
Hardcoding Finite Automata 

By 

ERNEST KETCHA NGASSANI 

Supervisors: 


Bruce W. Watson and Derrick G . Kourie 


Submitted in partial fulfilment of the requirements for the degree of 


MAGISTER SCIENTIA (Computer Science) 


in the Faculty of Engineering, Built Environment and Information Technology 


University of Pretoria 


NOVEMBER 2003 


 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© University of Pretoria 



To Maurice fj Madeleine N gassam i late Pierre Tatchou 


Tchoukwam i late Pauline Tchetgnia i fj late Jean Petji. 


ii 


 
 
 



Abstract 

The so-called conventional approach to implement finite automata is by mean of a matrix 

to represent the transition function. Of course, if the transition table is very sparse, linked 

lists might be used as an alternative. Such approaches therefore depend on the computer's 

main memory capabilities to optimally hold the table for better processing. 

For various computational problems using finite automata as a basic solution-model, the 

processing may be an important factor to be considered. This work aims to investigate a 

relatively new implementation approach that relies on hardcoding. A hardcoded algorithm 

uses simple instructions to represent the transition table. T he algorithm is written in such 

a way that the transition matrix is part of its instructions as opposed to the traditional 

table-driven approach in which the table is external data that is to be accessed by the 

algorithm. This work includes a general performance analysis of both approaches through 

an empirical study. We firstly investigate the processing speed required to accept or reject 

a symbol by some randomly generated single states of some automata. Then, a more 

advanced experiment is performed based on the previous, for the test of acceptance of 

randomly generated strings by randomly generated finite automata. 

The main result of this work is that the hardcoded implementations of finite automata 

outperform the table-driven implementation up to some threshold. T his therefore empha­

sizes that many applications using finite automata as basic model may be optimized by 

replacing the table-driven implementation with a hardcoded implementation, resulting to 

better performances. 

Keywords: Hardcoding, Automata, Pattern matching, Lexical analyzer, Algorithms, 

Experimentation, Performance, Grammars, Language, Parsing 

III 

 
 
 



Acknowledgements 

I would like to thank Derrick G. Kourie and Bruce W. Watson, my supervisors, for 

their constant supports and unterminated suggestions during this research. 

All my gratitude to Professor Bruce Watson for providing me the idea leading 

to the achievement of this work . Many thanks to Professor Derrick Kourie for its 

constant proof reading and critics throughout this research. 

Of course , I am gratefu l to my parents, Maurice and Madeleine Ngassam, for their 

patience and love. Without them this work would never have come into existence. 

My thanks go also to my daughter Orline Ketcha, my son Ryan Ketcha, and my wife 

Liliane Ketcha who provided me with all the moral support needed to achieve such a 

work. 

Finally, I wish to thank the following: Lisette Ngassam, Guy Ngassam, Laurent 

Ngassam, j\,!Iirabelle Ngassam, Orline Ngassam and Floriant Ngassam for their con­

stant support and love through the path of achieving this goal. 

Pretoria Ernest Ketcha Ngassam 

October 31, 2003 

IV 

 
 
 



Table of Contents 

Abstract III 


Acknowledgements IV 


Table of Contents v 


List of Tables viii 


List of Figures ix 


1 Introduction 1 

1.1 The Problem 1 

1.2 F As in Context ...... . 3 

1.3 Objective of the dissertation 4 

1.4 Nlethodology .... 4 

1.5 Dissertation Outline .... 5 


2 Background and Related Work 7 

2.1 Introduction ... . ... ... 7 

2.2 Finite Automata ............... . 8 


2.2.1 Deterministic Finite Automaton (DFA) 9 

2.2.2 Complexity of DFA String Recognition. 10 

2.2 .3 Non-Deterministic Finite Automata (NFA) 11 

2.2.4 Equivalence DFA and N FA . ...... . 12 


2.3 Finite Automata and Regular Expressions ... . 13 

2.3 .1 Operands and Operators of a Regular Expression 13 

2.3.2 Equivalence of Finite Automata and Regular Expressions 14 

2.3.3 Summary of the Section ...... . 15 


2.4 Pattern Matching .............. . 15 

2.4.1 General Pattern Matching Algorithm 15 


v 

 
 
 



2.4.2 String Keyword Pattern Matching and Finite Automata 16 

243 Summary of the section 17 


2.5 Lexical Analysis. . . . . . . . . 17 

2.5.1 Summary of the section 18 


2.6 Context Free Grammars . . . . 18 

2.6.1 Definition . . . . . . . . 19 

2.6.2 Context Free Grammars and Regular expressions 20 

2.6.3 Push Down Automata . . . . 20 

2.6.4 Parsing and Code Generation 23 


2.7 Related Work . . . . . . . . . 29 

2.7.1 Pennello........... . 29 

2.7.2 Horspool and Whitney . . . . 33 

2.7.3 Bhamidiapaty and Proebsting 35 


2.8 Summary of the chapter . . . . . . . 36 


3 Problem Domain Restriction 38 

3.1 Introduction . ..... 38 

3.2 The Table-Driven Algorithm 39 

33 The Hardcoded Algorithm . 40 

3.4 Comparison of Hardcoding and Table-Driven Algorithms 42 

3.5 Problem Restriction. . . . . . . . . . . 44 

3.6 Single Symbol Recognition . . . . . . . 46 

3.7 Hardcoding Single Symbol Recognition 48 

3.8 Summary ................ 49 


4 Tools and Methodology 50 

41 Introduction. ... .. 50 

4.2 Hardware Considerations. 50 

4.3 Software Considerations . 51 

4.4 The Intel Pentium Read Time Stamp Counter Instruction 52 

4.5 Random Number Generation. 52 

4.6 Methodology 54 

4.7 Chapter Summary 55 


5 Implementation 57 

5.1 Introduction .......... . 57 

5.2 The Random Transition Array. 57 

5.3 Table-Driven Implementation . 59 

5.4 Hardcoded Implementations .. 61 


5.4.1 Use of the Nested Conditional Statements 66 

5.4.2 Use of the Switch Statements ...... . 67 


VI 

 
 
 



5.4.3 Use of a Jump Table . 69 

5.4.4 Use of a Linear Search 72 

5.4.5 Use of a Direct Jump. 74 


5.5 Data Collection ..... 76 

5.6 summary of the chapter 78 


6 Experimental Results 79 

6.1 Introduction: ........... . 79 

6.2 Table-Driven Experimental Results 79 

6.3 Hardcoding Experimental Results . 80 


6.3.1 High-Level Language Hardcoding 81 

6.3.2 Low-Level Language Hardcoding 83 

6.3.3 Overall Results of Hardcoding 87 


6.4 Final Results ..... . 88 

6.5 Summary of the chapter .... 89 


7 String Recognition Experiments 94 

7.1 Introduction: ................... . 94 

7.2 Exercising Nlemory on Intel Pentium Architecture 95 


7.2.1 A Simple Experiment and Results. 97 

7.3 The String Recognition Experiment 104 


7.3.1 Experimental Results. 107 

7.4 Summary of the Chapter . 111 


8 Summary and Future Work 113 

8.1 Summary and Conclusion 113 

8.2 Future V/ork ....... . 118 


A Random Number Generator 120 


B Data Collected 126 


Bibliography 137 


V11 

 
 
 



List of Tables 

3.1 Evaluation of algorithm 3 and 4 . . 	 43 


B.1 The Table-driven Experiment Data 	 128 


B.2 The Switch Statements Data .... 	 129 


B.3 the Nested Conditional Statements Data 	 130 


B.4 The Jump Table Data . 	 131 


B.5 The Linear Search Data 	 132 


B.6 The Direct Jump Data . 	 133 


B.7 	 Averaged Data collected independently to the problem size 134 


B.8 	 Sample Data for the two-alphabet symbols Experiments .. 135 


B.9 	 Sample Data for the String Recognition Experiment with Searching 

and JJuect Indexmg. . . . . . . . . . . . . . . . . . . . . . . . . . .. 1;)0 

Vlll 

 
 
 



List of Figures 

2.1 A finite automaton .... 	 9 


2.2 A state transition diagram 	 9 


2.3 A Push Down Automa.ton 	 21 


3.1 	 A state in the transition diagram of some finite automaton 47 


3.2 	 A transition array for a state of some automaton 47 


4.1 	 Process diagram indicating how the hardcoded implementation were 


compared to the table-driven implementation 56 


6.1 	 A verage processing speed for Table-driven implementation (accepting 


and rejecting symbols) .......... 80 


6.2 	 Accepting symbol performance for NCSs 82 


6.3 	 Rejecting symbol performance for NCSs 83 


6.4 	 Performance based on ASs for SSs 84 


6.5 	 Performance based on RSs for SSs 85 


6.6 	 Performance based on hardcoding implementation in high-level language 86 


6.7 	 Performance based on ASs for JT . 87 


6.8 	 Performance based on RSs for JT . 88 


6.9 	 Performance based on ASs for LS 89 


6.10 	 Performance based on RSs for LS 90 


6.11 	 Performance ba.sed on ASs for DJ . 91 


6. 12 	Performance based on RSs for DJ . 91 


IX 

 
 
 



6.13 Performance of low-level hardcoded implementations 92 


6.14 Performance based on hardcoding implementation .. 92 


6.15 Average processing speed per implementation technique. 93 


7.1 Bardcoded time against automaton size for two symbols alphabet 101 


7.2 Table-driven time against automaton size for two symbols alphabet 104 


7.3 table-driven and hardcoded multiple states for two symbols alphabet 105 


7.4 Table-driven and hardcoded performance using linear search 108 


7.5 Table-driven and hardcoded performance using direct index. 110 


7.6 Table-driven and hardcoded performance using direct index. 110 


7.7 Performance based on searching and direct indexing . . . . . 111 


x 

 
 
 



Chapter 1 

Introduction 

Performance considerations often form an important part of problems that require 

computational solutions. Sometimes solutions to problems need to be finely tuned 

to produce an outcome that results in near minimal timing. It might be easy to 

find a brute force solution to a given problem, but it is usually harder to elaborate 

an optimal solut ion. Over the years, numerous techniques have been developed to 

improve performance, no matter the computational domain of concern. 

This dissertation focuses on the development of a technique aimed at improving 

performance of certain computational problems related to finite sta te automata (or 

simply finite automata and abbreviated to FAs). The overall objective is to explore 

the hardcoding of algorithms related to FAs, as an alternative to the traditional 

softcoded implementation approach to FA-related processing. 

1.1 The Problem 

To hardcode an algorithm means to build into it specific data that it requires. The 

algorithm is implemented in such a way that it will not require - and indeed cannot 

handle - alternative data at run time. T he algorithm of concern in this dissertation is 

one that determines whether or not an arbit rary input string is an element of the lan­

guage represented by an FA. Throughout the dissertation references to implementing 

1 

 
 
 



2 

(or hardcoding) an FA should be construed to mean implementing (or hardcoding) 

such and algorithm. Hardcoding this algorithm therefore involves the use of primitive 

data types and very simple control structures to represent the entire automaton. The 

a1gorithm in this case is a set of simple instructions with embedded data, whereas its 

softcoded version requires the use of data in memory to represent the FA's transition 

function. Of course, in both the hardcoded and softcoded algorithms, the arbitrary 

input string to be tested is not "hardcoded" in any sense, but is rather ordinary input 

that can change with each execution of the algorithm. 

Implementers of FAs generally use a table to represent the transition function. 

The conventional table-driven algorithm to determine whether an FA recognizes a 

given string is generic in the sense that the transition table is part of the input data 

to the algorithm. At any stage a different FA can be considered, simply by changing 

the transition table. The time taken by such an algorithm to determine whether an 

FA recognizes a string, thus depends inter-alia on the memory load as represented 

by the size of the transition matrix. When manipulating very large automata, the 

implementer has to be aware of, and indeed avoid, unpredictable behavior such as 

early program termination caused by memory overflow. This can be done by applying 

more complex techniques such as vectorization [DoGK84] or recursion algorithms for 

efficient cache memory usage [Douglas et al 00, Andersen et al 99] . 

Much of the work that has been done to improve automata implementation effi­

ciency, has been done at the modelling stage - that is, before the automaton's tran­

sition table has been set up for processing by the standard algorithms. Automata 

minimization [Wat02, Wat95], and the study (for improvement) of specialized algo­

rithms on problems using FA as basic model such as pattern matching, parsing, DNA 

analysis, neural network etc are among several examples where the model is optimized 

before implementation. 

Since much work to optimize the representation of FAs has already been done at 

 
 
 



3 

the modelling level , hardcoding FA algorithms, aimed at enhancing processing speed, 

seems like an inevitable next step. In this dissertation, therefore, we investigate 

whether hardcoded implementations of F As may be more efficient than the traditional 

table-driven implementation of FAs. 

1.2 FAs in Context 

Chomsky classified formal languages in four basic categories as follows: 

l. Right-linear languages; 

2. Context Free Languages; 

3. Context Sensitive Languages; and 

4. Unrestricted or Self Recursive Languages. 

Each of the above enumerated language has its equivalent machine that might be use 

for practical modelling and implementation. They are respectively, Finite automata 

(FAs), Push down automata (PDAs), Linear Bounded automata (LBAs), and Turing 

Machines (TMs). More importantly, the inclusion relation holds when applied to the 

above hierarchy from top-to-bottom - i.e. context free languages include all the right 

linear languages, context sensitive include the context free, etc. The present empirical 

study is restricted to the first element of the Chomsky hierarchy, namely to right­

linear grammars. We do not however restrict ourselves to some particular right-linear 

grammar. Rather, the experiments performed relate to F As in general. 

It is not the intention to extend the study to other types of languages in the 

Chomsky hierarchy. In fact, as shall be seen in chapter 2, considerable work in the 

direction of this present study has already been carried out in regard to parsing 

strings from a context free language. In a sense, one could therefore say that the 

present work seeks to specialize existing results, some of which are already routinely 

 
 
 



4 

applied when parsing context free languages. However, such specialization is more at 

a logical level - the study does not take explicit cognizance of the of existing context 

free grammar techniques and specialize them for right linear grammars. Rather, it 

investigates solutions for right linear grammars ab initio , in a bottom-up fashion, as 

it were. 

1.3 Objective of the dissertation 

This works aims to show that any implementation of FAs where speed is major factor 

may gain from the results obtained. The longer term objective is to produce a toolkit 

for processing hardcoded FAs. But to achieve this, the work must be carried out in a 

step\-vise fashion. Thus , it must first be established whether hardcoding a FAs would 

indeed be more efficient than a table-driven implementation. Having established 

that, more work will have t.o be done at a later stage in order to implement the actual 

toolkit. The work consists of a performance analysis of various versions of string 

recognition algorithms based on hardcoded FA implementations. It aims to examine 

whether and to what extent hardcoding FAs is more efficient than the table-driven 

method when speed is the major factor to be considered. It also investigates whether 

the implementation of FAs using high level languages is inefficient compared to their 

low level language implementation counterparts. 

1.4 Methodology 

The following approaches are used to achieve our goal: 

• 	 A theoretical presentation of both methods is provided in the form of generic 

pseudo-code that describes the essential algorithmic issues relevant to both 

cases. 

 
 
 



5 

• This provides a basis for a theoretical cross comparison of the methods prior to 

the empirical assessment of their efficiency, 

• 	 For the purposes of the empirical study, the problem is initially restricted to a 

highly constrained domain. However, it is argued that this is done without loss 

of generality in regard to the broad conclusions. 

• 	The empirical study is then carried out on randomly generated FAs and ran­

domly generated input symbols, 

• 	The results are then presented, providing a quantitative comparison between 

hardcoding and table-driven with respect to time efficiency. 

• 	 A study of the cache memory effects is carried out, based on the implementation 

of string recognition algorithms by FAs using both hardcoded and table-driven 

methods. 

A conclusion of this work is that hardcoding may sometimes yields significant 

efficiency improvements over the traditional table-driven method , and might therefore 

be appropriate in particular circumstances where timing is important. 

1.5 Dissertation Outline 

Chapter 2 provides mathematical preliminaries as background to the remainder of 

the work. It also reviews a number of conventional computational concepts that use 

FAs as a basic model. Two levels of experiments were carried out, the first being 

where the size of the FA and the associated hardcode was limited to an absolute min­

imum. Chapter 3 discusses the design of these first level experiment and shows their 

relevance. Chapter 4 presents tools and methodology required to carry out the first 

level experiments. Chapter 5 depicts implementations details used in the first round 

 
 
 



6 

of experiments and the quantitative results are presented and discussed in chapter 6. 

Chapter 7 describes a further experiment induced by these previous results. Here, 

various levels of cache and main memory are exercised, based on larger FAs than 

in the first experiment but relying on the best hard coded algorithm previously en­

countered. Chapter 8 gives the overall conclusion and indicates directions for further 

research. 

 
 
 



Chapter 2 

Background and Related Work 

2.1 Introduction 

This dissertation involves practical experimentation - specifically In regard to the 

time-efficiency implications of hardcoding a finite automaton. However, by way of 

introduction, it is appropriate to locate the theoretical setting of the broad problem 

domain. Hence, this chapter introduces theoretical aspect of PAs and their rela­

tionship to various well-knovvn computational problems that rely on various other 

kinds of automata as their primary model for the solution. The chapter summa­

rizes standard introductory texts such as [McN82], and [LePa81]. We formally define 

PAs and explore two major characteristics of such devices, namely determinism and 

non-determinism. This helps clarify the kinds of automata related to hardcoding 

algorithms that shall be encountered in the remainder of the dissertation. 

Sections on regular expressions, patterns matching and context free grammars are 

presented. Emphasis is placed on their respective relationship to PAs in order to 

give an indication of the wider domain of applicability of finite state automata in 

the computing world. The chapter ends with an explicit presentation of what has 

been done in hardcoding finite automata, merely for improving syntactical analyzers. 

7 

 
 
 



8 

Hence producing efficient LR parsers and one of its subsequent parser generators such 

as YACC 1
. 

2.2 Finite Automata 

From a practical point of view, a finite automaton is considered to be a computing 

device used to examine (recognize) strings over an alphabet. The study of the com­

plexity of such a device is of importance due to its wide area of applicability. The 

goal of its implementation is to accept or reject an input string. It is therefore of 

importance to consider how much memory the device uses for the processing of a 

given string, as well as its time complexity or processing speed. 

An example of FA is sho\vn in figure 2.1, and more explanations may be found in 

[LePa81]. The finite automaton has a transition function 8, where for each state Si, 

and for zero or more characters c in the device's alphabet, the operation 8(Si, c) maps 

to some state that depends on the value of c. Once it has read a character, the FA 

makes a transition 8(Si, c) to some new state. The automaton halts when there are 

no more character to be read from the input stream, or when 8(Si, c) in not defined. 

When setting up or constructing an FA, a set of its states are designated as final 

states. The device is said to recognize a string if and only if there is a sequence 

of transitions of the device that leads to one such final state after reading the last 

character of the string. Otherwise, the device does not recognize the string. The 

characters read by the FA from the input stream are part of its alphabet. The set of 

all strings that an FA accepts is said to be the language recognized by the FA. 

An FA may be modelled as a transition graph as shown in figure 2.2 as long as its 

grammar- is well defined. 

The grammar of a finite automaton is a formal description of the structure of all 

I Yet Another Compiler Compiler 

 
 
 



9 

Input streaml 1I 0 I 0 11 I 0 I 0 11 I 0 I 

r Reading pointer 

51 
5 8 52 

57 53

/
56 54 

F' . 55mIte states 

Figure 2.1: A finite automaton 

o 
o 

o 

1 
Figure 2.2: A state transition diagram 

finite and allowable sequences of symbo ls that can be obtained using the alphabet. The 

transition function is part of such a formal description. We shall see later that a 

regular expression is an alternative way of formally describing such a grammar. 

2.2.1 Deterministic Finite Automaton (DFA) 

As defined in [McN82], a deterministic .finite automaton !VI is a quintuple (S, A, 6, 51, F) 

where: 

• S is a finite set of states, 

• A is an alphabet, 

• 51 E S is the ini tial state, 

• F ~ S is the set of final states, and 

 
 
 



10 

• the transition function 0 : SxA -7 S, is defined such that 

Vs E S, Vc E A, o(s, c) E S is uniquely determined. 

2.2.2 Complexity of DFA String Recognition 

The complexity of the computation of a string recognition operation by a deterministic 

finite automaton is measured in terms of complexity of each transition to be made (if 

any) for a given character in the string. 

Assume that a string StT is defined by str == CIC2 ...Cn -1Cn , and assume that 1\1[, is 

a D FA as defined above. 

We denote by X M (str) the complexity of recognizing the string str. 

Thus 
X M (Cj C2 ...Cn-jCn ) 


XM(cd + X M(C2) + ... + XM(Cn-l) + XM(cn) 


L~j X jvI (Ci) 


where XM(Ci) denotes the complexity of recognizing the single character Ci. If we 

assume that the complexity of recognizing a single character can be characterized by 

some constant value, say K, irrespective of the state or the character, then both the 

worst case complexity and the average case complexity of recognizing a string may be 

regarded as linearly dependent on n, the length of the string - i.e. the complexity is 

K x n. However, in practical implementations (as will be seen later) the time taken 

to implement the operation o(Sj, c,) is a statistical variable. 

The transition function 0 of a deterministic finite automaton is said to be total if 

and only if 

VS i E S, Vc E A, 3sj E S: O(Si' c) = Sj (Sj is unique). 

Then, if a string StT is recognized by the automaton M, it follows that O(Si' Cj) = Sk, 

 
 
 



11 

with i, k = 1, ... , m, and .1 = 1,2... ,n; where m is the total number of states, and n 

the numbers of charac ters in st r. 

The t ransition function 8 of a deterministic finite automaton is said to be partial 

if and only if 

::l S i E S, ::Ic E A : 8(s, c) does not exist. 

If a string str is recognized by M, the complexity of each Ci exists and is totaly 

determined. That is, X1VI(str) = 2:~=1 (Ci) ' 

If a string str is not recognized by M, then 

3i, l ::; i ::; n : 8(Si, cn) = Sk E S - F, or 8(Si, Cj) does not exists. 

In this second case , Cj is the first character of str, that does not allow a transition 

at the state Sk. This means that , for the present purposes it may be assumed that 

X M(CI ) = 0,.1 < l ::; n. In particular , for i = I, if 8(Sl, cd does not exists, then 

X M(st r) = XM(Cl ) ' 

2.2.3 Non-Deterministic Finite Automata (NFA) 

A finite automaton is said to be non-deterministic when the t ransition operation on 

a given state and a symbol returns a set of states as result. A non-deterministic fini te 

automaton (NFA ) Mis a quint uple (S,A,D,Sl , F ) where, 

• 	 S is a fi nite set of stat es 

• A is an alphabet , 

• 	 S1 E S is the initial state, 

• 	 F c::;; S is the set of final states, and 

• 	 D c::;; S x A x S is the transition relation. Thus, (Si' u, Sj) E D means that 

when in state Si and presented with the input character u the automaton M 

 
 
 



12 

may transit to the state Sj. However, if it is also true that (S i ' u, Sk) E 6, then 

when in state S i and presented with the input character u the automaton M 

may transit to the state Sk. The particular state that is selected cannot be 

predetermined. It is in this sense that the NFA is non-deterministic. 

There are various practical reasons for using non-deterministic models. In some cases, 

a non-deterministic model reflects the underlying random nature of that solution 

which is being modelled. In other cases, non-determinism is used in a specification 

context. The non-deterministic model concisely specifies several possible alternative 

options to be implemented, all alternatives being acceptable as implementations of 

some system. The implementer is then free to select anyone of the nondeterministic 

possibilities that have been specified. Examples of NFAs may be found in [LePa81]. 

2.2.4 Equivalence DFA and N FA 

As pointed above, two automata are considered equivalent if they accept the same 

language no matter what method is used to accept the language. Moreover, based on 

the definition of NFAs , it can easily be seen that any DFA can be regarded as a special 

case of a NFA - i.e. one that is restricted to having uniquely-defined transitions. The 

inverse can also be shown to be true, as enunciated in the following theorem. 

Theorem 

FOT each non-deteTministic finite automaton, theTe is an equivalent deteTministic 

finite automaton. The proof of this theorem will not be given here. It can be found, 

together with various illustrative examples, in [McN82]. 

 
 
 



13 

2.3 Finite Automata and Regular Expressions 

A regular expression (RE) is a formula for specifying strings that conform to some 

pattern [AhUI72]. It may be composed of characters (symbols or terminals) and 

meta-characters (non-terminals). 

