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Appendix

Experimental test rigs and measurement
instrumentation

A.1 Introduction

Two experimental test rigs where developed to determine the influence of fluctuating
load conditions on structural response measurements. Spur gears and helical gears were
considered in the test rigs. Different levels of gear damage were induced onto the gears of
the rigs in order to generate measurement data under different loading conditions, to

validate the signal processing procedures presented in chapters 2, 3 and 4.

A.2 Load control

The load on the gearbox test rigs were applied with a 5.5 kVA Mecc alte spa three-phase
alternator. An analogue controller was designed to manipulate the electromagnetic field
strength in the alternator in order to change the load, which was applied to the system.

Figure A.1 shows a schematic diagram of the loading system.

The Alternating Current generated by the alternator is rectified and dissipated over a
large resistive load, which is kept constant during tests. A single-phase voltage feedback
from the alternator is measured in order to give an indication of the current, which is
drawn from the alternator since the resistance was kept constant. The current drawn from
the alternator is related to the torque applied by the alternator onto the system. Hence, the

voltage feedback serves as an indication of the torque applied by the alternator.
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A reference or command torque signal is used as an input to the controller, which
manipulates the electromagnetic field strength in the alternator by switching the current
flow to the DC field coils of the alternator with a transistor in order to follow the
command signal. An external Direct Current (DC) power supply is utilised to provide the
power for the DC field coils of the alternator. The controller utilises Proportional Integral
(PI) compensation. Figure A.2 shows the load controller and DC rectification circuits.

The resistive bank and external DC power supply is shown in figure A.3.

Note that the amplitude of load fluctuation decreases as the loading frequency or rate of
load change increases due to the inertia and inductance in the system. The excitation
frequencies during experiments were therefore kept below 3 Hz in order to obtain

maximum load fluctuation amplitudes.

External DC power
supply 50 V

I

PI field voltage . .
— p g
controller Load input signal

I

Single-phase Synchronous machine
voltage feedback (Alternator) < Input shaft torque

;

AC to DC rectifier

;

Resistive load 1.5 kW

Figure A.1 Schematic diagram of the gearbox test rig loading system.
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AC rectifiers [ | Feedback voltage
and heat sink reduction

transformer

Current switching
. transistor and heat

Resistive sink

load circuit

breaker

PI load controller

" p—— ) N2

Resistive load elements

External DC
power supply

Figure A.3 Resistive load
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A.3 Measurement system and instrumentation

The measurements were taken with a Siglab model 20-42 signal analyser and a Pentium
200 MMX Personal Computer (PC) with 64MB of Random Access Memory (RAM)
shown in figure A.4. Four Analogue to Digital (A/D) channels where used to measure
the key phasor, gearbox casing vibration, shaft speed and electric motor current signals.
The virtual function generator was used to generate the load command signals for the

load controlling system on the test rigs.

Integrated Circuit Piezo (ICP) accelerometers with a signal conditioner unit was utilised
to measure the gearbox casing vibration. An accelerometer with higher sensitivity was
utilised for measurements on the helical gearbox test rig due to the low amplitude

response of the test gearbox casing vibration,

A magnetic speed sensor was user to measure the speed on the spur gear test rig. The
shaft encoder was introduced in the helical gear test rig in order to improve the accuracy
of the speed measurement from 50 pulses per revolution to 1024 pulses per revolution,

which enabled the use of the IAS as a diagnostic measurement.

A schematic diagram of the measurement and load control system is shown in figure A.5.
Table A.1 presents a table of the instrumentation with the specifications, which were used

during experimentation on the two test rigs.
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PC Intel Pentium
200 MMX 64 MB
RAM

I

DSP Siglab model
20-42 signal
analyser

fA
L A/D Channel 1

A/D Channel 2

A/D Channel 3

Figure A.4 Measurement system

Accelerometer ICP unit

DSP Siglab
analyser

D/A Channel 1 load control with VFG

ICP signal
conditioner model
482A22

ICP
accelerometer

v

Analogue low pass filter on the helical gear
test rig. Cut frequency 270 Hz

Key phasor signal.
One pulse per revolution.

Magnetic speed sensor for the spur
gear test rig and a shaft encoder for
the helical gear test rig.

