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3.1. INTRODUCTION     

 

 

This chapter deals with the processes that are involved in the numerical modelling of 

heat transfer and flow, discretisation of the computational domain, solving of the heat 

and mass transport governing equations and processing of the results. The commercial 

CFD software FLUENT [199] is used for the numerical analysis, which will be 

discussed in detail in the subsequent sections. 

3.2. MODELLING PROCEDURE     

 

 

Recently time, the modelling of fluid flow and heat transfer problems have been made 

easy by the development of CFD codes structured around numerical algorithms. The 

numerical analysis consists of three stages, namely: 

1. Pre-processing: This involves defining and developing the computational domain, 

geometry, mesh generation and discretisations, as well as the selection domain 

boundaries for the purposes of simulation. 

2. Solver execution: This involves the integration and solving of the governing 

equations at various nodal points across the computational domain. 

3. Post-processing: This involves the analysis of results and provision of 

visualisation tools such as grid displays, the generation of contour plots of various 

parameters of interest and particle tracking [200]. 
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3.3. GEOMETRY AND GRID GENERATION     

 

 

Geometry and grid generation constitute a major part of the pre-processing stage in a 

CFD analysis. The process involves dividing the computational domain into a finite 

number of discretised control volumes on which the governing equations can be 

solved.  

 

The Geometry and Mesh Building Intelligent Toolkit (GAMBIT) [201] is a 

commercial automated grid generator. With the help of a graphical user interface 

(GUI), it is used to construct finite volume models and create the geometry for 

generating meshes. The model and meshes are exported to FLUENT software for 

simulation and analysis. GAMBIT [201] and FLUENT 6.3 [199] can be automated by 

means of journal input files during optimisation process by setting up a computational 

model and mesh generation. 

 

The governing non-linear partial differential equations used for the fluid flow and heat 

transfer analysis include the conservation of mass (continuity), conservation of 

momentum and conservation of energy - coupled through density-pressure relationship. 

3.4. CONSERVATION OF MASS 

 

In an Eulerian reference frame, the equation of continuity in its most general form for 

fluids is given by [202] 
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 div = 0
D

u
Dt


  (3.1) 

 

where   is the density of the fluid, t is the time and V is the velocity vector of the 

fluid. For incompressible flow (constant density), Equation 3.1 reduces to: 

 div = 0u  (3.2) 

 

3.5. CONSERVATION OF MOMENTUM 

 

The momentum conservation equation is formally derived from Newton‟s second law, 

which relates the applied force to the resulting acceleration of a particle with mass. 

For Newtonian viscous fluids, Navier and Stokes fundamentally derived the following 

equation using the indicial notation: 

 div U
ji

ij

j j i

uuDU
P

Dt x x x
    

  
      

      

g  (3.3) 

where g is the vector acceleration of gravity, P is the pressure, x is the spatial 

coordinate,   is the coefficient of viscosity, u is the velocity component, ij  is the 

Kronecker delta function and   is the vexing coefficient associated with volume 

expansion [202]. Using Stokes‟ hypothesis, 
2

3
   . 

For incompressible flow, the vexing coefficient   and div U (due to the continuity 

relationship) vanish, simplifying Equation 3.3 to: 
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  2u u P u       (3.4) 

 

3.6. CONSERVATION OF ENERGY 

 

 

The conservation equation is derived from the first law of thermodynamics, which 

states that an increase in energy is a result of work and heat added to the system. 

Neglecting radiative effects, the energy equation in its standard form can be written 

as: 

div(  )
Dh DP

k T
Dt Dt

      (3.5) 

 

where h is the enthalpy of the fluid, k is its thermal conductivity, T is the temperature 

of the fluid and   represents the dissipation function expressed as: 
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   
   

   

 (3.6) 

For incompressible flow with constant thermal conductivity and low velocities, the 

viscous dissipation becomes negligible. Thus, Equation 3.5 can be simplified to: 

  2C u T k T
f Pf f

     (3.7) 

while the energy equation for a solid with internal heat generation is given as: 

2   0k T q
s s

    (3.8) 
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where, kf and ks represent the thermal conductivity of the fluid and solid respectively. 

The simplified equations are in steady state. 

3.7. BOUNDARY CONDITIONS     

 

 

 When a meshed geometry with grid is imported into FLUENT [199], boundary 

conditions for various surfaces and parameters need to be specified to run the 

simulations. The boundary conditions are guided by the types of engineering 

problems we want to solve.  