A regular expression is thus used to specify a pattern of strings. It is an algebraic 

formula consisting of a pattern whose value is set of strings. This set of strings is 

called the language of the regular expression. 

A regular expression is defined over an alphabet, that is the set of symbols found 

in the derived strings and used in specifying the regular expression. 

Just like any algebraic formula, a regular expression is composed of one or more 

operands appropriately conjoined by zero or more operators. 

2.3.1 Operands and Operators of a Regular Expression 

In a regular expression, operands can be: 

• 	 a symbol or terminal from the alphabet over which the regular expression is 

defined; or 

• 	 a non-terminal (group of symbols or variables) whose values are any pattern 

defined by the regular expression; or 

• 	 the empty string denoted E; or 

• 	 the empty set of strings denoted ¢. 

Operators required to compose a regular expression include the following: 

• 	 Union: if Rr and R2 are two regular expressions, so is Rr U R2 . Therefore, 

L(Rr U R2) = L(Rr) U L(R2)' Where L represents the language defined by the 

regular expression. 

 
 
 



14 

• 	 Concatenation: if Rl and R2 are two regular expressions, so is R1R2. Therefore, 

L(R1R2) = L(RdL(R2) 

• 	 Kleene Closure: if R is a regular expression, then R*(Kleene Closure of R) is a 

regular expression. And, L(R) = c U L(R) U L(RR) U L(RRR) U ...L(RRR.... ) 

An algebraic formula that constitutes a regular expression will therefore be any valid 

combination of operands and operators that have been defined above. For example, 

the set of strings over the alphabet {a, b} that end with two consecutive b's has the 

following algebraic formula: (a U b)* bb. 

2.3.2 	 Equivalence of Finite Automata and Regular Expres­

slOns 

From a regular expression, we can derive the related finite automaton and vise-versa. 

The following propositions relate regular expressions and finite automata. 

1. 	 For every regular expression R , there is a corresponding finite automaton M 

that accepts the set of string generated by R. 

2. 	 For any finite automaton NI, there is a corresponding regular expression R that 

generates the set of strings accepted by M. 

The proof of the propositions is can be found in [LePa81]. 

Corollary 

A language is regular if and only if it is accepted by a finite automaton. Refer to 

[LePa81] for a constructive proof. 

 
 
 



15 

2.3.3 Summary of the Section 

We have discussed in this section the notion of a regular expression and its relation 

to finite a.utomata. Regular expressions are widely used in computing, especially for 

searching within a string for a substring that matches some pattern, where the pattern 

to be matched is expressed a.s a regular expression. The efficiency of the algorithm 

that implements such a matching is therefore of interest and our work lies in this 

category. The section below discusses pattern matching algorithms in more detail. 

2.4 Pattern Matching 

Pattern matching is the process of matching, completely or partially, some occurrence 

of a given pattern (string of characters) against substrings of text. The algorithm 

outputs a set of positions in the text where a substring starts that is a partial or an 

exact match of the pattern. In most cases, the pattern is a finite set of substrings 

\vithin the text. 

2.4.1 General Pattern Matching Algorithm 

In the forgoing, EOT denotes a special marker for the end of a text (a string). In 

general, the algorithm for matching a pattern P in a text T may be expressed as 

follows: 

Algorithm 1. Simple matching algorithm 

function simpleMatch(T: Te'Yt; P: Pattern):ArrayOfMatches 

t,p= 0,0; 

results := (/); 

while (T(t! =f EOT) do 

if (T(t! = Pip! 1\ Pip! = last character of P) then 

 
 
 



16 

update ListOjMatches; 

p := 0; 

if {T{t} = Pip} 1\ Pip} =1= last character of P) then 

p := p + 1; 

if {T{t} =1= P{p})then 

p := 0; 


t := t + 1; 


end while 

return results; 

end function 

The algorithm receives a text T and the pattern P and outputs results representing 

all occurrences of P in T . We can generalize the algorithm so that instead of looking 

for occurrences of a single pattern, we define a set of pattern to match against the 

text and modify the algorithm accordingly. The algorithm as presented above is 

for exact string matching; a modification can also be made to handle partial string 

matching problems. Various forms of pattern matching algorithms can be found in 

[Wat95], and [Cleo03j. Our problem is to present their relevance in general to FAs. 

The section below outlines the relationship between pattern matching problems and 

finite automata. 

2.4.2 String Keyword Pattern Matching and Finite Automata 

Assume that (PMs) is a string keyword pattern matching problem in which some 

arbitrary set of patterns is to be recognized. A finite automaton can be constructed 

that recognizes all the string described in the set of patterns. 

 
 
 



17 

Proof 

This proof can be given in two steps: firstly a single pattern to match against a text 

is considered; and secondly, the problem is generalized to a finite set of patterns to be 

match against a text. The details of this two-step proof may be found in [CroHa97]. 

2.4.3 Summary of the section 

Various pattern matching problems can thus be solved by using appropriate FA s. To 

the extent that FAs can be successfully hardcoded, so too can pattern matching algo­

rithms be hardcoded. This supports the case for experimenting with the hardcoding 

of FA-related algorithms. Such experimentation may ultimately result in processing 

speed improvements for various pattern matching problems. 

One of the most popular application of FAs processing is that of compilers. Lexical 

analysis is an important phase in compiling and use FA s as basic computing model. 

The section below briefly summarizes lexical analysis. 

2.5 Lexical Analysis 

In compiling, lexical analysis is the process of converting the source code of a program 

into a stream of tokens. Some of the functions performed by the lexical analyzer 

include: removal of white space and comments, collecting digits into integers , and 

recognizing identifiers and keywords. Given a specification of a regular expression 

that defines lexemes2 in the language, the compiler writer can directly construct an 

FA that recognizes inputs from the source code and performs various other t asks 

such as creating a symbol table. The process of constructing a lexical analyzer can 

be done directly by a code generator such as Lex [LeSc75]. Lex takes as inpu t a 

2The character sequence forming tokens 

 
 
 



18 

regular expression specification that represents the legitimate patterns of the lexical 

analyzer to be created, then generates a C program. The C code is then executed to 

produce an output that represents the lexical analyzer, which consists of the transition 

table and a "driver" that performs various operations such as scanning the input 

stream and producing a sequence of tokens according to the matching revealed by 

the transition table. Lex therefore performs a so-called table-driven generation of a 

lexical analyzer. However, it is possible to implement a hardcoded lexical analyzer 

as suggested in [AhSU86]. Our work involving an empirical study of hardcoding FAs 

in general, therefore relates to hardcoding lexical analyzers, since they merely model 

FAs and additionally perform various other ad-hoc functions. 

2.5.1 Summary of the section 

Lexical analysis summarized above is one of the key problems directly related to FAs 

implementation and therefore, may be hardcoded for efficiency. Many other compu­

tational problems such as graphic animation, image processing, artificial intelligence 

applications, cryptology and circuit design, protocol implementation, genomic , etc 

use FAs as a basic computational model. In many of these areas, the solutions to 

the problems encountered rely on the processing of automata (sometimes very large) 

using the classical table-driven approach. Hence there is a need to investigate efficient 

solutions by means of hardcoding as a possible alternative . 

Yet another topic that relates to FAs is that of context free languages. The section 

below focuses on context free languages and their relation to finite automata. 

2.6 Context Free Grammars 

A context free grammar (CFG) is a formal system that describes a language by 

specifying how any legal expression can be derived from a distinguished symbol called 

 
 
 



19 

the axiom, or sentence of symbols [ELI02]. A CFG is normally specified as a set of 

recursive rewriting rules (or productions) used to generate patterns of strings. CFGs 

are often used to defined the syntax of programming languages. A C FG consists of 

the following components: 

• 	 A set of terminals symbols, which are the characters of the alphabet that appear 

in the strings generated by the grammar. 

• 	 A set of non-terminals symbols representing patterns of terminal symbols that 

can be generated by the non-terminal symbols 

• 	 A set of productions, representing rules for replacing non-terminals symbols on 

the left side of the production in a string with other non-terminal or terminal 

symbols on the right side of the production. 

• 	 A start symbol, which is a special non-terminal symbol that appears in the 

initial string generated by the grammar. 

Formally, a CFG is a quadruple G = (A, V, P, S) where: 

• 	 A is the alphabet of terminal symbols 

• 	V is the set of non-terminals 

• 	 P is the set of productions (rules such that P ~ Vx(V U A)*) 

• 	 S is the start symbol, which is an element of V. 

2.6.1 Definition 

The notation a =?c b for some non-terminal symbol a and some string b means that 

there exists a so-called derivation from a to b using various production rules P from 

 
 
 



20 

G. The set of strings consisting of terminal symbols only that can be derived from 

the start symbol of a CFG is a context free language (CF L ). 

Thus, if G is a context free grammar, then its corresponding context free language 

is L(G) = {w E A* : S =?c w}. 

2.6.2 Context Free Grammars and Regular expressions 

Context free grammars are more powerful than regular expressions (therefore finite 

automata) in the sense expressed by the following theorem: 

Theorem 

Any language that can be generated using regular expressions can be generated by a 

context free grammar. But there are languages generated by context free grammars 

that cannot be generated by any regular expression. The proof of this theorem can be 

found in [AhUI72J. 

As described in [AhUI72J, strings in a CFL can be recognized by using an appro­

priate push-down automata, described in more details below. 

2.6.3 Push Down Automata 

A Push Down Automaton (PDA) is a finite state machine that is equipped with a 

memory device that functions as a push-dawn-store. P D As are accepting devices for 

context free languages. They are therefore equivalent to context free grammars in 

the sense that , given any context free grammar G, a push-down automaton A can be 

derived that recognizes just the sentences generated by G. 

A P D A consists of four components: 

• a control unit (CU), 

 
 
 



21 


• a Read unit (RU), 

• an input stream (IT), and 

• a memory unit (NJU). 

The control unit, the read unit and the input stream are the same as those of a FA, 

except that the transition executed by the control unit of a P DA involves operations 

to store symbols in, and retrieve symbols from its memory unit. 

The memory unit of a P DA operates as a stack or push-down-store. As shown 

in figure 2.3, the stack of a P DA can be treated as a list; symbols can be added, 

remove only form one end of the list called top of the store. The push down store also 

Input stream 11 I 0 I 0 11 I 0 I 0 11 I 0 I 

r Read Unit 

Sl0 S8 S2 

1 
S7 S3

0 /
0 S6 S4 

5 
1 

Control Unit Memory Unit 
(Finite states) (stack) 

Figure 2.3: A Push Down Automaton 

contains the empty pointer that enables to know if the store is empty or not. The 


store is said to be empty if top = empty. 


a PDA is therefore a sextuple (K, A, Z,.6., qo, F) where: 


• K is a finite set of states, 

• A is a an alphabet representing the symbols of the input stream, 

i 11)10, 040 

bib 34~<b,O 

 
 
 



22 

• Z is an alphabet representing the set of characters in the store , 

• 	 6. is the transition relation of the machine which maps from 

K x A x Z ----; Z* x K 

• 	 qo E K identifies the starting state of the machine, and 

• F ~ K is a set of final states. 

Configuration 

The configuration of a P DA at any stage in its processing of an input string is 

determined by its current state and the contents of its store. For example, consider 

a P D A currently in state qi, where its push down store, in addition to the empty 

store symbol Zo, contains the symbols Z l Z2 ... Z /c with Z/c being the topmost. The 

configuration of the automaton is then specified by the string ZOZl Z2 ... Zkqi. In general, 

if the store contains the string 1] E Z*, then the configuration of the machine when 

in state qi is qiZ01]· 

Transitions function 

The transition function 6., of a P DA may be represented as a set of ordered quintuples 

(qi,aizi, qj,W) where; 

• 	 qi E K is a label identifying the current state 

• 	 ai E A is a symbol that can be read when the automaton is in the state qi (if 

the automaton does not need to read a character in order to make a transition, 

then the symbol is the empty symbol E) 

• 	 Zi E Z is the topmost symbol is the store 

 
 
 



23 

• 	qj E K is the label of the next state 

• 	 w E Z is the word contained in the store in the state qj. 

Using the rewriting rule format, the above transition can be written as 

Accepting conditions 

A PDA that has read all the symbols of an input string f.I E A* and halts in the 

configuration qjZo'rJ is said to accept f.I if either one of the following conditions is met: 

• 	 Final state condition: the state qj is an final state of the P D A - that is, qj E F, 

where F is the set of final states. The string symbol 'rJ E Z* left in the store 

above the empty store symbol zo need not necessarily be null, although it can 

be the case that 1] = E. 

• 	 Empty store condition: the push down store is empty, that is , it contains only 

the empty store symbol zo meaning that 'rJ = E. The state qh in which the 

machine halts need not necessarily be a final state, although it can be the case 

that qj E F. 

Language of a P D A 

The language L(A) of a push down automaton A is defined as follows 

2.6.4 Parsing and Code Generation 

A thorough investigation on what has already been done in hardcoding algorithms 

to implement FAs yields to two particular fields of study that use automata as basic 

 
 
 



24 

model for solving more specific problems: parsing and code generation. Both domains 

are similar even though the second tends to contain the first. 

Code generation is precisely about writing programs that write programs[Herr03]. 

For the case of our work, a code generator is a program that generates a parser. The 

program is supplied with a specification of the input process (context free grammar) 

as well as a low level input routine (the lexical analyzer) to handle basic items (called 

tokens) from input stream [GRJA91] . The tokens supplied are organized according 

to the input structure rules (grammar rules). The parser generated is then useful to 

handle user input based on the rules that have been specified at generation time. 

Parsing is the process of structuring a linear representation in accordance with 

a given grammar[GRJA91]. In general, a parser is an algorithm that determines 

whether a given input string is in a language, and produces a parse tree for the input 

if it is or an error message otherwise. Parsers are therefore syntactical analyzers 

for compilers. They are generated from context free grammars that characterize the 

language being used for testing the input string. There are several types of parsers 

depending to the properties of the language upon which the algorithm is based. One 

of the most widely used that require a nearly linear time are LR parsers. They are 

based on the left-to-right3 technique, and they perform identification of he right most 

production. As described in [GRJA91], LR parsers are deterministic bottom-up4 

parsers having the following general characteristics: 

• 	The determinism of such parsers lies in the fact that a shift involves no move . 

• 	 The right-most production expands the right-most non-terminal in a sentential 

form, by replacing it by one of its right-hand side. A sentence is produced by 

repeated right-most production until no non-terminal remains. 

3The input is scanned from left to right 
4 Checking whether a string is part of the grammar is done from bottom to up as opposed to the 

conventional top-down approach 

 
 
 



25 

• 	 Each step of a bottom-up parser working on a sentential form, identifies the 

latest right-most production and undoes it by reducing a segment of the input 

to the non-terminal it derived from. The identified segment is called the handle. 

Since the parser starts with the final sentential form of the production process 

(the input), it finds its first reduction rather to the left end. 

Constructing the control mechanism of a parser can be implemented directly or using a 

code generator. The parser in most case is table-driven, consisting of drivers (routines) 

and one or more tables that describe its grammar as well as the lexical analyzer it is 

based upon. For table-driven parsers , the tables describing the grammar on which the 

parser is called parse table. In the parse table , the columns might contain terminal 

and/or non-terminal symbols, the rows generally contain the states of the push-down 

machine described by the grammar, and the entries contain the production rules. 

Parse table might considerably be large and complex, leading to important processing 

speed flaws at run-time. It is therefore of importance to explore alternative ways 

of representing the table to ensure efficient processing speed of the parser during 

syntactical analysis. 

Most of the work that has been done for hardcoding parser algorithms relied on 

LR parsing as basic technique. The overall goal was to optimize the parse table pro­

cessing speed by avoiding the implementation of table-driven parsers. In this case, 

the drivers of the parser are implemented is such a way that the parse table is imbed­

ded into it using hardcoding implementation technique. It should be emphasized 

that such a strategy do not take into consideration implementation issues related to 

the lexical analyzer , since for various compilers lexical analysis is not part of pars­

ing. Ho\vever, since the overall data structure required to implement a parse table is 

fully determined by the structure of a Push Down Automaton (FDA), thus involv­

ing transitions functions implementation into hardcode, it might be useful to explore 

empirically the implementation of a lexical analyzer for example using hardcoding 

 
 
 



26 

technique. 

There exist various parsing techniques and details can be found in standard in­

troductory texts that cover the subject in more detail as in [AhSU86]. In the next 

subsections we summarize some of the parsing techniques that can be hardcoded. 

Top-down parsing 

Given an input string, the top-down parsing starts with the starting state and at­

tempts to reproduce the input. One of the popular implementation technique use for 

top-down parsing is recursive-descent parsing. With this technique, a set of recur­

sive procedures are executed to process the input. A procedure is associated with 

each nonterminal of a grammar. This mechanism therefore allude the fact that a 

recursive-descent parsers are hardcoded into procedures. Each procedure associated 

to a nonterminal decides which production rule to be use by looking at the lookahead 

symbol. The procedure also uses a production by mimicking its right side. More 

details on top-down parsing and its various versions can be found in [GRJA91], and 

[AhSU86]. 

Bottom-up parsing 

This method is in general known as shift-reduce parsing. It attempts to construct 

a parse tree for an input string beginning at the leaves (bottom) and working up 

towards the starting symbol of the grammar's rule (the top). The process therefore 

reduces the input string to the start symbol. Explicit details on Bottom-up parsing 

maybe found in [GRJA91, AhSU86]. Furthermore, we present LR parsing in more 

details since it appears to be necessary for an understanding of the next Section on 

related work. 

LR parsing is an efficient, bottom-up syntax analysis technique that can be used 

by a large class of CFGs. The letter" L" denotes left-to-right scanning of the input, 

 
 
 



27 

and" R" stands for constructing the rightmost derivation in reverse. An LR parser is 

ma.de of an input buffer, a stack, the LR parsing program (driver), and the parsing 

table which is itself made of a function action and a function goto. 

The driver reads characters from the input buffer one at a time. It uses the stack 

to store a string of the form SOX1S1".Xmsm, where Sm in on top of the stack. Each Xi 

is a grammar symbol and each Si is a symbol called a state. Each state summarizes 

information contained in the stack below it. A combination of the state symbol on 

top of the stack and the current input symbol are used to access the parsing table 

and perform the shift-reduce parsing decision . The driver determines Sm, the state 

currently on top of the stack, and ai, the current input symbol. It then consults 

action [sm, ail, the parsing action table entry for the state Sm, and input ai. The 

result can be one of the fo llowing four values: 

1. shift s, where S is a state, 

2. reduce by a grammar production, 

3. accept, or 

4. error. 

The overa.ll LR parsing algorithm can therefore be summarized as follows: 

Algorithm 2. LR parsing 

begin algorithm 

pointer: = text{O}; 


while (True) do 


s:= top(.stack}; 


a: = pointer; 


if (action{s) a} = shift S '} then 


 
 
 

http:overa.ll


28 

push a,' 

push s'; 

pointer := pointer+1; 

else if (action(s, a) = reduce A ~ /3)then 

pop 2 * 1/31 symbols off the stack; 

s':= top(stack); 

push (A); 

push(goto[s', A]); 

output A ~ /3 ; 

else if (actionfs, a}=accept)then 

e.yit; 

else 

error(), 

exit; 

end while 


end algorithm 


The algorithm above takes as input a string and a parsing table with functions 

action and goto for a grammar. It outputs a bottom-up parse tree if the input is part 

of the language described by the grammar; otherwise it outputs an error signal. This 

algorithm is conventionally said to execute table-interpretive LR parsing. 

When a parser generator is provided with a BNF formula describing a CFG (an 

LR grammar), then it will automatically generate the parsing table, its stack, and 

the driver program for executing table-interpretive LR parsing. YACC is one of the 

best known LR parser generator that works precisely as described above. 

The algorithm is implemented using a "driver" routine containing a loop. In each 

iteration of the loop, a single parse action is made: a terminal shift , a reduction, 

an acceptance of the input, or the emission of an error message. To determine the 

 
 
 



29 

action, the state on the top of the parse stack and the current input symbol have to 

be considered. It follows that three to four array accesses are usually sufficient to 

determine the next action. However, when more than one reduce action is needed, a 

list searching is required to determine the next action. The number of instructions 

required by the algorithm for a parsing action appears to be quite high. One way of 

seeking greater efficiency in implementing the LR parsing algorithm is by hardcoding 

aspects of the parsing table as well as the stack into the algorithm itself. Various 

authors have explored this broad strategy in various ways. The section below presents 

work that has been directed at using hardcoding to improve efficiency of the LR 

parsing algorithms. 

2.7 Related Work 

The subsections below present in a chronological order, the work of authors who, to 

the best of the author 's knowledge, have been the most prominent in investigating 

the hardcoding of LR parsing algorithms. 

2.7.1 Pennella 

In 1986, Thomas J. Pennelo created a system that produced hardcoded parsers in 

assembly language [Penn86]. The system was a parser generator that takes as in­

put a BNF description of an LR grammar and automatically generates a hardcoded 

parser in assembly language. The generated parser in turn takes as input a string 

and produces its parse tree if the string is syntactically correct or an error message 

otherwise. Pennello observed that by encoding the parser directly into assembly code 

the parsing time can be significantly improved. 

Various strategies are used to implement the stack and the parsing table. While 

full details are available in the original article, two features of Pennelo's approach are 

 
 
 



30 

highlighted below. 

Firstly, in the hardcoded assembly language, it is unnecessary to encode the stack as 

a separate data structure. The essence of the LR parsing algorithm given above, is 

that the stack contents (and specifically, the top of the stack) determines the next 

action to take in terms of the next input symbol. In the hardcoded counterpart to 

this algorithm, a labelled section of code is associated with each stack state . By 

directing control to appropriate labels, code that handles a given state is executed . 

For example, a sh~ft action is carried out by executing a simple jump to a label 

associated with code for the destination state. When a reduction by a production 

p is indicated, a jump is made to the simple routine that handles p since such a 

reduction way OCCUl ill ::;eventJ ::;lale::;. A j UlIlIJ lo aIlother label is then executed 

to carry out instructions associated with the destination state as determined by the 

left part of the production. The source-code below provides possible forms for the 

assembly language code associated with specific states. 

$Q_n$: call Scan; only if accessed by a terminal (get the next 

input symbol). 

push address of label $NTXQ_n$ on machine stack 

linear search for a terminal transition 

or 

mov Base_reg, Base 

call Find T transition 

jump to default reduction(rare) 

or 

binary search for default reduction(rare) 

or 

jump to error handler if no reductions possible 

$NTXQ_n$ : binary search for default reduction 

 
 
 



31 

or 


in-line code to extract transition from NT_next 


reduce state for production 

p: $Q_p$: call Scan ; only if 

accessed by a terminal. 

mov R_NT,Left_part 

jmp $Reduce_{L-1}$ 

or 

jmp Reduce minus 1L 

or 

mov R_RPL, L-1 

jmp ReduceN 

or 

mov R_RPL,L 

jmp Reduce mlnus 1N 

$NSQ_p$: 	 mov R_NT, Left_part 

jmp $Reduce_L$ 

or 

mov R_RPL, L 

jmp ReduceN 

Secondly, in Penello's system, the hardcoded implementation of the parsing table 

relies on a thorough analysis that is undertaken by the program generator. In effect, it 

analyzes the transitions specified by the parse table in any given state s to determine 

the resulting value of action[s, a] for each possible terminal symbol a. The resulting 

value is either an injunction to shift to a specified new state, or to reduce to by a 

specified production, p. The code below shows an example of the code associated 

 
 
 



32 

with a state labelled Q23 indicating the "shift" transitions to be made if one of the 

nine terminal symbols 'a', ... ,'i', is encountered in that state. In this case, a linear 

search for the current symbol is used to arrive at the appropriate jump to be made 

when that symbol occurs in that state. If the current symbol is not one of the nine 

terminal symbols, then a jump is indicated to code that handles a "reduce" operation 

in regard to production number 20. 

Q23: call Scan 

;since accessed by a terminal. 

push address of NTXQ23 

cmp R_T,4 If 'a' 

je Qll shift to 11 on 'a' 

cmp R_T,5 If 'b' 

je Q12 shift to 12 on 'b' 

; assume similar code for 'e' to 'h' 

je Q19 shift to 19 on 'i' 

jmp NSQ20 Reduce by production 20 

Similarly, the part of the parsing table represented by goto[s, A] in the previously 

specified LR algorithm needs to be hardcoded to indicate, for a given state s, what 

the resulting state will be when reducing a given production A. The code below 

shows an example of the code associated with a state labelled NTXQ23, indicating 

the "reduce" transitions to be made if one of the ten nonterminals A. .. J is encountered 

in that state. Note that in this case, a binary search for the relevant non-terminal 

symbol is used to arrive at the appropriate jump to be made. In Penello 's system, the 

decision to use a linear search, a binary search or a jump table is part of the analysis 

to be carried out by the program generator. 

