 

problem is to precisely plan and control these interrelated organizational activities in 

order to achieve a stable organization capable of meeting its objectives. 

 

Application of manpower planning techniques means organizational effectives, i.e. it 

may maximize the overall effectiveness of promotion policies to retain the best skilled 

employees. As a result of using this model and trying alternative manpower policies 

one can discover and explore the cost performance that exists. The following studies 

give application of manpower planning techniques in different organizational 

problems (Meehan and Ahmed (1990); Gass et al. (1988); Andrew and Abodunde 

(1977); Leeson (1982); Gorunescu, McClean and Millard (2002)). 

 

Lastly, management may implement the human resource planning models in their 

functional areas of business to develop policies on recruitment and selections, training 

and development, hiring, promotion and retention benefits to foster the spirit of 

organizational citizenship. 
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CHAPTER 6 

 
 
 

LIFE TABLE TECHNIQUES IN THE ANALYSIS 
OF ATTRITION IN A MANPOWER SYSTEM 

WITH REFERENCE TO HIGHER EDUCATIONAL 
INSTITUTIONS4 

                                                 
4 A modified version of this chapter was presented at the ‘SAIMS’ conference Sept 13-15, 2006 in  
Stellenbosch, South Africa. (The paper has been refereed and published in the proceedings) 
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6.1 INTRODUCTION 
 

Various stochastic models of manpower systems have been studied in the past 

(Yadavalli & Natarajan (2001); Yadavalli et al. (2002); Yadavalli et al. (2005)). 

Several studies have shown that socially-valued and demographic factors such as 

income, length of service, age, sex, marital status and the general conditions of 

service have a significant contribution on an individuals attrition (see Lane and 

Andrew (1955), Bartholomew (1959; 1971), Young (1971)). An earlier study by 

Wolfbein was not only to show the relevance of demographic factors but adopted the 

technique of life table to a measurement of working life span. 

 

In this chapter we focus on educational qualification as a primary contributor to 

attrition and employ the life table technique to analyse the wastage and attrition rates 

of staff of an Educational Institution. In particular we analyse the length of service 

expectation and survival rates of staff using the terminology of demography as a 

matter of convenience. 

 

A life table gives mortality rate and expectation of life of the population with different 

ages. It is mostly employed by life insurance companies to determine premiums to be 

set for life insurance and for determining rate of disability and retirement benefits, etc. 

It is also used in other fields such as demography and public health to study 

population growth, patient survivorship after diagnosis, and length of widowhood as 

well as married life. Life table is a convenient method for summarizing the mortality 

experience of any population. It particularly it provides a comprehensive and concise 

measure of longevity of that population. A life table is quite useful to a business 

organization attempting to assess its health benefits liabilities for both current workers 

and future retirees (Pol and Thomas, 1997).  

 

 In this particular problem we use a life table to calculate the survivorship of a cohort 

of employees in an educational institution before they could leave the job. Institutions 

of higher education are experiencing major problems of recruiting and retaining 

expertise and knowledge base due to competitiveness. This coupled with high costs of 
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recruitment and time taken to search for people with skill has great effects on the 

institution budgets and development. It is, therefore, of considerable importance to 

institution planners to determine the likelihood of leaving and the distribution of the 

staff length of service in order to better understand the complex phenomena of 

institution staff movement and wastage rates. Wastage or attrition are used in the 

place of death and completed length of service [CLS] in the place of age.   

 

This life table gives a summary of wastage or attrition of manpower of a cohort 

during an interval of their service. It will provide extensive information about the 

impact of wastage on service life expectancy and show any trend in wastage.  

6.2 NOTATION AND TERMINOLOGY 
 

This section defines the basic life table functions, shows how life tables can be 

calculated and the relationships between them. 

 

i   : Exact number of years of service [ i  – integer] 

n  :length of interval 

 il  : Number of persons with i completed years of service 

in d       : Number of wastages while passing from i  and [ ni + ] years of service 

n  : Width of classes defined by length of service, kn ......,2,1=   

in q      : Probability of leaving the job between i and [ ni + ] years of service following 

the attainment of length i  

in p  : Probability of continuing in the service between i and [ ni + ] years of service 

inL  : Persons years serviced by the cohort between  i  to [ ni + ] years 

iT  : Total persons-years serviced by the cohort from i  years of service 

0
ie  : Expected length of service in years left from the year of service 

CLS  : Completed length (in years) of service 

in m  : The attrition rate for the cohort between   i  to [ ni + ] years  

( )G i  : is the probability of one not facing attrition until he reaches the ith year of       

service. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  SSeettllhhaarree,,  KK    ((22000077))  



 

 80 
 

Relation between life table functions: 

  i
n i

i

dq
l

=  

niiin lld +−=   for all  n=1, 2, 3, …..k;   

 i=1, 2, 3…k1:   k,  k1 finite and k1≥k 

ii qp −= 1  

in

in
in L

d
m =  is the central rate of attrition 

Where            [ ] [ ]nii

n

tiin llndtlL ++ +≈= ∫ 2/
0

                         

     dtlLLLT tiniiii ∫
∞

+++ =+++=
0

1 ..........   

i

i
i l

T
e =0  

i

ni

l
l

iG +=)(   

6.3 SYSTEM DESCRIPTION 
 

1.   We consider a cohort of persons who joined the service from the inception of the 

Educational institution and study only their wastage rates. 

2. Minimum qualification required to work in the institution is post graduate. 

3.     Maximum length of service a person can put in the institution is 30 years. 

4. In this approach the rates are calculated for classes defined by length of service 

(see Tables 6.1, 6.2, 6.3 and 6.4). 

5. We assume that there are no significant differences in attrition between males 

and females. 

 6.4 STRUCTURE OF THE TABLES OF LENGTH OF SERVICE 
 

Perhaps the most natural way of collecting data to investigate the pattern of wastage is 

to observe homogeneous groups of entrants and note how long each remains in the 
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organization before leaving.  Such a group, joining at about the same time is known as 

a cohort.  We employ the cohort life table as it presents a historical record of what 

actually happened to the recruits. By recording their service lengths, one would know 

how many survived attrition to attain a certain length of service, the probability of not 

leaving until the i th year of service, the wastage/attrition rates and expected length of 

service. As leaving is a process which can occur virtually at any time in a person’s 

career, it is reasonable to treat completed length of service as a continuous variable.  

 

 A conventional life table starts with an initial group of 100 000 at birth and follows it 

through life, subject to a pattern of mortality (Shryock, Siegel and. Associates, 1954). 