 

3.8. NUMERICAL SOLUTION TECHNIQUE     

  

This section deals with the numerical techniques implemented by using a three-

dimensional coupled density-based commercial package FLUENT™ [199] in solving 

the mass, momentum and energy conserving equations that employs a finite volume 

method (FVM). The details of the method were explained by Patankar [203]. 

 

The computational domain is discretised into a finite number of discrete elements and 

control volumes. The combined convection and diffusion terms in the momentum and 

energy equations are integrated on each discrete element and control volume thereby 

constructing algebraic equations for the discrete dependent variables to be solved. The 

discretised equations are linearised and the resulting system of linear equations is 

solved to yield updated values of the dependent variables. 
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Furthermore, the governing equations which are non-linear and coupled are solved by 

segregating them from one another. Hence, several iteration processes of the solution 

loop must be performed [199] before a converged solution is obtained. A flow chart 

representing an overview of numerical steps of the iterative process is shown in 

Figure 3.1. 

 

Figure 3. 1 :  Overview of the segregated solution method [199] 
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3.9. CONCLUSIONS     

  

This chapter focused on the processes involved in solving fluid flow and heat transfer 

problems by using a three-dimensional coupled density-based commercial package 

FLUENT™. A set of non-linear partial differential equations governing the transport 

of mass and heat is discussed. The numerical scheme implemented in solving the flow 

and heat transfer is also examined.  
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4.1. INTRODUCTION 

 

This section examines the theory governing the mathematical optimisation algorithms 

used in this thesis, together with the numerical modelling technique described in 

Chapter 3. We also examine an overview of the optimisation technique, which is 

described in detail in the subsequent sections.  

 

4.2. NUMERICAL OPTIMISATION  

The mathematical or numerical optimisation often known as non-linear programming 

is described as a systematic method to find the minimum or maximum of a specific 

function for a given set of constraints. This helps in finding the best design under 

certain design constraints by changing the appropriate design variables. It can also be 

defined as the solving of a problem or task in the best way that can be expressed 

mathematically or numerically. Optimisation models arise in almost every area of 

human endeavours. In economics, optimisation is the maximisation of profit, 

maximisation of efficiency and minimisation of loss or risk.  In engineering, 

optimisation is the design of a building or machinery to minimise the weight or 

maximise strength in order to avoid failure. The history of mathematical optimisation 

date back to the 1940s when it was first used as steepest descent for solving very 

simple problems in cases where functions of many variables are considered[192]. 
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4.3. NON-LINEAR CONSTRAINED OPTIMISATION     

In mathematical optimisation, an optimal solution is obtained by changing some 

parameters known as the design variables while the function to be optimised 

(minimised or maximised) is called the objective or cost function ( )f x . The design 

variables are generally represented by a vector *x . The optimisation problem 

becomes a constrained optimisation problem when some constraints in the form of 

inequalities ( )ig x  or equalities ( )jh x  are introduced into the process; else the 

problem is an unconstrained optimisation problem. The unconstrained optimisation 

problem is solved more easily, compared to a constrained optimisation problem. This 

is because the former is reduced to the search of finding the minimum or maximum 

values of the objective function ( )f x . For the constrained optimisation problem, the 

optimisation becomes very complex. The constraints will have to be treated in a 

special way by introduction of a penalty function. 

 

In general, the non-linear constrained optimisation problem can be expressed in 

mathematical form as 
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 min ; , ,.... ... , ,  ,
1 2

T nf x x x x X x
i n i

x

  
 

 (4.1) 

subject to  

  0, 1,2,.... ,g x j p
j

   (4.2) 

  0, 1,2,.... ,h x k q
k

   (4.3) 

 

where      ,  ,  f x g x h x
j k

 are scalar functions of the vector  and they are defined 

as objective or merit functions, inequality constraint functions and equality constraint 

functions, respectively. The components of vector  are called design variables. The 

solution of the problem in Equations (4.1) to (4.3) is given as vector x
: 

* * * *

1 2, ,...., ,n

T
x x x x     (4.4.) 

