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7.1. INTRODUCTION 

This section develops numerically and analytically the geometric optimisation of 

parallel cooling channels in forced convection for a vascularised material with the 

localised self-cooling property subjected to a heat flux on one side. This is done in 

such a way that the peak temperature was minimised at every point in the solid body. 

The self-cooling ability of vascularised material to bathe volumetrically at every point 

of a solid body gave rise to the name „smart material‟. 

Constructal theory ideally helps in the vascularisation of the smart material structure 

by morphing the flow architecture configuration to provide easier and greater access 

of flow through it. 

 

This work is follows on that of Kim et al. [128], who theoretically and numerically 

analysed vascularised materials with heating from one side and coolant forced from 

                                                 
5
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the other side. They did the analysis for parallel plates and cylindrical channel 

configurations in an attempt to find the channel configurations that minimised the 

non-uniform temperature distribution of a vascularised solid body. The work in this 

section focuses on the mathematical optimisation of laminar-forced convection heat 

transfer through a vascularised solid with square channels. It examines the 

optimisation of a fixed and finite global volume of solid material with an array of 

square cooling channels. A uniform heat flux applied from one side and the cooling 

fluid was forced through the channels from the opposite direction with a specified 

pressure difference. The structure had three degrees of freedom as design variables: 

the elemental volume, the channel‟s hydraulic diameter and channel-to-channel 

spacing. The objective was to build a smaller construct to form part of a larger 

construct body with a self-cooling function, which would lead to the minimisation of 

the global thermal resistance or, inversely, the maximisation of the heat transfer rate 

density (the total heat transfer rate per unit volume). This would be achieved by 

designing the body in a vascularised manner and by forcing a coolant to the heated 

spot in a fast and efficient way so as to significantly reduce the peak temperature at 

any point inside the volume that needs cooling.  

 

We started the optimisation process by carrying out numerical solutions under a fixed 

global volume of solid material, but the elemental volume was allowed to morph. A 

gradient-based optimisation algorithm (DYNAMIC-Q) (see Chapter 4), coupled with 

the numerical CFD and mesh generation packages, was used to determine the optimal 
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geometry that gave the lowest thermal resistance. This optimiser adequately handled 

the numerical objective function obtained from numerical simulations of the fluid 

flow and heat transfer. 

 

We later developed an analytical solution based on the application of the intersection 

of asymptotes method and scale analysis to prove the existence of an optimal 

geometry that would minimise the peak temperature and global thermal resistance of 

this vascularised material.  

 

The numerical results obtained were in agreement with a theoretical formulation for 

this vascularised solution using scale analysis and the intersection of asymptotes 

method. The effect of material properties on the minimum thermal resistance and 

optimised internal configuration was also studied. 

 

7.2. COMPUTATIONAL MODEL 

The schematic diagram of the physical configuration is shown in Figure 7.1. The 

system consists of a solid body of fixed global volume V, which is heated with 

uniform heat flux qon the left side. The body is cooled by forcing a single-phase 

cooling fluid (water) from the right side through the parallel cooling channels.  
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The flow is driven along the length L of the square channel (wc = hc) with a fixed 

pressure difference ∆P in a transverse and counter-direction to the heat flux. An 

elemental volume (see Figure 7.2) consisting of a cooling channel and the 

surrounding solid was used for analysis because it was assume that heat distribution 

would occur symmetrically on the left side of the structure.  The heat transfer in the 

elemental volume is a conjugate problem, which combines heat conduction in the 

solid and the convection in the working fluid. 
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Figure 7. 1 :  Three-dimensional parallel square channels across a slab with heat flux from one 

side and forced flow from the opposite side  

 

7.2.1. Numerical procedure 

 

Figure 7.2 shows that an elemental volume el
v  constraint is considered to be 

composed of an elemental cooling channel of hydraulic diameter dh (dh = wc = hc ). 