NTXQ23: Binary search for nonterminal transition 

 
 
 



33 

cmp R_NT, 19 ;If E 

ja L1 

cmp R_NT, 16 ; If B 

jl 033 ;shift to 33 on A 

je 025 ;shift to 25 on B 

cmp R_NT, 18 ; If D 

jl 026 ;shift to 26 on C 

je 027 ;shift to 27 on D 

jmp 028 , shift to 28 on E 

L1 : cmp R_NT,21 ; If G 

jl 029 ;shift to 29 on F 

je 030 ;shift to 30 on G 

cmp R_NT,23 ;if I 

jl 031 ;shift to 31 on H 

je 032 ;shift to 32 on I 

jmp 024 ;shift to 24 on K 

The resulting hardcoded parser is reported to have shown a 6 to 10 factor im­

provement in speed over his table-driven system. However, this improved speed is 

achieved at a cost of a factor of 2 to 4 increase in space requirements. Full details on 

Pennello's work may be found in [Penn86]. 

2.7.2 Horspool and Whitney 

Horspool and Whitney in [HoWh88] proposed a number of additional optimizations 

for hardcoding LR parsers. They used Pennello's attempt at optimizing decision 

sequences via appropriately implementing either a linear search, a binary search or the 

using of a jump table. But, in addition, they use an adaptive optimization strategy. 

 
 
 



34 

The strategy involves an analysis of the finite state machine (the goto function in 

the parsing table), as well as some low level code optimizations that increase the 

processing speed and decrease the code size. 

They start by observing that many stack accesses (push, and pop) during LR 

parsing are redundant. Therefore using " Minimal Push" optimization techniques, 

they eliminate these redundant actions. The main observation is that only states with 

non-terminal transitions need to be pushed onto the stack. Such states are the only 

ones which may be consulted after a reduce production. This optimization implies an 

optimized way of dealing with the various right-recursive rules of the LR grammar. 

For example, a list containing n identifiers would require only n stack pushes, because 

pushes relating to the comma separator of list elements are suppressed in terms of 

their stack optimization strategy. 

Another optimization used is the technique of Unit Rule Elimination. They note 

that grammars often contain productions in the form A ---> X, where X represents 

either a terminal or nonterminal symbol. Such a prod uction is called unit rule. LR 

parsers generated from grammars containing unit rules have an inflated number of 

states. The overall observation is that if there is no semantic action associated with 

a unit rule in the parsing table, the transition associated with such a unit rule may 

be deleted. 

Having applied the above strategies during the construction of the LR parser, all 

that remains is to implement the parser directly into assembly code as suggested by 

Pennello. 

Their parsers generator also creates a directly executable LR parser that operates 

at faster speed than the conventional equivalent, while simultaneously requiring a 

decreased amount of storage relative to the parsers generated by Pennello. The parsers 

created were 5 to 8 times faster than the equivalent table-driven parsers generated 

by YACC. 

 
 
 



35 


2.7.3 Bhamidiapaty and Proebsting 

Bhamidipaty and Proebsting in [BhPr95] developed a YACC-compatible5 parser gen­

erator that creates parsers that are 2.5 to 6.5 times faster that those generated by 

YACC. The tool creates directly executable hardcoded parsers in ANSI C (as opposed 

to Pennelo's assembly code), whereas yacc produces table-driven parsers. Their sys­

tem creates code that is responsible for simulating the action of each state, this action 

being based upon the current input token . States labelled with tokens are called sh~ft 

states and they require extra code to advance the lexical analyzer6 . An extract of the 

hardcoded version of the implementation of a given state N is shown below: 

stack --- > state = N; 

If 	N is ashift state then 

stack -> semantic yyval; II Put lexical semantic entry on stack 

token = yylexO; II Advance lexical analysis 

yyerrorstatus++; Ilupdate error-recovery counter 

if 	(++stack == EOS) gotostack_overflow; 

IIError-recovery entry point 

switch(token){ 

case Q: goto state_X , II iff shift = action[N,QJ, X goto [N, QJ 

case R: goto reduce_Y; II iff reducey = action [N, RJ 

case S : goto error_handler; II iff error = action[N,SJ 

case T: goto YYACCEPT; II iff accept = action[N,TJ 

5The generator creates LR directly executable LR parsers exactly as YACC, but the LR parser 
is not implemented using table-driven approach as YACC does 

6Recall that the parser generator requires a reference to the lexical analyzer. The latter is used, 
in turn, to identify tokens for the parser. 

 
 
 



36 

II The action table determines the defaults action for N: 

default: goto error_handler; 

or 

default: goto reduce_Z; 

} 

In the same way as Pennello's system, one piece of code (hardcode) is implemented 

for each production, avoiding therefore the use of external data from memory (the 

table). Nonterminal transitions are implemented using switch statements , enabling 

a jump to the appropriate state from the current state. An empirical evaluation of 

the method showed speedup factors ranging between 2.5 and 6.5. Not surprisingly, 

there was a code size increase of up to 128% but in practice, that represented less 

than 75KB in space. 

2.8 Summary of the chapter 

In this chapter, we have presented various aspects of computing that use an FA as a 

basic tool to solve a certain computational problem. We have shown the relationship 

of FAs with regular expressions, pattern matchers, and context free grammars. We 

have also shown that considerable work has already been done in hardcoding LR 

parsers by means of implementing efficient code generator programs. These take the 

ENF form of the LR grammar and generate a directly executable LR parser. Yet 

another variant of LR parsing which is implemented by hardcoding each state of the 

LR automaton as a procedure. In this case, a shift calls the procedure. The manip­

l.dation of the stack is avoided using embedded reduced action into the procedure. 

Details about recursive-ascent parsing may be found in [AhSU86] and [Krus88]. 

The present work does not extend what has already been done in hardcoding LR 

 
 
 



37 

parsers. Rather, we restrict ourselves to hardcoding of finite automata in general. 

Thus, our work relates to hardcoded possibilities for lexical analyzers, regular expres­

sion recognizers, pattern matchers, and any other string recognition problem where 

an FA is the underlying model. 

The main concern in this work is the processing speed of FAs. By this we meant the 

time taken by a device to accept or reject a string. We focus on the complexity metric 

defined above, trying to minimize its value as much as possible using appropriate 

programming techniques. The next chapters deal with the theoretical and practical 

aspects of the implementation and experimentation of hardcoded algorithms on finite 

automata. Of course, experiments are conducted using as basis the traditional table­

driven implementation approach that is used by most automata implementers. 

 
 
 



Chapter 3 

Problem Domain Restriction 

3.1 Introduction 

In this chapter, we present abstractions to characterize the problem of concern. The 

chapter starts with a general specification of both the table-driven and the hardcoded 

algorithms to implement an FA. A theoretical evaluation is made on both methods. 

It is shown that at the theoretical level no order of magnitude differences between 

hardcoding and the table-driven approach are observa.ble. However, such an analysis 

does not illuminate likely behaviour in practical situations. To do this, an empirical 

analysis of the behaviour of the two approaches is required. Section 3.5 justifies 

the restriction of the problem domain in a particular way in order to facilitate such 

an empirical analysis. The actual empirical analysis is discussed in a later chapter. 

The chapter ends with a specification of how each of the two algorithms would be 

specialized when a.pplied to the restricted domain. 

38 

 
 
 



39 

3.2 The Table-Driven Algorithm 

A table-driven algorithm is the usual basis for ascertaining whether a string str is a 

member of the language generated by an FA, M. Consider a string, str, of length 

len > 0, and a table transition [il [J] that represents the transition function of M, 

where 0 ::; i < numberOf States and 0 ::; j < alphabetSize 1. If the automaton is in 

state i, and the next character in the input string is j, then transition[i][j] indicates 

the next state of the automaton. Interpret transition[i] [J] = -1 to mean that the 

automaton cannot make a transition in state i on input j. Algorithm 3 shows how 

the string str is conventionally tested for membership of the language accepted by 

M. 

Algorithm 3. Table-driven string recognition 

function recognize (str, transition): boolean 

state := 0; 

stringPos := 0; 

while (stringPos < len) I\(state "2 0) do 

state := transition/statej /str/stringPosjj; 

stringPos := stringPos+1; 

end while 

if state::; 0 

retum(false); 

else 

retum(true); 

end if 

end function 

1If the table is very sparse, its representation can also be based on linked lists, rather than on 
arrays. Details are not important in the present context, and do not materially affect the argument. 

 
 
 



40 

In terms of complexity, Algorithm 3 largely depends on the length of the string 

being tested for recognition. Thus the worst case scenario requires O(len) time to 

be completed. Our aim is to improve the algorithm using hardcoding. The section 

below depicts the hardcoded algorithm of a given FA that serves as a basis for our 

investigation. 

3.3 The Hardcoded Algorithm 

Hardcoding the recognition of a string avoids the use of a table as a parameter, 

but generates instead, code that is specifically characteristic of a given transition 

table. The idea is to break the transition table into instructions, so that the result­

ing algorithm does not use external data, and has integrated its required data. To 

do so, we analyze each state of the automaton by grouping into a set all symbols 

of the automaton 's alphabet that may trigger a transition in that state. We call 

validSymbols i the set representing all symbols that may trigger a transition in state 

i. We also call nextStatesi 2 the set of all those states that can be reached if an 

element of validSymbolsi triggers a transition in state i. We incorporate labels into 

the algorithm that mark the piece of code dealing with each state such that, at a 

given state k, if the current input symbol belongs to the set validSymbolsk, then a 

transition is made to its corresponding next state in the set nextStatesk or true is 

returned if the end of str has been reached; otherwise false is returned. 

Consider a string, str, of length len> 0, and an FA, M of numberO f States 2: len 

states Algorithm 4 depicts how the string str is tested for membership of the language 

accepted by M. Note that the a statement of the form goto nextStatesi; is intended 

as shorthand for a number of successive conditional instructions, each indicating 

2The fact that we are dealing with deterministic finite automata requires that a unique element 
of validSymbols; corresponds a unique element of nextStatesi to be transited to. This is a form of 
surjective relation between nextStatesi and validSymbols i . 

 
 
 



41 

jumps to specific labels, depending on the precise value of str[i]. 

Algorithm 4. Hardcoding string recognition 

function Tecognize(str}:boolean 

stateo: 

if strlO} t/:- validSymbolo 

return(false}; 

else if len = 1 

return (true); 

else 

go to nextStates l; 

end if 

statel: 


if strll } t/:- validSymbol1 


return (false) ; 


else if len = 2 


return (true); 


else 

goto nextStates2; 

end if 

state2: 


if strl2} t/:- validSymbol2 


return (fals e}; 


else if len = 3 


return (tTue); 


else 

goto ne.TtStates3; 

end if 

 
 
 



42 

staten'tLmberOf States-I: 


if str (numberOfStates-l J~ validSymboln'tLmberO f States-l 


return (fals e); 


else 

return (true); 

end if 


end function 


The production of algorithm 4 may seem cumbersome. However, it might offer 

some speed advantages that we will investigate in the next section. The algorithm's 

execution time clearly depends on the length of the string being tested for recogni­

tion. The worst case complexity is 0 (l en). The next section provides a theoretical 

comparison between algorithm 3 and 4. 

3.4 	 Comparison of Hardcoding and Table-Driven 

Algorithnls 

Three factors may be taken into consideration when comparing the two algorithms: 

• 	 the code size; 

• 	 the memory load as represented by the data structures required for the algo­

rithms; and 

• 	 the complexity as measured by an order of magnitude estimate of the number 

of instructions that have to be executed for a given input. 

 
 
 



43 


Hardcode Softcode Remarks 
Instructions 

required 
4 x numberOf States 5 + 2 x len Softcode 

seems better 
Data required 1 2+alphabet x States Hardcode seems better 

Complexity O(len) O(len) Both equivalents 

Table 3.1: Evaluation of algorithm 3 and 4 

Any other factor one can specify falls under one of the above mentioned. The number 

of instructions determines the code size whereas the amount of data used in the 

algorithm determines the memory load. In the extreme, if the code size becomes too 

large, it may not be possible to compile it. On the other hand, if the memory load 

is excessively large, it might not be possible to execute the compiled program. In 

between scenarios might also occur, where various levels of cache memory are used. 

Ho\vever, for the present, these extreme scenarios will be ignored. In later sections, 

the impact of cache memory will be investigated. 

It is possible to perform a comparative evaluation of algorithm 3 and 4, based on 

the above, as depicted in table 3.1. 

The two algorithms share the same order of magnitude complexity, which - for 

both algorithms - is linear in the number of characters in the string to be recognized 

by the FA. The code size and the memory load are also important factors here, and 

there are clear differences between the two approaches. The table entries in regard 

to these factors are to be justified below. 

Hardcoding requires very little additional data, due to the fact that much of the 

data has directly been hardcoded. This is justified by the presence of the value 1 in 

the corresponding cell in the table. In effect, as shown in algorithm 4, at each state, 

there is a single conditional statement that performs a test on the current symbol 

of the string (str[i]). The symbol is loaded in the memory; this justifies the fact 

that 1 data (one memory access) is performed at each state. Any other operations 

are considered to be hardcoded . The len of the string is automatically evaluated at 

 
 
 



44 

run/compile time, validSymbols; is known in advanced, therefore, hardcoded. 

The table-driven approach, on the other hand, heavily depends on data, thus 

memory load. The algorithm requires just before starting the loop, 2 data access in 

the memory (from state and stringPos); the algorithm also requires entries in a table 

representing the transition between one symbol in the alphabet and an a given state, 

thus the factor alphabet x state where alphabet represents the number of elements 

in the alphabet of the grammar that describes the FA. This justifies the fact that 

2 + alphabet x state data are required in the worst case by algorithm 3. 

Very few instructions are needed to implement table-driven approach, but that is 

not the case for hardcoding. The latter requires approximately 4 x n'UmberOf States 

instructions, which is very consistent compared to the table-driven which only requires 

2 x len (len :::; n'UmberOf States). Theoretically, if memory load constitutes our 

assessment standard, hardcoding implementation is far better than the traditional 

table-driven implementation of finite state automata. The inverse is verified when 

the criterion is the code size. With better compression 3 techniques applied at the 

encoding stage, it is also possible to overcome the problem of size as mentioned in 

[Ho\iVh88]. This results in a very efficient hardcoding algorithm, compared to the 

traditional table driven implementation. 

Having established theoretically the advantage of using hardcode over table-driven 

method, the next section performs some observations on table 1 that results in the 

restriction of the problem domain. 

3.5 Problem Restriction 

Observations on table 1 suggest that measurements are approximately linear. The 

following remarks can be made: 

3The compression of hardcode is beyond the scope of this work. At present, the major concern 
is to establish the efficiency of hardcode in terms of processing speed and not code size. 

 
 
 



45 

• 	 For hardcoding: 

the number of instructions is approximately 4 x numberOf States , meaning 

that there are four basic instructions 4 that are executed in each state of 

the automaton. 

the amount of data required in the memory is simply the string to be 

recognized, all other data being directly hardcoded and stored as values in 

the algorithm's variables (len , validSymbol) ; 

• 	 For softcoding: 

The number of instructions is approximately 2 x len - i.e. two instructions 

are executed per symbol of the string to be recognized; 

The amount of data required is alphabetSize x numberOf States ; so that 

in any given state, each symbol of the string has its allied entry in the 

table. 

Based on the above, the following restrictions suggest themselves. 

• 	 Rather than studying an entire string, it seems reasonable to analyze the re­

sponse to a single symbol of the alphabet at a time and to draw tentative 

conclusions about the behaviour of an entire string on this basis. At a later 

sta.ge, a more complete investigation into the behaviour of the algorithm in 

rela.tion to a complete string can be explored. 

• 	 Rather than analyzing a complete automaton that may consist of a large number 

of states, it seems reasonable to restrict attention to a limited portion of the 

automaton - in fact , to a single arbitrary state - without the loss of generality. 

4This is, of course, an abstraction since in each case, the instruction, goto nextStatesl in fact 
implies the execution of several additional instructions, as has previously been noted. 

 
 
 



46 

Algorithm 4 consists of near-identical chunks of code, each chunk dealing with 

a state of the automaton . In terms of processing speed, each chunk will consume 

the same time. Therefore, analyzing the performance of an arbitrary chunk of the 

algorithm appears to be a reasonable strategy, since the entire processing speed of 

the algorithm will simply be a multiple of the time taken for a single chunk. 

From the point of view of the present discussion, the most important portion of 

algorithm 3 is the iteration to be performed when processing a string. That portion 

of the algorithm corresponds in fact to the process of recognition of a single symbol , 

repeated several time according to the length of the string being recognized. It is 

thuG p088iblc rC8trict furthcr u.nu.lY3i3 to u. 3ingle itera.tion of the loop, which in fact 

corresponds to the analysis of some single state of the automaton for a given symbol 

of the string. 

Without the loss of generality, therefore , the original problem can be restricted to 

the study of some arbitrary single state of some finite state automaton. Conclusions 

will be drawn later about complete automata that may have several states. 

3.6 Single Symbol Recognition 

In algorithm 3, each iteration of the loop processes a single symbol of an input string. 

Under normal circumstances, the time taken to process such a single symbol is inde­

pendent of both the symbol itself and of its position in the string. A consideration 

of the time taken to process a single symbol instead of an entire string is assumed 

to be a reasonable basis for comparing various string processing algorithms. This 

does not imply that the study of each algorithm would be limited to a study of how 

it behaves in a single fixed state. Instead , both the symbol to be processed, and 

the transitions allowed from an assumed single state were randomly generated over 

many different simulation runs. In each case, a single state of an automaton has a 

 
 
 



47 

randomly determined set of legal transitions on some set of randomly selected alpha­

bet symbols and is considered to have no transition at all on the remaining alphabet 

symbols. Figure 3.1 depicts one such a state, where the five out-arcs represent five 

legal transitions associated with different input alphabet symbols. 

Figure 3.1: A state in the transition diagram of some finite automaton 

Figure 3.2: A transition array for a state of some automaton 

Figure 3.2 shows the possible transitions associated with such single state of an 

automaton. The figure depicts a one-dimensional array, that may be regarded as a 

row of a transition matrix of some FA. The array is indexed by the FA's alphabet: 

{a, b, c, d, e, f, g, hp. Each entry of the table contains either a valid transition value 

(which indicates some arbitrary next state) or no transition at all (represented by the 

value -1). Figure 3.2 therefore indicates a state where there will be a transition to 

state 8 upon encountering an a symbol in the input , no transition is possible for b, c 

5Por simplicity, we assume that alphabet symbols are permitted a., array indices, and that indices 
are ordered in some reasonable way, e.g. in ASCII representation order. 

 
 
 



48 

or d inputs, a transition to state 10 upon input e, etc. Algorithm 5 depicts in pseudo 

code how the array can be referenced to determine whether an arbitrary input symbol 

is rejected in the given state of the automaton or not. 

Algorithm 5. Character testing on a state of some automaton 

function rec Char(character, transition): boolean 

return (transition( characterJ=!=- -1) " 

end function 

The point about this very simple pseudo code is that it is independent of the actual 

content of the transition array, in the sense that the pseudo code does not need to 

change for different values in the transition array. It is thus decidedly a specification 

for a softcoded version of the task at hand ~ it may be regarded as the version of 

table-driven algorithm 3 that has been trimmed down to deal with one symbol in 

some arbitrary state described by the transition array. 

3.7 Hardcoding Single Symbol Recognition 

Hardcoding generates code that is specifically characteristic of a given transition 

array. Algorithm 6 shows an example, in pseudo-code, of the hardcode to deal with 

the single state transition array depicted in figure 3.2. Note that this hardcode has 

to change whenever a transition table with different entries is to be used. 

Algorithm 6. Hardcode of a transition array offinite automaton in the figure 3.2 

function hardCode(character):boolean 

if (character=b)V (character=c)V (character=d) 

return (fals e); 

else if (character=a)V (character=e)V (character=f)v (character=g) 

V (character=h) 

 
 
 



49 

retmn(true}; 

end if 


end function 


We are interested in determining how algorithms 5 and 6 compare in terms of 

their time performance. Of course, there are many sources of variation that require 

study in order to dravv general conclusions: 

• 	 Algorithms 5 and 6 are presented in Pascal like pseudo-code language form at. 

For empirical cross-comparison , they have to be translated into various high 

and low-level language implementations. Six different implementations were 

examined in this study (one of algorithm 5 and five of algorithm 6). These are 

described in chapter 5. 

• 	 The algorithms' performance may vary from one hardware platform to another. 

Hardware considerations are discussed in the next chapter. 

• 	 The algorithms ' performance should be compared in relation to many different 

input scenarios. Algorithm 7 in section 5.2 describes how various randomized 

transition arrays were generated for the study. 

3.8 Summary 

In this chapter, we have presented table-driven and hardcoding specifications of finite 

state automata and theoretical comparisons have been performed. A rationale has 

been given for restricting the problem domain to a single state of some finite state 

automata for some arbitrary symbol. We now need to present tools required to 

conduct practical experiments on algorithms 5 and 6. This constitutes the theme of 

the next chapter. 

 
 
 



Chapter 4 

Tools and Methodology 

4.1 Introduction 

The realization of a practical comparative study requires the selection of basic tools 

needed to achieve the goals; it also requires the setup of means by which experiments 

will be carried out. This chapter aims to address those issues. Tools required for 

cross-comparing hardcoding and softcoding of finite state automata are presented , 

and a strategy is designed for the experiments. 

4.2 Hardware Considerations 

Finite automata implementation can be carried out on any personal computer as well 

as special purpose computing devices designed to handle specific state transition tasks. 

A personal computer was regarded as a good choice for the experimentation, not only 

because of the convenience of being readily available, but also because programs can 

be written and tested with little effort and a t relatively low coast. The configuration of 

the computer system was not considered to be of prime concern because the overall 

objective of the study relates to the processing speed and not to the strength of 

50 

 
 
 



51 

the computer's other components. Several kinds of processors were available for 

our experiments. Those we had to choose from included AMD, Celeron and Intel 

processors. It is known that AMD and Celeron are both Intel compatible because 

they have integrated some emulators that handle Intel-specific instructions. In the 

absence of any selection criteria that strongly commended the use of one processor 

over another, it was decided that the use of Intel processors would serve as an adequate 

and convenient tool to be used for the empirical study. The aim has been to produce a 

quantitative evaluation of two FAs implementation techniques, independently of the 

type of hardware being used. Consequently, it is considered unlikely that the results 

the experiments conducted would be significantly different if any other compatible 

processor had been used. 

Our experiment was performed on the Intel architecture (IA 64)- specifically a 

Pentium 4 at 1 GHz with 512 MB RAM and 10GB of Hard drive. While the broad 

conclusions of the study are unlikely to be affected if other hardware had been used, 

verification of this claim remains an aspect for further study. 

4.3 Software Considerations 

Any operating system platform could have been used to conduct the experiments. 

We have chosen to work under Linux because its RedHat version incorporates free 

software which can be use to encode programs. In addition, any programming lan­

guage could have been used to implement finite state machines and conduct proper 

experiments. As high-level language, we considered C++ to be suitable because it 

offers many optimization options. The g++ compiler of the free software foundation 

group gnu was used. Netwide Assembler (NASM) was our low-level assembler of 

choice, merely because of its simplicity. Any other assembler could have been chosen, 

based primarily convenience of use. Having established the suitable programming 

 
 
 



52 

environment and operating system platform, the software needed to produce the re­

sults of the experiment in graphical form was selected. We had to make a choice 

between gnu plot and J\lIicrosoft Excel for Windows because they both offer plotting 

capabilities on data collected. For simplicity reasons, we chose Microsoft Excel. 

4.4 	 The Intel Pentium Read Time Stamp Counter 

Instruction 

Since the experiment involved cross-compa.rison of times taken for different algo­

rithms, it required the use of a software instruction to measure times. On Intel 

microprocessors, the so-called time stamp counter keeps an accurate count of every 

cycle that occurs in the processor. The time stamp counter is a 64 bit model specific 

register (MSR) which is incremented at every clock cycle [Intel]. Whether invoked 

directly as a low-level assembly instructions, or via some high-level language instruc­

tion , the RDTSCI instruction allows one to read the time stamp counter before and 

after executing critical sections of code, and thereby to determine approximately the 

time taken to execute these critical code sections. It was extensively used in the coded 

experiments of this study. 