This gives the lowest value of the objective function ( )f x  subject to specified 

inequality and equality constraints. In a situation where the objective function ( )f x  

is to be maximised, the minimisation algorithm is still applicable. However, the 

setting will be ( ) ( )maxf f x x . Figure 4.1 represents the transformation of the 

maximisation problem to a minimisation problem [192]. 
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Figure 4. 1 :  Graphical representation of a maximisation problem [192] 

 

 

As stated in Chapter 2 different types of algorithms have been developed to solve the 

optimisation problem of Equations (4.1) to (4.3). These include the generic algorithm, 

multiplier methods, surrogate, annealing simulation, Powel algorithm and sequential 

quadratic programming [192]. Some mathematical algorithms are commercially 

available. However, new algorithms are being developed to solve the inhibiting 

complications experienced with the available methods. Only the optimisation 

algorithms used in this study are discussed next. 

 

4.4. OPTIMISATION ALGORITHMS 

 The Leapfrog Optimisation Program for Constrained Problems (LFOPC) and 

DYNAMIC-Q algorithms [204, 205] were used as optimisation processes in this study 

to optimise an approximation solution to the original problem. The LFOPC algorithm 
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is applied to the penalty function parameter in three phases, which increases the rate 

of searching for an optimal design solution in limited time. DYNAMIC-Q is a 

gradient-based algorithm and is good at handling optimisation problems with a large 

number of variables with minimal storage requirements of the computer RAM. Also, 

unlike genetic algorithm methods, the DYNAMIC-Q is not computationally 

expensive, as complex functions that are expensive to compute numerically are 

approximated using spherical quadratic approximate functions. Both LFOPC and 

DYNAMIC-Q algorithms are discussed in detail in the subsequent sections.  

 

 

 

4.4.1. Leapfrog optimisation program for constrained problems (LFOPC)  

 

Snyman‟s original LFOP [204, 205] was adapted to handle constrained problems of 

equality and inequality constraints by introducing a penalty function formulation of 

the original problem in three phases [206 - 208]. The penalty function formulated as 

2 2

1 1

( ) ( ) ( ) ( )
m n

i i j j

i j

p f g h  
 

   x x x x  (4.5) 

 

where 

0 if ( ) 0

 if ( ) 0

i

i

i i

g

g





 



x

x
 (4.6) 
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To simplify the algorithm, the penalty parameters  and i j  take on the same positive 

value  , that is i j    . As the value of   increases, say  , the 

unconstrained minimum of ( )p x  solves the constrained problem of Equations (4.1 – 

4.3); hence the solution to the constrained problem becomes more accurate at a very 

high value of  . The unconstrained optimisation problem on the other becomes ill-

conditioned at a very high value of  .Therefore, the penalty parameter should be 

increased gradually until it reaches the limit value of  .  The later is then kept 

constant until convergence is reached with minimum violation of the inequality 

constraints in the initial design steps [206]. The penalty function formulation of the 

constrained problem in Equation (4.2) occurs in three phases and will be next 

discussed as executed in the optimisation process. 

 

4.4.1.1. Penalty formulation: Phase 0      

 

 

In this phase, for a given initial guess of the design variable 0 *x , the penalty 

parameter introduced is given a value of 0 . The penalty function is subsequently 

minimised using the Leapfrog optimisation program (LFOP) and with 1   resulting 

in an optimum design variable vector o( )*x  after convergence. The LFOP 

automatically scales the constraints to make sure that the violation of a constraint on 

the gradient of penalty function is approximately the same for all the constraints. At 

this optimal point, the active inequality constraints are checked and identified for 
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spatial violation. If no active inequality constraints are found (constraints that are 

violated), and no equality constraints either, this optimal point must certainly be the 

optimal minimum value of the optimisation problem and the algorithm is then 

completed. 

 

4.4.1.2. Penalty formulation: Phase 1     

 

This phase is initialised by increasing the value of the penalty parameter   when 

active inequality constraints are obtained from the solution of Phase 0. The penalty 

function parameter for objective constraints is again set to 1  . Also the 

approximate design point, o( )*x  obtained from Phase 0 is used as the starting 

guess, after which the penalty parameter is minimised by LFOP. Following 

convergence, a more accurate solution of the original problem is found and active 

inequality constraints that may be different from that of phase 0 are again identified. 

If there are no active constraints, and the solution  1( )*x  becomes the optimal 

solution of the optimisation problem then the algorithm is terminated 

 

4.4.1.3. Penalty formulation: Phase 2  

In this last phase, the penalty function parameter for objective constraint is again set 

to 0  . The optimal solution from phase 1 is used as the initial guess and the penalty 

parameter is then minimised by LFOP.  The optimisation algorithm will search for an 

optimal solution of the optimisation problem, which corresponds to the intersection of 
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the active constraints. However, if the active constraints do not intersect, the 

optimisation algorithm will find the best likely solution, which is usually closer to the 

real solution with little active constraint violation. 