The surrounding solid of thickness s  (the spacing between channels) is defined as  
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w h  (7.1) 

The elemental volume is 

2v w L
el
  

(7.2) 

and the width of an elemental volume is 

hw d s   (7.3) 

Therefore, the number of channels in the structure arrangement can be defined as: 

 
  

2
h

HW
N

d s





 (7.4) 
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Figure 7. 2 :  The boundary conditions of the three-dimensional computational domain of the 

elemental volume  

 

and the void fraction or porosity of the unit structure can be defined as 
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(7.5) 
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The fundamental problem under consideration is the numerical optimisation of the 

channel hydraulic diameter, dh, and the channel spacing, s, which corresponds to the 

minimum resistance of a fixed volume for a specified pressure drop. The optimisation 

is evaluated from the analysis of the extreme limits of 0
h

d    and the extreme 

limits of 0 s   . The optimal values of the design variables within the prescribed 

interval of the extreme limits exhibit the minimum thermal resistance.  

The temperature distribution in the elemental volume was determined by solving the 

equation for the conservation of mass and momentum Equations (Equations (3.1) to 

(3.7) of Chapter 3) numerically. A section of the discretised three-dimensional 

computational domain of the elemental volume is shown in Figure 7.3. The cooling 

fluid was water, which was forced through the cooling channels by a specified 

pressure difference ΔP across the axial length of the structure. The working fluid is 

water and is assumed to be in single phase, steady and Newtonian with constant 

properties. 

 

The energy equation for the solid part of the elemental volume can be written as 

2  0k T
s
   (7.6) 

The continuity of the heat flux at the interface between the solid and the liquid is 

given as: 

w w

T T
k = k
s fn n

 

 
 (7.7) 
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A no-slip boundary condition is specified for the fluid at the wall of the channel,   

0u   (7.8) 

At the inlet (z = L),  

0u u
x y
   (7.9) 

T T
in

  (7.10) 

2

Be
P P

outL


   

(7.11) 

 

where, the Bejan number [182, 183], Be, is the dimensionless pressure difference and 

given as: 

2

f

PL
Be




  

(7.12) 

and  

f

f

f Pf

k

C



  

(7.13) 

 

 At the outlet (z = 0), the pressure is prescribed as zero normal stress   

1 P atm
out

  (7.14) 

 

At the left side of the wall, the thermal boundary condition that is imposed is assumed 

to be: 
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T
q k

s z
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(7.15) 

 

while at the solid boundaries, the remaining outside walls and the plane of symmetry 

are modelled as adiabatic as shown in Figure 7.2 

0T   (7.16) 

 

 

x
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Figure 7. 3 :  A section of the discretised 3-D computational domain of the elemental solid-fluid 

volume considered for the simulation 
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 The measure of performance is the minimum global thermal resistance, which could 

be expressed in a dimensionless form as:  

 
min

max minin

R

k T T
f

q L






 
(7.17) 

and it is a function of the optimised design variables and the peak temperature. 

 
minmin max,  ,  

opt opth elR f d v T  (7.18) 

min
R  is the minimised thermal resistance for the optimised design variables. The 

inverse of 
min

R  is the optimised overall global thermal conductance. 

 

The effect of material properties is later taken into consideration by the ratio of the 

thermal conductivities 

 
k
sk

r k
f

  (7.19) 

7.3. NUMERICAL PROCEDURE 

The simulation work began by fixing the length of the channel, prescribed pressure 

difference, porosity, heat flux and material properties. We used varying values of the 

hydraulic diameter of the channel to identify the best (optimal) internal configuration 

that minimised the peak temperature. The numerical solution of the continuity, 

momentum and energy equations (Equations (3.1) to (3.7)) along with the boundary 

conditions (Equations (7.6) to (7.15)) was obtained by using a three-dimensional 

commercial package Fluent™ [199] which employs a finite volume method. The 
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details of the method are m explained by Patankar [203]. Fluent™ [199], was coupled 

with the geometry and mesh generation package Gambit [201] using MATLAB [219] 

to allow the automation and running of the simulation process. After the simulation 

had converged, an output file was obtained containing all the necessary simulation 

data and results for the post-processing and analysis. The computational domain was 

discretised using hexahedral/wedge elements.  A second-order upwind scheme was 

used to discretise the combined convection and diffusion terms in the momentum and 

energy equations. The SIMPLE algorithm was subsequently employed to solve the 

coupled pressure-velocity fields of the transport equations. The solution is assumed to 

have converged when the normalised residuals of the mass and momentum equations 

fall below 10
-6

 while the residual convergence of energy equation was set to less than 

10
-10

. The number of grid cells used for the simulations varied for different elemental 

volume and porosities. However, grid independence tests for several mesh 

refinements were carried out to ensure the accuracy of the numerical results. The 

convergence criterion for the overall thermal resistance as the quantity monitored was 