Since the focus here is on the span of service duration, the life table starts with the 

completed length of service since the inception of the institution or since year zero 

and follows it through life, subject to a pattern of attrition determined by a specified 

set of mortality rate. In this note we give importance to an Educational Institutions 

where people working have different qualifications including Postgraduate [P.G.], 

Master of Philosophy [M.Phil.], Master of Science [M.Sc], Doctorate of Philosophy 

[Ph.D.].  We consider persons who leave the institution as wastage or attrition at 

various stages of completed length of service with different qualifications and present 

the results in Tables 6.1-6.6. 
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Table 6.1: Structure of a Life Table for staff with PhD qualification 

 
Exact 

numb

er of 

Years 

of 

Servi

ce 

No. of 

persons 

with 

exact 

no. of 

comple

ted  

years 

of 

service 

No. of 

persons 

leaving 

the job 

betwee

n i to 

i+n 

years 

of 

service 

Probab

ility of 

leaving 

the job 

betwee

n 

i to i+n 

years 

of 

service 

Average 

person 

years 

service by 

the cohort 

between i 

to i+n 

years 

Total 

person 

years 

service

d by 

the 

cohort 

from i 

years 

of 

service 

Expecte

d length 

of 

service 

in years 

left from 

the year 

of 

service 

Probabilit

y of a 

person 

will not 

face any 

attrition 

till ith 

year of 

service 

Hazard 

rate of 

leaving 

the job 

after a 

given 

CLS 

i- 

(i+n) 

li ndi nqi nLi Ti ei
o G(i) h(i) 

0-1 33 9 0.2727 28.50 92.00 2.79 0.7273 --- 

1-2 24 8 0.3333 20.00 63.50 2.65 0.4849 0.0088 

2-3 16 8 0.5000 12.00 43.50 2.72 0.2424 0.0198 

3-4 8 5 0.6250 4.50 31.50 3.94 0.0909 0.0496 

4-8 1 0 0.0000 22.50 27.00 27.00 0.0909 0.0000 

8-10 1 1 1.0000 2.00 4.50 4.50 0.0000 0.0304 

10-15 0 0 0.0000 0.00 0.00 0.00 0.0000 0.0000 

15-20 0 0 0.0000 0.00 0.00 0.00 0.0000 0.0000 

20-30 0 0 0.0000 0.00 0.00 0.00 0.0000 0.0000 
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Table 6.2: Structure of a Life Table for staff with M. Phil./M.Sc qualification 
 
Exact 

numb

er of 

Years 

of 

Servi

ce 

No. of 

persons 

with 

exact 

no. of 

comple

ted  

years 

of 

service 

No. of 

persons 

leaving 

the job 

betwee

n i to 

i+n 

years 

of 

service 

Probab

ility of 

leaving 

the job 

betwee

n  

i to i+n 

years 

of 

service 

Average 

person 

years 

service by 

the cohort 

between i 

to i+n 

years 

Total 

person 

years 

service

d by 

the 

cohort 

from i 

years 

of 

service 

Expecte

d length 

of 

service 

in years 

left from 

the year 

of 

service 

Probabilit

y of a 

person 

will not 

face any 

attrition 

till ith 

year of 

service 

Hazard 

rate of 

leaving 

the job 

after a 

given 

CLS 

i-

(i+n) 

li ndi nqi nLi Ti ei
o G(i) h(i) 

0-1 64 10 0.1563 59.00 916.50 14.00 0.8437 --- 

1-2 54 9 0.1667 49.50 857.50 15.88 0.7030 0.0038 

2-3 45 9 0.2000 40.50 808.00 17.96 0.5624 0.0055 

3-4 36 3 0.0833 33.50 767.50 21.32 0.5156 0.0028 

4-8 31 3 0.0968 167.50 734.00 23.68 0.4657 0.0036 

8-10 28 2 0.0714  59.00 566.50 20.23 0.4324 0.0029 

10-15 26 1 0.0385 135.00 507.50 19.52 0.4158 0.0017 

15-20 25 1 0.0400 127.50 372.50 14.90 0.3990 0.0018 

20-30 24 24 1.00 245.00 245.00 10.21 0.0000 0.0480 
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Table 6.3: Structure of a Life Table for staff with P.G. (Honors) qualification 

 
Exact 

numb

er. of 

Years 

of 

Servi

ce 

No. of 

persons 

with 

exact 

no. of 

comple

ted  

years 

of 

service 

No. of 

persons 

leaving 

the job 

betwee

n i to 

i+n 

years 

of 

service 

Probab

ility of 

leaving 

the job 

betwee

n  

i to i+n 

years 

of 

service 

Average 

person 

years 

service by 

the cohort 

between i 

to i+n 

years 

Total 

person 

years 

service

d by 

the 

cohort 

from i 

years 

of 

service 

Expecte

d length 

of 

service 

in years 

left from 

the year 

of 

service 

Probabilit

y of a 

person 

will not 

face any 

attrition 

till ith 

year of 

service 

Hazard 

rate of 

leaving 

the job 

after a 

given 

CLS 

i-

(i+n) 

li ndi nqi nLi Ti ei
o G(i) h(i) 

0-1 143 8 0.0559 139.00 3685.5 25.78 0.9941 --- 

1-2 135 7 0.0519 131.50 3546.5 26.27 0.8951 0.0011 

2-3 128 5 0.0391 125.50 3415.0 26.68 0.8547 0.0008 

3-4 123 2 0.0163 121.00 3289.5 26.74 0.8407 0.0004 

4-8 119 2 0.0168 605.00 3168.5 26.63 0.8266 0.0004 

8-10 117 0 0.0000 236.00 2563.5 21.91 0.8266 0.0000 

10-15 117 1 0.0085 585.00 2327.5 19.89 0.8195 0.0019 

15-20 116 0 0.0000 582.50 1742.5 15.02 0.8195 0.0000 

20-30 116 116 1.0000 1160.00 1160.0 10.00 0.0000 0.0235 
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Table 6.4: Structure of a Life Table for all staff of the institution 
 
Exact 

No. of 

Years 

of 

Service 

No. of 

perso

ns 

with 

exact 

no. of 

compl

eted  

years 

of 

servic

e 

No. of 

persons 

leaving 

the job 

betwee

n i to 

i+n 

years 

of 

service 

Probab

ility of 

leaving 

the job 

betwee

n 

i to i+n 

years 

of 

service 

Average 

person 

years 

service by 

the cohort 

between i 

to i+n 

years 

Total 

person 

years 

service

d by 

the 

cohort 

from i 

years 

of 

service 

Expecte

d length 

of 

service 

in years 

left from 

the year 

of 

service 

Probabilit

y of a 

person 

will not 

face any 

attrition 

till ith 

year of 

service 

Hazard 

rate of 

leaving 

the job 

after a 

given 

CLS 

i-(i+n) li ndi nqi nLi Ti ei
o G(i) h(i) 

0-1 240 27 0.1125 226.50 4694.0 19.56 0.8875 --- 

1-2 213 24 0.1127 201.00 4467.5 20.97 0.7875 0.0024 

2-3 189 22 0.1164 178.00 4266.5 22.57 0.6958 0.0028 

3-4 167 10 0.0599 159.00 4088.5 24.48 0.6541 0.0018 

4-8 151 5 0.0331 795.00 3929.5 26.02 0.6325 0.0010 

8-10 146 3 0.0205 297.00 3134.5 21.47 0.6195 0.0006 

10-15 143 2 0.0140 722.50 2837.5 19.84 0.6108 0.0004 

15-20 141 1 0.0071 710.00 2115.0 15.00 0.6065 0.0002 

20-30 140 140 1.0000 1405.00 1405.0 10.04 0.0000 0.0317 

 

6.5 SURVIVAL AND HAZARD RATES 
 
We consider the survival rates of employees in the system as well as the hazard rates 

of leaving employment after completing a certain length of service in the job. 