 

4.4.2. DYNAMIC-Q optimisation algorithm 

 

The DYNAMIC-Q optimisation algorithm was developed by Snyman et al. [204, 208 

-210] at the University of Pretoria. The Dynamic-Q is a multidimensional and robust 

gradient-based optimisation algorithm that does not require an explicit line search of 

the objective functions. The technique involves the application of a dynamic 

trajectory LFOPC optimisation algorithm to successive approximate quadratic sub-

problem of the original problem [207], hence the name “DYNAMIC-Q”.  The 

DYNAMIC-Q can handle numerical analyses obtained from CFD and FEM 

simulations efficiently by dealing with all noise functions due to grid changes, 

convergence and the numerical accuracy of the computer.  

 

In this method, the successive sub-problems [ ],  0,1,2,...P l l   are generated at 

successive design points l
x  , starting with an initial arbitrary design  0x  to a solution 

x . They develop the spherical quadratic approximations to approximate the objective 

functions or constraints, or both of the objective functions and constraints, provided 

that they are not analytically given or very numerically expensive to compute 

[208,210]. The spherical quadratic approximations are given by: 
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                1

2

T
l l l l lTf x f x f x x x x x A x x       (4.7) 

                  1
,       1,....

2

T
l l l l l lT

i i i ig x g x g x x x x x B x x i p      

 

(4.8) 

                  1
,       1,....

2

T
l l l l l lT

j j j jh x h x h x x x x x C x x j q      

 

(4.9) 

 

where ,   and T T T

i jf g h    denote the gradient vector, and can be  approximated by 

a forward finite-difference scheme if these vectors are not known analytically. A , 

 l
iB  and 

 l
jC  are approximate Hessian matrices of the objective function, inequality 

constraint and equality constraint functions respectively. The approximations are 

defined by the diagonal matrix as 

 , ,...,A diag a a a aI   (4.10) 

B b I
i i
  (4.11) 

C c I
j j
  (4.12) 

 

where I represents the identity matrix. 

 

The convergence of the solution is achieved in a stable manner and controlled by 

imposing move limits on the design variables during the optimisation process. The 

move limit l  takes on the form of the constraint by limiting the movement of each 
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design variables k

lx  and not allowing the new design point to move too far away from 

the current design point. The move limit of single inequality constraints is described 

as 

 
2

1 2 0,      1,2,...lg x x x i n
i i i i




     (4.13) 

 

where i  is the approximately chosen step limit for each design variable. 

 

The Dynamic-Q is terminated when either the normalised step size is: 

1

1
x

lx x
i i

x
norm

x
i





  


 (4.14) 

 

or the normalised change in the function value is: 

1
f

f f
i best

f
norm

f
best




  


 (4.15) 

where  and x f  are the step size and function value tolerances respectively. 
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4.5. FORWARD DIFFERENCING SCHEME FOR GRADIENT 

APPROXIMATION 

 

The gradient vector of the objective function (obtained from the numerical 

simulation) at a specified design point  x  with respect to each of the design variables 

ix  is approximated by the first- order forward differencing scheme given as 

     f x x f xf x i

x x
i i

 


 
    1,2....,i n  (4.16 ) 

where  0,0,...., ,....0
T

i ix x    , is the suitable step size.   

The inequality and equality constraints gradient vectors on the other hand are also 

approximated within the algorithm by the first- order forward differencing scheme in 

a similar way. They are represented (4.17) and (4.18) respectively as:  

     g x g x x g x
j j i j

x x
i i

   


 

    1,2....,j p  (4.17) 

     h x x h xh x
k i kk

x x
i i

 


 
    1,2....,k q  (4.18) 
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4.6. EFFECT OF THE NOISY FUNCTIONS OF THE FORWARD 

DIFFERENCING SCHEME ON THE OPTIMISATION 

ALGORITHM 

Noisy functions could occur in objective functions in many engineering design 

problems. They comprise experimental and numerical simulation analyses as a result 

of the activities of a complex sequence of calculations involving measured or 

computed quantities. This may lead to inaccurate solutions. Experimental noise may 

cause error due to the influence of the environment, while numerical noise may be 

caused by changes of grid, convergence problems during iterations and numerical 

accuracy of the computer. The size of the step x used in the differencing scheme is 

very important when approximating the derivative functions. If the size of the step is 

not carefully chosen, it can pose a noise that result in incorrect solutions [211 - 215]. 

