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Abstract

In this thesis, we investigate the stochastic three dimensional Navier-Stokes-a model and the
stochastic three dimensional Leray-a model which arise in the modelling of turbulent flows of
fluids.

We prove the existence of probabilistic weak solutions for the stochastic three dimensional
Navier-Stokes-a model. Our model contains nonlinear forcing terms which do not satisfy the
Lipschitz conditions. We also discuss the uniqueness. The proof of the existence combines the
Galerkin approximation and the compactness method. We also study the asymptotic behavior
of weak solutions to the stochastic three dimensional Navier-Stokes-a model as « approaches
zero in the case of periodic box. Our result provides a new construction of the weak solutions
for the stochastic three dimensional Navier-Stokes equations as approximations by sequences of
solutions of the stochastic three dimensional Navier-Stokes-a model.

Finally, we prove the existence and uniqueness of strong solution to the stochastic three dimen-
sional Leray-a equations under appropriate conditions on the data. This is achieved by means
of the Galerkin approximation combines with the weak convergence methods. We also study
the asymptotic behavior of the strong solution as alpha goes to zero. We show that a sequence
of strong solution converges in appropriate topologies to weak solutions of the stochastic three
dimensional Navier-Stokes equations.

All the results in this thesis are new and extend works done by several leading experts in both

deterministic and stochastic models of fluid dynamics.
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the space of all continuous function on [0, 7] with values in X
the space of distributions on |0, 7| with values in X
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&

5

el

NIVERSITEIT VAN PRETO
MIVERSITY OF PRETO
UNIBESITHI YA PRETO

L1

E
B

Chapter 1

Introduction

1.1 The Navier-Stokes equations and turbulence

The flows of most commonly encountered fluids in nature and engineering applications are
turbulent. Their prediction remains one of the greatest challenge in applied sciences. The
mathematical theory of the Navier-Stokes equation is of fundamental importance to a deep un-
derstanding, prediction and control of turbulence in nature and in technological applications
such as weather prediction, the dynamic of atmosphere, ocean and in aviation.

The classical three dimensional Navier-Stokes equations describe the time evolution of an in-

compressible fluid and are given by
Opu(t) = vAu(t) — (u(t).V)u(t) + Vp(t) + f(t)

and

divu(t) =0

where u(t,z) = (ul(t,r),u?(t,z),u(t,z)) represents the velocity field, v is the viscosity con-
stant, p(t,z) denotes the pressure, and f is an external force field acting on the fluid.

It was stated in [36] that the Navier-Stokes equations capture the characteristic features of a
turbulent flow (the distribution of eddy sizes, shapes, speeds, vorticity, circulation, nonlinear
convection and viscous dissipation) and correctly predict how the cascade of turbulent kinetic
energy and vorticity accelerate. Nevertheless, even with knowledge of the mathematical model,

the problem of turbulence remains one of the last great unsolved problems of physics.

The existence of global in time regular solutions or the uniqueness of weak solutions are

classical examples of persisting open problems of mathematical analysis [30]. The Clay Mathe-
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matics Institute has called this one of the seven most important open problems in mathematics
and offers a US$ 1,000,000 prize for a solution or a counter-example.

From the numerical point of view, only direct numerical simulation at moderate Reynolds num-
bers are possible. The direct numerical simulation for many physical applications with high
Reynolds number flows is intractable even using state of the art numerical methods on the
most advanced supercomputer available (see [31],[64]). Over the last decades, researchers have
developed turbulence models as an attempt to solve this simulation barrier. The objective of
turbulence models is to capture certain statistical features of the physical phenomenon of tur-
bulence at computably low resolution by modelling the effect of the small scales in terms of the
large scales.

In this thesis, we are going to study two such models: the Navier-Stokes-a model and the

Leray-a model.

1.2 The Navier-Stokes-a model and the Leray-a model

1.2.1 Derivation and their relation to the turbulence

The study of the averaged motion of an incompressible fluid is motivated by the numerical
inability in resolving small spatial scales. There are two approaches to modelling the averaged
motion of an incompressible fluid. The first approach is the Reynolds averaging which suppose
that the velocity of the fluid is a random variable which can be represented by the Reynolds

decomposition

u(t,x) = U(t,z) +u'(t, ) (1.1)

where u/(t, ) denotes a random variable with mean value zero and U (¢, z) the average value of
the velocity. The derivation of the averaged Navier-Stokes model is obtained by substituting
the decomposition (1.1) into the Navier-Stokes equations and then averaging. This procedure

produces the Reynolds averaged Navier-Stokes equations which are given by
U + (UNV)U + Div v’ @ v/ = —gradP + vAU. (1.2)
The tensor v/ ® v/ is called the Reynolds stress which is given by
v @u = vg(t,r,Def U).Def U,
where vg is the eddy viscosity and Def U is the rate of deformation tensor defined as

Def U= % (VU + (vU)"].
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As a result of such an averaging, artificial viscosity is added into the system to remove energy
which is contained in the small scales at which u’ resides. Since it is still necessary to guess
the form of vg, an improvement to the procedure of modelling the averaged motion of a fluid is
needed.

The second approach to modelling the averaged motion of an incompressible fluid is the La-
grangien averaging. The Navier-Stokes-a model ( also known in the literature as the viscous
Camassa-Holm equations, or the Lagrangien averaged Navier-Stokes alpha model) is the first
turbulence closure model produced by Lagrangien averaging, from which it derives its name. The
inviscid Navier-Stokes-a (also called Euler-a) equations first appeared in [43] as a n-dimensional
generalization of the one dimensional Camassa-Holm equations. The one dimensional Camassa-
Holm equations describes shallow water with nonlinear dispersion and admits solitons solutions
called "peakons”[9]. Holm, Marsden and Ratiu in [43] used variational asymptotics to obtain the
Euler-a equations on all of R™, using an approximation of Hamilton’s principle for the Euler’s
equations. Dissipation was added to the Euler-a equations to produce the Navier- Stokes-a
equations. The extension of this approach to bounded domains was made in [55] by averaging
over the set of solutions u® of the Euler equations with initial data u§ in a phase- space ball of
radius a. This extension was improved in [4]. The derivation of the Euler-a in [4] consists of

expanding the original Lagrangian with respect to a perturbation parameter ¢ which is giving

by
1
:/ |u€|? da
2/p

where D is the space filled by the fluid, truncating the expansion to O(€?) terms and then tak-
ing average. The Euler-a equations is then derived by applying the Hamilton’s principle to the
averaged Lagrangian (See[4], for more details).

The study in ([15]-[17],[60], [38],[39],[18]) mentioned that there is a connection between the so-
lutions of the Navier-Stokes-a model and turbulence. It was proved that the explicit steady
analytical solutions of the Navier-Stokes-a model compare successfully with empirical and nu-
merical experimental data for a wide range of Reynolds numbers in turbulent channel and pipe
flows. The numerical study of the Navier-Stokes-a model in [60] shows that this model, indeed,
captures most of the large scale features of a turbulent flow.

Pioneering investigation of this model were undertaken at the Los Alamos National Laboratory
(USA).

Motivated by the remarkable performance of the Navier-Stokes-a model, the Leray-a model has

been studied in [21] [42],[38],[39]. It was mentioned in [21] that by using this model as a closure
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model in turbulent channels and pipes, one obtains the same reduced system of equations as
those produced by the Navier Stokes-a model, whose solutions give excellent agreement with
empirical data for a wide range of large Reynolds numbers. Therefore the Leray-a has similar
properties as the Navier-Stokes-aw model. Other approximate a-models (Clark-ov model, Mod-
ified Leray- «, Simplified Bardina-o model) for the three dimensional Navier-Stokes equations
also show good agreement with empirical data. The Leray-o model is given by the following

system of partial differential equations

v —vAv + (u.V)v = Vp+ f,

V.au=V.u=0,
(1.3)

v=u—o?Au,

u(x,0) = ug(z).

\

Formally, the above system is the Navier-Stokes equations system when a=0, that is u =
v. In order to study the question of existence of solutions to the Navier-Stokes equations,
Leray considered in his pioneering work [50] a general regularization form of the Navier-Stokes
equations in which the relationship between u and v in (1.3) is given by u = ¢, * v, where ¢,
is an arbitrary smoothing kernel and * denotes the convolution such that u converges to v, in
some sense, as « tends to zero. In the particular case of system (1.3), the kernel ¢, is noting
other than the Green’s function associated with the Helmholtz operator (I — a?A). For this

reason, system (1.3) is called the Leray-a model.

1.2.2 Previous analytical results: Deterministic and Stochastic.

In [34], the deterministic Cauchy problem for the three dimensional Navier-Stokes-a model
subject to periodic boundary conditions was studied. The global existence and uniqueness of
weak solutions were established, the regularity of weak solutions was proved and the global
attractor for this model was constructed. Moreover, upper bounds for the dimension of the
global attractor were found in terms of the relevant physical parameters. It has been also
proved that the solutions of the Navier-Stokes-a model converge to certain solutions of the three
dimensional Navier-Stokes equations as « approaches zero. These results were extended to the
case of Dirichlet-type boundary conditions in [25]. The authors of [25] used a sequence of classical
solutions in [54],to prove that this sequence converges in C([0,T]; H') to a H'-weak solution
of the Navier-Stokes-a model for all T > 0. They also proved the existence of a nonempty,

compact, convex, and connected global attractor. The authors of [20] study the connection
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between the long-time dynamics of the three dimensional Navier-Stokes-a model and the three
dimensional Navier-Stokes equations as « approaches zero. In particular, they showed that the
trajectory attractor of the Navier-Stokes-a model converges to the trajectory attractor of the
three dimensional Navier-Stokes system when « approaches zero. Similar results were proved in
[19],[75],[21] for the Leray-a model.

The mathematical literature for the stochastic Navier-Stokes equations is extensive and dates
back to early 1970’s with the work of Bensoussan and Temam [3]. It is well known that there
exists a probabilistic weak solution (also called martingale solution) for the stochastic three
dimensional Navier-Stokes equations (see [32],[57] just to cite a few). But uniqueness is open.
Brzezniak and Peszat in [8], Mikulevicius and Rozovskii in [58], obtained the existence and
uniqueness of a strong maximal local solution in VVp1 with p > 3. Recently, Glatt and Ziane [40],
Mikulevicius[59] have established the existence and uniqueness of local strong H'-solution. Here
the word ”strong” means ”strong” in the sense of the theory of stochastic differential equations;
that is a complete probability space and a Wiener process are given in advance. All these results
are global in two dimensions. Breckner [5] as well as Menaldi and Sritharan [56] established the
existence and uniqueness of strong global L2-solution for the two dimensional stochastic Navier-
Stokes equations. The proof in [56] used the local monotonicity of the nonlinearity to obtain
the solution.

The authors of [10] proved the existence and uniqueness of probabilistic strong solutions for
the three dimensional stochastic Navier-Stokes-a model under the Lipschitz assumptions on
the coefficients. The proof of the existence uses the Galerkin approximation and the weak
convergence methods. The asymptotic behavior for the three dimensional stochastic Navier-
Stokes-a model was proved in [11]. To the best of our knowledge, there is no systematic work

for the three dimensional stochastic Leray-a model.

1.3 Main Results and Organization of the thesis

The aim of this thesis is twofold. Firstly, we study the existence of probabilistic weak solutions
for the stochastic three dimensional Navier-Stokes-a model under continuity and linear growth
conditions on the coefficients, extending the result of Caraballo, Real and Taniguchi in [10].
We also discuss the uniqueness and study the asymptotic behavior of weak solutions as « ap-
proaches zero in the case of periodic boundary conditions. Secondly, we establish the existence

and uniqueness of the probabilistic strong solution for the three dimensional stochastic Leray-
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alpha model and study the asymptotic behavior of strong solution as « approaches zero.

The thesis contains five chapters (including the current one which deals with the introduction).
In Chapter 2, we prove the existence of probabilistic weak solutions for the stochastic three
dimensional Navier-Stokes-ax model under weak assumptions on the coeflicients. The proof is
different from the one used in [10]. The techniques used here are the construction of the Galerkin
approximation of the solutions, some a priori estimates which enable us to obtain some com-
pactness properties of the probability measures generated by these solutions. The uniqueness
result for the probabilistic weak solution is derived under strong assumptions. This uniqueness
together with the famous Yamada-Watanabe theorem enable us to derive the existence of path-
wise strong solution. This chapter has been the object of publication in Abstract and Applied
Analysis.

In Chapter 3, we deal with the asymptotic behavior of probabilistic weak solutions of the stochas-
tic three dimensional Navier-Stokes-a model as « approaches zero in the case of periodic bound-
ary conditions. We approximate the solutions of the stochastic three dimensional Navier-Stokes
equations by a sequence of weak solutions for the stochastic Navier-Stokes-a equations. For
this, we study the tightness of probability measures induced by the weak solutions of the three
dimensional Stochastic Navier-Stokes-a model. We prove that a sequence of solutions of the
Navier-Stokes-a model converge in suitable topologies to weak solutions for the three dimen-
sional stochastic Navier-Stokes equations. This provides us with another proof of existence of
weak solutions for the stochastic Navier-Stokes equations. This chapter has been accepted for
publication in Journal Mathematical Analysis and Applications.

Chapter 4 is devoted to the existence and uniqueness of a strong solution to the three dimen-
sional stochastic Leray-a equations. Moreover, we study the asymptotic behavior of the strong
solution as a goes to zero. We show that a sequence of strong solutions converges in appro-
priate topologies to weak solutions of the three dimensional stochastic Navier-Stokes equations.
For the proof of the existence, we use the Galerkin method. The techniques applied are the
properties of stopping times and some basic convergence principles from Functional Analysis.
Another result is that the Galerkin approximation converges in mean square to the solution of
the three dimensional stochastic Leray-a model. This chapter has been the object of publication
in Boundary Value Problems.

The final chapter of the thesis contains an appendix with useful properties from functional and
stochastic analysis. We included them for the convenience of the reader and because we often

make use of them.
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Chapter 2

On the Stochastic 3D
Navier-Stokes-a Model

2.1 Introduction

In this chapter, we are interested in the study of probabilistic weak solutions of the 3D Navier-
Stokes- o model (also known as the Lagrangien averaged Navier-Stokes-a model or the viscous
Camassa-Holm equations) with homogeneous Dirichlet boundary conditions in a bounded do-
main in the case in which random perturbations appear. To be more precise, let D be a connected
and bounded open subset of R? with C? boundary D, and let T > 0 be a final time. We denote

by A the Stokes operator and consider the system

Or(u — alu) + v(Au — aA(Au)) + (u.V)(u — alAu) — a(Vu)'. Au+ Vp
= F(t,u) + G(t,u)4, in D x (0,T),
Vau=0, inDx(0,T), (2.1)

u=0, Au=0, ondD x(0,7),

u(0) = up, in D,

where u = (u1,u2,us) and p are unknown random fields on D x (0, T'), representing respectively,
the large-scale velocity and the pressure, in each point of D x (0,7'). The constant v > 0
and a > 0 are given, and represent, respectively, the kinematic viscosity of the fluid, and the

square of the spatial scale at which fluid motion is filtered. The terms F(t,u) and G(t, u) dx/

10
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are external forces depending on u, where W is an R™-valued standard Wiener process. Finally
ug is a given non random velocity field.

The deterministic version of (2.1), i.e. when G = 0 has been the object of intense investi-
gations over the last years ([15]- [18], [33]). In view of many interesting futures, it was stated
in [51] that the numerical study in [60], shows that this model, captures most of the large scale
features of a turbulence flow, in particular those scales of motion larger than the length scale
a, while the scales of motion smaller than alpha follow a faster decay of energy when compared
with the energy of the Navier Stokes equations making it a more computable analytical large
eddy simulation model of turbulence. Many important analytical results have been obtained in
the deterministic case. In the case of periodic boundary conditions, Foias, Holm and Titi in [34]
proved the global well posedness of H'- weak solutions in dimension three. They also proved that
the solutions of the Navier-Stokes-a equations converge to certain solutions of the Navier-Stokes
equations as a approaches zero. Marsden and Shkoller in [54] proved the global well posedness
of classical solutions in dimension three in the case of non-slip boundary condition. The authors
of [25] proved the global in time existence, uniqueness and regularity of H!- weak solutions ,
extending the result of Foias, Holm and Titi to the case of non-slip boundary data. The proof
in [25] uses a sequence of classical solutions from [54] which is shown to converge to an H!-
weak solution of the Navier-Stokes-a equations. They also proved the existence of a nonempty
compact, convex and connected global H!'-attractor in both two and three dimensions.

However, in order to consider a more realistic model of the problem, it is sensible to in-
troduce some kind of noise in the equations. This may reflect, some environmental effects on
the phenomena, some external random forces, etc. To the best of our knowledge, the existence
and uniqueness of solutions of the problem (2.1) in the strong probabilistic sense has only been
analyzed in [10] (see also [11],[12] ) in the case of Lipschitz assumptions on F' and G. The case
of non Lipschitz assumptions on the coefficients F' and G, is the main concern of the present
chapter. This question has been opened till now. We merely assume continuity of F(.,u) and
G(.,u) in u and some linear growth. In this case, the appropriate notion of solution is that of
probabilistic weak solution also refered as martingale solution.

In this chapter, we shall establish the existence of probabilistic weak solutions for the prob-
lem (2.1) under appropriate conditions on the data. The approach used for the proof of our
existence results is different from the one in [10]. To prove the existence, we use the Galerkin ap-
proximation method employing special bases, combined with some deep compactness theorems

of probabilistic nature due to Prokhorov [65] and Skorokhod [68].
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The chapter is organized as follows. In Section 2.2, we establish some properties of nonlinear
term appearing in our equations. The rigorous statement of our problem as well as the main

results are included in Section 2.3 and we show how our problem can be reformulated as an

abstract stochastic model. Section 2.4 is devoted to the proof of our main results.

2.2 Properties of the nonlinear terms

Following [10], we establish some properties of the nonlinear term (u.V)(u—aAu)—a(Vu)?. Au
appearing in (2.1).

We denote by (.,.) and |.|, respectively, the scalar product and associated norm in (L?(D))3,
and by (Vu, Vv) the scalar product in ((L%(D))3)? of the gradients of u and v. We consider the
scalar product in (H}(D))? defined by

((u,v)) = (u,v) + a(Vu, Vv), u,v € (H}(D))?, (2.2)

where its associated norm ||.|| is, in fact, equivalent to the usual gradient norm. We denote by

H the closure in (L?(D))? of the set
V={ve(DD))>?:V.v=0 in D},

and by V the closure of V in (H}(D))3. Then H is a Hilbert space equipped with the inner
product of (L?(D))3, and V is a Hilbert subspace of (Hg(D))3.
Denote by A the Stokes operator, with domain D(A) = (H?(D))3 NV, defined by

Aw = =P (Aw), w € D(A),

where P is the projection operator from (L?(D))? onto H. Recall that as D is C?, | Aw| defines
in D(A) a norm which is equivalent to the (H?(D))? norm, i.e. there exists a constant ci(D),

depending only on the domain D, such that
lwllgzoye < (D)|Awl,  Vw e D(A), (2.3)
and so D(A) is a Hilbert space with respect to the scalar product
(v, w)pray = (Av, Aw).