4.5 	 Random Number Generation 

In this experiment that was to be conducted on FAs, or more precisely on an arbitrary 

state of some FA , we needed a way to simulate the behavior of the FA in such a state. 

Lacking a repository that contained a. representative sample of finite automata to 

conduct the experiments, we have chosen to randomly generate our own arbitrary 

1Read Time Stamp Counter 

 
 
 



53 

state of a finite automaton. By a randomized state is meant one that is characterized 

by: 

• 	 A random set of symbols representing the alphabet from which is selected a 

random subset of symbols. Each of which triggers a transition to an randomly 

determined next state. Whereas the complement of the random set of symbols, 

represents symbols that do not trigger transitions at all . 

• 	The size of the random subset of symbols that could trigger transitions, was also 

determined randomly. This number determined the density of the transition 

function (i.e. the proportion of valid transitions). 

To be able to obtain reasonably representative data, we needed to generate on this 

random basis a large number of such arbitrary single states and then to use them for 

experiments. The use of an optimal random number generator program was therefore 

ot interest. According to [P'1'V 1"02j, the efficiency of a random number generator 

algorithm largely depends upon the size of the data to generate as well as on the 

kind of data to be generated. Three main options for random number generation 

are proposed in [PTVF02]; Source-code 9, 10 and 11 in appendix A, depict each of 

them written in C++. The type of values we aimed to produce was in the order 

of hundreds. The series to be generated does not need to follow specific statistical 

laws other than to be random. We aimed to produce a series that does not contain 

repetitive values, so that all possible symbols were used in the experiment. We chose 

the function ran2 (source-code 10) for its efficiency, and for its ability to produce in a 

single run fairly randomized numbers. These properties are discussed in [PTVF02]. 

 
 
 



54 

4.6 Methodology 

We aimed to cross-compare various hardcoding implementations against one another 

and also against the table-driven method. The implementation of the table-driven 

specification is straightfonvard and any programming language may be used . Further 

details need to be provided for the hardcoding technique, because several implemen­

tations both in high-level and low-level languages were considered. 

Using a high level language, algorithm 6 can be coded in two ways: either switch 

statements or nested conditional statements (if...t hen ...else ... ) could be used. It was 

decided to investigate three strategies in a low-level language, namely: the use of jump 

tables , the implementation of a linear search and the use of so-called direct jumps. 

Figure 4. 1 depicts the overall process flow used to compare the various hardcoded 

implementations and the table-driven implementation. Figure 4. 1 gives an overview 

of the main processes involved in the design and execution of the experiment. The 

process started by designing and implementing code that produces a random transi­

tion array. Such an array is used as input to a table-driven approach for recognizing 

a character of a string (i.e. an implementation of algorithm 5) . It is also used to 

hardcode (i.e. implement) algorithm 6 in several different ways . The figure shows 

two branches taken in regard to the hardcoding endeavor. The first provides two 

high-level language hardcoded implementations, and the second, three low-level (i.e. 

assembly) language hard coded implementations. Figure 4.1 thus alludes to a total 

of five separate hardcode generating programs. Each such program takes as input, 

some transition array indicating how transitions from a single state of an FA are to 

be made, and generates as output, the corresponding hardcode to handle a single 

input character in terms of such a transition array. In addition, a C++ version of the 

"table-driven" algorithm 5 also takes the same transition array as input , as well as 

the single randomly generated input character. The entry marked "Generate random 

 
 
 



55 

characters" in figure 4.1 therefore alludes to the generation of this random character 

that is used as input for a total of six different programs. As suggested in the figure, 

readings of the time stamp counter were appropriately embedded in each of the pro­

grams, making it possible to plot and compare the relevant execution times taken by 

each program. 

4.7 Chapter Summary 

We have presented in this chapter practical tools needed to conduct the intended 

experiments. Issues relating to hardware, software, and programming language selec­

tion have been present.ed. The overall methodology indicating the techniques to be 

used for cross-comparison was presented. 

The next chapter is devoted to the implementation details related to each al­

gorithm specified in the previous chapter as well as to the implementation of the 

methodology of the previous section using the tools depicted in this chapter. 

 
 
 

http:present.ed


56 

Generate random 
transition array 

Table-driven 

Figure 4.1: Process diagram indicating how the hardcoded implementation were com­
pared to the table-driven implementation 

 
 
 



Chapter 5 

1mplementation 

5.1 Introduction 

This chapter is about the overall implementation of our work. It focuses on the actual 

implementation of each critical session of the flow diagram presented in Figure 4.1 

of the previous chapter. The design of the random transition array is presented as 

well as detai ls about how we randomly generate symbols of the alphabet to be tested 

for recognition . The chapter ends with the presentation of each of the six coded 

implementations that constitute the experiment's building blocks. Thus, the table­

driven encoding in a high-level language is depicted . Various hardcoding experiments 

in high level language and low level language then follow. The chapter ends by 

indicating how we handled the actual experiment having each strategy defined. The 

approach to data collection for cross-comparison purposes is specifically raised. 

5.2 The Random Transition Array 

For the purposes of the experiment , it was necessary to generate randomized transition 

arrays. Such an array is based on the following random selections: 

57 

 
 
 



58 

• 	 the alphabet size of the FA, say alphabetSize; and 

• 	 the maximum number of transitions, numberO jTransitions ~ alphabetSize, 

that can be made from the simulated single state. 

For the present purposes , it was considered appropriate to limit the alphabet to 

integer values in the range 0 ::; alphabetSize ::; 255 l . The array is populated with 

random entries, each of which represents the next fictitious state to which a transition 

would be made if a full transition matrix were to have been generated. The actual 

number of such fictitious states is largely irrelevant, but is represented by maxInt. 

The array index position of each such entry is some random number less than 

alphabetSize. Such a random number is generated numberOfTransitions times. No 

provision is made to enforce the selection of a different random number in each gener­

ation , which means that sometimes an array index position may be reselected. Each 

array index position could be associated with a symbol that is to be recognized, but 

which , for the purpose of the experiment, is merely taken to be the integer number 

itself. 

The foregoing implies that an entry such as transition[12] := 234 should be 

interpreted to mean that if, in the current sta.te, symbol 12 is encountered, then a 

transition should be made to the fictitious state 234. Symbols such as 12 are regarded 

as "accepting" symbols. 

The implication of the above is that alphabetSize - numberO jTransitions is 

the minimum number of randomly located indices of the transition array that are 

not rega.rded as those triggering a transition. Instead these indices are associated 

with "rejecting" symbols. Algorithm 7 shows how the randomized transition array is 

generated. 

10f course, these integer values could be regarded as bit strings within a byte, and could be 
given any interpretation required by a particular application , e.g. they could be viewed as Unicode 
characters , etc. 

 
 
 



59 

Algorithm 7. Generation of random transition array 

function genRandomA rmy() :transitionArray 

i := 0; 

alphabetSize := ran2 (0,255); 

numberOfTransitions := ran2(O,alphabetSize); 

{Initialization of the transition array} 

for i:=O to alphabetSize do 

transition(ij := -1; 

end for 

while (i < numberOfTransitions) do 


index := ran2(O,alphabetSize); 


transition(indexj .= ran2 (0, maxInt); 


i := i+1; 


end while 

return (transi tion); 

end function 

5.3 Table-Driven Implementation 

A c++ version of the table-driven implementation takes as input a transition array, 

as well as a single randomly generated input character. Source code 1 below illus­

trates the actual encoding of algori thm 5. Notice that to prevent the C++ optimizing 

compiler from bypassing the execution of the statement related to the random sim­

ulation of a valid transition or not, we introduced a function fake_transition() that 

contains some "fake" statements, forcing the compiler to actually consider the assign­

ment that determines a next state. The reason behind all of this is that the g++ 

compiler is very efficient in generating optimized executable code from source code. 

 
 
 



60 

One of its strength is to bypass any statement it may judge not to be useful to the 

entire program being compiled. Therefore, a sequence of statements such as 

begin = rdtsc () ; 

nextState = ptrTransition[k]; 

end rdtsc () ; 

tsc end-begin; 

will inevitably produce a tsc = O. This because the compiler regards nextState to be 

of no use in the code, and thus bypasses the statement nextState = ptrTransition[k]. 

It was therefore necessary to look for a means of "forcing" the execution of such 

a statement. This was achieved by introducing the function "fake_transition()". The 

function prevents the compiler from bypassing an important statement that consti­

tutes the very statement being tested in our work. 

vVe consider here the time to execute a "fake_transition()" call. For the present 

experiment, this represents the time taken to receive an assignment either of an arbi­

trary next state or of -1 (indicating that the next state does not exist)2. Acceptance 

or rejection is actually determined by the content of the variable nextState after exe­

cuting "fake_transttion(),'. In the case of our experiment, a transition was said to be 

invalid for a given input symbol if the corresponding value of the transition function 

at that current state with the given symbol was -1. Any other value was a positive 

integer that represented a valid transition to an arbitrary state of the automaton. 

Source-code 1. C++ extract of table-driven symbol recognition algorithm 

void fake_transition(char a, long &next){ 

long val; 

20f course, in normal circumstances, the jake_transition() invocation consumes some time that 
affects t he overall time measured to accept or reject a symbol. This situation was taken into account 
in the later experiments as described in chapter 7. 

 
 
 



61 

val = ptrTransition[a] ; 

next = val; 

} 

int main(int argc, char *argv[]){ 

II assume alphabetSize below is known (global variable) 

I*Generate the random transition array using 

genRandomArray and store in ptrTransition *1 

ptrTransition genRandomArray(); 

for (k = 0; k < alphabetSize, ++k){ 

nil rdtsc(); 


nil rdtsc()-nil; 


begin = rdtsc(); II read time stamp counter 


fake_transition(k,nextState); 


end rdtsc(); II read time stamp counter 

tsc end-begin-nil II compute the processing speed 

} 

return 0; 

} 

5.4 Hardcoded Implementations 

As shown in figure 4.1, two branches were taken in regard to the implementation of the 

hardcoding experiments. The first branch refers to two high-level language hardcoded 

implementations, and the second, to three low-level (i.e assembly) language hardcoded 

implementations. The figure thus alludes to a total of five separate programs that 

 
 
 



62 

generate hardcode. Each of these was written in C++. Each such program takes as 

input, some transition array indicating how transitions from a single state of an FA 

are to be made , and generates as output, the corresponding hardcode to handle a 

single input character in terms of such a transition array. 

Source code 2 and 3 illustrate how these programs to generate hardcoded programs 

were written in C++. In the former case, the hardcode generated is in a high-level 

language while, in the latter case it is in a low-level language. Note that similar 

approaches were used for the other three cases. 

Source-code 2. C++ extract of high-level language haTdcode generatoT 

based on nested conditional statement to Tecognize a single symbol 

int main(int argc, char *argv[J){ 

testFile fopen(fileName, "w"); 

II headers files 


fputs(' '#include \"", testFile); 


fputs("rdtsc.h", testFile); 


II and any other header file required 


fputs("int main(void){\n" ,testFile); 


fputs( .... variable declarations); 


fputs( .... more variable declarations); 


fputs(' 'begin = rdtsc(); II read time stamp counter \n" ,testFile); 


II auto generate any single line of the nested conditional statement 


for (auto int k = 0; k < alphabetSize; k++){ 


II we use the randomly generated transition table to construct the 

 
 
 



63 


II 	hardcoded program 

if 	(ptrTransition[k] != -1){ 


firstValidTrans++; 


if (firstValidTrans 1){ 


II begin the first line of the nested conditional statement 


fputs(" if (a == ",testFile); 


fputs( tostr(k),testFile); 


fputs(' ') nextState = ", testFile); 


fputs(tostr(ptrTransition[k]),testFile); 


fputs("; \n", testFile); 


} 


else 


{ 


fputs( " else if (a == " ,testFile); 


fputs( t ostr(k),testFile); 


fputs(' ') nextState = ", testFile); 


fputs(tostr (ptrTransition[k]),testFile); 


fputs("; \n " , testFile); 


} 

} 

} 

II default statement 


fputs(" else " ,testFile); 


fputs( ' nextState = -1; \n", testFile); 


II 

fputs(' 'end rdtsc(); II read time stamp counter \n " ,testFile); 


fputs( ' 'tsc end-begin ; II read time stamp counter \n" ,testFile); 


 
 
 



64 

fputs("return 0; \n' '); 

fclose(testFile); 

} 

Source-code 3. C++ extmct of low-level language hardcode genemtor 

based on jump table to recognize a single symbol 

int main(int argc, char *argv[]){ 

testFile fopen(fileName, "w"); 


II headers files 


fputs(' '\%include \"asm_io.inc \" \n", testFile); 


fputs(' '\n" ,testFile); 


fputs (' 'segment .data\n" ,testFile); 


fputs(" ;initializations" ,testFile); 


fputs(' 'TABLE dd ",testFile); 

if (ptrTransition[O] == -1) 

fputs(' 'case_default\n" ,testFile); 

else 

for (auto int k = 1; k < alphabetSize; k++){ 

if (ptrTransi tion [k] ! = -1){ 

fputs(" dd ",testFile); 

fputs(strcat(' 'case_" ,tostr(k)),testFile); 

} 

 
 
 



65 

else 

fputs (' , dd case_default\n' , , testFile); 

} 

fputs(' 'segment .bss\n" ,testFile); 


fputs ( , , segment .text\n" ,testFile); 


fputs (' , global asm_main\n" ,testFile); 


fputs(' 'asm_main : \n' , ,testFile) ; 


fputs(' 'rdtsc\n" ,testFile); 


fputs(' 'mov [ebp+SJ ,eax \n" ,testFile); 


fputs(' 'mov [ebp-SJ ,edx \n" ,testFile); 


fputs ( , 'mov eax, [epb-4] \n" ,testFile); 


fputs ( , , shl eax,2 \n" ,testFile); 


fputs (' 'mov esi,TABLE \n" ,testFile); 


fputs("add esi,eax \n" ,testFile); 


fputs (' , jmp [esi] \n" ,testFile); 


fputs(' 'case_default:\n" ,testFile); 


fputs (' , mov edx,-l\n' '); 


fputs(" jmp next\n' '); 


for(auto int k = 0; k<alphabetSize; k++){ 


if 	(ptrTransition [k] 1= -1){ 

fputs(strcat("case_', ,tostr(k)),testFile); 

 
 
 



66 

fputs(" :\n" ,testFile); 

fputs(" mov edx," ,testFile); 

fputs(ptrTransition[k] ,testFile); 

fputs(' '\n" ,testFile); 

fputs(" jmp next\n" ,testFile); 

} 

} 

fputs("rdtsc\n" ,testFile); 

fclose(testFile); 

} 

The subsections below discuss each of the hardcoded implementations, and explain 

the reason for our choice. 

5.4.1 Use of the Nested Conditional Statements 

An implementation based on nested conditional statements appears to be a natu­

ral and easy way to encode a hardcoded algorithm for FA s. It is an almost direct 

translation of algorithm 6 into C++ . As can be seen in that algorithm, a condi­

tional statement is used to check whether a symbol is valid in the transition table or 

not. Source code 4 gives an extract of the actual implementation in C++ for some 

randomly generated transition array. In this particular array, character 0 causes a 

transition to state 8, characters I , 2, 3 and 4 are not associated with a transition, 

character 5 causes a transition to state 10, etc. The program thus records the time 

stamp counter value in tsc for each possible input character value a that is less than 

alphabetSize. 

 
 
 



67 

It may be observed that the value of tsc will be the least when a corresponds to 

the first accepting symbol in the randomly generated transition array. As the symbol 

being evaluated is sought after more deeply in the nested conditional statement, so 

the time required to locate it increases. Therefore, the worst case scenarios arises 

when the symbol a is not an accepting symbol in the transition array. In that case, 

all branches of the conditional statement will be tested sequentially before reaching 

the default case. When the number of branches become relatively large then such 

an implementation seems likely to be less efficient on average in comparison with the 

switch statement implementation that is presented in the next section. 

Source-code 4. C++ extract for nested conditional statement implementation 

for (a =0; a<alphabetSize; ++a){ 

begin = rdtsc () ; 

if (a == 0) nextState = 8; 

else if (a == 5) nextState 10; 

else nextState -1; 

end rdtsc () ; 

tsc end-begin; //record tsc 

} 

5.4.2 Use of the Switch Statements 

The switch statement is a high-level alternative to implementing nested conditional 

statements. It would appear to be especially appropriate when characters are to be 

recognized in general. However, as will be seen when the experimental results are 

 
 
 



68 

presented, the use of nested conditional statements appears to be inefficient than 

switch statements in terms of processing speed, especially when dealing with the 

default case. 

Source-code 5 shows an extract of the encoding of a hardcoded version of algorithm 

6 based on a switch statement. The randomly generated transition array that is to 

be hardcoded is the same as that of the previous hardcoded example. In the source 

code, for each value of a between 0 and alphabetSize, a tsc values is recorded. 

A s'witch statement being a branching structure, one may predict same execution 

time for each accepting symbol to be evaluated. Such a prediction is made without 

taking into consideration the way the structure is compiled down at a lower level. 

Source-code 5 . C++ extract fo r switch statement implementation 

for (a 0; a < alphabetSize; ++a){ 

begin rdtsc () ; 

switch(a) 

{ 

case 0 : nextState 8; break; 

case 5: nextState 10; break 

default: nextState -1; break; 

} 

end rdts c () ; 


tsc end-begin; II record tsc 


} 

 
 
 



69 

5.4.3 Use of a Jump Table 

The use of a jump table in assembler was suggested by the results of disassembling 

the high-level language's switch statement. The latter revealed that the optimiz­

ing compiler constructs a jump table when encountering a switch statement with a 

large number of cases. However the compiler-generated jump table contained several 

generic features that could be further optimized for the specific scenario under study. 

A code extract that illustrates such an optimized jump table is shown in source-code 

6. 

A table is defined in the data segment. Each table entry contains the address of 

a block of code that is associated with an input symbol. This entry is accessed by 

having regard to the table's start address and the value of the input symbol. The 

table entry relating to the input symbol is thus read, and the flow of control is directed 

to the memory containing instructions relating to that specific symbol. 

In the source code below, a loop is performed for each symbol stored at memory 

location ebp-4. That location is used as a control variable, even though evaluation 

to check whether the loop has reached the end is done using the register eax. At 

any step in the loop, ea.I is assigned the value of the current symbol. We then need 

to evaluate the corresponding block of code for the symbol being examined. This 

is done by firstly shifting the content of eax by 16 bits ( 2 bytes) to get a double 

word using shl (shift left). Next the resulting content of eax, added to the address 

of TABLE, is stored in esi. Such a series of instructions is justified by the fact that 

each entry of TABLE occupies a double word (dd), whereas the initial content of eax 

is a single word. We then need to shift it left by two bytes to make it have the same 

length as an entry in TABLE, then add that value to the start address of TABLE 

to obtain the exact entry point corresponding to code relating t.o the symbol being 

tested. This is done without any ambiguity because each symbol is numbered from 0 

to say alphabetSize-l. 

 
 
 



70 

After obtaining the address of the block of code to which to jump, the program 

records the start value for tsc, then executes the corresponding block of code, and 

records the final value for tsc respectively. The duration of the processing speed of 

the current block is then calculated and recorded. The jump table is implemented 

in such a way that all default entries are part of the table, but only one default 

block of statements is labelled in the program. Thus, for example, the symbols 1, 

2, 3, 4, and 6 (in the Source-code below) do not have a next state, in order words, 

they are rejecting symbols and should be trea.ted in terms of the default code. While 

they therefore have different entries in the jump table, each table entry refers to an 

identical address, designated "case_default". There is only one action associated with 

any such rejecting symbol: the action carried out in terms of the unique block labelled 

by case_default in the Source-code. 

Source-code 6. Sample code for jump table implementation in NASM 

segment .data 

;define the TABLE entries 

TABLE dd case_O 

dd case default ;rejecting symbol 

dd case_default ;rejecting symbol 

dd case_default ;rejecting symbol 

dd case_default ;rejecting symbol 

dd case 5 

dd case default ;rejecting symbol 

mov dword [ebp-4J, ° ; first symbol of the alphabet 

mov dword [ebp+24J, alphabetSize 

 
 
 



71 

mov eax, [ebp-4J 

begin_loop: 

cmp eax, [ebp+24J 

je end_loop 

read start tsc value 

mov eax, [ebp-4J store the value of the symbol in eax 

shl eax, 2 Byte offset from start of TABLE 

mov esi, TABLE load start of TABLE address 

add esi, eax determine the address of the jump 

jmp [esi] jump to address 

specify the different case statements 

case_default : 

mov edx, -1 for any rejecting symbol 

jmp next 

case_O: 

mov edx,8 

jmp next 

case 5:-

mov edx,10 

jmp next 

next: 

;read final tsc value 

;calculate duration 

mov eax, [ebp-4] restore the current symbol into eax 

 
 
 



72 

inc eax increment to the next symbol 

jmp begin_loop 

5.4.4 Use of a Linear Search 

Linear search involves a sequential comparison of the various cases. Its structure 

is fairly obvious and is suggested by the disassembly of the high-level conditional 

statements. The implementation is straightforward. It involves a sequential series 

of comparisons and jumps to the appropriate label, according to the current symbol. 

Source-code 7 below depicts an extract of NASM code that implements the linear 

search. 

The program loops on the alphabet symbols and the time is recorded for each 

symbol recognition action. The code shows that comparison is sequential. The com­

parison is performed only on symbols that trigger a transition to some state. The 

default case handles the case related to rejecting symbols. It follows that a rejecting 

symbol is only noticed after performing all the preceding comparisons on all accept­

ing symbols. However , a symbol that matches at the beginning of the comparison 

structure is processed at a minimal speed compared to any other symbols that may 

match somewhere in the middle or at the end of the control structure. 

Source-code 7. Sample code for linear search implementation in NASM 

mov dword [ebp-4], 0 ; first symbol of the alphabet 

mov dword [ebp+24], alphabetSize 

mov eax, [ebp-4] 

begin_lOOp: 

 
 
 



73 

cmp eax, [ebp+24J 


je end_loop 


; read start tsc value 

mov eax, [ebp-4J store the value of the symbol in eax 

cmp eax, ° 
je near case ° 

cmp eax, 5 


je near case 5 


je near case default 


specify the different case statements 


case_O: 

mov edx,8 

jmp next 

case_5: 

mov edx,8 

jmp next 

case default: 

mov edx, -1 

jmp next 

next : 

;read final tsc value 

;calculate duration 

 
 
 



74 

mov eax, [ebp-4] restore the current symbol into eax 

inc eax increment to the next symbol 

jmp begin_loop 

5.4.5 Use of a Direct Jump 

This implementation strategy was an attempt to improve upon the jump table version. 

It involves the labelling of each block of statements that deals with a given symbol 

and ensuring that blocks are separated from one another by a constant offset. This 

makes it possible to compute a direct jump address from the symbol value and block 

size. Having noticed that each block can be represented in fixed size, the idea is to 

calculate the absolute address of a block using the symbols that it represents in the 

alphabet. For that reason, we used the formula addr = ip + c + w * R where ip 

represents the current address of the instruction pointer, c a constant representing 

the size of any gap that might exist between ip and the block to which to jump, w 

is the size of block, and R is the register containing the current symbol. In the code 

below (Source-code 8), c is taken as 7 bytes and w is taken as 10 bytes. 

Unlike the jump table approach of the previous section, in this method there is no 

default case and consequently identical blocks of code have to be repeated for distinct 

rejecting symbols. While this implies a.dditional space to store the program, there is 

some gain in space in that a table mapping symbols to addresses does not have to be 

set up and stored. 