   

 
1max max

max

0.001
ii

i

T T

T





   (7.20) 

 

where i  is the mesh iteration index. The mesh was more refined as i  increased. The 

1i  mesh was selected as a converged mesh when the criterion (7.20) was satisfied.  
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7.4. GRID ANALYSIS AND CODE VALIDATION 

To ensure accurate results, several grid independence test were conducted until a 

mesh size with negligible changes in peak temperature was obtained.   

Table 7.1 shows the grid independence test performed for the case where dh = 400 µm   

and  = 0.2  for Be = 10
8
. Computational cell densities of 3 675, 5952, 11 200 and 20 

160 were used for the grid independence test. Almost identical results were predicted 

when 5 952 and 11 200 cells were used. Therefore, a further increase in the cell 

density beyond 11 200 would have a negligible effect on the results. 

 

Table 7. 1: Grid independence study with   = 400 mhd 
 
and  = 0.2  for  

810  Be   

Number of nodes Number of cells maxT  
   

 
1max max

max

ii

i

T T

T





  

5 456 3 675 33.09371 - 

8 718 5 952 32.79123 0.009194 

15 005 11 200 32.772 0.000587 

26 609 20 160 32.67453 0.002983 

 

The validation of the numerical simulation was carried out by comparing the present 

simulation with that of Kim et al [128] for a cylindrical configuration as shown in 

Figure 7.4 for the case where  = 0.1  and kr = 10. The curves were found to be 

similar in trend and the solutions were in good agreement with a deviation of less than 

7%.   
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Figure 7. 4 :  Comparison of the results of the present numerical study with those of Kim et al. 

[128] for  = 0.1  and kr = 10   

7.5. NUMERICAL RESULTS  

In this section, we present results for the case when the channel hydraulic diameter (or 

channel width/height) was in the range of 0.1 mm to 1.5 mm and the porosities ranged 

between 0.1    0.3  , while a fixed length of L = 10 mm and fixed applied 

dimensionless pressure differences of 810Be  . The thermal conductivity of the solid 

structure (stainless steel) was 16.27 W/m.K; and the heat flux supplied at the left wall 

was 100 kW/m
2
. The thermo-physical properties of water [202] used in this study 
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were based on water at 300 K and the inlet water temperature was fixed at this 

temperature.   

 

Figures 7.5 and 7.6 show the existence of an optimum hydraulic diameter and 

elemental volume size in which the peak temperature is minimised at any point in the 

channel for the square configuration studied. According to Figure 7.5 the peak 

temperature is a function of the channel hydraulic diameter. It shows that there exists 

an optimal channel hydraulic diameter, which lies in the range 0.01 ≤ dh/L ≤ 0.05 

minimising the peak temperature.  Also, the elemental volume of the structure has a 

strong effect on the peak temperature as shown in Figure 7.6. The minimum peak 

temperature is achieved when the optimal elemental volume is in the range 0.05 mm
3 

≤ vel ≤ 8 mm
3
. This indicates that the global peak temperature decreases as the design 

variables (hydraulic diameter and elemental volume) increase, or the global peak 

temperature decreases as the design variables decrease until it gets to the optimal 

design values. Therefore, any increase or decrease in the design variable beyond the 

optimal values indicates that the working fluid is not properly engaged in the cooling 

process, which is detrimental to the global performance of the system. The results 

show that the optimal arrangement of the elemental volume for the entire structure at 

this fixed pressure difference should be very small in order to achieve a better 

cooling. Figures 7.5 and 7.6 also show that porosity has a significant effect on the 

peak temperature. The best cooling occurs at the highest porosity. Thus, as the 

porosity increases, the peak temperature decreases. 
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Figure 7. 5 :   Effect of the optimised dimensionless hydraulic diameter hd
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temperature at Be = 10
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 Figure 7. 6 :   Effect of the optimised elemental volume on the peak  temperature at Be = 10
8
 