A/D Channel 4

<

Magnetic flux current
transducer LEM model

LA 55-P

Figure A.5 Schematic diagram of the measurement and control system
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Table A.1 Instrumentation

Instrument Specification Test rig

Signal analyser DSP Siglab model 20-42

Personal Computer Intel Pentium 200 MMX Helical & spur gear test rig

ICP Signal conditioner | PCB model 482A22

Current transducer LEM model LA 55-P

Accelerometer 1 Entek 500 mV/g Spur gear test rig
model E326A02

Accelerometer 2 PCB 10 V/g Helical gear test rig
model U393B12

Magnetic speed sensor | Deuta-Werke model BM1/1A Spur gear test rig
M14x1x50mm

Shaft encoder Hengstler model R176T01 Helical gear test rig
1024ED 4A20KF

Low pass filter 8" Order Butterworth Helical gear test rig

A.4 Low pass filter

The gear wheel of the test gearbox in the helical gear test rig is the slowest rotating
component in the test rig with the lowest inertia which resulted in a relatively low gear
mesh frequency amplitude when compared to the overall vibration levels. The anti-
aliasing filter of the Siglab analyser has a constant cut off frequency of 20 kHz. An eighth
order analogue Butterworth filter with a cut off frequency at 270 Hz was therefore
designed and implemented as an analogue low pass filter. The high amplitude vibration in
the frequency range above 270 Hz was therefore filtered out and the digitisation range of

the gear mesh signal was improved.

The filter was designed with Microchip Filter Lab version 1.0.40. A frequency response
function of the filter is shown in figure A.6. The schematic diagram of the filter with the
component specifications is shown in figure A.7 and the physical hardware is shown in
figure A.8. Two 9 Volt batteries was used to power the operational amplifiers of the

active filter.
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Figure A.6 Eighth-order Butterworth filter frequency response function
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Figure A.8 Hardware implementation of the eighth-order Butterworth filter
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The Butterworth filter phase distorts the measured data according to the frequency
response function diagram shown in figure A.6. A reverse filtration scheme was
developed to rectify the unwanted effect of phase distortion once the signals had been
digitised. A random input filter signal was generated with the virtual function generator
of the DSP Siglab in order to obtain input-output data from the analogue Butterworth
filter, for the estimation of a system identification model. Measurements where taken
with the DSP Siglab. An Auto Regressive model with eXternal input (ARX) was fitted on
the data. A schematic diagram of the process is shown in figure A.9. The order of the
measured data is reversed and re-filtered through the ARX model to remove the phase
distortion. Once the data is re-filtered, the order of the data is reversed in order to restore
the original sequence of the data. Only the phase of the data is effected by the reverse

filtration procedure.

Random input signal 8™ Order analogue Filter
from the DSP Siglab , Butterworth filter ’ response
Input data for the Output data for
ARX model the ARX model

‘ I Digital ARX

model of the filter

Figure A.9 Phase correction digital filter diagram

A.S Spur gear test rig

The experimental set-up consisted of a single-stage gearbox, driven by a 5 hp Dodge
silicon controlled rectifier motor. Load was applied with the system described in section
A.2. The spur gear specifications are tabulated in Table A.2 and the test rig is illustrated

in figure A.10.
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Table A.2 Spur gear specifications.

Manufacturing standard DIN3961, Quality 3
Number of teeth on each gear | 69
Rated load 20 Nm

Accelerometer

Figure A.10 Experimental set-up of the spur gear test rig

Tyre couplings were fitted between the electrical machines and the gearbox so that the
backlash in the system would be restricted to the gears. The rotational speed of the
system was measured with a Deuta-Werke magnetic speed sensor, which was set on a
gear with 50 teeth as shown in figure A.11. The speed measurement gear was mounted on
the output shaft of the electric motor. The magnetic speed sensor was utilised since it
present a reliable and robust approach to speed measurement in practice. The average

shaft speed during experimentation was 13 Hz.
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Figure A.11 Gear teeth counter in the spur gear experimental set-up

A synchronising pulse was measured by means of a proximity switch on the key of the
shaft. Acceleration measurements were taken in the vertical direction with a 500 mV/g
ENTEK ICP industrial accelerometer and the DSP Siglab analyser. Vibration
measurements were taken for five different load conditions and three different levels of

damage severity in order to evaluate the signal-processing procedures.

Table A.3 lists the specifications for the loading conditions. A sinusoidal load was
selected to evaluate a slowly changing load condition, in contrast to the square load
condition that creates a rapid change in load. The chirp load condition refers to a
sinusoidal load condition where the frequency increases as time progresses. The chirp

load condition represents a wider frequency band of the applied load.