For u € D(A) and v € (L?(D))3, we define (u.V)v as the element of (H~1(D))? given by

3
(w.V)v,wy_1 =Y (Qwj,uaw;)-1,  Yw € (Hy(D))? (2.4)
i,j=1
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where by (u,v)_1 we denote either the duality product between (H~1(D))? and (Hg(D))? or
between H~1(D) and H{ (D).
(2.4) is meaningful, since H2(D) C L*®(D), and H}(D) C L%(D), with continuous injections
since dim D =3. This implies that w;w; € H}(D), and there exists a constant co(D) > 0,

depending only on D, such that
[{(w.V)v,w)—1| < ea(D)|Aulfv][Jw],  ¥(u,v,w) € D(A) x (L*(D))’ x (Hg(D))*.  (2.5)

If v € (HY(D))3, then the definition above coincides with the definition of (u.V)v as the vector
function whose components are Zf’zl u;0;v5, for j = 1,2,3. However, as it not known whether
the solutions of the stochastic problem (2.1) have the same regularity as the deterministic case(we
only can ensure H? instead of H?), the present extension is necessary.

Now, if u € D(A), then (Vu)T € (HY(D))**? c (L5(D))?*3, and consequently, for v €
(L%(D))?, we have that (Vu)T. v € (L3(D))? ¢ (H~Y(D))3, with

3
(Vu)T. v,w)_1 = Z / (Oju;)viw; dx, for all we (H3(D))>.
ij=1"P

It follows that there exists a constant c3(D), depending only on D, such that

(V)T v, w)_1| < cs(D)|Aullv||lw|,  for all (u,v,w) € D(A) x (LA(D))® x (HA(D))>.
(2.6)

We have the following results
Proposition 1. For all (u,w) € D(A) x D(A) and all v € (L*(D))3, it follows that
(u.V)v,w)_1 = —((Vw)T. v,u)_;. (2.7)

Proof. If (u,w) € D(A) x D(A), then for each i,j = 1,2,3, we have u;w; € H}(D) and conse-

quently
<8¢vj,uiwj>,1 = —/ vj&-(uiwj) dzr
D
= —/ vjwj&-ui dz —/ vjuiaiwj dz
D D
using V. u = 0, we have (2.7). O

Consider now the trilinear form defined by

b* (u, v, w) =((u.V)v,w)_1 + (Vu)T v, w)_y,

(u,v,w) € D(A) x (L*(D))* x (Hy (D)),
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Proposition 2. The trilinear form b* satisfies
b*(u,v,w) = =b*(w,0,u),  V(u,v,w) € D(A) x (L*(D))* x D(A), (2.8)

and consequently,

b*(u,v,u) =0, Y(u,v) € D(A) x (L*(D))3. (2.9)

Moreover, there ezists a constant ¢(D) > 0, depending only on D, such that

0% (u, v, w)| < e(D)[Aulfo]||lwl],

V(u,v,w) € D(A) x (L*(D))? x (H}(D))?, (2.10)

0" (w, 0, w)| < e(D)|ul][v]| Aw|

V(u,v,w) € D(A) x (L*(D))? x D(A). (2.11)
Thus, in particular, b* is continuous on D(A) x (L*(D))3 x (H(D))3.

Proof. The proof is straightforward consequence of (2.5), (2.6), (2.7). See [10] O

2.3 Statement of the problem and the main result

We now introduce some probabilistic evolutions spaces.
Let (Q, F, {F;}o<t<T, P) be a filtered probability space and let X be a Banach space.

For r, ¢ > 1, we denote by
LP(Q, F, P;L7(0,T; X))

the space of functions u = u(z,t,w) with values in X defined on [0,7] x 2 and such that:

1) wu is measurable with respect to (¢,w) and for almost all ¢, u is F}; measurable,

B ([ hular)

where E denote the mathematical expectation with respect to the probability measure P .

2)

3=

P
P

|ullze (,7,P;L7(0.7:x)) = < 00,

The space LP(Q), F, P; L"(0,T; X)) so defined is a Banach space.
When r = oo , the norm in LP(Q, F, P; L*°(0,T; X)) is given by

hSAl

lull e, F,P;2o0 (0,1 %)) = (E ess sup HW?{)
0<t<T
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We make precise our assumptions on problem (2.1).

We start with the nonlinear functions F' and G. We assume that:

F:(0,T)xV — (H Y(D))?, measurable
a.e.t, u— F(t,u) : continuous from V to (H'(D))3

1E Wl (-1 (pye < CL(1 4 [ul]), (2.12)

G:(0,T)xV — ((LQ(D))?’)m, measurable
a.e.t, u+— G(t,u): continuous from V to ((LQ(D))?’)m

|G, u)l(z2 Dy < C2(1 + |lul]). (2.13)

The constants C'; and C9 are independent of ¢ and w.

We now define the concept of weak solution of the problem (2.1) namely

Definition 1. By a weak solution of problem (2.1), we shall mean a system (0, F,{Ft }o<t<7, P, W, w)
such that

1) (Q,F,P)is a probability space, ({Fi}, 0 <t <T)is a filtration,
2) W is an m-dimensional {F}standard Wiener process,

3) u(t) is Fy adapted for all t € [0, T
u € LP(Q,F,P; L*(0,T,D(A))) N LP(Q, F,P; L=(0,T,V)) foralll<p< oo,

4) For allt € [0,T], the following equation holds P- a.s.

(u(t), ®)) + v /0 (uls) + adu(s), AD)ds + /0 " (u(s), uls) — adu(s), ®) ds
= ((uo, ®)) + /Ot<F(s,u(s)), o) ds + (/OtG(s,u(S)) dW (s), <1>> (2.14)
for all ® € D(A).
Our main result is the following

Theorem 1. (Ezistence) We assume that the above condition on F and G hold and uy € V.
Then there exists a weak solution (2, F,{Fi}o<i<r,P,W,u) of problem (2.1) in the sense of
Definition 1.

Moreover u € LP(2, F,P;C([0,T];V)), and there exists p € L*(Q, Fy, P; H-1(0,t; H- (D)), for
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all t € [0,T], such that P — a.s.

O (u — alAu) + v(Au — aA(Au)) + (u.V)(u — aAu) — a(Vu)'. Au+ Vp

aw
dt’

/ pdr =0, in D(0,T),
D

= F(t,u) + G(t,u) in  (D'((0,T) x D))?,

(2.15)
where G(t,u)% denotes the time derivative of f(f G(s,u(s)) dWs, that is, by definition
dW ’ . / 2 3
G(t, u)ﬂ = 0 G(s,u(s))dWs ), in D'(0,T;(L“(D))°), P —a.s.
0

Corollary 1. (Uniqueness) We assume that F' and G are Lipschitz with respect to the second
variable, uy € V. Then there exist a unique weak solution of problem (2.1) in the sense of
Definition 1.

Moreover, two strong solutions on the same Brownian stochastic basis coincide a.s..

2.3.1  Abstract formulation of problem (2.1)

We are going to rewrite our model as an abstract problem.
We identify V with its topological dual V'’ and we have the Gelfand triple D(A) C V C D(A)'.
We denote by (.,.) the duality product between D(A)" and D(A). We define

(Au,v) = v(Au,v) + va(Au, Av), u,v € D(A).
It is clear that for all v € D(A),
2(Au,v) = 2v(Av,v) + 2va(Av, Av) > walAv)?,

and, if we denote by A\; and wg, k > 1, the eigenvalues and their corresponding eigenfunctions
associated to A, then

(Awy, v) = vAR((wg, v)).

Thus, taking

a = 2va,

we have:
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(a) A€ L(D(A),D(A)), such that

(al) A is self-adjoint
(a2)  there exists & > 0, such that

2(Av,v) > &HUH%(A) for all v e D(A).

Next, we define the operators B and F

(B(u,v),w) =b"(u,v — aAv,w), (u,v,w) € D(A)x D(A)x D(A),

(F(t,u),w)) = (F(t,u),w)_1, (u,w)eV xV.
Thus it is straightforward to check that if we take
7=+ a)a(D)e(D),
then we obtain that
(b) B: D(A) x D(A) — D(A) is a bilinear mapping such that

(b1) (B(u,v),u) =0 for all u,v € D(A),

(62)  |B(u,0)[lpeay < Vullllvlipeay, for all u,v € D(A) x D(A),

(83)  [(B(u,v),w)| < Allull payllollpeayllewll,  for all u,v,w € D(A).

The constants ¢; (D) and ¢(D) are from (2.3) and (2.10).

(¢) F:(0,T) x V — V, measurable such that

(c1) a.e.t, u F(t,u) : continuous from V to V

(c2) [IE(t w)] < Ca(L+ |ull)-

The constant C is from (2.12).
Now, let I denote the identity operator in H, and define é(t, u) as

G(t,u) = (I 4+ aA)~' o ProG(t,u), uevV.
I + aA is bijective from D(A) onto H, and

(I +aA)  f,w) = (f,w), for allfe HuwelV.

17

(2.16)

(2.17)

(2.18)
(2.19)

(2.20)

(2.21)

(2.22)



-

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 2. ON THE STOCHASTIC 3D NAVIER-STOKES-a« MODEL

Thus, for each f € H,
I +a )" PP = (f,u) < [Sfllul,

where u = (I + aA)71f;
that is (u, wy) + a(Au, wg) = (f,w), for all k > 1. And

(1 + adp)(u, wy) = (f, w).

This implies

1 1
S — <
(U,’U)k) (1+C¥A )(fawk) 1+ a) (fawk)7
o 1 o
2 _ 2 - _ 2
Therefore,
R P INLLE
And consequently, taking
o
V14 Ck)\l,

we see that G satisfies the following conditions:

(d) G:(0,T) x V — V™ measurable such that

(d1) a.et, u— G(t,u) : continuous from V to VE™

(d2) Gt w)llyen < C(1L+ |lul).

Next, for all (t,u, ®) € (0,T) x V x D(A), we have

(G(t,u),®) = (I + aA)G(t,u),®) = (G(t,u), P)).

Furthermore, for all u € L*(Q, F,P; L°°(0,T;V)), (t,®) € (0,T) x D(A), we have

([ ctsutnaws.e) = Z/Ot<Gj<s,u<s>>,<I>>de<s>

J=1

G (s, u(s), @)

I
\H\
~
7~

2
~—
~—

=
=
w
N~—

18

(2.23)

(2.24)

Consequently, we have the following version of the definition of a weak solution of problem (2.1)

in the abstract setting as
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Definition 2. (Q,F, {F:}o<i<r, P, W, u) is a probabilistic weak solution of problem (2.1) if it
satisfies properties 1), 2), 3) of Definition 1 and

4) For allt € [0,T], the following equation holds P- a.s.
t t
u(t)+ / Au(s) ds + / Blu(s), u(s)) ds
0 0

—up+ /0 F(s,u(s)) ds + /0 Gls,u(s)) dW (s), (2.25)

as equality in D(A)’.

Remark 1. The equation (2.25) implies that u € C(0,T; D(A)") then u is weakly continuous in
V' (see[72], p.263) and the initial condition is meaningful.

2.4 Proof of the main result

2.4.1 Proof of Theorem 1

We make use of the Galerkin approximation combined with the method of compactness.

We will split the proof into six steps.

Step 1 : Construction of an approximating sequence

As the injection D(A) — V is compact, we consider an orthonormal basis {e;};j—1,2,..in D(A)

which is orthogonal in V such that e; are eigenfunctions of the spectral problem

(ej,v)pray = Bj((ej,v)), forallve D(A)

where (.,.)p(4) denotes the scalar product in D(A). For each N € N, let Viy be the span of

{e1,...,en}.

We consider the following stochastic ordinary differential equations in Vi
AV, e5) + ((Au(1), e5) + (BN (1), u™ (1)), e5) ) (2.26)
= ((F(t,u™ (), e))) dt + (G(t,uM (1), ¢5) dW, j=1,2,..,N
u™(0) = ug’,

where uév € Vi and is chosen with the requirements that

u) — ug inVas N — oo, (2.27)
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By the result in [69], this system has a probabilistic weak solution (2, Fn, {F Yo<i<t, Pn, Wi,

We have the following Fourier expansion

N

N
uN(t) =Y (WM (1), ) payes = Zﬁj((uN(t),ej))eja (2.28)

=1

and

lu™ (@)]]* = Zﬁy (t), €))%

Step 2. A priori estimates

Throughout C and C;(i = 1, ...) denote positive constants independent of N and «. The same
symbol will be used for different constants.

We have

Lemma 1. v satisfies the following a priori estimates

T
Ey sup ]uN(s)Hz—i—Q&IEN/ [ (5)][3 4 ds < C1, (2.29)
0<t<T 0

where C1 is a constant independent of N and o. En is the mathematical expectation with respect
to the probability space (Qn, FN, Py).
Proof. By Ito’s formula, we obtain from (2.18) and (2.26) that
~ ~ N ~
dl[u™ ()7 + 2(AuN (2), uMN (1)) dt = [ 2((F (8w (1), ™ () + D N (Gt uM(1)),¢5))? | di

i=1

4 2((G(tuN (1), N (1) AW (2.30)
Integrating (2.30) with respect to t, and using (2.16) and (2.21), we have
t
lu™ ()2 + 23 /0 Ju ()34 s < I |+ C + C / ™ ()| dst

+ 2/0 ((G(s,u(s)),uN (s))) dWn (s). (2.31)

For each integer n > 1, consider the F}¥- stopping time A defined by

t
A =t fee DIL I OF + [ 0¥ @l ds > a2 AT

From (2.31), we have

t

tANY
sup [[u™ (s)]” +2&/ lu™ (s)IIB 4y ds < |luoll* +C +C sup [l (r)||* ds
S€[0,EANY] 0 0 ref0,sANY]

+2  sup /s((é(r,uN(r)),uN(r)))dWN(r) (2.32)

SE[0LAAN] VO

ulN).
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vVt € [0,7] and all N ;n > 1. Let us estimate the stochastic integral in this inequality. By

Burkholder-Davis Gundy’s inequality [45], we have

Ey sup
s€[0,6ANY]

AN
< CEy ( /0 (G (s, u™ (5)), u™ ()))? ds>

/0 (G, (s), u™ () AW (5)

N |=

tANY
< eExn  sup ||uN(s)||2+C'€IEN/ (1+ [ (s)]]2) ds. (2.33)
0

s€[0,6ANY]
Here we have used Holder's and Young’s inequalities; € is an arbitrary positive number.

Taking expectation in (2.32), and using (2.33), we obtain
N EANY N N
By swp [u¥ )+ 2By [ [ 6) s ds < ol + O+ 2By sup ()
SE[0,EAAN] 0 SE[0,tANN]

t
+C€/EN sup  |lu® (r)||2ds. (2.34)
0

re[0,sAAY]
Using (2.34) together with appropriate choice of €, we obtain

tANY t
Ey  sup HuN(s)H2+2&EN/ HuN(s)HzD(A)dSSHuoHQ—i-C—i-C/ Ex  sup  [[u ()2 ds.
SE[0,tANN] 0 0 re€0,sAAY]

Using Gronwall’s lemma and the fact that (AY),, is increasing to 7' when n goes to oo, it follows

that

T
By sup [u¥(s)[P+ 23Ex [ [ (5)fa ds < C1
0<t<T 0

where C7 is independent of N and «a.

The following result is related to the higher-integrability of u®.
Lemma 2. We have
Ex sup |[[u¥(s)||P < Cp for all1 <p < 0.
0<s<T
Proof. By Ité’s formula, it follows from (2.30) that for p > 4, we have
P p p_ ¥ = ~
dil™ @112 = 5 [u™ )] 2[— (AuM (1), u™ (1)) = 2B (™ (), u™ (1)), u™ (1)) + 2((F (8, u™ (1)), u™ (1))

LS (Gl (1), o2 o P A UGN (1), u™ (1))
+3 LG (), ) + F = S
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Using the assumptions (2.18),(2.21),(2.24), it follows that
t
sup [ ()% < luf ¥ + C /0 (1 + [ (5)]13) ds

— sup
2 0<s<t

1 ()12 72 (G (s, u™ (s)), u™ (s)) AWy |
A \

Squaring the both sides of this inequality and passing to mathematical expectation, we deduce

from the martingale inequality that

t
Ex sup [u (s)|” sc(nuéV Py [ ||uN(s>||Pds).
0<s<t 0

From the Gronwall’s inequality, we deduce that

Ex sup [u"(s)|” < G,
0<s<t
for all 1 <p < oco. O

We also have

Lemma 3. vV satisfies

T N 2 g Cp
B ([ %@ ds) <<

foralll <p < 0.

Proof. From (2.31), we have

&P </OT 1™ ()35 ds)p <G, (HU(J)V”% + 1+ </0T ||UN(3)||2d3>p>

t o, P
+C,p sup / ((Gls.u¥ (). u¥() ) awy| . (@235)
t€[0,7] 1J0
By Burkholder-Gundy’s inequality, we have
t o, P
Ex sup / ((G(S,UN(S)),UN(S)>> dWn(s)
t€[0,77 |/0
< C,EN </T ((é(s uN(s)) uN(s)))2 ds)g
>~ LUp 0 ) )
<G, (IEN sup HuN(s)Hzp> + CpT. (2.36)
te[0,7

Thus from (2.35) and Lemma 2, we have

T N 2 g Cp
B ([ @b ) <52
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Lemma 4. We have!

T
Ex sup / |u (t + 0) —uN(t)HQD(A), dt < @4—05
o0<lo|<s<1Jo a

Proof. We note that the functions {3;e;};—1,2,. form an orthonormal basis in the dual D(A)" of
D(A). Let PV be the orthogonal projection of D(A)’ onto the span {fiey, ..., Bxyen} that is

N
PNh = Zﬁj<h, 6j>6j.

j=1
Thus the equation (2.26) can be rewritten in an integral form as the equality between random

variables with values in D(A)’ as
ul (t) + /Ot PN (guN(s) + BN (s),uN(s)) — F(s, uN(s))) ds
= ul + /Ot PNG(s,uN(s)) dWy.

For any positive 6, we have

[u™ (¢ +8) — u™ (&) pay

o
G(s,u (s)) dWNH .
D(AY

t+0 . .
< ‘ /t (AuN(s) + B(uN(s), uN(S)) — F(s,uN(s))) ds

.