 

7.6. MATHEMATICAL FORMULATION OF THE OPTIMISATION 

PROBLEM 

 

In this section, we introduce an optimisation algorithm that will search and identify 

the design variables at which the system will perform at an optimum. A numerical 

algorithm, Dynamic-Q [208], was employed and incorporated into the finite volume 

solver and grid (geometry and mesh) generation package by using MATLAB code for 

greater efficiency and better accuracy in determining the optimal performance.  
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7.6.1. Optimisation problem and design variable constraints 

 

The optimisation technique described above was applied to the models described in 

Section 7.2. The constraint ranges for the optimisation are:  

0.1    0.3   (7.21) 

0    w L   (7.22) 

0    d w
h

   
(7.23) 

0    s w   (7.24) 

 

The design and optimisation technique involves the search for and identification of 

the best channel layout that minimises the peak temperature, 
max

T , so that the minimum 

thermal resistance between the fixed volume and the cooling fluid is obtained as the 

desired objectives function. The hydraulic diameter, channel spacing and elemental 

volume of the square configuration were considered as design variables. A number of 

numerical optimisations and calculations were carried out within the design constraint 

ranges given in Equations (7.21) to (7.24). The results are presented in the next 

section to show the optimal behaviour of the entire system. The optimisation process 

was repeated for applied dimensionless pressure differences Be from 10
5
 to 10

9
.   

 

7.6.2. Mathematical statement of the optimisation problem 

 

The variables chosen for the mathematical statement are 
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1 hx d  (7.25) 

2x w  (7.26) 

Substituting Equations (7.25) to (7.26) for Equations (7.21) to (7.24) results in the 

objective and constraints functions given in Equations (7.27) to (7.29). The inequality 

functions g1(x) and g2(x) are derived from the porosity constraint of Equation (6.5). 

The mathematical statement of the optimisation problem is then written as: 

max( )f x T  (7.27) 

2 2

1 2 1( ) 0.1 0g x x x    (7.28) 

2 2

2 1 2( ) 0.2 0g x x x    (7.29) 

 

7.6.3. Parameterisation of geometry and automation of the optimisation 

process 

 

Since a large number of CFD simulations were performed, the geometry and mesh 

generation are parameterised in similar way as those described in Chapter 6. This 

allowed GAMBIT [201] scripts to be automatically generated. The optimisation 

problem was done automatically by coupling together the computational fluid 

dynamics package- FLUENT[199] and the geometry and mesh generation package 

GAMBIT [201] with the mathematical optimisation algorithm by using MATLAB 

[219] to allow the automation, mesh generation and running of the simulation process. 
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The values in the parametric GAMBIT file were changed through MATLAB code, 

and then the procedure was re-run to generate a new set of geometric modelling and 

mesh generations for post-processing. This cycle continued until convergence 

occurred with the step size and function value convergence tolerances set at 

4 810  and 10   respectively. Figure 6.10 provides a flow chart of the automated 

optimisation process. The peak temperature was found and equated to the objective 

function. 

 

 Appendix B.6 shows the parametric GAMBIT file for geometry of the vascularised 

square cooling channels of Figure 7.1.  Appendices A and C show the optimisation 

algorithm file and the FLUENT journal file respectively for the running of the 

simulation. 

 

7.6.4. Sensitivity analysis of the selection of forward differencing step size 

 

As discussed in Chapter 4. 6, the fact that noise exists in any simulation made it 

essentially to carefully choose a step size x  to be used in the differencing scheme. 

This step size had to totally minimise the noise and gives an accurate representation of 

the global gradient of the function. A sensitivity analysis was performed by selecting 

different values of the step size of design variables that gave a smooth objective 

function and could later be used as candidate step size. This candidate step size was 

then verified by running the optimisation program with various starting guesses and 



 

 

Chapter 7: Mathematical optimisation of laminar forced convection heat transfer through a 

vascularised solid with square channels  

 

185 

  

checking for any discrepancies in the final solution. Figure 7.7 shows a graph of peak 

temperature as a function of cooling channel width with step sizes of  10
-6  

 and 10
-4

 .  