Completed lengths of service are best described by duration models. Defining a 

duration model precisely requires a time origin, a time scale and a precision definition 
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of the event ending the duration. In a manpower system, different individuals will 

often have different time origins for the duration of their employment. In practice one 

would like individuals in the study to be as homogeneous as possible, after controlling 

for observable differences.   

 

Survival rates and hazard rates are useful for completed lengths of service analysis. 

Survival Rate )(iG  is defined as the probability that a person will not face any 

attrition till “ i ” years of service. For instance, the probability that a person with a 

Ph.D qualification will not leave the service till 5 years of service is    

 

[ ] [ ] [ ] [ ] [ ]43210 11111 qqqqq nnnnn −−−−− ; 

 

therefore from Table 6.1, G [4] = 0.0909. This measure shows that survival rate of 

highly qualified person within the institution is least as compared to those with 

Masters Degree and Honours. 

Survival ratios use the life table to calculate the proportion of persons surviving 

attrition between  i  and ni +    years of service. These ratios can be used to determine 

the percentage of persons in the systems at a particular point in time who can be 

expected to still be in the system at some point in the future. The survival ratio from 

Table 6.4, for the service length 4-8 years surviving attrition to the service length 8-10 

years is 

Survival ratio 374.0
795
297

48

810 ===
L
L

. 

Thus approximately 37.4 percent of the persons who were in the system after serving 

4 years will still be with the institution after 8 years. This institution clearly undergoes 

significant attrition as only a few recruits will be in the system after rendering their 8 

years of service. 

Similarly the Hazard Rate  )(ih  of leaving the job after ‘ i ’ years of service is the 

conditional probability of leaving the job in a unit time given that the person has not 

left the job till then.  The hazard rate [ ]10h in the case of staff of the institution overall   

is 
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[ ] [ ] [ ] [ ] [ ] [ ] [ ]{ } 0004.0111111/
52

]1[
10 843210

0 =−−−−−−
⎭
⎬
⎫

⎩
⎨
⎧ −

= qqqqqq
q

h nnnnnn
n . 

 

This result shows that the wastage rate of people having put some considerable years 

of service [10 years] is  [4 / 10000] per unit time (e.g. a week), which is almost, zero. 

These results confirm the results found in Silcock (1954). 

 

             

SURVIVAL CURVES OF THE STAFF OF AN EDUCATIONAL 
INSTITUTION
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Figure 6.1: Survival rates of persons with Ph.D, MPhil/MSc, P.G.(Hons)  and 
overall  staff 
                   

6.6 RESULTS 
 

Tables 6.1-6.4 give the length of service distribution of staff with PhD, Masters 

Degree, Honours and the overall staff of the Educational Institution respectively. 

Table 6.4 starts with the number of employees who completed i  years of service, il  

out of a given number employed. It is observed that 240 employees were recruited at 

the beginning of year 0 or at the inception of the institution. Out of the 240 staff, 27 
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left within the first year of service, leaving 213 who survived attrition. The in d  

column shows the number of employees who left work between i  and ni +  years of 

service. Since everyone must eventually leave the job, 30203020 −− = ld .  

 

The in q  column shows the probability of leaving between i  and ni + .  Since 

everyone leaves, 13020 =−q . The value of 0q  indicates that just over 11% of all 

recruits left before completing their first year of service. Out of the original cohort of 

240 recruits only 213 persons completed one year of service and hence 

0.1127x213=24 persons will leave before completing two years of service. The iT  

column shows the sum of in L values at and above i  years of service. Accordingly, the 

value of 2030T  is the same as 2030 L . 0T  is the sum of duration of service in years of all 

recruits at retirement. Thus, according to Table 6.4 the 240 recruits would have served 

4088.5 person-years after their fourth year of service. Over their length of service 

time, the 240 cohort of recruits serviced a total of 4694 total person years.  

 

It is common for the expected length of service remaining after attaining one year of 

service, 0
ie  to increase at the earliest period after assuming duty followed by a steady 

decline. This gives a hump kind of survival curve showing that recruits are at high risk 

of leaving the institution during their early years of service and later settle down when 

they feel their job is secure enough. This is confirmed by Column (3) in d , the number 

of people leaving the job in an institution between i  and ni +  years declines rapidly, 

but then starts to drop gradually for those who served between 4 and 20 years before 

reaching a peak probably due to the effect of retirement. 

 

Table 6.4 shows that at recruitment, employees are expected to work for 19.56 years. 

After one year of service, a person is expected to work for 20.97 years, because that 

person has already survived the risk of attrition during the first year of service. These 

figures are seen to differ from qualification to qualification.  For instance, for staff 

with a PhD qualification they are 2.79 and 2.65 years respectively while for Masters 

Degree holders the figures are 14.4 and 15.88 years respectively. This is a clear 
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indication that persons with higher qualification tend to easily find jobs elsewhere and 

are likely to be more mobile than other persons with lower qualifications. 0
0e which 

can be interpreted as the mean length of service at work is an important measure of 

the remaining years of service for an employee. Its usefulness lies in helping the 

management to plan for future staffing situations.  

 

From the tables we observe that iq , the probability of wastage is a decreasing 

function indicating that the propensity to leave falls away with increasing service and 

this is what is usually found (Silcock, 1954). On comparison we observe that 0
ie , the 

expected length of service left and iG , the survival rate are high while [ ]ih , the 

conditional probability of leaving after a given CLS is low.  This shows that persons 

with high qualifications pursue for better jobs as shown in figure 6.1. This graph of a 

survivorship function G(x) is continually decreasing. It is fairly rapid at the first few 

years of service when recruits are indecisive, and the rate of fall slows down over the 

middle of the lifespan where leaving is gradual. The curve then falls steeply at higher 

years where wastage for employees is again comparatively lower. 

 

We know that the annual rate of wastage is 
i

i
i l

d
q =  and  

i

i
i L

d
m =  is the central rate of 

wastage can be expressed as functions of il , the number of employees surviving 

attrition to age i out of a given number recruited.  These equations show that iq  can 

be expressed in terms of im  as     

i

i
i nm

nm
q

+
=

2
2

 

  where  n is the width of class interval. 