DAY t

Taking the square and use the properties of /T, B and 15, we have

[ (¢4 6) — uN (O)Bay < CO*+

t+6 N .
o ([ I @l as)

2 N t+6 N 2
L C sup [u(s)|? ( [l <s>||D<A)ds)
0<t<T ¢
2

o
+C0% sup |[u®(s)|]® + H/ G(s,u™ (s)) dWy
0<s<T t

For fixed 9, taking the supremum over 6§ < §, integrating with respect to ¢t and taking the

mathematical expectation, we have

t+6 Ny o 2
¥ )y ds)

2

T t+0
L CEy sup [[u¥(s)]? /0 ( / HuN(s)umA)ds) dat

0<s<T

T T
By sup [0 (e4+0) = 0By it < C8+ CEy [ ( /

0<0<6

2
dt. (2.37)

T t+0
+ C8%Eyn sup [[ul(s))? + EN/ sup G(s,u (s)) dWy
T 0

0<s< 0<0<6

t

Lu™ is extended by 0 outside [0,T)
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We estimate the integrals in this inequality.
We have by Holder's inequality
2

N ) T t+6 N
L—Ey sw V()] /0 ( [l <s>||D(A)ds) at
t

0<s<T

T
< PEy sup Ju¥ ()| / ™ ()10 ds

0<s<T

Using the Holder's inequality and the estimates of Lemmas 2, 3, we have

C5?
L < —.
e
By martingale inequality, we have
T t+6 2
I, = IEN/ sup G(s,u¥(s))dWy|| dt
0 0<6<é ||/t

<Ey /OT (/tw Hé(s,uN(s))n?ds) dt.

Using the assumptions on G and the estimate of Lemma 2, we have
I, < C6.

Collecting these results and proceeding similarly for the case § < 0, we obtain from (2.37) that

r N N 2 06
Ey sup / [ (¢4 6) — u (1) [B 0y < S0+ C
o<l6]<s Jo o

O]

The following compactness results is from [2] and represents a variation of the compactness
theorems in ([52] . Chap I, Section 5), and will be useful for us to prove the tightness property

of Galerkin’s solutions.
Proposition 3. For any sequences of positives real Vi, pty, which tend to 0 as m — oo, the

injection of?

1
1 T 2
Yo = Q¥ € L*(0, T3 D(A)) N L(0, T V)| sup —— sup (/0 IIy(t+«9)—y(t)ll%<Ay> <00

m Vm 0] <tm
in L?(0,T;V) is compact.

Proof. See Appendix, Proposition 6 with By = By = D(A) and By = V. O

2y is extended by 0 outside (0,T)
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Furthermore Y, ,, is a Banach space with the norm

T 2
Iyllo, . = ess sup ||y<t>u+( / uy<t>\|2p<A)dt) "
0<t<T 0

1 4 2 2
+ sup — sup (/0 ||y(t+0)—y(t)HD(A)/dt> .

n Un [0]<pn

Alongside with Y}, ,,, we also consider the space X, 1,(1 < p < o0) of random variables

y defined on some probability space (we denote the expectation on that space by E) such that

B B T ) 5 _ 1 T 5

Bess sup [0l <o ([ Iu0lbait) <ociBsut s [ ly(er0)-y(0ldi < .
0<t<T 0 n Vn |0|<pn J0O

Endowed with the norm

1 py 2
B P _ T 2\ P
[P <E ess sup Iy(t)llp> + <E (/ IIy(t)II%(A)dt> ) +
0<t<T 0

_ 1 T ) :
#Bsupo | sup [ e+ 0) ~ y(Olfbaydt

n Vn 10]<pn JO
Xppin,vm 15 a Banach space. The priori estimates of the preceding lemmas enable us to claim
oo /Hn

n=1 v,

that for any 1 < p < oo and for gy, v, such that the series ) converges, the sequence

of Galerkin’s solutions {u : N € N} is bounded in X, ;.. 1,

Step 3. Tightness property of Galerkin’s solutions

Now, we consider the set

S =C(0,T;R™) x L*(0,T;V),

and B(S) the o-algebra of the Borel sets of S.
For each N , let ¢ be the map

ON v — S w (Wy(w,.),u (w,.)).
For each N, we introduce a probability measure IIx on (S, B(S)) by
Iy (A) = Py(¢y'(4))
for all A € B(S). The main result of this subsection is

Theorem 2. : The family of probability measures{IIy; N € N} is tight in (S, B(S5)).



-

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 2. ON THE STOCHASTIC 3D NAVIER-STOKES-a« MODEL 26

Proof. For € > 0, we should find the compact subsets
Y. C C(0,T; R™),Y. C L*(0,T;V)

such that
(2.38)

Py(w:uN(w,.) ¢ Y.) < =. (2.39)

The quest for ¥, is made by taking account of some fact about the Wiener process such as the
formula

En|Wi(t2) = W (t1)|¥ = (25 = Dl(t2 —t1)),j = 1,2,

For a constant L. depending on ¢ to be chosen later and n € N, we consider the set

Y. ={W()eC, T;R™): sup n|W(te) — W(t1)| < L}
t1,62€[0,T] |tz —t1|< 75
Y. is relatively compact in C'(0,7; R™) by Arzsela- Ascoli’s Theorem. Furthermore Y. is closed
in C(0,T; R™). Therefore 3. is a compact subset of C(0,7; R™).

Making use of Markov’s inequality:

1 _
P(w: €w) > a) < —E|l¢w)]]
for a random variable ¢ defined on some probability space (Q, F, P) and positive real o and k, we
get

Pa(w: Wi(w,) ¢ %) <Py || {w: sup Wiy (t2) — Wy ()| > 22

n t1,t2€[0,T):[t2—t1|<Js

6

—1 4
<3 (”) Ex  sup  |[Wn(t) — Wy(iTn %))
= \Le Ty DT
= W6 SU="F

we choose

to get (2.38).

Next we choose Y; as a ball of radius M. inY,, ,, centered at zero and with u,,, v, independent



&

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 2. ON THE STOCHASTIC 3D NAVIER-STOKES-a« MODEL 27

of e, converging to zero and such that ) ‘I/j—’?" converges.
From Proposition 3, Yz is a compact subset of L2(0,7;V) .
We have further

1

£

C
Si
M

choosing M. = 2cs~ 1, we get (2.39).
From (2.38)and(2.39), we have

Py(w: Wy(w,.) € ZE;UN((U, JeY)>1—¢

and this proves that
IMy(XexY,)>1—¢ VN eN.

Step 4. Applications of Prokhorov and Skorokhod results

From the tightness property of {IIy} and Prokhorov’s theorem (see Appendix C), we have
that there exist a subsequence {Ily;} and a probability measure IT such that Ty, — IT weakly.
By Skorokhod’s theorem (see Appendix C), there exist a probability space (£,F,P) and
random variables (Wy,,u"7), (W,u) on (Q,F,P) with values in S such that

the law of (WNj,uNJ') is Iy,
and
the law of (W,u) is II
(WNj,uNj) — (W,u)in S, P —a.s.. (2.40)

Hence {Wy;} is a sequence of an m-dimensional standard Wiener process.
Let F! = o{W(s),u(s),0 < s <t} .
Arguing as in [1], we prove that W (t) is an m-dimensional F'-standard Wiener process and the

pair (WNj,uNJ') satisfies the equation

t _ t _
u®i (t) + 1// PNi AuMNi (s)ds —I—/ PYNiB(uNi(s),ui(s))ds =
0 0

t _ t _ _
/ PNiF(s,uNi(s))ds —I—/ PNiG (s, u™i (5))dWy; + uévj. (2.41)
0 0
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In fact to prove that W (t) is an m-dimensional F* standard Wiener process, it is sufficient to
prove that for A € R™, s <t and i? = —1

2
E [exp {iA.(W(t) — W (s))} |F?’] = exp — ’)\2|(t —s), (2.42)

where E denotes the mathematical expectation with respect to the probability space (2, F, P).
Let As (b(.), 2(.)) be any continuous bounded functional on S which depends only on the restric-
tion of b(.),z(.) on (0, s). To prove (2.42), it is sufficient to prove that:
. A

E [eap (i (W(2) — W(s)} Ay (W (), u())] = eap — 0 (6 = JEA, (W()u()). (24)

But
. , A2 _
E [eap {i. (Wi, (1) — W, (9))} A (Wi, (.0 ()] = eap — B (¢ = 5)EA, (Wi, (), u()

since As (W, (.),u™7(.)) is independent of Wy, (t) — Wi, (s) and Wi, is a Wiener process.
In view of (2.40) and the continuity of Ay, we can pass to the limit in this equality and get
(2.43).

Next, we need to prove that (uNj, WNJ.) satisfies the equation

t _ t _
i () + v / PN AN (5)ds + / PN B (s), u (s))ds
0 0

_ / " PN B (s, u™ (5))ds + / PG (s, ()W, + (2.44)
0 0
We set
t ~ ~
En(t) = uN(t) + /0 PN [AUN(SHB(UN(S),UN(S))} ds
—UN— N t~SUNS S t~SUNS S
§ P [ F o) st [ G (s awnio)
and

T
Xov = [ e ay ds.
Obviously almost surely Xy = 0; hence in particular

XN
E _
Nl—I-XN

since Xy > 0 and
XN
1+XN

En <EnXn.
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Let
t ~ ~
Ex () = ui (1) + / PN [ B () + B (u (), ui(5))] ds
0

t b
=P | [F (s @) dst [ (s (e) i (o
and
r 2
Yy, :/o 1EN; () ay ds-

Our claims will be proved if we can show that

Ny, (2.45)
1+ YNj

An obstacle in the realisation of this goal is the fact that X is not a deterministic functional
of ¥ and W in view of the presence of the stochastic integral in X .

In order to circumvent that we introduce a regularization of Gint given by

~ 1/ t—s
G (u)(t) = - [ exp |- G (s,u(s)) ds.
0
We have the following properties of Ge:
T T
E/O IGE () (B[} < E/O Gt u(t)[[Fem dt (2.46)
and
GE(u)(.) — G(,u()) in L*(Q,F,P;L*(0,T;V®™) as &— 0. (2.47)

We denote by Xy and Yy, - the analog of Xy and Yy, with G replaced by Ge.
Introduce the mapping
dy.:C0,T;R™) x L*(0,T;V) - R
given by
_ XN,E
1+ XN,E '
Owing to the definition of Xy, @y is bounded and continuous on C(0,T; R™) x L*(0,T; V).

(I)N,6<WN§ UN)

Let similarly
_ YN]‘ ,€
1 + YN] ,€ '

We have, using the conclusion of Prokhorov’s theorem

Py e (WNj ) uNj)

Yy - N
ET}]/N]E =Edn; o (Wh;,u'™) _/S‘I)Nj,a(waaf) dIly;

=EN, Py, e (WNj ) “Nj)

XNj,a

=Ey ———. 2.48
N; 1 +XNj,a ( )
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But
E YNj - ]EN XN]‘ _ ( YN]‘ - YNj@ ) YN]‘,E o N XNj@
1—|—YN]. Jl—i—XNj 1—|—YNj 1+YN]-,5 1+YNJ-,€ ]1+XN].75
XN e XN,
+ Epn, 1 — J . 2.49
NJ<1+XNj,5 1+XNj> (2.49)
Moreover
E YNj . YN]',E o YNj - Nj,E
1+YNj 1+YNj75 (1+YNj)(1+YNj,5)
S E ‘YN] - YNJ‘,E}
1
T _ 2
<c <E |10 - G Ol o dt) (2.50)
0

and, similarly

1
XNj e XN 2

J

Ni 1—|—XN].75 B 1+XNj

T~ ~
E <0 (Bx, [ 1660 - GOl on i)

Combining these relations with (2.47)-(2.48) and letting € — 0, it follows from (2.49) that

Yn. Xn.
E—N —gy N
1+YNj ]1+XNJ-

This proves (2.45) and hence (2.44).

Step 5. Passage to the limit
From (2.41), it follows that Vi satisfies the results of the Lemmas 2, 3, 4. Therefore we have

for p > 1 the a priori estimates

T P T
E sup [[u™DP<C;E (/ HuNJ'(t)H%(A)dt> < C; E sup / (7R (t—i—ﬁ)—uNjH%(A)/dt < C(a)d
0<t<T 0 0<0<5.Jo
(2.51)

thus modulo the extraction of a subsequence denoted again by u”7 | we have
uMNi — w weakly x in LP(Q, F, P; L°°(0,T;V))
uNi — u weakly in LP(Q, F, P; L*(0,T; D(A)))
T P
B sup [’ <€ B( [ luolba) <

0<t<T

T 9 Ccé
E sup [u(t +6) = u(®)Ipaydt < —.
0<6<6 J0 «Q
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Combining (2.40) with the first estimate in (2.51) and Vitali’s theorem, we have
u™i — w strongly in L*(Q, F, P; L*(0,T,V)) (2.52)

and thus modulo the extraction of a subsequence and for almost every (w,t) with respect to the

measure dP ® dt:

N;

U — uwin V.

This convergence together with the condition on ﬁ, the first estimate in (2.51) and Vitali’s

theorem, give
F(,uMi()) = F(.,u()) strongly in L*(Q, F, P; L*(0,T,V))

t t
/ F(s,u™i®))ds — / F(s,u(s))ds strongly in L*(Q,F, P; L*(0,T,V))
0 0

u™Ni = w weakly in L*(Q, F, P; L?(0,T; D(A)))

then
t t
/AuNj(s)ds — /Au(s)ds weakly in L*(Q, F, P; L*(0,T; D(A)'))
0 0

We also have
t t
/ B(u™i(s),u™i(s))ds — / B(u(s),u(s))ds weakly in L*(Q,F,P;L*(0,T;D(A)))
0 0

In fact since L®(Qx (0, T), dPxdt; D(A)) is dense in L2(2, F, P; L2(0,T; D(A))), and B(u®i (s), uMi(s))
is bounded in L?(Q, F, P; L?(0,T; D(A)")), it suffices to prove that Vo € L>®(Q x (0,T),dP x
dt; D(A))

T _ T
E/ (B(ui(s),u™(5)), 9(s)) p(ay ds —>E/ (B(u(s), u(s)), ¢(s)) p(ayds.
0 0

Indeed, we have

T ~
B[ B (5). 0 (5) = Bu(s), u(s). 9(s)) piads =
T _ T .
B [ (B (s)-u(s), ™ (5), 99 eaydstE | (Bluls),u (s)-u(s)), (5)) piads = Iy L.
0 0
T ~
By =B [ (B(s) = u(s), ™ (5), 9()) payds
0
By the property (2.19) of B, we have

T
I, < CE /O 1™ (5) — u(s) |16™ ()| pay | Ao (s) | ds.
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Applying Cauchy-Schwarz’s inequality, we get
T 3 T
hy <o (B [ 100~ u(o)Pas) (& [ 16 ds)
0 0

uNi — u strongly in L*(Q, F, P; L*(0,T;V))

N

Since

and ui is bounded in L?(Q, F, P; L?(0,T; D(A))), we conclude that
Iij — 0asj — oo.
T N,
By =E [ (Bu(s).u™ — (), (9 piayds
Again thanks to the property (2.20) of B, as
uNi = w weakly in L*(Q,F,P;L*(0,T; D(A)))

we obtain I; — 0 as j — oo since any strongly continuous linear operator is weakly

continuous. We are now left with the proof of
/ G(s,u™ 5))dWn, (s —>/ G(s,u(s))dW (s) weakly L*(Q, F,P;V).

We consider for that purpose the already introduced regularisation

GF (u)(t) = i/o emp(—tj)é(s,u(s))ds

which satisfies (2.46)-(2.47). Also for N; fixed
GE(WN) () = G () in L*Q,F,P;L*0,T;VE™)) (2.53)
as ¢ — 0. From the definition of G¢ , we have
/ G () (5) = G () () o dis
< /0 1G@™)(s) = Gu)(5)[Zom ds
= [ 166 () = Gl o s (2:54)
Next by integration by parts, we have

T
/GE dWN( iWN].(T)/O é(t,uNj(t))e_%d

t
- % /OT W, (1). (é(t,uNa' () é /Oté(s,uNj(s))e_tss ds) n
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In view of (2.40), passing to the limit as j — oo in (2.55), we get

/GE dWN()—>W /Gtu()) ~I

_1/DT W (é(t’u(t)) - 1/Oté(s,u(s))e_tes ds> dt (2.56)

9 9

for almost all (w,t). The right hand side of (2.56) is equal to fg G= (u)(s) AW (s).
Thus

/ G (u™) () AW, (5) — / GE (u) () AW (s) (2.57)

for almost every (w,t) as j — oo for fixed e.

Picking any element ¢ € L?(Q2, F, P; V), we have

<<g, / G (u™)(s) AWy, (s )>> _E <<g /0 G (u)(s) dW(s)>> (2.58)

as j — oo, for fixed e. This follows from (2.57) and Vitali’s theorem.

In the other hand, we have

s) AW, (s

<IE/ 1G ™) (8)|Prom ds < C,

thus there exists n € LQ(Q,}“, P; V) such that for all h € L2(Q, F, P; V)

([ G am,())) — Eh).
_ /0 "B ) () AW (s).

<< / G (uM7)(s) dWy, (s)>> E((h, /Ot G(u)(s) dW(s)>)

=L+ D+ (2.59)

We show that

We have

where

n=e((n[ (éw)( ) - G W) dWN](s)))
<< /GE 5) W, (s /GE )))
n=e((n[ (éff(m(s)—G( )(s)) aw(s >)>
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By Cauchy-Schwarz’s inequality and (2.54), we have
1
2\3 TE N, ~ 2 ’
h<C @I (B [ 1666 - Gl o ds)

) T _ B 3
+C(E[RP)? (E [ [IG)(s) — G(u)(s)|[}om ds
0

1 T ~ ~
+C (E[|R]*)? <E/O IG=(w)(s) = G(w)(5)[IFrem dS) : (2.60)

Letting j — oo and € — 0, and using (2.47) and (2.53), we have I; — 0.
I, converges to zero by (2.58)
I35 converges to zero by Cauchy- Schwarz’s inequality and (2.47).

Collecting all the convergence results, we deduce that:
t t
u(t) + V/ Au(s)ds +/ B(u(s),u(s))ds
0 0
t t
= / F(s,u(s))ds + / G(s,u(s))dW (s) +ug, P —a.s. (2.61)
0 0

as equality in D(A)’.

We have B(u,u) € L2(Q, F, P; L>=(0,T; D(A))), Au—F(t,u) € L2(Q, F, P; L>(0,T; D(A)")),
G(t,u) € L2(Q, F, P; L>(0,T; VE™)).

Thus, from the classical results in [47] ( see also [61] ), we deduce from (2.61) that u is P — a.s.

continuous with values in V.

Step 6. Existence of the pressure

Here, the proof follows the same line as in [10]. For the existence of the pressure, we use
a generalization of the Rham’s Theorem processes (see [49],Theorem 4.1,Remark 4.3). From

(2.14), we have for all v € V,

aw
(=0 (u—alAu)—v(Au—aA(Au))—(u.V) (u—aAu)+a(Vu) L. Aut+F(.,u)+G(., U)H’ V) (D(D))3 x(D(D))? = 0-

We denote

aw

h = —0;(u — aAu) — v(Au — aA(Au)) — (u.V)(u — aAu) + a(Vu)'. Au+ F(.,u) + G(., U)W

We are going to prove that the regularity on u, implies that

he L*(Q,F, P; H1(0,t; (H2(D))%).
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By (2.5) and (2.6), we have as u € L*(Q, F, P; L*(0,T; D(A))),
(w.V(u — alAu)) + (Vu)T. Au e L*(Q, Fi, P; L1 (0,t; (H~1(D))?)),

Au — aA(Au) € LY(Q, F, P; L2(0,t; (H2(D))?)).
We also have
u — aAu € LYQ, F, P; L*(0,t; (L*(D))?))
and
Or(u — alAu) € L*(Q, F, P; H1(0,t; (L*(D))?) ¥V te[0,T).