Although, different values of the step size of cooling channel width as design variable 

considered are 10
-6

, 10
-5

, 10
-4

 and 10
-3
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Figure 7. 7 :  Plotting peak temperatures for different channel width values with  step sizes of 10
-6 

and 10
-4
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A step size of 10
-4

 gave a smooth continuous function of maximum peak temperature 

and it indeed proved to be an ideal forward differencing scheme step size for other 

design variables. 

Figure 7.8 shows a graph of peak temperature as a function of channel spacing with 

the chosen candidate step size of 10
-4

. 

 

38.9

39

39.1

0.25 0.251 0.252

Step size = 10
-4

O
b

je
c
ti
v
e
 f

u
n
c
ti
o
n
 (

 0
C

 )
  
fo

r 
s
te

p
 s

iz
e

 =
 1

0
-4

s ( mm )
 

Figure 7. 8 :  Plotting peak temperatures for different channels-spacing values with a step size of 

10
-4
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7.7. OPTIMISATION RESULTS 

7.7.1. Effect of pressure difference on optimised geometry and minimised 

thermal resistance 

 

Figure 7.9 shows the effect of the minimised thermal resistance as a function of 

applied dimensionless pressure difference. Minimised thermal resistance decreases as 

the applied dimensionless pressure difference and porosity increase. Figure 7.10 

shows that the optimal hydraulic diameter decreases as the pressure differences 

increase and there exists a unique optimal geometry for each of the applied pressure 

differences. The trend is in agreement with previous work [94]. 

 

7.7.2. Effect of material properties on optimised geometry and minimised 

thermal resistance 

 

The effect of material properties on the minimum thermal resistance and optimised 

internal configuration was also studied. This was best investigated by numerically 

simulating conjugate heat transfer in an elemental volume for different values of 

thermal conductivity ratio. The numerical simulations follow the same procedure that 

was discussed earlier to show the existence of an optimal geometry.  
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Figure 7. 9 :  Effect of dimensionless pressure difference on the dimensionless global thermal 

resistance 
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Figure 7. 10 :  Effect of dimensionless pressure difference on the optimised hydraulic diameter 

 

 

We started the simulation by fixing  = 0.2 , Be = 10
8
 and  kr = 10 as well as and kr = 

100.  We then varied the hydraulic diameter and the elemental volume until we got 

the minimum peak temperature. Figure 7.11 shows that an optimal geometry exists at 

different thermal conductivity ratios and that minimum peak temperatures are 

achieved when rk is high.  
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Figure 7. 11 :  Effect of  a thermal conductivity ratio,  rk , on the  peak temperature at a Bejan 

number of 10
8
 and porosity of 0.2 

 

 

 

We later performed an optimisation process to determine the best geometry that 

would render the lowest thermal resistance temperature by using the optimisation 

algorithm. We fixed  = 0.2  and Be = 10
8
 for all the design constraint ranges and for 

different values of thermal conductivity ratios ranging from kr = 1 to kr = 10
4
. Figures 

7.12 and 7.13 show the effect of the thermal conductivity ratio on the minimised 

global thermal resistance and the optimised hydraulic diameter at fixed  = 0.2  and Be 

= 10
8
. The minimised thermal resistance decreases as the thermal conductivity ratio 
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increases. This shows that material properties have a strong effect on the thermal 

resistance. Materials with a high thermal conductivity property reduce the thermal 

resistance. Figure 7.13 shows that the thermal conductivity ratio has a significant 

influence on the optimised hydraulic diameter. As the thermal conductivity ratio 

increases, the optimal hydraulic diameter increases. However, at higher thermal 

conductivity ratios (say kr ≥ 4 000), the thermal conductivity has a negligible effect on 

the minimised thermal resistance and optimised hydraulic diameter. 
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Figure 7. 12 :  Effect of  a thermal conductivity ratio, rk  on the  minimised dimensionless global 

thermal resistance at Be = 10
8
 and porosity of 0.2 
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Figure 7. 13 :  Effect of  thermal conductivity ratio rk  on the  optimised hydraudric 

diameter at Be = 10
8
 and porosity of 0.2 

 

For applied dimensionless pressure differences ranging from Be = 10
5
 to 10

9
 and 

 = 0.1 to 0.2  we repeated the optimisation process for all the design constraint ranges 

from kr = 1 to 100 so as to determine the global behaviour of the whole system.  