Source-code 8. Sample code for direct jump implementation in NASM 

;Direct jump using 10 as the size of each block of case statement 

;and 7 as the size of the jump instruction it self 

 
 
 



75 


mov dword [ebp-4J , 0 ; first symbol of the alphabet 

mov dword [ebp+24J, alphabetSize 

mov eax, [ebp-4J 

begin_loop: 

cmp eax, [ebp+24J 

je end_loop 

record initial tsc 

mov eax, [ebp-4J store the value of the symbol in eax 

mov edx, 10 store the size of the block in edx 

mul edx, 

add eax, $+7$ ; eax ip + 7 + 10*eax (absolute jump address) 

jmp eax ; jump to address 

specify the different case statements 

case_O: 

mov edx,8 

jmp next 

case_ 1: 

mov edx, -1 

jmp next 

case_2: 

mov edx, -1 

jmp next 

case - 3: 

mov edx, -1 

jmp next 

case - 4 : 

 
 
 



76 

mov edx, -1 

jmp next 

case - 5: 

mov edx, 10 

jmp next 

next: 

;record final tsc 

; calculate time 

5.5 Data Collection 

The collection of data was straightforward. At the time of writing, 355 random 

transition arrays had been generated along the lines previously described. For each 

such array, the five versions of hardcode were generated. Each generated version was 

then compiled (high-level versions) or assembled (low-level versions). Then, running 

through each symbol of the alphabet (i.e. char in algorithm 5 and 6) each hardcoded 

version as well as the code for table-driven implementation was run. The time taken 

to process each symbol was recorded, noting whether the symbol was an accepting or 

rejecting symbol of the state 

In order to account for statistical noise in the time variable (whether caused by 

the CPU or the Operating System), it was decided to repeat the measurements over 

20 runs for the same transition array and input symbol. 

Algorithm performance relative to accepting symbols, rejecting symbols, and all 

 
 
 



77 

symbols collectively, was recorded in terms of three statistical measures, computed 

for each batch of 20 runs, namely: the average time, the minimum time, and the 

maximum time. 

For the table-driven method as well as for each of the five hardcode versions this 

yielded a total of nine statistics per randomized transition array. In each of these 

cases a tenth statistic was also recorded, namely the randomly determined number of 

accepting symbols in the transition array. Note that, while the rejecting symbols are 

all treated similarly in the code, it is generally the case that the greater the number 

of accepting states, the greater the number of lines of code that has to be added into 

the hardcoded versions to deal with these accepting states. In this sense, this tenth 

statistic, the average number of accepting states, will be regarded as a metric (albeit 

somewhat rough and ready) of the problem size. 

The raw data thus consisted of six 355 by 10 matrices - one such matrix per each 

hardcoded version and another for the table-driven method. 

In order to further smooth out statistical noise, it was decided to aggregate the 

355 rows in each of the six above mentioned matrices. As a first step, the rows were 

sorted in ascending order of number of accepting symbols. The latter statistic, i.e. 

the number of accepting symbols, was used as a basis for clustering contiguous rows, 

resulting in 33 clusters of rows, containing approximately 10 to 11 rows per cluster. 

These clusters of contiguous rows were averaged by column. The net effect was to 

reduce each of the six matrices to 33 rows by 10 columns. Refer to Appendix B for 

the reproduced data. It should be noted that on some rather rare occasions, the data 

contained outlier values. It seemed reasonable to assume that these measurements 

were so dominated by operating system or CPU chance events, that they merely 

obscured any legitimate conclusions that one might potentially draw about hardcode 

performance. Since practically all timing measurements were well within a 2-digit 

range, it was decided to regard any timing number greater than two digits as an 

 
 
 



78 

outlier. These numbers were simply ignored in all subsequent computations. 

5.6 summary of the chapter 

In this chapter, we have given details relating to the implementation of the experiment 

that constitutes the cores aspect of the dissertation. Details about data collection 

have been presented. The next chapter covers details relating to the presentation of 

results. 

 
 
 



Chapter 6 

Experimental Results 

6.1 Introduction: 

Various graphical representations of data collected during the experiments described 

in the previous chapter are provided in this chapter. We start by presenting the 

processed results of the table-driven implementation. Then follows various graphical 

representations relating to results from both high-level and low-level hardcoded im­

plementations. The chapter ends with a general graph to compare the table-driven 

implementation against the various hardcoded implementations. 

6.2 Table-Driven Experimental Results 

Figure 6.1 shows that the average processing speed of the table-driven method is about 

88 clock cycle::; (ccs) , both for accepting and rejecting symbols. The graph plots the 

first column (problem size) against the tenth column of Table B.1 of Appendix B. 

In this situation , the problem size does not appear to be a factor that influences 

the time taken to recognize a single symbol of some FA. Recall that the 88 ccs 

includes the time taken to perform a function (fake_tmnsition()) call. In normal 

79 

 
 
 



80 

circumstances the average time required to perform an assignment statement such as 

( x = transiiion[i])is about 10ccs . Therefo re , up to 78 ccs of the time provided in the 

figure is related to function call overhead and not the actual assignment statement. 

The overall picture does not change if the t ime meas urements for processing ac­

cep ted symbols or rejected symbols is plotted . There is almost no difference between 

the time required to accept a symbol and the time required to reject a symbol. This 

is explained by the fact that access and retrieval of data from each entry of the table 

is performed at an almost uniform speed . 

RR n!'i 

88[14 


'"
u 
U I:JI:J.U::J 
<: 

<V 

·!lI:JI:J .U:.i 
<V 
OJ ... 
; BB 01:> . 

<1;; 

BB 

87.99 

90 

~ 

110 

/IV 
."-. ... 

" 

1]0 150 170 190 210 

Problem size 

Figure 6.1: Average processing speed for Table-driven implementation (accepting and 
rejecting symbols) 

6.3 Hardcoding Experimental Results 

As mentioned in the previous chapters, there are several ways in which hardcoding 

could be implemented and five specific strategies have been selected in this work. The 

 
 
 



81 

reasons for various selections were previously explained. For presentation purposes, 

it was considered useful to partition the experiments into two groups: high-level 

language experiments and low-level language experiments. 

6.3.1 High-Level Language Hardcoding 

The encoding using nested conditional statements (NCSs) and switch statements 

(SSs) was considered for this group of experiments. Data collected for both methods 

are depicted in table B.2 and B.3 of Appendix B. 

As previously suggested, there is a prima facie case to be made for anticipating 

that the NCS implementation may be influenced by the problem size (that is, by the 

number of symbols being processed)l. The reason \-vas that comparisons are made 

sequentially from the top to the bottom of the control structure. 

Figures 6.2 and 6.3 justify the arguments. When measurements are based on 

accepting symbols (ASs) , then the average processing time is between 89 ccs and 

100 ccs. For rejecting symbols (RSs), the average processing time is between 110 ccs 

and 160 ccs. This means that the processing of an accepting symbols is about 0.8 

to 1.6 times faster than the processing of rejecting symbols. On average, therefore, 

rejecting symbols apparently require more processing time than accepting symbols. 

Furthermore, the average time for processing both accepting and rejecting symbols 

appears to increase with the problem size. In the figure , there appears to be a growth 

trend in processing speed as the the problem size increases. This can be explained 

by the increase, on average, in the number of sequential comparisons to be performed 

before accepting or rejecting a symbol. 

Figures 6.4 and 6.5 plot the processing speeds obtained from the SSs implemen­

tation against problem size. No obvious trend is apparent in either of the figures - in 

Ilf there were more sta.tes to be processed, then what is being termed here the "problem size" 
would translate to the overall density of the FA's transition matrix. 

 
 
 



82 

102 ,--------------------­

100 +-----------------------------------~~----
VI 

::: 08+_-------------------------------------1------­

III 8E1 +_-----------------,-----------,~>1'_----__:_----__J+_----­

] j*\ II / t--------­
~ ~ ---------------+-~~~~~~--TT*-rr_~~~~.~f+-I____,~/

g qj +--+"------,-1/-----'1\M-'tJJ-'~_______ii\I'+_++_rl---
~ r~ ~ V 

00 +_--------~-------------------------------

88 +------.------~------.-----~------~-----" 

80 100 120 140 1E1o 180 200 

ProblQm ~i:ZQ 

Figure 6.2: Accepting symbol performance for NCSs 

both cases the processing time seems to oscillate unpredictably in a relatively narrow 

band around the average processing time. In the case of rejecting symbols, this av­

erage time is approximately 88.4 ccs whereas the average time for accepting symbols 

is some 92.4 ccs. There therefore appears to be a net processing speed difference of 

about 4 ccs between accepting and rejecting symbols. 

A possible explanation for this difference might relate to the way in which the 

compiler executes the default cases. It would seem that these default cases are han­

dled before any other cases. However , in the context of the current work, further 

investigations into this matter were not carried out, since the issue is not considered 

to be central to the main theme of the present work. 

Having hypothesized on the basis of the above evidence that the problem size is 

not of importance at this stage of the experiment, it was decided to cross-compare the 

NCSs and SSs implementations on the basis of their average performance. Table B.7 

in appendix B contains data reproduced by averaging the overall processing speed 

of both methods and other implementation techniques used for the single symbol 

 
 
 



83 

100 

nln 
<II 140 
u 

c 
0 

17n 
<lI 

100E 
~ 
(II I::JU 
OJ 

~ 
(II GO 

ct 
> 4n 

20 

U 

v • 

I::JU lUU lLU l4U lbU 1I::JU LUU 

Problem size 

Figure 6.3: Rejecting symbol performance for NeSs 

experiments. Recall that the data averaged (minimum, maximum and average time) 

was performed on the 355 data collected for each implementation technique, without 

taking into consideration the problem size. Figure 6.6 depicts in histogram form the 

overall performance of both methods ~ i.e. the average performance taken over a.ll 

problem sizes. It appears that for minimum time measurements , the average time 

taken by the two methods is almost the same. In the worst case measurements 

(maximum time), the nested conditional statement approach tends to be slower than 

the svvitch statement approach. On average, the switch statements ' average time is 

90 ccs, which is a.bout 33% faster than the nested conditional statements' average 

time of 120 ccs. 

6.3.2 Low-Level Language Hardcoding 

Jump table (IT) , linear search (LS) and direct jump (DJ) were the low-level imple­

mentation techniques chosen, for the reasons previously described. 

Data collected for the JT implementation is presented in table B.4 of Appendix 

 
 
 



87 

84 

(II 

::: 85 
.~ 

w 94 
E 
'P 
~ 8::1 
~ 
~ !j~ 
-< 


81 


80 
Rn 

',-

"~ 1: • 
'\ 1 l~ I- ~\ Il-~\ 
',.. ~'/ \ ~ \\ /

,/ 

//\ 
'J V 

1nn 17n 14n 1Rn 1Rn 

Problem size 

Figure 6.4: Performance based on ASs for SSs 

B. Figures 6.7 and 6.8 depict the performances measured for both accepting symbols 

and rejecting symbols. Accepting symbols require an average processing speed of 

8.5 ccs, whereas the average processing speed for rejecting symbols is about 4 ccs . 

Rejecting symbols' processing is therefore about 2 times faster than the processing 

of accepting symbols. In neither case, however, does the problem size appear to 

have any influence The stable performance with respect to rejecting symbols may 

be explained by the fact that each entry in the jump table for a rejecting symbol 

executes the same default block of code. 

In the case of the LS implementation, the problem size predictably constitutes 

a major factor that influences the time required to accept or reject a symbol. This 

is due to the nature of the structure that requires several sequential comparisons for 

a given symbol. As the problem size grows, processing both accepting and rejecting 

symbols may be expected to be slower since, on average, the number of comparisons 

required increases. 

The data collected for LS is shown in table B.5 of Appendix B. Inspection of 

 
 
 



85 

88 .0 

88.S 

III 88.7 

u 

u RR R 


.~ 
~ 88.5 

E 


88 .4-~ 
~ 00.:J 
.... 
~ 88.2 

~ 88. '1 


i::!1::l .U 

879 

80 100 120 140 160 180 200 

f ! 
I 
/
J 

/
/ 

II 

J ( 

I 
I 

/
/

j 

~\ 
r 

\ 
\. 

Problem size 

Figure 6.5: Performance based on RSs for SSs 

figures 6.9 and 6. 10 reveals that the method requi res between about 2 and 14 ccs for 

accepting symbols, and between about 2.64 to 100 ccs for rejecting symbols. Rejecting 

symbols recognition is therefore up to about 10 times slower than the recognition of 

an accepting symbol. In accordance with the previously mentioned predictions, there 

is some suggestion of an upward trend in the graph for accepting symbols, and a very 

definite trend in the case of rejecting symbols. 

Table B.6 of Appendix B contains the data collected for the DJ implementation. 

The method 's processing speed does not appear to be affected by the problem size, 

as shown in figures 6.11 and 6.12. In effect, the minimum time taken to accept a 

symbol is between 12 and 18 ccs, whereas about 12 and 14 ccs are required to reject 

a symbol. There is thus a weak suggestion that the processing speed for accepting 

symbols is slightly slower than the processing speed for rej ecting symbols. 

Finally, as shown ip figure 6.14, hardcoding implementations using low-level lan­

guages results in very fast minimum and average processing times. In fact, the mini­

mum and average processing speed is in the range of 4 to 24.5 ccs. However, there are 

 
 
 



86 

o Minirrum bITe Ii! Maxirrun tilTe o Avcrugc tilTe 

300 
/' 

2Go 

U'I 200 
u 
u 
I:: 

150 v 
E 
i= 100 

GO 

0 
H10h 1p.vp.1 !;Wtr.h c;trJtp.mP.n~ H10h 1p.vp.1 rnnnlhnnrli c;trJtp.mP.n~ 

Figure 6.6: Performance based on hardcoding implementation in high-level language 

differences between each of the strategies. If average or minimum time is considered 

as the basic measurement for comparison, then the use of a jump table appears to 

be the best of all three strategies. At a minimum, it requires 4 ccs to recognize a 

symbol, and on average it requires 13.3 ccs. 

It should be noted that the average time data does not include outlier values, 

as mentioned previously. The measurement therefore does not represent an objective 

basis for comparison in the sense that the determination of what constitutes an outlier 

value was somewhat arbitrary. The intention was to eliminate observations from 

the sample data that did not accurately reflect processing speed variations due to 

random noise, but whose overly large values could more reasonably be ascribed to 

some chronic operating system factors that did not relate in any meaningful way to 

the present experiment - i.e. it is postulated that such factors occur, irrespective of 

the experimental task being run. In determining what values to consider as outliers, 

the rather arbitrary value of 100 ccs was chosen by inspection as the cutoff value. 

 
 
 



87 

12 

10 
'"u 
u 
I:: B 
Q) 

E 
'';:; 6 
E 
~ 

E 4 
t: 

::E 
2 

0 

0 100 1!]O 200 

Problem size 

Figure 6.7: Performance based on ASs for JT 

As a result , it is possible that several values that should have been considered to be 

outliers might remain in the averaged data. Nevertheless, there does not seem to be 

any obvious way of overcoming this difficulty. 

To indicate the extent of these outlier values , the figures also show the maximum 

processing times. The fact that direct jump has the lowest maximum processing speed 

of 237.1 ccs is considered to be purely incidental. For reasons already mentioned, it 

does not seem like a reasonable metric for assessing the performance of the various 

implementation strategies. 

6.3.3 Overall Results of Hardcoding 

Figure 6.14 depicts the minimum, maximum and average processing speed, averaged 

over all problem sizes, for the various hardcoded implementations. The corresponding 

data may be found in table B.7 of Appendix B. The graphs strongly suggest that, 

in terms of this metric, the jump table implementation is the best of all the various 

approaches . It appears to be at least twice as fast as the linear search approach, at 

 
 
 



88 

4 .U~ 

4 nn 
3.95 


u 

u 300 

<II 

.~ 
41 J.05 
E ..", 3.80 
E 
:J 3.75 
.5 
c 3.70 
~ :1 RS 

3.60 

1 
I 

J 
I 
I 
I 
1 

3.55 

o 50 100 150 :2DD 250 

Problem size 

Figure 6.8: Performance based on RSs for JT 

least four times faster than direct jump, and more than thirty times faster than either 

of the high-level hardcoded implementations. 

6.4 Final Results 

Investigation of the rest of the data revealed that, with the exception of the graphs 

characterizing the linear search and nested conditional statements versions, all of the 

graphs have more or less the same form as the jump table and direct Jump graphs - i.e. 

they are substantially unrelated to problem size. The observation holds, irrespective 

of whether maxima, minima or average values are considered, or whether data relating 

to accept or reject symbols are used. As a result, it seemed reasonable to base 

further comparisons of the six different coding possibilities on average values taken 

over all problem sizes. The results are displayed in histogram form in figure 6.15. 

The figure relates to overall average performance (as opposed to overall minimum or 

 
 
 



89 

Hi 

14 

'"(.) 1:2 
(.) ~'\..£: 

lU 
~ 

E 
+:I 8 
E:s B 
.~ 
c 

42 

2 

0 

0 50 100 150 :100 250 

Problem size 

Figure 6.9: Performance based on ASs for LS 

maximum performance) in regard to any symbol (whether accepting or rejecting). It 

follows that, the jump table version is more than twice as fast as its nearest rival (the 

linear search version) and more than forty times faster than any of the high-level 

implementation versions, whether table-driven or hardcoded . Moreover, it would 

seem that hardcoding to a high-level language is not worthwhile, since the standard 

table-driven implementation appears to be slightly faster. 

6.5 Summary of the chapter 

In this chapter , we have presented various results obtained from the first level ex­

periments introduced in chapter 5. Table-driven and hardcoded algorithms were 

cross-compared and various graphs drawn. At this stage, it is shown that hardcoded 

algorithms are more time efficient that their table-driven counterpart. However) the 

traditional table-driven appears to be more efficient than the hardcoded algorithms 

 
 
 



90 

1LU 

100 
'"u 
u 
.~ Rn 
<I) 

E 
'.p 00 
E 
:J 

.5 40 
c 
:E 

20 ....
0 

0 50 100 150 200 250 

Problem size 

Figure 6.10: Performance based on RSs for LS 

implemented in high-level language. The jump table implementation in a low-level 

language is the fastest of all other methods. However, it might be possible to ob­

tain improved results with the direct jump implementation by engaging in further 

optimization. 

Having established the efficiency of hardcoding implementations based on pro­

cessing in regard to recognizing a single symbol in a single arbitrary state of an FA, 

it was considered desirable to scale up the problem to a higher level - i.e. to carry 

out experiments based on the recognition of an entire string within some arbitrary 

FA. Based on previously mentioned considerations, the overall expectation would be 

to obtain a linear time relationship with respect to the length of the string to be 

recognized by the FA. However , consideration must also be given to the overall cache 

misses encountered during the execution of such programs. The effect of cache misses 

introduces noise into the prediction of linear time performance. The next chapter 

presents in detail the problem and the results achieved thus far. 

 
 
 



91 

20 

18 

1/1 16 
0 
<J 14 
~ 

dl 12 
E 

.II (\ •Nt \ ~ .l "-""''', /A ... ~-1 \.. //.\..-. 
1/ ~ ~/ -.. 

~ 10 
E 
~ 8 
E 
·c G 
::l: 4 


2 


U 
o 50 100 150 200 250 

Figure 6.11: Performance based on ASs for DJ 

Hl 


16 
 • 
k-+, (\ ~ ~ 

0 
<II 14 
0 \.J. ~~...., \ !'~ V\/~-..-.J
.£ 1? 
GI 

E 10... 
E 8 
::l 

.~ 6 
c: 
:E 4 

L. 

0 

o 50 100 150 200 250 

Problem size 

Figure 6.12: Performance based on RSs for DJ 

 
 
 



92 

o Minirrum tirre II Ma>drrumtirre o Average tirre 

III 

0 
0 
c: 
Q) 

E 
i= 

BOO 

500 

4nn 

300 

200 

100 

0 
LlJlIIIlevel jUrTp table LDw level linear search LlJlIIIlevel clirect jUrTp 

Figure 6.13: Performance of low-level hardcoded implementations 

o Mil lillul I I lil I to II Mdxil I ur I Iii I I to 0 A~I dlJe lil I to 

600 

III 
~nrl 

<> 
<> 

.E 4nn 
w 
E :.:IIJIJ-w 
OJ 

~ 100 
QI 
:>­

..:( 
100 

0 
I able-dnven Hon 18Yl'!1 SVIItcn Hon level l.1JIN level Jurrp t atlle l.1JIN level linear LOW level direct 

COllditicnal jUllll 

Figure 6.14: Performance based on hardcoding implementation 

 
 
 



93 

o Tab1c·drillm • I ugh Ieve! switch st..tements o I Iighlevel conditional statements 

o Lowl cvd Jwnp table • Lowl C'V'Clline.ar 5earch o Lowlcvd clil-cctjump 

88.21 93.56 
100 


YO 


80 

'JI 70<;,;, 

0:.> 


60.S 
4> 

50 
~ 
40' 40 
IN, 
t'f 30 
~ 

10~ 
10 


0 


Figure 6.15: Average processing speed per implementation technique 

 
 
 

http:C'V'Clline.ar


Chapter 7 

String Recog11ition Experiments 

7.1 Introduction: 

In this chapter, we extend the results obtained from previous experiments by per­

forming quantitative analysis based on string recognition, where strings are no longer 

limited to a single symbol in length . One of the aims of this chapter is to investigate 

the effect of cache misses due to the size of the automaton being analyzed. It is 

shown that, within the range of experiments described below, caching effects could 

be detected as an influence on the processing time of hardcoded algorithms. However, 

variations in cache memory requirements did not appear to be required for compara­

ble table-driven experiments. Extended experiments on string recognition processing 

were conducted using both methods. Below we describe the data that was collected, 

as well as the results and conclusions that may be drawn. 

94 

 
 
 



95 

7.2 	 Exercising Memory on Intel Pentium Archi­

tecture 

The implementation of a hardcoded string recognizer will clearly require a larger FA 

than generated previously. Because it implies an increase in the code size it may 

involve various levels of cache memory, main memory and virtual memory (through 

paging). As a preliminary analysis of these matters, we have chosen to carry out an 

experiment using a very simple string recognizer that was based on results obtained 

from the single state case described in previous chapters. Unlike the table-driven 

algorithm, whose code size for string recognition is automaton-independent, the code 

size for a hardcoded program for string recognition is dependent on the automaton's 

features , i.e on the number of states, the size of the alphabet, the complexity of the 

transition function, etc. Memory management is therefore of concern, in so far as the 

program's processing speed is likely to be affected by its executable code size. 

The amount of memory that a program can use is limited by the maximum address 

space of the processor [Ger02]. On Intel processors (Pentium 4 at 1GHz ), the address 

space is comprised of physical memory and virtual memory. The use of virtual memory 

by an application is usually indirect in the sense that it occurs when the application 

requests more physical memory than is actually available. The process is referred to 

as paging and when used, the efficiency with which the application is processed is 

likely to be considerably degraded. Hence, programmers need ensure that - as far as 

possible - the program to be executed fits into physical memory. 

Small and high-speed memories called caches are used to improve the latency of 

physical memory [Ger02]. The Pentium 4 processor has two caches called the L1 

cache and the L2 cache. The L1 cache is split into two cache types referred to as 

a trace-cache buffer and a data cache, whereas the L2 cache is both a data and an 

instruction cache. The L1 trace-cache buffer can store up to 12-K decoded micro 

 
 
 



96 

operations in the order of program execution. It operates approximately at register 

speed, and is accessible in one processor cycle. The L1 data cache is relatively small 

(8KB) in size. It is always accessible within two processor cycles. The L2 cache is 32 

times larger than the L1 data cache, but is about three times slower. It is therefore 

256KB large and requires approximately six processor clock cycles to be accessed . 

When an application accesses a piece of memory, no matter whether data is to be 

read or written, the processor first looks for the data in the L1 cache 1. If found, a 

cache hit occurs and the data is accessed without interfering with L2. If not found, 

then there is an L1 cache miss. The data is then sought from the L2 cache. If found, 

there is an L2 cache hit. Otherwise an L2 cache miss occurs, and the requested data 

is not in either of the two cache memories. The data then has to be fetched from 

main memory. In general, instead of retrieving just the requested bytes, a 64-bytes 

chunk of data is fetched in the expectation that one or more of the remaining bytes 

are likely to be used shortly. In general, such a mechanism may, or may not increase 

the number of hits and therefore the efficiency of the application being processed. 

The processing of an application can then be summarized as follows. The processor 

loads the program into the main memory if it is of reasonable size (i.e. if it can 

fi t into main memory) . Next begins a series of fetch /execute cycles as explained 

above. However , if the entire program cannot fit into main memory, there is a need 

for virtual memory and paging is performed by the operating system without any 

external intervention. Paging considerably reduces the efficiency of an application 

due to the disk-access nature of the operation. For the present study, paging does 

not constitute an issue since all programs that were written fit into memory and 

requiring intensive cache operations. 

