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Abstract

The so-called conventional approach to implement finite automata is by mean of a matrix
to represent the transition function. Of course, if the transition table is very sparse, linked
lists might be used as an alternative. Such approaches therefore depend on the computer’s
main memory capabilities to optimally hold the table for better processing.

For various computational problems using finite automata as a basic solution-model, the
processing may be an important factor to be considered. This work aims to investigate a
relatively new implementation approach that relies on hardcoding. A hardcoded algorithm
uses simple instructions to represent the transition table. The algorithm is written in such
a way that the transition matrix is part of its instructions as opposed to the traditional
table-driven approach in which the table is external data that is to be accessed by the
algorithm. This work includes a general performance analysis of both approaches through
an empirical study. We firstly investigate the processing speed required to accept or reject
a symbol by some randomly generated single states of some automata. Then, a more
advanced experiment is performed based on the previous, for the test of acceptance of
randomly generated strings by randomly generated finite automata .

The main result of this work is that the hardcoded implementations of finite automata
outperform the table-driven implementation up to some threshold. This therefore empha-
sizes that many applications using finite automata as basic model may be optimized by
replacing the table-driven implementation with a hardcoded implementation, resulting to
better performances.

Keywords: Hardcoding, Automata, Pattern matching, Lexical analyzer, Algorithms,

Experimentation, Performance, Grammars, Language, Parsing
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116

The final experiment performed only considered strings proportional to the au-

tomaton size and the transition table density was held at 41%. In that regard, the

following issues need to be highlight:

L ]

Vhat if the outomaton’s transition table density is at 100%7%: This situation
does not appear to be of great concern in the context of the current implemen-
tation choices. The number of entries in the transition table depends on the
alphabet size and the number of states. Each entry is either a non-negative
integer (a next state) or a negative value (-1 in the current implementations)
to indicate that there is no transition. If the -1’s were to be changed to non-
negative integers, nothing would change in regard to the time required by the
recognizer to accept or reject a string. The transition table density therefore
does not affect the processing speed of either implementation approaches. Of
course, these conclusions {especially in regard to the table-driven approach)
would need to be modified if the transition table were to be implemented dif-
ferently from the current study, e.g. as a structure of linked lists that does not
explicitly store “no transition” information. However, these matters have been

considered to be beyond the scope of the current study.

What if the length of the string varies (increases, decrease)?: Varying the string
length automatically varies the total processing speed required to accept or re-
ject the string. However, it does not significantly vary the processing time per
symbol string. Therefore for both table-driven and hardcoded implementation,
the per-symbol timing recorded and comparisons will remain of the same mag-

nitude as already presented in the results of the last section of chapter 7.

What if the alphabet size increase?: The number of symbols, in the alphabet
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