Therefore, it is essential to choose a step size x  carefully so that it drastically 

minimises the noise and gives an accurate representation of the global gradient of the 

function.   

 

Figure 4.2 shows the effect of noise on the selection of the step size x  of a function 

obtained from a numerical simulation. Ideally, a very small step size x  is expected 

to give an accurate approximation of the global gradient of a function. However, due 

to the existence of noise function in optimisation algorithms, the approximation of the 

global gradient of the function may be inaccurate when a small step size x  is used 

as shown in Figure 4.2(a). Thus, using a large enough step size will reduce the 
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influence of the noise as shown in Figure 4.2(b), but this will also lead to a wrong or 

inaccurate approximation of the gradients.  

 

To ensure that the step size chosen is ideal, the optimisation problem should be 

worked out several times with different starting guesses. If the solution converges to 

the same value, then it can be concluded that the step size is sufficient. If 

discrepancies are observed, however, the step size should be modified until 

discrepancies in the results are extremely reduced. 

 

Figure 4. 2 :  Graph depicting the effect of step size on gradient approximation [192] 

 

 

4.7. CONCLUSION 

 

This chapter focused in details on the mathematical optimisation algorithms used in 

this study, namely the LFOPC and DYNAMIC-Q algorithms. The DYNAMIC-Q, 

which builds on the LFOPC algorithm, presented a multi-dimensional, accurate, 
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reliable and robust penalty method for solving practical constrained engineering 

design problems and helps in the optimal design of systems. The effect of numerical 

noise function during simulation and its effect on the gradient-based optimisation 

algorithms were also discussed and an efficient way of dealing with the associated 

problems was suggested. 
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FFOORR  CCOONNJJUUGGAATTEE  CCHHAANNNNEELLSS  WWIITTHH  

IINNTTEERRNNAALL  HHEEAATT  GGEENNEERRAATTIIOONN
11
,,
22
  

5.1.  INTRODUCTION 

 

This chapter deals with the theoretical analysis of geometrical optimisation. It is 

presented for different configurations using the intersection of asymptotes method to 

provide the existence of an optimal geometry that minimises the global thermal 

resistance. 
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5.2. OVERVIEW OF THE INTERSECTION OF ASYMPTOTES 

METHOD 

 

This section presents and develops a theoretical solution to the optimal channel 

geometry of parallel channels with different cross-sectional shapes that penetrate and 

cool a volume with uniformly distributed internal heat generation, sq  . 

 

The cooling fluid is water which is assumed to be in single-phase, steady and a 

Newtonian fluid with constant thermo-physical properties. The flow is laminar and is 

forced through the cooling channels by a specified pressure difference P , across the 

axial length of the structure. Water is more effective than air because the air-cooling 

techniques are not likely to meet the challenge of high heat dissipation in electronic 

packages [216, 217]. 

 

The total volume and the volume porosity ( ) occupied by the channels are fixed. 

The objective is to achieve minimum global thermal resistance.  

 

In this study, five different types of channel configurations namely cylindrical, square, 

equilateral and isosceles right triangular and rectangular channels are introduced as 

shown in Figure 5.1.  
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Figure 5. 1 :  Ducts with (a) cylindrical  (b) square (c) triangular (d) rectangular cooling     

channels  

 

The optimisation is based on the intersection of asymptotes method and scale 

analysis. The optimal channel geometries and minimum global thermal resistance 

between volume and coolant are reported for all the configurations. The optimal 
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geometries are determined as trade-offs between the two operating extremes of each 

configuration channel in which the heat transfer mechanism operates – the extreme 

limit of a small channel with fully developed flow and the extreme limit of a large 

channel with the distinct boundary layer. 

 

The following assumptions are also made throughout the analysis: the inlet 

temperature and the pressure difference ΔP are fixed with a uniform flow distribution 

in all the channels, laminar flow, constant cross-sectional area of the channels, 

negligible inlet and exit plenum losses, and negligible axial conduction. An elemental 

volume is considered because of the symmetry of the heat distribution.  

 

The heat generated in the elemental volume [17, 19] is 

 s cq q A A L   (5.1) 

The heat is conducted and deposited as the heat flux, q  , through the solid wall to the 

fluid, therefore,  

 s c cq A A L q P L    (5.2) 

The porosity is assumed to be fixed at ,c sA A   therefore Equation (5.2) becomes

  

1

4
hq q d    

(5.3) 

where   is the numerical value determined from the porosity of the channel and is 

defined as: 
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1 




 
  
 

 
(5.4) 

and hd  is the channel hydraulic diameter defined as: 

4 c
h

c

A
d

P
  

(5.5) 

The global thermal resistance or global thermal conductance will be determined in 

two extreme limits. 