Based on all the above, one should clearly not anticipate for string recognition a 

1 Actually, the fetch is performed either from the Ll execution trace cache if the piece of memory 
accessed is an instruction , or from the Ll data cache if it is a data 

 
 
 



97 

simple linear-time scale up of the results obtained from the single symbol recognition 

case. Instead, the subsection below describes experiments for both table-driven and 

hardcoded algorithms that measure the effects of memory usage on the time efficiency 

of the various algorithms. 

7.2.1 A Simple Experiment and Results 

There are many dimensions in which arbitrarily large finite automata could be con­

structed and exercised: the number of states could be increased; the alphabet size 

could be made very large; the fan-out at every state could be increased (i.e. the 

density of the transition matrix could be increased); the length of input string to 

be recognized could be increased, etc. Since the current experiments were merely 

aimed at ensuring that large amounts of cache memory and main memory would be 

occupied, there did not appear to be any particular advantage in generating large 

automata that were unnecessarily complex. Instead, it was decided to generate large 

but fairly simple automata along the following lines. 

The experiment was based on a language that has only two symbols in its alphabet 

(say a and b). For any state of the FA (except the final one), an input of a always 

triggers a transition to a next state, while b is a rejecting symbol in that state. Our 

finite automaton only had one accepting state, namely its final state. The only string 

accepted by such an automaton with n states is the string a ... a (i.e a string with 

n - 1 symbols). Testing the processing speed required to recognize the above string 

represents the worst case scenario in the sense that any string containing a b symbol 

before the (n - 1yt occurrence of a would be rejected sooner. Conversely, any string 

with (n - 1) initial occurrences of a followed by an arbitrary number of a's and b's 

would be processed in the same amount of time, the outcome being to reject the string 

as being in the FA's language after the first (n - 1) elements have been processed. 

The advantage of using such a simple automaton is that the size can easily be 

 
 
 



98 

increased in a linear fashion (with respect to the number of states, and therefore also 

with respect to the size of the very simple transition table), and that each increase 

in size can easily be reflected in new hardcode that is the result of a relatively simple 

adaptation of the previously tested hardcode. This simplicity therefore supported 

the ability to create a relatively simple loop in which the size of the automaton is 

incrementally increased, string recognition measurements are made and the loop is 

then repeated. 

The Hardcoded Experiment 

A hardcoded implementation could be obtained by selecting the assembly source code 

of one of the hardcoded implementations previously described and then appropriately 

linking together n replications of this source code. For the present experiment, it was 

decided to use the best performing algorithm that had been previously tested, namely 

the algorithm based on a jump table. 

Using the same approach as described in [KWK03], 400 different PAs were gener­

ated , with the number of states ranging from 10 to 4000. Under the same conditions 

as in the single state case, 20 runs were performed for each hardcoded program. In 

each case, the corresponding time stamp counter value, giving the time to process the 

maximum length string, was recorded. The minimum, maximum and average values 

of these measurements over the 20 runs were calculated. 

The Intel processor (Pentium 4 at 1GHz) uses the Branch Prediction Buffer (BPB) 

mechanism to make fairly naive guesses (predictions) about the next path in a branch­

ing structure to take. The processor then executes some of the instructions in that 

branch in a pipelined fashion while simultaneously verifying that the branch is indeed 

the correct one to execute. If it guessed correctly, then some time has been gained. 

If not then it has to execute the instruction required by the alternative path, result­

ing to some latencies. The 20 runs performed in our experiments are implemented 

 
 
 



99 

using a loop, and are thus subject to branch prediction buffering. Furthermore, each 

iteration contains several branching instructions for both table-driven and hardcoded 

implementation. The following forms of branching structures are encountered by the 

processor: 

• 	 Conditional branches executed for the first time. An example of such a branch­

ing structure may be the for loops used for the table-driven implementation 

and various je, ja instructions (jump if equal and jump if above) used for the 

hardcoded implementation. This form of branching appears to be expensive 

during the first attempt by the processor to enter the loop. In general the first 

attempt by the processor will result on a mis-prediction since the actual con­

tent of the pipeline (Branch History Buffer - BHB -) is not made up of the 

desired instructions to be executed. Of course, a mis-prediction results in some 

latencies. 

• 	 Conditional branches that have been executed more than once. For such struc­

tures , there is a chance that the processor makes a correct prediction since the 

result of the previous branch is still in the processor's BHB. In that case, some 

processing time is gained. 

• 	 Indirect Jumps(jump tables). For this kind of branch, the processor usually 

predicts that the branch target will be the same address as the last time the 

branch was encountered. This is likely lead to frequent mis-predictions if - as 

it is the case for our hardcodecl implementation - the code not only has a large 

number of potential targets, but the same target is also seldom invoked twice 

in succession. 

 
 
 



100 

Details about how the processor handles various other types of branches using branch 

prediction buffering may be found in [Ger02]. 

The jump table used for the current experiment was rather simple (it contained 

only two entries corresponding to the two alphabet symbols). This suggests that the 

processor's BHB will contain accurate results during the entire process of recognizing 

the string. In the present context there is therefore a very low risk of mis-predictions. 

However, even though the current experiment 's implementation was very simple, it 

should be noted that noisy time measurements are likely to be obtained in other 

more elaborate hardcoded experiments since the hardcoded implementation is based 

on indirect .Jumps. 

As a lower limit for the time taken to process a single symbol in an entire string, 

it seems reasonable to rely on the previous results obtained2
. Consequently the min­

imum value was used for processing a single symbol as determined by the jump table 

experiments described in previous chapters. The ideal, excluding the effects of differ­

ent levels of memory, would be a linear time scale-up proportional to this lower limit 

and proportional to the length of the input string. Put differently, any time measure­

ment not reflecting this proportionality could be attributed to caching effects. 

The processing speed (minimum, maximum, and average) for various hardcoded 

multiple state programs was recorded. We then divided the respective processing 

speeds for each algorithm's execution by the number of states in that experiment, to 

obtain the average minimum speed per state (or, equivalently in the present case, per 

input symbol) for automata of various sizes. The series of data that was produced was 

plotted and cross compared with the jump table hardcoded experiment. Figure 7.1 

depicts the resulting graph. 

The results show a fairly constant growth rate in certain regions, then changes to 

2Note that the lower limit for the table-driven case excludes the time taken to switch contexts in 
order to execute the function fak e_transition{} as well as the time taken to return from that switched 
context. 

 
 
 



101 

70 

Q) 

~ 

~ 	so 
Q) 

t: 
~ 	4U 

= 
,~ 	~O 
'1: 
~ 20 

~ 
~ 	1U 

Hardrode mlltillie ~~ 

(2 ~ISlllpn<met) j 
/ 	

I , __-----'L-----.-J ~~.Jc_~~J~ ~ 
l-lardcodc snglc :iatc/TlIllle.driven 9nale!t<rte _ // 

_ ,./ ¥ 
r-----------------------------------~~----------------------

1010 	 0010 

NUlljJer of Sate:; 

Figure 7.1: Hardcoded time against automaton size for two symbols alphabet 

a linear growth rate until another plateau of constant growth rate is reached. The 

overall pattern is plausibly explained by the fo llowing: 

• 	The size of the L1 cache - the trace cache - (12KB) cannot contain the code 

for even the smallest automaton (10 states) whose executable was measured to 

be approximately 16.09 KB. The program size is therefore bigger than the L1 

cache's size . Consequently, services of the L2 cache (256KB) are required for 

complete processing. But between 10 and 110 states, the 11 hit rate is fairly 

hight , and the need for L2 accesses is correspondingly low. As a result, the 

average time per state is fai rly constant for these automata, 

• 	 Between about 160 and 360 states, the need for the L2 cache by the processor 

increases progressively and so does the probability of cache misses at level Ll. 

As a consequence, the average processing time per state shows a linear increase 

in this region. 

 
 
 



102 

• 	 An almost constant time per state is experienced from between about 460 and 

1700 states. The associated hardcode executable appears to be able to fit into 

the L2 cache. This is illustrated by the smoothness of the curve within that 

range. 

• 	 From about 1800 states onward, the minimum size of the executable is approxi­

mately 260, and this can no longer fit into the L2 cache. A very slow but linear 

growth in the curve was observed. This indicates that services from the main 

memory were required even though hit rates in the L2 cache still remained rela­

tively high in the range of states exercised by this experiment. Furthermore the. 

policy of moving across 64-bytes of data from main memory at a time, coupled 

with the relatively simple structure of the FAs under test probably contributed 

to the very small growth Il1 average processing time per state, barely visible in 

this region of the graph. Note that the largest number of states tested in the 

experiment was 4000 and the corresponding code size was 561 KB. This is ap­

proximately twice as large as the L2 cache size. Consequently, we may expect 

that beyond 4000 states , similar effects that were seen in the case of the L1 

cache above will be observed for the L2 cache - i.e. an increase in the number 

of misses in L2, and an increase in the number of hits in the main memory. 

Such observation was explained in detail in [KWK03]. 

• 	 In the figure, noise is observed between 2310 states and 2410, 2910 states and 

3010, and from 3610 onward. These phenomena are possibly explained by the 

fact that the processor's BHB may contain inaccurate results during the branch 

 
 
 



103 

prediction buffering. The nature of the indirect branching structure of the ex­

periment explains such a situation. As a result, mis-predictions that cause a 

considerable waste of time to the overall process are observed. However, further 

experiments is needed to fully justify this claim . 

• 	 We may expect that in the long run, if the main memory is full, that paging 

between memory and hard drive will be carried out. However, the effects of 

paging were not further investigated in this study. 

The Table-Driven Experiment 

The table-driven algorithm was easily constructed using algorithm 3 from chapter 3. 

The same 400 FAs that had been generated in the above hardcode experiments were 

used in this experiment. Again 20 runs were performed per automaton , in each case 

determining the minimum, maximum and average time to recognize a string of length 

n, where n ranged from 10 to 3999 (and corresponded to the total number of states 

minus 1 in the respective automata). 

The results of experiments based on repeated runs of the table-driven algorithm 

are depicted in figure 7.2. The data again refers to the average of minima over the 

20 runs per automaton. 

The figure clearly shows that no cache effect is experienced for the table-driven 

method, but rather that the memory load appears to be the major effect. The average 

time taken for processing is slightly above 40 ccs , which is considerably more than 

the time measured when processing a single state. This is justified by the fact that 

more statements per state are executed in the present compared to the single-state 

experiment. 

 
 
 



104 

-o 

Table driwn nlJltiple gatas 
(2 9JIttlOis 1lIllhllbel) 

TlIille-d"ivell 911Ule:tate 

Hardcodc 9nalc ::tate 
11'''// 

~ O~____________~~__________________________~~________________ 

~ , 

lU lJ1U '"-'1U 

I'lll11ber of :tates 

Figure 7.2: Table-driven time against automaton size for two symbols alphabet 

Putting it all together, figure 7.3 depicts the general performance of both hard­

coded and table-driven implementation based on the simple two-symbol alphabet 

scenario. It clearly shows that the hardcoded algorithm outperforms table-driven 

implementation. These results are described in [KWK03]. 

However, it would be naive to consider these results as fully representative since the 

primary objective of the experiment was to establish and observe the effect of cache 

memory on the hardcoded algorithm. The next section discusses a more realistic set 

of experiments based on a set of more realistic string recognition problems. This will 

enable more accurate conclusions to be drawn. 

7.3 The String Recognition Experiment 

Having observed and plausibly explained the cache effects from the previous section 

it was necessary to perform a more realistic experiment to more accurately compare 

the table-driven and hardcoding finite automata processing. The idea was first of 

 
 
 



105 

70 

~ 50 

'" E
E to 

~ 
'2 	"0 
'E 
..... 

TlIllle-~iveli l11uHiple &1Ite:; 
(2 G)mbol G alphabet) 

HaruCOOe lrumple!l<l
I (2 ~ols IlIphab 

I 
1-...JL~-

o 	 20t./f-
Table-dliven :lingle sate ..... ,..... 	 //tlardOOdC srglc $rtc 

~ lUr--J,~....==~-_-	 ___ _ __....- _~~~----------------~----~~~~~~~-.~~r~=======~----_=----
10 	 1010 \!:otO 30tO 

I-lJn'iler of Sates 

Figure 7.3: table-driven and hardcoded multiple states for two symbols alphabet 

all to randomly generate a finite number of transition tables and their corresponding 

hardcoded executables. These generated programs were then executed and required 

times to recognize a string were recorded. The time taken to recognize the same 

string based on a table-driven algorithm was also recorded. 

In general, there are two ways of implementing a string recognizer: implementation 

using symbol searching and implementation using direct indexing. Both methods are 

briefly explained as follows: 

• 	The implementation using searching refers to a situation where the alphabet set 

is explicitly required when processing the string that is being recognized. An 

array is used to store the symbols of the alphabet. The column indices in the 

transition table correspond to the indices in the alphabet array, thus indicating 

which alphabet symbol the column is intended to represent. Therefore, during 

the recognition process of the current symbol, it is necessary to search for its 

position in the array of symbols before accessing the entry in the table using 

 
 
 



106 

the assignment 

next State := transition [ i] [pos (str [string P os] , alphabetArray)] 

of algorithm 1. Of course, pos(ch, array) returns an integer value that reflects 

the index of the symbol in the array of symbols (alphabet) . 

• 	 The implementation using direct indexing is rather straightforward. No search is 

required to access an entry in the transition table. The position of the symbol 

to access in the transition array is known, and is indeed the symbol itself3. 

Therefore the assignment 

nextState := transition[i][str [s tringPos]] 

refers to an entry in the table, and will return either -1 if there is no transition 

and a non negative integer otherwise. 

The first method is, not surprisingly, more time consuming than the second. The 

time may be optimized if a binary search algorithm were to be used to search for 

the character's position instead of a linear search. However, since that would have 

made the assembly language coding in the hardcoded case slightly more complicated, 

the present experiment simply stuck to linear search. For the second approach , the 

conversion from a character data type to an integer data type will undoubtedly take 

a certain amount of time. However , we did not take such factors in consideration 

during the experiments, since it "vas assumed that the approach is used with the 

standard type conversion from char to int and vice versa offered by most programming 

languages. 

3This may be regarded as a character symbol, whose value can be printed, and its conversion to 
integer type represents its index in the transition table. 

 
 
 



107 

The experiment for both approaches was based on the random generation of 400 

different automata (transition tables) but always using a lO-symbol alphabet , say 

{a,b,c,d,e,f,g,h,i,j}. The number of states of the automata were varied between the 

ranges of 10 to 4000 states. For each automaton of size 11, a string of length 11 - 1 was 

randomly generated, but always in a way that the entire string would be recognized 

by the automaton. We call such a string an accepting string. The filling density 

of each transition table was set at 41%. The subsection below presents the results 

obtained for both methods. 

7.3.1 Experimental Results 

Experiments on string recognition, where a linear search algorithm was used to re­

trieve the position of the current symbol from the alphabet symbol array, is depicted 

in figure 7.4. The data used to reproduce the graphs can be found in Table B.9 

of Appendix B. The figure clearly indicates the effects of caching for the hardcoded 

experiment, and memory load for the table-driven experiment. An important obser­

vation to make here is the effect of L1 cache on both table-driven and hardcoded 

implementation. In fact, for very small automaton , say ones having at most about 

50 states , one notices that the L1 trace cache has an impact on the hardcoded im­

plementation whereas the L1 data cache influence the table-driven approach. This is 

apparent in figure 7.4 by the portion of the graph just below 200 ccs for the table­

driven method (11 data cache effects), and the portion of the graph below 175 ccs 

for the hardcoded implementation. We observe that the hardcoded algorithm outper­

forms its table-driven counterpart for automata of size less than approximately 2000 

states. Above about 2000 states, the table-driven experiment appears to be the better 

method to use: it requires a constant time of about 200 clock cycles for processing 

while its hardcoded counterpart becomes increasingly inefficient with a processing 

speed of up to 300 clock cycles. The inefficiency of the hardcoded methods above 

 
 
 



108 

NUrrtler of stnes 

Figure 7.4: Table-driven and hardcoded performance using linear search 

that threshold is justified by the same cache effects as previously discussed in the 

2-alphabet experiment. However, the number of noise increases because the FA is 

less regular than in the two-alphabet case. 

As an aside,note that if a binary search algorithm had been implemented instead 

of a linear search , a globa.l improvement would be observed on the overall results in 

both cases. (The binary search time complexity is logarithmic compared to the linear 

search which is, of course, linear.) If the binary search algorithm was encoded in the 

table-driven implementation only, then the competitiveness between the techniques 

would have been reduced at less than 2000 states. However, if both methods rely on 

a binary search , one could expect that the hardcoded implementation would continue 

to outperform its table-driven counterpart at above 2000 states. 

Table B.9 of Appendix B provides the data collected in the experiment based on 

the direct indexing of symbols. Figure 7.5 and 7.6 depict the performance of both 

methods. The figures clearly show that the hardcoded implementation is of interest 

41J1J.U 

~ 
u 
.5 :.lUU.LI 

~ 250.0 

E '" 
'6 ~uU.LI 

~ 
'2 150.0 

'E 
~ 100. 0 
C) 

!Ii 
~ .E\n n 

TllI:Ile-ll"ivell 5ellrchillQ 

I d~~,J~<Mvtr~-' 
~_ ~"---,,-~wJ\\y 

Jjv~~JJlj~,~~~11 ~'-,-'-,- I.moo," OO"~;"' 

 
 
 



109 

when using automata of no more than 500 states. However a closer look on the 

graphs in figure 7.6 shows that between about 500 and 1500 states , the two methods 

compete. By this is meant neither method is a clear and consistent winner within that 

range. From 1510 states onward, however, the table-driven starts to become the more 

efficient approach, continuing to have a constant processing speed of approximately 

45 clock cycles per state. 

An observation of interest is the difference in speed in the implementations using 

direct indexing and the implementations relying on searching. Figure 7.7 shows the 

gap between the two table-driven methods, as well as between the two hardcoded 

algorithms. The table-driven implementation using searching requires approximately 

200 clock cycles per state, while its direct-indexing counterpart requires only about 

45 clock cycles per state - i.e. about 155 clock cycles difference between the two 

approaches. Of course, the gap observed might be reduced if a binary search were to 

be used. However , this was not tested as part of the current round of experiments. 

A comparison between the two hardcoded graphs in the figure shows that for the 

first 900 states, the gap between the two approaches is almost constant at about 50 

clock cycles . This gap is reduced as the number of states becomes larger and tends 

to be negligible above 3000 states. Such an observation clearly demonstrates ho"v 

instructions-dependant a hardcoded algorithm appears to be. Therefore, no matter 

the complexity of the algorithm being implemented, the processing speed is code­

size dependant. The bigger the code, the more the processing speed. Finally, when 

implementing FA s, one should take into account the number of states of the device 

being encoded. A rough rule of thumb would be to used the hardcoded approach for 

automata of up to about a 1000 states and the table-driven algorithm for automata 

above that limit. What should happen if the memory limit has been reached for 

table-driven experiment is a topic of separate interest. 

 
 
 



110 

~::JO.O 

T abl (}-drivcn direct indCH 

L~~ 
10 010 1010 1010 1:010 

Figure 7.5: Table-driven and hardcoded performance using direct index 

:inn n 

~ 250.0 
'-' 
.5 
.2lt; 200.0 
.. 
OJ 

.5 
TlIl:Ile-driven !ired index 

E: j ~ nIL\lIJ~j'\
A 
~ ~~~__~==~~__-----------u~~u-~~~--~~~.~-­

~ 

-~ 

10 010 1010 1::110 

Nunoor of :otll1es 

Figure 7.6: Table-driven and hardcoded performance using direct index 

 
 
 



111 

400.0 

Tablc-dlivcn scarchnu 
~50.0 

~ 
U .= ~oo.o 

~ 250. 0 I
"-' 
E 
~ eoo.o 

~ ~_~H~(lrrlmrF. r:lilP.r1 inrlp'l(
'2: 150,0 

'E .... 
o 100.0 

. • •• ~ a 50.0 1----.-,;-....-__~-lJ-Jl..J!UJ"'""-''---LL..L------------' ~~vr"\J~Ny.1l.~· 
.J 

~ ./ laue anven Ulrea IIIIex 
; J'; .- ________ 

O.O~~~~~~~.-~~~.-~~~.-~-r~~~~'-~~~.-~~~.-~ 
10 1010 2010 3010 

NUIIIlJ~ ur sItt~s 

Figure 7.7: Performance based on searching and direct indexing 

7.4 Summary of the Chapter 

In this chapter , we have used a specific and fairly simple type of FA to perform 

some basic experiments on the recognition of a string by an automaton. This experi­

ment made visible the effect of cache memory on the hardcoded implementation and 

strengthened the idea that table-driven implementation is memory load dependent4 . 

We have also performed a more realistic experiment based on the recognition of strings 

from a somewhat larger alphabet than in the first experiment. We have shown that 

the hardcoded implementation provided very interesting processing advantages over 

it table-driven counterpart when implementing automata of up to about 1000 states 

in size. However, the table-driven method is preferable when the automaton to be 

implemented is above 1000 states (and, of course, the system has enough memory 

to avoid unfortunate situations such early program termination or system halting as 

4 By this we mean that if the processor's memory is not big enough to contain the actual table 
being implemented, important processing deficiencies will be observed 

 
 
 

http:vr"\J~Ny.1l
http:r:lilP.r1


112 

mentioned in chapter 1). One of the main issues that should be raised is that, if the 

system is limited in terms of memory, how could we overcome the situation using the 

hardcoded implementation? A discussion around this question will be presented in 

the next chapter for future work. 

 
 
 



Chapter 8 

Summary and Future Work 

8.1 Summary and Conclusion 

Hardcoding of finite state automata involves the design and implementation of an 

algorithm that does not require external data at run-time. All data that the algorithm 

needs is embedded in the algorithm itself. Our study was carried out in three major 

phases: 

The first phase was the preliminary experiments based on single symbol recogni­

tion [KeWK03]. Several implementations were empirically investigated: 

• 	 Nested conditional statements: The transition function is translated into a set 

of nested conditional statements, (that is , if-then-else statements) which test 

whether to accept or reject a symbol. The testing is done on a sequential basis, 

meaning that the number of comparisons to be done may negatively affect the 

processing speed . 

• 	 Switch statements: The transition function is implemented in the form of a 

branching structure, such that control branches to statements relating to the 

113 

 
 
 



114 

corresponding symbol and these statements either trigger the transition (if there 

is any), or execute the actions related to no transition. This method appears to 

be the best way of hardcoding the symbol recognition algorithm in a high level 

language. 

• 	 Jump table: The transition function is represented in a low-level language in 

the form of code that relies on a so- called jump table. Thus for each alphabet 

symbol an address is stored in the data segment that points to the label in the 

text segment at which instructions for dealing with that particular alphabet 

symbol commence. The relevant position in the table from which to retrieve 

this label 's address, is computed from the value of the input symbol as well as 

from the start address of the table in t.he data segment. 

• 	 Linear search: This is an optimized 100<v-Ievel translation of nested conditional 

statements. It is implemented exactly in the same way. It is therefore subject 

to same limitations as its high-level counterpart, although the fact that it is 

implemented in assembly results in improved processing speed. 

• 	 Direct jump: For each input symbol, a direct jump is executed to an address at 

which code relating to that input symbol is stored. Thus instead of first referring 

to a jump table, the relevant code address is directly computed from the input 

symbol. Although this method seemed conceptually more efficient in terms of 

processing speed, this ,vas not borne out empirically. Further optimizations to 

the existing code might be possible, but this is a matter for further study. 

The second phase of our research was related to an empirical evaluation of caching 

effects in relation to the code-size of hardcoded algorithms [KWK03]. It was shown 

 
 
 



115 

that, while the table-driven implementation of FAs, heavily depends on the size of the 

transition matrix represented in the memory, the hardcoded implementation strictly 

depends on the number of instructions required to implement the transition. There­

fore , the processing time required to recognize a string, is not only a function of the 

string's length , but is also a function of the size of the hardcode generated for the 

automaton implementation. If the hardcoded code is small enough to fit in cache 

memory, the processing speed will be highly efficient. However , if the hardcode is 

very large such that it cannot be contained in cache memory, the processing will be 

performed from main memory, and therefore results in increasing inefficiencies as the 

code-size grows. The jump table method was chosen a basis for the experiment since 

preliminary results showed that it was the best of the hardcoded methods that had 

been investigated. However, for future work it might be worthwhile to consider the 

caching effects that arise if a direct-jump implementation is used. 