The initial vibration measurements were taken without any induced damage. Then face
wear was induced on one of the gear teeth by artificially removing material from the gear
face. In addition, a crack was induced on the opposite side of the gear. Table A.4 presents

the damage details and the induced damage is shown in figures A.12 and A.13.
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The fault severity conditions are expressed as the fraction of the root crack length over

the 4 mm tooth thickness.

Table A.3 Load case specifications

Load Case Load Function| Frequency Minimum Maximum
Load Load
1 Constant 0 Hz 14.4 Nm 14.4 Nm
2 Constant 0 Hz 15.9 Nm 15.9 Nm
3 Sine 0.5Hz 6.6 Nm 18.6 Nm
4 Square 0.5 Hz 6.8 Nm 20.1 Nm
5 Chirp 0.1-2 Hz 10.3 Nm 17.3 Nm
Table A.4 Induced damage specifications
Fault severity 25% | Fault severity 50%
Material removed from face 0.15 mm Nominally 0.3 mm Nominally
Crack length 1 mm 2 mm

Figure A.12 Sawed crack
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Flank wear obtained
through grinding

Figure A.13 Flank wear obtained through grinding

A.6 Helical gear test rig

The experimental set-up consisted of three Flender Himmel Motox helical gearboxes,
driven by a 5.5 kW three phase four-pole Weg squirrel cage electrical motor. Load was
applied with the system described in section A.2. Figures A.14 and A.15 illustrate the
test rig. The gearbox test rig was designed to conduct accelerated gear life tests on the
Flender E20A gearbox under varying load conditions. Two additional Flender E60A
gearboxes were incorporated into the design in order to increase the torque that is applied
to the small Flender E20A gearbox. The rated load of the gears in the Flender E20A

gearbox was 20 Nm.
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! Induction motor

Gea

E20A Test gearbox

Figure A.15 Experimental set-up of the helical gear test rig

A Hengstler R176T01 1024ED 4A20KF shaft encoder, which produces 1024 pulses per
revolution in the form of an analogue push-pull signal was used to measure the IAS for
order tracking and condition monitoring purposes. The reference point for the

synchronous averaging is measured as a single pulse from the shaft encoder.
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Acceleration was measured in the vertical direction on the gear casing with a 10 V/g PCB

ICP industrial accelerometer. The instrumentation is shown in figure A.16.

Accelerometer

Shaft encoder

’

Figure A.16 Accelerometer and shaft encoder mounting positions

Reinforced concrete was cast into the base of the test rig in order to increase the damping
levels in the supporting structure. This feature attenuated the response amplitude due to
the transmission of reaction forces from the various rotating components. Concrete was
cast into the supporting upright pillars in order to increase their stiffness as well as the
damping levels. The mounting plate of the test rig was bolted on to the concrete in order

to improve the damping effect. A base view of the test rig is shown in figure A.17.
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Figure A.17 Concrete reinforcing of the test bench

A variable speed frequency drive shown in figure A.18 was incorporated to control the
speed of the induction motor during start up since the initial start up torque produced by
the motor will damage the gearwheel in the test gearbox. The rotational speed of the

motor is increased from 0 to 25 Hz over a period of 30 s during start up.

Figure A.18 Variable frequency speed control drive

-135- Appendix



Appendix

The specifications for the loading conditions are tabulated in Table A.S. Flank wear was
progressively induced on to one of the gear teeth on the gear wheel of the gearbox during
experimentation. Details on the amount of wear are presented in Table A.6. The

gearwheel of the test gearbox is shown in figure A.19.

Table A.5 Load case specifications

Load Case | Load Function | Frequency | Minimum Load | Maximum Load
1 Constant 0Hz 10.7 Nm 10.7 Nm
2 Sine 1 Hz 7.4 Nm 14.7 Nm
3 Square 0.3 Hz 7.4 Nm 14.7 Nm
4 Chirp 0.1-2 Hz 7.4 Nm 14.7 Nm
5 Random 0.1-2 Hz 7.4 Nm 14.7 Nm

Table A.6 Induced damage specifications

Fault condition Fault severity
1 100 u m Tooth face removal
2 200 u m Tooth face removal
3 300 u m Tooth face removal

Figure A.19 Gearwheel of the E20A gearbox
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