 

5.2.1. Extreme limit 1: small channel 

 

 

 

When the channel‟s characteristic dimension is very small and very slender, that is 

0hd  and hd L , the flow is fully developed along the length, L. See Figure 5.2 for 

its cylindrical configuration 

 

0hd 

 

 

inT

P

 

Figure 5. 2 :  The extreme limit of the channel’s characteristic dimension is very small and very 

slender, i.e. 0hd  and hd L  
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According to the first law of thermodynamics, the rate of heat transfer in a unit 

volume to the working fluid is equal to enthalpy gained by the working fluid, and then 

for constant, pC  

 s c p out inq A uC T T   (5.6) 

In this extreme limit, the fluid in the channel quickly becomes a fully developed flow 

and the working fluid is overworked in such a way that the outlet temperature outT  

approaches the peak temperature, maxT , at the solid structure.  

Therefore, Equation (5.6) becomes    

 maxsm c p inq A uC T T   (5.7) 

This is equal to the heat deposited as heat flux, q   through the wall to the fluid. 

Therefore, 

 maxuc p in cA C T T q P L    (5.8) 

 

when the flow is fully developed, the average velocity u , is given by Hagen-

Poiseuille as: 

2

4 o

P
u

P L







  

(5.9) 

where   is the characteristic dimension used to define the Poiseuille number, oP  , and 

in this case the hydraulic diameter, hd . 

Combine Equations (5.8) and (5.9) and substitute   for hd , then rearrange to get  
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 

2

max 3

16 o
d

h
in

h p

P L

T T q
d C P





 
  
  
 

 

(5.10) 

Substitute Equation (5.3) for Equation (5.10) and rearrange to get  

 max

2 2

4 o
din h

p

P
T T

q L d C P
h






 
 

  
 

 

(5.11) 

But            

Prf

p

k
C


  

(5.12) 

Substitute Equation (5.12) for Equation (5.11) and rearrange the formula as                  

    

 
2 2

4

Pr

o
df w in h

h

Pk T T

q L d P




 
 

  
 

 

(5.13) 

The dimensionless global thermal resistance is defined in terms of dimensionless 

pressure difference as                                         

  2

1

2
4 hf w in

o
d

h

d

L

k T T
R P Be

q L





   

    
   

 
(5.14) 

where  

2PL
Be




  

(5.15) 
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From Equation (5.14) for a smaller channel hd L , the thermal resistance is inversely 

proportional to 
2

hd . Keeping   (which is a function of porosity) constant, it shows 

that the global thermal resistance increases as the hydraulic diameter decreases. 

 

5.2.2. Extreme limit 2: large channel 

 

In this extreme limit, the channel‟s characteristic dimension is sufficiently large, that 

is, hd , the boundary layer of surface becomes distinct and the channel diameter 

is larger than the boundary layer thickness. The working fluid is not properly utilised 

and working fluid outside the boundary layers becomes useless and the body is not 

properly cooled in the downstream for cylindrical configuration (Figure 5.3). 

 

hd 

 

 

inT

P

 

Figure 5. 3 :  The extreme limit of the channel’s characteristic dimension is sufficiently large, that 

is hd  

 

The rate of heat transfer across the thermal boundary layer is 

 maxl s inq hA T T   (5.16) 

   and the heat flux is                                               
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 maxl inq h T T   (5.17) 

The heat transfer rate can be related to the Nusselt number and heat transfer 

coefficient over the unit system. The heat transfer coefficient is defined for a laminar 

boundary layer as [31]  

1/3 1/ 20.453 Pr Re ,              for,   0.5 < Pr < 10f

f

hL
k

k
  

(5.18) 

Substitute Equation (5.18) for (5.17) to get 

 max

1/ 3 1/ 20.453 Pr Ref

l in

k
q T T

L
   

(5.19) 

where 

ReL

u L


  

(5.20) 

and u  is the free-stream velocity that sweeps the boundary layers. The longitudinal 

pressure force balance on the control volume inscribed inside a unit volume channel 

is: 

c c wPA P L   (5.21) 

where w   is the average wall shear stress across the length and can be obtained from 

the laminar boundary layer flow solution [218]  as 

2 1/ 20.664 ReLu
w
  

  (5.22) 