The last phase of our empirical study was based on a quantitative evaluation 

of fairly realistic string recognizer so that important recommendation can be drawn 

from our research. The study was based on an evaluation of the processing speed of 

FAs of various size (number of states). We found it reasonable to generate randomly 

an accepting string proportional to the size of the automaton, so that the minimum 

path through the automaton would always be traversed during string recognition. The 

results presented in the previous chapter showed that the hardcoded implementation 

of FAs seemed to be of high efficiency in terms of processing speed when implementing 

FA s of not more than a thousand states. For automata having more than a thousand 

states, the table-driven implementation tends to be of high efficiency. However, the 

forgoing needs to be qualified by noting that the experiment relied on an alphabet 

of size 10. These conclusions would have to be appropriately modified for larger 

alphabet sizes , by taking into account the fact that hardcode (and therefore speed) 

would accordingly increase. 

 
 
 



116 

The to au­

tomaton size was held at that the 

• 	 if at ?: 

not appear to 

tation entries in 

is 

current 

to indicate -l's were to be '-'iHhH~,v'-L to non-

to the time 

to accept or The transition 

Of 

course, 

would 

current study, e.g. as structure not 

matters 

to """1{>n("1 the scope the current study. 

varies ?: 

or re-

it 	 Vv\"J""'UF, time per 

symbol 

the same mag­

prE;SelrlteC1 m section 7. 

.. '2• ~f sue zncrease. : 	 in alphabet 

 
 
 



117 

constitutes an important factor for implementing both table-driven and hard­

coded experiment. If the alphabet size increases, the size of the transition 

function increases. Therefore the memory load increases for table-driven im­

plementation and the code size increase for hardcoded implementation. As a 

consequence, the efficiency of both table-driven and hardcoded experiment will 

be reduced in line with the caching and memory management effects that arise. 

At the time of writing, quantitative evaluations of such effects were not avail­

able. However, experiments are currently in progress and the results will be 

released outside the scope of this dissertation. 

To date, experiments have been performed on randomly generated FAs. Results 

obtained are rather general and might not be applicable for certain specific types of 

FA s. Further experiments need to be carried out such that a sort of taxonomy of FA 

implementations can be built up , indicating which "families" of FAs would be best 

suited to which implementation strategies. 

Moreover, it might be possible to fine tune both the hardcoded and table-driven 

implementations that have been produced thus far. This could yield bet ter process­

ing speeds than those provided by this work. We have restricted ourselves to using a 

jump-table for the hardcoded implementation. Only time-constraints on the present 

project prevented us from attempting further optimization on the direct-jump im­

plementation and using it for the experiment. Such an approach might eventually 

produce better values than the ones obtained in this work. Moreover , it is also pos­

sible to combine the linear search, jump table and direct jump together to produce 

better performance than the one produced in this work. Another important issue 

is the fact that we did not explore the hardcoded implementation in a high level 

language. It will be of interest to empirically investigate this aspect of our work for 

further usages. 

 
 
 



118 

In summary, the foregoing experiments have shown that there are certain occa­

sions when a hardcoded solution to the problem of FA-based string recognition is more 

time-efficient than the classical table-driven solution. In the context of these partic­

ular experiments , the hardcoded solution appeared to be better than the traditional 

table-driven method for automata of about a thousand states. The table-driven al­

gorithm outperforms the hardcoded counterpart for an automaton having more than 

a thousand states. 

8.2 Future Work 

While the results to date indicate that hardcoded technology outperforms the table­

driven method in some contexts, it is desirable to perform more extensive quantitative 

experiments in various directions. The following issues should be considered in doing 

so: 

• 	 Problem S'lze. The fact that the size of the hardcode will grow linearly as 

the number of states becomes larger represents an important limitation on the 

overall processing performance for both approaches in the longer term. 

• 	 Decomposition of the automaton : In reflecting on the above limitation, 

one might consider decomposing the problem into sub-problems - that is, par­

titioning and storing parts of the hardcode on different files; 

• 	 Compression: It seems relevant to consider issues related to compression in 

order to save space. 

• 	 Paging: As the problem size is enlarged, it seems relevant to investigate at 

which point paging between main memory and hard drive will begins to take 

 
 
 



119 

efFect. The impact of such paging on both the table-driven algorithm as well as 

on the hardcoded versions should be explored . 

• 	 Different platforms: The results to date all relate to Intel Pentium 4 ar­

chitecture. It is desirable to verify empirically whether the overall results will 

remain the same on difFerent hardware platforms . 

• 	 Hardcode generation tools: Currently, much of the software that has been 

developed has been for research purposes. In the longer term, it would be 

useful to develop user-friendly hardcode generators that take an FAs language's 

specification as input (for example, in the form of a regular expression or as a 

right linear grammar) and directly produce the hardcode in executable form. 

Once the above matters have been satisfactorily investigated, the hardcoded im­

plementations might well be usefully employed in the various computing field that 

rely on FAs as a modelling tool. This is because , to our knowledge, hardcoding in the 

context of formal language theory and practice, has mainly been used to do parsing, 

and more recently, for programming regular expressions in C# [KIM02]. However, it 

would be reasonable to expect similar satisfactory results in several area where FAs 

are used for modelling purposes, such as biological computing, machine learning with 

neural networks, genetic algorithms , and many other domains where PAs could be 

used for modelling. A combination of modelling optimization and encoding optimiza­

tion such as automata minimization and hardcoding should be encouraged as that 

would yield highly efficient solutions to the related string-recognition problems. 

 
 
 



Appendix A 

Random Number Generator 

Each of the Source-code listing below represents an extract from the C++ implemen­

tation of various random number generator algorithms from [PTVF02] . We have 

chosen in our experiments the implementation suggested by L'Ecuyer [PTVF02] with 

Bays-Durham shuffle and added safeguard because it has the ability of providing fairly 

randomized sequence of numbers in the order of hundreds. 

Source-code 9. / / C++ extract for random number generator of Park and Miller 

#include "nr.h" 

DP ranl(int &idum){ 

canst int 1A = 16807, 1M = 214783647, 10 127773, 1R 2836, NTAB 32; 

canst int ND1V = (l+(1M-l)/NTAB); 

canst DP EPS = 3.0e-16, AM = 1.0/1M, RNM= (1.0-EPS); 

static vect_1NT iv(NTAB); 

int j, k; 

DP temp; 

if (idum <= 0 II I iy){ //Initialize. 

if (-idum <1) idum l', //Be sure ta prevent idum = O. 

120 

 
 
 



121 

else idum = -idum; 

for (j = NTAB+7; j >=O; j--){ //Load shuffle table (after 8 warm-ups). 

k = idum/1Q ; 

idum = 1A*(idum-k*1Q)-1R*k; 

if (idum < 0) idum +=1M; 

if (j < NTAB) iv[j] = idum; 

} 

iy iv[O]; 

} 

k = idum/1Q; //Start here when not initializing. 

idum = 1A*(idum-k*1Q)-1R*k; //Compute idum = (1A*idum)%1M without 

if (idum < 0) idum += 1M; //overflow by schrage's method 

j = iy/ND1V; //Will be in the range O.. NTAB-1. 

iy=ivU]; //Output previously stored value and 

iv[j] = idum; //refill the shuffle table. 

if ((temp = AM*iy»RNMX) 

return RNMX; //Because user don't expect endpoint values 

else return temp; 

} 

Source-code 10. / / C++ extract for random n'umber generator of L 'Ecuyer with 

/ / Bays-Durham shuffle and added safegu ard 

#include "nr .h" 

DP 	 ran2(int &idum){ 


const int 1M1 2147483563, 1M2 = 2147483399; 


const int 1A1 40014, 1A2 40692, 1Q1 53668, 1Q2 = 52774; 


const int 1R1 12211, 1R2 3791, NTAB 32, 1MM1=1M1-1; 


 
 
 



122 


const int ND1V = 1+1MM1/NTAB; 


const DP EPS = 3.0e-16, RNMX = 1.0-EPS, AM 1.0/DPCIM1) ; 


static int idnum2 = 123456789, iy=O; 


static Vect_1NT iv(NTAB); 


int j, k; 


DP temp; 


if (idum <= O){ //1nitialize. 


idum = (idum ==0 ? 1: -idum); //Be sure to prevent idum = O. 


idum2 = idum; 


for (j = NTAB+7; j>=O; j--){ //Load shuffle table (after 8 warm-ups) . 


k = idum/IQ1; 


idum = 1Al*(idum-k*1Ql)-k*1Rl; 


if (idum < 0) idum +=1Ml; 


if (j < NTAB) iv[j] = idum; 


} 

iy iv[O] ; 

} 

k = idum/1Ql //Start here when not initializing. 

//Compute idum = (1Al*idum)% 1Ml without 

idum = 1Al*(idum-k*1Ql)-k*1Rl; 

if (idum < 0) idum += 1Ml; 

k = idum2/1Q2; 

//Compute idum2 = (1A2*idum)\% 1M2 likewise. 

idum2 = 1A2*(idum2-k*1Q2)-k*1R2; 

if (idum2 < 0) idum2 += 1M2; 

j = iy/ND1V; //Will be in the range O.. NTAB-l. 

/*Below idum is shuffled, idum and idum2 are 

 
 
 



123 

combined to generate output.*/ 


iy = iv[j]-idum2 


i v [j] = idum; 


if (iy < 1) iy += IMM1; 


if ((temp = AM*iy) > RNMX) 


return RNMX; //Because user don't expect endpoint values. 

else return temp; 

} 

Source-code 11. / / C++ extract for random number generator using / /Knuth 's 

suggestions 

#include <cstdlib> 


#include "nr .h" 


using namespace std; 


DP ran3(int &idum){ 


statc int inext, inextp; 


static int iff=O; 


canst int MBIG = 10000000000, MSEED=161803398,MZ=0; 


canst DP FAC = (1 . 0/MBIG); 


/* The value 56 (range ma[l .. 55])is special and 


should not be modified; see Knuth.*/ 


static Vect_INT ma(56); 


int i,ii,k,mj,mk; 


if (idum < 0 I I iff O){ //Initialization. 


iff=l ; 

/*Initialize ma[55] using the seed idum and the 

large number MSEED.*/ 

 
 
 



124 

mj=labs(MSEED-labs(idum)); 


mj \%=MBIG; 


ma[55J=mj; 


mk=l ; 


for (i=1;i<=54;i++){ 


1* 	 Now initialize the rest of the table, 

in a slightly random order, 

with numbers that are not especially random. 

ma[iiJ=mk; 


mk=mj-mk; 


if (mk < int(MZ)) mk += MBIG; 


mj=ma[iiJ; 


} 

for (k = 0; k<4,k++) 

IIWe randomize them by "warming up generator. II 

for (i=l;i<= 54; i++){ 


ma[iJ -= ma[1+(i+30)%55J; 


if (ma[iJ < int(MZ)) ma[i] += MBIG; 


} 

IIPrepare indices for our first generated number. 


inext=O; 


liThe constant 31 is special; see Knuth. 


inextp=31 ; 


idum=l; 


} 

 
 
 



125 

II Here is where we start, except on initialization. 

if (++inext == 56) 

II Increment inext and inextp, wrapping around 

inext=l ; 

if (++inextp == 56) inextp=l; 56 to 1. 


II Generate a new random number subtractively. 


mj=ma[inext]-ma[inextp] ; 


II Be sure that it is in range. 


if (mj < int int(MZ)) mj +=MBIG 


ma[inext]=mj; IIStore it, 


Iland output the derived uniform deviate. 


return mj*FAC; 


} 

 
 
 



Appendix B 

Data Collected 

The tables below depict data collected for various experiments. In the case of two­

alphabet symbols and the string recognition experiments (described in Chapter 7), 

we only provide sample data for automata of up to 500 states. The remaining part 

of the table may be obtain upon request to the author. 

For the Single symbol experiment described in Chapter 5, tables B.1 to B.6 depict 

data collected for each of the technique used namely, table-driven, switch and nested 

conditional statements, jump table, linear search and direct jump. A few number of 

values reproduced were considered as outliers since their order of magnitude appeared 

to be out of range compared to the large majority of data. Rows containing outliers 

values were simply deleted from the table. Table B.7 represents the averaged data of 

each of the last nine columns of the tables B.1, B.2, B.3, B.4, B.5 and B.6 without 

taking into account the problem size (number of accepting symbols - first column). 

For the two-alphabet symbols experiments (Chapter 7), the data was collected 

based on both table-driven and hardcoded implementation. The hardcoded data 

relied only on the jump table implementation since it was considered to be the best 

of the other hardcoded methods investigated. Table B.8 depicts the sample data (up 

to 500 states) collected for both table-driven and hardcoded implementation. 

126 

 
 
 



127 

Our String recognition experiment (Chapter 7) was based on an alphabet size of 

10 symbols. 4000 different data were items collected. Table B.9 depicts an extract of 

the first 50 rows of data collected for both table-driven and hardcoded experiments 

using searching and direct indexing. 

 
 
 



128 

# 
accepting 
symbols 

Min 
valid 
trans 

Max 
valid 
trans 

Avrg 
valid 
trans 

Min 
no 
trans 

Max 
no 
trans 

Avrg 
no 
trans 

Min 
both 
cases 

Max 
both 
cases 

Avrg 
both 
cases 

93 88 88 88 88 88 88 88 88 88 
94.6 88 88 88 88 88 88 88 88 88 
96.3 88 88 88 88 88 88 88 88 88 
98.6 88 88 88 88 88 88 88 88 88 

88100.9 88 88 88 88 88 88 88 88 
105.2 88 88 88 88 88 88 88 88 88 
105.7 88 88 88 88 88 88 88 88 88 
109.5 88 88 88 88 88 88 88 88 88 
109.8 88 88 88 88 88 88 88 88 88 
110.5 88 88 88 88 88 88 88 88 88 
110.56 88 88 88 88 88 88 88 88 88 
113.2 88 88 88 88 117.2 102.6 88 117.2 88.02 
116.5 88 88 88 88 88 88 88 88 88 
117.5 88 88 88 88 120.8 104.4 120.8 88 88.01 
119 88 88 88 88 88 88 88 88 88 
119.2 88 88 88 88 88 88 88 88 88 
120 88 88 88 88 88 88 88 88 88 
120.2 88 88 88 88 88 88 88 88 88 
121.2 88 88 88 88 88 88 88 88 88 
130.2 88 123.2 105.6 88 88 88 88 123.2 88.02 
131.3 88 88 88 88 88 88 88 88 88 
136.6 88 88 88 88 88 88 88 88 88 
136.9 88 88 88 88 88 88 88 88 88 
139.1 88 88 88 88 93.2 90.6 88 93.2 88.00 
140.2 88 88 88 88 88 88 88 88 88 
146.1 88 88 88 88 88 88 88 88 88 
148.6 88 88 88 88 88 88 88 88 88 
149.8 88 88 88 88 88 88 88 88 88 
152.5 88 88 88 88 88 88 88 88 88 
153.3 88 88 88 88 88 88 88 88 88 
160.5 88 88 88 88 88 88 88 88 88 
16l.8 88 88 88 88 94.4 9l.2 88 94.4 88.00 
162.3 88 88 88 88 88 88 88 88 88 
183 88 88 88 88 88 88 88 88 88 
186.7 88 108.4 98.2 88 150.8 119.4 88 150.8 88.05 

Table B.l: The Table-driven Experiment Data 

 
 
 



129 

# 
accepting 
symbols 

Min 
valid 
trans 

Max 
valid 
trans 

Avrg 
valid 
trans 

Min 
no 
trans 

Max 
no 
trans 

Avrg 
no 
trans 

Min 
both 
cases 

Max 
both 
cases 

Avrg 
both 
cases 

85 94.4 147.2 100.25 88 140 93.58 88 147.2 95.75 
90.9 93.6 122 99.62 88.8 1l0.4 93.81 88.4 124.4 96.34 
9l.8 94.8 117.2 98.79 88 116.4 94.15 88 120 96.20 
92.7 96 154.4 100.18 88 139 .6 93.54 88 154.4 96.20 
102.9 95.2 121.6 99.45 88.4 119.2 93.55 88.4 121.6 95.77 
107.3 94.8 118 98.90 88.8 115.6 93.32 88.4 118 95.06 
107.9 94.4 123.2 99.06 88.4 114.4 93.95 88 123.2 96.35 
108.7 94 117.2 98.73 88.8 114 93.78 88.4 117.2 95.63 
109.6 93.6 12l.6 97.98 88.8 118.4 92.79 88.4 124 94.25 
1l0.9 93.6 118 98.80 88.4 112.4 94.05 88 118 96.17 
111 92 124.4 98.98 88.8 123.6 92.42 88 .4 130.8 94.02 
116 95.2 12l.6 100.41 88 ll8 93.60 88 121.6 96.03 
116.8 93.2 116.8 100.15 88.4 118 94.35 88.4 119.6 96.60 
117 94.4 122.4 99.21 88.4 12l.2 94.06 88 126.8 96.06 
117.8 94.8 122.4 100.44 88 140.4 95.30 88 144.8 97.69 
123.1 9l.6 142.8 97.71 88.8 134.4 92.51 88 144 94.19 
126 95.2 144 99.74 88.4 120.8 93.67 88.4 146.4 96.30 
127.4 94.4 120.4 99.82 88.4 119.2 93.692 88 122.4 95.87 
128.1 92.4 12l.2 98.85 88 110 92.86 88 12l.2 94.60 
128.3 94.4 126.4 100.95 88 122.4 93.59 88 126.4 96.04 
129.5 9l.2 122 99.22 88.4 118 93.49 88.4 125 .2 95.44 
134.3 9l. 6 116 99.80 88.8 120 92.02 88.8 122 93.70 
134.5 94.8 126.8 99.86 88 116.8 93 .25 88 1268 95.69 
143. 6 93.6 119.6 98.24 88 116.8 92.87 88 120.4 94.82 
143.6 93.2 113.2 98.74 88.8 112.4 93.85 88.8 118.8 95.56 
145.2 92.8 123.2 99.10 88.8 114 94.09 88.4 123.6 96.04 
147.4 96.4 146 100.32 88 116.4 94.41 88 146 97.01 
148.5 92. 8 122 100.17 88 120 93.75 88 124.8 96.01 
149 95.6 13l.6 100.56 88 117 .6 94.72 88 131.6 97.32 
150.7 94.4 116 98.27 88.4 114.4 92.82 88.4 116.8 94.55 
160.56 94.67 124 100.89 88 120.89 94.09 88 126.67 96.16 
163.6 94 123.6 99.72 88.4 118.8 92.99 88.4 126.8 95.27 
179.1 92 116.8 98.21 88.8 110.4 92.60 88.8 118.8 94.28 
180.2 92 121.2 99.30 88 ll3.2 93.39 88 12l.2 95.37 
196.1 94 119.6 98.47 88 112.4 92.83 88 119.6 94.73 

Table B.2: The Switch Statements Dat.a 

 
 
 



130 


# 
accepting 
symbols 

Min 
valid 
trans 

Max 
valid 
trans 

Avrg 
valid 
trans 

Min 
no 
trans 

Max 
no 
trans 

Avrg 
no 
trans 

Min 
both 
cases 

Max 
both 
cases 

Avrg 
both 
cases 

85.00 93.60 163 .60 118.73 119.60 328.40 125.37 93.60 334.80 122.32 
92.70 94.40 176.00 117.80 123.20 222.00 126.80 94.40 224.80 122.99 
98.10 94 .00 172.00 118.18 126.80 209 .60 128.77 94.00 211.20 123.34 
98.80 92.40 131.20 107.27 110.00 159.60 110.94 92.40 161.60 109.88 
103.40 93.60 166.00 120.96 124.00 197.20 129.61 93.60 200.00 125.63 
107.90 92.40 214.40 132.43 140.40 256.00 151.47 92.40 264.40 141.91 
108.10 93.60 199.20 129.22 136.40 251.60 144.05 93 .60 253.20 136.71 
108.60 89.60 221.60 129.89 146.80 271.60 150.93 89.60 272.80 137.86 
10870 91.60 201.20 128.79 137.60 298.00 143.44 91.60 298.00 136.73 
109.80 92.00 164.80 122.40 124.40 212.40 132.43 92.00 212.80 127.53 
110.60 92.00 159.20 118.89 125.60 214 .00 129.53 92.00 214.00 125.06 
110.90 91.20 202 .40 130.86 140.00 240.00 149.15 91.20 248.00 139.83 
111.90 93.20 177.60 125.34 131.60 236.40 139.19 93.20 237.60 132.01 
115.30 92.00 216.80 129.31 145 .20 258.00 147.00 92.00 260.00 138.34 
116.00 94.40 180.00 125.51 136.00 250.40 138.93 94.40 250.40 131.95 
117.00 94.40 206.40 130.83 140.40 254.80 147.81 94.40 261.20 138.94 
119.50 93.20 192.80 125.64 133.60 248.80 139.66 93.20 251.20 133.59 
122.50 92.80 208.80 135.52 148.80 276 .80 157.60 92.80 277.20 145.25 
123.10 94.80 207.60 121.54 134.40 239.60 137.08 94.80 258.80 130.33 
125.30 95.60 172.40 119.92 126.40 23800 129.98 95.60 238.00 124.88 
130.80 94.40 174.00 117.82 130.40 223.60 131.97 94.40 223.60 125.66 
137.50 93.60 217.20 132.75 152.00 275.20 153.86 93.60 275.20 142.89 
138.70 91.20 210.40 126.36 135.60 240.80 140.88 91.20 240.80 133.65 
140.00 94.40 210.80 136.24 144.80 264.40 155.73 94.40 265.60 146.73 
140.90 92.00 202 .40 130.20 140.80 264.80 147.35 92.00 265.60 139.91 
141. 90 93.20 198.00 129.58 144.00 268.80 146.82 93.20 268 .80 138.86 
143.10 93.20 195.20 129.86 138.80 245.20 145.38 93.20 246.80 136.80 
145.70 96.40 230.80 136.67 155.20 297.60 161.04 96.40 298.40 148.86 
146.80 90.40 215.20 137 .02 148.40 283.20 158.56 90.40 283.20 148.06 
150.80 92.80 215 .20 132.24 140.80 266.80 150.38 92.80 268.00 140.85 
165.50 95 .60 245.20 135.39 159.20 331.60 162.86 95.60 332.40 148.65 
165 .70 95.20 205.20 135.48 150.00 278.80 156.97 95.20 278.80 146.74 
179.60 96.00 235.60 142.47 155.20 306.80 167.10 96.00 309.20 156.38 
183.00 100.00 148.00 112.13 112.00 184.00 112.39 100.00 184.00 112.35 
181.60 95.36 220.76 139 .25 154.36 314.44 162.40 95.36 315.08 150.65 

Table B.3: the Nested Conditional Statements Data 

 
 
 