Again, as u € L*(Q, F, P; C([0,T];V)), then it follows that

F(t,u) € LY, F, P; L*(0,t; (H'(D))?))

Gt BV € L, PoW (0,1 (L(D))))

for all t € [0,T].
Then h € L2(Q, Fy, P; H(0,¢; (H2(D))?), and

<h7v>('D’(D))3><('D(D))3 =0 for all veV.

Therefore, by a generalization of the Rham’s Theorem processes [49], there exists a

p e L*Q,F, P;H1(0,t;(H Y(D))3) such that P — a.s.

Vp=h and /ﬁd:z‘:O.
D

This establishes (2.15) and completes the proof of Theorem 1.

2.4.2 Proof of Corollary 1

35

Proof. We going to prove the pathwise uniqueness which implies uniqueness of weak solutions.

Let Lr and Lg be two real such that
[1F(tu) = Ft o)l (a-1(py < Lrllu—vl,

1G(t,u) = G(t, )l (2 D))y < Lallu —vl|.

Then F and G defined respectively by (2.17) and (2.22) satisfy

(¢, u) = F(t0)|lv < Lillu =],
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IG(t,u) = Gt uw)llven < Lllu =]

Let uq and ug two weak solutions of problem (2.1) defined on the same probability space together
with the same Wiener process and starting from the same initial value wug.
We denote @ = u; — ug. Take p > 0 to be defined later and p(t) = exp ( ,ufo [lua(s) HD ds)
0<t<T.
Applying Ito’s formula to the real process p(t)||@(t)||?, we obtain from (2.16), (2.20), (2.21), (2.24)
that,
t t
PO+ [ o)l ogay ds < 12 [ pls) o] ds
t
+25/0 p(s)lluz(s) | peaylla(s)l peayllu(s)l ds
t
21 [ o)) oy )] ds

2 f (5} Gl (9) = Gl n(s)). 1(5)) ) W ()

— / / ) lus ()3 la(s)|2 s (2.62)

for all ¢ € [0,T].

By Young’s inequality, we have

_ _ ~ a, 2¢2 -
2¢c||uz(s) | peaylla(s) | peayllu(s)]| < g\lu(s)ll%m) + glluz(s)ll%m)||u(s)||2

and )
_ _ a, 2L
2L 005 by ()| < 5 () 3 + —=Lla(s)]1

If we take pu = 2%, we obtain from (2.62)

2

2L t t . - ~
pOla(t)|? < (Lz+—=E) /0 p(s)l|u(s)|? ds+2 /0 ((p()(@ls,ur(9)) = Gls, us(s)), ls)) ) ) aW.
(2.63)

As 0 < p(t) <1, the expectation of the stochastic integral in (2.63) vanishes and

212

t
Ep(t)a(t)* < (L% + aF)E/ p(s)|[u(s)||* ds.
0

The Gronwall’s lemma implies that @(t) = 0 , P-a.s for all ¢ € [0,7]. And the corollary is

proved. ]

Remark 2. Using the famous Yamada-Watanabe theorem [44] , Corollary 1 implies the exis-

tence of a unique strong solution of problem (2.1).
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Chapter 3

The Stochastic 3D Navier-Stokes-«o

model: o tends to O

3.1 Introduction

The Navier-Stokes-a model are system of partial differential equations designed to capture the
large scale dynamics of the incompressible Navier-Stokes equations. This model was developed
in an effort to provide an efficient numerical simulation of the 3D turbulence and was used as
a closure model for the Reynolds averaged Navier-Stokes. It was tested successfully against
experimental measurements and direct simulations of turbulent channel and pipe flows. Several
analytical and numerical results seem to confirm that the Navier-Stokes-a model gives good
approximation in the study of many problems related to the turbulence flows.

In [34], the Cauchy problem for the deterministic 3D Navier-Stokes-a model with periodic bound-
ary conditions was studied, the global existence, uniqueness and regularity of solutions were
established. Furthermore, the relation between the solutions of the Navier-Stokes-a model and
the solutions of the Navier-Stokes equations was proved as « approaches zero. In particular, the
authors of [34] showed that there exists a subsequence of solutions of the 3D Navier-Stokes-«
model that converges to one of the weak solutions of the 3D Navier-Stokes equations. Later the
authors of [20] showed that the trajectory attractor of the Navier-Stokes-av model converges to
the trajectory attractor of weak solutions of the 3D Navier-Stokes equations as « approaches

Zero.

In the stochastic case, the existence and uniqueness of strong solutions to the stochastic 3D

37
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Navier-Stokes-a with Dirichlet boundary conditions started with the work of [10] under Lips-
chitz conditions on the forces. The existence result under more general assumptions on the data
were established in the previous chapter; these results hold in the case of periodic boundary
conditions with the needed notational changes. We shall make use of these existence results
throughout. Other related problems on stochastic 3D Navier-Stokes-a can be found in [11] and
[12]. However, in the stochastic case, there is no work on the convergence of solutions of the
stochastic 3D Navier- Stokes-a model towards the solutions of the stochastic 3D Navier-Stokes

equations as a approaches zero.

In this chapter, we investigate the approximation of the stochastic 3D Navier-Stokes equa-
tions by a sequence of solutions of the stochastic 3D Navier-Stokes-a model as « approaches
zero. For this purpose, we study the weak compactness of weak solutions for the stochastic
3D Navier-Stokes-a model as « approaches zero. This is not derived directly from the priori
estimates obtained in Chapter 2 because some explode when a approaches zero. One the main
difficulties of this chapter lies in obtaining needed a priori estimates in which the constants are
independent of c. One such estimate is the following

T
E, sup / |ua(t +6) — ua(t)]%(A), dt < C§
o<lo|<s<1Jo

where C' is a constant independent of «,(Qq, Fao, {Fat o<t<T, Pa, Wa, ua) is a probabilistic weak
solutions of the Navier-Stokes-a model and F,, is the mathematical expectation with respect to
P, (see Definition 4 below). To do this, we adopt the method developed for the deterministic
3D Navier-Stokes-aw model in [34]. In this method an important role is played by the operator
(I +a?A)~t. Once the a priori estimates are secured, the next task is to obtain the tightness of
the family of probability measures generated by the sequence {uq},~ o Which enables us to make
use of Prokhorov and Skorokhod’s compactness results. The last main issue is the passage to
the limit which turns out to be rather complicated in view of the nature of the nonlinear terms
involved in our model.

The question of asymptotic analysis of partial differential equations when some physical
parameters converge to some limit has always been of great interest. Notable example is the
vanishing viscosity question in Navier-Stokes equations which is still not fully solved when the
problem is assigned Dirichlet boundary conditions for instance. We refer to [24], [41] [70], [71],
and the several references in the last paper. In the stochastic case fewer investigation has been

carried out; we refer to [6] for relevant investigation.
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The chapter is organized as follows. In Section 3.2, we recall the definition of the weak solu-
tions for the stochastic 3D Navier-Stokes equations and formulate the corresponding existence
result. In Section 3.3, we consider the stochastic 3D Navier-Stokes-a model. We formulate the
main properties of this model and the periodic boundary conditions version of the main result of
the authors in [27]. Section 3.3 is the main core of the chapter. Here we obtain uniform a priori
estimates for weak solutions {uq},-q of the stochastic 3D Navier-Stokes o model, we derive
the results on the tigthness of the corresponding probability measures and perform the passage
to the limit which establishes the convergence of u, to the weak solutions of the stochastic 3D
Navier-Stokes equations. This gives us another proof of the existence of weak solutions to the

stochastic 3D Navier-Stokes equations.

3.2 The Stochastic 3D Navier-Stokes equations

Let T > 0 be a final time and consider the following viscous stochastic 3D Navier-Stokes equa-

tions in the periodic box 7 = [0, L]?:

du+ [—vAu + (u.V)u+ Vp|dt = F(t,u)dt + G(t,u)dW, in T x (0,T),

Vau=0, in7T x(0,7T), 3.1)
3.1

u(0) =u’, inT,

u = u(z,t) is periodicin x € T, [;udzx =0,

where © = (x1,22,23), u = (uy (x,t),us (z,t) ,us (x,t)) and p = p(x,t) are unknown random
fields on 7 x (0,7) representing, respectively, the velocity and the pressure, at each point of
an incompressible viscous fluid with constant density filling the domain 7. The constant v
represent the kinematic viscosity of the fluid. The term F(t,u) and G(t,u)dW are external
forces depending eventually on u, where W is an R™- valued standard Wiener process. Finally,

0

u” is a given non random initial velocity field.

We denote by C°.(7)3 the space of all 7-periodic C* vector fields defined on 7. We set

per
V={®ecCx.(T)’|V.0 =0 and / ®dx = 0}.
T

We denote by H and V the closure of the set V in the spaces L?(7)% and H'(7)3 respectively.
We endow H with the L?(7)? scalar product (.,.) and norm |.|. The space V is a Hilbert
space for the scalar product ((u,v))y = (u,v) + o?(Vu, Vv) where its associated norm, which

is in fact equivalent to the usual gradient norm, will be denoted by ||.||y. For u,v € V, we
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denote ((u,v)) = (Vu, Vv) and ||u|| = |[Vu|. We denote by A the stokes operator with domain
D(A) = H*(T)3NVand Py : L*(T)? — H the Leray operator. The operator A is an isomorphism
from V to V' and (Au,v) = ((u,v)) where (.,.) denotes the duality between V and V.

We define the bilinear operator B(u,v): V x V — V' as

(Bu,v), 2) = /T (). (u(z) . V)o(x) d

for all z € V. By the incompressibility condition, for all u, v,z € V, we have

(B(u,v),z) = —(B(u, 2),v).

Alongside the problem (3.1), given at the beginning of the section, we shall consider the
abstract stochastic evolution equation which is formally obtained from (3.1) by projecting over

the space of divergence free fields:

du 4+ vAu(t)dt + B(u(t), u(t))dt = F(t,u)dt + G(t, u)dW,

(3.2)
u(0) = wo.
F and G are two nonlinear operators such that:
F:(0,T) x H— H, measurable, (3.3)
a.e. t,u — F(t,u) : continuous from H to H,
[F(t,u)|g < C(L+ [ul),
G:(0,T) x H— H®™ measurable, (3.4)

a.e. t,u — G(t,u) : continuous from H to H®™

G (t,u)|gem < C(1+ |ul).
Finally, we define the concept of solution of the system (3.2) that we need, namely

Definition 3. By a weak solution of the problem (3.2), we shall mean a
system (U, F,{Fit}o<t<r, P, W, u) where
1) (Q,F, P) is a probability space, ({F:},0 <t <T) is a filtration on (2, F, P),

2) W is an m-dimensional F; standard Wiener process,
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4)u € LP(Q,F,P; L2(0,T;V)) N LP(Q, F, P; L0, T; H)) for all 1 < p < oo,

5) the following equation holds almost surely
(u(t). 0) + v /0 (u(s), Ap) ds + /0 (B(u(s), u(s)). ¢) peay ds =
(o) + [ (Fls.uls)). o) ds + ( / G(s,u<s>>dw<s>,so>

for all o € D(A), t €[0,T].
We recall the following existence result due to Bensoussan [2].

Theorem 3. We assume that (3.3), (3.4) hold and uo € H.Then problem (3.2) has a weak

solution in the sense of Definition 3.

Several other authors have dealt with the existence and pathwise uniqueness of solutions of
the stochastic Navier-Stokes equations. We refer to [2], [7], [14], [32], [53], [73]; just to cite a

few.

3.3 The stochastic 3D Navier-Stokes-a model

We consider the family {(uq,pa)}a>0 of solutions of the stochastic 3D Navier-Stokes-ax model

in the periodic box 7 = [0, L]:

;

d(ue — a®Auy) + [—VA(ua — ?Auy) — (g X (V X (uq — a?Auy))) + Vpa] dt =
F(t,ug)dt + G(t,uq)dW in T x (0,7T),
Vae=0 in T x(0,7T), (3.5)

ua(0) =ug in 7T,

Uq = Uq (t, ) is periodic in . € T, [ uqdr =0.

In system (3.5): « is a fixed positive parameter called ”the sub-grid (filter) length scale” of
the model, a x b is the vector product in R3. Observe that when o = 0, system (3.5) coincides
with the stochastic 3D Navier-Stokes equations.

We denote for u,v € V,

B(u,v) = —P(u x (V x v)).

Recall that

B(u,u) = B(u,u).

For convenience, we summarize in the next lemma some results from [34] that we shall need

here.
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Lemma 5. i) The operator B can be extended continuously from V x V  with values

in V', and in particular it satisfies
[(B(u,v), wyr| < clul? |[ull2 o] |[w]
[(B(u,v), why| < cllullljv]l[ew]? |lw]|2
for all u,v € V. Moreover
(B(u,v), whyr = —(B(w,v), u)yr

and in particular,

(B(u,v),u)yr =0
for all u,v € V.

ii) Furthermore, we have
~ 1,01 1 1
[(B(u,v), w) pay | < e(|ul? [[u]|z vl Aw| + [lul[[o||[w]]> ] Aw]>)

forall weVive Hwe D(A).

[(B(u, v), w) pay| < cllul||v]|Aw]

forall weV,ve Hwe D(A).

In particular

| B(u,v)|pray < cllul|v]

forallue Vv e H.

Alongside the system (3.5), we shall consider the abstract stochastic evolution equation which
is formally obtained from (3.5) by projecting on the space of divergence free fields:
d(ua + @?Auy) + |VA(uq + 0?2 Auy) + E(ua, Ug + ozzAua)] dt =
F(t,uq)dt + G(t, ua) dW, (3.6)
U (0) = up.

We shall define the concept of solution of the system (3.6)



&

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 3. THE STOCHASTIC 3D NAVIER-STOKES-oo MODEL: o« TENDS TO 0 43

Definition 4. By a weak solution of problem (3.6), we shall mean a system
(s Fous {Fat fo<t<Ts Poy Wa, ua) where
1) (Qa, Fa, Py) is a probability space, Foy is a filtration on (Qq, Fa, Pa),
2) Wy, is an m-dimensional Fo, standard Wiener process,
3) a.e. t, ug(t) is For measurable,
4) o € LP(Qy, Fuy Po; L2(0,T; D(A))) N LP(Qq, Foy Po; L<(0,T5V)) for 1 <p < oo

5) The following equation holds almost surely

((ua(t),go))v—i-u/o (ua(s) + a?Auy(s), Ap) ds—l—/o <§(ua(s),ua(s)+a2Aua(s)),cp)D(A)/ ds =

(W, )y + /0 (F(5,ua(s)), ) ds + ( /0 G(s,ua<s>>dwa<s>,<p)
for all o € D(A), t € [0,T].

Theorem 4. We assume that (3.3), (3.4) hold and ug € V. Then problem (3.6) has a weak
solution (o, F, {Fat yo<t<T: Pa, Wa, ua) in the sense of Definition 4.

uq satisfies the following inequalities:

a) Eo sup [lua(t)|[}, < Cp1,
0<t<T

b) E. ( / B dt)p < Cpala),

T
¢) E, sup / lua(t +0) — ua(t)\QD(A), dt < C3(a)d,
o0<|gj<s<1.Jo

T
d) 21/Ea/ (|lua(s)]|? + a?|Auq(s)|?) ds < Cy,
0
T P
) B ([ (ua@lP + 0 ua(o))ds) < G
0
where the constants Cp1,Cs and Cp5 are independent of o and 1 < p < oo. The constants
Cs(a) and Cpa(a) tend to oo when o tends to zero. E, denotes the expectation with respect to

P, and1l <p< .

The proof of this theorem was the object of the preceding chapter. It was based on a careful
blending of the Galerkin approximation scheme together with deep compactness results of both
analytic and probabilistic nature. We note that the existence of strong solution for a similar

model under stronger conditions (Lipschtzity of the functions F' and G) was obtained in [10].
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Remark 3. We note that the constants in the right-hand sides of estimates a), d) and e) of
Theorem 4 are independent of a. This fact plays the key role in the proof of the convergence
of solutions of the 8D stochastic Navier-Stokes-aw model to the solutions of the 8D stochastic
Navier-Stokes system as o approaches zero. Since the existence involved fized o the explosion of

Cs(av) as « approaches zero was not an obstacle in the proof of Theorem 4.

3.4 Asymptotic behavior of the stochastic 3D Navier-Stokes-a

model.

3.4.1 Weak compactness of weak solutions for the stochastic 3D Navier-

Stokes-a model.

In the section, we prove the tightness of weak solutions of the stochastic 3D Navier-Stokes- «
model as « approaches zero. The crucial point of the proof is to show that the following estimate

holds:

T
E, sup / |ua(t +0) — ua(t)%(A), dt < Co,
o<loj<s<1.Jo

where C'is a constant independent of . Thereby we sharply improve the estimate ¢) in Theorem

4. This will require skillful technics and is the object of the following

Lemma 6. Let uy be a weak solution for the stochastic 3D Navier-Stokes-a model. We have

T
E, sup / |ua(t +0) — ua(t)|2D(A)/ dt < C6é
0<lo|<s<1Jo

where C' is a constant independent of o; here we extend uq by 0 outside [0, 7.

Proof. We have
d(I + a®A)ug + vA(Ug + 02 Aug)dt + B(ug, ug + 02 Aug) dt = F(t,uy) dt + G(t, uq) dW. (3.7)
We recall that I 4+ a?A4 is an isomorphism from D(A) to H and
H(I+042A)_1||L(H,H) <L
From (3.7), we have

dug + vAugdt + (I + 02 A) ' Blug, va)dt = (I + o> A) " F(t,ug)dt + (I + o?A) " G(t, ug) AW,
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where v, = uq + a2Au,,.

Owing to the fact that D(A) = D (A™!) we have
[ A (ua(t +0) — ua(t))] (3-8)
t+0 ~
< /t (1471 + 024) (7, ua (7)] + wlua(7)] + 147N + 024) " Blua(7), va(7))]) drt

t+6
/ AT + 02A) 1, ug (7)) AW (7).

We estimate the first two terms of the right hand side of (3.8)

|A™HT 4 a®A) " B(ua (1), va(7))]

<A B(ua(7),v0(7))] < Cloa(r)|[[ta(7)]|
< Cllua (1) (Jua(7)] + o®|Auqg(7)])

< C{lua(7)|[lua(7) || + aflua(T)]| o] Aua(7)|}

< O (Jua ()P + ?llua(M)]?)* (lua(r)]? + 0% Aua())?