 

For example, from Table 6.4, q3 = 0.0599, we can calculate m3 to be 0.0618 which 

shows that the two rates are more or less the same in this case. Tables 6.5 and 6.6 

show the cumulative wastage rate and cumulative hazard rate of persons with various 

qualifications against their CLS respectively. 
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Since the risk of leaving increases with duration of service, figures 6.1-6.4 show that 

the wastage rate and hazard rate of persons with Ph.D. degrees are very rapid and 

steep in their increase whereas the other two categories are almost similar. This is 

partly due to the smaller numbers in PhD category in comparison.  We note that as the 

number of years of service increase, the curves become almost  straight lines and the 

overall graph always lies between the graphs of M.Phil/M.Sc. and P.G./Honours 

showing that the wastage rate of cohort is the average of the above two categories. 

The hazard and wastage rates increase steadily until after 7 or 8 years and then rises 

rapidly to a high of 0.07 in probability and to almost 2 persons for hazard and wastage 

rates respectively. 

                              

 
Table 6.5: Cumulative wastage rate of persons with different qualifications 
 
CLS Ph. D.                M.Phil. /MSc             P.G./Hons.          OVER ALL 

0 0.2727                   0.1563                       0.0559               0.1150 

1 0.6060                   0.3230                       0.0780               0.2252 

2 1.1060                   0.5230                       0.1469                0.3416 

3 1.7310                   0.6063                       0.1632                0.4015 

6 1.7310                   0.7031                       0.1800                0.4346 

9 2.7310                   0.7745                       0.1800                0.4551 

12.5 ----                         0.8130                       0.1885                0.4691 

17.5 ----                         0.8530                       0.1885                0.4762 

25 ----                         1.8530                       1.1885                1.4762 
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Table 6.6: Cumulative hazard rate of persons with different qualifications 

 
 

CLS 

 

   Ph. D.                M.Phil. /M.Sc                 P.G./Hons.       OVER ALL 

0 -----                           ----                                 ----                     ---- 

1        0.0088                       0.0038                        0.0011               0.0024 

2        0.0286                       0.0093                        0.0019               0.0052 

3        0.0782                       0.0121                        0.0023               0.0070 

6        0.0782                       0.0157                        0.0027               0.0080 

9        0.1086                       0.0186                        0.0027               0.0086 

12.5         ----                           0.0203                        0.0046                0.0090 

17.5         ----                           0.0221                         0.0046               0.0092 

25         ----                           0.0701                         0.0281               0.0409 

 

Note:  In the case of CLS [ nii +,  ]  the mid values of the intervals are taken. 
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Figure 6.2: Cumulative Wastage Rate of persons with PhD  
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Figure 6.3: Cumulative Wastage Rate of persons with MPhil/MSc, P.G. (Hons)  

and overall  staff. 
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Figure 6.4: Cumulative Hazard Rate for persons with Ph.D 
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Figure 6.5: Cumulative Hazard Rate for persons with MPhil/MSc, P.G. (Hons) 

and overall staff. 
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 6.7 CONCLUSION 
 

The outcome of the discussion shows that the wastage of people with higher 

qualification is more than for the people with minimum qualifications, which is not 

negligible. Wastage has a direct implication on the organisational/institutional 

environment. According to Geerlings and Verbraeck (2000), the influence of the 

environment, through the rise of technology, changing needs of persons, political and 

economic situations, legislation and any others are factors that further complicate the 

problem of wastage. Hence there is a need for management to transform their 

manpower needs on a continuous basis. The work has provided a frame work for 

management decisions. Perhaps the management could look into the contributory 

factors to wastage such as : 

 
• policy and benefits planning; 

•  academic programme planning; 

• deteriorating condition of service;  

• strength and clarity of the institutions mission as well as  

• the effectiveness of the recruitment and retention programs in order to shape 

their organisational/institutional environment. 

 

Management should not only be mindful of the outcome of the performance reward 

systems but also the process of how to implement those systems. 

 

A life table technique was used to analyse the length of service of an educational 

institution. It has been observed that academic staff with higher qualification tends to 

leave employment more easily than their counterparts. This is attributable to the fact 

that staff with PhD competes more easily for jobs perhaps due to their marketability 

or having the right skills required by the organizations /institutions. 
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CHAPTER 7 
 
 
  

STUDY OF THREE MODELS ON OPTIMAL 
PROMOTION IN A MANPOWER PLANNING 

SYSTEM 
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7.1 INTRODUCTION 
 

Any organizational structure is generally built on a graded manpower system in which 

a member of the organization can belong to only one of the several mutually exclusive 

grades. One of the main aspects of manpower planning is to decide on policies related 

to the promotion of staff members as promotion is one of the critical factors that can 

be controlled by the management. 

 

Having done fairly extensive research on managerial aspects, Young (1965) has given 

models of planning recruitment and providing promotion avenues for the members of 

the staff. Forbes (1970) studied promotion and recruitment policies for the control of 

quasi –stationary hierarchical system. Young and Vassiliou (1974) considered a non-

linear model on the promotion of staff while Vassiliou (1978) has discussed another 

non-linear Markovian model for promotion in a manpower system. Later Leeson 

(1982) came out with yet another model which introduces grade profiles and are in-

built mechanism pertaining to promotions that results in a significant reduction in 

wastage of human resources.  

 

In a subsequent investigation Leeson (1982) had shown that from computed wastage 

and promotion proportions it is possible to return to original principles of stationary 

probabilities and thereby compute the wastage and promotion intensities which 

produce the proportions corresponding to some desired planning proposals. Agrafiotis 

(1984) suggested a grade specific stochastic model which accounts for the effect on 

wastage of the internal structure and the promotion experience of its employees. 

 

Feuer and Schinnar (1984) carried out sensitivity analysis of promotion opportunities 

in graded organization, highlighting the links between personnel flows and vacancy 

flows. Leeson (1994) employed projection and promotion models for graded 

manpower system to consider recruitment policies and their effects on internal 

structures. Earlier Kalamatianou (1988) proposed a model in which promotion 

probabilities are functions of the seniority structure within the grades. The model 

suggests a method of overcoming the problem of promotion blockages. However, 
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despite the fact that the various methods discussed above are highly comprehensive, 

certain aspects of an optimum promotion policy have been left out. 

 

Time bound promotions are very common in organizations with employees in 

different grades. In order to avoid stagnation of personnel in a single grade such 

promotions are given to those who could not get elevated under competitive 

conditions. In this chapter, three models have been studied. In model 1, a continuous 

time manpower model is proposed in which an optimum promotion policy is 

discussed when the cost of promoting a person from grade  i ),....,2,1( ni =  at time 

t is a function of the number of persons in that grade. The solution is obtained with the 

help of Euler-Langrage equation. A deduction is also made considering the cost to be 

a constant, independent of the grade size. 