Figures 7.14 to 7.16 show the effect of the applied dimensionless pressure difference 

on the minimum thermal resistance and the internal geometry for different values of 

thermal conductivity ratio and porosity. Figure 7.14 shows that the minimised thermal 

resistance decreases as the applied dimensionless pressure difference, thermal 

conductivity ratio and porosity increase. Also, Figures 7.15 and 7.16 show that there 
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are unique design variables for each applied dimensionless pressure difference, 

thermal conductivity ratio and porosity. 
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Figure 7. 14 :  Effect of thermal conductivity ratio rk , porosity, and dimensionless pressure 

difference on the minimised dimensionless global thermal resistance 
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Figure 7. 15 :  Effect of  thermal conductivity ratio rk , porosity, and dimensionless 

pressure difference on the  optimised hydraulic diameter 
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Figure 7.16 :  Effect of  thermal conductivity ratio rk , porosity, and dimensionless 

pressure difference on the  optimised channel-spacing  
 

Figures 7.17(a) and 7.17(b) show the temperature contours of the elemental volume 

and of the inner wall of the cooling channel with cooling fluid, respectively. The blue 

region indicates the region of low temperature and the red region indicates that of 

high temperature. The arrow indicates the direction of flow.         
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(a) 

         

 

(b) 

Figure 7. 17: Temperature distributions on (a) the elemental volume and (b) the cooling fluid and 

the inner wall 

 

 

7.8. METHOD OF INTERSECTION OF ASYMPTOTES 

This section investigated further the numerical solution of the optimisation of flow 

and heat transfer with the analytical solution. The theoretical analysis for the 

vascularised configurations followed the application of the intersection of asymptotes 

method and scale analysis [94, 130, and 218] to prove the existence of an optimal 

geometry that minimised the peak temperature and global thermal resistance. The 
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method of intersection of asymptotes outlined by Kim et al. [130] was used to 

determine the optimal geometric shape. The objective was to provide the relationship 

between the global objective function in terms of global thermal resistance, R, and the 

varying hydraulic diameter hd  in the two extremes at  0hd   and hd  . The 

optimal geometry value 
opthd  that corresponds to, minR , is located approximately 

where the two asymptotes intercept.  

 

The following assumptions were made throughout the analysis: inlet temperature and 

the pressure difference, ΔP, driving the pump are fixed with a uniform flow 

distribution in all the channels, laminar flow, constant cross-sectional area of the 

channels, negligible inlet and exit plenum losses and negligible axial conduction. An 

elemental volume is treated because of the symmetry of the heat distribution.  

 

7.8.1. Extreme limit 1: small channel 

 

Figure 7.18 shows the extreme limit when the channels characteristic dimension is 

very small and very slender, that is 0hd  . and hd L , the length layer is treated as 

a fluid saturated porous medium with Darcy flow. The flow is fully developed along 

the length, L. In this extreme limit, the fluid in the channel quickly becomes fully 

developed flow and the working fluid is overworked. 
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0hd 
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P

 

Figure 7. 18 :  The extreme limit of the channel’s characteristic dimension is very small and very 

slender, that is 0hd  and hd L , 

 

The average velocity u  in a uniform volume points in the z direction given as: 

 

K P
u

L


  

(7.30) 

 

where, K  is the permeability that is associated with Poiseuille flow through 

thinhd  fissures is define [218] as 

 

2

hd
K

g
  

(7.31) 

where g is the porosity function defined [ 130, 218] as 

32
g


  

(7.32) 

The temperature distribution across the length of the body is obtained by the energy 

equation 

2

2

dT T

dz u z

 
 


 

(7.33) 

This is subject to the flowing boundary conditions         



 