NI

where we have used Lemma 5 (part ii) and Cauchy’s inequality.

On the other hand, we have
|ATHI + a® A)THF (1, ua (7)) < AT (T, ua(7))| < C(1 A+ fua(T)])-

Squaring the both sides of (3.8) and using the above estimates, we have

t+60 2
A7 ualt+0) — wal)P < 08+ 1 ([ uarar) o)
o ? t+0 )
" </ '“O‘(”’dT) +C sup (ua(n)l +o%lua(nI) ( / (lua (M) + 0| Aua(7)[2)2

t+6 2

+ AT+ a?A) T G (1, ua(T)) dW (1)

t

For fixed 4, taking the supremum over 8 < ¢ yields

sup ]Ail(ua(t +0) — uoé(t))]2 < C8* +TCy6 sup |uoé(7')|2
0<0<6 7€[0,7)

t+0 1
+Cy sup ([ua (1) + @2[lua(r)]?) (/ (ua(P)? + % Aug (1)) ? dT)

T7€[0,T
2

+ sup

t+6
/ AU + ®A) G (7, ua(7)) AW (7)
0<6<d | Jt
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Integrating over t € [0, 7] and taking the mathematical expectation, we deduce

T
E, sup / |A™ (U (t 4 0) — un(t)|> dt < C6* + TCH*E, sup  |ua(7)|*+
0

0<6<§ T7€[0,7T
T / 46 1 2
cita s o} [ ([ (o) + @®lua(r)?) Far ) ars
T7€[0,T] 0 t
T t+0 2
B, [ sup / AN+ 02 A) G, ua (7)) AW (7).
0 0<0<6|Jt

By Holder’s inequality, we have

T t+9 1 2
Ea swp Jua@l [ ([ (@ + o2 aua(n)) ar)
€[0T 0 ¢

T
< 8E, swp Jua(nIl} / (lua (PP + 02| Aua (7)) dr
T€[0,T] 0

% T 2 %
2 4 2 2 2
= (Eaé}g)ﬂ”ua(ﬂ”v> (E ([ Guatol +arAua<T>\)dT)> .

Using the estimates a) and e) of Theorem 4, we have

T t+9 1 2
Ea sw Jua@l [ ([ (a0 + a2 aua(n))? ar) - ae < o8°
r€[0,T] 0 t

where C' is a constant independent of .

Next, using the martingale inequality, we have

T

E, sup
0 0<0<é

t+6 2

AN I + a2 A) 7 G (s, ua(s)) dW (s)| dt

t

< E, /OT (/:M |A1(I+a2A)1G(s,ua(s))|2ds> dt

< CE, /OT (/tt+6(1 - \ua(s)P)ds> dt
<o

Collecting the two last estimates, we finally obtain

T
E, sup / |ua (t +6) — ua(t)%(A)/ dt < Co,
0<lo]<o<1 o

where C is a constant independent of a.

Remark 4. From estimate a) of Theorem /, we also have

E, sup |uq(t)|? < Cpa.
t€[0,T]

46
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Using the Poincaré’s inequality and the estimate e) of Theorem 4, we also have

T p
E, </ Hua(s)]ﬁ/ds) < CCyp
0

where C' is a constant independent of o and 1 < p < oo.

The following compactness result plays a crucial role in the proof of the tightness of the

probability measures generated by the sequence {uq}, -

Lemma 7. Let v, and u, two sequences of positives real numbers which tend to 0 as n — oo.

The injection of !

1
1 T 2
D=<qec L®0,T;H)NL*0,T;V);sup — sup </ lg(t +6) — q(t)|%(A), dt) < oo
n Vn |6|<p, \JO
in L2(0,T; H) is compact.
Proof. See Appendix A, Proposition 6. Take By = D(A), By =V, By = H. O

D,,, v, is a Banach space with the norm

1 1

r 2 1 T 2

lyllD,,..,, = €SS sup Iy(t)|+</ IIy(t)Hgvdt> +sup — sup </ Iy(t+9)—y(t)l%(,4ydt>
0<t<T 0 0

n Un |01<pin
Alongside [|y||p,, ., » We also consider the space Z, ;, .,, (1 < p < 00) of random variables y such

that

T 5 1 T
Esess sup |y(t)|P < oo; Eq (/ \y(t)”%dt) < o00; Egsup— sup / \y(t—i—@)—y(t)]%m),dt < 0.
0<t<T 0 n Vn |9|<u, JO

Endowed with the norm

1 P
P T bl
Wl 200, = (E sup |y<t>|p> ; (E ( / uy<t>||2vdt) >+
0<t<T 0

] T
+ Eq sup — ( sup / \y(t+9)—y(t)|2D(A)/dt)
0

n Vn 10]<tn

N

Zp.un,vm 18 @ Banach space.

Combining the estimates a); e) of Theorem 4 and the estimate of Lemma 6, we have

Proposition 4. For any real p > 1 and for any sequences (i, vy, converging to zero such that

the series 3 oo | YE converges, the sequence (ua)a>o is bounded in Zy ., ,, uniformly in o for
- n

all n.

!¢ is extended by 0 outside (0,T)
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Next we define

Sy =C(0,T;R™) x L*(0,T; H)

equipped with the Borel o-algebra B(S1).
For a > 0, let
D, :Qq — 51 w— (Wa(w,.), ua(w,.)).

For each v > 0, we introduce the probability measure II, on (S1,B(S1)) by

where A € B(51).
We have

Theorem 5. The family of probability measures {Il,; > 0} is tight in (S1,B(S1)).
Proof. For € > 0, we should find the compact subsets
Y. c C(0,T; R™); Y. C L*(0,T; H)
such that
Po(w: Walw,.) ¢ 2.) < %,for all a >0, (3.10)
Py(w:uq(w,.) ¢ YEI) < %,for all o> 0. (3.11)

The quest for E; is made by taking into account some facts about the Wiener process such as
the formula

Eo|[Wa(ta) — Wa(t1)|¥ = (25 — D(ta — t1),5 = 1,2, .. (3.12)
for all a > 0.
For a constant L. depending on ¢ to be chosen later and n € N, we consider the set

2. ={W()eC(O,T;R™): sup n|W(t2) — W(t)| < L}

3
t1,t2€[0,T] [t —t1|< 5

E; is relatively compact in C(0,T; R™) by Arzsela- Ascoli’s Theorem. Furthermore E; is closed
in C(0,T; R™). Therefore ¥ is a compact subset of C'(0,T; R™).

Making use of Markov’s inequality:

Plw: ) 2 )< 228 [l6)"
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for a random variable £ on any probability space(S), F, P) and positives numbers « and k, we

get

Palw: Walw, ) ¢5) <Po |l sup [Walta) = Walt)] > =)

n t1,t2€[0,T]:|ta—t1|< X5

0o nf—1 4
n . _
<> Z <L> E, sup  |[Wa(t) — Wo(iTn 5

iT (+1)T
;Tgtgiﬁ

n

c 1
— 74 2
L —n

where we have used (3.12) and the constant ¢ is independent of «.

We choose )
1 (1
L= _— —
¢ 2ce (Z nz)

to get (3.10). Here we note that the independence in « is due to the fact that the right hand
side of (3.12) is independent of «.

Next, we choose Y; as a ball of radius M, in D, ,,, centered at zero and with u,,, v, independent
of €, converging to zero and such that the series » > | % converges. From Lemma 7, YE/ is a
compact subset of L2(0,T; H).

We have further

Po(w: ta(w,.) ¢ Y2) <Pa(w : ||talp,, ., > M)
SEEQ‘|UO‘||DHn»Vn

1
SEHUQHZLWH,VH

C
<
=M.

where C' is a constant independent of « ( see Proposition 4 for more details).
Choosing M. = 2Ce~!, we get (3.11).
From (3.10) and (3.11), we have

Po(w: Wa(w,.) € Ssug(w, ) €Y.) > 1—¢
for all a > 0 and this proves that

M (S xY)>1—¢
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for all o > 0. This completes the proof of the tightness of {Il,; > 0} in (S1, B(S1)). O

3.4.2 Approximation of the stochastic 3D Navier-Stokes equations

In this section, we prove that the weak solutions of the stochastic 3D Navier-Stokes equations is
obtained from a sequence of solutions of the stochastic 3D Navier-Stokes e model as o approaches

Z€ero.

Application of Prokhorov’s and Skorokhod’s results

From the tightness property of {II,;« > 0} and Prokhorov’s theorem , we have that there exists
a subsequence {II,,} and a measure II such that I, — II weakly. By Skorokhod’s theorem ,
there exist a probability space (2, F, P) and random variables (Waj,ﬂaj), (W, @) on (Q, F, P)

with values in S such that:

the law of (W, @) is Ila;,
the law of (W,ﬁ) is II,

(Waysita;) — (W,a@) in Sy, P—as. (3.13)

Hence {Waj} is a sequence of an m-dimensional standard Wiener process.
Let
Fi = U{VT/(S), u(s): s <t}

Arguing as in the proof of Theorem 1, step 5, Chapter 2 , we can prove that W is an m-

dimensional F;-standard Wiener process and the pair (”VT/% s Uq, ) satisfies
t t
(5, (0):0) 0 [ (G (3). Ap) s+ [ (Bl (9., (5): ) piay (314)

= (w0 )+ [ (s, () 90+ ([ 6o, (9) Ay (51.5).

for all ¢ € D(A), where

Vo, (8) = Ta, (8) + aj Al (S)-
The main result of this chapter is

Theorem 6. Assume that (3.3) - (3.4) hold, and ug € V. Then there is a subsequence of i,

Ua; (obtained above) such that as aj — 0, we have :
Uo; — U strongly in L*(Q,F,P;L*0,T;H)),

o, — @ weakly in L*(Q,F,P;L>(0,T;H)),
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o, — @ weakly in L*(Q,F,P;L*(0,T;V)),
Uo; — U strongly in L*(Q, F, P, L*(0,T; V")),
o, — @ weakly in L*(Q,F,P;L*(0,T; H)),

where (Q, F, (Ft)ieo.17, P W, a) is a weak solution for the 3D stochastic Navier-Stokes equations

with the initial value u(0) = ug.

Proof. From (3.14), it follows that i, satisfies the estimates

_ T
E sup |, (s)[” < Cp; E/ lia, ()|} ds < CCy5
0<s<T 0

E sup |lia,(s)Iy, < Cpa,
0<s<T

T
E sup / i (= 0) — iy (8) oyt < C8
0<0<6 JO

E T(||11aj(s)H2+oe2|A1]a].(s)\2) is) < Cps
(! )

T
E sup ||da,(s)[{ + QVE/ ([, ()17 + @} Atia, (5)I?) ds < Cu,
0<s<T 0

where E denote the mathematical expectation with respect to the probability space (Q,F, P).

Thus modulo the extraction of a subsequence denoted again 4, we have
o, — @ weakly in LP(Q, F, P; L>(0,T; H)),
flo; — @ weakly in L*(Q,F,P;L*0,T;V)),
Uo; — 0 weakly in L2(Q,.7:",]5;L2(O,T; H)),

and

~

B sup [a(s)P < Cpus E/ lall% ds < CCys
0<s<T 0

T
E sup / la(t+0) — ﬂ(t)|2D(A), dt < C6.
0<0<5 JO

By Vitali’s theorem and (3.13), we have
i, — @ in L*(Q,F,P;L*0,T; H)). (3.15)

Thus modulo the extraction of a new subsequence and for almost every (w,t) with respect to
the measure dP ® dt

Uy, — W in H.
J
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This convergence together with the conditions on F' and Vitali’s theorem, imply
/Ot F (3, ia, (5)) ds — /Ot F(s,ii(s)) ds in L2(S, F, P; L2(0, T; D(AY))
Arguing as in the proof of Theorem 1, step 5, Chapter 3 we can prove that
/ G (8,0, ( alVVaJ —>/ G(s,u(s)) dW( ) weakly star in L2(Q, F, P; L°(0,T; D(A)")).

We also have

- T

T ~
E/ A7 (B, (8) — i1, (1)) 2 it = agﬂ«:/ 0|, (8)|2 dt.
0 0
We then deduce that
o, — @ in L*(Q, F, P; L*(0,T; V")) (3.16)
and 9(t) = @(t) a.e. in dP x dt since E fOT a?]Aﬂaj (t)]*dt is bounded uniformly in a;. Arguing

as in [20], we are going to prove that
t
/ Bliig (8),0a,(s)) ds —>/ i(s)) ds weakly in L°(Q,F, P; L°(0,T; D(A)))
0

for some 1 < G < 2.
Indeed, it suffices to prove that

B, Pa;) — B(a, @) = B(a,u) weakly in L¥(Q, F, P; LP(0,T; D(A)'))

for some 1 < 3 < 2.
We recall that

- ~ 2 4~
Vo = Uq; + Qf Allg,

and

Blita,,a,) = Blila,, lla,) + a2 B(iia,, Alia,)

= Blila,, lia,) + 02 B(ila,, Alla, ).
We are going to prove that for 1 < 8 < 2,

2 B(lla,, Alia,) — 0 strongly in  L?(Q, F, P; LP(0, T; D(A))) as a; — 0, (3.17)

and

Bliia,, ;) — B(&,%) weakly in L*(Q, F, P; L*(0,T; D(A))) as a; — 0.
We start with (3.17). By part ii) of Lemma 5, we have

o B(ita, Atia,)llpay < Cofla, [l Afa, |
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Fixing an arbitrary 3,1 < # < 2, we obtain the following chain of inequalities
g 25 B
/0 02 B (i, (8), Aty ()13, 1, 1 (3.18)

T
<% [ i, 01 Ao, (1)

T
< %’ ( sup IIﬂaj(t)W>/o o, (0)1177| A, (1)) dt

0<t<T
1 1
26 o i (B=) ‘ " 55 v
<o ( sup o, 17 ) | [ o, 01t | [ 100,00 a
0<t<T 0 0
where v is an arbitrary number such that 0 < v < (3, and, in (3.18), we have applied the Holder’s
inequality with % + % =1 (these numbers will be determined later on).

Continuing the chain of inequalities after, we have

T ~
| 103 B, (0. A, ()10 (3.19)
J 1 1
28 ~ 2 ’ e a(B—) ! P B !
<02 ( sup o, 07 ) | [ N, 01t " | [ 140, 09 ar
0<t<T 0 0

We now set p = %, q= ﬁ Let the number ~y satisfies the equation ¢(8 — v) = 2, that is,

o587 =2 > =28~ D).

We see that the inequality 0 < v < [ holds since
vy=2(-1) < <= [f<2
Replacing such p, ¢, and v into (3.19), we obtain the following estimate:

T ~
| 103 B (1) A, ()1 (3.20)

=l 1 58 5
< (P2 (02%04;”@%(15)”2) [ /O Hﬂaj(t)Hth] [ /0 a§|Aﬂaj(t)|2dt] |

Taking the mathematical expectation in (3.20) and using Holder’s inequality, we have

~ T g
]E/o HO‘]ZB(ﬂaj,Aaaj(t))H%(A)’ dt

2
B 2B

p—1 28
2-8 | 20~ 2 = o 2 N~ T 20 A~ 2 2
SCﬂaj E| sup ajHuaj(t)H E Huaj(t)H dt E aj|Aua].(t)\ dt
0<t<T 0 0

Using the estimates on 1, at the beginning of the proof, we then have

~ T ~
B[ 03B, (1) Ao, ()l < Cal ™, 1 < < 2
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Therefore, as aj — 0 the term

a?é(&aj,Aﬂaj) — 0 strongly in L?(Q, F, P; LP(0,T; D(A)")).

We readily have from (3.15)

B(ila,, lia;) — B(@, @) weakly in L*(Q,F,P;L*(0,T;D(A))).

Collecting all the convergence results, we then have from (3.14) that

t t
(@(t).0) + v [ (ls). Ap)ds + [ (Bla(s).a(s)).0)piay ds =

(w0.) + [ (Flssato)e)ds-+ ([ GGt V(). )

for all ¢ € D(A). This concludes the proof of Theorem 6.

o4
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Chapter 4

Strong solution for the 3D Stochastic
Leray-a Model

4.1 Introduction

It is computationally expensive to perform reliable direct numerical simulation of the Navier-
Stokes equations for high Reynolds number flows due to the wide range of scales of motion that
need to be resolved. The use of numerical models allows researchers to simulate turbulent flows
using smaller computational resources. In this chapter, we study a particular sub-grid scale
turbulence model known as the Leray-alpha model (Leray-c«). This model together with the
Navier-Stokes-a model which was considered in the previous chapters, are strong contenders for
deep understanding of turbulence in Newtonian fluids.

We are interested in the study of the probabilistic strong solutions of the 3D Leray-a equa-
tions, subject to space periodic boundary conditions, in the case in which random perturbations

appear. To be more precise, let 7 = [0, L]?, T > 0, and consider the system
d(u — a®Au) + [-vA(u — o?Au) — u.V(u — o?Au) 4+ Vp| dt =
F(t,u)dt + G(t,u)dW in (0,T)xT,
Vau=0 in (0,7)x7T, (4.1)

u(t,z) is periodic in z and [rudzr=0,

u(0) =up in 7T,

\

where u = (u1,u2,u3) and p are unknown random fields on [0, 7] x 7, representing, respectively,

the velocity and the pressure, at each point of [0,7] x 7, of an incompressible viscous fluid with

95
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constant density filling the domain 7. The constant v > 0 and « represent, respectively, the
kinematic viscosity of the fluid and spatial scale at which fluid motion is filtered. The terms
F(t,u) and G(t,u)dW are external forces depending on u, where W is an R™-valued standard
Wiener process. Finally, ug is a given random initial velocity field.

The deterministic version of (4.1), i.e. when G = 0, has been the object of intense investiga-
tion over the last years. The initial motivation was to find a closure model for the 3D turbulence
averaged Reynolds model; for more details we refer to [21] and the references therein. A key
interest in the model is the fact that it serves as a good approximation of the 3D Navier-Stokes
equations. It is readily seen that when o = 0, the problem reduces to the usual 3D Navier-
Stokes equations. Many important results have been obtained in the deterministic case. More
precisely, the global well-posedness of weak solutions for the deterministic Leray-a equations has
been established in [75] and also their relation with Navier-Stokes equations as « approaches
zero. The global attractor was constructed in [19] and [21].

The addition of white noise driven terms to the basic governing equations for a physical
system is natural for both practical and theoretical applications. For example, these stochas-
tically forced terms can be used to account for numerical and empirical uncertainties and thus
provide a means to study the robustness of a basic model. Specifically in the context of fluids,
complex phenomena related to turbulence may also be produced by stochastic perturbations.
For instance, in the recent work of Mikulevicius and Rozovskii [57], such terms are shown to
arise from basic physical principals. To the best of our knowledge, there is no systematic work
for the 3D stochastic Leray-« model.