 

In the other two models, a manpower system with M-grades ),....,2,1( Mi =  is 

considered over a time interval ),0( iT  during which two types of promotions are 

contemplated from ith  grade to (i+1)th  grade. The first type of promotion is to 

promote an individual as and when the vacancies arise. The second type is called an 

automatic promotion which takes place at the end of ),0( iT   and all those who remain 

stagnant in grade i throughout the interval  ),0( iT  are automatically promoted to the 

next  (i+1)th   grade.  Vacancies which arise in the (i+1)th  grade give rise to promotion 

from the thi   grade. In model 2 the vacancy in the next higher grade is only one at any 

point in time, otherwise promotion is given only to a single person at every demand 

epoch. In model 3 it is assumed that at every instant a random number of persons can 

have promotions. The optimal value of iT  is arrived at for the general case and the 

results are derived assuming specific distributions for the number of vacancies that 

arise. Numerical results justify the results obtained in the models. 
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7.2 MODEL-1 
 

The following notation is used in the analysis of this model. 

 
7.2.1 Notation 
Let  

  )(tSi  :      Number of persons in grade i  at time t 

 )( iSF :       Rate of promotion of employees from grade )1( −i  to grade i . 

)(tPi   :    Rate of promotion of employees from grade i to grade )1( +i   at 

time t. 

)( iSC :     Cost of promoting a person from grade i  to grade )1( +i  when the 

size    of the grade i at time t is )(tSi  

 
7.2.2 Mathematical model 
 

From the relation between  )(tSi , )( iSF and )(tPi   we get the following equation 

 

)()( tPSF
dt

dS
ii

i −=     (7.2.1) 

 

ttPtS ii Δ)()(  denotes the number of persons promoted from grade i to grade  (i+1) 

during the interval ),( ttt Δ+ . Since )( iSC   is the cost of promoting a person from 

grade i to grade (i+1), the cost of promoting  ttPtS ii Δ)()(  persons in the interval 

),( ttt Δ+  is ttPtSSC iii Δ)()()( . Therefore, the total cost involved in this case is given 

by  

dttPtSSCC iii )()()(
0∫
∞

=  

  dttSSFtSSCC iiii ])()()[()(
0

′−= ∫
∞

       (7.2.2) 

 

where   
( )

dt
tdS

tS i
i =)('  
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We know that if   ,),,( dx
dx
dyyxfI

b

a
∫=  the problem of calculus of variations is to find 

that function )(xy  for which I is maximum or minimum. The answer is given by the 

solution of the Euler-Lagrange equation 

 

 .0' =∂
∂

−
∂
∂

y
f

dx
d

y
f      (7.2.3) 

Here  

[ ])()()()(),,( tSSFtSSCSStf iiiiii ′−=′  

and 

0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

ii S
f

dt
d

S
f  

gives 

.0)]()([

)()()()]()()][()()([(

=+

′+′−+′

tSSC
dt
d

SFtSSCtSSFSCtSSC

ii

iiiiiiii

                     (7.2.4) 

That is,  

 

,0))()()()(
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and so 
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Hence we get  

 

kSSFSC iii lnln)]()([ln +−=  

or   

  kSFSCtS iii =)()()(  (a constant) 

which can be determined from the initial conditions. 

Thus   

 

.
)()(

)(
ii

i SCtS
kSF =     (7.2.6) 

 

Further if *
iS is the value of  iS    when the cost is minimum then, 

.
)()(

)( **
*

ii
i SCtS

kSF =  

Therefore (7.2.1) gives 

 

)()(
)()( **

*

ii
ii SCtS

kSFtP ==  

 

which gives the promotion rate from grade i at time t. Thus the promotions rate from 

grade i  at time t depends on the optimum grade size at time t. Since the cost function 

)( *
iSC  is always an increasing function of )(tSi , we see that )(tPi  is  a decreasing 

function of )(tSi . 

 

If the initial grade size in any grade i is less than the optimum size )(* tSi , then the 

management may decide that it is better not to promote the employees from grade i  

till the grade size increases to *
iS . On the other hand if promotion is essential the 

recruitment to grade i can be made to make the grade size to be )(* tSi  and then 

promotion can be effected at a constant rate of
)()( **

ii SCtS
k . Hence the promotion on 
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seniority basis is preferred. If the initial grade size is already greater than *
iS  then 

promotion can be given at a faster rate which is permissible under the promotion 

policies of the organization or voluntary retirement scheme can be made attractive so 

that more persons opt for it, till the grade size decreases to )(* tSi . After that the 

constant promotion rate  
)()( **

ii SCtS
k    can be practiced. 

7.2.3 Special case 
 

When the cost of promotion at time t is taken to be independent of the time t and 

grade size )(* tSi , we have   

  cSC i =)(  

Then the equation (7.2.5) becomes 

 

)()()( iii ScFSFtcS −=′  

and so    

0)()()( =+′ iii SFSFtS  

 

0)]()([ =ii
i

SFtS
dS
d . 

This means   

 

1)()( kSFtS ii = (a constant). 

Therefore  

)()()(
)( 211

tcS
k

tcS
ck

tS
kSF

iii
i ===  

where  12 ckk = . 

 

Thus the optimum promotion rate is given by  

)(
)( *

2*

tcS
kSF
i

i =  
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7.3 MODEL-2 
 
7.3.1 Assumptions and notation 
 
(i) Each vacancy arising in the next higher grade, say (i+1) gives rise to a demand 

for a regular promotion from the ith grade at any instant. 

(ii) The demand for each instant is only one. 

(iii) All those who remain stagnant in grade i at the end of the interval  ),0( iT are 

automatically promoted to the grade (i+1).  

 

iN  :    The size of the ith grade  

K  :  Number of regular promotions during (0, Ti) which is a discrete random    

variable (each regular promotion is for one unit only). 

iC1  :    Cost of one regular promotion in the ith grade during ),0( iT . 

iC2  :    Cost of one automatic promotion in the ith grade at the end of ),0( iT . 

(.)F : Distribution function of the inter-arrival times between two regular   

promotions. 