 

Chapter 7: Mathematical optimisation of laminar forced convection heat transfer through a 

vascularised solid with square channels  

 

199 

  

        at z 0eff

dT
q k

dz
     

(7.34) 

in      as   zT T   (7.35) 

Where,   is the thermal diffusivity of the saturated porous medium and is defined as: 

      
eff

P

k

C



  

(7.36) 

and  effk  is the effective thermal conductivity of the saturated porous medium with the 

filling fluid in its pores. The fluid-filled spaces are parallel to the direction of heat 

flow, therefore effk  is defined as: 

 1eff f sk k k     (7.37) 

 

The temperature distribution across the length of the body is obtained solving 

differential Equation (7.33) with the boundary conditions of Equations (7.34) – (7.35). 

The solution is 

ux

in

eff

T T q e
uk

    
(7.38) 

Equation (7.38) shows the effect of the propagation of heat flux q  in the porous 

structure to the depth of z of the order / u . That is the boundary condition (7.35) 

holds when the penetration dept is smaller than the length of the structure. That is 

/u L   (7.39) 

From Equation (7.38), we find the maximum peak temperature difference max inT T  , 

which occur at 0z    surfaces, therefore, 
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max in

eff

T T q
uk


   

(7.40) 

Combining Equations (7.30) to (7.32), as well as Equations (7.36) and (7.40) together, 

we, have 

 max in 1

2
32f

dk T T hR Be
q L L




 

   
 
 

 

(7.41) 

 

where Be is the dimensionless pressure number [218] and is defined as: 

2

f

PL
Be




  

(7.42) 

and  

f

f

f Pf

k

C



  

(7.43) 

From Equation (7.41), it can be concluded that in the small diameter extreme, R  

increases as 0hd  . 

 

7.8.2. Extreme Limit 2: Large Channel 

 

In this extreme limit, the channels characteristic dimension is sufficiently large in 

such a way that the working fluid is not properly utilised   and working fluid outside 

the boundary layers becomes useless and the body is not properly cooled in the 

downstream. (See Figure (7.19)). 
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The thermal resistance between the heat flux surface and the channel surface is due to 

conduction in a square chunk of the solid of dimension w/4. All the other assumptions 

are still maintained. 

 

hd 

 

 

inT

P

 

Figure 7. 19 :  The extreme limit of the channel’s characteristic dimension is sufficiently large, 

that is hd  

 

The energy equation for describing the steady state conduction in the domain is: 

0,T   (7.44) 

This requires 

 
22/ / / 4 ,zT L T w   (7.45) 

or expects that the path of conduction of heat in the z direction should be of the same 

length scale as the path in the x or y direction. 

,
4

z

w
L  

(7.46) 

The conservation of heat current through the elemental volume / 2 / 2,zL w w    

,
4 4 / 4

xz
s s z

z

TTw w
q k k L

L w


  

(7.47) 
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where,  inT T T    is temperature difference. 

Therefore the overall temperature scale becomes 

 
2 2

,
16 16

z x y z

s z z

q w w
T T T T L

k L L

 
      

 
 

(7.48) 

combine Equations (7.46) and (7.48) together to get  

 max in 0.75 ,
s

q
T T w

k


   

(7.49) 

substitute  Equations (7.5) and (7.49) to get 

 max in 1 2
0.75 ,h

s

dq
T T

k 


   

(7.50) 

The dimensionless global thermal resistance is defined in terms of dimensionless 

pressure difference as:      

  1 2max in 10.75 ,
f h

r

k T T d
R k

q L L





 


 
(7.51) 

 

From Equation (7.51), it can be concluded that in the large diameter extreme R  

increases as hd  . 

 

7.8.3. Optimal Tube Diameter and Spacing 

 

The optimal behaviour of asymptotes can be seen in Figure 7.20 where the fluid is 

fully utilised. The geometric optimisation in terms of channel hydraulic diameter 
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could be achieved by combining Equations (7.41) and (7.51) by using the intersection 

of asymptotes method as shown in Figure. 7.21.  