Combine Equations (5.5) and (5.20) with Equation (5.22) to obtain                             
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2/3

2
Re

2.656

h
L

Pd L



 
  
 

 
(5.23) 

 

Substitute Equation (5.23) for Equation (5.19) to obtain           

 
1/31/3

max2

0.3271 Prf h
l in

k Pd L
q T T

L 

 
  

 
 

(5.24) 

Further substitution of Equation (5.3) for Equation (5.24) and rearrangement of the 

formula defines the dimensionless global thermal resistance as:                  

 max 2 / 3
1/ 30.7643

2

in
h

k T T
df

R Be
Lq L


 

         
 

 

(5.25) 

From Equation (5.25), for a larger channel, the global thermal resistance is directly 

proportional to 
3/2

hd . Keeping   (which is a function of porosity) constant, confirms 

that as the hydraulic diameter becomes larger, the global thermal resistance increases. 

 

5.2.3. Optimal channel diameter and spacing 

 
 

The optimal behaviour of asymptotes is shown in Figure 5.4 where the fluid is fully 

developed and utilised. The geometric optimisation in terms of channel could be 

achieved by combining Equations (5.14) and (5.25), and using the intersection of 

asymptotes method as shown in Figure 5.5.  
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 h opt
d

 

inT

P

 

 
Figure 5. 4 :  The optimal limit of the channel’s characteristic dimension 

 

The optimal dimension can generally be approximated for the two configurations as 

the hydraulic diameter where the two extreme curves intersect. The intersection result 

is 

3/8 1/ 41.8602h
o
d

hopt

d
P Be

L

 
 

 
 

(5.26) 

where 
opthd  is the optimal hydraulic diameter and for circular channel 8o

d
h

P  . Hence 

Equation (5.26) reduces to 

 

1/ 44.057h

opt

d
Be

L

 
 

 
 (5.27) 
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 R
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Figure 5. 5 :  Intersection of asymptotes method: Global thermal resistance 

 

For a square channel with hydraulic diameter hd , 7o
d

h

P   

Hence Equation (5.26) reduces to: 

1/ 43.859h

opt

d
Be

L

 
 

 
 

(5.28) 

for an isosceles right triangle channel with hydraulic diameter hd , 6.577o
d

h

P  , 

Equation (5.26) therefore reduces to 
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1/ 43.7698h

opt

d
Be

L

 
 

 
 

(5.29) 

For an equilateral triangle channel with hydraulic diameter hd , 6.625o
d

h

P   Hence 

Equation (5.26) reduces to: 

1/ 43.7801h

opt

d
Be

L

 
 

 
 

(5.30) 

For a rectangular channel, the Poiseuille number can be approximated as 

 
2

1 1

c c c5

12

192
1 1 tanh

2

o
d

h

P

AR AR AR




 


  

    
  

 
(5.31) 

hence Equation (5.26)   combined with Equation (5.30)   can be rewritten followed as: 

 
3/8

2
1 1 1/ 4

c c c5

192
4.7234 1 1 tanh

2

h

opt

d
AR AR AR Be

L







  
     

       
     

 

(5.32) 

The optimal spacing  opts   follows from Equations (3), (5) and (5.26):  

 
1/ 2 3/8 1/ 41.8602 1 1 o

d
hopt

s
P Be

L
          

 
(5.33) 

 

Equations (5.26) and (5.33) show that in the two extremes, the hydraulic diameter and 

channel spacing decreases as the pressure difference increases for fixed porosity. 

The minimum dimensionless global thermal resistance can be obtained for an 

elemental volume for all the channels configurations that correspond to the optimal 

geometries. This can be by substituting Equation (5.26) into for Equation (5.14):   
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min

1/ 4 1/ 21.156 o
d

h

R P Be   
(5.34) 

Equation (5.34) shows that the thermal resistance decreases monotonically as Be  

increases for a fixed porosity. 