[ ] ;)(:)( )(n
n tFtF  n-fold convolution of )(tF  

 

Now, the expected cost of regular promotions and automatic promotions for the ith 

grade in the interval ),0( iT  is given by 

 

[ ]

[ ]),0(.)(

),0(.)(

0
2

0
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k
ii
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k
iiT
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i
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∑

∑

=

=

−+

=
 

 

Using renewal theory 

[ ] [ ])()()()()(.)( 1
0

2
0

11 ikik

N

k
ii

N

k
ikikiT TFTFkNCTFTFkCCE

ii

i +
==

+ −−+−= ∑∑      (7.3.1) 
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To find the optimum iT  , we have  

[ ] 0)( =
IT

i

CE
dT
d         (7.3.2) 

[ ] [ ] 0)()()()()( 1
0

2
0

11 =−−+−⇒ +
==

+ ∑∑ ikik

N

k
ii

N

k
ikiki TfTfkNCTfTfkC

ii

 

 

where [ ] )()()( k
iik TfTf =  is the k-fold convolution of the density )( iTf  
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∑
=

+

+         (7.3.3) 

 

This is the general result for obtaining iT . For a set of given values of iii CandCN 21,  

and also the distribution of inter-arrival times, the optimal value of  iT  can be 

obtained by solving the equation (7.3.1). 

 

 
7.3.2 Special case (model -2) 
 
Inter-arrival times between regular promotions are assumed to be identically 

exponentially distributed with parameter λ.  

 

Hence  

i
i

i

T

i

N
i

iN e
N

T
Tf λλλ −

−

−
=

!)1(
)(

)(
1

. 

 

Then the equation (7.3.3)   becomes  
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when ii CC 21 = , we have from (7.3.3),  0)(1 =+ iN Tf
i

 

i.e.    

 0)(0
!

)(
=⇒= −

−
iI

ii
N

i
T

i

N
i

T

Te
N

Te
λλ

λλ λ
λ

 

 

,0≠λ  0)(0 ≠⇒≠ iN
ii TT λ  

 

∞=⇒=−
i

T Te i λλ 0  

In such a case we have the following: 

 

Case (i): λ is large and iT  is small so that ∞=iTλ . But it is impossible since   

),0( iT contains several intervals with parameter λ. 

Case (ii): λ  is small and iT   is very large. This is possible. 

Case (iii):  λ  and iT  are very large. This is also possible. 

 

We consider case (ii) namely λ   is finite and ∞=iT ; in this case nobody will be there 

for automatic promotions. 

 

If ii CC 12 > , no solution exists for iT . Numerical illustration is obtained 

when ii CC 21 > , assuming inter-arrival times between regular promotions as 

exponential, and for specific values of iN . 

Let us suppose that 100$,300$ 21 == ii CC . 

Then  

2
2

12 −=
−

i

ii

C
CC  
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For different values of iN , the equations are obtained and they are such that each has 

only one positive root. The positive roots have been obtained by using Horner’s 

method (See Table (7.3.1)) 

 

Table 7.3.1: Positive roots for different grade sizes 
 

iN  EQUATIONS 
iT̂  

2 023 =−iTλ  
λ3
2  

3 04)(2)(3 2 =−− ii TT λλ  
λ3
6.4  

4 012)(6)(2)(3 23 =−−− iii TTT λλλ  
λ
2.2  

5 048)(24)(8)(2)(3 234 =−−−− iiii TTTT λλλλ  
λ
1.3  

 

For specific value of λ, iT̂  corresponding to iN  can be obtained as above. The 

optimum iT  will be decided depending upon the value of iN  for any given λ (see 

Table 7.3.1). 

 

7.4 MODEL-3 
 

In this model it is assumed that a random number of persons can be given regular 

promotions, at each instant. So, at any epoch in which regular promotions are made, a 

random number of persons k can be promoted during ),0( iT .  In this case the expected 

cost of regular promotions in ),0( iT  and automatic promotions at the end of ),0( iT  is 

given by 

[ ]
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             (7.4.1) 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  SSeettllhhaarree,,  KK    ((22000077))  



 

 106 
 

where  

 Pj(k)=P[exactly k  regular promotions in j instants]. 

This is given by the coefficient of ks  in the expansion of  )(sjφ , where 

 r

r
r sps ∑

∞

=

=
1

)(φ , with  [ ]rXPpr == . 

X  is in the random number of persons given regular promotions at each instant. Here 

)()( sjφ  stands for the j-fold convolution of )(sφ . 

 

Therefore  

 [ ] jj ss )()()( φφ = . 

 

If the sX '  are independent and identically distributed random variables to obtain the 

optimum value of iT we have  

[ ] 0)( =
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The solution for iT  can be obtained from the above equation for general distributions. 

Solutions for assumptions of specific   distributions may be obtained with tedious 

computational work. 
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7.4.1 Special case 
 
When  300$100$,3 12 === iii CandCN , the numerator of the LHS of equation 

(7.4.2) becomes 

 

 

[ ]

[ ]

[ ] ).3()(3)3(3)3(3)2(2)(
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ii
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++

             (7.4.3) 

 

The denominator of LHS of (7.4.2) becomes 

 

[ ]{

[ ]

[ ] }.)3()()3()3()2()(
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        (7.4.4) 

 

Let the inter-arrival times between two regular promotions be independently and 

identically distributed exponential with parameter α. Let 05.0=α . 

 

We have  

  ( ) iT
k

i
ik e

k
T

Tf ααα −
−

−
=

!)1(
)( 1

, 

so that 

 
iT

i eTf 5.0
1 5.0)( −=   

iT
ii eTTf 5.0

2 25.0)( −=  

iT
ii eTTf 5.02

3 0625.0)( −=  

and  
iT

ii eTTf 5.03
4 0104.0)( −= . 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  SSeettllhhaarree,,  KK    ((22000077))  



 

 108 
 

 

Let us suppose that X  follows a Poisson distribution with parameter  λ and it is 

evidently truncated at 0=X . T he probability density function of truncated Poisson 

distribution is   
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[ ] === 1)1( 11 XPP  Coefficient of s1 in ψ(s) 

 

4307.0
1

5.1
1 5.1

5.1

=
−

=
−

= −

−

−

−

e
e

e
e

λ

λλ  
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[ ]3)3( 3213 =++= XXXPP
 

  0799.0= . 

 

Now, equation (7.4.3) gives  

 

  ]0025.00604.0889.07806.0[ 325.0
iii

T TTTe i −−−−  

 

and that of (7.4.4) is 

 

]0024.00702.03387.03728.1[ 325.0
iii

T TTTe i −−−− . 

 

Hence we get 

 

0934.2165.51910.00074.0 223 =−++ iii TTT . 

 

This equation has only one positive root and it lies between 2 and 3 and it is 7.2ˆ =iT . 

So, the optimal period of the cycle for the ith grade is found to be 7.2ˆ =iT  years. 

 

7.5 CONCLUSION 
 

In this chapter it is shown that the optimum promotion rate for any grade depends on 

the grade size though the cost of promotion may or may not be dependent on it.  

