-

2

Tl

IVERSITEIT VAN PRETO
VERSITY OF PRET
| ET

UN
UNIVE
YUNIBESITHI YA PR

Hardcoding Finite Automata

By
ERNEST KETCHA NGASSAM

Supervisors:

Bruce W. Watson and Derrick G. Kourie

Submitted in partial fulfilment of the requirements for the degree of
MAGISTER SCIENTIA (Computer Science)
in the Faculty of Engineering, Built Environment and Information Technology
University of Pretoria
NOVEMBER 2003

© University of Pretoria

EIT VAN PRETORIA
TY OF PRETORIA
THI YA PRETORIA

To Maurice €& Madeleine Ngassam, late Pierre Tatchou

Tchoukwam, late Pauline Tchetgnia, & late Jean Petji.

1

Abstract

The so-called conventional approach to implement finite automata is by mean of a matrix
to represent the transition function. Of course, if the transition table is very sparse, linked
lists might be used as an alternative. Such approaches therefore depend on the computer’s
main memory capabilities to optimally hold the table for better processing.

For various computational problems using finite automata as a basic solution-model, the
processing may be an important factor to be considered. This work aims to investigate a
relatively new implementation approach that relies on hardcoding. A hardcoded algorithm
uses simple instructions to represent the transition table. The algorithm is written in such
a way that the transition matrix is part of its instructions as opposed to the traditional
table-driven approach in which the table is external data that is to be accessed by the
algorithm. This work includes a general performance analysis of both approaches through
an empirical study. We firstly investigate the processing speed required to accept or reject
a symbol by some randomly generated single states of some automata. Then, a more
advanced experiment is performed based on the previous, for the test of acceptance of
randomly generated strings by randomly generated finite automata .

The main result of this work is that the hardcoded implementations of finite automata
outperform the table-driven implementation up to some threshold. This therefore empha-
sizes that many applications using finite automata as basic model may be optimized by
replacing the table-driven implementation with a hardcoded implementation, resulting to
better performances.

Keywords: Hardcoding, Automata, Pattern matching, Lexical analyzer, Algorithms,

Experimentation, Performance, Grammars, Language, Parsing

iii

Acknowledgements

I would like to thank Derrick G. Kourie and Bruce W. Watson, my supervisors, for
their constant supports and unterminated suggestions during this research.

All my gratitude to Professor Bruce Watson for providing me the idea leading
to the achievement of this work. Many thanks to Professor Derrick Kourie for its

constant proof reading and critics throughout this research.

Of course, I am grateful to my parents, Maurice and Madeleine Ngassam, for their
patience and love. Without them this work would never have come into existence.
My thanks go also to my daughter Orline Ketcha, my son Ryan Ketcha, and my wife
Liliane Ketcha who provided me with all the moral support needed to achieve such a

work.

Finally, I wish to thank the following: Lisette Ngassam, Guy Ngassam, Laurent
Ngassam, Mirabelle Ngassam, Orline Ngassam and Floriant Ngassam for their con-
stant support and love through the path of achieving this goal.

Pretoria Ernest Ketcha Ngassam
October 31, 2003

Table of Contents

Abstract

Acknowledgements

Table of Contents

List of Tables

List of Figures

1

Introduction

1.1 The Problem
1.2 FAsin Context
1.3 Objective of the dissertation
1.4 Methodology
1.5 Dissertation Outline

Background and Related Work

2.1 Introduction

2.2 Finite Automata
2.2.1 Deterministic Finite Automaton (DFA)
2.2.2 Complexity of DF' A String Recognition
2.2.3 Non-Deterministic Finite Automata (NFA)
2.2.4 Equivalence DFAand NFA

2.3 Finite Automata and Regular Expressions
2.3.1 Operands and Operators of a Regular Expression
2.3.2 Equivalence of Finite Automata and Regular Expressions . . .
2.3.3 Summary of the Section

2.4 Pattern Matching L oo
2.4.1 General Pattern Matching Algorithm

i

iv

viii

2.5

2.6

2.7

2.8

2.4.2 String Keyword Pattern Matching and Finite Automata

2.4.3 Summary of the section
Lexical Analysis
2.5.1 Summary of the section
Context Free Grammars
2.6.1 Definition
2.6.2 Context Free Grammars and Regular expressions
2.6.3 Push Down Automata
2.6.4 Parsing and Code Generation
Related Worko
271 Pennello
2.7.2 Horspool and Whitney
2.7.3 Bhamidiapaty and Proebsting
Summary of the chapter

Problem Domain Restriction

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

IntrodUetion « « = + = s 5 5 ¢ 25 ¢ 5 ¢ 98 « ® s ® 68 @ ¢ F ¢ mEE @
The Table-Driven Algorithm
The Hardcoded Algorithm,
Comparison of Hardcoding and Table-Driven Algorithms
Problem Restriction.
Single Symbol Recognition L.
Hardcoding Single Symbol Recognition
SUMIMALY .+« o v v v v v o e e e e e

Tools and Methodology

4.1 Introduction
4.2 Hardware Considerations
4.3 Software Considerations
4.4 The Intel Pentium Read Time Stamp Counter Instruction
4.5 Random Number Generation
4.6 Methodology
4.7 Chapter Summary
Implementation