The minimised dimensionless global thermal resistance of a circular channel with 

8o
d

h

P   is 

min

1/ 21.9442R Be   
(5.35) 

and the minimised dimensionless global thermal resistance of a square channel with 

7o
d

h

P   is: 

min

1/ 21.8803R Be   
(5.36) 

The minimised dimensionless global thermal resistance of a isosceles right triangle 

channel with 6.577o
d

h

P   is 

min

1/ 21.8513R Be   
(5.37) 

and the minimised dimensionless global thermal resistance of a an equilateral 

triangular channel with 6.625o
d

h

P   is 

min

1/ 21.8546R Be   
(5.38) 

The minimised dimensionless global thermal resistance of a rectangular channel with 

approximated o
d

h

P  of Equation. (5.31) is 
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 
1/ 4

2
1 1

min c c c5

192 1/ 22.1516 1 1 tanh
2

R AR AR AR Be







 
         

   
 

(5.39) 

 

 

5.3. SUMMARY OF THE THEORETICAL OPTIMISATION FOR 

ALL THE COOLING CHANNEL SHAPES  

 

5.3.1. Effect of Applied dimensionless pressure difference on the 

minimised dimensionless global thermal resistance 

 

Figure 5.6 shows the minimised dimensionless global thermal resistance as a function 

of dimensionless pressure difference at optimised design variables for the cylindrical, 

square, equilateral and isosceles triangular configurations. Minimised thermal 

resistance monotonically decreases as the applied dimensionless pressure difference 

number across the axial length increases for fixed porosity. The cylindrical channel 

has the highest thermal resistance while the triangular channels have the lowest 

thermal resistance for a given applied dimensionless pressure difference number. This 

is due to the fact that triangular configurations have high shear stress corners. Also, 

Figure 5.7 shows the minimised dimensionless global thermal resistance as a function 

of dimensionless pressure difference at optimised design variables for rectangular 

configurations. Minimised thermal resistance decreases as the applied dimensionless 

pressure difference number across the axial length at different aspect ratios increases. 
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 Figure 5. 6 :  Effect of applied dimensionless pressure difference on the dimensionless global 

thermal resistance 

 

 

5.3.2. Effect of applied dimensionless pressure difference on optimised 

design variables 

 

Figure 5.8 shows the effect of the dimensionless pressure difference on the optimised 

hydraulic diameter for the cylindrical, square, equilateral and isosceles triangular 

configurations. The curve shows that design variables decrease as the applied 

dimensionless pressure difference for fixed porosity increases. The graph also shows 
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that unique optimal design geometries exist for each applied dimensionless pressure 

number and for each configuration. 

 

Furthermore, Figure 5.9 shows the graph of dimensionless pressure difference as a 

function of the dimensionless hydraulic diameter for the rectangular configuration. 

The curve indicates that optimised the dimensionless hydraulic diameter decreases as 

the applied dimensionless pressure difference for fixed porosity increases. The graph 

also shows that unique optimal design geometries exist for each applied 

dimensionless pressure difference at different aspect ratios. 
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Figure 5. 7 :  Effect of applied dimensionless pressure difference on the dimensionless global 

thermal resistance 
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In summary, the best parallel-channel structure for suppressing the hot spots of heat-

generating devices should have the hydraulic diameter shown in Equation (5.26). The 

minimised global thermal resistance decreases further by increasing the applied 

pressure difference number (Be) and reducing the channel-to-channel spacing and 

hydraulic diameter smaller. 
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Figure 5. 8 :  Effect of applied dimensionless pressure difference on the dimensionless global 

thermal resistance 
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 Figure 5. 9 :  Effect of applied dimensionless pressure difference on the dimensionless global 

thermal resistance 

 

5.4. CONCLUSION  

 

This chapter presented and developed an overview of the analytical solution to the 

geometrical optimisation of the external structures and internal architectures of 

parallel channels of different cross-sectional shapes for cooling volumes that generate 

heat uniformly. The intersection of asymptotes method was used to provide the 

existence of an optimal geometry, which minimises the global thermal resistance. 
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The cooling fluid is driven by forced convection through the channels by the pressure 

difference across the channels. The optimal channel geometry was determined as a 

trade-off between the two extremes in which the heat transfer mechanism operates, in 

other words the extreme limit of the small channel and extreme limit of the large 

channel. The porosity of the volume penetrated by the array of channels was assumed 

given.  

 

The optimal spacing between adjacent channels in the array can be derived from the 

optimal channel sizes already determined. The structure of channels and channel-to-

channel spacing are optimal when each flow passage is just long enough to allow for 

its thermal boundary layers to merge at the exit as shown in Figure 5.4. This can be 

done by ensuring that the cooling volume is used to its fullest by packing the channels 

in such a way that every portion of flow passage is worked in a heat transfer form.  

 

The next chapter will provide the numerical solutions for achieving optimal geometry, 

which minimises the global thermal resistance. The theoretical and the numerical 

solutions will also be compared.  
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