A number of extensions of this model are possible. A simulation model can be 

developed to study the effect of various optimum promotion policies on the system 

for different cost structures. The optimal cycle for giving the time bound promotion 

can be obtained for any specific grade, under given values of the parameter, costs and 

distributions. It is also possible to obtain a common optimal policy for all the grades 

put together.  
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CHAPTER 8  
 
 

OPTIMAL TIME FOR THE WITHDRAWAL OF 
THE VOLUNTARY RETIREMENT SCHEME, 
AND OPTIMAL TIME INTERVAL BETWEEN 

SCREENING TESTS FOR PROMOTIONS 
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8.1 INTRODUCTION 
 

In any organisation the required staff strength is maintained through new 

recruitments. The exit of personnel from an organisation is a common phenomenon, 

which is known as wastage. Many stochastic models dealing with wastage are found 

in Bartholomew and Forbes (1979). In production-oriented organisations wherever 

there is surplus staff strength a reduction becomes a necessity. The staff strength in 

the organisation depends on the market demand for the products. If the staff strength 

is more than the requested level, attempts are made for the exit of personnel on a 

voluntary basis tempting then with suitable financial packages.  

 

During a period of T years the voluntary retirement scheme is operated on k epochs. 

At each of these epochs a random number of employees opt to retire under the scheme 

and this in turn reduces the staff strength. If the total number of persons who retire 

crosses a level called the threshold level, the scheme is withdrawn. A salient feature 

of the investigation is to determine the optimal length of time (0,T) and this cycle 

length is obtained under some specific assumptions using the concept of cumulative 

damages process of the reliability theory. For a detailed description and analysis of 

shock models one can refer to Ramanarayan (1977) who analysed the system exposed 

to a cumulative damage process of shock. Sathiyamurthy (1980) discussed cumulative 

damage shock models correlating the inter-arrival times between shocks. Similarly, 

recruitment of persons based on their satisfactory performance in screening tests is a 

common procedure in vogue in many organisations. The use of compartmental 

models in manpower planning is quite common. For a detailed study of the 

compartmental models in manpower systems, one can refer to Agrafiotis (1991). 

 

Consider a system which has two compartments c1 and c2 . The size of c1 is fixed as n. 

Transition of persons from c1 to c2 is allowed and in between there is a screening test 

to evaluate the competence of individuals to get into c2. The compartment c2 may be 

thought of as one consisting of persons with greater skills, efficiency and 

administrative capabilities. The qualities are evaluated by the screening test. The 

persons in c1 are first recruited and kept in the reserve list. Assuming that they are 
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given some training to improve their capabilities, keeping these persons in c1 and 

training them involves a maintenance cost or reserve cost. Conducting the test but 

with no persons getting entry to c2 involves some cost namely screening test cost 

which is a total loss. In case no persons get selected and enter into c2, the vacancies in 

c2 remain unfilled and each such unfilled vacancy gives rise to some shortage cost in 

terms of loss productivity. To make good this loss, recruitment of persons from 

outside to compartment c2 is made on an emergency basis. The longer the time 

interval between the screening tests the greater will be the cost of maintenance of 

persons in c1 which in turn increases the cost of shortages in c2. Frequent screening 

tests results in higher test costs. With a view to minimize the above said costs, the 

optimal time interval namely T between successive screening tests is attempted here. 

The results have been applied on some special cases of distributions. 

 

The organisation of this chapter is as follows: In section 8.2,  model 1 is described. 

System description and notation is discussed in section 8.2.1. In section 8.2.2, the cost 

analysis of the model for which the optimal time for the withdrawal of the voluntary 

retirement is studied. Model 2 is a study of optimal time interval between screening 

tests for promotion in manpower planning. In section 8.3.1, the model assumptions 

and notation have been described. The cost analysis for this model is studied in 

section 8.3.2. Some special cases are studied in section 8.3.3. Numerical examples 

illustrated results in the last section. 

8.2 MODEL-1 
 

8.2.1 Notation 
 

k  :  Number of epochs in (0,T) at which voluntary retirement is permitted. 

iX : A discreet random variable representing the number of persons retiring at the 

ith epoch. 

:)(TVk P [there are k epochs during (0,T)] 

L : A discreet random variable denoting the number of persons in total who opt 

for retirement in k epochs. 

:)(kPL P [ L persons opt for retirement in k such epochs] 
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 Y  :  Threshold level 

VC : Cost of voluntary retirement per person at each of these epochs 

FC : Cost of failure of the scheme 

ƒ(⋅): pdf of inter-arrival times between epochs 
( )kf ƒ(⋅):  k-fold convolution 

F (⋅): Distribution function corresponding to  ƒ(⋅). 

)(TC : Total cost 

 

8.2.2 Cost analysis 
 

The total cost arising due to the  (i) the failure of the scheme with no persons retiring 

(ii) a random number of persons retiring but below the threshold level which renders 

the scheme a failure are put together as follows: 
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The main purpose of this chapter is to find the optimal value of T, which minimises 

the total cost )(TC . For a continuous variable t, we have, 
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Therefore 
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Any value of T which satisfies the equation (8.1) for a given set of values of the cost 

and other parameters like k and Y is the optimal value of T and T is unique since it 

gives the local minimum. The only criterion to choose optimum is based in the total 

cost. 

 

8.2.3 Special case 
 

When the threshold level of Y is taken to be random variable that follows geometric 

distribution with parameter θ , we have 

 

....,2,1)1()( 1 =−== − kkYP kθθ . 

 

For given L we have LL LYPorYLP θθ =>−=≥ )(1)( . 

Also 

 ( )LXXXPkP KL =++= ....)( 21  

 

and so 

 )()()()()( saykPLYPkP kL

kL
L

kL
L θψθ ==> ∑∑

≥≥

. 

 

Hence 

 )()()()()( saykPLLYPkPL kL
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L

kL
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≥≥

 

1)( −

≥
∑= L
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L kPL θθ  

[ ]′= )(θψθ k  
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Let us define 

k
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so that 
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k
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In view of the fact that L is  a random variable we have      
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From  (8.1) 
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Let X follow a Poisson distribution with parameter λ 
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The probability generating function of a Poisson distribution is 
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then,  
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Using these results we get from (8.2) 
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                           (8.3) 

8.3 MODEL 2 
 
8.3.1 Assumptions 
 

(i) There is a fixed size or strength of persons in compartment c1 

(ii) Transition from c1 to c2 is permitted on the basis of screening test 

(iii) Shortages are permitted in c2 

(iv) In every screening test a person has a constant probability p of getting selected 

and permitted to join c2 

(v) If k vacancies exist in c2, r out of k are selected from c1 with constant 

probability p and (k-r) are selected outside c1 with probability q and 1=+ qp  
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Notation 
 

n  :   Size of the compartment c1. 

LC : Cost of retention of each person c1 to c2. In other words the screening 

test results in the selection of nobody from c1. 

sC :  Cost of each unfilled vacancy in c2 per unit time. 

ƒ(⋅):  pdf of inter-arrival times of the screening test. 
( ) )(tF k : k-fold convolution of )(tF . 