In this chapter, we shall prove the existence and uniqueness of strong solutions to our stochas-
tic Leray-a equations under appropriate conditions on the data, by approximating it by means
of the Galerkin method (see Theorem 7). Here, the word ”strong” means ”strong” in the sense
of the theory of stochastic differential equations, assuming that the stochastic processes are
defined on a complete probability space and the Wiener process is given in advance. Since we
consider the strong solution of the stochastic Leray-alpha equations, we do not need to use
the techniques considered in the case of weak solutions as we did in the previous chapters of
the present thesis. The techniques applied in this chapter use in particular the properties of
stopping times and some basic convergence principles from functional analysis (see [76],[5]). An
important result, which cannot be proved in the case of weak solutions, is that the Galerkin
approximation converge in mean square to the solution of the stochastic Leray-a equations (see

Theorem 8). We can prove such result by using the property of higher order moments for the
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solution. Moreover, as in the deterministic case [75], we study the asymptotic behavior of the
solutions as « approaches 0. More precisely, we show that a subsequence of solutions in question
converges to a probabilistic weak solution for the 3D stochastic Navier-Stokes equations (see
Theorem 9). This is reminiscent of the vanishing viscosity method; see for instance [6], [67].
This chapter is organized as follows. In Section 4.2, we formulate the problem and state the
first result on the existence and uniqueness of strong solutions for the 3D stochastic Leray-a
model. In Section 4.3, we introduce the Galerkin approximation of our problem and derive
crucial a priori estimates for its solutions. Section 4.4 is devoted to the proof of the existence
and uniqueness of strong solutions for the 3D stochastic Leray-a model. In Section 4.5, We
prove the convergence result of Theorem 8. In Section 4.6, we study the asymptotic behavior of

the strong solutions for the 3D stochastic Leray-o model as a approaches 0.

4.2 Statement of the problem and the first main result

Let 7 = [0, L]3. We denote by Coper(T )3 the space of all T-periodic C* vector fields defined on
7. We set
V={de ng,,(T)3// ddr =0;V.® =0}.
T

We denote by H and V the closure of the set V in the spaces L?(7)3 and H'(7)3 respectively.
Then H is a Hilbert space equipped with the inner product of L?(7)3. V is Hilbert space
equipped with inner product of H(7)3. We denote by (.,.) and |.| the inner product and norm in
H. The inner product and norm in V" are denoted by ((.,.)) and ||.||, respectively. Let A = —PA
be the Stokes operator with domain D(A) = H*(T)> NV, where P : L?*(T)3 — H is the Leray
projector. A is an isomorphism from V' to V' (the dual space of V) with compact inverse, hence
A has eigenvalues{\;}32,,1.¢., ZLLL; =N < X < ... <Ay — o0o(n — o0) and corresponding
eigenfunctions {wy}72; which form an orthonormal basis of H such that Awy, = A\jwy.

We also have

(Av,v)yr > o] (4.2)

for all v € V, where 5 > 0 and (.,.)y denotes the duality between V and V".

Following the notations common in the study of Navier-Stokes equations, we set

B(u,v) =P(u.V)v forall u,v € V.
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Then (see [72],[35],[24])

(B(u,v),v)y, =0 for all u,v € V. (4.3)
(B(u,v),w)y = —(B(u,w),v)y for all u,v,w € V. (4.4)
|(B(u,v),w)| < C|Aul||v]||w], for allu € D(A),v € V,w € H. (4.5)
[(B(u,v),w)pay < Clull[v]||Aw], forallu € H,v eV, we D(A). (4.6)
(B(u,v), w)v| < Clult|lul T o|T|jo]|T|lw], forallueV,veV,weV. (4.7)
(B(u,v),w)| < Clu|t|ju]||v]|1|Av|t|w]|,  forallu € V, v € D(A), w € H. (4.8)

Let (92, F, P) be a complete probability space and {F; }o<¢<7 an increasing and right-continuous
family of sub o-algebras of F such that Fy contains all the P-null sets of . Let W be an
R™-valued Wiener process on (Q, F,{Fi}o<i<r, P) .E denotes the mathematical expectation
with respect to the probability measure P.

The function spaces used in this chapter are denoted as in the previous chapters.

We make precise our assumptions on F and G. We suppose that F' and G are measur-
able Lipschitz mappings from Q x (0,7) x H into H and from Q x (0,7) x H into H®™,
respectively. Namely, assume that, for all w,v € H, F(.,u) and G(.,u) are F-adapted, and
dP X dt—a.e. in dP x dt

|F(t,u) — F(t,0)|g < Lylu—1vl, (4.9)
F(t,0) =0, (4.10)
G(t,u) — G(t,v)| gem < Lalu — vl (4.11)
G(t,0) = 0. (4.12)

Finally, we assume that ug € L*(Q2, Fy, P; D(A)).

Remark 5. The condition (4.10) is given only to simplify the calculations. It can be omitted;

in which case one could use the estimate
|F(t,u)[* < 2L%[ul® + 2|F(t,0)[

that follows from the Lipschitz condition. The same remark applies to G.
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Alongside problem (4.1), we shall consider the equivalent abstract stochastic evolution equa-
tion
d(u+ o?Au) + [VA(u + o®Au) + B(u,u + o?Au)| dt = F(t,u)dt + G(t,u)dW, (4.13)
13
u(0) = wo.

We now define the concept of strong solution of the problem (4.13); namely:

Definition 5. By a strong solution of problem (4.13), we mean a stochastic process u such that

1) u(t) is F; adapted for all t € [0,T],

3
2

2) we LP(Q, F, P; L2(0,T; D(A2))) N LP(Q, F, P; L>(0, T, D(A)))

for all1 < p < o0,
3) w is weakly continuous with values in D(A),

4) P-a.s., the following integral equation holds
t t
(u(t) + a®Au(t), @) —I—I// (u(s) + a®Au(s), AD) ds+/ (B(u(s),u(s) + a®Au(s)), ®) ds

0 0

t t
(uo + a2AuO,Q>) +/ (F(s,u(s), ) ds+/ (G(s,u(s)), ®) dW(s)
0 0
for all® €V, andt € [0,T].

Our first result is the following

Theorem 7. (Existence and uniqueness) Suppose the hypotheses (4.9)-(4.12) hold, and
ug € L3(Q, Fo, P; D(A)). Then problem (4.13) has a solution in the sense of Definition 5. The

solution is unique almost surely and has in D(A) almost surely continuous trajectories.

We also prove that the sequence (uy) of our Galerkin approximation (see (4.14) below)
approximates the solution u of the 3D stochastic Leray-a model in mean square.

This is the object of the second result of this chapter.

Theorem 8. (Convergence results) Under the hypotheses of Theorem 7, the following con-

vergences hold:
t
2
B[ (s~ u(s)|? y ds =0

asn — oo and

ElJun(t) — u(t) 34 — 0

asn — oo, for allt € [0,T].
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4.3 Galerkin approximation and a priori estimates

We now introduce the Galerkin scheme associated with the original equation (4.13) and establish

some uniform estimates.

4.3.1 The approximate equation

Let {w; }J"‘;l be an orthonormal basis of H consisting of eigenfunctions of the operator A. Denote
H,, = span{wi, ...,w,} and let P, be the L?-orthogonal projection from H onto H,,.
We look for a sequence (u,(t))y of solutions in H,, of the following initial value problem

dv, + [VAv, + P, B(up,vy)] dt = Py F(t,uy)dt + P,G(t, uy,)dW

un(0) = Pyug (4.14)

Up = Uy + 2 Au,,.
As in Chapter 2, there is a unique continuous (F;)-adapted process u, (t) € L?(Q, F, P; L?(0,T; H,,))
solutions of problem (4.14) (see [44], [46],[63]). The conditions in Chapter 2 did not guaranty
uniqueness. The local Lipschitzity and the linear growth of the nonlinearity provide global

unique solution.

We next establish some uniform estimates on u, and v,.

4.3.2 A priori estimates

Throughout this section C, C;(i = 1,...) denote positive constants independent of n and a.

Lemma 8. u, and v, satisfy the following a priori estimates:

T
B sup [un(s)[* + W0 | [uns)|Pds < Co
0

0<s<T
2 2 _ (s
E sup [un(s)?<Co 5 E sup fun(s)]? < 55,
0<s<T 0<s<T «
2 Cy T 2
E sup [Aun(s)> <=5 5 E [ |lua(s)|?ds < Cs, (4.15)
0<s<T « 0
T T
C 3 C
E/O |Aup ()2 ds < 2762 ; IE/O |AZu, ()2 ds < 071

Proof. To prove Lemma 8, it suffices to establish the first inequality and use the fact that

‘Un‘z = |un + azAun]2 = ’un’2 + 20‘2”“””2 =+ 044\Aun|2,
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on 1 = [fun® + 20| Auy |2 + ot A2, 2.
By Ito’s formula, we have from (4.14)

dlon (£)]* + 2 [V {Avy, v ) v + (B(tn, vp), vp)vr] dt (4.16)

= ((2F(t,un),vn) + |PnG(t,un)]2) dt + 2 (G(t,up), vy,) dW.
But then, taking into account (4.3), (4.2) and the fact that
(F (5, tn(5)), tn(5)) < O+ fon(3)]2),
PG5, un())[2 < C(1+ [un(s)]2),
we deduce from (4.16) that

fon (1) 22083 /0 ln($) 2 ds < [va(0)P+CoT+Cs /0 [on(5)? ds-+2 /0 (G5, un(5)), vn(5)) AW (5).

(4.17)
For each integer N > 0, consider the F;-stopping time 7 defined by
™~ = inf{t: [v,(t)]> > N} AT.
It follows from (4.17) that
tATN
sup  |vn(s)|® + 2Vﬁ/ |vn(s)]|? ds (4.18)
s€[0EATN 0

tATN
< \vn(0)|2+CgT+Cg/ lun(s)[*ds +2 sup
0

s€[0,EATN

| (G s).vts)) aws
for all t € (0,7") and all N, n > 1. Taking expectation in (4.18) , by Doob’s inequality it follows
that

E sup /0 (G5, un(5)), v (s)) WV ()

s€[0,tATN]

<3E </OWN (G5, tn(s)), vn(s))? d5>5

IATN %
<35 ([ 160 ) Plon(o P s
0
1 ) tATN 5
< =-E sup |up(s)]°+ CioT + C’HIE/ |un(8)|* ds.
0<s<tATN 0
Next using Gronwall’s lemma, we have that there exists a constant C; depending on 7', C' such

that, for all n > 1

T
E sup |Un(s)]2+4yﬁE/ lon(s)|2 ds < Ch.
0<s<T 0
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The following result is related to the higher integrability of u,, and v,

Lemma 9. We have

E sup [vn(s)]P <Cp 5 E sup |un(s)]” < Cp, (4.19)
0<s<T 0<s<T
Cp
E sup [lun(s)[” < —, (4.20)
0<s<T aP
E sup |un(s)]Y < & (4.21)
o<s<r - PUA) = g2’
forall1l <p < 0.
Proof. By Ito’s formula, we have for 4 < p < o
dlvn (t)] 2 (4.22)
p_ — 4 (G(t, un), vn)?
= E]vn(t)]g 2 —v(Avp, vy — (B(tn, vp), va) v + (F(t, up), vn) + b (Gt un) Zn) dt
2 4 |vn(t)]
p 2_9
+§\vn(t)|2 (G(t,up), vy) dW.

By (4.17), (4.17) and Young’s inequality, we have

[0 ()22 (F(t,un), v0) < C(1L+ [va(s)]?)

and

S, Un ), Un 2
W < C(1+|vn(s)]?),

Taking account of these inequalities together with (4.22) and (4.3), we get

2
2

[on(8)|2 < [on(0)]2 +C /0 (L+ lon(s)[5) ds + & /0 [on(8)| 272G (5, un(s)), vn(s)) AW (s). (4.23)

Taking the supremum, the square and the mathematical expectation in (4.23), and owing to the
martingale inequality we have
2

E sup
0<s<T

T
< 4E /O [n(8)[P~4(G (5, n(s)), vn(s))? ds

/os [0 ()12 72(G(s, un(s)), va(s)) W (s)

T
<4C IE/ (1+ [on(s)P?) ds.
0
Applying Gronwall’s lemma, it follows that there exists a constant ), such that

E sup [vn(s)]” <G
0<s<T
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for all p > 4. This being proved for any p > 4, it is subsequently true for any 1 < p < co.

Other inequalities are deduced from the relation

[on(8)1* = Jun(8)[* + 20%|lun(s)|* + o*| Aun (s) .

OJ
We also have
Lemma 10.
T p
E </ ||vn(s)||2ds> <Cp forl<p<oo.
0
Proof. From (4.17), we have
T p T p
2sr ([ Imeike) <q <|vn<o>|2p e ([ opas) )
0 0
) t p
+ C, sup / (G(s,un(s)),vn(s)) dW(s) (4.24)
t€[0,77 1/0

By Burkholder-Gundy’s inequality, we have

p

E sup
te[0,7

< C,E </OT (G5, n(5)), vn(s))? ds)g
< CpE </OT (1+ |vn(s)]?P) ds>

< OpaT + CpeTE sup |, (s)]?P.
s€[0,7

/0 (G5, un(5)), v (5)) dVV ()

Taking the mathematical expectation in (4.24) and using the first inequality of Lemma 9, we

have the inequality sought. O

4.4 Proof of Theorem 7

4.4.1 Existence

With the uniform estimates on the solution of the Galerkin approximation in hand, we proceed
to identify a limit w. This stochastic process is shown to satisfy a stochastic partial differential
equations (see (4.32)) with unknown terms corresponding to the nonlinear portions of the equa-

tion. Next, using the properties of stopping times and some basic convergence principles from
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functional analysis, we identify the unknown portions.
We will split the proof of the existence into two steps.
Stepl:Passage to the limit

Lemma 11. Under the hypotheses of Theorem 7, there exist adapted processes u, B*, F* and G* with
the reqularity:

we LP(Q, F, Py L*(0, T; D(A2))) N LP(Q, F, P; L(0,T; D(A))), (4.25)
v e LP(Q,F,P; L*(0,T;V)), (4.26)
veC(0,T;H) a.s., (4.27)
ue C(0,T;D(A)) a.s., (4.28)
and

B* e L*(Q, F,P; L*0,T : V")), (4.29)
F* e L*(Q,F,P;L*0,T; H)), (4.30)
G* e L*(Q, F, P; L*(0,T; H®™)), (4.31)

such that u, B*, F* and G* satisfy:

v(t)+u/0 Av(s)ds—f—/o B*(s)d5:v(0)+/0 F*(s)d8+/0 G*(s)dW (s) (4.32)

where v(t) = u(t) + a?Au(t) and 1 < p < oo.

Proof. Using (4.7) and Hoélder’s inequality, we have

N

(E </0T||vn(t)||2dt>2>é. (4.33)

The later quantity is uniformly bounded as a consequence of Lemmas 9, 10. From (4.33), we

can deduce that the sequence P, B(uy,vy,) is bounded in L?(2, F, P; L?(0,T;V")). On the other

T
E/ 1P B (un (t), vn ()| < C (E sup Hun(t)H4>
0

te(0,7)

hand, from Lemmas 8, 9, 10 and the Lipschitz conditions on F’ and GG, we have that the sequence
uy, is bounded in L (Q,]—", P L2(0,T; D(A%)) ALP (Q, F, P; L(0, T; D(A)), the sequence v, is
bounded in L(Q, F, P; L?(0,T; V))NL*(Q, F, P; L*°(0, T; H)), the sequence v, (0) is bounded in
L?(Q, Fo, P; H), the sequence u,(0) is bounded in L?(€2, Fy, P; D(A)), the sequence P, F(t,u,)
is bounded in L?(Q2, F, P; L?(0,T; H)) and P,G(t, uy) is bounded in L2(Q, F, P; L?(0,T; H®™)).

Thus with Alaoglu’s theorem, we can ensure that there exists a subsequence {u,s} C {u,}, and
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the functions u € LP(Q, F, P; L*(0,T; D(A%))) NLP(Q),F,P; L>(0,T7; D(A))),

ve LA(Q,F,P; L*0,T;V)) N L*(Q, F, P; L>(0,T; H)), B* € L*(Q, F, P; L*(0,T; V")),
F* € L2(Q,F,P; L*(0,T; H)), p1 € L*(Q, Fo, H), p € L*(Q, Fo, D(A)) and

G* € L*(Q, F, P; L?(0,T; H®™)) such that:

Up — win LP(Q, F, P; L2(0,T; D(A2))) N LP(Q, F, P; L®(0, T; D(A))), (4.34)
vy — v in L3(Q, F, P; L*(0,T;V)), (4.35)
Py B(uy,v,y) — B* in L*(Q, F, P; L*(0,T; V")), (4.36)
Py F(t,uy) — F*in L*(Q,F, P; L*(0,T; H)), (4.37)
v (0) = py in L?(Q, Fo, H)

Un (0) = p2 in L*(Q, Fo, D(A))

PyG(t,uy) — G* in L*(Q, F, P; L*(0,T; H®™)). (4.38)

Using the weak convergence above, we obtain from (4.14)

t t t t
v(t)—i—y/o Av(s) ds+/0 B (s)ds:vg—i-/o F*(s) ds+/0 G*(s) dW (s) (4.39)

for all t € [0, 7], where v(t) = u(t) + a®Au(t) and vo = ug + o Aug.
Referring then to the results of [46],[61],[47], we find that v has modification such that v €
C(0,T; H) a.s. which implies that u has modification in C(0,T; D(A)) a.s.. O

Step 2 :Proof of B*= B(u,v), F*= F(t,u) and G*= G(t,u)
For simplicity let us denote by {u,} the subsequence {u,}.
Let (X (t))icpo,r] be a process in the space L3(Q, F,P; L*(0,T;V)). Using the properties of A
and of its eigenvectors {wy, wa, ...}(A1, A2, ... are the corresponding eigenvalues), we have
[En X @) < [ X@ [P X (@) < [X (@) [X(8) — P X(2)] < [X(2)] (4.40)
BIX() = PuX (1) < (AX (1) — AP, X (8), X (1) — PuX(6))1r
=) N(X (1), w)?

< (AX(1), X (1))

< CIX@)P.
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Hence for dP x dt a.e. (w,t) € Q x [0,7T], we have
lim || X (w,t) — P X (w,t)|? = 0.

By the Lebesgue dominated convergence theorem, it follows that

T
lim | X (t) — P, X ()| dt = 0,

n—od 0

T
lim ]E/ | X (t) — P,X ()| dt = 0,
0

n—oo
and

lim E[X(t) - P,X()|> =0. (4.41)
Applying this result to X = v € L?(Q,F, P; L*(0,T;V)) or X = u, we have
Py — wvin L*(Q,F, P; L*(0,T;V)), (4.42)
Pyu — win L*(Q, F, P; L*(0,T;V)). (4.43)
With a candidate solution in hand, it remains to show that

B* = B(u,v), F* = F(t,u),G* = G(t,u).

In the next lemma, we compare v and the sequence v, = u,, + o Au,, at least up to a stopping
time 7, T T a.s.; this is sufficient to deduce the existence result. Here, we are adapting techniques
used in [5] and in [10].