5.1 Introduction
5.2 The Random Transition Array
5.3 Table-Driven Implementation
5.4 Hardcoded Implementations

5.4.1 Use of the Nested Conditional Statements
5.4.2 Use of the Switch Statements

Vi

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

YUNIBESITHI YA PRETORIA
54.3 UseofaJump Table 69
544 Useof a Linear Search 72
545 UseofaDirect Jump 74
5.5 Data Collection 76
5.6 summary of the chapter 0o 78
6 Experimental Results 79
6.1 Introduction: 79
6.2 Table-Driven Experimental Results 79
6.3 Hardcoding Experimental Results 80
6.3.1 High-Level Language Hardcoding 81
6.3.2 Low-Level Language Hardcoding 83
6.3.3 Overall Results of Hardcoding 87
6.4 Final Results e 88
6.5 Summaryof the chapter . o « « v 5 o = % c0 % ¢ o 65 68 5 5 5 5 % 5 3 89
7 String Recognition Experiments 94
7.1 Introduction: 94
7.2 Exercising Memory on Intel Pentium Architecture 95
7.2.1 A Simple Experiment and Results 97
7.3 The String Recognition Experiment 104
7.3.1 Experimental Results, . 107
7.4 Summary of the Chapter 111
8 Summary and Future Work 113
81 Summary and Conclusion 113
8.2 Future Work 118
A Random Number Generator 120
B Data Collected 126
Bibliography 137

vil

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(0}@

List of Tables

3.1

B.1
B2
B.3
B4
B.5
B.6
B.7
B.8
B9

Evaluation of algorithm 3and 4 43
The Table-driven Experiment Data 128
The Switch Statements Data 129
the Nested Conditional Statements Data 130
The Jump Table Data. 131
The Linear Search Data 132
The Direct Jump Data, L. 133
Averaged Data collected independently to the problem size 134
Sample Data for the two-alphabet symbols Experiments. 135
Sample Data for the String Recognition Experiment with Searching

ald DIirect JOteRifis . « o « o 5 5 ¢ ¢ ¢ 5w omos s oE v R L w 68 ® 8 3 136

viil

UNIVERSITY OF PRETORIA
Que® YUNIBESITHI YA PRETORIA
List of Figures

21 Afiniteatitomaton : « « s 5 « & 5. ¢ 3 % 5 8 55 €5 W E 8§ h ok 9
2.2 A state transition diagram oL 9
2.3 A Push Down Automaton 21
3.1 A state in the transition diagram of some finite automaton 47
3.2 A transition array for a state of some automaton 47
4.1 Process diagram indicating how the hardcoded implementation were

compared to the table-driven implementation 56
6.1 Average processing speed for Table-driven implementation (accepting

and rejecting symbols) 80
6.2 Accepting symbol performance for NCSs 82
6.3 Rejecting symbol performance for NCSs 83
6.4 Performance based on ASs for S§s L. 84
6.5 Performance based on RSs for S§s 85
6.6 Performance based on hardcoding implementation in high-level language 86
6.7 Performance based on ASs for JT L. 87
6.8 Performance based on RSs for JT 88
6.9 Performance based on ASs for LS 89
6.10 Performance based on RSs for LS 90
6.11 Performance based on ASs for DJ 91

6.12 Performance based on RSsfor DJ, 91

IX

6.13 Performance of low-level hardcoded implementations

6.14 Performance based on hardcoding implementation

6.15 Average processing speed per implementation technique

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Hardcoded time against automaton size for two symbols alphabet
Table-driven time against automaton size for two symbols alphabet
table-driven and hardcoded multiple states for two symbols alphabet
Table-driven and hardcoded performance using linear search
Table-driven and hardcoded performance using direct index
Table-driven and hardcoded performance using direct index

Performance based on searching and direct indexing

http:overa.ll

http:present.ed

http:C'V'Clline.ar

http:vr"\J~Ny.1l
http:r:lilP.r1

116

The final experiment performed only considered strings proportional to the au-

tomaton size and the transition table density was held at 41%. In that regard, the

following issues need to be highlight:

L]

Vhat if the outomaton’s transition table density is at 100%7%: This situation
does not appear to be of great concern in the context of the current implemen-
tation choices. The number of entries in the transition table depends on the
alphabet size and the number of states. Each entry is either a non-negative
integer (a next state) or a negative value (-1 in the current implementations)
to indicate that there is no transition. If the -1’s were to be changed to non-
negative integers, nothing would change in regard to the time required by the
recognizer to accept or reject a string. The transition table density therefore
does not affect the processing speed of either implementation approaches. Of
course, these conclusions {especially in regard to the table-driven approach)
would need to be modified if the transition table were to be implemented dif-
ferently from the current study, e.g. as a structure of linked lists that does not
explicitly store “no transition” information. However, these matters have been

considered to be beyond the scope of the current study.

What if the length of the string varies (increases, decrease)?: Varying the string
length automatically varies the total processing speed required to accept or re-
ject the string. However, it does not significantly vary the processing time per
symbol string. Therefore for both table-driven and hardcoded implementation,
the per-symbol timing recorded and comparisons will remain of the same mag-

nitude as already presented in the results of the last section of chapter 7.

What if the alphabet size increase?: The number of symbols, in the alphabet

http:uni-c.dk
http://lawra

www.intel.com/design/pentiumiii/manuals
http:www.cs.colorado.edu