F (⋅): Cumulative Distribution function of inter-arrival times of screening 

test. 

 
8.3.2 Cost analysis 
 

The total expected cost of retention in c1, cost of wastages in futile screening tests and 

cost of shortages in c2 is given by 
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Differentiating (8.4) w.r.t. t and equating to zero, we get 
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Special case (model 2) 
 

(i) Let  
teTf λλ −=)(  
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−− ∑∑ λλλ  

  

TqcTCCe shn
T λλ ++= −                                         (8.6) 

 

Differentiating (8.) w.r.t. T and equating to zero, we get 

 

T

n

S e
C
qCC λ

λ
λ −=

+2  

T satisfying the above equation is optimal. 

 

(ii) Let  )(Tf  be a two-stage Erlangian with parameter λ , then we get  

 

[ ]
λ

λ
λ

λ
λ qCCe

qeCTC Sh
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+
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−
− 2

2  

 

T satisfying the above equation is optimal. 

 

8.4 NUMERICAL ILLUSTRATION (MODEL 1) 
 
Let  

500$,5000$,5.0,1,5.0 ===== VF CCθλα . 

Then  
( ) 6065.05.01 == −−− ee θλ  
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Taking first approximation to  Te 1968.0−  

 

( )[ ]
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T
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0468.15612.00149.0 2 =−+⇒ TT  

 

Let  

468.15612.00149.0)( 2 −+= TTTf . 

Then  

0)3(,0)2( >< ff  

 

This implies that the optimum value of T lies between 2 and 3. 

By Newton’s method of approximation 45.2ˆ =T years.  Such similar results can be 
obtained for a given set of values FC,,, θαλ and VC . It would be interesting to 

investigate the variation in T̂  when one of the above parameters is allowed to vary 
keeping the other parameters and costs fixed. The variations in T̂ as suggested above 
are dealt with by representing them by graphs. 
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8.5 CASE (1) 
 

Let   

500$,5000$,5.0,1 ==== VF CCθλ .  

 

Fix all these parameters and allow α  to vary; α  is the exponential parameter and 

hence 0>α .  For various values of α we have the following: 

 
 
 
Table 8.1: Increasing Inter-arrival times (Model I) 
 

α equation ^
T  

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.5 

2.0 

0.0149T2+0.5612T-1.468=0 

0.0258T2+0.8082T-1.761=0 

0.0409T2+1.10004T-2.055=0 

0.0955T2+1.4368T-2.348=0 

0.11074T2+1.8193T-2.642=0 

0.11937T2+2.2447T-2.935=0 

0.2061T2+2.7163T-3.229=0 

0.2062T2+3.2932T-3.522=0 

0.2623T2+3.7944T-3.816=0 

0.4028T2+5.0506T-4402=0 

0.9548T2+9.5808T-5.87=0 

2.5 

2.0 

1.7 

1.5 

1.3 

1.2 

1.1 

1.0 

0.9 

0.8 

0.6 
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Figure 8.1: Model I                         
 

It may be observed that T̂  values decrease when the value of α  increases keeping 

other parameters and costs fixed. It shows that if the inter-arrival times between 

decision-making epochs are made shorter, it results in the optimal period becoming 

shorter because many decisions are made at shorter intervals thereby creating more 

vacancies. 

 

Case (ii) 

Let  

500$,5000$,5.0,5.0 ==== VF CCθα . 

 

Fix these values and allow λ  to vary since λ  is the Poisson parameter 0>λ , for 

various values of λ ,we have Table 8.2. 
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Table 8.2: increasing rate of leaving (Model I) 
 

λ equation ^
T  

1.0 

1.1 

1.2 

1.5 

2.0 

2.5 

3 

0.0149T2+0.5612T – 1.468=0 

0.01687T2+0.643T -1.566=0 

0.0185T2+0.0.7266T -1.656=0 

0.0234T2+0.9824T -1.889=0 

0.0291T2+1.3998T-2.161=0 

0.0319T2+1.8064T-2.318=0 

0.0325T2+2.1743T-2.384=0 

2.5 

2.3 

2.1 

1.8 

1.5 

1.3 

1.1 
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Figure 8.2: Model I 
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From Table 8.2, we infer that if λ  increases, the number of persons leaving on 

average at each decision epoch increases, which in turn compels the withdrawal of the 

scheme or closure of the policy at an earlier date. Hence T̂  decreases. 

 

Case (iii) 

Let  

500$,5000$,1,5.0 ==== VF CCλα . 

 

Allow to θ  vary. Sinceθ  is the parameter of the geometric distribution, )10( <<θ for 

various values ofθ , we have: 

 
 
Table 8.3: Model I 
 

θ equation ^
T  

0.1 

0.2 

0.3 

0.4 

0.5 

0. 

0.7 

0.8 

0.005T2+1.1198t-2.467=0 

0.0061T2+0.9845t-2.253=0 

0.0093T2+0.8458t-2.017=0 

0.0124T2+0.7021t-1.756=0 

0.0149T2+0.5612t-1.468=0 

0.0166T2+0.4215t-1.149=0 

0.0168T2+0.2833t-0.796=0 

0.0148T2+0.168t-0.406=0 

2.2 

2.3 

2.3 

2.4 

2.5 

2.5 

2.4 

2.1 
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Figure 8.3: Model I 
 

 

From Table 8.3 the value of T̂ increases initially with respect to θ  and then starts 

decreasing. For 5.0=θ and 6.0=θ , the value of T̂  is the maximum. Figure 8.3 

depicts the same. 

8.6 NUMERICAL ILLUSTRATION (MODEL2) 
 

The value of T which satisfies equation (8.6) is the optimal T and it can be obtained 

for specific values of hsn CandCCq ,,,λ . 

For example if we take 

 

500$,00020$,5000$5.0,3 ===== hns CCCqλ  

 

the optimal T=1.3483 units. 
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8.7 CONCLUSION (MODEL 1) 
 
It may be observed that the very essence of this result lies in the fact that the absence 

of voluntary retirement introduced will be withdrawn and will not be re-introduced 

again till the end of T̂ . In practical applications the estimates of the parameters 

,, αλ and θ  may be obtained by using appropriate methods of estimation on the 

basis of the past data available in the organisation.  

8.8 CONCLUSION (MODEL 2) 
 
It is inferred that the optimal value of T depends upon the parameters like λ and q  

and the costs involved such as sn CC , and hC . For every combination of these 

quantities, the optimal T can be obtained by solving the corresponding non-linear 

equation. It would be interesting to investigate the behaviour of T consequent to the 

changes in λ , keeping all other values fixed. It can also be seen by calculation that as 

q increases the optimal value of T increases. While considering the inter-arrival times 

between screening tests for different distributions it has been noted that the equation 

that provides the optimal T changes with every change. 
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