Let m € N*, consider the F;- stopping time 7, defined by
t
T = inf{t; [u(t)|? —1—/ |v(s)||>ds > m?} AT.
0
Notice that 7, is increasing as a function of m and moreover 7,,, — T a.s. as m tends to co.

Lemma 12. we have

n—oo

lim E/ " lon(s) = v(s)|2ds = 0
0

Proof. Using (4.42), it suffices to prove that

lim IE/ | Pav(s) — vn(s)|2 ds = 0.
0

n—o0

Using equations (4.14) and (4.39), the difference of P,v and v,, satisfies the relation

d(Prv—vy,)+[vA(Ppv — vy) + P B* — Py B(up, vy)] dt = Py (F*—F(t,uy,))dt+P,(G*—G(t, uy)) dW.
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Let o(t) = exp{—nit — na fg |v(s)]|?ds},0 < t < T, with ny and ny positive constants to be
fixed later.

Applying Ité’s formula to the process o(t)|P,v — vy |?, we have

t t
U(t)an(t)—vn(t)|2+2ﬂv/0 0(t)||an(s)—vn(S)||2ds < 2/0 o(8)(B*(s)—B(un($),vn(8)), Pyv(s)—vs)yr ds
t

t
+2/ J(S)(F*(s)F(s,un(s)),an(s)vn(s))ds+2/ J(S)|Pn(G*(s)fG(s,un(s)))|2ds
0 0
t ¢
*(s) — G(s,un(s v(s) — v,(s —-n ols v(s) — vn(s)|? ds
2 [ oG (3) = Glsvuals). Pav(s) = va(s) AW =i [ o) Pro(s) = va(s) P
—ng/ a(s)|[v(s)||2|Pav(s) — vn(s)*ds. (4.44)
0

We are going to estimate the first three terms of the right hand side of (4.44).

For the first term, using the cancellation property (4.3) and (4.7), we have

(B* — B(un,vy,), Pyv — vp )y (4.45)
= (B*, Pyv — vp)yr + (B(up — Ppu, Ppyv), v, — Pyu)yr + (B(Pyu, Pyv), vy, — Pov)yr

< (B*, Pyv — vn)vr + Clun — Poul |t — Pouul| 1] Pav| || Pav| 2 [on — Pov|| + (B(Patt, Pav), vn — Pty

g

C
||UH2\vn — an\Q + §||vn — an”2 + (B(Pyu, Pyv), v, — Ppv)yr.

S <B*5P’I’L/U _Un>V’ + %

For the term involving F* and F', using the Lipschitz condition on F', we have
2(F* — F(t,up), Pyv — vy) (4.46)

< 2(F* — F(t,u), Pyv — vy) + 2(F(t,u) — F(t, Pyu), Pyv — vy) + 2Lp|Pyu — uy|| Ppv — vy

< 2(F* — F(t,u), Pov —v,) + 2(F(t,u) — F(t, Pyu), Pov — v,) + 20 Lp| Pov — v,|2.

For the term involving G* and G, using the Lipschitz conditions on G, we have
[P (G = G(t,un)) (4.47)

< 2L |Pyu — up|? + 2L% | u — Poul? 4+ 2(G* — G(t,u), Po(G* — G(t, up))) — |Pu(G* — G(t,u))|?

< 2L4|Pyv — vn |2 + 204 |u — Poul® 4+ 2(G* — G(t,u), Po(G* — G(t,u,))) — | Po(G* — G(t,u))|?.
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Taking into account (4.45)-(4.47), we obtain from (4.44) that

o (O Pav(t) — vt \2+2ﬂ/ )| Pat(s) — vn(s )!!2ds+2/ o(5) [ Pa(G* (5) — G(5,u(s))) [ ds
< 2/Oto(s)<B (s), Pyo(s) W ds+/ )| Jvn(s) — Pov(s)|> ds+
B/ $)|[Pru(s) — vp(s )H ds

+2 [ o(s)(B(Puu(s), Pyu(s)),vn(s) — Pyo(s))yrds + 4C’LF/0 o(8)|Pov(s) — vn(s)|* ds

S~

t

+4/ a(s)(F*(s)—F(s,u(s)),an(s)—vn(s))ds+4/ o(s)(F(s,u(s))—F(s, Pyu(s)), Pyu(s)—vn(s))ds
0 0
+ 4L20/0 o(3)|Pov(s) — vn(s)|? ds 4+ 4L% /0 o(s)|u(s) — Pyu(s)|* ds
+4/O o(s)(G"(s) = G(s,u(s)), Pa(G"(s) — G(s,u(s)))) ds
! 2 ! 2 2
[ o@IPw(s) ~ v ds = o [ o)1) = (o)
+ 2/0 a(s)(G*(s) — G(s,un(s)), Pov(s) — vp(s)) dW. (4.48)
Therefore, if we take ny = 4CLp + 4L2G and no = ﬁ%’ we obtain from (4.48)

IEU(Tm)]an(Tm)—vn(Tm)F—i—?)ﬂyE/ (s)||an(s)—vn(s)||2ds—i—QE/Om a(s)|Pn(G*(s)—G(s,u(s)))\Qds

<9E /0 " () (B (5), Pav(s)—n(s))y ds-+—+2E /0 " () B(Poul(s), Pav(s)), v (s)— Pav(s)hyr ds
+4E /Tm a(s)(F*(s) — F(s,u(s)), Pov(s) — vn(s)) ds
0
+ 4E/0 a(s)(F(s,u(s)) — F(s, Pyu(s)), Pyv(s) — vp(s)) ds

FALLE / " () [u(s)— Pou(s)|? ds+4E / T (5)(G(5)=G (5, u(s)), Po(G*(5)—Gi(s, u(s))) ds.
0 0
(4.49)

Next, we are going to prove the convergence to zero of each term on the right hand side of (4.49).
Here we use some basic convergence principles from functional analysis (see Appendix C).

For the first two terms, we have

B [ o6 B (). Pro(s)) = B (5),vals) — Puols)vrds =
0
E/O o(s)(B(Ppu(s), Pyu(s)) — B(u(s),v(s)),vn(s) — Pyu(s))yr ds

+ E/OTm o(s)(B(u(s),v(s)) — B*(s),vn(s) — Pyv(s))yrds. (4.50)
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From the properties of B, we have

|B(Pat, Pav) = Bu, v)llv-
< IB(Puu — 1w, Pyo)llys + [ Blat, Pyv — )y

< (1Pru = wll[| B[] + [[ull| o = o))

We have from (4.42) and (4.43)
1{[0,7,n)0 (1) B(Pru, Pyv) — B(u,v)|lv: — 0,as n — 00,dt x dP — a.e. (4.51)
im0 @) (B(Pot, Pav) = Blus o))l < Clu(o)] o) € 0., PiLX0,TiR)). - (452)
where I}0, 7] is the indicator of the interval [0, 7;,]. Using (4.35) and (4.42), we have
vp — Pov — 0 in L*(Q, F, P; L*(0,T;V)). (4.53)
Applying the results of weak convergence (see Appendix B), it follows from (4.51)-(4.53) that

Tm

lim E o(s)(B(Ppu, Pyv) — B(u,v),v,(s) — Pyv(s))yrds = 0. (4.54)

n—oo 0

Also as Iy, 10(t)B(u,v) — B* € L*(Q, F, P; L*(0,T; V")), we have from (4.53)

lim FE /OTm o(s)(B(u(s),v(s)) — B*(s),vn(s) — Pyu(s))yrds = 0. (4.55)

On the other hand, from (4.43), the Lipschitz conditions on F', G and the fact that v,, — P,v — 0
in L?(Q,F,P; L*(0,T; H)), we have

nlLrgOE/on o(s) (G(s,u(s)) — G(s, Pyu(s)),vn(s) — Pyv(s)) ds =0, (4.56)
nh~>H;o E OTm o(s) (F(s,u(s)) — F(s, Pyu(s)),vn(s) — Pyu(s)) ds = 0. (4.57)

Again from (4.53) and the fact that
F* — F(t,u) € L*(Q,F, P; L*(0,T; H)),

G* — G(t,u) € L*(Q, F, P; L*(0,T; H®™)),

we have

lim E/OTm o(s) (F*(s) — F(s,u(s)),vn(s) — Pyu(s)) ds =0, (4.58)

n—oo

lim E/OTm o(s) (G*(s) — G(s,u(s)),vn(s) — Pyu(s)) ds = 0. (4.59)

n—oo
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As
P, (G* — G(t,u,)) — 0 in L*(Q, F, P; L*(0, T; H®™)),
we also have
nan;oE/on a(s) (G*(s) — G(s,u(s)), Pu(G*(s) — G(s,un(s)))) ds = 0. (4.60)
From (4.54)-(4.60), and the fact that

exp(—miT —nom) < o 7,100 < 1,

we obtain from (4.49),

nh_)rgloE (|1Ppv(Tim) — vn (1) [?) = 0, (4.61)

lim B OTm 1Pav(s) — vn(s)||? ds = 0, (4.62)

E / "G () — G(s, uls)) 2 ds = 0. (4.63)
0

Now from (4.63) and the fact that the sequence 7,,, tend to T, we have
G (t) = G(t, u(t))

as elements of the space L?(Q2, F, P; L*(0,T; H®™)).
Also observe that (4.61) and (4.42) imply that

vnlo,r,] = vljor,,) in L2(Q, F, Py L*(0,T; V), (4.64)

where I 7, 1 is the indicator function of [0, 7,]. Let w € V. We have the following estimate

from B
‘(B(ua U) - PnB(una Un)v w)V" (4.65)
< [(B(u,v) = B(un, vpn), w)ve| + (I = Pn) B(tn, vn), w)y|

< Cllu = unlllv]} + flon = vll[[oalDlwll + CIT = Bp)wl[[[unl[[[vnl]

Thus from (4.65) and using Holder’s inequality, we have

E/m@M%NW—%H%@M$»WW%
0

= (E /on [uls) — Un(S)H2dS>% <E /OT HU(S)H2d5)é
+ (E/OTm [[vn(s) —”U(S)||2ds)é <E/OT an(S)Hst>2

+CWI—BMM<EATMM$WdQ%<EATMM$W®>% (4.66)
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Consequently, by (4.64) and (4.66), we have

lim E /O " Bu(),0(5)) — PoB(un(s), vn(s)), whyr ds = 0. (4.67)

n—oo

Taking into account (4.36), it follows from (4.67) that

E/Tm<B(u(s),v(s)) — B*(s),2(s))yrds =0 (4.68)
0

for all z € Dy (Q2x[0,T]), where Dy (2x [0, TY) is the set of functions ¢ € L>®(Q, F, P; L*>°(0,T;V))
with
Y =weo, ¢ € L®(Q x[0,T];R) and w € V.

Therefore, as 7, tends to T and Dy (Q x [0,T]) is dense in L?(Q, F, P; L*(0,T;V)), we obtain
from (4.68) that B(u(t),v(t)) = B*(t) as elements of the space L?(2, F, P; L*(0,T; V")).

Analogously, using the Lipschitz condition on F' and (4.64), we have F(t,u(t)) = F*(t) as
elements of the space L?(Q, F, P; L?(0,T; H)). And the existence result follows. O

4.4.2 Uniqueness

Let u; and ug two solutions of problem (4.13), which have in D(A) almost surely continuous

trajectories with the same initial data ug. Denote
— 2 . _ 2
v =uy + o Auy; vy = ug + a“Aug,
V= V1 — Vg; U =uy — ug.

By Ité’s formula, we have

!’U(t)!2+2/0 <Av(8)7v(8)>w+2/0 (B(ui(s), v1(s)) — B(ua(s),va(s)), v(s))v  (4.69)

= 2/ (F(s,ui(s)) — F(s,ua(s)),v(s))ds + 2/ (G(s,ui(s)) — G(s,ua(s)),v(s))ds
0 0
+ ; |G (s,ui(s)) — G(s,ug(s))\%@m ds.
Take A > 0 to be fixed later and define

= b t v1(s)||? ds —
o(t) = cap{~ /0 lon(s)]2 ds — ).

Applying Ité’s formula to the real-valued process o(t)|v(t)|?, we obtain from (4.69)
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o (Ol + 28y /0 o(s)]lo(s)]? ds (4.70)

IN

2 /Ot o(s)(B(u(s),v1(s)),v(s))yrds + 2 /Ot o(s)(F(s,u1(s)) — F(s,ua(s)),v(s))ds

+2 / o(5) (G5, u1(5)) — G(s, ua(s)), v(s)) AW (s) + /0 0(5)|G (5, u1(5)) — G5, un(5)) Zrom ds
— [ SRt ds = [ Aot ds

0
But from (4.7), we have

(B(u(s), v1(s)), v(s))vr
< Clu(s)| [[u(s) |7 o ()] [[u(s)]
< Clo(s)] |u(s)] 3 [[or () [[v(s)]

C 5 P

< gplnts EF) + v,

and from the conditions on F' and G, we have
(F(s,u1(s)) — F(s,u2(s)),v(s)) < Lrfv(s)|?,
|G (s,u1(8)) — G(s,u2(8))| gom < Lg|v(s)].

We then obtain from (4.70)

o(1)o(t)? + 26 /0 o(s)[[v(s)]1? ds (4.71)

t
5/ 9)llon()Zv(s) 2 ds + ﬂ/ H2ds+2Lp/0 o()]v(s)[2 ds

2 / o(5)(G(s, u1(8)) — G(s, ua(s)), v(s)) AW (s) + L% /0 o(s)[o(s)[? ds

0

IN

Taking A = L% and b = C, we obtain from (4.71)

(B2 + ?’Vﬁ/ $)lv(s)|2 ds (4.72)

< oLy / o(s)[o(s)? ds + 2 /0 o(5)(G(5,u1(5)) — G(s, ua(s)), v(s)) AW (s)

for all ¢ € [0,T].

As 0 < o(t) <1, the expectation of the stochastic integral in (4.72) vanishes, and

Eo (1) u(t)]? < 2LGE /O o (s)u(s)|? ds,
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for all t € [0,7]. The Gronwall’s Lemma implies that
lv(t)] =0, P —a.s. for all te0,T],

in particular

u(t) =0, P —a.s. for all te[0,T].

This completes the proof of the uniqueness.

4.5 Proof of Theorem 8

To prove the convergence result of Theorem 8, we need Lemma 18 from [5]. We recall the proof

in the appendix.

It follows from (4.62) and (4.42) that

lim E/OTm lon () — v(t)]|2 dt = 0. (4.73)

n—oo

Also from (4.61) and (4.41), we have

lim E|vy (1) — v(rm) > = 0. (4.74)

n—oo
Applying Lemma 18 to Q,(t) = fot |vn(s) — v(s)||?ds and o, = 7o, and taking into account
the estimate of v, in Lemmas 9,10, (4.73) and the uniqueness of v (or u), one obtains that the
whole sequence v,, defined in (4.14) satisfies

t
lim E/ on(s) — v(s)[2ds = 0
0

n—oo

for all t € [0,T]. Next, using the expression of v,, and v, we deduce that

t
lim E/ |un(s) —u(s)||> 4 ds=0.
0

n—o0 D(A2)

Analogously, applying Lemma 18 to Q,(t) = |v,(t) — v(¢)|?> and 0, = T, and taking into
account (4.74), the uniqueness of u and the estimate of v, in Lemmas 9,10 we have that the
whole sequence v, defined by (4.14) satisfies lim,, .o E|vy,(t) — v(t)|?> = 0. Using the expression
of v, and v, we have lim,,_, o E||uy(t) — u(t)H%(A) =0 for all t € [0,7]. This complete the proof

of Theorem &.



&

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 4. STRONG SOLUTION FOR THE 3D STOCHASTIC LERAY-o« MODEL 74

4.6 Asymptotic behavior of strong solutions for the 3D stochas-

tic Leray-a model as a approaches zero

The purpose of this section is to study the asymptotic behavior of strong solutions {uq }a>0 for
the 3D stochastic Leray-a model as a goes to zero. This will be carried out by investigating the
weak compactness of these strong solutions as a approaches zero. One of the crucial point is to

show that

T
E sup / [ta (t + 0) = ua(t)[Hay dt < C3,
0<|0|<6<1 Jo

where C' is a constant independent of . To do this, we adopt the method developed for the
deterministic 3D Leray-a equations [75]. In this method, an important role is played by the
operator (I + a?A)~!. Here our line of investigation follows Chapters 2 and 3 of this present

thesis.

4.6.1 Tightness of strong solutions for the 3D stochastic Leray-a equations

In this subsection, we prove the tightness of strong solutions of the 3D stochastic Leray-a

equations as a approaches zero. The main result of this subsection is the following lemma

Lemma 13. Suppose the hypotheses (4.9)-(4.12) hold, and ug € D(A) and non random. Let

uq be a strong solution for the 3D stochastic Leray-o equations. We have !

T
E sup / |ua (t +6) — ua(t)ﬁ)(m, dt < (9,
o<lol<s<1Jo

where C' is a constant independent of a.

Proof. We recall that D(A) =D (A™!).
From (4.13), we have

d(I + 02 A)ug + vA(ug + 02 Aug )dt + B(ug, ug + o Auy) dt = F(t,uq) dt + G(t, ug) dW. (4.75)
Note that I + a?A is an isomorphism from D(A) onto H and
(2 + o A) M ey < 1.

From (4.75), we have

dug + vAuadt + (I 4+ a?A) ™ B(ug, va)dt = (I +a*A) " F(t ug)dt + (I + *A) 1 G(t,us) dW,

L, is extended by 0 outside (0,T)
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where v, = uq + a2Au,,.

We deduce that

!A_le(ua(t +0) = ua(t))| (4.76)

t+

/t (JANI + o A) T (1, ua ()| + viua(T)] + [AHI + o A) 7 B(ua (1), va(7))|) dr
t+6

+ AHI + ?A) 7 G (1, ua (1)) dW (1)) .

t

We estimate the first terms of the left hand side of (4.76) using (4.6) and the Lipschitz condition
on I

[ATH I + @A) B(ua(r), va(7))| < [AT' B(ua(7), va (7))
< Clua(7)|[[va(T)]],
[ATHI + @A) TR (7, ua(7))] < JATF(1,ua(7))] < C(1L+ Jua(7)])-

Collecting the above inequalities and taking the square in (4.76), we have

2

t+6
|A N (ua(t + 0) — ua(t))]* < CO* + Cy </t " [ua(T)| d7'>

402 </tt+9 1o (7)) dr) “re (/ttw ftae ()] [5(7)| dT>

t+60
/ ATYI + a®A) G (r, ua (7)) AW (7)

2

2
+

For fixed 4, taking the supremum over 8 < § yields

sup |A*1(ua(t +0)— ua(t))|2 < C8% +TC16% sup \ua(7)|2

0<6<8 T7€[0,T
t4+6 2
Ly sup fua(r)P? ( / Ilva(ﬂHdT)
T7€[0,T] t
40 2
+ sup / AY(I + 02 A) LG, ua (7)) AWV (7)
0<0<6

For ¢, we integrate with respect to ¢t over the interval [0, T — §] and take the expectation. We

deduce then

T

E sup / A~ (g ( + 0) — ua (1) dt < CO* + TCFE sup |ug ()

0<0<s.Jo e[0,7]
2

t+6
+ C4E sup |uq(T |/ </ [|va( )|d7’) dt
T€[0,T]

46 2
+E / sup
0 0<0<é

AN I + a2 A) 7 G (1, un (7)) dW (1)| dt.
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By Holder’s inequality, we have

T t+8 2
E sup ]ua(r)\Q/ (/ Hva(T)HdT> dt
T7€[0,7T 0 t

T
< §’E sup |ua(7')’2/ H%(T)HQCZT
0

T€[0,T
T 273
E(/ Hva(T)HZdT)] .
0

Using the estimates of Lemmas 8, 9, 10, we obtain

T t+6 2
E sup \ua(r)\Q/ (/ Hva(T)HdT) dt < 08
0 t

7€[0,T]

1
2
< 2 <E sup \ua(7)|4>

T7€[0,T

where C' is a constant independent of a.