131 


# 
accepting 
symbols 

Min 
valid 
trans 

Max 
valid 
trans 

Avrg 
valid 
trans 

Min 
no 
trans 

Max 
no 
trans 

Avrg 
no 
trans 

Min 
both 
cases 

Max 
both 
cases 

Avrg 
both 
cases 

3.44 6.67 216.89 13.62 4.00 216.89 16.18 4.00 216.89 14.74 
10.70 7.20 177.60 15.99 4.00 165.60 8.64 4.00 181.60 11.56 
15.40 11.20 235.60 18.12 4.00 233.20 8.87 4.00 235.60 11.49 
22.30 8.80 296.80 15.60 4.00 289.60 9.55 4.00 296.80 12.28 
31.00 6.40 218.00 16.27 4.00 200.40 8.85 4.00 220.00 11 .85 
39.70 9.60 280.40 17.26 4.00 281.60 8.46 4.00 290.00 10.84 
49.20 8.80 268.00 15.70 4.00 267.20 8.67 4.00 294.80 10.91 
54. 70 5.60 298.00 17.56 4.00 273.20 9.58 4.00 298.00 12.33 
60.50 8.80 299.60 16.92 4.00 326.00 9.59 4.00 326.00 12.48 
68.90 7.20 31 8.00 17.79 4.00 257.20 8.62 4.00 318.00 11 .61 
77.70 8.80 352.80 17.36 4.00 338.40 9.67 4.00 364.80 12.75 
83.30 10.40 300.40 18.44 4.00 296.40 9.65 4.00 316.80 12.72 
92.70 8.00 304.00 18.09 4.00 256.40 8.50 4.00 304.00 11.83 
99.20 10.40 241.60 18.47 4.00 291.60 9.50 4.00 322.40 12.52 
111.50 9.60 279.60 18.70 4.00 308.00 9.41 4.00 317.60 12.29 
119.60 7.20 393.60 19.41 4.00 424.80 10.03 4.00 434.00 13.73 
126 .60 9.60 377.20 20.55 3.60 358.80 9.43 3.60 383.20 13.66 
134.10 9.60 339.60 19.28 3.60 355.20 9.11 3.60 371.20 12.03 
144.60 7.20 4063.20 23.50 4.00 400.80 10.66 4.00 4101.60 16.95 
151.80 7.20 329 .60 20.61 4.00 404 .00 10.29 4.00 405.20 14.07 
156.60 8.00 369.60 21.34 4.00 340.40 9.78 4.00 406.80 13.41 
163 .30 9.60 391.60 22.16 4.00 380.40 11.35 4.00 39l.60 15.94 
168.30 7.20 389.20 2l.58 4.00 4018.80 10.43 4.00 4037.20 14.36 
174.90 8.80 355.20 22.89 4.00 337.60 9.78 4.00 366.80 14.43 
185.30 8.80 443.60 22.85 4.00 446.00 10.54 4.00 447.20 15.97 
194.40 9.60 312 .80 22.75 4.00 324.80 9.23 4.00 340.00 12.76 
201.00 8.80 4218.80 25.57 4.00 359.20 10.98 4.00 4224.80 17.48 
208.50 6.40 8906.00 28.69 4.00 430.80 10.39 4.00 8923.60 17.81 
214 .40 8.00 416.80 23.39 4.00 365.20 10.05 4.00 425.20 14.59 
22l.80 6.40 338.80 22.63 4.00 356.00 10.56 4.00 37l.20 15.31 
228.90 8.80 398.00 23.58 4.00 383.20 10.88 4.00 399.60 15.95 
236.30 8.00 371.20 25.82 4.00 43l.60 11.18 4.00 444.80 16.47 
245.90 8.80 365.20 23.44 4.00 364.40 10.28 4.00 375.20 14.58 
253.17 8.00 374.00 2l.74 4.00 370.67 9.28 4.00 379.33 12.63 

Table B.4: The Jump Table Data 

 
 
 



132 

# 
accepting 
symbols 

Min 
valid 
trans 

Max 
valid 
trans 

Avrg 
valid 
trans 

Min 
no 
trans 

Max 
no 
trans 

Avrg 
no 
trans 

Min 
both 
cases 

Max 
both 
cases 

Avrg 
both 
cases 

3.44 2.22 52.89 8.87 2.67 24.89 4.77 2.22 52.89 7.12 
10.90 6.40 65.60 14.02 6.80 45.60 7.99 5.20 67.20 10.43 
16.40 7.60 111.60 16.04 8.40 105.60 9.81 6.00 112. 80 12.24 
25.30 8.40 248.40 22.87 15.60 238 .00 18.40 6.80 248.40 20.19 
33.40 10.80 256.00 21.86 16.00 252.00 19.12 10.00 256.00 19.68 
42.80 6.40 198.40 23.68 18.40 196.80 21.45 6.40 199.60 21.09 
51.10 9.60 404.00 27.96 21.60 405.60 28.15 9.60 405.60 27.21 
55.31 7.36 297.60 29.44 24.56 296.96 30.50 6.96 299.76 29.40 
61. 80 12.40 341.20 31.27 26.40 324.00 34.22 11.20 345.60 32.53 
71.00 8.80 388.80 30.51 26.40 392.00 32.36 8.40 392.40 31.03 
79.50 13.20 391.60 37.70 37.20 439.60 44.41 11.60 439.60 40.25 
85.90 7. 20 3192.80 36.73 34.40 3491.60 41.60 7.20 6354.40 38.83 
93.80 9.60 351.60 34.37 30.40 356. 80 39.59 9.60 357.20 36.42 
100.30 14.00 478.40 39.17 38.40 478.40 47.97 14.00 478.40 43.97 
113.00 12.40 541.60 43.74 46.00 601.20 53.69 12.00 644.00 47.92 
120.90 10.40 784.00 50.21 57.20 766.80 64.57 10.40 794.40 57.63 
127.50 12.80 686.40 46.64 52.40 746.80 59.70 12.40 762.40 53.52 
134. 80 12.80 558.80 43.23 45.60 535.60 53.12 12.80 560.40 47.45 
144.60 8.80 853.20 60.98 76.00 816. 80 83.73 8.80 926.40 70.97 
151.26 9.68 856.92 54.76 64.80 735.28 72.94 8.48 908.24 61.69 
156.60 10.00 3860.00 50.31 55.60 659.20 62.73 10.00 3860.00 56.46 
163.30 12.80 1076.00 64.22 78.00 950.00 88.43 12.80 1076.00 76 .17 
168.30 7.20 602.00 51.89 59 .60 673.20 67.24 6.40 750.40 59.12 
175.80 11.20 15007.60 70.93 69.60 708.80 77.96 11.20 15007.60 73.46 
185.30 10.40 3969.20 78.12 86.00 880.00 112.23 10.40 4100.80 94.09 
194.30 8.80 682.80 47.97 52.40 712.40 60.87 8.00 727.60 55.94 

201.70 12.80 1012.80 75.27 98.00 1105.60 107.92 12.80 1136.00 91.04 
209.30 7.60 775.20 64.55 79.60 528.00 88.78 7.60 840.40 77.07 
216.70 10.40 1088 .40 71.49 89.20 951.20 99.42 10.40 1099 .60 86.70 
224.60 8. 80 945.60 78.76 99.60 1016.40 114.83 8.80 1132.80 96.84 
23 1.20 11.60 1054.00 77.52 101.60 913.60 111.15 11.60 1148.00 94.04 
239.30 12.40 1080.40 80.81 108.00 3980.00 120.15 12.00 4022.40 99.84 
247.30 10.00 1046.40 64 .88 80.40 949.20 89.36 10.00 1046.40 79 .33 
253.75 13.50 1018.00 66.29 84.00 21755.50 99.54 13.50 21755.50 87.06 

Table B.5: The Linear Search Data 

 
 
 



133 


# 
accepting 
symbols 

Min 
valid 
trans 

Max 
valid 
trans 

Avrg 
valid 
trans 

Min 
no 
trans 

Max 
no 
trans 

Avrg 
no 
trans 

Min 
both 
cases 

Max 
both 
cases 

Avrg 
both 
cases 

3.70 12.00 39.20 20.31 12.00 35.20 16.86 12.00 44.80 18.91 
11.50 13.60 56.00 21.01 12.00 56.40 20.39 12.00 58.00 20.63 
15.15 15.36 84.00 21.03 13.60 85.24 21.14 12.00 85.40 21.04 
22.30 14.40 138.80 21.06 14.40 138.80 20.89 12.00 138.80 20.96 
31.00 16.00 193.60 21.90 14.40 194.00 21.88 12.00 194.00 21.87 
39.70 16.00 214.40 21.97 14.00 214.40 21.99 12.00 214.80 22.01 
49.20 17.60 249.60 22.25 13.20 249.60 22.28 12.00 249.60 22.29 
54.70 13.60 186.80 22.90 16.40 187.20 22.91 12.00 187.20 22.89 
60.50 14.40 189.20 23.63 13.20 282.40 23.89 12.00 282.40 23.77 
68.90 12.80 130.40 23.18 12.80 132.00 23.16 12.00 132.40 23.16 
77.70 14.00 219.20 22.69 12.80 220.00 22.97 12.00 220 .00 22.93 
83.30 14.00 156.00 22.27 12.80 157.20 22.36 12.00 157.20 22.33 
91.00 15.20 180.40 24.46 13.20 257.60 24.70 12.00 257.60 24.67 
96.90 18.00 238.80 24.72 12.80 238.00 24.83 12.00 242.00 24.80 
108.00 16.00 254.40 21.81 13.20 280.00 21.89 12.00 280.00 21.89 
117.50 15.60 276.80 24.72 14.80 23851.20 36.40 12.00 23854.00 34.71 
124.30 15.20 271.60 25.42 14.80 270.40 25.40 12.00 277.20 25.45 
130.30 18.40 27695.60 48.15 12.80 267.20 25.47 12.00 27697.20 36.19 
138.20 14.00 200.00 24.64 12.00 226.80 24.70 12.00 251.20 24.73 
148.30 13.60 253.60 25.55 15.60 27638.00 38.18 12.80 27639.20 34.84 
153.80 15.60 303.60 25 .05 14.00 295.60 25 .25 12.00 318.00 25.13 
158.80 15.20 304.40 26.06 13.20 306.00 26.23 12.00 306.00 26.21 
165.50 14.40 278 .40 26.29 12.80 284.80 26.30 12.00 285.60 26.27 
171.40 13.60 284.00 26.65 13.20 285.60 26.41 12.00 285.60 26.45 
179.14 14.56 268.80 26.82 12.92 266.16 26.80 12.00 270.56 26.81 
189.20 14.40 273.60 27.71 14.80 300.80 27.78 12.00 302.00 27.74 
197.00 16.40 282.00 27.74 12.00 296.00 27.81 12.00 298.00 27.80 
204.60 13.60 275.20 28.24 14.00 276.00 28.15 12.00 279.60 28.23 
211.50 14.00 272.80 27.70 12.40 303 .20 27.58 12.00 305.20 27.64 
218.90 14.40 29771.60 55.24 12.80 8078.40 33.74 12.00 29774.00 39.39 
227.60 16.00 329.20 26.87 13.60 305.60 26.91 12.00 331.20 26.87 
235.70 15.20 281.20 29.29 12.80 278.00 29.26 12.00 284.40 29.23 
246.40 15.20 332.00 27.99 12.80 325.60 27.78 12.80 337 .20 27.79 
253.14 15.43 4751.43 31.91 13.14 275.43 29.89 12.00 4754.86 30.76 

Table B.6: The Direct Jump Data 

 
 
 



134 


Valid Transition No transition Both cases 
Min Max Avrg Min Max Avrg Min Max Avrg 

Table-driven 88.00 89.59 88.79 88.00 91.90 89.95 88.00 92.90 88.00 
Switch Statements 93.86 124.70 99.40 88.34 119.16 93.54 88.21 126.89 95.63 
Nested Conditional 93.56 195.94 127.50 137.51 254.55 143.24 93.56 256.73 135.49 
Jump Table 8.46 322.14 19.61 3.97 321.49 9.85 3.97 341.49 13.26 
Linear Search 9.69 545.84 41.53 44.45 516.78 51.22 9.22 574.60 46.12 
Direct Jump 14.84 223.71 24.54 13.31 232.71 24.43 12.03 237.10 24.50 

Table B.7: Averaged Data collected independently to the problem size 

 
 
 



135 

Table-driven Hardcode 

# 
of 

states 

Avrg 
min 
time 

Avrg 
max 
time 

Avrg 
avrg 
time 

Avrg 
min 
time 

Avrg 
max 
time 

Avrg 
avrg 
time 

10 424 649 436 57 235 69 
20 840 987 847 112 721 150 
30 1247 1396 1254 169 2034 275 
40 1642 1864 1655 224 3670 413 
50 203 2 2249 2057 279 4033 488 
60 2465 27 17 2479 335 4842 585 
70 2865 3127 2888 390 7089 754 
80 3293 3499 3307 460 5842 772 
90 3699 401 6 37 17 536 6291 887 
100 4030 4309 4111 613 8663 1093 
110 451 2 4619 4525 667 7440 1096 
120 4929 5201 4944 760 9703 1314 
130 5324 5535 5338 855 10072 1437 
140 5753 5809 5758 929 9405 1464 
150 6139 6377 6155 1015 13007 1733 
160 6490 6793 6575 1251 11886 1897 
170 6978 7267 6994 1432 13043 2135 
180 741 8 7538 7424 1616 15137 24 38 
190 7658 8143 7797 1824 17380 2775 
200 8038 8478 82 11 2096 13985 2847 
21 0 8485 185347 17475 2253 15786 3125 
220 8975 9324 9064 2374 17676 3339 
230 9397 9651 94 17 2647 17863 3618 
240 9678 9934 9699 3063 19773 4036 
250 10238 10587 10261 3335 20361 4337 
260 10444 10685 10659 3641 20673 4648 
270 10938 11045 10953 3896 204 74 4897 
280 11 319 11760 11361 4313 22638 5387 
290 11706 11 999 11886 4706 25121 5890 
300 12089 12667 12322 5090 25033 6264 
310 12740 12986 12754 5430 124328 12658 
320 13124 13268 13150 5839 261 74 6990 
330 13559 13888 13580 6234 26281 7369 
340 13998 14215 14009 6706 202403 17768 
350 14246 14610 14279 6974 28786 8161 
360 14554 14816 14787 7386 30275 8611 
370 15114 15210 15142 7771 31341 9313 
380 15330 15601 15369 8059 29948 9192 
390 15766 16198 16009 83 19 31951 9534 
400 16104 16635 161 59 8549 34266 9863 
410 16843 17104 16858 8781 36855 10207 
420 16857 17140 17106 9025 36610 10428 
430 17299 17671 17623 9274 21 243 9898 
440 17778 18080 18060 9505 21164 10111 
45 0 18315 18548 18336 9733 23876 10456 
460 18890 18972 18896 9981 20511 10528 
470 19137 19424 19315 10198 22078 10814 
480 19650 19949 19665 10416 22415 11033 
490 19837 20254 20030 10632 24994 11 367 
500 20197 20387 20207 10849 21 277 11388 

Table B.8: Sample Data for the two-alphabet symbols Experiments 

 
 
 



136 


String Recognition using Linear Search String Recognition using Direct Index 
Table-driven Hardcode Table-driven Hardcode 

# 
of 

states 

Avrg 
min 
time 

Avrg 
m ax 
time 

Avrg 
avrg 
time 

Avrg 
min 
time 

Avrg 
max 
time 

Avrg 
avrg 
time 

Avrg 
min 
time 

Avrg 
max 
time 

Avrg 
avrg 
time 

Avrg 
min 
time 

Avrg 
max 
time 

Avrg 
avrg 
time 

10 1785 2720 1805 576 3419 636 340 659 348 91 2470 141 
20 3797 4506 3811 1283 5800 1383 698 1151 709 184 6165 308 
30 5717 6553 5734 1908 8260 2056 1049 1403 1059 282 9089 468 
40 7639 8554 7659 2539 10899 2723 1400 1856 1411 372 11895 615 
50 9580 10304 9594 3203 15339 3474 1753 2232 1764 468 13011 740 
60 11 558 12340 11574 4214 18978 4532 2109 2580 2119 64 3 16480 994 
70 13652 14429 13667 4741 23830 5154 2460 2772 2468 781 21418 1226 
80 15597 16394 15613 5550 22115 5917 28 18 3291 2829 857 21008 1296 
90 17461 18228 17476 5936 23944 6348 3169 3618 3180 931 23370 1420 
100 19519 20274 19534 6771 30223 7312 3532 3948 3541 1173 26865 1748 
110 21699 22426 217 14 7776 35837 8393 3889 4201 3897 1320 31447 1970 
120 23670 24419 23685 8941 36895 9548 4229 4464 4237 1526 35666 2699 
130 25641 26398 25656 10161 39970 10805 4484 5000 4581 2038 38148 2840 
140 27678 28262 27690 10882 1807381 47007 4934 5240 4943 2591 39015 3391 
150 29718 30468 29733 12408 48226 13188 5289 5740 5300 2786 47801 3746 
160 31680 32378 31694 12920 49600 13730 5652 6031 5660 3067 45179 3973 
170 33660 34405 33675 13911 59202 14874 5962 6327 6025 3670 51786 5174 
180 35802 366 15 35818 15496 67729 16597 6311 6852 6369 4141 58319 5281 
190 37712 38539 37730 16583 67413 17636 6704 7084 6714 4669 63788 5903 
200 39614 40471 39632 17870 73731 19130 7070 7399 7079 5274 67080 6581 
210 41519 59819 41903 19053 75763 20264 7408 7749 7417 5659 73443 7080 
220 43418 64129 43850 20158 80724 21973 7681 8101 7797 5979 77634 7481 
230 45332 46227 45350 20932 85096 22260 8116 8521 8144 6430 79685 7993 
240 47432 48286 47449 21774 143616 25614 8441 8918 8451 6913 79821 8433 
250 49297 50064 49312 23176 89264 24576 8843 9293 8855 7474 84791 9091 
260 51243 52036 51259 23627 97556 25169 9136 9658 9149 7820 91 989 9573 
270 53221 586024 63945 24741 169972 29372 9564 10136 9583 8413 100716 10296 
280 55065 56194 55088 26060 112703 27851 9845 10270 9856 8967 103267 10899 
290 57087 57924 57105 26393 111594 28186 10186 10790 10203 9306 105460 11794 
300 59172 59963 59188 29386 112494 31140 10520 11153 10543 9792 106645 11790 
310 61114 1828776 96498 30386 12001 2 32225 11042 11411 11052 10139 113321 12259 
320 63040 63860 63057 31493 117679 33253 11402 11902 11434 10400 118619 12612 
330 65059 87578 65531 30909 127564 32900 11811 12295 11869 10965 121293 13216 
340 66949 84500 67321 31462 127632 33436 12116 12796 12183 11374 126034 13754 
350 69011 70112 69034 32470 127860 34418 12546 13162 12561 11808 126155 14180 
360 70904 201363 73550 33958 146674 36286 12934 13639 12992 12101 160247 15124 
370 72907 91467 73302 35109 148358 37434 13274 13892 13292 12685 141602 15753 
380 75197 749073 88713 37630 153435 40075 13689 14572 13730 13167 142012 15803 
390 77031 207068 79680 38628 154922 41030 14090 14795 14120 13513 159357 19333 
400 79178 95878 79546 39642 158204 420600 14561 15084 14591 14096 145721 16779 
410 81149 82636 81180 39143 164597 41719 14898 15786 14935 14666 149139 17433 
420 83096 754076 97026 39278 165208 41850 15257 15984 15279 14836 156112 17717 
430 85338 86679 85366 40309 185388 46014 15758 16570 15775 15335 161386 18311 
440 87146 104880 87534 43800 166546 46333 16273 16782 16344 15673 164625 18699 
450 89338 90906 89388 42103 180878 44920 16533 17174 16579 16321 173763 19550 
460 91136 142873 92217 45832 191300 48810 17176 17558 17220 16755 186600 20252 
470 93113 94907 93149 46588 193856 49592 17512 226983 21746 17098 165980 20126 
480 95192 114015 95597 44737 195712 47820 17959 57126 18743 17354 178416 23529 
490 97083 98513 97111 45025 193362 48062 18224 18533 18232 17947 397911 26038 
500 99238 121324 99711 46985 198716 52620 18716 38069 19130 18249 191298 21780 

Table B.9: Sample Data for the String Recognition Experiment with Searching and 
Direct Indexing 

 
 
 



Bibliography 

[AhSU86] Alfred V. Aho, Ravi Sethi , and Jeffrey D . Ullman. Compilers: Principles, 

Techniques , and Tools. Addison Wesley 1986 

[AhUl72] Alfred V. Aho, and Jeffrey D. Ullman. The Theory of Parsing,Translation, 

and Compiling Volume 1: Parsing. Prentice Hall, 1972 

[Andersen et al 99] Bjarne S. Andersen, Alexander Karaivanov, Jerzy Wasniewski, 

Fred Gustavson , and Plamen Y. Yalamov. Linear Algebra With Recursive Algo­

rithms. http: // lawra . uni-c .dk/ lawra/abstracts/ KazDolny99/ KazDolny99.html 

[BhPr95] Achyutram Bhamidipaty, and Todd A. Proebsting. Very fast YACC­

Compatible Parsers (for Very Little Effort), Department of Computer Science uni­

versity of Arizona, 1995 . 

[Cleo03] L. G. W. A. Cleophas. A New Taxonomy and Toolkit of Keyword Pattern 

Matching Algorithms. MSC Thesis, Faculty of Computing Science, Eindhoven Uni­

versity of Tehnology, The Netherlands, September 2003. 

[CroHa97] Maxime Crochemre, and Christophe Hancart. Automata for Matching 

Patterns. Hadbook of Formal Language. SpringIer Verlang 1997. 

[Douglas et al 00] Craig C. Douglas, Jonathan Hu, Mohamed Iskandarani, Markus 

Kowarschik , Ulrich Rude , and Christian Wei13. :tvlaximizing Cache Memory Usage 

137 

 
 
 

http:uni-c.dk
http://lawra


138 

for Multigrid Algorithms. Proceedings of the International Workshop held at Bei­

jing, China, August 2-6,1999, Lecture Notes in Physics, pp. 124ff. Springer, August 

2000. 

[DoGK84] J. J. Dongarra, F. G. Gustafson, and A. Karp. Implementing linear algebra 

algorithms for dense matrices on a vector pipeline machine. SIAM Review, 26 

(1984), pp. 91-112 

[ELI02] Syntactic Analysis Context-Free Grammars and Parsing. 

http: //www.cs.colorado.edu/ eli user / elionline4.3/syntax_1 .html. 

[FrHe91] Christopher W. Fraser, and Rohprt. R. Hp.nry H>1rn-(:nnine; Bottom-up code 

generation tables to save time and space. Software-Practice & Experiences 21 , 

l(Jan. 1991), 1-12. 

[Ger02] Richard Gerber. The Software Optimization Cookbook: High-performance 

Recipes for the Intel Architecture. Intel Corporation , 2002. 

[GRJA91] Dick Grune, Ceriel J.H. J acobs, Parsing Techniques: A Practical Guide, 

Prentice Hall,l991 

[Herr03] J ack Herrington , Code Generation in Action. Manning Publiction 2003 

[HoWh88] R. Niegel Horspool, and M. Whitney. Even faster LR parsing. Software 

Practice and Experiences, 20(6):515-535, June 1988. 

[Intel] Intel Corporation. The Intel Architecture Optimization Reference Manual. 

http:/ / www.intel.com/design/pentiumiii/manuals/ 

[John75] Stephen C Johnson. YACC - Yet Another Compiler-Compiler. Bell Labs 

1975. 

[KeWK03] E.I<etcha Ngassam, Bruce W.Watson, Derrick G. Kourie. Preliminary 

Experiments on Hardcoding Finite Automata. 8th International Conference on 

 
 
 

www.intel.com/design/pentiumiii/manuals
http:www.cs.colorado.edu


139 

Implementation and Application of Automata, CIAA, 2003. LNCS 2759, pages 

299-300. Springer, 2003. 

[KIM02] Paul Kimmel. The Visual Basic .Net Developer's Book. Addison-Wesley 

2003. 

[Krus88] F .E.J Kruseman Arez. On a Recursive Ascent Parser. Information Process­

ing Letters , Volume 29, No 4, p. 201-206, November 1988 

[KWK03] E.Ketcha Ngassam, Bruce W.Watson, Derrick G. Kourie. Hardcoding Fi­

nite Automata Processing. Annual Conference of the South African Institute of 

Computer Scientists and Information Technologists, SAICSIT 2003. pageff Ill. 

ACM, 2003. 

[LePa81] Harry R. Lewis, and Christo H. Papadimitrou. Elemenets of The Theory of 

Computation. Prentice Hall, 1981 

[LeSc75] M. E. Lesk and E. Schmidt. Lex - A Lexical Analyzer Generator. Computer 

Science Technical Report 39, AT&T Bell Laboratorie, Murray Hill, NJ ,USA, Oct. 

1975 

[McN82] Robert McNaughton. Elementary Computability, Formal Languages and 

Automata. Prentice Hall, 1982 

[Penn86] Thomas J. Pennello. Very fast LR parsing. In Proceedings of the SIGPLAN 

'86 Symposium on Compiler Construction, pages 145-151, 1989. 

[Pfah90] Peter Pfahler. Optimizing directly execu~able LR parsers. In Compiler Com­

pilers: Third International Workshop CC'90, pages 179-192, October 1990 

[PTVF02] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. 

Flannery. Numerical recipes in C++: the art of scientific computing. Cambridge, 

UK; New York: Cambridge University Press, 2002. 

 
 
 



140 

[Wat02] Bruce W. Watson . Directly Constructing Minimal DFAs: Combining Two 

Algorithms by Brzozowski. SART jSACJ, No 29, 2002, 17-23 

[Wat95] Bruce W. Watson. Taxonomies and Toolkits of Regular Language Algo­

rithms. PhD Thesis, Faculty of Computing Science, Eindhoven University of Tech­

nology, The Netherlands, September 1995. 

 
 
 