 

 h opt
d
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Figure 7. 20 :  The optimal limit of the channel’s characteristic dimension  
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Figure 7. 21 :  Intersection of asymptotes Method: Global thermal resistance 

 

The optimal dimension can be generally approximated for the two configurations as 

the hydraulic diameter where the two extreme curves intersect. The intersection result 

is 

1 6 1 3 1 33.494
opth

r

d
k Be

L
    

(7.52) 

where 
opthd  is the optimal hydraulic diameter of the cooling channel. 
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The optimal spacing  opts   between channels follows from Equations (7.3), (7.5) and 

(7.52), namely 

 1 6 1 3 1 3 1/ 23.494 1
opt

r

s
k Be

L
      

(7.53) 

 

Equations (7.52) and (7.53) show that in the two extremes, the hydraulic diameter and 

channel spacing decrease as the pressure difference increases for fixed porosity. 

The minimum dimensionless global thermal resistance can be obtained for an 

elemental volume for the configuration that corresponds to the optimal geometries by 

substituting Equation (7.52) into Equation (7.41) as follows:   

 
 

2 3max in 1 3min
min 2.62 ,

f

r

k T T
R k Be

q L


 


 


 (7.54) 

 

Equation (7.54) shows that the minimised global thermal resistance decreases 

monotonically as Be  increases for a fixed porosity. 

The optimisation results of Equations (7.52) and (7.54) agreed within a factor of order 

of one with the corresponding results obtained by Kim et al. [130]. 
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7.9. CORRELATIONS OF THE THEORETICAL METHOD AND 

NUMERICAL OPTIMISATION 

The analytical results of Equations (7.52) to (7.54) were used to validate the 

numerical solutions. The numerical and approximate solutions based on scale 

analysis at optimal geometry dimensions are in good agreement and the solutions 

have similar trends as shown in Figures 7.22 to 7.24. 

 

Figure 7.22 shows the minimised dimensionless global thermal resistance group as a 

function of the dimensionless pressure difference at optimised design variables for 

the configuration. The analytical and numerical results show that the minimised 

global thermal resistance group decreases as the dimensionless pressure difference 

increases. Figures 7.23 and 7.24 show the effect of the dimensionless pressure 

difference on the optimised dimensionless design variable groups. The curves show 

that the optimised design variables decrease as the applied dimensionless pressure 

difference and porosity increase. This shows that a unique optimal design geometry 

exists for each applied dimensionless pressure difference, thermal conductivity ratio 

and porosity. 

 

Furthermore, the optimised channel spacing is directly proportional to the optimised 

hydraulic diameter. This is due to the fact that the elemental volume is not fixed, but 

allowed to morph for a fixed porosity. In all cases (objective function and design 
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variables), the theoretical and numerical values agree within a factor of the order one 

for the worst case. These results are also in agreement with past research work [130]. 
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Figure 7. 22 :  Correlation of the numerical and analytical solutions for the minimised 

global thermal resistance  
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Figure 7. 23 :  Correlation of the numerical and analytical solutions for the optimised 

hydraulic diameter    
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Figure 7. 24 :  Correlation of numerical and analytical solutions for the optimised  

channel spacing  
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7.10. CONCLUSION 

This chapter studied the numerical and analytical optimisation of geometric structures 

for square cooling channels of vascularised material with a localised self-cooling 

property, subject to a heat flux on one side in such a way that the peak temperature is 

minimised at every point in the solid body. The numerical results obtained agree well 

with results obtained in the approximate solutions based on scale analysis at optimal 

geometry dimensions. The approximate dimensionless global thermal resistance 

predicts the trend obtained in the numerical results.  This shows that there are unique 

optimal design variables (geometries) for a given applied dimensionless pressure 

number for fixed porosity. The use of the optimisation algorithm coupled with the 

CFD package, rendered the numerical results more robust with respect to the selection 

of optimal structure geometries, internal configurations of the flow channels and 

dimensionless pressure difference. 

 

The results also show that material property has a significant influence on the 

performance of the cooling channel. Therefore, when designing the cooling structure 

of vascularised material, the internal and external geometries of the structure, material 

properties and pump power requirements are very important parameters to be 

considered in achieving efficient and optimal designs for the best performance.
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