Next, using martingale inequality, we have

2

T t+0
]E/ sup / AT+ 02A) " Gls, ua(s)) dW(s)| dt
0 0<6<d|Jt
T t+0
SE/ (/ \Al([—l—aQA)1G(s,ua(s))]2ds> dt
0 t
T t+6
< CE/ (/ (1+ |ua(s)|2)ds> dt
0 t
< C6.
Collecting the above results, we finally obtain
T
E sup / |ua(t +0) — ua(t)%(A), dt < O,
0<6<6<1Jo
where C' is a constant independent of . O

Remark 6. From Lemma 9, we have

E sup [ua(t)]’ < Cp.
te[0,7

Also from Lemma 8, we have
T
E/ |ua(s)||?ds < C,
0

where C' is constant independent of «.

From the estimate of Lemma 13 and Remark 6, we derive the following Lemma which will

be useful to prove the tightness of u,.
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Lemma 14. Let v, and p, two sequences of positives real number which tend to 0 as n — oo.

The injection of

1
1 T 2
D=1{qe L>0,T; H)NL*0,T; V);supy— sup (/ lg(t +6) — q(t)]QD(A), dt) < 00
n Yn |0]<pn \JO
in L?(0,T; H) is compact.
Proof. See Appendix A, Proposition 6. Take By = D(A), By =V, By = H. O
We define
Sy = C(0,T; R™) x L*(0,T; H)

equipped with its Borel o-algebra B(552).
For a € (0,1), let
Oh:0Q— S iwr— (W(w,.),ua(w,.)).

For each a € (0, 1), we introduce a probability measure II, on (S2, B(S2)) by

where A € B(S).
In the next proposition, using the preceding Lemma, we can prove the tightness of Il,. Its proof

follows the same lines as in the proof of Theorem 5, Chapter 2.

Proposition 5. The family of probability measures {I; o € (0,1)} is tight in (So, B(S2)).

4.6.2 Approximation of the stochastic 3D Navier-Stokes equations

In this section, we prove that the probabilistic weak solutions of the stochastic 3D Navier-
Stokes equations is obtained by a sequence of solutions of the 3D stochastic Leray-a model as
« approaches zero. The result also gives us a new construction of the weak solutions for the 3D

stochastic Navier-Stokes equations.

Application of Prokhorov’s and Skorokhod’s results

From the tightness property of {II,;0 < o < 1} and Prokhorov’s theorem, we have that there
exists a subsequence {Il,;} and a probability measure I such that Il,, — II weakly. By
Skorokhod’s theorem, there exist a probability space (€2, F, P) and random variables (Waj yUe),
(W, @) on (Q,F, P) with values in S such that:

the law of (Waj,ﬂaj) is TIla;,
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the law of (W,ﬂ) is I,
(W, iia,) — (W,a) in Sy P—a.s. (4.77)
Hence {Waj} is a sequence of an m-dimensional standard Wiener process.

Let
Fi=o{W(s),i(s) : s < t}.
Arguing as in Chapter 2, we can prove that W is an m-dimensional F; standard Wiener process

and the pair (Waj,&aj) satisfies

(B (1), ®) + v /0 (B, (5), AD) ds + /0 Bliin, (), a, (5), ) ds (4.78)

= (up + a?Aug, @) —1—/0t(F(s,ﬂaj(s)),<I>)ds+ (/Ot G(s,aaj(s))dmj(s)@),
for all ® € V, where
Vo (8) = T, (5) + a?A&aj(s).

The main result of this section is the following theorem
Theorem 9. Suppose the hypotheses (4.9)-(4.12) hold, and uy € D(A). Then there is a subse-
quence of U, denoted by the same symbol such that as iy — 0, we have:

Uo; — U strongly in L*(Q,F,P;L*0,T;H)),

o, — @ weakly in L*(Q,F,P;L*(0,T;V)),

Uo; — U strongly in L*(Q,F,P;L*0,T;H)),
where (2, F, (ﬁt)te[O,T]a P, W, w) is a weak solution for the 3D stochastic Navier-Stokes equations

with the initial value u(0) = ug. (See [2] for the definition of weak solution of the 3D stochastic

Navier-Stokes equations).

Proof. From (4.78), it follows that i, satisfies the estimates

E sup |tie, ()P < Cp; (4.79)
0<s<T

E sup |ia,(s)]” < Cp,
0<s<T

T
E sup / i (£ +6) — T (D) 0y lt < C5,
0<0<6 JO

B( [ ' e, ()P ds) <

" " T
E sup [|6a, ()] + 4v5E / 0 ()| ds < C1, (4.80)
0<s<T 0
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where E denote the mathematical expectation with respect to the probability space (Q, F, P).
Thus modulo the extraction of a subsequence denoted again @,,; (with the corresponding v, ),

there exists two stochastic processes u, v such that

oy =0 in  L*Q,F,P;L*(0,T;V)), (4.81)
and

)
E sup / |ﬂ(t+0)—ﬂ(t)|2D(A), dt < C6.
0<0<8 J§

By (4.77), the estimate (4.79) and Vitali’s Theorem, we have
o, — @ in L*(Q,F,P;L*0,T; H)). (4.82)

Thus modulo the extraction of a new subsequence and almost every (w,t) with respect to the
measure dP® dt

ﬂaj —u in H.
Taking into account (4.82) and the Lipschitz condition on F', we have
t t o
/ F(s,iiq,(s)) ds — / F(s,u(s))dsin L*Q,F,P;L*0,T; H))
0 0
Arguing as in Chapter 2, we can prove that
t N t N o
/ G(5,1a,(s)) dWa, (s) — / G(s,(s))dW (s) inL*(Q,F,P;L>®(0,T; D(A))) weakly star.
0 0

We also have

T T
IE/O \f}aj(t)—ﬂaj(t))|2dt:a?E/O 02| At (1) 2 dt.

We then deduce that
ba; — @ in L*(Q, F, Py L*(0,T; H)) (4.83)

since by the estimate (4.80), we have

. T
E /0 02| At (1) dt (4.84)
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is bounded uniformly in o;.
From (4.81) and (4.83), we have o(t) = a(t) a.e. in dP x dt.

We are going to prove that
t
/ Bt (5), D, (s 34/ ds in L*(Q,F, P;L*(0,T; D(A)")).
0
Indeed, let ® € V. From (4.4),(4.6) and (4.8), we have

/0 (Biia, (), 5, (5)), ®) pay — (B(a(s), a(s)), ®) pay ds

= [ By ()~ 551y (1) @)y + [ (BE) Ty ) — 50, @)y
0 0

= [ Bliay () = 0(s), 70, (1) hpayeds = [ (BG(5), @), () — (s)) ds
0 0

<c /0 i, (5) — 1()| [, ()| A®| ds + C /0 lt(s)]||AD| |5, (5) — i1(s) ds.

Further, by Holder’s inequality

E ( [ B0, 61 0, (9), By — (BLa(5) 59) Doy ds) (4.85)

< C’|A<I>\< /|ua (s \st> </Hva H2d8>
+ola| (& [ Hﬂ(s)llzds>2 (B [ 109 —a<s>12ds)2

It then follows from (4.82), (4.83), (4.85)
t t
/ Bliia, (5), 7, (5)) ds 4/ Bla(s), a(s)) ds in L2(, 7, P; L(0, T; D(A))).
0 0
Collecting all the convergence results and passing to the limit in (4.78) to obtain
t t
(i(t), @) + v / (ii(s), A®) ds + / (Bii(s), (), B) pray ds = (o, )
0 0
t t N
+/ (F(s,a(s)), ) ds +/ (G(s,a(s)), D) AT ().
0 0

This completes the proof of Theorem 9.
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Chapter 5

Appendices

Here, we summarize some important results that were used in the previous chapters. For the

convenience, we recall some proofs

Appendix A : A compactness result

The following compactness result as been useful in the proof of tightness of a family of proba-

bility measures.

Let By, B1, B2 be three separables Hilbert spaces such that
Bo C Bl C Bz, (5'1)

each space being densely embedded in the next one with the continuous injection. We assume,
moreover that

the injection of By — B is compact. (5.2)

We also identify Bs to its dual.

Proposition 6. ([1], Proposition 3.4; p.274) For any sequences of positives real numbers i, vy,

which tend to zero as n tends oo, the injection of !
1
1 T 9 2
Z=1{qe L*0,T;B1)NL>®(0,T; By) : sup — sup (/ llg(t +6) — q(t)HBé dt) < 00
0

n Vn 10]<wn

in L2(0,T; By) is compact.

1q is extended by 0 outside (0,T)

81
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To prove this proposition, we need the following lemma

Lemma 15. (see [52], p.59) Under the hypotheses (5.1) and (5.2), we have ¥n > 0, there exists
C,, such that

[0, < nllvll, + Chllvlls (5:3)

for allv € By.

Proof. of Lemma 15

Suppose that (5.3) is false. Then for all n > 0, there exists v, € By and C,, — oo such that

[onll B, > nllvnllsy + Cllon| 5y

Let
Un
Wy, = .
[vnll By
Then
[wnl[B, > 1+ Chllwn| 5, (5.4)

and ||wn”B2 < C”wnHBl <C.
(5.4) implies that

Jewall, — 0. (5.5)

But ||wy||g, = 1 and the injection of B; — Bj is compact, then we can extract a subsequence
of (wy) denoted again by (wy,) which converges strongly in Bz and from (5.5) this subsequence
converges to 0, and we have ||wy| p, — 0 which contradict (5.4). And we have the proof of

Lemma 15. O
Now, we give the proof of Proposition 6.

Proof. Let (z1) be a sequence in Z. We shall show that we can extract a subsequence which
converges strongly in L%(0,T; Bs).

We can extract a subsequence still denoted (zj) and z such that
zx — 2z in L*0,T;B;) weakly (5.6)

and

zp =z in L*(0,T;Bz) weak — star.
Since the injection of By — Bs is compact, from Lemma 15, for any € > 0, there is a constant
C'(g) such that

lell, < ellels, + Cle)lell,



A 4
CHAPTER 5. APPENDICES 83

for all ¢ € B;.

Hence
T T T
| a0~ 20l e < e [ oo - =0, dt+ 0@ [t - 01, d
0 0 0
T
< Ce+C(e) /0 lex(t) = 2(0)I12, dt. (5.7)

We have used the fact that fOT l2%(t) — z(t)||%, dt is bounded. Therefore, to prove that the left
hand side of (5.7) tends to 0, it is sufficient to prove that

T
| et = =0, at =0, 6

Consider a function ¢ € C§°(R), 1 > 0, f+°° t)dt =1, supp(¢) = [—1,1] and the mollifier

Rty =2 [ e

Ju(s) ds
1
= —/ u(t —es)y(s)ds. (5.9)

Pick any function u € L?(0,T}; B}) which we extend by 0 outside (0,T). We have

/OT||REu(t) ()l dt < 0/ U lu(t — es) —u(®)|3 dt] ds.

We apply it with u = 2, = 2z — 2z and € = pu,,, we have

[ 10 - i< € [ [N m) - 2013 ) o

< 20V M. (5.10)

From (5.6), we have

t — s
R, Z1(t) / U( )ZK(s)ds — 0
Mn
as k — oo in By weakly for any n > 1,t € [0, T].
Since the injection of By — By is compact, the injection of By — By is also compact. Therefore,

we have

as k — oo in B strongly.
Then
IR 503, < Co

where C), is a constant independent of k. We have

Ry, % — 0 (5.11)
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as k — oo in L%(0,T; Bf) strongly.
(5.10) and (5.11) imply (5.8). This complete the proof of Proposition 6.

Appendix B: Basic convergence results

For the convenience of the reader, we recall some basic convergence results.

Proposition 7. ([76],Proposition 10.13, P.480) Let (x,) be a sequence in a Banach space S.

Then the following assertions hold:

i) If S is reflexive and (x,,) is bounded in S, then (x,) has a weakly convergent subsequence.
If, in addition, every weakly convergent subsequence of (x,,) has the same limit x € S, then

(zn) converges weakly to x.

i1) If every subsequence of (z,) has a subsequence which converges strongly to the same limit

x €S, then z, — .

Proposition 8. ([76], Proposition 21.27, P.261) Let X; and X2 be Banach spaces and L :
X1 — Xag be a continuous linear operator. If (xy) is a sequence in X1 such that x, — x in X,

then L(zy,) — L(z).
Proposition 9. (/76], Proposition 21.23, P.258) Let X be a Banach space
i) Then, it follows from

U, —u m X as n — oo

fao—=f in X' as n— oo (5.12)
that (fn,un) — (f,u) as n — oo.
ii) If X is reflezive, then it follows from

U, —u m X as n— oo

fao—f in X' as n— oo (5.13)
that (fn,un) — (f,u) as n — oo.

i) If (up) is bounded in X and if there exists u € X and a dense set D in X' such that

(fun) — (f,u)
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as n — oo for all f € D, then

Up — U X

as mn — Q.

Appendix C: Probabilistic background

We have used in this thesis two deep compactness results due to Prokhorov and Skorokhod. In
order to formulate these results, we need the concept of tightness of probability measures. Let

E be a separable Banach space and let B(E) be its Borel o-field.

Definition 6. A family of probability measures P on (E,B(E)) is tight if for arbitrary e > 0,

there exists a compact set K, C E such that
nKe) =1—e¢

for all p € P.
A sequence of measures {un} on (E,B(E)) is weakly convergent to a measure p if for all con-

tinuous and bounded functions ¥ on E,

i [ W) (dr) = / W () p(da).

n—oo E E

The following result due to Prokhorov (see [65]) shows that the tightness property is a

compactness criterion.

Lemma 16. A sequence of measures {u,} on (E,B(E)) is tight if and only if it is relatively

compact, that is there exists a subsequence {fin, } which weakly converges to a probability measure

L

Skorokhod proved in [68] the next result which relates the weak convergence of probability

measures to that of almost everywhere convergence of random variables.

Lemma 17. For an arbitrary sequence of probability measures {u,} on (E,B(E)) weakly con-
vergent to a probability measure p, there exists a probability space (0, F, P) and random variables
X, X1, ..., Xn, ... with values in E such that the probability law of X, is py, the probability law
of X is p and lim, o X, = X, P —a.s..

Recent account of Prokhorov’s and Skorokhod’s results can be found in [26].
We used the following result from [5] to prove the convergence of our Galerkin schemes (4.14)

introduced in Chapter 4. For the reader’s convenience, we recall the proof.
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Lemma 18. Let (Q,) be a sequence of real-valued processes from the space L*(Q, F, P; L*(0,T; R)).

Let (Tar)ar and T be Fy- stopping times such that

lim P(my <71)=0.

M —o0

We also assume that for each fixed M, we have
lim E|Q,(ma)| =0
n—oo
and there exists a positive constant C independent of n such that

sup E\Q,n(T)]2 <C.
neN
Then

lim E|Qu(r)| = 0.

n—oo

Proof. Let €,6 > 0. There exists My € N such that

P(TMO <7')§

DN | ™

By the hypothesis it follows that for this My, we have
lim E|Qn(1ar)| = 0.
n—oo

Consequently, there exists ng € N such that

S Qu(ri)| <

N ™

for all n > ng. We write

[©)

P(|Qn(r)| 2 0) < 5 + P(I@n(7as)| 2 9)

™

1
<+ S BlQn(rin)]

IA
(CTRONN

+-=¢ (5.14)

| ™

for all n > ng. Hence, for all § > 0 we get
lim P (|Qn(7)| = 6) = 0.
n—oo

Therefore, the sequence (|@,(7)|) converges in probability to zero. From the hypothesis, it
follows that this sequence is uniformly integrable (with respect to w € Q). Hence it converges

also in mean to zero that is

lim E|Qn(7)| = 0.

n—oo
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Appendix D : Uniform integrability and Vitali’s theorem
Let (92, F, P) be a probability space

Definition 7. A family {f;};jcs of real measurable functions f; on § is called uniformly inte-

lim | sup / |fildP 3 | = 0.
M—oo \ jes | J{If;1>M}

One of the most useful tests for uniform integrability is obtained by using the following

grable if

concept:

Definition 8. A function ¢ :[0,00) — [0,00) is called a uniform integrability test function if ¢

ba) _ oo

18 increasing, conver and lim,

So for example 1 (x) = 2P is a uniform integrability test function if p > 1.

The justification for the name in the preceding definition is the following:

Theorem 10. The family {f;};jes is uniformly integrable if and only if there is a uniform

integrability test function ¢ such that

sup { [ wshar} <.

One major reason for the usefulness of uniform integrability is the following result ( Vitali’s
theorem), which may be regarded as the generalization of the Lebesgue convergence theorem in

integration theory. Its proof can be found in [37]

Theorem 11. ( Vitali’s theorem)
Suppose (fk)',jjl’o is a sequence of real integrables functions on ) . Let f be a real function on
Q such that

fr — f in probability.
Then the following are equivalent :
1) (fx) is uniformly integrable.

2) fe LNQ,F,P;R) and f, — f in L}Q,F, P;R).



&

5

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Conclusion

We proved the existence of probabilistic weak solutions for the stochastic 3D Navier-Stokes-
« model under non Lipschitz conditions on the coefficients. We also studied the asymptotic
behavior of weak solutions to the stochastic 3D Navier-Stokes-« model as a approaches zero in
the case of periodic boundary conditions.

Furthermore, we showed the existence and uniqueness of strong solution to the stochastic 3D
Leray-a equations. We also investigated the asymptotic behavior of the strong solution as «
approaches zero.

In [23], Millet and Chueshov proved the large deviation principle for small multiplicative noise for
a class of abstract nonlinear stochastic models, which covers the 2D Navier-Stokes equations, the
2D Magneto-hydrodynamic models, the 2D Magnetic Bénard problem, the 3D Leray-a model
and some shells models of turbulence. However, this abstract nonlinear stochastic models does
not cover the case of 3D Navier-Stokes-a model. In our future work, we intend to study the large

deviation and the long time dynamic (random global attractor and ergodicity) of this model.
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